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ABSTRACT

Stochastic processes are ubiquitous in nature. They are used to model the stock market, predict
the weather, describe transport processes in cells and understand the random motion of
particles suspended in a fluid, amongst other fields of application. In the realm of classical
physics, stochastic processes are well-defined and their properties are conceptually clear. The
situation presents itself much less obvious in quantum mechanics, where ‘natural’ classical
properties do not hold anymore, and existing approaches to their description break down
when memory effects play a non-negligible role.

Here, using the language of higher-order quantum maps, we develop a comprehensive
framework for describing quantum stochastic processes, that constitutes a natural extension
of its classical counterpart and coincides with it in the correct limit. With this framework at
hand, we recover fundamental mathematical properties of quantum stochastic processes, and
prove their equivalence with the theory of quantum causal modeling.

Furthermore, themethods we develop allow for an unambiguous characterization ofmemory
effects in quantum processes that we use to derive the connection between Markovianity, i.e.,
memorylessness, of a process, and previously used witnesses thereof. By tailoring it to relevant
scenarios of restricted control and limited resources, we make this framework amenable to
experimental implementation, classifying the maximal amount of information that can be
inferred about a quantum stochastic process with limited experimental means. As a special case,
this result enables the delineation of classical and quantum processes in the non-Markovian
regime.

Finally, we connect the theory of quantum stochastic processes to the closely related field of
causally indefinite processes, and provide a constructive probabilistic simulation protocol that
exceeds previous ones in terms of its success probability. The corresponding results tie indefinite
causal order to the non-local properties of the resources used for their implementation, thus
offering a direct link between entanglement, non-locality and causal indefiniteness.
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One of the main aims of this thesis is to provide a comprehensive overview of the theory of
general stochastic processes. In order to emphasize the interconnectedness of the above results,
they are embedded into a broader research context in this work. While properly referenced
throughout, for easier delineation between the existing literature and the original results of the
above papers, the following list provides their explicit occurrence by chapter:

Chapter 2 is an overview of the theory of higher order quantum maps and does not
contain original results.

The original results of Chapter 3 are based on Refs. [4]. Specifically, Secs. 3.5 – 3.9, the
discussion of the relation between causal modeling and stochastic processes (both in
classical physics and quantum mechanics), as well as the derivation of the generalized
extension theorem can be found in [4]. The generative models for quantum stochastic
processes, presented in Sec. 3.10, are original, unpublished work.

The original results of Chapter 4 are based on Refs. [1, 5, 6]. In detail, the discussion of
CP divisibility and its relation to Markovianity (Secs. 4.8 – 4.8.4) is taken from [1]. The
brief discussion of quantum Markov order (Sec. 4.9) can be found in [5, 6].

The original results ofChapter 5 are based on Ref. [2]. The discussion of restricted process
tensors (Secs. 5.1 – 5.5) is entirely original work, taken from [2]. The ensuing results on
non-Markovian classical processes (Sec. 5.6.2 – 5.6.4) are original, unpublished work.

The original results of Chapter 6 are based on Ref. [3]. Specifically, the simulation
procedure, as well as the subsequent discussion of simulation probabilities, and the analysis
of simulation resources (Secs. 6.3 – 6.5) can be found in [3].

The findings of Refs. [7, 8] are referenced throughout, but do not constitute any of the
main results of the thesis.
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A skyscraper skyline along the horizon
As mariners sail in towards Melbourne town,

The city that’s full of delightful surprises,
For this is a city of well-earned renown.

— Dacre Smyth [9]
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1
MOTIVAT ION AND OUTL INE

1.1 motivation

No physical system is ever fully isolated from its surroundings. In any real-world scenario, a
system that is controlled and manipulated for storing or processing information will inevitably
interact with an unknown environment. This fact leads to non-trivial dynamics, where memory
effects play a non-negligible role. With increasing miniaturization and read-out frequencies in
modern-day technologies, the role of such effects will become even more prominent in the
future.
Consequently, there have been intense efforts – theoretical, experimental, and engineering

– to analyze, model and characterize the dynamics of open systems, and the frameworks
developed for their description find application in every branch of the quantitative sciences,
including outside the realm of physics.

Despite these efforts, there are still many conceptual and practical open questions, pertaining
to the modeling of complex open processes, that hinder both theoretical and technological
progress. This is particularly true in quantummechanics. There, the mere act of observation can
disturb the system, a fact which has proven an obstacle to the proper mathematical definition
of open quantum processes, and the characterization of their memory effects.
Going forward, a unifying framework for open processes – or, more generally, stochastic

processes – is of paramount importance, not only for our theoretical understanding of classical
physics and quantum mechanics, but also from an applied perspective; any technological
development that aims to harness quantum and memory effects when they are advantageous,
or suppress them when they are detrimental, has to start from a clear and experimentally
accessible understanding of the underlying concepts.
The overarching purpose of this thesis is hence twofold: On the one hand, it supplies such

an understanding, and develops the ‘umbrella theory’, that unifies existing approaches to
stochastic processes (classical, quantum, and beyond), simultaneously providing the axiomatic
underpinnings for many different frameworks in physics and other disciplines. On the other
hand, leveraging this generalized vantage point, the second goal of this thesis is to render the
resulting theoretical framework amenable to experimental investigation and implementation,
and uncover the boundary between classical and quantum processes.
These results are achieved by assuming a distinctly operational viewpoint, which models

processes only in terms of entities that are experimentally accessible in principle, and does
away with many of the conceptual pitfalls that earlier approaches are plagued by. Additionally,
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motivation and outline

the operational approach allows one to investigate the minimal fundamental assumptions that
have to go into the description of stochastic processes.

One of the seemingly irrevocable axioms that can be relaxed is that of causal order, and one
of the aims of this work is to provide a clear connection between processes with indefinite
causal order, and the resources that are necessary for their simulation, thus connecting the
well-established formulation of stochastic processes that have causal order with the more
speculative field of those that do not.
Overall, this thesis is intended to provide a comprehensive picture of the underlying op-

erational structure of open quantum processes that demonstrates the interconnectedness of
seemingly disparate fields of research. The operational approach taken throughout then enables
the resolution of apparent roadblocks, and paves the way to an unambiguous investigation of
the structural properties of general stochastic processes.

1.2 outline

Since the research areas covered in this work are intimately linked but contend with a rather
wide selection of concepts, much emphasis has been put on a clear presentation of their mutual
relation. Consequently, the original research results contained in this thesis are interwoven
with the existing literature in their respective fields. Each chapter contains its own introduction
and summary, to clarify its position in the corresponding wider context, and to point out
potential future research avenues.
This thesis begins in Ch. 2, with a review of the theory of higher-order quantum maps

and general quantum networks. The corresponding discussion provides the terminology, as
well as the mathematical framework we will employ throughout this thesis. In particular, we
encounter the Choi-Jamiołkowski isomorphism, and the link product, the necessary tools to
succinctly describe higher-order quantum maps. Additionally, the graphical representation
of quantum networks, that will be used frequently, is introduced. The chapter ends with a
discussion of the constraints that causal ordering imposes on higher-order quantum maps.

In Ch. 3, we investigate classical stochastic processes and their generalization to the quantum
regime in detail. The chapter starts with a discussion of the properties that classical processes
satisfy and provide the Kolmogorov extension theorem, the fundamental theorem of the theory
of classical stochastic processes. Subsequently, the breakdown of the Kolmogorov extension
theorem in quantum mechanics, and the accompanying conceptual problems are highlighted.
Their resolution is provided by means of a description of quantum processes in terms of
higher-order quantum maps, which enables the derivation of a generalized extension theorem –
one of the main results of this thesis – defining the concept of a quantum stochastic process.
Additionally, by proving the generalized extension theorem, we demonstrate the equivalence
of the fields of quantum stochastic processes and quantum causal modeling and provide an
axiomatic underpinning for all dynamical probabilistic theories. Finally, this extension theorem
is leveraged to propose abstract generative models of quantum stochastic processes.
Ch. 4 introduces the concept of open quantum system dynamics. After a brief review of

traditional approaches to its description, their breakdown in the presence of non-negligible
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1.2 outline

memory effects is discussed. We present the operational way out of this problem in detail
and discuss the mathematical properties of the process tensor, the higher-order quantum map
that is the proper descriptor of multi-time open quantum dynamics. With this operational
approach at hand, the presence of memory effects can be unambiguously characterized. The
main result of the chapter lies in the subsequent alternative definition of CP divisibility and
the comprehensive analysis of the temporal correlations, this witness of non-Markovianity is
blind to. We round off the chapter with a discussion of the concept of Markov order in the
quantum case.

In order to make the process tensor framework more amenable to experimental investigation,
in Ch. 5, we tailor it to the case of limited experimental control. The structural properties of
the resulting restricted process tensors are investigated, and their experimental reconstruction
and ability to detect memory effects is discussed. We provide specific examples for the case,
where experimental control is constrained to unitary operations and projective measurements,
respectively. Subsequently, classical processes are defined as a special case of limited experimental
control, and the direct connection between vanishing quantum discord and the classicality of
dynamics is shown. The chapter ends with a comprehensive algebraic characterization of the
set of classical processes.

In Ch. 6, we investigate the simulation of causally indefinite processes. After a brief review
of the corresponding research area, highlighting the structural properties of processes with
indefinite causal processes, we provide a constructive procedure for their simulation by means
of a temporally ordered process with an additional conditioning. Following this discussion, the
success probability of simulation is analyzed. Finally, we show that the simulation of causally
disordered processes requires multipartite entanglement and non-locality as a resource, thus
revealing a direct connection between quantum correlations and the absence of a clear causal
order.

The thesis concludes in Ch. 7 with final remarks and an outlook on possible future research
directions.
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2
HIGHER-ORDER QUANTUM MAPS

The aim of a dynamical description of quantum processes is to quantify how measurement
statistics of different observables can change from one moment to the next, even when the
system in question may be interacting with its wider environment, which is typically large,
uncontrollable and experimentally inaccessible. Quantum mechanics – and more generally
any operational probabilistic theory (OPT)1 – can be considered to consist of three main
components: preparations/states, transformations, and measurements/effects. Any physically
realizable and experimentally probable process can always be represented as a (possibly highly
complex) concatenation of these three fundamental building blocks [11]. In order to be able to
depict and manipulate general quantum processes in an intuitive manner, in this chapter we
will introduce higher-order quantum maps alongside their graphical representation in terms of
quantum networks, the natural mathematical and graphical formalism to describe quantum
dynamics. Put a little bit less prosaically, we will provide both the vocabulary and the syntax,
that will be employed to phrase concepts and results throughout this thesis.
Quite naturally, given the huge body of work that exists on higher-order quantum maps

and their graphical representation, this chapter cannot give a comprehensive or fully rigorous
account of their theory, but, in anticipation of the main subject of this thesis – the description
of open quantum system dynamics and the simulation of causal disorder – will rather focus on
the key aspects, that are pertinent to the discussion of these subjects. More extensive discussions
of graphical calculus for the description of quantum dynamics (and beyond), can, for example,
be found in [11, 12] (and with a slightly different motivation in [13, 14]), while the theory of
higher-order quantum maps is fully developed, for example, in [15–17]. The latter three articles
also form the basis for this chapter’s discussion.

While in subsequent chapters we will explicitly discuss the relation of higher-order quantum
maps to open quantum system dynamics in detail, here, we will be agnostic about their physical
realization and assume an axiomatic point of view that establishes higher-order quantum maps
as arising as general networks of the aforementioned building blocks. The thusly developed
framework will then be equipped with a clear underlying physical picture in Ch. 4.
As it turns out, the set of higher-order quantum maps obtained through this constructive

approach is equivalent to the set of temporally ordered processes, i.e., the set of maps that are
compatible with a fixed underlying causal order of events [17, 18]. The discussion in Ch. 4
will show that, additionally, they can be experimentally implemented and reconstructed, and

1 The natural framework to formalize OPTs is category theory. While we will occasionally employ the language of
category theory to describe quantum dynamics, we will not make this relation explicit. The interested reader is
referred to, e.g., [10] for an introduction to this topic.

5



higher-order quantum maps

are thus faithful to what is observed in nature. In Ch. 6 we will relax the requirement of an
underlying global causal order, and discuss the simulation of causally indefinite processes. Here,
again, higher-order quantum maps will provide the overarching framework to discuss causally
disordered structures and their implementation.
The aim of this chapter is twofold. On the one hand, it provides a pedestrian introduction

to the theory of higher-order quantum maps and the powerful graphical calculus it can be
equipped with. On the other hand, it establishes the notation, mathematical framework and
key concepts, like linearity, complete positivity, trace preservation and causality, that will be
used throughout this thesis. Before we start the discussion of quantum networks, though, a
disclaimer is in order: We will establish a notation in this chapter that is tailored to higher-order
quantum maps. However, this thesis spans topics from seemingly distinct fields of physics, with
traditionally differing notations, and in different chapters, we will aim to emphasize different
aspects of the theory. It would thus be futile – and quite often obfuscating – to stubbornly
adhere to one and the same notational convention. Nonetheless, all future notation will be
based upon the one we will now introduce, and any change in notation will be made obvious.
With this in mind, higher-order quantum maps provide the versatile framework, that allows us
to phrase the results in the subsequent chapters in a concise way, and a thorough introduction
of the key concepts will avoid later conceptual detours. Additionally, whenever possible, we
shall equip our results with their graphical representation, thus making them more tangible,
and alleviating potential notational pitfalls.

2.1 states, effects and channels

As we briefly mentioned above, the fundamental building blocks of quantum mechanics are
states/preparations, transformations and measurements/effects. After introducing them, and
describing their properties in this section, we will see below, how to concatenate them to form
complex quantum networks.
The state of a quantum system is given by a density operator ρ ∈ B(H) that is a trace

class (i.e., its trace is well-defined) element of the space of bounded operators on the Hilbert
space H. Unless stated otherwise, we will always consider the dimension d = dim(H),
corresponding to the number of perfectly distinguishable states the system can assume, to be
finite.2 Consequently, all operators have a matrix representation and density operators will
henceforth be called density matrices. Intuitively, a density matrix contains all the information
that can be deduced about the state of the system, i.e., it contains all probabilities for all
possible outcomes of all measurements that could possibly be performed on the system [19].
Accordingly, we have

ρ = ρ† (Hermiticity), ρ ≥ 0 (Positivity) and tr(ρ) = 1 (Unit Trace) , (2.1)

to ensure that probabilities are real, positive, and sum up to one, respectively.
The second building block, effects (or measurements), are given by positive linear functionals
Eα, that map states to probabilities, ρ 7→ Pα = Eα[ρ] [20, 21]. In detail, for any instrument J ,

2 For the finite dimensional case, the space B(H) coincides with the space of linear operators onH and all operators
in B(H) are trace class.
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that is used to interrogate the state of the system, every measurement outcome α corresponds
to an effect Eα. For the moment, we will consider an instrument to simply be a rule that
relates an outcome for a given measurement procedure to its corresponding effect. For example,
if a qubit – a quantum mechanical two-level system – was measured in the X-direction, the
two possible outcomes could be labeled with 0 and 1, and the corresponding effects would
act as {E0[ρ] = 〈+| ρ |+〉 , E1[ρ] = 〈−| ρ |−〉}, where |±〉 are the eigenstates of the Pauli σx

operator. The concept of instruments will be generalized and discussed in more detail in Ch. 3.
As probabilities add up to unity, the effects corresponding to an instrument are normalized:
∑D

α=1 Eα = tr, where tr is the trace operator, and, importantly, the number D of effects does
not have to coincide with d.
It is convenient, using the Riesz representation theorem, to express effects in terms of

positive operator valued measure (POVM) elements ET
α ∈ B(H), where the transpose T is

added for consistency with later notation (see Sec.2.5). We will employ the convention that
effects are denoted by calligraphic letters, and the corresponding POVM element by the same,
upright sans-serif letter. Positivity of the effects translates to positivity of the corresponding
POVM elements, i.e., Eα ≥ 0, and their normalization to ∑D

α=1 Eα = 1, where 1 is the identity
matrix on H. With this, the probability P(α|J ) for a measurement outcome α given that the
instrument J was used to probe the system can be computed via Born’s rule

P(α|J ) = tr(ρET
α) . (2.2)

We note that in the literature, quite often the role of states and effects is reversed, i.e., effects
are introduced as positive matrices, and states as linear functionals on the effects [20, 21]. In
finite dimensions, both points of view are equivalent, and the choice we made corresponds to
choosing a Schrödinger picture of dynamics. It is worth noting, that, starting with the notion
of a POVM and demanding a probabilistic structure, and the premise that the probabilities
corresponding to each of the POVM elements are positive and sum up to one, suffices to prove
both the existence of a density matrix that with the properties (2.1) as well as the computation
of probabilities via Born’s rule (2.2) [22–24]. We will return to this point when we discuss
general stochastic processes in Ch. 3.
Finally, transformations of quantum states are maps L : B(Hi) → B(Ho) that map

quantum states ρ ∈ B(Hi) defined on an ‘input’ space (denoted by i) to states L[ρ] = ρ′ ∈
B(Ho) defined on an ‘output’ space (denoted by o).3 In general, Hi and Ho can differ (e.g.,
L could create or destroy particles and/or add or trace out degrees of freedom). For easier
‘bookkeeping’, we will clearly distinguish between the input and output space, even in cases
where both spaces are isomorphic (denoted byHi ∼= Ho). To represent a deterministic physical
process, a quantum map L must preserve the basic properties of the density operator ρ, i.e.,
it has to preserve trace and positivity. Trace preservation (TP) ensures that the probabilities
obtained from a state ρ′ = L[ρ] still add up to one, while positivity preservation ensures that
each of these probabilities is still positive. We will call a map L that is positivity preserving

3 As was the case for effects, we will use the Schrödinger picture to describe transformations, and, in general
higher-order maps. For a discussion in the Heisenberg picture, see, for example, Ref. [18].

7



higher-order quantum maps

‘positive’, and denote it by L ≥ 0. More generally, we could imagine a situation, where L only
acts on a subset of the degrees of freedom of a quantum state η ∈ B(Hi ⊗Hi

a), i.e.,

η′ = (L⊗ Ia) [η] , (2.3)

where Ia is the identity map on the additional degrees of freedom that L does not act on, i.e.,
Ia[ρ] = ρ for all ρ ∈ Hi

a . In order for L to represent a valid physical evolution, η′ has to be
positive, for any size of additional Hilbert space Hi

a , i.e., L⊗ Ia ≥ 0 for all da = dim(Hi
a).

Maps that satisfy this requirement are called completely positive (CP). While there has been
some debate about whether quantummaps have to be CP in general [25–27], giving up complete
positivity would mean giving up the Holevo quantity [28], data processing inequality [29],
and entropy production inequality [30], and is therefore not desirable. It has been shown that
the problems that led researchers to question the requirement of complete positivity in the
first place can be alleviated by properly accounting for system-environment correlations, and
there is no need to consider giving it up [31, 32]. We will discuss this resolution in detail in
Ch. 3. A thorough discussion of the arguments against CP maps can, e.g., be found in [8].

Lastly, a quantum map has to act linearly on the set of quantum states:

L
[
∑ pkρk

]
= ∑ pkL[ρk] = ∑ pkρ′k , (2.4)

where {pk} is a probability distribution. It is worth noting that this requirement does not
follow from the fact that quantum mechanics – in the sense of quantum state vectors formed
from linear superpositions of a basis set – is a linear theory (in fact, L is not generally linear in
this sense). Instead, the linearity of the quantum map is analogous to the linearity of mixing in
a statistical theory.
To better appreciate this, consider a communication channel L from Alice to Bob, where

Alice randomly prepares a system in either state ρ1 (with probability p) or ρ2 (with probability
1− p); she then sends the system to Bob (via L), who performs measurements on the states
that he receives. Having no idea whether Alice sent ρ1 or ρ2 in each run, from his measurement
outcomes, Bob would conclude that the state he receives is ρ′ = L[ρ], where ρ = p1ρ + (1−
p)ρ2. That is, we can interpret Alice’s preparation to be the average state. Now suppose that,
at some later point, Alice reveals which state was sent in which run; Bob can now go back to
his logbook and conclude that he received the state ρ′1 (ρ

′
2) whenever Alice sent him ρ1 (ρ2).

Conversely, averaging over that data would amount to Bob receiving ρ′. Thus we must have
ρ′ = pρ′1 + (1− p)ρ′2. This simple thought experiment demands that the action of quantum
channels must be linear.4 Somewhat interestingly, this argument does not employ quantum
mechanics at any point; linearity of mixing is a general concept that applies to all probabilistic
theories. With this, we will henceforth consider quantummaps to be linear, completely positive
and trace-preserving (CPTP) maps. Such maps are also called channels or quantum maps.

Intuitively, these three building blocks describe the basic constituents of information flow in
quantum dynamics. Information can be created by preparing a state, it can be transformed and

4 Strictly speaking, this is only an argument for linearity on convex combinations of states. Linearity in the complete
sense is somewhat hard to argue for in general [33], however, maps that are linear on convex combinations of states
can always be extended to linear maps [17] (or rather, they can be linearized [34]), and we will hence assume all
quantum operations to be linear from now on.
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changed by undergoing a dynamics, and it can be read-out via a measurement. There is no need
to introduce further elements, and the remainder of this chapter will be concerned with the
question of how to concatenate these building blocks, and how to compute the higher-order
quantum maps that describe the resulting quantum networks.

2.2 graphical representation of quantum networks – basic examples

Every quantum mechanical process can be thought of as a network of preparations, transforma-
tions and measurements in some kind of spatio-temporal arrangement.5 For example, an exper-
iment could consist of the initial preparation of a quantum state ρ ∈ B(Hi

a ⊗Hi
b), followed

by a transformation L : B(Hi
a)→ B(Ho

c ), that only acts non-trivially on the Hilbert space
Hi

a , and finally a measurement on the whole state with POVM element ET
α ∈ B(Hi

b ⊗Ho
c ).

Using Eq. (2.2), the probability for the outcome α that ET
α corresponds to can be computed via

P(α|J ) = tr
[
ET

α (L⊗ Ib) [ρ]
]

(2.5)

It proves helpful to introduce a graphical notation in the spirit of quantum circuits notation [19]
to represent complex networks of elementary building blocks. To this end, we will denote
transformations (preparations/states and effects) as boxes (triangles) with a number of wires
coming out of them. Each wire corresponds to the space of bounded operators on a Hilbert
space, but for conciseness, we will simply label them by the corresponding Hilbert space (or
the label thereof, see below). In this notation, a state is depicted as a triangle with outgoing
wires (see Fig. 2.1), a transformation is depicted as a box with incoming and outgoing wires,
and an effect is depicted as a triangle with only incoming wires. By convention, in the following
diagrams, we will consider time to flow from left to right. Neither the grouping, nor the
positioning of the wires is unique and can be chosen freely (see Fig. 2.1 and the examples
below). With this, we can easily represent Eq. (2.5) graphically with Fig. 2.2. Importantly,
the type of the result of a concatenation can be directly read off from the remaining open
wires. For example, the network corresponding to Eq. (2.5) has no open wires, and as such
represents a number (more precisely, a probability). Accordingly, networks with only open
outgoing wires, i.e., wires pointing to the right, correspond to states, networks with only open
incoming wires correspond to effects, and networks with both open incoming and outgoing
wires correspond to transformations.

In order to build some intuition, it is insightful to provide two simple examples of a quantum
network for the well-known quantum teleportation protocol, and a communication scenario
over noisy channels.

example 2 .1 ( state teleportation): Consider the well-known state teleportation proto-
col [19, 35, 36] (the representation of this example is inspired by the similar graphical representation
in [14]). In its simplest version, Bob would like to teleport a qubit state Ψ := |Ψ〉〈Ψ| ∈ B(Hi

B2
)

to Alice, by using classical communication and a shared maximally entangled two-qubit state
Φ+ := |Φ+〉〈Φ+| ∈ B(HA ⊗ Hi

B1
), where |Φ+〉 = 1√

d ∑d
i=1 |iA〉 |iB1〉, and {|iX〉} is the

5 Most of the following graphical arguments do not rely on the particular properties of quantum mechanics, but
would also hold in OPTs (see, for example, Ref. [11]).
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(a) Preparation. (b) As (a), with differ-
ent wire grouping.

(c) Channel. (d) Effect.

Figure 2.1: Graphical illustration of states ((a) and (b)), transformations (c) and effects (d). Time runs
from left to right, i.e., states (effects) only have outputs (inputs). The difference in representation of (a)
and (b) demonstrates the non-uniqueness of the wire grouping.

Figure 2.2: Graphical representation of Eq. (2.5). The resulting network has no open wires and
corresponds to a number (the probability for the outcome α corresponding to Eα.

computational basis ofHX. In order to teleport the state, Bob performs a Bell measurement on his
half of the maximally entangled state and the state he aims to teleport. This measurement yields one
of four possible outcomes corresponding to the four Bell states Φj := (σj ⊗ 1)Φ+(σj ⊗ 1), where
{σj}3

j=0 = {1, σx, σy, σz} are the Pauli matrices. Communicating his measurement outcome j
to Alice, she can then perform a correction unitary σ∗j , where

∗ denotes complex conjugation in
the computational basis. The corresponding network is depicted in Fig. 2.3. As expected, it has one
outgoing wire, and it can be shown straightforwardly that the resulting state coincides with Ψ. 6

example 2 .2: As a second example, consider quantum communication from Alice and Bob over
a noisy channel L. In the simplest scenario, Alice can make multiple use of the channel, and each
use is independent of the preceding ones [41] (for a discussion of this scenario that considers memory
effects, see for example [18]). In order to send her message X, Alice can encode it in a quantum state
ρX, and make multiple use of L to transmit the state to Bob, who performs a measurement of the
state he receives. Assuming that outcome x is interpreted by Bob as ‘Alice sent message X’, the goal
of this communication is to maximize the probability P(x|J , X) to measure x using instrument
J , given that the message X was encoded. We have

P(x|J , X) = tr
[
ET

x (L⊗ · · · ⊗ L) [ρX]
]

. (2.6)

The corresponding diagrammatic representation is shown in 2.4. Here, we do not intend to discuss
the optimization of this communication task, but merely use it as an example for the depiction of
quantum processes in our circuit formalism. Additionally, we want to point out explicitly, that

6 Besides the algebraic proof, it can also be shown graphically by means of tensor network calculus [13, 14, 37–40]
that the network of Fig. 2.3 indeed corresponds to teleportation of Ψ. As we will not make use of this graphical
calculus throughout this thesis, the reader is referred to the aforementioned sources for an in-depth discussion of
theses techniques.
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Figure 2.3: Graphical representation of the teleportation protocol. Initially, Alice and Bob share a max-
imally entangled state (for better orientation, the separation between their respective labs is represented
by the dotted gray line). The map Σj is the unitary transformation Σj[ρ] = σjρσj, analogously Σ∗j acts
as Σ∗j [ρ] = σ∗j ρσ∗j . The resulting network has one outgoing wire, i.e., it corresponds to a state. Knowing
Bob’s measurement outcome j – corresponding to a projection on the Bell state (Σj ⊗ I)[Φ+] – Alice
performs the proper correcting transformation such that this state is equal to Ψ. In anticipation of later
discussions (see Sec. 2.8), all input and output spaces have different labels, even if they are isomorphic.

Figure 2.4: Graphical representation of Eq. (2.5). The message X is encoded in ρX by Alice, who sends
it to Bob via multiple use of L. Bob performs a measurement to decode the message. The diagram has
no open wires, and as such represents a probability, namely P(x|J , X).

objects that act on different Hilbert spaces are drawn in parallel (for example the different instances
of L in Fig. 2.4), while outputs and inputs that correspond to the same Hilbert spaces are joined.

2.3 graphical representation of quantum networks – the general case

With this intuition for small networks in place, we can now move on to more general quantum
networks. First, let us consider the case of a network that consists of transformations {Ln}N−1

n=0

that are performed in succession, i.e., Li comes before Lj if i < j. Each of the maps has an
input and an output space, and the input (output) space of a map Lj corresponds to the time
tj (tj+1). In general, the input space of any map Lj has a non-trivial overlap with the output
spaces of all maps Li with i < j . This concatenation of maps can be written as

C = LN−1 ◦ · · · ◦ L1 ◦ L0 , (2.7)
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Figure 2.5: Composition of quantum maps as a network. The wires are labeled according to the space
they represent. For example, a wire labeled 2i corresponds to the space B(Hi

2), etc. The resulting object
is a Channel C : B(Hi

0 ⊗ · · · ⊗ Hi
N−1)→ B(Ho

1 ⊗ · · · Ho
N) (for conciseness, only the Hilbert spaces

of the open wires are labeled). Importantly, each label denotes the time it corresponds to. For example,
both 2i and 2o correspond to the time t2.

where ◦ denotes the composition of maps, and its corresponding quantum network is depicted
in Fig. 2.5. Denoting the remaining open input spaces by {Hi

0, . . . ,Hi
N−1} and the remaining

open output spaces by {Ho
1, . . . ,Ho

N}, the resulting map C can be considered a CPTP map

C : B(Hi
0 ⊗ · · · ⊗Hi

N−1)→ B(Ho
1 ⊗ · · · ⊗Ho

N) . (2.8)

See Fig. 2.5 for a graphical representation. However, the order in which the maps {Li} act
provides us with more detailed structural properties corresponding to the temporal ordering,
encapsulated in C, that would not necessarily be reflected by an arbitrary CPTP map from the
correct input to the correct output space. A general CPTP map C : B(Hi

0 ⊗ · · · ⊗Hi
N−1)→

B(Ho
1⊗ · · · ⊗Ho

N) could describe an experiment that happens at one point in time, in contrast
to the network in Fig. 2.5, that describes a succession of events at different times.7 For example,
consider an experimental situation, where the degrees of freedom in Alice’s laboratory are
described by B(HA) = B(Hi

0 ⊗ · · · ⊗ Hi
N−1) and she implements a transformation C that

maps some initial state ρ she prepares to an output state ρ′ = C[ρ] ∈ B(Ho
1 ⊗ · · · ⊗ Ho

N).
While the involved input and output spaces are the same as in the network depicted in Fig. 2.5,
both experimental situations differ fundamentally. For example, in the single-time experiment,
changing the input state on any of the input spaces on Alice’s side can potentially influence the
output state on any of the output spaces on Bob’s side. This is not the case in the multi-time
case 2.5, where, for instance, a preparation of a state at t3 has no influence on the measurement
statistics at an earlier time t2. On the other hand, in the single time experiment, no output
can have an influence on any of the inputs, while later inputs can be conditioned on earlier
outputs in the network 2.5.
In detail, given the network that corresponds to C from Eq. (2.7), an experimenter8 could

prepare states {ρyj ∈ B(Hi
j )}

N−1
j=0 and feed them into the network. Analogously, they canmake

measurements with outcomes corresponding to Effects {Exj+1}N−1
j=0 . Now, the experimenter

7 We are somewhat lax in our use of the term ‘event’ throughout this thesis. Here, for all intents and purposes, we
will mean preparations and measurements associated with a Hilbert space when we use the word event. We will
make this terminology more precise in Ch. 6. For a more thorough discussion of the concept of an event, see for
example [42, 43]

8 Here, and in what follows, we will often use the idea of an experimenter to explain the concepts at hand. This
anthropomorphism is not a necessity, but merely a helpful and intuitively accessible visualization.
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Figure 2.6: Temporal ordering of quantum networks. Statistics of measurements can be influenced
by earlier state preparations and earlier measurement outcomes. Analogously, an experimenter can
condition their preparations on earlier preparations, as well as earlier measurement outcomes. To
emphasize this point, each effect and preparation is additionally labeled with the outcomes (denoted by
xj ) and preparations (denoted by yj ) they can be influenced by/conditioned on.

could condition what state they prepare at a time tj on all the states they prepared and all
the measurement outcomes they obtained at times ti < tj. Quite naturally, the choice of
preparation at tj cannot depend on any later time tk > tj. Similarly, the probability to obtain
an outcome xj at tj corresponding to the Effect Exj can be influenced both by preparations of
states and measurement outcomes at earlier times ti < tj, but not by anything that happens
at a time tk > tj (see Fig. 2.6 for a graphical representation)9. Simply put, the structure of
the network dictates, how information can flow, and what events can have an influence on
others. More technically, the structure of the network dictates certain no-signaling conditions
that have to be satisfied by C in order to be able to correspond to a given network [17, 44,
45]; only events at earlier times can signal to later events, and not vice versa. While we will
make this statement precise in the following section, here, we want to represent it graphically
by reshaping the network 2.5. The order of events will be represented by the labeling of the
corresponding wires, and is such that

0i ≺ 1o ≺ 1i ≺ · · · ≺ N − 1i ≺ No , (2.9)

where a ≺ b implies that events corresponding to the Hilbert space associated with a can
potentially influence events corresponding to the Hilbert space associated with b, but not the
other way around. We emphasize that this relation is transitive, i.e., a ≺ b and b ≺ c implies
a ≺ c.

9 The phrasing of this argument makes it seem like there can only be classical correlations between choices of
preparations and/or measuring instrument. As we will outline in the next section, this is not the case.
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Figure 2.7: Ordered quantum network. This network is topologically equivalent to the one in Fig. 2.5.
The ordering of the wires is such that it represents the causal ordering of events in a visually clear way.

Figure 2.8: Depiction of an ordered quantum network as a comb. Quantum networks can be alterna-
tively represented by comb-like structures, with the understanding, that ‘internally’, this comb has the
form of the network depicted in Fig. 2.7.

Taking its temporal order into account, the network of Fig. 2.5 can be reshaped such that
all the wires that correspond to earlier events are to the left of wires that correspond to later
ones. The corresponding reshaped network is depicted in Fig. 2.7. As in this representation,
the network looks like it has teeth and slots, these general temporally ordered networks have
been named quantum combs [16, 17] (see Fig. 2.8). They are the most general descriptors of
quantum processes that are compatible with an underlying temporal order (see also Ch. 4).
Adding preparations and effects to the network now simply consists of attaching their

corresponding graphical representation to the correct wires of the comb, and the structure of
the resulting network can be read off directly. For example, we can understand the teleportation
circuit of Fig. 2.3 in this way; there, the two unitary transformations Σj and Σ∗j can be
considered the (simple) underlying comb, and the final transformation circuit is obtained by
joining the correct preparations and effects at the corresponding wires (see Fig. 2.9). More
generally, the open wires of a comb can be joined with any number of preparations, effects and
transformations. For example, in Fig. 2.10, we join a comb with three slots with a preparation,
an effect and a transformation to obtain a one-slot comb.10 Wewill call the joining of open wires

(a) Comb for tele-
portation.

(b) Feeding in states. (c) Adding final effect.

Figure 2.9: Teleportation as the contraction of a comb with preparations and effects. While not the
original setup, we can consider the circuit for quantum teleportation as an exercise in contracting a
given comb with preparations and effects.

10 It is important to notice that we are imprecise in nomenclature here. As effects – except for the effect tr – cannot be
implemented deterministically, the resulting network is technically not a comb (as it is not TP), but a tester [17, 46,
47]. Non-deterministic networks will be discussed in Sec. 2.8. As we only focus on the graphical representation of
quantum networks in this section, this distinction is not of importance for the moment.
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Figure 2.10: Contraction of a two-slot comb with a preparation, a transformation and a measurement.
The resulting one-slot comb C ′(ρ,M, Ex) depends on the prepared state ρ, the transformationM and
the Effect Ex (and the original comb C ). We depict the transformationM in green to distinguish it
from the maps that make up the comb C, and to emphasize that here, we consider the comb as given,
and the transformationM is ‘plugged into it’. For clarity, only the open wires are labeled.

of a comb with the open wires of another object the contraction of a comb with said object.
Any number of objects can be contracted with each other, as long as the corresponding Hilbert
spaces and the temporal orders match. The most general contraction that can be performed
is the contraction of a comb (say, C ) with another comb (say,M), to yield a resulting comb
C(M). This situation is depicted in Fig. 2.11.
Evidently, one could also consider the resulting network a contraction ofM with C. It

depends on the concrete experimental situation, which comb one considers as given, and which
one as the one that is ‘plugged into’ said given comb. For example, drawn in the way of Fig. 2.9,
state teleportation could be considered as the joining of two combs that Alice and Bob can
prepare, respectively, or it could be interpreted as them exploiting a given comb Σj ⊗ Σ∗j with
the resources they have – state preparations and measurements. In any given experiment, this
question boils down to what degrees an experimenter has control over, and which ones they
cannot manipulate. The former degrees of freedom can be used to implement a comb that can
be inserted into the given comb, which is made up of the latter degrees of freedom. We will
discuss this distinction between environmental (i.e., uncontrollable) degrees of freedom and
system (i.e., controllable) degrees of freedom in detail in Ch. 4, where we will employ the comb
formalism to describe open quantum system dynamics.11 Before we discuss the mathematical

Figure 2.11: Contraction of a comb with another comb. The resulting comb is considered to be a
contraction of C withM. Equivalently, it could be considered a contraction ofM with C. The wires
are labeled with respect to the comb C, i.e., i (o) corresponds to input wires (output wires) of C, but to
output wires (input wires) ofM. This convention is continued for the wires that belong toM only.

structure of combs and quantum networks, we will make their connection to directed acyclic
graphs obvious. As these graphs are ubiquitous in the study of causal order [49], this slight
detour will prepare the later discussion of temporally ordered processes, and gives further
credence to the usage of quantum combs for the analysis of the causal order of processes, that
we will carry out in Ch. 6.

11 The discussion in Ch. 4 will mostly be guided by experimental considerations. A very detailed and more rigorous
theoretical discussion of the concepts of subsystems and agents can, e.g., be found in [48].

15



higher-order quantum maps

Figure 2.12:Directed acyclic graph (DAG). An arrow between nodes signifies a potential causal influence.
For example, A can influence C, but D cannot influence any other node. For clarity, only open arrows
are labeled.

2.4 quantum combs and directed acyclic graphs

Graphically, for a comb, causal ordering means that any operation that is ‘plugged’ into a slot
of it can influence the measurement statistics of any measurements performed at slots that
are to its right, but not to its left. In this sense, the ordering of the slots provides the order in
which information can travel through the network, or, more precisely, tells us what events
can signal to other events. So far, we have referred to time as the natural ordering parameter
for events; each slot of a comb corresponds to a time tj and slots that correspond to earlier
times can potentially signal to slots at later times. While we shall continue to appeal to time as
a natural ordering parameter throughout most of this thesis, we could actually do away with
it as a primal concept, and rather employ the more basic idea of causal order. Causal order
provides a partial ordering ≺ of events, where, as mentioned above, A ≺ B implies that events
labeled by A can influence events labeled by B, and the labels A and B could correspond to
times, laboratories, or locations in space-time.12 Importantly, if A ≺ B, then B ⊀ A, and, as
already mentioned, the relation ≺ is transitive. Additionally, we can have A ⊀ B and B ⊀ A,
i.e., the events A and B are independent of each other.

Such a partial order can most easily be represented by a directed acyclic graph (DAG), a graph
of nodes and directional edges that does not contain closed loops. Evidently, every quantum
network has an underlying DAG structure, and ultimately, every DAG can be reshaped to look
like the network13 of Fig. 2.5. As DAGs are routinely used in the field of causal modeling [49–51],
it is worth making this connection explicit.
An example for a DAG with five nodes can be found in Fig. 2.12. Similar to a quantum

network, it has arrows that connect events, and open arrows, that correspond to inputs to,
and outputs of the DAG. Returning to the above discussion about experimental control,
the open arrows/wires can be considered experimentally controllable degrees of freedom,

12 Whenever there is no risk of confusion, we will often drop the explicit distinction between events and their labels.
For example, we will say that A ≺ B means that A can influence B

13 Potentially, to look exactly the same, one has to absorb preparations and effects into the transformations.
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2.5 unified representation: choi-jamiołkowski isomorphism

(a) Quantum network corresponding to DAG (b) Comb representation

Figure 2.13: Quantum network and comb corresponding to the DAG in Fig. 2.12. (a) Corresponding
network, consisting of states ρ, transformationsL and effects E . In order for the comb to be deterministic,
ED must correspond to the trace operation (see below). (b) Corresponding comb representation of the
DAG of Fig. 2.12.

while all connected arrows/connected wires are out of experimental control. If the DAG
represents a quantum mechanical process, each node corresponds to a quantum operation,
i.e., a preparation, an effect, a transformation, or a combination thereof. We represent the
network 2.12 as a quantum network in Fig. 2.13a, and the corresponding comb in Fig. 2.13b.
While DAGs can evidently be used outside of quantum mechanics, we will assume throughout
this work that quantum mechanics holds (at least locally), and as such, every DAG has a
corresponding quantum network.
More generally, every comb is compatible with a DAG and vice versa [17]. Consequently,

combs provide the natural language for quantum (and classical) causal modeling [4, 52]. As we
have mentioned, it is not necessary to revert to the concept of time to meaningfully define
combs and DAGs. While this distinction between causal order and an arrow of time seems
unnecessarily pedantic at this point, keeping it in mind will simplify the generalization of
the introduced concepts to situations without predefined global order [52–54], which we will
discuss in Ch. 6, and we will make explicit throughout this thesis, whenever causal ordering is
not a necessary requirement for results we derive. Having built a graphical intuition of quantum
networks, it is now time to introduce an algebraic way to manipulate and contract combs,
and express their causal ordering in terms of well-defined constraints on their mathematical
structure.

2.5 unified representation: choi-jamiołkowski isomorphism

Up to this point, we have treated transformations, effects and states on a different mathematical
footing. However, employing the Choi-Jamiołkowski Isomorphism (CJI)14 all of these objects
can be considered positive matrices, and their respective properties are encoded in the prop-
erties of the corresponding matrices [56, 57]. Analogously, we will see that any comb can be
represented as a positive matrix on the correct space, and the causality conditions mentioned

14 In fact, the Choi and the Jamiołkowski isomorphism differ slightly (see, e.g., [55] for a detailed discussion). The
one we shall use throughout this thesis is Choi’s, but we will follow the convention in the literature and call it the
Choi-Jamiołkowski isomorphism.
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in the previous sections are encoded as trace properties of said matrix. Additionally, this
isomorphism allows us to algebraically express concatenation of building blocks of quantum
networks in a succinct fashion.
We start by laying out the CJI for quantum maps, and show that states (POVM elements)

can be understood as the matrices corresponding to quantum maps with a particular input
(output) space. We emphasize that this way of representing quantum maps is not the only
one in use, and depending on the respective context, different representations can be more
advantageous. Here, the representation in terms of Choi matrices is chosen, as it allows one
to consider all building blocks of quantum dynamics as objects of the same type, and their
properties can be expressed in the most transparent way in this representation. For a thorough
discussion of different representations of quantummaps, and the transformation between them,
see for example [8, 13].
Any quantum map L : B(Hi) → B(Ho) can be mapped isomorphically onto a matrix

L ∈ B(Ho⊗Hi) by letting L act on one half of an (unnormalized) maximally entangled state
|Φ+〉 = ∑d

i=1 |i〉 |i〉 ∈ Hi ⊗Hi, where {|i〉} is the computational basis of Hi:

L := C [L] := (L⊗ I)
[
|Φ+〉〈Φ+|

]
. (2.10)

We will call this matrix the Choi matrix or – in slight abuse of nomenclature – Choi state of the
respective map. As we have already done for the case of effects, we will denote a map and its
Choi state by the same letter, the former in calligraphic font, and the latter in upright sans-serif
letters. The action of the map L on a state ρ ∈ B(Hi) can then be expressed in terms of its
Choi state as

L[ρ] = tri
[(
1o ⊗ ρT

)
L
]

, (2.11)

where T denotes the transposition in the computational basis, tri is the trace over the input
space Hi and 1o is the identity matrix on Ho. Eq. (2.11) can be verified by direct insertion
into Eq. (2.10):

tri
[(
1o ⊗ ρT

)
L
]
= ∑

i,j
tri
[(
1o ⊗ ρT

)
L[|i〉〈j|]⊗ |i〉〈j|

]
= ∑

ij
〈j| ρT |i〉 L[|i〉〈j| = L[ρ] . (2.12)

By construction, every completely positive map has a corresponding positive Choi matrix and
the converse also holds: every positive matrix L ∈ B(Ho ⊗Hi) belongs to a map L that is CP.
To see this, we note that, if L is positive, it can be diagonalized as L = ∑α λα |Lα〉〈Lα|, where
λα ≥ 0 and 〈Lα|Lβ〉 = δαβ. Using Eq. (2.11) we obtain

tri
[(
1o ⊗ ρT

)
L
]
= ∑

ijα
λα 〈i| ρT |j〉 〈j|Lα〉 〈Lα|i〉

= ∑
α

(√
λα ∑

j
〈j|Lα〉 〈j|

)
ρ

(√
λα ∑

i
|i〉 〈Lα|i〉

)
:= ∑

α

LαρL†
α . (2.13)

Consequently, the action of a mapL that corresponds to a positive Choi matrix L can be written
as L[ρ] = ∑α LαρL†

α. Such a decomposition of the map is called Kraus decomposition. Any map
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2.5 unified representation: choi-jamiołkowski isomorphism

that admits a Kraus decomposition is completely positive [21, 58]. Indeed, let ρ ∈ B(Hi⊗Hi
a)

be a positive matrix, then there exists √ρ ≥ 0, such that ρ =
√

ρ
√

ρ . The action of L on ρ

yields

(L⊗ Ia) [ρ] = ∑
α

[(
Lα ⊗ 1a

)√
ρ
] [√

ρ
(

L†
α ⊗ 1a

)]
:= ∑

α

Aα A†
α . (2.14)

Any matrix of the form Aα A†
α is positive, and so is the sum of positive matrices. Therefore,

as Ha can be of arbitrary size, if L admits a Kraus decomposition, then it is CP, and L is
completely positive iff its Choi state is positive. This also implies, that in order for L to be
completely positive, it is already sufficient (and necessary) for L⊗ Id to be positive, where
Id is the identity map on B(Hi). In this case the Choi state L is positive, and L is hence
completely positive. For completeness, we mention that the Kraus decomposition of a CP map
is not unique, but there is a minimal number of Kraus operators necessary to represent a map.
This number – the Kraus rank of L – coincides with the rank of the Choi state L [59].

Besides being CP, quantum channels also preserve trace. Trace preservation of L means that
tr (L[ρ]) = tr(ρ) for all ρ. In terms of Choi states, this requirement translates to

tr (ρ) = tr
[(
1o ⊗ ρT

)
L
]
= tr

(
ρT tro (L)

)
. (2.15)

As this equality has to hold for all ρ, it implies tro (L) = 1i, where tro denotes the trace over
Ho and 1i is the identity matrix on Hi. Equivalently, a CP map is trace-preserving iff its
Kraus operators satisfy ∑α L†

αLα = 1i. With this, we obtain the two properties that define a
CPTP map in terms of its Choi state. A map L : B(Hi)→ B(Ho) is CPTP iff its Choi state
L ∈ B(Ho ⊗Hi) satisfies

L ≥ 0 and tro (L) = 1i . (2.16)

In what follows – whenever there is no risk of confusion – we drop the explicit distinction
between a map and its Choi state both in text and figures.
As we will see below, the requirement of trace preservation can also be interpreted as a

causality constraint in the sense, that measurements on the outcome space cannot influence
the statistics on the input space. Additionally, if a map is trace-preserving, it means that it can
be implemented deterministically; the probability of implementation of a map is given by the
trace of its output state (see below), and as tr(L[ρ]) = 1 for every input state of unit trace, it
follows that the probability of implementing a trace-preserving map is 1. Before we give some
examples of Choi states of quantum maps, we introduce a useful decomposition of Choi states
L of CPTP maps that we will rely on heavily in Ch. 6. As L is positive (and also Hermitian), it
can be represented as

L =
1
do
1o ⊗ 1i +

d2
i−1

∑
α=1

aαΓo
α ⊗ 1i +

d2
i−1

∑
β=1

d2
o−1

∑
k=1

cβkΓo
β ⊗ Γi

k , (2.17)

where aα, cβk ∈ R, dx = dim(Hx) and Γx
b are generalized Pauli matrices, i.e., Γx†

b = Γx
b,

tr
(
Γx

b

)
= 0 and tr

(
Γx

bΓx
c
)
= δcd [60]. These matrices, together with the identity matrix form

an orthogonal (with respect to the Hilbert-Schmidt inner product) basis of the set of Hermitian
matrices. Importantly, there are no terms of the form 1o ⊗ Γi

m in the decomposition (2.17), as
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otherwise the map would not be trace-preserving. We will use the absence of these terms below
to prove structural statements about causally ordered combs, as well as causally indefinite
processes (see Ch. 6 and App. D.1).

2.6 choi-jamiołkowski isomorphism: examples

It is instructive to provide some examples of Choi states of particular maps that we will
encounter regularly throughout this thesis. Firstly, the identity map I corresponds to the
unnormalized maximally entangled state

C[I ] = |Φ+〉〈Φ+| := Φ+ . (2.18)

As already mentioned, to keep better track of the respective spaces, we consider I to be a
map from B(Hi) to B(Ho), with Hi ∼= Ho, and as such Φ+ ∈ B(Hi ⊗Ho) on the RHS of
Eq. (2.18). More generally, any unitary map U corresponds to an (unnormalized) maximally
entangled state

U = (U ⊗ I)
[
|Φ+〉〈Φ+|

]
. (2.19)

Naturally, we have tro(U) = 1i, and it is easy to see, that the only trace-preserving maps with
pure Choi states are unitaries.
Another kind of CP operations that we will encounter frequently are projections. A

projection collapses the state ρ onto a pure state Ψα corresponding to the outcome α of
a (sharp) measurement. This outcome occurs with probability 〈Ψα| ρ |Ψα〉. In contradis-
tinction to effects, we consider projections Pα to ‘feed forward’ the projected state, i.e.,
Pα[ρ] = 〈Ψα| ρ |Ψα〉 |Ψα〉〈Ψα|, and the corresponding Choi state is given by

Pα = ∑
ij
|Ψα〉〈Ψα| ⊗ 〈Ψα|i〉 〈j|Ψα〉 |i〉〈j|

= |Ψα〉〈Ψα| ⊗ |Ψ∗α〉〈Ψ∗α| := Ψα ⊗Ψ∗α . (2.20)

As before, we consider the output state (Ψα in the above equation) to live on B(Hi) and the
input state (Ψ∗α in the above equation) to live on B(Ho), with the understanding Hi ∼= Ho.
As such, a projective measurement can be understood as an effect with outcome α, followed by
a preparation of the pure state Ψα that corresponds to said outcome.
In general, the output space of a map does not have to coincide with its input space. We

have already encountered effects Eα : B(Hi)→ R, that map quantum states to real numbers
(probabilities) and ‘destroy’ the state in the process. Consequently, they are quantum maps
with a trivial output space, and as such, positivity of effects is equivalent to complete positivity.
In terms of their Choi states, the action of an effect is given by

Eα = tr
(

ρTEα

)
, (2.21)

which, unsurprisingly, corresponds to Born’s rule (2.2), and the Choi states Eα ∈ B(Hi) of
effects are – up to a transpose – equal to the corresponding POVM elements.15 The fact that the

15 We could have defined POVM elements or the Choi isomorphism with an additional transpose to make POVM
elements exactly equal, but we rather adhered to convention.
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Figure 2.14: Graphical representation of the trace preservation property. Tracing over the output space
of a trace-preserving map L (denoted by 1o ) yields an identity 1i on the input space. In what follows,
we will often also use the slash to represent the trace operation.

Figure 2.15: Graphical representation of the unit trace of a quantum state as a trace preservation
condition.

output space of effects is trivial implies that there is only one trace-preserving effect, namely
E = 1i, which corresponds to the trace operation E [ρ] = tr[ρ].

Additionally, this is the only effect, that can be implemented deterministically; for any given
state ρ, the probability to implement an effect Eα (or, equivalently, to obtain outcome α when
using instrument J ) is given by tr(ρTEα), an as such, the only effect that can be implemented
with certainty, independent of ρ, is 1. This representation of the trace operation in terms of
the identity matrix, can be used to depict both the trace preservation condition for quantum
maps, as well as the unit trace of quantum states, in a straightforward manner (see Figs. 2.14
and 2.15, respectively). This will prove helpful in the derivation of properties of general combs.

Finally, a quantum state ρ can be considered the Choi matrix of a CPTP map R : R →
B(Hi), and consequently, the normalization tri(ρ) = 1 can be understood as a trace preserva-
tion condition 16. To adhere to earlier convention, the output space of R is labeled by an i.
Unlike effects, there are many trace-preserving states – all quantum states – which is intuitively
clear, since all quantum states can be prepared deterministically.
Thus, the Choi isomorphism puts all the building blocks of quantum dynamics on the

same mathematical footing. Each of them can be considered a positive matrix with particular
positivity and trace conditions. In this light, we could have introduced all of these objects as
Choi operators of quantum maps in the first place. However, we refrained from doing so, in
favor of a more intuitive introduction, and to provide an easier connection to the literature.
From now on, we will use both the concepts of maps and Choi states to describe dynamics and
quantum networks, depending on the context. For example, the communication scheme of
Fig. 2.4 can be considered as a concatenation of the preparation RX that prepares the state ρX,
the channel L⊗ · · · ⊗ L, and the effect Ex, i.e.,

P(x|J , X) = Ex ◦ (L⊗ · · · ⊗ L) ◦ RX . (2.22)

16 If we strictly adhered to our notational convention, here, quantum states would have to be denoted by R. However,
we choose to abide by standard convention.
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(a) Identity map (b) Effect (c) Preparation

Figure 2.16: Difference between the identity map, a measurement outcome that corresponds to the
effect Φ+, and a preparation of Φ+. Up to normalization, all of these building blocks have the same
Choi state Φ+ ∈ B(Ho ⊗Hi). However, the output space of the identity map is B(Ho), the one of
the preparation is B(Ho ⊗Hi), while that of the effect is trivial. Out of the three, only the identity
map and the preparation are trace-preserving. The types of building blocks depicted in each panel are
immediately clear from their respective shape and orientation.

Equivalently, this scheme can be described as a contraction of the Choi states of the involved
maps:

P(x|J , X) = Ex ? L ? · · · ? L ? ρX , (2.23)

where ? denotes the link product [16, 47], which we will introduce in Sec. 2.8 as the operation
to compute the Choi state of an arbitrary network of states, transformations and preparations.
Before we introduce this powerful mathematical tool, it is necessary to provide an intuitive
explanation of the mathematical properties of quantum maps, that will lead us directly to the
causality constraints that are imposed on general combs C.

remark 2 .1: Before we advance, a word of caution is in order to avoid confusion. A priori, for a
given Choi state A ∈ B(Ho⊗Hi) it is unclear if it corresponds to a mapA : B(Hi)→ B(Ho),
a preparation A : R → B(Ho ⊗Hi), or an effect A : B(Ho ⊗Hi) → R. For example, we
have already encountered the (unnormalized) maximally entangled state as the Choi state of the
identity channel, as well as the POVM element of a measurement in the Bell basis (see Fig. 2.16).
While this ambiguity exists, it will not be a problem in practice, as it will always be clear, both from
the ordering of the wires in the corresponding quantum network, and the described underlying
physical situation, what type of transformation the respective Choi state corresponds to.

2.7 trace preservation, causal ordering, and deterministic implementa-

tion

Throughout this thesis, we will frequently discuss causal order, and the deterministic imple-
mentation of operations. Both of these properties can be directly related to the properties of
Choi states. We have already discussed, that the probability for the implementation of an effect
Eα is equal to the probability to obtain the measurement outcome α corresponding to said
effect

P(α|J ) = tr(ρTEα) , (2.24)

and the only effect that can be implemented with unit probability, independent of the quantum
state it acts on, is the trace operation E = 1i. This is also reflected by the condition that all the
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POVM elements for a given instrument have to satisfy ∑α ET
α = 1; we can be sure that in each

run, one of the possible outcomes has to occur.
Analogously, instead of discarding the state after measuring it, we could keep the output

state. In this case, each outcome α, given an instrument J , corresponds to a (trace non-
increasing) CP map Lα that describes17 the transformation of the state during measurement,
i.e., ρ′ = tri

[(
1o ⊗ ρT) Lα

]
, where ρ′ is a subnormalized quantum state. We deliberately write

the label of the outcome as a superscript to distinguish it from the labels for times, that are
indicated by subscripts. The probability to implement a CP operation Lα is then given by

P(α|J ) = tr(ρ′) =
[(
1o ⊗ ρT

)
Lα
]
= tr

[
ρT tro (Lα)

]
. (2.25)

In general, a CP map cannot be implemented deterministically, and the implementation
probability for a given input state ρ can be computed via Eq. (2.25). This equation also tells
us that a CP map Lα can be implemented deterministically independent of the input state iff
tri (Lα) = 1, i.e., iff it is trace-preserving. Additionally, by comparison of (2.25) and (2.24),
we see the connection between CP maps Lα and their corresponding POVM elements: Eα =

tro (Lα); CP maps provide both the outcome probability of a general measurement, as well as
the update of the interrogated state upon measurement. On the other hand, POVM elements
only provide probabilities, and do not allow one to infer the post-measurement state. As one
of the possible outcomes of a measurement has to occur, we can now provide the general
definition of an instrument [61, 62]:

definition 2 .1: An instrument J is a collection of CP maps {Lα} that add up to a CPTP
map L, i.e., ∑α Lα = L . Each of the CP maps Lα corresponds to one of the possible outcomes of the
instrument, and the CPTPmap L describes the overall transformation of a state upon interrogation
by the instrument J .

We emphasize, that a POVM {Eα} satisfies this definition of an instrument, however, all the
CP maps it consists of are effects, i.e., have a trivial output space. We will further refine this
definition of an instrument in the following chapters, but for the moment, Def. 2.1 is sufficient.
As we will be interested in scenarios where a system of interest can be measured sequentially,
i.e., at different points in time, we need the general understanding of instruments provided by
Def. 2.1, to be able to account for such experimental situations.

Finally, beyond a requirement for deterministic implementation, trace preservation can be
understood as a causality constraint. To see this, consider the experimental situation where
Alice prepares states ρi with probability pi and sends them to Bob via a channel K. Bob uses
some instrument J to measure the states he receives. The probability for Alice to prepare ρi

and Bob to measure outcome α is given by

P(i, α) = pi tr
[(
ET

α ⊗ (ρi)T
)
K
]

, (2.26)

where {ET
α} are the POVM elements of Bob’s instrument. Causal ordering of this experiment

implies that, overall, Alice’s preparation probabilities {pi} have to be independent of Bob’s

17 Due to spatial restrictions – there is only so much space around a letter – the positioning of sub- and superscript
will be somewhat inconsistent throughout this thesis. Here, Lα denotes the CP map corresponding to outcome α

(for a given instrument). We will make clear, whenever the sub- and superscripts change their meaning.
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measurement outcomes, i.e., ∑α P(i, α) = pi. As ∑α Eα = 1, this requirement can only be
satisfied independent of the states and probabilities that Alice chooses, iff K is trace-preserving.
When building up quantum networks, the properties of the individual building blocks

translate to the properties of the resulting comb C. We will now see how to compute the Choi
state of quantum networks, and investigate their properties in detail.

2.8 concatenating building blocks – the link product

Up to this point, we have seen that all the fundamental building blocks of quantum mechanics
can be treated within a unified mathematical framework in terms of their Choi states. What is
missing so far, is a composition rule, that tells us how to compute the Choi state of an arbitrary
concatenation of preparations, transformations, and effects. This composition rule is given by
the link product ? [16, 47], that yields the Choi state of concatenations of quantum maps. For
example, if L and K are two CP maps, the Choi state of the mapM = L ◦ K is given by

M = C [M] = C [L ◦ K] := L ?K . (2.27)

We have already encountered link products in earlier sections. For instance, the action of a
channel L on a quantum state ρ can be considered as a concatenation L ◦R of a preparation
and a transformation, and the resulting state ρ′ is

ρ′ = C [L ◦R] = L ? ρ = tri
[
(1o ⊗ ρ) LTi

]
, (2.28)

where ρ ∈ B(Hi), L ∈ B(Ho ⊗Hi), and Ti is a transpose with respect to Hi. Eq. (2.28)
contains all the ingredients of the general link product: the Choi states of the involved operators
are tensored with identity matrices, such that they are of the same dimension and can be
multiplied (in this case, ρ is tensored with 1o); one of the Choi states is transposed with respect
to the intersection of Hilbert spaces that both of them are defined on (in this case Hi); and
finally the trace is taken with respect to said intersection of Hilbert spaces. Consequently, we
have the general definition of the link product, due to Chiribella et al. [17]:

definition 2 .2: Let ` and k be two sets, and let L ∈ B(⊗`i∈`H`i) and L ∈ B(
⊗

k j∈kHk j).
The link product L ? K is given by

L ? K = tr`∩k

[(
1k\` ⊗ LT`∩k

) (
K ⊗ 1`\k

)]
, (2.29)

where x \ y = {i | i ∈ x and i /∈ y}, 1x\y is the identity matrix on
⊗

i∈x\yHi, and T`∩k denotes
the transpose on the space

⊗
i∈`∩kHi.

By direct insertion, it can be shown, that the link product indeed yields the correct Choi
state of the concatenation of two maps, i.e., C[L ◦ K] = L ? K (see [16], Thm. 1). While the
algebraic definition is somewhat clunky, it can be easily motivated in graphical terms (see
Fig. 2.17). The Hilbert spaces labeled by ` ∩ k correspond to wires that connect the maps L
and K, while ` \ k (k \ `) labels remaining open wires of the map L (K). As is the case of Choi
states, the link product L ? K can describe very different networks, depending on what kinds
of maps the matrices L and K correspond to. Throughout this thesis, the underlying physical
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(a) State L and Effect K (b) Map K and Effect L (c) Map L and Map K

Figure 2.17: Different networks corresponding to the same link product L ? K. Note that the ordering
of the link product L ? K does not necessarily correspond to the ordering of the underlying network. In
(c), we have (x \ y)a ∪ (x \ y)b = x \ y.

situation of a link product will always be clear from context and depicted graphically. Before
we discuss its properties in detail, it is instructive to discuss some basic examples of the link
product to build intuition. Most of these examples are inspired by [16].
We have already seen that the link product of a channel L ∈ B(Ho ⊗ Hi) and a state

ρ ∈ B(Hi) corresponds to

L ? ρ = L[ρ]. (2.30)

Analogously, the link product of an effect Eα ∈ B(Hi) and a state ρ ∈ B(Hi) reproduces the
Born rule:

Eα ? ρ = tr
(

ρET
α

)
, (2.31)

which also implies

1 ? ρ = tr(ρ) . (2.32)

If two Choi states L and K are defined on disjoint Hilbert spaces, i.e., ` ∩ k = ∅, the link
product reduces to the tensor product

L ? K = L⊗ K . (2.33)

The properties of the link product follow directly from its definition [16]: it is commutative
up to a unitary swap S on H`\k ⊗Hk⊗`, i.e., L ? K = S(K ? L)S†. As S simply corresponds
to a relabeling of Hilbert spaces, it will henceforth be implied, but omitted in equations. In
particular, commutativity of the link product means that the order of the Choi states in the
product is not an indicator of the causal order of the underlying network (see Fig. 2.17). Rather,
causal ordering will follow from the properties of the individual terms in the link product (see
below).

The link product of two Hermitian matrices L and K is also Hermitian, and the link product
of two positive matrices is positive. In particular the latter property is intuitively clear, as
positive matrices correspond to CP maps, and the resulting link product is the Choi state of
a concatenation of CP maps which, naturally, has to be positive. Finally, for all intents and
purposes – i.e., in all cases relevant to this thesis – the link product is associative. In detail, if the
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sets m, ` and k labeling the Hilbert spaces that M, L and K are defined on satisfy m∩ `∩ k = ∅,
then

(M ? L) ? K = M ? (L ? K) . (2.34)

As mentioned, for all the cases treated in this thesis, this requirement will be satisfied, so we
will assume associativity of the link product from now on. With this product at hand, the Choi
states corresponding to any quantum network can simply be expressed as the link product of
all involved building blocks. For example, the Choi state corresponding to the communication
scheme of Fig. 2.4, i.e., the probability P(x|J , X) to measure x, given that the message X was
transmitted, can be expressed as

P(x|J , X) = Ex ? L ? · · · ? L ? ρX , (2.35)

where it is understood that all the instances of L are defined on disjoint Hilbert spaces (i.e.,
L ? · · · ? L = L⊗ · · · ⊗ L). Analogously, the state ξAo resulting from the teleportation scheme
of Fig. 2.3 is given by

ξAo = Φ+
Bo

1 Bi
2
? ΣBo

1 Bi
1

j ? ΣAoAi

j ? Φ+
ABi

1
? ΨBi

2
, (2.36)

where, for better orientation, we have labeled the different terms by the spaces they live on,
respectively, and the corresponding labels are placed so that their positioning agrees with the
previous notation.18 Finally, the general contraction of two combs C and M (see Fig. 2.11) is
simply given by

C′(M) = C ?M , (2.37)

which demonstrates the notational ease with which general quantum networks can be described
using the link product; while its explicit computation necessitates some diligence in the labeling
of the involved Hilbert spaces, link products provide a unified, concise, and straightforward
way to express the Choi states of quantum networks, and derive their properties.

2.9 deterministic quantum networks and causal order

As we have discussed in Sec. 2.7, the trace preservation condition of a map is equivalent to
the possibility of its deterministic implementation.19 In light of this, we will call a quantum
network – or rather the comb C that represents it – deterministic or causally ordered, if it only
consists of trace-preserving building blocks. Otherwise, depending on the context, we will
call it probabilistic or causally disordered. Trace preservation of the building blocks induces a
hierarchy of trace conditions on the Choi states of deterministic networks.
Employing the link product, we can compute the Choi state C(N) of a quantum network

consisting of N channels {Lj}N−1
j=0 . The corresponding network will have open wires, that we

18 It is somewhat inconsistent to denote the respective spaces as sub- as well as superscripts. However, in not doing
so, we would break with earlier notation, so it seems the lesser evil to choose a slightly inconsistent notation and
mention the inconsistency explicitly. We will have to opt for this solution in several places in this thesis.

19 Deterministic maps can also be implemented in a probabilistic fashion. We will present one possible scheme to do
so in Ch. 6.
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2.9 deterministic quantum networks and causal order

Figure 2.18: Deterministic quantum network with final output for N = 3. All the maps Li are trace-
preserving. Tracing over the final output space 3o (depicted by contraction with the identity matrix
in the left panel) leaves an identity on 2i and a smaller remaining network. The unlabeled wires that
connect the respective maps correspond to the Hilbert spaces denoted with a superscript t in the text.

label by {0i, 1o, . . . , N − 1i, No}. In accordance with the convention of Sec. 2.3, we assume
an ordering of events

0i ≺ 1o ≺ 1i ≺ · · · ≺ N − 1i ≺ No , (2.38)

with the additional understanding, that all wires labeled by an i point to the left, and all those
labeled with an o point to the right. As the respective Hilbert spaces can be trivial (i.e., there is
no corresponding wire in the graphical representation), this scenario is a fully general causally
ordered quantum network. Now, let Lj ∈ B(Ho

j+1 ⊗Ht
j+1 ⊗Hi

j ⊗Ht
j ). For x 6= 0, N, wires

that correspond to Ht
x connect different maps, and are contracted over. For x = 0 and x = N,

we have Ht
0
∼= Ht

N
∼= R (see Fig. 2.18). The comb C(N) of such a network of CPTP maps is

given by

C = L0 ? L1 ? · · · ? LN−1 :=
N
F
j=0
Lj . (2.39)

Trace preservation of the maps Lj implies that a trace over the final output space Ho
N yields an

identity matrix on Hi
N−1 ⊗Ht

N−1, i.e.,

C(N) ? 1No = L0 ? L1 ? · · · ? LN−2 ? 1N−1t ? 1N−1i := C(N−1) ? 1N−1i . (2.40)

A graphical representation of this relation can be found in Fig. 2.18 for the case N = 3.
Evidently, these trace conditions trickle down and hold for every C(j) ( j ≤ N):

C(j) ? 1jo = C(j−1) ? 1j−1i ⇔ trjo [C(j)] = 1j−1i ⊗ C
(j−1) . (2.41)

This leads to the general properties of combs that correspond to a deterministic quantum
network [17]:

theorem 2 .1 ( deterministic combs): Amatrix C(N) ∈ B(Ho
N ⊗Hi

N−1⊗ · · · Ho
1⊗Hi

0)

corresponds to a deterministic quantum network iff C(N) ≥ 0 and it satisfies the hierarchy of trace
conditions

trjo [C(j)] = 1j−1i ⊗ C
(j−1) , ∀j ≤ N . (2.42)

Combs of this form are called deterministic N-combs.
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(a) First trace condition.

(b) Second trace condition. (c) Third trace condition.

Figure 2.19: Graphical representation of the hierarchy of trace conditions for a deterministic comb
C(3). The generalization to more times follows analogously.

From the above discussion, it follows directly that every comb that corresponds to a deter-
ministic network satisfies Eq. (2.42). The converse statement, that every comb that complies
with the requirements of Eq. (2.42) can actually be represented by a causally ordered network
– and thus by a quantum circuit (see Sec. 4.5) – can be proven by induction. The full proof is
provided in [17].

A graphical representation for the hierarchy (2.42) of trace conditions for the case N = 3 is
given in Fig. 2.19, where the network is – in contrast to the equivalent network in Fig. 2.18
– reshaped in a comb form to underline the causal ordering of events more clearly. In what
follows, we will mostly opt for this graphical representation, as it fits in more naturally with
the description of open quantum system dynamics, and we will frequently name combs by the
number of ‘slots’ rather than the number of output spaces they are defined on. For example
the comb C(3) in the top panel of Fig. 2.19 would be a two-slot comb. Since we will always
furnish our examples with corresponding graphical representations, there will in general be no
risk of confusion.
As already mentioned, each of the Hilbert spaces {Ho

N ,Hi
N−1, . . . ,Ho

1,Hi
0} on which a

given comb is defined could be trivial. Thm. 2.1 is therefore fully general and applies to combs
corresponding to any conceivable kind of quantum network. Nonetheless, with later subject
matters in mind, it is helpful to build some explicit intuition for exemplary cases. Firstly, if
the final output space Ho

N is trivial, i.e., Ho
N
∼= R, we have

C(N) = 1N−1i ⊗ C
(N−1) , (2.43)

which is represented graphically in Fig. 2.20. While this fact can be read off from Eq. (2.42), it
can also be inferred directly from the fact that the only trace-preserving effect E ∈ B(Ho

N) is
E = 1No . Secondly, if the initial input space Hi

0 is trivial, we have C(1) = ρ ∈ B(Ho
1), which

is represented graphically in Fig. 2.21.

Finally, the set of deterministic combs is well-behaved under composition. This means, that
the link product of two combs that have a compatible ordering yields a deterministic comb.
We have already seen an example of this in Fig. 2.11, where we contracted a three-slot comb C
with another three-slot comb M to obtain a two-slot comb. If the ordering of both combs is
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2.9 deterministic quantum networks and causal order

Figure 2.20: Structure of a deterministic comb with trivial final output space. Due to the causality
constraints, it decomposes into a tensor product of an identity matrix on the final input space and a
causally ordered comb on the remaining spaces.

Figure 2.21: Structure of a comb with trivial initial input space. The comb C(1) corresponds to a
quantum state ρ ∈ B(Ho

1)

compatible (i.e., time flows in the same direction for both combs), then the resulting comb is
deterministic. This can be seen directly from the definition of deterministic combs, and the
properties of the link product.

On the other hand, contracting combs with incompatible temporal ordering will, in general,
not yield physically meaningful results, as it is paramount to creating logically inconsistent
closed timelike curves. For example, linking a comb with order A ≺ B with a comb that
corresponds to an ordering B ≺ A, would allow to send signals from A to B and from B to
A, which, in general, will lead to logical paradoxes. We will discuss in Ch. 6, how to relax the
requirement of global causal order, without creating paradoxical situations.

remark 2 .2: While we followed a constructive approach in terms of quantum networks to arrive
at the general definition of a deterministic comb, they can also be introduced based on axiomatic
considerations, as the most general admissible quantum maps [17]. Here, admissible means, that
they yield a proper quantum output when given a proper quantum input (or a part thereof). In
this sense, channels are admissible, as they map quantum states to quantum states, even if they act
non-trivially only on a part of the state. The next higher-order map would be a map that, when
given a CPTP map as an input yield a CPTP map as an output (such maps are called quantum
supermaps [15]). Analogously, a map would be admissible if it took such a supermap – or a part
thereof – as an input, and, e.g., yielded a CPTP map as an output. Following this reasoning, one
obtains a hierarchy of maps, but it can be shown that this hierarchy collapses at the level of combs,
implying that quantum combs are the most general admissible transformations in quantum me-
chanics.20 Intuitively, this makes direct sense. For example, a supermap is simply a comb with one
slot and an initial input and final output wire. Amap that maps such a supermap to an object with,
say, N − 1 slots, would simply be a comb with N slots, that is contracted with the supermap. We
have already encountered the mapping of a three-slot comb to a two-slot comb by contraction with
another three-slot comb in Fig. 2.11. The general proof for this graphically plausible statement can
be found in [17]. Here, we chose to take the constructive route, as it is more intuitive and closer
in spirit to the understanding that underlies the description of open quantum system dynamics.

20 This statement holds true under the additional assumption of ‘compatibility with remote connections’ of the maps
that map combs onto combs [17], i.e., if these maps are causally ordered themselves. For a more general discussion
of such maps, which also goes beyond quantum mechanics, see [63, 64].
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As both approaches yield the same definition of combs, we have not compromised on generality by
opting for the constructive approach.

Before we conclude this chapter, it is important to – just like in the case of channels – link
the trace properties of deterministic combs to the underlying causal ordering.

2.10 deterministic combs and causal ordering

As we discussed in Sec. 2.7, the trace preservation condition of quantum channels can be
considered a causality constraint; measurements of the outputs of the map can overall not
influence the probabilities of the inputs, that are freely chosen before the measurement occurs.
We emphasize the word ‘overall’ in the previous sentence, as for individual outcomes, it might
seem like the measurement outcomes could indeed influence the input probabilities.
For example, consider the simple scenario, where Alice prepares states {|0〉 , |1〉} in the

Z-basis with probabilities {p0 = 1
2 , p1 = 1

2} and sends them to Bob via an identity channel.
Bob performs measurements in the Z-basis and records the outcomes. Now, if he only considers
the runs of the experiment, where he obtained an outcome 0, and asks Alice, which input she
prepared for said runs, it looks like Alice prepared state |0〉 with probability p0 = 1. On the
other hand, if Bob conditioned data collection on the outcome 1, it would seem as if Alice
prepared state |1〉 with probability p1 = 1. Consequently, Bob can make it appear like he had
an influence on Alice’s input probabilities by conditioning their joint statistics on a particular
outcome he obtains, but – quite obviously – overall, i.e., without conditioning, there is no
influence of Bob’s measurement on Alice’s input probabilities.21 On the other hand, Alice
can change Bob’s measurement statistics by changing her preparation procedure. In this sense,
causality is a statistical property, and it does not make much sense to ask for the causal order
of a process with any individual run of an experiment [49].
This understanding of causality implies that if a process/network is causally ordered A ≺

B ≺ · · · ≺ N, then an event K cannot influence the statistics of any of the events K′ ≺ K. We
can see straightforwardly that the hierarchy of trace conditions in Eq. (2.42) indeed corresponds
to causality constraints. To see this, imagine a four-slot comb defined on times {t1, . . . , t5}
(see Fig. 2.22 for a graphical representation of the described experimental scenario). The
measurement statistics of an experimenter who performs measurements at times {t1, t2}
should not depend on anything that happens at later times {t3, t4, t5}. Specifically, this means
that the choice of instruments J3, J4, and J5 can have no influence on the statistics of outcomes
at {t1, t2}. Mathematically, this implies

P(α, β|J1,J2,J3,J4,J5) = P(α, β|J1,J2,J ′3 ,J ′4 ,J ′5) = P(α, β|J1,J2) , (2.44)

where P(α, β|J1,J2,J3,J4,J5) denotes the probability to obtain outcome α (β) at t1 (t2)

given that the instruments J1,J2,J3,J4, and J5 are used, and Eq. (2.44) has to hold for all

21 We will discuss how conditioning can be used to simulate causally disordered processes in Ch. 6.

30



2.10 deterministic combs and causal ordering

possible instruments. Expressed in terms of link products, this relation can, equivalently, be
written as

C(5) ?M(α)
1 ?M(β)

2 ?M3 ?M4 ? 15o = C(5) ?M(α)
1 ?M(β)

2 ? N3 ? N4 ? 15o (2.45)

∀ CP maps M(α)
1 , M(β)

2 and ∀ CPTP maps M3,M4,N3,N4 ,

where M(α)
1 and M(β)

2 are CP maps corresponding to measurement outcomes α and β, M3 and
M4 (N3 and N4) are CPTP maps corresponding to the instruments J3 and J4 (J ′3 and J ′4 ), and
15o is the only trace-preserving effect at t5. Now, using the hierarchy of trace conditions (2.42),
we can show that Eq. (2.45) is indeed satisfied. For any CPTP maps M3 ∈ B(Hi

3 ⊗Ho
3) and

M4 ∈ B(Hi
4 ⊗Ho

4) we have

C(5) ?M3 ?M4 ? 15o = C(4) ?M3 ?M4 ? 14i = C(4) ?M3 ? 14o

= C(3) ?M3 ? 13i = C(3) ? 13o = C(2) ? 12o , (2.46)

where we used the fact that Mk ? 1ki = 1ko for CPTP maps Mk. This implies that, independent
of the CPTP maps that are plugged into the final slots of the comb C(5), the resulting comb
that acts on M(α)

1 and M(β)
2 is equal to C(2) ⊗ 12o ; put differently, the choice of instruments at

later times (in this case, at t3, t4 and t5) cannot be signaled to earlier times.
More generally, it can be proven in an analogous way that any deterministic comb that is

performed at later times cannot influence measurement statistics at earlier times (see Fig. 2.23);
for example, we could contract a deterministic comb C(N) ∈ B(Ho

N ⊗ · · · ⊗ Hi
0) with a

deterministic comb M(N−n) that is defined on B(Ho
N ⊗ Hi

N−1 ⊗ · · · ⊗ Hn + 1o), i.e., on
the last N − n slots of C(N), and, in order for the contraction to make sense, the output
lines of C(N) are input lines of M(N−n) (see, for example, Fig. 2.23). Consequently, we have
M(N−n) = 1No ⊗M(N−n−1), and C(N) ?M(N−n) yields

C(N) ?M(N−n) = C(N) ?M(N−n−1) ? 1No = C(N−1) ?M(N−n−1) ? 1N−1i

= C(N−1) ?M(N−n−2) ? 1N−2o = · · · = C(n+1) ?M(1) ? 1n+1i

= C(n+1) ? 1n+1o = C(n) ? 1ni , (2.47)

where we alternatingly used the fact that C(N) and M(N−n) are deterministic combs, but no
other properties of M(N−n) were used. As C(n) is independent of M(N−n), Eq. (2.47) tells us,
that, using the deterministic comb C(N), no information from the future can be sent to the
past. Unsurprisingly, if C(N) is not deterministic – for example, if one of its building blocks
is a non-trace-preserving effect or transformation – then it generally does not have a built-in
causal order. This is reminiscent of the difference of CP maps and CPTP maps. While the
latter preserve trace, and are as such causally ordered, the former do in general not preserve
trace, and do not display causal order. However, if CP maps correspond to outcomes of a
general measurement, they have to add up to a CPTP map, i.e., causality has to hold on average.
Analogously, we can consider non-deterministic combs as the maps corresponding to general,
possible temporally correlated measurements [5, 47]. Such a set of positive matrices that add
up to a deterministic comb is called a tester [17, 46, 47]. The concept of testers extends the idea
of instruments to the temporally non-local case, and in this sense, deterministic combs and
elements of a tester are the natural generalization of CPTP and CP maps, respectively.
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Figure 2.22: Causality constraints for combs. The choice of instruments at the slots corresponding to
t3, t4, and at the final time t5 should not influence the statistics of earlier measurements, represented by
the CP maps M(α)

1 and M(β)
2 . We choose different colors for the operations that are plugged into C(5) to

emphasize that the times {t3, t4, t5} are considered future events and should not have any influence on
the measurement statistics at {t1, t2}.

Figure 2.23: General causality constraints for combs. The choice of tester at the slots corresponding to
t3, t4, and at the final time t5 should not influence the statistics of earlier measurements, represented by
the CP maps M(α)

1 and M(β)
2 .

2.11 higher-order quantum maps – summary

In this chapter, we have introduced the concept of higher-order quantum maps, and their
graphical, as well as algebraic, characterization. Even though – apart from some basic examples
– we have not yet provided natural physical instances, it should have become obvious that they
provide a universal and versatile platform to describe any physical scenario where information
is created, transformed and read-out. Arguably, all dynamical situations in quantum mechanics
are of this kind, and having this powerful framework at hand will allow us to easily express
and manipulate complex physical problems.

One field of application that suggests itself is that of open quantum systems dynamics. Here,
the degrees of freedom that can be controlled by the experimenter – dubbed the ‘system’ – are
coupled in an uncontrollable, and often times unknown, way to additional degrees of freedom –
dubbed the ‘environment’. Due to this coupling, memory can travel forward in time, implying
that the dynamics of the system at a point in time can depend on its states at earlier points in
time. The description and characterization of such dynamics with memory has long posed
a challenge for the open quantum systems community [65, 66] and is often still considered
an open problem. Evidently, higher-order quantum maps are perfectly tailored to describe
such physical scenarios, and we will make constant use of them for the description of general
quantum stochastic processes in the subsequent chapters.

On a more fundamental level, we shall see that a switch of the employed descriptive frame-
work also allows one to resolve open foundational problems at relative ease. Additionally,
as we pointed out, quantum combs provide the natural framework to discuss causal order
in quantum mechanics and enable a straightforward generalization to situations without a
predefined causal order.
Before we come to these, more speculative, discussions, we will first use the theory of

higher-order quantum maps for the succinct and consistent description of quantum stochastic
processes (and beyond), providing a unified framework for several – seemingly distinct – fields
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of physics. While this discussion will still be somewhat abstract, we shall furnish higher-order
quantummaps with a clear-cut underlying physical meaning, and experimental implementation
in Chs. 4 and 5.
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3
CAUSAL MODEL ING AND GENERAL STOCHAST IC PROCES SE S

In the previous chapter we introduced higher-order quantum maps as a versatile framework to
describemany different physical situations. Here, we will make direct use of them and, in a sense,
rediscover them again – albeit with a different motivation, and an explicit underlying physical
idea in mind, namely: the description of quantum stochastic processes. In the classical domain,
stochastic processes are well-understood, both conceptually, with clear and unambiguous
definitions for the key concepts. On the other hand, in quantum mechanics, the situation
presents itself somewhat murkier.
Fundamentally, an appropriate descriptor of a stochastic process should allow one to cor-

rectly predict the probabilities for arbitrary sequences of measurement outcomes, and would
thus constitute the maximum amount of information that an experimenter can extract about
the dynamics of a system of interest. For example, the full description of a particle undergoing
Brownian motion when immersed in some uncontrollable environment is given by the proba-
bilities P(xN , tN ; . . . ; x2, t2; x1, t1) to find the particle in the regions {xα}N

α=1 when measuring
its position at times {tα}N

α=1 (see Fig. 3.1); once all of these probabilities are known, there is no
more information to be inferred about the process. This description of stochastic processes in
terms of joint probability distributions does not translate well to quantum mechanics, where
the mere act of measuring alters the state of the interrogated system, and thus influences future
dynamics [65, 67, 68].
This experimental influence challenges the idea of a separation between the experimenter

and the dynamical process that they intend to probe. The aim of this chapter is to overcome
this problem and to provide a descriptor for general quantum processes that is independent of
potential experimental interventions, and which contains all inferable information about the
underlying process. The offered resolution, in turn, will then kill many birds with one stone:
it alleviates the conceptual problems in the discussion of quantum processes, provides a unified
logical framework for seemingly disparate fields of physics, and enables the unambiguous
definition of memory effects in quantum stochastic processes. The former two points will be
discussed in the present chapter, while we shall return to the latter one in Ch. 4.
The difficulties that arise when modeling quantum processes can be traced back to the

invasiveness of measurements in quantum theory, which appear to introduce a disconnect
between finite measurement statistics and the underlying process; experimentally – due to the
restriction of temporal resolution and the amount of data that can be detected and stored – we
always deduce probability distributions with a finite number of arguments. Nonetheless, one
always implicitly assumes that there is an underlying process that leads to the experimentally
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accessible finite distributions. Put differently, one assumes that there exists an infinite joint
probability distribution that has all the finite ones as marginals. Active influence of the
experimental procedure then appears to suggest that there is a fundamental divide between what
the experimenter sees, and what the process ‘actually’ is. This kind of divide does not exist in
classical physics, where these two points of view – the finite and the infinite one – are reconciled
by the Kolmogorov extension theorem (KET), which lays bare the minimal requirements for
the existence of an underlying process, given a family of measurement statistics for finite sets
of times [69–72]. It bridges the gap between experimental reality and mathematically rigorous
theoretical underpinnings and, as such, enables the definition of stochastic processes as the
limit of finite – and hence observable – objects.
The validity of the KET hinges crucially on the fact that the statistics of observations at

a time t do not depend on the kind of measurements that were made at any time t ′ < t. In
other words, just like the Leggett-Garg inequalities for temporal correlations [73–75], the KET
is based on the assumptions of realism and non-invasive measurements.1 For example, in a
classical stochastic process, measuring the position of a particle undergoing Brownian motion
merely reveals information, but does not actively change the state of the particle. On the other
hand, the assumptions of non-invasiveness or realism are not fulfilled in many experimental
(quantum) scenarios and potential invasiveness leads to a breakdown of the KET, at the cost of
a clear connection between an underlying process and its finite time manifestations.
Invasive experimental interventions, the culprit when it comes to posing a problem with

respect to describing general stochastic processes, appear naturally in quantum mechanics; in
fact, a complete description of quantum processes without interventions is not possible [8].
More generally, traditional descriptions of stochastic processes break down, whenever an
experimenter – classical or quantum – chooses to actively interfere with a process, which is
necessary to uncover its causal structure. For example, instead of just observing the progress
of a disease, a pharmacologist tries to find out how the course of a disease changes with the
administration of certain drugs, while agent-based modeling investigates how systems behave
when they can not only be monitored, but actively influenced [77]. Experimental situations
where interventions are actively used to uncover causal relations fall within the fields of causal
modeling and, in the quantum case, quantum causal modeling [42, 49–51].
The fundamental lack of an extension theorem in theories with interventions would be

problematic for several reasons: firstly, it would suggest an inconsistency between descriptions
of a process for different sets of times; for example, the description of a process for three times
t1, t2, and t3 would not already include the description of the process for the two times t1 and
t3 only. We would need seven different independent descriptors for each of the seven subsets
of times to describe all possible events! This lack of consistency would render the study of
(quantum) causal models in multi-step experiments impossible; if local interventions lead to a
completely different process, it is not meaningful to try to deduce causal relations by means of
active manipulations of the system at hand.

1 In [73, 74], the assumption ofmacroscopic realism is made by Leggett and Garg for the derivation of the eponymous
inequality. However, realism (or realism per se) is a sufficient assumption (see for example [76] for a detailed
discussion), and the one that is most frequently tested for in experiments [75].
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Furthermore, the present situation (with no extension theorem) implies an incompatibility
between existing frameworks to describe processes with interventions (both classical and
quantum) and the classical theory of stochastic processes, even though the former should
reduce to the latter in the correct limit. This then suggests that the mere act of interacting
with a system over time introduces a fundamental divide between the continuity of physical
laws and the finite statistics that can be accessed in reality, thus begging the question: what
do we mean by a (quantum) ‘stochastic process’, and how can we reconcile causal modeling
frameworks with the idea of an underlying process?

Beyond the foundational considerations, the lack of a full-fledged framework for the treatment
of quantum stochastic processes has practical implication for our understanding of memory
effects in quantum mechanics. Closed system dynamics, i.e., dynamics where interactions of
some accessible system of interest (i.e., the system that the experimenter can interrogate) with
its environment are negligible, are mathematically well-understood in quantum mechanics.2

However, the situation becomes more complex and subtle, when the system of interest interacts
with an environment that is beyond experimental control. Traditionally, in this case, one aims
to find the dynamics of the (open) system by solving an equation of motion for the state of
the former, which yields families of channels that map initial states of the system to states
at later times. Evidently, such methods can only account for two-time correlation functions,
which is only sufficient to describe processes with negligible memory effects [19, 71, 78, 79], i.e.,
Markovian processes, but generally insufficient to fully describe an arbitrary (non-Markovian)
quantum process [8, 67, 71]. Situations with non-negligible memory effects require explicit
accounting for multi-time correlations [65, 80] which already points us in the direction of
higher-order quantum maps as the ideal tool to circumvent the problems one encounters as
soon as memory effects play a role for the dynamics of a quantum system.

In this chapter, based on the findings of [4], we shall answer all of the above questions (except
for the definition of memory effects), by generalizing the KET to the framework of (quantum)
causal modeling, thus closing the apparent divide between the finite and the continuous point of
view. This generalization, in turn, will put the existing theories of stochastic processes (classical,
quantum, and beyond), and the theory of causal modeling on the same unified footing. The
breakdown of the KET is thus revealed as a breakdown of (current) formalism only, not a
fundamental property of quantum processes. Additionally, even though we will predominantly
phrase our results in terms of the comb formalism that we encountered in the previous chapter,
they also apply to causally disordered processes, as well as potential post-quantum theories that
satisfy some minimal assumptions of OPTs. Finally, the generalization of the KET to quantum
mechanics will provide a direct way to construct generative models of quantum stochastic
processes, which we shall introduce and discuss in detail.
This chapter lays the foundations for the discussion of quantum stochastic processes and

establishes quantum combs as their most general descriptors. The investigation of the properties
of general quantum stochastic processes, like, e.g., the presence of memory effects, is relegated to
subsequent chapters, where wewill investigate their physical origin, as well as their experimental
reconstruction and the characterization and detection of non-Markovianity.

2 The fact that the mathematical framework to describe closed system dynamics is well-understood does, of course,
not mean that the corresponding dynamics are easy to compute in general.
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Figure 3.1: Example trajectory of a particle undergoing Brownianmotion. For six times {t6, . . . , t1}, the
underlying process is fully described by the joint probabilities P(x6, t6; . . . ; x1, t1) to find the particle
in the regions {x6, . . . , x1} at times {t6, . . . , t1}.

3.1 classical stochastic processes – basic concepts

Stochastic processes are ubiquitous in nature. Their theory is used, among other applications,
to model the stock market, predict the weather, describe transport processes in cells and
understand the random motion of particles suspended in a fluid [81, 82]. Intuitively, when
we speak of stochastic processes, we often mean joint probability distributions of possible
measurement outcomes at a finite set of times: the probability for a stock to have prices $1, $2

and $3 on three subsequent days, or the probability to find a particle undergoing Brownian
motion in regions x2 and x1 when measuring its position at times t2 and t1. This finite intuition
notwithstanding, we always assume that there is an underlying process that leads to the observed
finite joint distributions. Discussing the properties of this underlying process and connecting
it to the observed finite distributions is the goal of this and the subsequent sections.

In order to treat them more rigorously, and to facilitate the transition to the quantum regime,
it is necessary to define some basic concepts pertaining to the theory of classical stochastic
processes (see, for example, Ref. [71] for a more comprehensive discussion). Firstly, in order to
be able to meaningfully attribute probabilities to events, it is useful to define the concept of
σ-algebras [72]:

definition 3 .1 (σ-algebra): Let Ω be a set. A σ-algebra on Ω is a collection F of subsets of
Ω, such that

• Ω ∈ F and∅ ∈ F.

• If f ∈ F, then Ω \ f ∈ F.

• F is closed under (countable) unions and intersections, i.e., if f1, f2, · · · ∈ F, then
∞⋃

j=1
f j ∈ F

and
∞⋂

j=1
f j ∈ F.

We will call such a pair (F, Ω) a measurable space. Intuitively, the sample space Ω can be
considered the space of all possible outcomes, while the σ-algebra F is the set of all possible
events that can be detected. For example, when measuring the position of a particle in a plane,
the space of all possible outcomes is Ω = R2, while the σ-algebra F depends on the instrument
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that is employed to detect the particle. If the instrument can only resolve if the particle is in the
positive half-plane x ≥ 0 or the negative half-plane x < 0, we have F = {R2

x≥0,R2
x<0,R2,∅}.

Throughout this thesis, we will assume that the number of detectable outcomes is finite, i.e.,
|F| < ∞. A σ-algebra can be understood as allocating a set f j to every possible outcome j.

Having defined σ-algebras, we can introduce the second important ingredient for the theory
of stochastic processes, probability measures:

definition 3 .2 ( probability measure): Let (F, Ω) be a measurable space. A probability
measure P : F → R is a real-valued function that satisfies

• P(Ω) = 1.

• P( f ) ≥ 0 for all f ∈ F

• P is additive for (countable) unions of disjoint events, i.e., P
(⋃∞

j=1 f j

)
= ∑∞

j P( f j) for
f j ∈ F and f j ∩ f j ′ = ∅ when j 6= j ′.

As the name suggests, Pmaps each event f j to its corresponding probability.3 The definition
of a σ-algebra is in clear analogy to that of a POVM [61, 83, 84], and, more generally, to the def-
inition of instruments we gave in the previous chapter; roughly speaking, each of the CP maps
of an instrument J corresponds to an element of the σ-algebra, i.e., a detectable/measurable
event, that is defined by what J can resolve.

With these concepts at hand, we are now in the position to define the concept of a probability
space [72]:

definition 3 .3 ( probability space): A probability space is a triple (P, Ω, F), of a proba-
bility measure P, and a measurable space space (Ω, F), with P(Ω) = 1.

Quite naturally, P : F → [0, 1] yields the probability to obtain outcome f in F. For the
example above, P would yield the probability to find the particle in one of the half-planes.
In quantum mechanics, P( f ) is computed via the Born rule tr(ET

f ρ), where ET
f is the POVM

element corresponding to the outcome f .
The extension to sequences of measurement outcomes at multiple times – i.e., the definition

of stochastic processes – is now straightforward. Before we do so, a brief remark is necessary
to avoid potential confusion. In the literature, stochastic processes are generally defined in
terms of random variables [70, 71]. For completeness, we provide this definition in App. A.1.
However, all of our results will be phrased with respect to joint probability distributions,
without making explicit use of the concept of random variables. Therefore, it would lead us
unnecessarily astray to express our definition of a classical stochastic process in terms of them.
For all intents and purposes, there is no difference between our approach and the one generally
found in the literature.

3 Strictly speaking, we should have used a different symbol for a probability measure defined in this way, as we
already used P in the previous chapter for probabilities obtained via the Born rule. However, as we shall see, both
concepts coincide (in the right sense) in quantum mechanics.
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definition 3 .4 ( classical stochastic processes on finite sets of times ): A
stochastic process on times tα ∈ Λk with |Λk| = k < ∞ is a triple (PΛk , ΩΛk , FΛk) of a sample
space

ΩΛk =×
α∈Λk

Ωα , (3.1)

a σ-algebra FΛk on ΩΛk , and a probability measure PΛk on FΛk with PΛk(ΩΛk) = 1.

The symbol×denotes the Cartesian product for sets. For compactness, whenever there is
no risk of confusion, we will use α ∈ Λk to denote labels of times in Λk.4 Each Ωα corresponds
to a sample space at tα, and the probability measure PΛk : FΛk → [0, 1] maps any sequence of
outcomes at times {tα}α∈Λk to its corresponding probability of being measured. Importantly,
the employed instruments do not have to be the same at each time steps. For instance, in the
example above, the spatial resolution of the measurement device could be distinct for different
times.
While generally, one would identify Λk with a chronological set of times – and we do so

frequently throughout this chapter to build intuition – we will often leave its physical origin
undefined, in order to also allow for the definition of stochastic processes without a global
temporal order. In what follows, we shall employ the convention, that, unless stated otherwise,
the set Λk does not necessarily have to display a chronological order.
In less technical terms, a stochastic process, as we define, it is given by joint probability

distributions PΛk(xjk , . . . , xj1) := PΛk(xΛk) over sequences of measurement outcomes that
take values {xjα} at times/labels tα ∈ Λk, where Λk is a set with cardinality |Λk| = k [71].5

Once PΛk is known, there is no more information that can be learnt about the process (for the
given measurement devices).
The slightly technical definition of stochastic processes in terms of σ-algebras has the ad-

vantage of generalizing straightforwardly to the case of quantum stochastic processes; as we
will see, the role of elements f ∈ FΛk will be played by CP maps M ∈ ⊗α∈Λk

B(Hi
α ⊗Ho

α),
while the role of PΛk will be assumed by a positive linear functional, CΛk , that maps sequences
of CP maps – corresponding to sequences of measurement outcomes at times tα in Λk – to
their associated probabilities. In quantum mechanics, CΛk is a comb, and the corresponding
probability is given by CΛk F

α∈Λk

Mxjα
, where F

α∈Λk

is shorthand for a link product over all labels

of times in Λk (see below).
The above definition of stochastic processes naturally generalizes to sets of times Λ, where
|Λ| can be infinite:

definition 3 .5 ( classical stochastic processes ): A stochastic process on times t ∈ Λ
is a triple (PΛ, ΩΛ, FΛ) of a sample space

ΩΛ =×
α∈Λ

Ωα , (3.2)

a σ-algebra FΛ on ΩΛ, and a probability measure PΛ on FΛ with PΛ(ΩΛ) = 1.

4 Here, we break with the convention of the previous chapter, and label times by α ( instead of j), to distinguish them
clearly from k, the cardinality of the set of times the stochastic process is defined on.

5 Throughout this chapter, we will employ the convention that subscripts signify the time as well as the respective
outcome. For example, xjα signifies a measurement outcome at time tα, labeled by jα.
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Figure 3.2: Consistency condition for classical stochastic processes. The correct joint probability PΛk′

can be obtained from any joint probability distribution PΛk with Λk ⊇ Λk′ by summing over the
excessive times. Here, Λk = {t6, . . . , t1} and Λk′ = {t6, t4, t2, t1}, and PΛ′k

= ∑j3,j5 PΛk .

Notably, PΛ is not an experimentally reconstructible quantity unless |Λ| is finite. Nonethe-
less, we implicitly assume its existence when probing stochastic processes on finite sets of times.
Connecting finite joint probability distributions to the concept of an underlying process is the
main achievement of the Kolmogorov extension theorem, as we will discuss in detail in the
subsequent sections.
At this point, it is important to shed some light onto the assumptions that go into the

discussion of stochastic processes in classical physics. Implicitly, in classical physics, we assume
that the interrogation of the system overall leaves its state unchanged; put differently, we
assume that there is no difference between averaging over the measurement outcomes at tα,
and not performing a measurement at tα at all. Consequently, the stochastic process on any
subset of times Λk′ ⊆ Λk can be obtained from PΛk ; for instance, if Λk = {tk, . . . , t1},
the distribution over all but the αth time is found by marginalizing the larger distribution:
PΛk\{tα}(xjk , . . . , xjα+1 , xjα−1 , . . . , x1) = ∑jα PΛk(xΛk), where ∑jα denotes the sum over all
outcomes labeled by jα (see Fig. 3.2). As we shall see below, this condition is not satisfied
by quantum processes, raising numerous complications in the definition and description of
quantum stochastic processes.

3.2 σ -algebras, povms and instruments

In the previous section, we have hinted at the fact that POVMs and instruments are the natural
extension of σ-algebras to the quantum mechanical setting. Before discussing causal modeling
and quantum stochastic processes in the subsequent sections, it is instructive to define POVMs
and instruments in a slightly more rigorous manner than we have so far. In doing so, we make
the connection between the respective concepts manifest, which, in turn, we can use as the
guiding principle to a resolution of the difficulties that arise when describing processes with
interventions.
Previously, we defined a POVM as a set of positive operators {Ej} that satisfy ∑j Ej = 1.

While this definition is correct, it obfuscates its natural connection to σ-algebras and probability
measures. We have the following, more rigorous definition [61, 83, 85]:

definition 3 .6 ( positive operator valued measure): Let (F, Ω) be a measurable
space. A Positive Operator Valued Measure (POVM) G : F → B(H) is a mapping from the σ-
algebra F to operators onH, such that

• G[Ω] = 1
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• G[ f j] = Ej ≥ 0 for all f j ∈ F

• G[
∞⋃

j=1
f j] = ∑∞

j=1 G[ f j], for f j ∈ F, and f j ∩ f j ′ = ∅ for j 6= j ′.

Several remarks about this definition are in order. In classical physics, an instrument defines
what measurement outcomes can be resolved, and as such partitions the sample space into
a σ-algebra. In quantum mechanics, this is not enough. A single degree of freedom can be
interrogated in different, non-commuting ways, and consequently, it is not sufficient to only
specify the possible measurement outcomes, but the respective instrument that was used to
interrogate the system of interest is of importance.

For instance, when measuring the spin of a spin-1
2 particle in the Z- and X- basis, the possible

outcomes can be labeled by {0, 1} in either case, but the corresponding measurements and
POVM elements differ. We have already seen that for a given quantum state ρ, the probability
for an outcome j, when using the instrument J , is computed via Born’s rule P(j|J ) = Ej ? ρ.
In this sense, Born’s rule can be considered as a mapping from a σ-algebra to probabilities via
a POVM that allows one to account for the different ways in which a quantum mechanical
degrees of freedom can be measured. As such, Def. 3.6 in conjunction with Born’s rule is the
natural extension of the definition of a probability space in classical physics.

Analogously, if the transformation of the state upon receiving outcome j is of importance –
as is evidently the case in the study of stochastic processes – the definition of a POVM given
above is straightforwardly extended to the rigorous definition of an instrument [62]:

definition 3 .7 ( instruments): Let (F, Ω) be a measurable space. An instrument J : F →
B(Ho ⊗Hi) is a mapping from the σ-algebra F to operators onHi ⊗Ho, such that

• J [Ω] is a CPTP map M

• J [ f j] = Mj ≥ 0 for all f j ∈ F

• J [
∞⋃

j=1
f j] = ∑∞

j=1 J [ f j], for f j ∈ F and f j ∩ f j ′ = ∅ for j 6= j ′.

This definition of an instrument coincides with the previous understanding of an instrument
as a collection of CP maps that add up to a CPTPmap, but has the advantage, that it nowmakes
the connection to classical stochastic processes straightforward. Importantly, the σ-algebra in
the above definition could correspond to a multi-time experiment, and as such, it also applies
to testers. In slight abuse of notation, whenever possible, we will continue to identify J with
a collection of CP maps, instead of a mapping from a σ-algebra to B(Hi ⊗Ho).
As we have seen, a classical stochastic process on a set of times Λk is defined as a map

P : FΛk → [0, 1], where FΛk is a σ-algebra on×α∈Λk
Ωα. The definition of a quantum stochastic

process then follows in an analogous way; we will argue below that, with the definition of an
instrument at hand, a quantum stochastic process must be a mapping of the form [62, 86, 87]

CΛk :
⊗

α∈Λk

B(Hi
α ⊗Ho

α)→ R , (3.3)

such that CΛk yields a probability whenever it acts on a tester. In the subsequent sections, we
rigorously discuss this concept of quantum stochastic processes on finite sets of times Λk, and
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show that it answers the question of how to properly generalize the idea of an underlying
process in quantum mechanics (and beyond).
Before we do so, we have to make sure, though, that we accurately understand why this

question has to be asked in the first place, and what properties of general stochastic processes
necessitate new answers. To this end, we will first embed classical stochastic processes into the
broader framework of classical causal modeling, i.e., classical processes with interventions, and
show why fundamental properties of classical processes fail to hold as soon as we allow for
active experimental influence. While – at first sight – seemingly constituting a slight conceptual
detour, this discussion will lead us straight to the heart of the matter, quantum stochastic
processes.

3.3 classical causal modeling

Classical stochastic processes are traditionally described by joint probability distributions for
measurement outcomes at different times. However, observing the statistics for measurement
outcomes reveals correlations between events, but no information about causal relations. For
instance, correlations of two events A and B could stem from A influencing B, B influencing
A, or both A and B being influenced by an earlier event C [49–51]. Both of these situations
(direct cause and common cause) are depicted graphically in the DAG of Fig. 3.3, where events
at A3 and B4, as well as at A4 and B3 are correlated, respectively. However, in the former case,
the correlations stem from A3 causally influencing B4, while in the latter, they are a result of
the common cause A2.

More tangibly, reiterating an example from Ref. [51], events A and B could, for example, be
the occurrence of sunburns and the sales of ice cream, respectively. While these two variables are
highly correlated, this correlation alone would not fix a causal relation between them. Inferring
the causal structure of a process is the aim of causal modeling. Here, active interventions are
used to uncover how different events can influence each other. In the example above, one could
suspend the sale of ice cream to see how it affects the occurrence of sunburns, and would find
out that ice cream sales have no direct effect on sunburns (and vice versa, as the correlations of
ice cream sales and sunburns stem from a common cause, the weather, and not from any direct
causal relation).

To uncover these causal relations, we have to go beyond passive observation, and allow for
active interventions. Mathematically, this means that causal modeling for k events Ak, . . . , A1

necessitates the collection of all joint probability distributionsPΛk(xjk , . . . , xj1 |y`k , . . . , y`1) :=
PΛk(xΛk |JΛk) to measure the outcomes xjk , . . . , xj1 given that the interventions y`k , . . . , y`1

were performed. Here, Λk is a general set of labels for events and a priori, there is no particular
order imposed on its elements. For example, Λk could contain labels for different laboratories
where experiments are performed, and in each laboratory α ∈ Λk, the experimenter can
perform measurements (with outcomes xjα ) and interventions (labeled by y`α

). JΛk are then
the instruments that were used in each of these laboratories, and, they can be seen as rules for
how to intervene upon seeing a particular outcome.
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Figure 3.3: (Quantum) Causal network. Performing different interventions allows for the causal relations
between events to be probed. For example, in the figure the event B1 directly influences the events C3

and A2, while A3 influences only B4. Depending on the degrees of freedom that can be accessed by the
experimenter, these causal relations can or cannot be detected. For instance, the influence of A1 on
D3 could not be discovered if only the degrees of freedom in the light gray area were experimentally
accessible. The statistics of events do in general not satisfy the requirements of the KET. For example,
the events D3, D4, and B5 could be successive (e.g., at times t3, t4 and t5 ) spin measurements in Z-, X-
and Z-direction, respectively. Summing over the results of the spin measurement in X-direction at t4

would not yield the correct probability distribution for two measurements in Z-direction at t3 and
t5 only (see also Sec. 3.6). On the other hand, independent of the accessible degrees of freedom, the
generalized extension theorem (GET) discussed in Sec. 3.8 holds for any process.

For instance, when investigating Brownian motion, an instrument could be a deterministic
replacement rule: upon finding the particle at xjα , replace it by a particle at y`α

. It could also
be probabilistic: upon finding the particle at xjα , replace it by a particle at y`α

with probability
p(y`α

|xjα). In anticipation of our generalization to quantum stochastic processes, we adopt Choi
matrices to represent the corresponding two instruments mathematically. It is straightforward
to see that the former is a collection {My`α xjα

} of CP maps, where

My`α xjα
= |y`α

〉〈y`α
| ⊗ |xjα〉〈xjα | , (3.4)

while the latter consists of CP maps Mxjα
of the form

Mxjα
= ∑

`α

p(y`α
|xjα) |y`α

〉〈y`α
| ⊗ |xjα〉〈xjα | := ρxjα

⊗ |xjα〉〈xjα | , (3.5)

where |xjα〉 ( |y`α
〉) is a definite state vector corresponding to the measurement outcome

(repreparation) xjα (y`α
) at tα, and ρxjα

is a classical state, i.e., it is diagonal in the classical basis
{|y`α

〉}. As mentioned, the number of possible measurement outcomes and repreparations
can differ, but for compactness we will assume them to be equal for most of this chapter.
The generalization to differing numbers of inputs and outputs is always possible without any
technical difficulties.

Both sets of CP maps {My`α xjα
} and {Mxjα

} defined above add up to a CPTP map, and thus
constitute an instrument. Of course, we could discuss classical causal modeling without the
explicit reference to the CP maps that correspond to the individual interventions, but it will
prove helpful to do so, in order to transition to the quantum case at ease.
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Unlike in quantum mechanics, in classical physics, it is also possible to measure the system
of interest at each time tα without actively intervening. We dub the corresponding instrument
the idle instrument

Jα = idα = {|xjα〉〈xjα | ⊗ |xjα〉〈xjα |}d
jα=1 . (3.6)

Overall, its action does not change the state of the interrogated system. In detail, setting
Mid = ∑jα |xjα〉〈xjα | ⊗ |xjα〉〈xjα |, we see that Mid ? ρ = ρ for every state ρ that is diagonal in
the basis the measurements are performed in.

With this, we see that classical stochastic processes form a subset of classical causal modeling;
they correspond to the probability distributions one obtains by employing the idle instrument
at every time tα:6

PΛk(xΛk |idΛk) = PΛk(xΛk) , (3.7)

where idΛk denotes the idle instrument at each of the events in Λk. While this statement is
well-known, and somewhat obvious, it is crucial to understand its implications. In classical
physics, and experimenter can choose to not disturb the state of the system of interest, when
interrogating it. Fundamentally, this is why the theory of stochastic processes and causal
modeling are distinct in classical physics and can be discussed independently. In quantum
mechanics, this is not the case, and we shall see that the set of quantum stochastic processes
coincides with that of quantum causal models. Basic properties of stochastic processes break
down in the classical realm as soon as active interventions are considered, and the situation is
even more problematic in quantum mechanics, where interventions cannot be avoided. To see
this, it is now – finally – time to discuss the Kolmogorov extension theorem (KET), which
lays the foundation for our understanding of classical stochastic processes.

3.4 the kolmogorov extension theorem (ket)

In practice, when probing a stochastic process, we can only do so for finite sets of times. The
KET is concerned with the question of what properties the resulting family {PΛk}Λk⊂Λ of
finite joint probability distributions must satisfy in order for an underlying process PΛ to
exist. As such, it connects the experimentally accessible quantities {PΛk} with the theoretical
concept of an underlying process, and thus provides an operationally meaningful definition
of what we mean by a classical stochastic process. It is important to emphasize that in what
follows, we will be somewhat lax with respect to nomenclature. A stochastic process – both on
finite as well as infinite sets of times – is a triple of a probability distribution, a sample space
and a σ-algebra. However, for brevity we shall identify the stochastic processes we consider
with the corresponding joint probability distributions alone, and omit the sample space and
the σ-algebra, which will always exist.

6 Here, again, we use the reference to time as an aid to build intuition, not because it is important that the set the
stochastic process is defined on is temporally ordered.
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If the experimentally obtained family {PΛk}Λk⊆Λ of finite joint probability distributions
stems from an underlying stochastic process on the (finite, countably or uncountably infinite)
set Λ, then all of them are marginals of one probability distribution PΛ. In detail, we have

PΛk(xΛk) = ∑
Λ\Λk

PΛ(xΛ) := P
|Λk
Λ (xΛk) ∀Λk ⊆ Λ , (3.8)

where xΛk is the subset of xΛ corresponding to the times Λk, ∑Λ\Λk
denotes a sum over

outcomes at all times that are part of Λ \Λk (i.e., all the times that lie in Λ but not in Λk ),
and P|Λk

Λ denotes the restriction of PΛ to the times Λk. In case the set Λ is infinite, the
marginalization procedure can correspond to an integral over the times in Λ \Λk (though, to
avoid introducing too much notation, we will still use ∑Λ\Λk

to represent it). For example,
if the process we are interested in is the Brownian motion of a particle, PΛ would be the
probability density of all possible trajectories that the particle could take in the time interval
Λ, and all finite distributions could, in principle, be obtained from PΛ.

If an underlying process exists, then Eq, (3.8) implies consistency conditions (also often called
compatibility or Kolmogorov conditions) between probability distributions for any two finite
subsets of times Λk ⊆ ΛK ⊆ Λ. In this case,PΛk has to be a marginal ofPΛK ; if Λ ⊇ ΛK ⊇ Λk,
then

Λ \Λk = (ΛK \Λk) ∪ (Λ \ΛK) , (3.9)

and consequently

PΛk = ∑
Λ\Λk

PΛ = ∑
ΛK\Λk

∑
Λ\ΛK

PΛ = ∑
ΛK\Λk

PΛK . (3.10)

Expressed in the notation introduced above, we have PΛk = P
|Λk
ΛK

for all Λk ⊆ ΛK ⊆ Λ.
Intuitively, this means that PΛK , the descriptor of the stochastic process on the times ΛK,
contains all information about subprocesses on fewer times.

While an underlying process leads to a family of compatible finite probability distributions,
the KET shows that the converse is also true. Any family of consistent probability distributions
– in the sense of Eq. (3.10) – implies the existence of an underlying process. Specifically, the
Kolmogorov extension theorem [69–72] defines the minimal properties finite probability
distributions have to satisfy in order for an underlying process to exist:

theorem 3 .1 ( kolmogorov extension theorem): Let Λ be a set of times. For each finite
Λk ⊆ Λ, let PΛk be a (sufficiently regular) k-step joint probability distribution. There exists an
underlying stochastic process PΛ that satisfies PΛk = P

|Λk
Λ for all finite Λk ⊆ Λ iff PΛk = P

|Λk
ΛK

for all Λk ⊆ ΛK ⊆ Λ.

In other words, if a family of joint probability distributions on finite sets of times satisfies a
consistency condition (as well as an additional minor regularity property [71, 72]), then there
is an underlying stochastic process on Λ that has the distributions {PΛk}Λk⊂Λ as marginals.
As stated above, the KET defines the notion of a classical stochastic process in an operational
way, and reconciles the existence of an underlying process with its finite time manifestations.

Importantly, in the (physically relevant) case where Λ is an infinite set, the probability
distribution PΛ can generally not be experimentally accessed. For example, for Brownian
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motion, the set Λ could contain all times in the interval [0, T] and each realization xΛ would
represent a possible continuous sequence of outcomes over this time interval, which we
previously dubbed a trajectory of the particle.While we assume the existence of these underlying
trajectories (and hence the existence of PΛ ), in experiments concerning Brownian motion,
one can only access PΛk , i.e., their manifestations on finite sets Λk. The KET bridges the
gap between the finite experimental reality and the underlying infinite stochastic process.
Additionally, it also enables the modeling of stochastic processes: Any mechanism that leads to
finite joint probability distributions that satisfy a consistency condition is ensured to have an
underlying process. For example, the proof of the existence of Brownian motion relies on the
KET as a fundamental ingredient [88–91].
We can now better appreciate earlier statements about the role of invasiveness: Loosely

speaking, the KET holds for classical stochastic processes, because there is no difference be-
tween ‘doing nothing’ and conducting a measurement but ‘not looking at the outcomes’ (i.e.,
summing over the outcomes at a time). Put differently, the validity of the KET is based on the
fundamental assumption that the interrogation of a system does not, on average, influence its
state. Consequently, marginalization is the correct way to obtain descriptors for fewer times
and any classical stochastic process leads to compatible finite joint probability distributions;
this compatibility is independent of whether the system was observed or not, and the converse
also holds.

This fails to be true in causal modeling scenarios and, in particular, in quantum mechanics.
Intuitively, both active and unavoidable interventions, as they appear in classical and quantum
causal modeling, overall change the state of the system they act upon, and influence future
statistics. Collecting statistical data for given instruments then does not allow one to predict
what would have happened if no intervention had been performed. In mathematical terms, the
overall CPTP map corresponding to an instrument Jα at tα does generally not coincide with
the ‘do-nothing’ map of the underlying theory. Averaging PΛk over the outcomes at a time tα

then only allows one to predict the statistics of measurements given that Jα was implemented
at tα, but not the statistics of measurements if the ‘do-nothing’ operation was ‘performed’ at
tα.

To better pinpoint the breakdown of the KET in theories with interventions, we shall discuss
it in some more detail in the following two sections, before showing that higher-order quantum
maps are the correct conceptual tool to overcome the problems posed by the invasiveness of
many physical theories.

3.5 the ket and classical causal modeling

As we have discussed above, satisfaction of the compatibility property of joint probability
distributions for different sets of times hinges on the fact that observations in classical physics
do not alter the state of the system that is being observed. In contrast to passive interrogations,
that merely reveal information, active interventions, like they are used in the case of causal
modeling, on average change the state of the interrogated system. Thus the future statistics after
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(a) Without interventions (b) With interventions

Figure 3.4: (a) Classical process without intervention. A possible three step process is the drawing with
replacement of colored balls from an urn. In our example, independent of the actions of the experimenter,
a red ball drops into the urn at t2 (this could, e.g., represent the interaction with an uncontrollable
environment.). The experimenter can deduce the joint probability distribution P{t3,t2,t1}(cj3 , cj2 , cj1),
to draw different sequences of colors. P{t3,t2,t1} contains all distributions for fewer times, for example
P{t3,t1},P{t3,t2}, and P{t1}. (b) Classical process with intervention. Instead of putting the same ball
back in the urn, the experimenter could exchange it with a different color (for example, upon drawing
yellow, they could replace it with green at t1, replace blue with white at t2 and replace red with blue at
t3 ). The respective replacement rules are encapsulated in the instruments J3, J2, and J1. Now, from
the probability distribution P{t3,t2,t1}(cj3 , cj2 , cj1 |J3,J2,J1), it is generally not possible to deduce
probability distributions for fewer steps, like, e.g., P{t3,t1}(cj3 , cj1 |J3,J1), or P{t3,t2}(cj3 , cj2 |J3,J2).
This lack of consistency can not be remedied by simple relabeling of the times due to the red ball that
drops into the urn at t2.

an intervention crucially depends on how the system was manipulated and the prerequisite of
compatible joint probability distributions is generally not fulfilled anymore.
Consider, for example, the case of a pharmacologist who tries to understand the effect of

different drugs they developed on a disease. In our simplified example, let the disease have
two different symptoms Sa and Sb, and denote the absence of symptoms Sc. Whenever the
pharmacologist observes Sa, they administer drug Da, whenever they observe symptom Sb

they administer drug Db, and whenever they observe Sc they do nothing; this choice of
actions defines an instrument J . Running their trial with sufficiently many patients, the
pharmacologist can deduce probability distributions for the occurrence of symptoms over
time, given the drugs that were administered. For example, if the drugs were administered
on three consecutive days, they would have obtained a probability distribution of the form
PΛ3(sj3 , sj2 , sj1 |J3 = J ,J2 = J ,J1 = J ), where sjα ∈ {Sa, Sb, Sc}, and the instruments
(i.e., the drug administration rule) are the same each day. However, this data would not allow
them to find out what would have happened, had they not administered drugs on day two, i.e.,
∑j2 PΛ3(sj3 , sj2 , sj1 |J3,J2,J1) 6= PΛ3\{t2}(sj3 , sj1 |J3,J1); intermediate interventions change
the state of the interrogated system, and hence the future statistics that are being observed.
Nonetheless, it would seem odd in this situation to give up the idea of an underlying course
of the disease that reacts in a well-defined way to the administration of drugs, simply because
the compatibility condition does not hold anymore. For another, more numerically tangible
example of the breakdown of consistency conditions in classical physics, see Fig. 3.4.

It is instructive to reiterate the underlying mathematical reason for the respective existence
and absence of Kolmogorov conditions in classical stochastic processes and more general
theories. As mentioned, a measurement at tα in the computational basis yielding outcome xjα
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is represented by the CP map Mxjα
= |xjα〉〈xjα | ⊗ |xjα〉〈xjα |, and the corresponding overall

CPTP map is

D = ∑
jα

|xjα〉〈xjα | ⊗ |xjα〉〈xjα | , (3.11)

which we will call the completely dephasing map, as its action on an arbitrary state ρ consists of
eliminating all the off-diagonal terms in the computational basis, i.e.,

D[ρ] = ∑
jα

〈xjα | ρ |xjα〉 |xjα〉〈xjα | = ∑
jα

ρxjα xjα
|xjα〉〈xjα | . (3.12)

In general, when coherences play a role for the dynamics (see Ch. 5), D does not coincide
with the ‘do-nothing’ operation I , but it does so on the set of states that are diagonal in the
measurement basis, which is exactly the set of states we are concerned with in classical physics.
In this sense, projective measurements in the computational basis are non-invasive on the set of
classical states. Consequently, collecting data for measurement outcomes in the computational
basis allows one to make predictions about what would have happened, had one not performed
an operation at a given time step. In Ch. 5, we shall turn this reasoning on its head and use the
requirement of non-invasiveness of classical measurements as a definition of the set of classical
processes.

On the other hand the CPTP map corresponding to a classical instrument with active inter-
ventions does not leave states in the classical basis unchanged. For example, for the instrument
that prepares a fresh state y`α

upon measuring outcome xjα (for an illustration, see Fig. 3.4),
the overall CPTP map is given by

M = ∑
`α jα

|y`α
〉〈y`α

| ⊗ |xjα〉〈xjα | , (3.13)

and in general M ? ρ 6= ρ, even for states ρ that are diagonal in the classical basis. Consequently,
classical causal modeling does generally not display containment properties. Now, after having
discussed the classical scenario and the breakdown of the KET as soon as active interventions
are introduced, it is time to use the lessons we learned and apply them to the quantum realm.

3.6 quantum mechanics and compatibility conditions

A comprehensive description of quantummechanical processes must necessarily account for the
fundamental invasiveness of measurements, which renders the KET invalid for the same reason
that some choices of intervention do in the case of classical causal modeling. To see how even
projective measurements in quantummechanics lead to families of probability distributions that
do not satisfy the compatibility conditions of the KET, we consider the following concatenated
Stern-Gerlach experiment: Let the initial state of a spin-1

2 particle be |+〉 = 1√
2
(|↑〉+ |↓〉),

where |↑〉 and |↓〉 are the spin-up and spin-down state in the Z-direction, respectively. Now,
we measure the state sequentially in the Z-, X- and Z-direction at times t1, t2 and t3, and for
simplicity we assume that the dynamics between measurements is trivial, i.e., the identity map.
These measurements have the possible outcomes {↑, ↓} (for the measurement in Z-direction
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Figure 3.5: Concatenated Stern-Gerlach experiment. The initial state |+〉 is measured sequentially
at times t1, t2, and t3 in the Z-, X-, and Z-direction, and trivial dynamics is assumed in between
measurements. For compactness, the dependence of the joint probabilities on the employed instrument
is omitted.

Figure 3.6: Concatenated Stern-Gerlach experiment (two-step). The initial state |+〉 is measured
sequentially in the Z-direction at times t1 and t3, but not at time t2.

and {→,←} (for the measurement in X-direction). It is easy to see that the probability for
any possible sequence of outcomes is equal to 1/8 (see Fig. 3.5). For instance, we have

PΛ3(↑,→, ↑ |Jz,Jx,Jz) = PΛ3(↑,←, ↑ |Jz,Jx,Jz) =
1
8

, (3.14)

where Jz and Jx represent the instruments used to measure in the Z- and X- direction
respectively, and Λ3 = {t3, t2, t1}. Summing over the outcomes at time t2, we obtain, for
example, the marginal probability P|{t1,t3}

Λ3
(↑, ↑ |Jz,Jz) = 1/4. However, by considering the

case where the measurement is not made at t2, it is easy to see that P{t3,t1}(↑, ↑ |Jz,Jz) =

1/2 (see Fig. 3.6). The intermediate measurement changes the state of the system, and the
corresponding probability distributions for different sets of times are no longer compatible [43,
65].
While, in this example, we have assumed trivial dynamics in between measurements, and

different instruments at different times, we could readily construct an example where the mea-
suring devices are the same at every time, but the corresponding joint probability distributions
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still fail to satisfy consistency conditions. For example, a dynamics between measurements
given by a Hadamard gate, respectively, would lead to a violation of Kolmogorov conditions in
the above example, even if all the measurements were performed in the Z-basis. More generally,
the breakdown of consistency conditions is the norm in quantum mechanics, rather than the
exception [65, 80].
It is insightful to highlight the close relation of this breakdown of consistency, and the

violation of Leggett-Garg inequalities in quantum mechanics [73, 75]. The assumption of
consistency between descriptors for different sets of times that is crucial for the derivation
of the KET subsumes the assumptions of realism and non-invasive measurability that are the
basic principles leading to the derivation of Leggett-Garg inequalities: While realism implies
that joint probability distributions for a set of times can be expressed as marginals of a joint
probability distribution for more times, non-invasiveness means that all finite distributions are
marginals of the same distribution. For example, the two-step joint probability distributions
P{t2,t1}, P{t3,t2}, and P{t3,t1}, that are considered in the Leggett-Garg scenario are all marginals
of a three-step distribution P{t3,t2,t1}. As soon as non-invasiveness and/or realism do not hold
anymore, the KET can fail and Leggett-Garg inequalities can be violated.
Nevertheless, there must be some compatibility between descriptors for different sets of

times; the breakdown of the KET should be a problem of the formalism rather than a physical
fact. We will see in the next section that a change of perspective enables one to recover a
generalized consistency condition and to prove an extension theorem in quantum mechanics
and any theory with interventions.

3.7 quantum stochastic processes

The conceptual problem of the absence of Kolmogorov conditions, and the lack of a KET
in quantum mechanics and other theories with interventions can be remedied by assuming
the standpoint of quantum causal modeling, and choosing a description of such stochastic
processes that explicitly takes interventions and their corresponding change of the system into
account. In quantum mechanics, interventions are represented by CP maps, and a descriptor
of a general stochastic process has to – in clear analogy to the classical case – allocate the
correct probabilities to any possible sequence of CP maps. Unsurprisingly, such a description
is provided by higher-order quantum maps. While we have already alluded to this fact, we are
now in a position to fully understand the answers it provides, and with the corresponding
framework at hand, it is not only possible to recover a compatibility property that is satisfied
by any process with interventions, but also to prove a generalized extension theorem that
provides the foundation for the mathematically rigorous discussion of quantum stochastic
processes. In quantum mechanics, CP maps comprise the most general transformations an
experimenter can perform. In principle, in a theory beyond quantum mechanics, the possible
operations that are implementable by an experimenter could be of a different mathematical
structure, without altering the arguments we make below. Consequently, to keep the ensuing
discussion as general as possible, and as such also applicable to potential post-quantum theories,
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we shall predominantly phrase the subsequent results in terms of maps instead of Choi states,
but the relation to combs is always clear.
Sticking with the language familiar to quantum mechanics – but keeping in mind that a

generalization to OPTs is straightforward – each realization of an experiment corresponds to a
sequence of CP maps that transform the system at a series of times Λk, and the set of possible
CP maps that could be applied is dictated by the choice of instruments used to interrogate the
system in question. Then, a quantum process is fully characterized once all of the probabilities
PΛk(xjk , . . . , xj1 |Jk, . . . ,J1) for each such sequence and all possible instruments are known.
Written more succinctly, a k-step quantum stochastic process is fully characterized by an

object CΛk that maps sequences of CP maps to probabilities, i.e.,

PΛk(xjk , . . . , xj1 |Jk, . . . ,J1) = CΛk [Mxjk
, . . . ,Mxj1

] . (3.15)

See Fig. 3.7 for a graphical representation. A priori, the map CΛk does not have to be linear.
However, under the assumption that the underlying theory is a probabilistic one – which
applies to classical physics, quantum mechanics, and OPTs – it can be shown, that CΛk indeed
has to be a linear positive functional [62, 86, 87, 92]; the proof of this fact follows the same
line as the general arguments for the linearity of quantum maps we outlined in Sec. 2.1.

In this sense, the action of CΛk represents a Born rule for temporal processes and is a positive
multilinear functional that can be reconstructed in a finite number of experiments [2, 8, 31, 32].
As we have seen, in quantum mechanics, CΛk constitutes a special case of a quantum comb [87],
and we have

PΛk(xjk , . . . , xj1 |Jk, . . . ,J1) = CΛk F
α∈Λk

Mxjα
(3.16)

Even though this fact appears natural, it is worth recalling that we originally introduced combs
as arising from general quantum networks, while here we are looking for mathematical objects
that can describe experimentally accessible joint probability distributions. We will make this
connection more transparent in the subsequent chapters. Here, it arises directly from the
requirements of linearity and positivity that we impose on CΛk .
Additionally, it is important to keep in mind that the theory of combs, and in particular

their representation in terms of Choi states, assumes the validity of quantum mechanics, while
the arguments we make throughout this chapter only necessitate that CΛk acts linearly on
the space of implementable sequences of operations.7 Nonetheless, as it is helpful to build
intuition, we shall keep using the terminology of quantum mechanics and thus, we will call
CΛk a k-slot comb.
The comb CΛk contains all the multi-time correlations necessary to fully characterize a

k-step quantum process and as such allows one to unambiguously quantify memory effects in
quantum mechanics (see Ch. 4). Importantly, while the CP mapsMxjα

change the state of
the system that is interrogated, they do not change the k-time process given by CΛk . Loosely
speaking, the comb contains all parts of the dynamics that are not manipulated by and/or
accessible to the experimenter. This is analogous to the way in which the preparation of an
initial state and the measurement of the final state in quantum process tomography do not

7 We also assume that all CΛk are bounded, which is trivially satisfied, as the relevant image space of CΛk is [0, 1].
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Figure 3.7: Graphical representation of a four step process. For Λ4 = {t4, . . . , t1}, the process –
represented by the blue shape on the left – is interrogated four times using instruments J4, . . . ,J1

with outcomes xj4 , . . . , xj1 . This situation can be represented diagrammatically as a comb CΛ4 acting
on the corresponding operationsMxj4

, . . . ,Mxj1
. CΛ4 encodes all multi-time correlations between

observables at the times Λ4, and is independent of what instruments are used to probe it.

influence the underlying dynamics (i.e., the CPTP map connecting input and output state [19,
79, 93]). As such, our description of stochastic processes allows one to clearly delineate between
what constitutes the process, and what constitutes interventions, which is not possible in
different – incomplete – approaches to quantum stochastic processes [71, 80].

Just as in the classical case, the knowledge of all relevant joint probability distributions (i.e.,
the knowledge of CΛk ) allows one to deduce causal relations between the k events in Λk. This
forms the basis of the field of quantum causal modeling [50, 51]. Evidently, both classical causal
modeling as well as classical stochastic processes are included in the quantum causal modeling
framework as special cases, which gives our descriptor CΛk the universality we were aiming
fore.

In more detail, whenever a system is measured and prepared in a fixed basis (using a classical
instrument), and the identity operation I and the completely dephasing operation D act
indistinguishably (from the perspective of a classical observer), then the resulting set of joint
distributions is consistent with a classical causal model. We will further elaborate on processes
that appear classical for an observer that probes them with classical instruments in Ch. 5.
As we have seen, classical stochastic processes are a special case of this setup, where all the
instruments Jα are the idle instrument Jid = {|xjα〉〈xjα | ⊗ |xjα〉〈xjα |}d

jα=1 and the families of
joint probability distributions obtained via

PΛk(xjk , . . . , xj1 |Jk, . . . ,J1) = CΛk F
α∈Λk

(
|xjα〉〈xjα | ⊗ |xjα〉〈xjα |

)
(3.17)

satisfy Kolmogorov conditions. The naturally arising question, if the KET can be proven in
an alternative way, using the comb framework, will be answered in the affirmative below (see
Sec. 3.8.2). Now, we will use our extended understanding of stochastic processes, to recover
compatibility conditions for general processes, and to prove the generalized extension theorem,
that guarantees their existence.

3.8 generalized extension theorem (get)

The complete description of general processes on finite numbers of times that we developed
above allows us to straightforwardly formalize generalized Kolmogorov conditions between
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Figure 3.8: Consistency condition for combs. If there is an underlying process, any comb CΛk can be
obtained from CΛK by letting CΛK act on the identity map at the excessive times. Here, for the sets of
times Λ12 = {t12, . . . , t1}, Λ7 = {t12, t11, t9, t7, t6, t3, t1} and Λ4 = {t12, t11, t3, t1}, the containment
of the comb CΛ7 in CΛ12 and the containment of CΛ4 in both CΛ12 and CΛ7 is depicted.

processes defined on different sets of times. Naturally, if there is an underlying process, then
families of combs for different sets of times satisfy the following consistency condition [32]:
for any two sets of times Λk ⊆ ΛK, the comb CΛk can be obtained from CΛK by letting the
latter act on identity operations Iα at times tα ∈ ΛK \Λk, i.e.,

CΛk [ ] = CΛK

[
IΛK\Λk

,
]

:= C |Λk
ΛK

[ ] , (3.18)

where we have employed the shorthand notation IΛK\Λk
to signify that the identity operation

was ‘implemented’ at each time tα ∈ ΛK \ Λk, and is a placeholder for operations at the
remaining times (in this case operations at times in Λk ). The graphical representation of
Eq. (3.18) is depicted in Fig. 3.8.
It is important to note the difference between Eq. (3.18) and the consistency condition

for classical stochastic processes, stemming from the stronger notion of ‘doing nothing’ in
the quantum case. If there is an underlying process, any comb can be obtained from one
that applies to a larger set of times by letting it act on the identity map at the excessive
times. This is by no means the same as computing the marginals of families of probability
distributions that have been obtained for a fixed set of measurement instruments; rather,
marginalization over a time tα in this sense amounts to letting the comb act on Mα, the CPTP
map corresponding to the instrument Jα. By now, it should be clear why this difference does
not occur in classical stochastic processes; there, averaging over a time step tα is equivalent to
letting the respective comb act on the completely dephasing map Dα. As the action of this map
cannot be distinguished from the action of the ‘do-nothing’ map Iα for states that are diagonal
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in the measurement basis, marginalization and not performing an operation lead to the same
statistics.8

On the other hand, for more general processes, this distinction can be made, and the correct
way of ‘marginalization’ is obtained by letting the comb act on identity maps at the excessive
time steps, instead of completely dephasing maps (or any other CPTPmap). Put differently, the
way of marginalization we provide in Eq. (3.18) is also correct for classical stochastic processes,
but not the other way round.
We recover descriptors for different sets of times that are compatible with each other only

when we switch to a causal modeling description of the process, i.e., only when we actively
account for interventions. From this, we obtain the main result of this chapter, the generalized
extension theorem (GET) [4]:

theorem 3 .2 ( generalized extension theorem): Let Λ be a set of times. For each finite
Λk ⊆ Λ let CΛk be a k-slot comb. There exists a general stochastic process CΛ that satisfies CΛk =

C |Λk
Λ , as defined in Eq. (3.18), for all finite Λk ⊆ Λ, iff CΛk = C

|Λk
ΛK

for all finite Λk ⊆ ΛK ⊆ Λ.

The proof can be found in App. A.2. It proceeds analogously to that of the original Kol-
mogorov extension theorem, presented, for example, in [72]; the consistency property is used
to uniquely define a comb C]Λ on a ‘sufficiently large’ container space, that contains all finite
combs as ‘marginals’ in the correct sense. Due to its linearity and boundedness C]Λ can then be
extended to a linear functional C]Λ that fulfills the properties of the comb CΛ on the closure of
said container space.
As in the classical case [71], the underlying stochastic process CΛ is – unlike C]Λ – not

necessarily unique, which means that there potentially exist many different CΛ that have the
family of combs {CΛk}Λk⊆ΛK on finite sets of times as marginals. Since the action of all of
these possible CΛ coincides with the unique C]Λ on a sufficiently large space, and hence yields
the correct finite combs CΛk , this non-uniqueness cannot be detected experimentally and does
not constitute a practical problem.
As alluded to throughout this chapter, even though we have phrased it in the language of

quantum mechanics, there is nothing particularly quantum mechanical about the GET. The
proof of the theorem only uses the linearity and boundedness of the maps CΛk , as well as their
compatibility. Consequently, it holds for any probabilistic theory (importantly including those
with interventions) that can be phrased in terms of linear functionals acting on sequences of
interventions.

Furthermore, the input and output spaces of the CP maps the comb acts on do not have to
be of the same dimension. If they differ, the identity map used for the consistency condition
has to be slightly generalized: A CPTP map9Mα : B(Ho

α)→ B(Hi
α), is implemented via a

8 In fact, we can relax this statement, and consider a process to be classical, if the action of I and D can not be
distinguished by performing classical measurements. We discuss this in Ch. 5. Here, this technicality has no influence
on the motivations we provide.

9 Somewhat counter-intuitively,Mα maps from a space labeled by o to a space labeled by i. This is in order to abide
by the notational conventions we introduced in the previous chapter, where we defined inputs and outputs with
respect to the comb, and not the operations that are plugged into it.
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corresponding unitary Uα, a fixed ancillary state ηα ∈ B(HAα), and a partial trace trBα that is
such that the resulting output state

Mα[ρ] = trBα

[
Uα (ρ⊗ ηα)U†

α

]
(3.19)

lies in B(Hi
α) [94] (see Ch. 4 for a discussion of the unitary dilation of CPTP maps and combs).

With this, we can define a generalized identity map I (o→i)
α [ρ] = trBα (ρ⊗ ηα) and the GET

still applies, when marginalization is understood with respect to I (o→i)
α . Consequently, our

theorem accounts for the case where particles are created/annihilated in the process, as well
as the case where different degrees of freedom are manipulated at each time tα, or where the
number of measurement outcomes and active interventions differ.
More fundamentally, in the derivation of the GET, we make the implicit assumption that

probabilities only depend on the respective CP maps that were implemented, but not on the
particular instrument that was used to implement them. This property has been dubbed ‘in-
strument non-contextuality’ [24, 87] or ‘operational instrument equivalence’ [43]. In principle,
our derivation could be straightforwardly adapted to any theory, where this assumption is not
satisfied anymore, but probabilities are still a linear function of the maps and their respective
contexts (i.e., the respective instrument). Instead of the identity map, one would then use a
pair (I ,JI ) of identity map and identity context for marginalization, and the GET would
still hold.
Even though we have not yet explicitly discussed the physical emergence of quantum

stochastic processes, the GET tells us what minimal properties they must satisfy, and what
mathematical framework we have to employ to describe them. In this sense, just like the KET
for classical stochastic processes, the GET provides the fundamental theorem for the discussion
of quantum stochastic processes and establishes combs as their universal descriptor. As we
will see in the following chapter, combs can also be established in a less axiomatic, but more
physically motivated way as the framework to treat general quantum dynamics.

As in the classical case, the proof of the GET does not assume an a priori temporal ordering.
The sets Λk could be sets of times, but also labels of different laboratories without a well-defined
order. We have the following remark:

remark 3 .1: The proof of the GET does not assume any ordering of the sets Λk, and only uses the
generalized containment property (3.18) as its main ingredient.

Consequently, the GET also applies to causally non-separable processes [54, 95], as the de-
scriptors for different sets of laboratories would still satisfy a compatibility condition. However,
these processes do not have a deterministic Stinespring dilation [53], i.e., there is – to date
– no known (non-probabilistic) dynamical mechanism that leads to them, which makes the
interpretation of an underlying ‘process’ much less clear in the absence of a definitive causal
ordering. While we shall briefly remark on this fact in the conclusion of this chapter, the full
exploration of this interpretation is left as an open question for future work. Next, we will
see that the distinction between stochastic processes and causal modeling does not exist in the
general case.
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3.8.1 Quantum Stochastic Processes and Quantum Causal Modeling

We have seen that classical stochastic processes are a strict subset of the set of processes that
make up the theory of classical modeling, and both of them are subsets of quantum causal
modeling. It remains to discuss the role of quantum stochastic processes in this hierarchy.
Given the results of the previous discussion, we can cut this analysis short: in quantum

mechanics, it is unavoidable to employ a description that takes interventions into account,
when attempting to obtain a consistent description of a quantum process; if one wants to
properly define quantum stochastic processes, one is directly forced to use a framework that
can account for all possible interventions. Consequently, we have the following proposition:

proposition 3 .1: The theory of quantum causal modeling and the theory of quantum stochastic
processes are equivalent.

In contrast to the classical case, the set of quantum causal models does not just contain the
set of quantum stochastic processes, but coincides with it.

Besides its appeal in terms of a full classification of causal modeling and stochastic processes,
this proposition has an additional consequence: it implies that the breakdown of the KET in
quantum mechanics is fundamental, while, in principle, it can be removed in classical processes
with interventions by changing perspective. In the latter case, a super-observer, one that observes
both the experimenter manipulating the system of interest as well as the stochastic process
itself, would obtain families of joint probability distributions that display a compatibility
property in the sense of the KET. Put differently, for classical processes, by incorporating the
experimenter and their choices of instruments into the stochastic process, the KET always
applies on a higher level.
In quantum mechanics, this is generally not true. No matter the level at which a super-

observer observes a process, the respective joint probability distributions do not satisfy a
compatibility property, and the KET fails to hold. This fundamental breakdown of the KET
in quantum mechanics is also mirrored by no-go theorems that show that non-contextual
theories cannot reproduce the predictions of quantum mechanics; for many of these theorems,
the notion of ontic latent variables [96, 97] or ontic processes [43] are introduced, and the
basic assumption is made that the distributions over observable outcomes can be obtained by
marginalization of a larger joint distribution over the values of the ontic variable. Subsequently,
it is shown that, together with other assumptions, this prerequisite fails to reproduce predictions
made by quantum mechanics. The GET dictates how to correctly compute marginals in
quantum mechanics, such that all resulting probability distributions ‘fit together’ and are the
marginals of one common comb CΛ. It is therefore conceivable that a derivation in spirit of
the aforementioned references that starts from the assumption of compatibility in the sense of
the GET would lead to theories that can indeed reproduce quantum mechanics.

We reiterate that classical stochastic processes are a very special subset of general stochastic
processes, namely, the ones where the experimenter can only perform projective measurements
in a fixed basis, and the resulting joint probability distributions satisfy Kolmogorov conditions.
To conclude the discussion of the general extension theorem, we now show explicitly that it
contains the KET as a corollary.
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3.8.2 GET⇒ KET

Our generalized extension theorem applies to a strictly larger class of theories than the standard
KET and includes the latter as a corollary. We have the following proposition:

proposition 3 .2: The GET implies the KET.

The detailed proof of this statement can be found in App. A.3. There, we show that a family
{PΛk}Λk⊆Λ of compatible finite probability distributions can be mapped onto a family of
combs CclΛk

that satisfy the consistency condition of the GET. The existence of the underlying
process CclΛ then ensures the existence of a joint probability distribution PΛ that has all finite
ones as marginals.
While the original version of the KET does not hold for quantum processes, it is impor-

tant to keep in mind that the breakdown of the compatibility property of joint probability
distributions is not a signature of quantum mechanics per se; as we have already seen, any
framework that allows for interventions will exhibit this feature. The GET provides a proper
theoretical underpinning for the corresponding experimental situations. On the other hand,
the breakdown of the compatibility property can happen in quantum mechanics even if only
projective measurements in a fixed basis

{
|xjα〉

}
are performed [65, 80].

As already mentioned, the absence of compatibility is tantamount to the absence of ei-
ther realism, or non-invasiveness (or both). Consequently, it can be used as a definition of
non-classicality, as proposed in Ref. [80]. There, the authors employ the breakdown of the
consistency condition on the level of probability distributions, when measuring in a fixed
basis, as a means to define the non-classicality of Markovian, i.e., memoryless, processes. In
Ch. 5, we shall follow this definition to analyze the set of classical non-Markovian processes by
means of higher-order maps.

3.9 relation to previous work

The proof of the GET does not rely on any particularities that are exclusive to quantum
mechanics or our formulation thereof. As such, our extension theorem constitutes a sound
basis for the description of any conceivable (classical, quantum or beyond) theory of stochastic
processes with interventions – independent of the employed framework. Here, we want to
embed this result into the larger context of the existing literature on quantum stochastic
processes (and beyond).

While we referred throughout to the framework of higher-order quantum maps, our results
apply equally to any other framework for describing quantum processes as linear functionals.
The original idea to phrase quantum stochastic processes in this way dates back to Lindblad [62]
and Accardi et al. [86, 92]; more recent examples of mathematical objects and frameworks
(often the same thing under a different name) given a firm theoretical foundation by the GET
include: process tensors [8, 31, 32] and causal automata/non-anticipatory channels [18, 98], which
describe the most general open quantum processes with memory (see Ch. 4); causal boxes [99]
that enter into quantum networks with modular elements; operator tensors [100, 101] and
superdensity matrices [102], employed to investigate quantum information in general relativistic
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space-time; and, finally, process matrices, used for quantum causal modeling [42, 50, 51, 54]. For
classical stochastic processes, as well as the causal modeling framework we discussed, our result
applies to the theory of ε-transducers used within the theory of computational mechanics [103,
104] to describe processes with active interventions.

Our theorem proves the existence of a container space for all of the aforementioned frame-
works and allows for their complete and consistent representation in the continuous time
limit, thus providing an overarching theorem for probabilistic theories with interventions.
This is of particular importance for the field of open quantum mechanics where the lack of an
extension theorem has been a roadblock to obtaining a framework that coincides with classical
descriptions in the correct limit [65]. Here, switching perspective allows one to describe both
classical as well as quantum open systems in a unified framework. This fact has recently been
used to obtain an unambiguous definition of non-Markovianity in quantum mechanics that
coincides with the classical one in the correct limit [105] (we shall encounter this definition in
Ch. 4).

The GET goes beyond previous attempts to generalize the KET for quantum mechanics. An
extension theorem for POVMs was derived in Ref. [85] and was used in Ref. [106] to show the
existence of an ‘infinite composition’ of an instrument. This extension theorem is, however,
limited to particular cases of POVMs, and not general enough to provide an underpinning for
the description of stochastic processes with interventions.
More generally, a version of the KET for quantum processes was derived in Ref. [86]. In

this work, the authors showed that any quantum stochastic process can be reconstructed ‘up
to equivalence from a projective family of correlation kernels’. By decomposing the control
operationsMxjα

into their component Kraus operators, it can explicitly be shown that these
correlation kernels correspond to combs, and consequently, for quantum processes, the GET is
equivalent to Thm. 1.3 in Ref. [86]. However, the mathematical structure of the latter does not
tie in easily with recently developed frameworks for the description of quantum (or classical)
causal modeling, nor does it lend itself in a straightforward way to the discussion of their key
properties. The structural features of combs render the investigation of fundamental features
of a process, like their non-Markovianity [31, 105], their causal structure [50, 54, 99], and their
classicality, tractable.

Our formulation has the advantage that combs are defined in a clear-cut operational way, and
allow for a generalized Stinespring dilation [17, 32], which makes their interpretation in terms
of open quantum system dynamics straightforward. Additionally, even though the GET is
stated for combs that map sequences of CP maps to probabilities, its proof also applies – with
slight modifications – to general quantum combs (i.e., maps that map combs onto combs [16,
17, 63, 64]).

3.10 quantum stochastic processes – outlook

The generalized extension theorem we derived in this chapter lays the foundation for the
discussion of quantum stochastic processes. Beyond this theoretical appeal, it also allows one
– just like the KET for classical stochastic processes (see, e.g., Ch. IX of [91]) – to check if a
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Figure 3.9: Graphical representation of a 1→ 3 adapter A1→3. Any slot of a comb it is plugged into is
split into three slots.

Figure 3.10: Action of an 1→ 3 adapter on a one-slot comb C(1). The resulting three-slot comb C(3)

should contain C(1) as a marginal in the sense of the GET.

proposed generative model actually leads to a stochastic process; specifically, it does so, if all
resulting descriptors on finite sets of times are compatible with each other. With this idea in
mind, we propose a toolbox of generative models for quantum stochastic processes, that relies
on the GET as its only ingredient, and does not require an underlying Hamiltonian for its
derivation.

In classical physics, a generativemodel defines, how to get from joint probability distributions
for a set of times to a family of probability distributions for a larger set of times. For example,
for a Markovian process, one could provide conditional probabilities p(y|x) to measure y
given that the last outcome was x. With this, and an initial distribution p(x), all multi-time
distributions can be constructed [71, 107]. We shall take this idea as a guiding principle – albeit
not in a too literal sense – to construct combs that apply to sets of times ΛK starting from
combs defined on fewer times Λk. Notably, this construction will be somewhat cumbersome
when done algebraically, but very clear when represented graphically, and it is advisable to
always consult the corresponding figures to understand the intuitive meaning behind the
equations we encounter in this section.
One possible way to construct compatible families of combs is to define a 1→ 3 adapter

A1→3, that can can be plugged into the slot of a comb and yields a comb with three slots (see
Figs. 3.9 and 3.10 for a graphical representation). As we discussed in the previous chapter, such
an adapter is, itself, a quantum comb. Now, we can identify the middle slot of A1→3 (i.e., the
slot with the wires labeled by d and e in Fig. 3.9) with the original slot the adapter was plugged
into, and the remaining two slots correspond to new times. This choice of an adapter is not the
only possible one, but suggests itself naturally, due to its simplicity and symmetry. In order for
A1→3 to lead to a compatible family of combs, the comb that results from applying the adapter
A1→3 has to contain the original comb in the sense of Eq. (3.18), i.e., the old comb and the new
comb have to be compatible with each other.
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Figure 3.11: Consistency condition for adapters. The ‘old’ comb C(1) has to be contained in the ‘new’
comb, i.e., in the one resulting from by applying the adapter. Here, C(1) is obtained by plugging identities
into the slots corresponding to the excessive times of the ‘new’ comb.

Figure 3.12: Requirement for universal 1→ 3 adapters. In order to yield a family of consistent combs,
the adapter has to leave the original comb unchanged, when identity maps are plugged into its left and
right slot.

For example, if we start with a one-slot comb C(1), the comb C(3) = C(1) ? A1→3 resulting
from applying the adapter, has to satisfy

C(3) ? Φ+
L ? Φ+

R = C(1) , (3.20)

where Φ+
L (Φ+

R ) is the Choi state of the identity map that is plugged into the left (right) slot
of C(3) (see Fig. 3.11).

If we want this relation to hold for any comb C(1), i.e., if we want A1→3 to be universal, then,
using the labeling of Hilbert spaces employed in Fig. 3.12, A1→3 has to satisfy

A1→3 ? Φ+
ba ? Φ+

h f = Φ+
dc ⊗Φ+

ge , (3.21)

where Φ+
XY is the (unnormalized) maximally entangled state on HX ⊗HY (see Fig. 3.12). If

Eq. (3.21) is satisfied, then the adapter A1→3 leaves the comb it is applied to unchanged when
identity maps are plugged into its left and right socket. Consequently, when applying A1→3 to
a comb, the resulting object is consistent with the original one in the sense of Eq. (3.18). Now,
with such a proper 1 → 3 adapter at hand, we can construct families of compatible combs,
starting from a comb C(1), by successively applying the adapter A1→3 to each slot of the comb
(see Fig. 3.13 for a graphical representation). Consequently, we obtain combs C(1),C(3),C(9), . . . ,
and we have

C(3n) = C(n)
n
F

α=1
A(α)1→3 , (3.22)

where A(α)1→3 is an adapter that fits in the αth slot of C(n). If A(α)1→3 satisfies (3.21), then the resulting
family {C(3n)}∞

n=1 satisfies generalized consistency conditions, and we know from the GET,
that this construction actually corresponds to the construction of a quantum stochastic process.
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Figure 3.13: Construction of a family of consistent combs. In each new layer, the number of slots is
multiplied by three, and each previous layer can be obtained by plugging identity operations into the
excessive slots. By proper labeling, all the resulting slots can, for example, correspond to times in the
interval [0, T].

By proper labeling, all the resulting slots can correspond to times in the interval [0, T], and the
underlying stochastic process CΛ would be defined on Λ = [0, T].
Even though we have discussed the basic properties of A1→3, for an explicit construction,

one would still have to fix the internal causal order of the adapter. Per se, in Fig. 3.9 the causal
ordering between the wires labeled by c and g and the remaining wires is a priori unclear, and
can be chosen freely.10 As the ensuing detailed discussion of the properties of adapters A1→3 is
somewhat technical, we relegate it to App. A.4. Importantly, though, this discussion shows,
that such adapters actually exist, and are not limited to trivial objects.
Quite obviously, the construction we proposed in this section is by no means the only

one that yields a generative model for quantum stochastic processes. For example, we have
chosen a 1→ 3 adapter for simplicity and symmetry, but any other kind of adapter with the
correct consistency properties would work just as well. Additionally, it is somewhat naïve to
employ the same adapter at each iteration step, and to obtain more meaningful result, one
should potentially renormalize the adapters used for each layer of the construction process.
Nonetheless, this procedure – even in this simple form – provides a powerful toolbox for
the generation of quantum stochastic processes. This is of particular interest, as the GET,
while guaranteeing the existence of an underlying process, says nothing about its properties. A
construction of the form that we proposed might allow one to make explicit statements about
the field theory that corresponds to the limit n → ∞ in a similar manner as properties of
conformal field theories (CFTs) are obtained from an analysis of the corresponding multi-scale
entanglement renormalization ansatz (MERA) representation [108–110]. A thorough analysis
of this connection would exceed the scope of this thesis, though, and has to be relegated to
future work.

3.11 general stochastic processes – summary

In this chapter, we have examined the foundations of the theory of classical stochastic processes.
While the Kolmogorov extension theorem constitutes the foundation for this theory, it does

10 On the other hand, the ordering of the wires labeled by a, b, d, e, f , and h is fixed and goes from left to right in
Fig. 3.9.
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not hold in quantum mechanics, or any other theory that allows for active interventions. This
breakdown goes hand in hand with the violation of Leggett-Garg inequalities: the violation of
such an inequality always implies that compatibility conditions are not satisfied, and hence the
KET does not hold.

The only escape from this lack of rigorous foundations in any theory of stochastic processes
that goes beyond classical physics without interventions is to actively consider experimental
influences to obtain a consistent definition and rigorous mathematical foundation for quantum
stochastic processes. Put differently, without taking interventions into account, there is no
way to consistently define quantum stochastic processes. In this sense, two seemingly different
frameworks – the framework of causal modeling, and the theory of quantum stochastic
processes – are actually two sides of the same coin.
In hindsight, the route we took to prove the generalized extension theorem seems natural;

once one has the framework of quantum combs at one’s disposal and understands the concepts
of instruments as the natural way to tie in the peculiarities of quantum mechanics into the
theory of stochastic processes, there is no other logical way to tackle quantum stochastic
processes. However, without this theoretical machinery, there appears to be no clear resolution
to the breakdown of the KET in quantum mechanics [65], which, for example, is mirrored by
the proliferation of inequivalent ‘definitions’ of non-Markovianity in the quantum realm (see,
e.g., Ref. [66] for a comprehensive review).
The GET can be considered as an ‘umbrella theorem’, that constitutes the foundation

for the plethora of equivalent frameworks that are in use to describe quantum processes.
Additionally, while the tools we use to describe quantum dynamics provided our guiding
principles, the arguments we employed were not inherently quantum mechanical. Due to the
linearity of mixing, anymeaningful description of a stochastic process – quantum or not – must
be expressible in terms of a linear function on the space of locally accessible operations [8].
The proof of the GET is versatile enough to account for any framework that aims to describe
stochastic processes, and hence provides a sound mathematical underpinning for all of them,
contextual or not.

The roadblocks encountered when describing quantum processes in terms of joint probability
distributions can be remedied by changing perspective; while the evolution of a density matrix
over time does not contain enough statistical information for consistency properties to hold [65],
considering a quantum stochastic process as a linear functional acting on sequences of CP maps,
allows one to formulate a fully-fledged theory. In the limit of continuous time, the sequence
of CP maps becomes a continuous driving/control of the system of interest. Thus, the GET
provides the theoretical foundation for these experimental scenarios, which is important for
development of quantum technologies. Likewise, just as in the case of classical stochastic
processes, the GET provides a toolbox for the modeling of quantum stochastic processes; any
mechanism that leads to consistent families of combs automatically defines an underlying
process. Here, we have but scratched the surface of the idea of adapters, that provide the
versatile means to construct quantum stochastic processes.

Finally, while we have mostly discussed temporally ordered processes, in principle, even
causally disordered processes could be described by families of functionals that satisfy a consis-
tency requirement (Λ would then be thought of as a set of labels for different laboratories).
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However, there is no deterministic Stinespring dilation for causally disordered processes [53],
which makes an intuitive interpretation of an ‘underlying’ causally disordered process some-
what difficult. On the other hand, there are dilations that include post-selection [3, 15, 52, 111],
and it is reasonable to conjecture that an underlying causally disordered stochastic process
would be equivalent to post-selection on a class of trajectories resulting from continuous weak
measurement.
Up to this point, we have discussed both higher-order quantum maps, as well as quantum

stochastic processes, from a very axiomatic point of view, by considering the logical structure
that has to be employed to describe them and by explicitly deriving the fundamental theorem
for their discussion. What we are still lacking is a clear picture of the physical scenarios that lead
to the probability distributions that can be investigated experimentally. Asking this question
directly leads to the theory of open quantum system dynamics, where one tries to model the
dynamics of a system of interest that is coupled to an unknown and uncontrollable environment.
We shall now go on to discuss the description of open quantum systems from the vantage
point of higher-order quantum maps and the operational understanding of quantum stochastic
processes we have developed throughout this chapter. This discussion will shed light on the
question what can, in principle, be learnt about open system dynamics, and how can the ideas
of memory and memory length be generalized from the classical to the quantum case.
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4
OPEN QUANTUM SYSTEM DYNAMICS

So far, our discussion of physical processes has predominantly taken place on axiomatic grounds.
However, this is generally not the vantage point of an experimenter. Rather, they would choose
to describe their experiment in terms of degrees of freedom that they can control, those that
they cannot control, and an underlying dynamics that leads to the observed measurement
statistics. What we are thus still missing is a dynamical mechanism that yields the respective
joint probability distributions that we discussed in the previous chapter.
It is now time to ‘look under the hood’ of stochastic processes, and approach them with a

distinctly physical, rather than conceptual, motivation. Consequently, here, we shall discuss
the connection of the theoretical framework of general stochastic processes and the standard
picture of open quantum system dynamics, i.e., the dynamics of a system of interest coupled
to an uncontrollable and experimentally inaccessible environment. Unsurprisingly, we will
see that we had the correct framework all along: every open quantum dynamics leads to a
quantum comb, and vice versa.
Before arriving at this point, we will take a slight detour to make sure that we actually

understand its necessity. To do so, we will start by giving a short overview over the tradi-
tional description of open quantum systems. On the one hand, this discussion will provide
additional arguments for the use of higher-order quantum maps in the treatment of open
dynamics, independent of the theory of stochastic processes. For example, while traditional
approaches are sufficient to describe memoryless (i.e., Markovian) processes [19, 71, 78, 79],
they generally break down as soon as memory effects play a non-negligible role [8, 67, 71].
Additionally, memory effects lead to apparent paradoxical violations of fundamental physical
and information-theoretic bounds [28–30, 112]. The switch to higher-order quantum maps –
and the accompanying switch to a distinctly operational description – resolves these (and many
other) issues by constructing bounds that can properly account for initial correlations and
general memory effects [113], and by taking multi-time correlations into consideration [32, 105].
This mirrors the situation of the previous chapter, where the lack of Kolmogorov conditions
was also merely a problem of formalism, and could be overcome by changing perspective and
introducing higher-order quantum maps as the descriptor of general stochastic processes.
The theory of open quantum systems is a powerful application of the comb formalism. In

the logic of our discussion, it will provide intuition for the experimental/tomographic recon-
struction of quantum combs, a topic we have not touched upon so far in our treatment of
their mathematical properties. In this sense, the theory of open quantum systems naturally
establishes combs as an experimentally accessible entity that overcomes fundamental problems
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in the description of open system dynamics and provides them with a physical reality that goes
beyond their theoretical appeal.1

Introduced in the order we chose, it might appear as if we considered open quantum system
dynamics as an interesting field because it allows for the usage of higher-order quantum maps.
However, we should understand this story the other way round; any device that aims to harness
quantum effects by storing, manipulating or controlling quantum states will inevitably interact
in an uncontrollable way with its environment and thus be plagued by noise. Consequently,
understanding and characterizing the dynamics of quantum systems that are coupled to their
surroundings is a necessary prerequisite for the efficient implementation of new quantum
technologies. In particular, with the increase of miniaturization and read-out frequencies in
mind, the development of tools that are tailored to characterize open system dynamics with
non-negligible memory effects, and quantify said memory effects once the characterization is
obtained, is of crucial importance both from a foundational as well as a technological point of
view.

Traditionally, the dynamics of open quantum systems are found by solving an equation of
motion for the reduced state of the former, and are described by channels that map initial (input)
states of the system to final (output) states, which can be reconstructed experimentally. Here,
we will predominantly be concerned with the latter aspect of the field of open quantum system
dynamics: In the presence of an uncontrollable environment that interacts with the degrees
of freedom that we can access, how can we experimentally reconstruct a descriptor of the
dynamics? While a breakdown of reconstructability, as we will encounter it in the discussion
of traditional approaches to open quantum system dynamics, also implies an inadequacy of
the corresponding equations of motion, we will not discuss these master equations in detail in
this chapter (for an overview, see, e.g., Ref. [71]).

Here, we shall rather pinpoint the problems and shortcomings that traditional approaches are
plagued by. The operational way out of the encountered problems is provided by a perspectival
readjustment: instead of describing open quantum system dynamics as the time evolution of
the state of the system of interest, in the presence of system-environment correlations – the
regime where the traditional approach breaks down – one rather has to understand it as a
mapping defined on the space of operations that the experimenter can implement [31, 32].
The resulting descriptor can be reconstructed experimentally, independent of the existence
of memory effects and/or initial correlations, and allows one to answer natural questions in
the field of open quantum system dynamics, like, e.g., the definition and characterization of
memory effects.

We shall discuss both of these questions in detail in this chapter. In particular, the investigated
framework will be used to analyze existing standard tools that are employed to probe the
existence of memory effects in quantum processes, which will lead to the main result of this
chapter (based on Ref. [1]): an alternative, operationally clear-cut definition of CP divisibility,
and the comprehensive analysis of the temporal correlations that this witness of memory effects
is sensitive to. This investigation, in turn, will provide a quantitatively tangible interpretation

1 Evidently, quantum combs have a clear-cut physical and tomographic meaning independent of the area of open
quantum system dynamics. As the latter is the main focus of this thesis, here, we use it as a natural underlying
physical picture of quantum networks.
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of many of the measures that are in use for the detection of memory effects, as most of them
rely on the breakdown of CP divisibility. We round off the discussion of memory effects by
providing the generalization of memory length, i.e. Markov order, to the quantum case (based
on Refs. [5, 6]).

Subsequent to this analysis, in the following chapter, we will bring the developed framework
closer to experimental reality, by tailoring it to the situation, where the experimenter has only
limited control over the system of interest.

4.1 open quantum system dynamics – the traditional approach

In what follows, we will consider an experimenter, who can probe degrees of freedom (the
system of interest) that are coupled to an environment which is out of their experimental
control. Thus, the system of interest is considered ‘open’ as it can interact with external degrees
of freedom. For example, such a system could constitute qubits that one wishes to use for
computations in a quantum computer by implementing sequences of quantum gates and a
final readout, constituting a set of control operations. The interaction with the environment
introduces errors to the computation, and their understanding is of utmost importance in
order to be able to correct them.

Arguably, from the perspective of this experimenter, the most general, operationally mean-
ingful description of a quantum process is a mapping from experimentally controllable inputs
to final output states ρ′ (which, in the example above, would contain the result to the compu-
tation). Indeed, once the experimenter knows what the state of their system of interest is at
the end of their respective experiment, given the experimental parameters they chose, they
know everything that can be learnt about the underlying dynamics.
Depending on the experimental setup in question, these controllable inputs could, for

example, be initially prepared system states, initial preparation operations, sequences of local
operations, or both initial states and sequences of local operations. Due to the linearity of
quantum mechanics (in the sense that we discussed in Ch. 2), for each of these cases, the
map describing the process can be reconstructed experimentally by measuring the final states
corresponding to a complete basis of the inputs.
The final state can – in principle – be reconstructed via quantum state tomography (QST),

i.e., by inferring the probabilities Pj = tr(ρ′ET
j ) for a set {ET

j } of POVM elements that spans
the space ρ′ is defined on [19] (such a POVM is called informationally complete (IC)).

To see how this abstract notion of open system dynamics plays out in experimental reality,
and to introduce some of the key ideas of this chapter, consider the simplest scenario of open
quantum system dynamics – leading to the well-known case of quantum channels: Let s be
a system of interest that can be experimentally accessed. It is coupled in an uncontrollable
way to its environment e. At a time t1 the system is uncorrelated with e, which is in a fixed
state ηe ∈ B(Hi

e ). Together, s and e are considered closed. Consequently, they undergo a
unitary evolution U : B(Hi

s ⊗Hi
e ) → B(Ho

s ⊗Ho
e ) for, say, a time ∆t, that is generated
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by the system-environment Hamiltonian Hse and can – in principle – be derived from the
Schrödinger equation2:

U [ρse] = UρseU† = e−iHse∆tρse eiHse∆t . (4.1)

As system and environment are uncorrelated at t1, the experimenter can freely prepare system
states ρ

(j)
s ∈ B(Hi

s ), and reconstruct (i.e., perform QST) the system state ρ
(j)′
s ∈ B(Ho

s ) at
t2 = t1 + ∆t. The output state ρ

(j)′
s corresponding to the input state ρ

(j)
s is given by (see

Fig. 4.1)

ρ
(j)′
s = tre

[
U
(

ρ
(j)
s ⊗ ηe

)
U†
]

, (4.2)

where the final trace over the degrees of freedom of the environment reflects the fact that at
t2, the experimenter only measures the system and disregards the environment. Expressed in
terms of link products, Eq. (4.2) reads

ρ
(j)′
s = 1oe ? U ? ρ

(j)
s ? ηe , (4.3)

where, following our notational convention, U is the Choi state of U . Compressing all the
elements of the description that the experimenter has no control over (again, see Fig. 4.1),
Eq. (4.2) can be rewritten as

ρ
(j)′
s = L[ρ(j)

s ] , (4.4)

where L : B(Hi
s ) → B(Ho

s ) is the linear map that maps all initial states ρ
(j)
s to the correct

corresponding output states ρ
(j)′
s . From Eq. (4.3) we can ‘read off’ the Choi state of L:

L = 1oe ? U ? ηe , (4.5)

where 1oe corresponds to the final trace over the environment. This implies that L is CPTP,
as all the elements in the link product of Eq. (4.5) are CPTP. Naturally, it can also be shown
directly from Eq. (4.2) that L is CPTP [21, 114].
While in Ch. 2 we introduced the idea of complete positivity and trace preservation from

axiomatic considerations, here, we see that we obtain this property directly from the assumption
of unitarity of the se dynamics, initial independence of the system and its environment, and
the fact that the state of the environment is finally traced over.

Due to linearity, L is unambiguously defined by its action on a basis
{

ρ
(j)
s

}d2
s

i=1
of B(Hi

d),

where ds is the dimension of Hi
s ; the number of d2

s basis elements stems from the fact that the
quantum states on Hi

s span the space of ds × ds Hermitian matrices, which is d2
s -dimensional.

Every input state3 ρ ∈ B(Hi
s ) can be decomposed as a real linear combination ρ = ∑j=1 rjρ

(j),
and hence the action of L on ρ is given by

L[ρ] = ∑
j=1

rjL[ρ(j)] = ∑
j=1

rjρ
(j)′ . (4.6)

2 Throughout this thesis, we will consider all Hamiltonians to be time-independent. The generalization to the
time-dependent case can either be achieved straight forwardly, or removed argumentatively, by considering the
environment large enough.

3 For compactness, from now on, we will often drop the subscript s and reserve the symbol ρ exclusively for system
states.
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4.1 open quantum system dynamics – the traditional approach

Figure 4.1: Quantum channel resulting from open dynamics. Initially (at t1 ), system and environment
are uncorrelated. They undergo unitary evolution together, and finally, at time t2, the environment is
discarded. As is convention in open quantum system dynamics, the trace is denoted by a slash instead
of the effect 1. The channel L represents ‘everything that is outside of experimental control’. Drawing
boxes around the uncontrollable parts of the dynamics will prove to be a powerful graphical tool
throughout this chapter.

Once the output states ρ(j)′ for a basis of input states are known, the map describing the
underlying process is entirely defined. This fact forms the basis of quantum process tomography
(see, e.g., Ref. [79, 93]) where the map L is reconstructed experimentally by determining the
output states ρ(j)′ = L[ρ(j)] for a set of d2

s linearly independent input states and employing
linear inversion techniques.
In detail, let {∆k}

d2
s

k=1 be the dual set [68] to the basis {ρ(j)
s }d2

s
j=1, i.e., tr(ρ(j)∆†

k) = δjk (for

comprehensiveness, an explicit construction of {∆k}
d2

s
k=1 for any given basis is provided in

App. B.1). With this, L can be written as [8, 31, 32]

L =
d2

s

∑
j=1

ρ(j)′ ⊗ ∆∗j . (4.7)

Indeed, by insertion, we see that the matrix L ∈ B(Ho
s ⊗Hi

s ) defined in this way yields the
correct output state for any input state ρ = ∑d2

s
j=1 rjρ

(j):

L ? ρ = tri
[(
1os ⊗ ρT

)
L
]
=

d2
s

∑
j,k=1

rj tr
(

∆†
k ρ(j)

)
ρ(k)

′
=

d2
s

∑
j=1

rj ρ(j)′ = L[ρ] , (4.8)

where we have used the linearity of L. Importantly, the quantum channel L can be experimen-
tally reconstructed without any knowledge of the unitary system-environment dynamics, and,
once reconstructed, allows one to predict the correct output state for any input state.

Reconstructing L for different times ∆t, one obtains a family of maps {L∆t} that correctly
describe the dynamics from t1 to all times t1 + ∆t, and there exists a wealth of master equation
approaches to derive L∆t for various physical scenarios [71]. Most notably among them
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)4 equation for the case of Markovian
dynamics [62, 115, 116], and the Nakajima-Zwanzig equation that can account for memory
effects [117, 118]. As we will predominantly be concerned with the reconstruction and the
mathematical properties of open processes, and not with their derivation from microscopic or
phenomenological models, we will not discuss these methods in this thesis. Additionally, the
aforementioned master equation approaches do not, in general, allow one to derive multi-time
correlation functions, which is one of the main foci of our treatment of open system dynamics.

4 This equation has also been independently discovered by Franke in 1976 [115]. So far, his name has not made it into
the famous acronym, though.

69



open quantum system dynamics

Returning to the reconstruction of L, the experimental procedure outlined above relies
fundamentally on the fact that the system and the environment are initially in a product state.
This, in turn, implies that the system state can be varied without affecting the state of the
environment, and can thus be considered a controllable input to the process. As soon as initial
system-environment correlations are present, this assumption does not hold, and a reconstruc-
tion of the dynamics in the way described above is not possible anymore. Consequently, when
experimenters began reconstructing quantum gates – the fundamental elements of a quantum
computer – in the late 1990s and early 2000s, they routinely did not obtain completely positive
maps [119–121] for various experimental reasons, but predominantly due to initial correlations
between the system of interest and its environment [112, 122].
To make matters worse, as most clearly elucidated by Pechukas in his seminal paper [25]

and in a subsequent exchange between him and Alicki [27, 123] – and later generalized in [124,
125] – a linear map from input to output states is CP iff there are no initial se correlations,
which seems to imply that in the presence of initial correlations, either complete positivity or
linearity have to give. Both from an experimental, as well as a theoretical standpoint, this state
of affairs is problematic. On the one hand, complete positivity is a useful property – giving up
complete positivity means giving up the Holevo quantity [28], data processing inequality [29],
and entropy production inequality [30] – and a CP description naturally predicts the physical
fact that one always reconstructs positive probabilities (even for correlated preparations).

On the other hand, dropping linearity is not a viable option either: complete tomography is
not possible when the dynamics is nonlinear – at least not in a finite number of experiments.
Additionally, a breakdown of linearity would challenge the probabilistic structure of quantum
mechanics.
Faced with this choice, many researchers have opted to relinquish complete positivity

of dynamics in favor of a framework for open dynamics based on not completely positive
(NCP) maps [124, 126]. In brief, NCP maps are linear maps that preserve positivity for some
subset of the space of system density operators, but fail to do so on the remaining set. While
mathematically well-defined (though not unique), the NCP framework lacks a clear link to
the operational reality of quantum dynamics, and we will not consider them in detail (see [8]
for a more in-depth discussion), as it proves unnecessary to give up either complete positivity
or linearity [31]. We shall demonstrate this, using the theory of higher-order quantum maps,
in the following section.

Importantly, given that system-environment correlations can be considered as a memory of
past interactions, the breakdown of formalism we just alluded to implies that the traditional
approach to the description of open quantum system dynamics cannot properly account for
memory effects, i.e., it does not work in the non-Markovian regime. Additionally, even if it
could be employed to properly describe situations with initial correlations (which it cannot),
the resulting maps L would only account for two-point correlations. For example, with L at
hand, one could predict the probabilities of measurement outcomes at t1 + ∆t, given that the
state ρ was prepared at t1. However, it does not allow one to predict the joint probabilities for
measurements at, say, t1 +

∆t
2 and t1 + ∆t, and this situation cannot generally be accounted

for, if both L ∆t
2
and L∆t are known (see, e.g., [127] and Sec. 4.8.4).
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4.2 initial correlations and superchannels

Quantum channels – or families thereof – are, by design, not sufficient to describe multi-time
quantum stochastic processes of the kindwe introduced in the previous chapter.5 Unsurprisingly
then, attempts to model memory effects in quantummechanics by investigating the dynamics of
the state of the system of interest, have yielded a ‘zoo’ of non-equivalent incompatible measures
and witnesses of non-Markovianity, that lack a clear operational motivation [129–143] (for a
recent review of the treatment of memory effects in quantummechanics that goes beyond these
witnesses and provides a comprehensive hierarchy of notions of non-Markovianity, see [66]).

Nonetheless, the reconstruction procedure outlined above points into the right direction: an
experiment is fully described, once the outputs for a full basis of inputs can be predicted. All
of the aforementioned problems can be overcome by considering the correct objects to be the
inputs of the dynamics in the presence of initial correlations or memory effects. This distinctly
operational approach naturally leads to a description of open quantum system dynamics in
terms of higher order quantum maps.

4.2 initial correlations and superchannels

Above, we considered open quantum system dynamics as a mapping from inputs to outputs,
where the inputs correspond to what can be freely prepared by the experimenter, without
changing uncontrollable external parameters, and outputs to what the experimenter can
measure at the end of the experiment. If system and environment are initially uncorrelated,
the inputs of the dynamics are initial states of the system, as they can be prepared by the
experimenter without affecting the environment. However, this is not generally true.
Generally, an experimenter would prepare an initial state by applying a control operation
M(j) : B(Ho

s1
) → B(Hi

s1
), that leaves the system in a known state ρ(j). In anticipation

of our ensuing discussion of the multi-time scenario, here, we employ the convention that
Hx

sα
corresponds to the system Hilbert space Hx

s at time tα.6 These control operations can
be anything that is admissible in quantum mechanics, including unitary transformations,
projective measurements, projective measurements followed by a unitary transformation and
everything in between [144].
Now, if the initial system-environment state ρse is correlated, the control operationM(j)

will inevitably change the state of the environment. The prepared system states cannot be
considered as the input of the process anymore, as the experimenter cannot create them without
changing the process. As alluded to above, in this case the (fictitious) mapping from input
states to output states would be non-linear, as this dynamics would depended on the state that
was prepared. As such, it would not be a meaningful description of the process. On the other
hand, the experimenter has full control – independent of uncontrollable parameters – over the
operations they use to manipulate the initial state, which implies that the control operations,

5 This statement should not be confused with the collections of CPTP maps that have recently been used to fully
describe open quantum system dynamics in [7, 128] in the presence of initial se correlations.

6 Somewhat counterintuitively,M(j) maps from a space labeled by o to one labeled by i. As in the previous chapter,
this peculiarity stems from the fact that we abide by the convention to denote spaces from the perspective of the
process. As outputs ofM(j) are inputs of the process (see, e.g., Fig. 4.2), the labeling has to be chosen in this way
for consistency.
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Figure 4.2: Resulting superchannel from an initially correlated system-environment state and open
quantum system dynamics. The control operationM(j) is implemented at time t1, and the final state is
measured at time t2. The superchannel T2:1 contains all parts of the dynamics that cannot be controlled
by the experimenter, and acts on all the inputs that they can prepare independently of the dynamics.

rather than the initial state of the system should be considered the input of the process when
initial correlations play a non-negligible role. Importantly, in addition to being the correct
description, this switch of perspective recovers both linearity and complete positivity.

In detail, for a control operationM(j), the corresponding resulting output state ρ(j)′ at the
conclusion of the experiment is computed via (see Fig. 4.2)

ρ(j)′ = tre

(
U
[
(M(j) ⊗ Ie)[ρse]

])
, (4.9)

or, expressed in terms of link products,

ρ(j)′ = 1oe ? U ?M(j) ? ρse = M(j) ? (1oe ? U ? ρse) := M(j) ? T2:1 . (4.10)

Eq. (4.10) tells us that the output state ρ(j)′ corresponding to a control operationM(j) can
be computed as the result of a linear map T2:1 acting onM(j), i.e., ρ(j)′ = T2:1[M(j)]. As all
the elements it is made up of are CPTP, T2:1 = 1oe ? U ? ρse is also CP and trace preserving
in a well-defined sense (see below). T2:1 is called a superchannel [31], and once reconstructed,
it allows one to predict the correct output state for any experimentally realizable input, i.e.,
for any control operationM(j) that the experimenter can perform at the beginning t1 of the
dynamics. The subscripts of T2:1 are chosen in anticipation of its generalization to several times,
and signify that the superchannel describes the dynamics from t1 to t2.
As for the case of channels, due to linearity, the superchannel T2:1 can be reconstructed

by measuring the outputs (states ρ(j)′ ) corresponding to a basis of inputs (operations M(j) ),
without any knowledge of the underlying system-environment dynamics U, or the initial se
state ρse. In detail, we have

T2:1 =
d4

s

∑
j=1

ρ(j)′ ⊗m(j)∗ , (4.11)

where {m(j)}d4
s

j=1 is the set of duals to the basis {M(j)}d4
s

j=1, i.e., tr(m(`)†M(j)) = δj`. The number
of basis elements derives itself from the fact that the matrices M(j) span the space B(Hi

1 ⊗Ho
1),

which is d4
s dimensional. The superchannel T2:1 ∈ B(Ho

s2
⊗Hi

s1
⊗Ho

s1
) is a d3

s × d3
s matrix,

that, in accordance with its causality conditions, satisfies

T2:1 ? 1
o
s2
= 1is1

⊗ ρs , (4.12)

where ρs = tre(ρse). Consequently, T2:1 is a special case of a deterministic one-slot quantum
comb.
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The fact that Eq. (4.11) indeed yields the correct superchannel can be seen directly by
insertion. When applied to an arbitrary CP map N = ∑` n`M(`), we obtain

T2:1 ? N = ∑
`

n` tr1o1i
[(
1os2
⊗M(`)T

)
T2:1

]
= ∑

`

n` ρ(`)
′
= ∑

`

n`T2:1[M(`)] = T2:1[N ] , (4.13)

where we have used the linearity of T2:1. As T2:1 maps all conceivable inputs to the correct
corresponding outputs, it contains all information about the process that can be inferred from
operations on the system alone, and thus plays the same role as quantum channels for the
case of an uncorrelated initial se state. Importantly, T2:1 contains this special case; setting
ρse = ρs ⊗ ηe, we obtain

T2:1 = 1oe ? U ? ρse = 1oe ? U ? ρs ? ηe = L⊗ ρs , (4.14)

where L = 1oe ? U ? ηe is a quantum channel of the form we discussed in the previous section,
and Eq. (4.10) yields [31]

ρ(j)′ = M(j) ? L ? ρs = (M(j) ? ρs) ? L = L[M(j)[ρs]] . (4.15)

When there are no initial correlations – or rather, no correlations that play a role for the
open dynamics – then the superchannel is of product form, and vice versa. When we analyze
memoryless processes, we will see, that this is a special case of the general structural properties
of Markovian dynamics.
We can see from Eq. (4.12) that the superchannel T2:1 allows one to deduce the initial state

ρs of the system (even in the presence of initial se correlations). This fact can also be seen
on more intuitive grounds. The reconstruction of T2:1 necessitates the implementation of d4

s

linearly independent CP maps. Not all of these maps can be trace preserving; due to their trace
constraint, there are only d4 − d2 linearly independent CPTP maps that act on B(Hs) which
means that the remaining linearly independent basis elements are d2

s non trace-increasing CP
maps. This set of CP maps must be IC, and as such, recording the probabilities of occurrence
for each of them amounts to full tomography of the initial system state ρs. In turn, T2:1 contains
all information about ρs. Importantly, though, the actual reconstruction of T2:1 does not have
to be carried out in the above way, i.e., with d4

s − d2
s CPTPmaps and d2

s CPmaps. Any set of d4
s

linearly independent maps will yield exactly the same superchannel T2:1, but the reconstruction
always necessitates at least d2

s maps that are not trace preserving. Recently, these theoretical
insights have been used to experimentally reconstruct superchannels in the laboratory [145].

4.3 superchannels, linearity, complete positivity, and trace preservation

Switching perspective and considering implementable operations, instead of initial states as the
inputs of the dynamics remedies the problems encountered when initial system-environment
correlations play a role. On the mathematical side, it yields a descriptor T2:1 of the dynamics,
that is linear, CP and TP. It is worth commenting on each of theses properties and their
meaning for superchannels to build intuition for the subsequent sections.
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Figure 4.3: Different ways of considering T2:1, as a map T2:1 : B(Hi
s1
⊗Ho

s1
)→ B(Ho

s2
) (left) and a

map T2:1 : B(Hi
s1
) → B(Ho

s1
⊗Ho

s2
) (right). Both complete positivity as well as trace preservation

can be understood in both cases, however the former case is better adopted to open system dynamics.

We can see easily, that without a switch of perspective, linearity cannot generally be upheld
(see also [8, 146] for a more detailed discussion of this point); for example, consider control
operations that prepare initial states by performing projective measurements, i.e.,M(j)[ρs] =

〈j| ρs |j〉 |j〉〈j|. If the initial system-environment state ρse is correlated, then the resulting state
after the action of the control operation is given by

M(j) ? ρse = |j〉〈j| ⊗ 〈j| ρse |j〉 , (4.16)

and the corresponding final system state ρ
(j)′
s reads

1oe ? U ?M(j) ? ρse = |j〉〈j| ? (1oe ? U ? 〈j| ρse |j〉) := |j〉〈j| ? L(j) = L(j)[|j〉〈j|] . (4.17)

As the map L(j) generally depends on j, the above equation would correspond to a non-linear
dynamics. Importantly, if ρse is of product form, then L(j) = 〈j| ρs |j〉 (1oe ? U ? ηs) is – after
normalization by the success probability 〈j| ρs |j〉 – the same for every projective control
operation, and linearity is recovered. The superchannel is not plagued by an apparent non-
linearity, independent of whether or not there are initial correlations, as it considers the correct
objects to be the input of the dynamics.

Complete positivity of T2:1 is somewhat less intuitive. As we discussed in Ch. 2, by reordering
the wires, we can regard T2:1 as a mapping T2:1 : B(Hi

s1
)→ B(Ho

s1
⊗Ho

s2
) (see Fig.4.3 for an

illustration). Considered in this way, complete positivity means7 that (T2:1 ⊗ Ia)[ρsi1a] ≥ 0
for any positive ρsi1a ∈ B(Hi

s1
⊗Ha) and any size of the ancilla a.

However, this understanding of complete positivity is neither very illuminating, nor does it
correspond to how we think about the superchannel in the context of open quantum system
dynamics. Here, T2:1 is considered a mapping from CP maps to final output states. Regarded
in this way, complete positivity (i.e., positivity of T2:1) means that when T2:1 acts on the
system part of a CP map M̃(j) : B(Ho

s1
⊗Ho

a) → B(Hi
s1
⊗Hi

a), then the resulting map
(T2:1 ⊗ I)[M̃(j)] = M̃(j)′ is a map M̃(j)′ : B(Ho

a) → B(Hi
a ⊗ Ho

s2
) that is completely

positive (see Fig. 4.4). It is straightforward to see that T2:1 is indeed CP in this sense. We have

M̃
(j)′

= T2:1 ? M̃
(j)

, (4.18)

and we already know that, if T2:1 and M̃(j) are positive, then their link product M̃(j)′ is also
positive, i.e., it corresponds to a completely positive map.

7 Strictly speaking, we would have to introduce a new symbol for this mapping, as T2:1 was introduced as a map
from CP maps to outputs. However, this differentiation is not crucial for the discussion of complete positivity, and
we use the same letter to keep notational overhead to a minimum.
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Figure 4.4: Complete positivity of T2:1. When acting on a part of a CP map M̃α, the resulting map
M̃′

α is also CP, independent of the size of the involved ancilla.

Analogously, trace preservation of T2:1 can also be considered in two different ways. On the
one hand, when considered as a mapping T2:1 : B(Hi

s1
) → B(Ho

s1
⊗Ho

s2
) (see Fig. 4.3), we

have

tr(T2:1[ρsi1
]) = tr(ρsi1

) , (4.19)

for all ρsi1
∈ B(Hi

s1
). However, this way of considering trace preservation is, again, not well-

adapted to the description of open quantum system dynamics as we introduced it, and it also
ignores the causal structure of T2:1. The better way to think about ‘trace preservation’ is the
following: whenever T2:1 acts on a trace preserving mapM, the resulting output state is of
unit trace. Indeed, using Eq. (4.12), we obtain

tr(T2:1[M]) = T2:1 ?M ? 1os2
= ρs ? 1

i
s1
?M ? 1os2

= ρs ? 1
o
s1
= tr(ρs) = 1 , (4.20)

where we have used the fact thatM is trace preserving, i.e., 1is1
?M = 1os1

. Finally, when acting
on a (trace non-increasing) CP mapM(j), the trace of the output state corresponds to the
implementation probability ofM(j), i.e., P(j|J1) = tr(T2:1[M(j)]).

Before we continue to generalize the introduced concepts to the multi-step case, it is worth
pausing for a moment and to take stock of the resolution of the problems of the description
of open quantum system dynamics that we encountered so far in this chapter. A meaningful
descriptor of open quantum system dynamics should be experimentally reconstructible and
map all preparable inputs to the correct outputs. Both of these requirements are satisfied by
the superchannel T2:1. Additionally, it is CP and – in a particular sense – trace preserving,
crucial properties that can be (and have been) used to resolve apparent paradoxes in quantum
information theory [113].
The superchannel is obtained by switching perspective, regarding what is considered the

correct input to the process. This switch directly leads to a description in terms of higher
order quantum maps – in this case, a one-slot comb8 – with a final output wire. It contains all
information about the process, that can be probed by operations on the system only, and can
be reconstructed in a finite number of experiments. In particular, it allows one to deduce if
there are initial correlations, i.e., if there are memory effects that play a non-negligible role for
the dynamics.

8 To make the relation to open system dynamics clear, we will continue to label the corresponding higher-order
maps by T instead of C.
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Figure 4.5: Illustration of a multi-time experiment. The experimenter performs operationsM(jα) at
times tα ∈ {t1, . . . , tN}, and the resulting system state ρ′s at tN+1 is obtained via the action of the
process tensor TN+1:1 on the sequence of operations. Notably, the process tensor contains all the parts
of the dynamics that cannot be accessed experimentally.

Finally, even though we phrased the results of this chapter mainly for the case where the
input and output spaces of all involved control operations are isomorphic and coincide with
the space the final state ρ′s lives on, the generalization to distinct input and output spaces is
straightforward. Now, it is time to extend our formalism to the multi-step case.

4.4 multi-step processes and process tensors

So far, we have only considered experimental situations, where the experimenter performs an
operation on the system at the beginning t1 of the experiment and measures the corresponding
outcome at t2. More generally, an experimenter could choose to perform operations at times
t1, . . . , tN, and finally measure the corresponding output at tN+1. For example, they could
choose to do so, in order to determine the memory structure of the process [5, 6, 32, 105,
147, 148], or to steer the system of interest to a desired output state at tN+1 [149–152]. These
control and probing operations could, e.g., be unitary operations or sequential measurements;
in the most general setting, any (trace non-increasing) CP maps. We will assume that they are
implemented on a time scale much smaller than those typical of the system dynamics.

Following the reasoning of the previous section, the final state ρ′s at tN+1 can be computed
via

ρ′s = treN+1

(
UN

[
(M(jN) ⊗ Ie)

[
. . .U1

[
(M(j1) ⊗ Ie)[ρse]

]
. . .
]])

, (4.21)

where Uα : B(Hi
sα
⊗Hi

eα
)→ B(Ho

sα+1
⊗Ho

eα+1
) is the system-environment dynamics from tα

to tα+1,M(jα) : B(Ho
sα
)→ B(Hi

sα
) is the operation on the system that was performed at tα,

and treN+1 denotes the final trace over the environment at time tN+1 (see Fig. 4.5). Importantly,
the unitary evolutions between times can differ. In terms of link products, Eq. (4.21) reads
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ρ′s = 1oeN+1
? UN ?M(jN) ? · · · ? U1 ?M(j1) ? ρse

= (M(jN) ⊗ · · ·M(j1))⊗ (1oeN+1
? UN ? · · · ? U1 ? ρse)

=: (M(jN) ⊗ · · · ⊗M(j1)) ? TN+1:1 , (4.22)

where we have defined the process tensor, TN+1:1 ∈ B(Ho
sN+1
⊗Hi

sN
⊗ · · · Hi

s1
⊗Ho

s1
), which

– in clear analogy to the superchannel defined in the previous section – maps every sequence
M(~j ) := (M(jN), . . . ,M(j1)) of control operations to the correct corresponding output state

ρ(
~j )′ = TN+1:1[M(jN), . . . ,M(j1)] . (4.23)

The process tensor was introduced in [32] to describe open quantum system dynamics with
memory. From Eq. (4.22), we see directly, that TN+1:1 is a higher order quantum map, which
naturally satisfies the causality constraints of deterministic combs. Additionally, it is linear, CP,
and trace preserving, where the interpretation of these properties is as in the previous section:
Complete positivity implies that, if the process tensor acts on a sequence of operations

(M̃(jN), . . . ,M̃(j1)), where each of the operations M̃(jα) : B(Ho
sα
⊗Ho

aα
)→ B(Hi

sα
⊗Hi

aα
)

acts on the system and an ancilla, then the resulting

N = (TN+1:1 ⊗ I)[M̃(jN), . . . ,M̃(j1)] (4.24)

is a completely positive map N : B(Ho
aN
⊗ · · · ⊗ Ho

a1
) → B(Ho

sN+1
⊗Hi

aN
⊗ · · · ⊗ Hi

a1
);

trace preservation implies, that, if all the maps {M(jα)} are CPTP, then the final output state
is of unit trace.
More generally, even though we motivated the process tensor as acting on independent

control operations, its action is – in the same way as the deterministic quantum combs of Ch. 2
– also well-defined on temporally correlated operations. For example, an experimenter at time
tα could condition their choice of instrument on an outcome at tα′ < tα, which would lead to
classically correlated control operations. More generally, the experimenter at tα′ could send
forward the quantum system they used to implement their control operationM(jα′ ), and the
experimenter at tα could use the said system to implement their operation, which generally
leads to control operations that temporally are correlated in a genuinely quantum way (see
Fig. 4.6).
In the language of Ch. 2, this corresponds to the contraction of the comb TN+1:1 with a

comb M(jN:1). If M(jN:1) is deterministic, i.e., if it can be implemented with unit probability,
then the trace preservation condition of TN+1:1 implies that the resulting output state is of
unit trace. Otherwise the trace of the output state corresponds to the success probability of
implementation of M(jN:1). Temporally correlated control operations are, for example, used
to optimally solve information theoretic tasks [47]. We will encounter them again in Sec. 4.9
when we discuss the Markov order of quantum processes. Despite being a little bit more
technical, both complete positivity, as well as trace preservation for process tensors are the
natural extension of the analogous properties for the superchannel case. In the same manner, the
experimental reconstruction that we discussed for the case of superchannels directly translates
to the multi-time case.
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Figure 4.6: Example of a correlated control operation over two times. The experimenter at t1 correlates
the state µ1 of an ancillary system they prepare with the system state via a unitary V1 and feeds the
resulting ancilla state forward. At t2, the experimenter performs a generalized measurement on the
system, by correlating it via the unitary V2 with the ancilla they receive from the experimenter, and
performing a measurement (with outcome j) on the ancilla. If the corresponding effect Ej is trace
preserving (i.e., the trace operation), thenM(j2:1) is deterministic, and the final system state is of
unit trace. Otherwise, the trace of the final system state corresponds to the success probability of
implementingM(j2:1).

Due to its linearity, the process tensor can be experimentally reconstructed by measuring
the output states {ρ(~j )′} corresponding to a basis {M(~j )} of sequences of input operations.
We have

TN+1:1 = ∑
~j

ρ(
~j )′ ⊗m(~j )∗ , (4.25)

where {m(~j )} is the dual set to the basis {M(~j )}, i.e., tr(m(~j )M(~̀ )†
) = δ~j ~̀ . As for the case of

superchannels, the validity of Eq. (4.25) can be shown by direct insertion. At each time tα,
there are d4

s linearly independent control operations, and consequently, for N times, there are
d4N

s linearly independent sequences M(~j ) of control operations. Notably, the basis of control
operations could be sequences of the form M(jN) ⊗ · · · ⊗M(j1), but also temporally correlated
operations. As long as they are linearly independent, any set of d4N

s control operations will
yield the same process tensor TN+1:1.
While the process tensor formalism was developed for the description of general open

quantum processes, we see that, mathematically, it is a deterministic N-slot comb, and coincides
with the descriptors of quantum stochastic processes we discussed in the previous chapter.
Looked at it through this lens, all the physical elements that make up open quantum system
dynamics now assume the role of the building blocks of quantum networks that we considered
in Ch. 2.
Having discussed higher order quantum maps in Ch. 2, and general (quantum) stochastic

processes in the previous chapter, it might appear somewhat excessive to have introduced
process tensors in this section as the natural descriptor of open quantum system dynamics.
However, a priori, the connection between these fields is unclear from our previous discussions.
Higher order quantum maps and stochastic processes as we introduced them are rather abstract
concepts, and their emergence from an underlying physical process is not directly obvious.
Here, this connection is provided in an intuitive way.
On the other hand, considering open quantum system dynamics as a quantum network

allows one to make clear-cut assertions about information flow, or, put in the language of open
quantum systems, memory effects that play a non-negligible role, and to use the structure of
Choi states for their quantification. Before we do so in Sec. 4.7, next, we shall complete the
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discussion of the connections between higher order quantum maps and open quantum system
dynamics.

4.5 purifications, dilations, and choi states

In the previous section, we have seen, that every open system dynamics, with initial state ρse

and intermediary system-environment dynamics Uα, where control operations can be applied
at times tN , . . . , t1, corresponds to a deterministic comb9 TN+1:1 with N slots and a final output
wire. Somewhat unsurprisingly, the converse also holds. We have the following theorem, due
to Chiribella et al. [17, 32]:

theorem 4 .1: Every deterministic N-slot comb TN+1:1 can be represented as a quantumnetwork
with initial state ρse, N unitaries Uα and a final partial trace.

Put differently, every comb can be represented as an open quantum system dynamics. While
we do not provide the explicit proof here (it can, for example, be found in Ref. [17]), we shall
embed it into the wider idea of purification, which is one of the fundamental principles in the
axiomatization of quantum mechanics [11, 153–158].
In Ch. 2, we considered states, transformations and effects as the basic building blocks of

quantummechanics. Making the reasonable demand that any physical theory be fundamentally
reversible [11, 153] dictates that each of these building blocks should arise from a combination
of pure states, unitary dynamics, and a discarding of degrees of freedom. Irreversibility then
arises from our ignorance of additional degrees of freedom, but is not a fundamental trait of
nature. In this sense, any meaningful fundamental theory must be purifiable [11].

It is well-known that states, transformations and effects can indeed be purified. Any quantum
state ρ ∈ B(H) can be extended to a pure state |Ψρ〉 ∈ H⊗Ha, such that tra(|Ψρ〉〈Ψρ|) = ρ.
For example, we can choose

|Ψρ〉 =
dR

∑
i=1

√
λi |vi〉 |ai〉 , (4.26)

where {λi} ({|vi〉}dR
i=1 are the eigenvalues (eigenvectors) of ρ, dR is the rank of ρ, and {|ai〉 ∈

Ha}dR
i=1 are mutually orthogonal states.

Analogously, Stinespring’s theorem [94] tells us that everyCPTPmap L : B(Hi
s )→ B(Ho

s )

can be obtained from an initially uncorrelated system-environment state on B(Hi
s ⊗Hi

a), a
system-environment unitary U : B(Hi

s ⊗Hi
a)→ B(Ho

s ⊗Ho
a) and a final discarding of the

excessive degrees of freedom:

L[ρ] = trao (U [ρ⊗ ηa]) . (4.27)

Then, since the only trace preserving effect is the trace operation, all the building blocks of a
deterministic quantum network can be purified. Consequently, one could prove Thm. 4.1 by
individually purifying each of the constituents of the deterministic comb TN+1:1. The resulting
network would be a purification (or dilation) to a network that only contains a pure initial
state, unitary transformations, and a final trace over excessive degrees of freedom.

9 Henceforth, whenever there is no risk of confusion, we shall use the terms comb and process tensor interchangeably.
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Figure 4.7: Experimental preparation of the Choi state of a channel L. The resulting quantum state
(represented by the blue box with dotted outline) contains the temporal correlations of the process in
terms of its spatial correlations. The brackets denote the degrees of freedom of L that correspond to the
different times {t1, t2} of the process.

Finally, trace non-preserving operations also possess a ‘purification’; every CPmap (including
effects) can be represented as an initially uncorrelated system-environment state, a unitary
dynamics, a projective measurement on excessive degrees of freedom, and a final trace. For
example, by Neumark’s theorem10 [159–161], a POVM element ET

j can be implemented via

tr(ρET
j ) = tr(U [ρ⊗ η] |j〉〈j|) . (4.28)

Consequently, by dilating all trace non-preserving elements of a quantum network, and pulling
all the wires with measurements to the far right [162], we can also see that probabilistic
combs can be implemented by means of pure states, unitary dynamics, and one final projective
measurement [15, 17].
Importantly, the fact that any deterministic comb can be dilated means that quantum net-

works and open system dynamics are two sides of the same coin, providing every comb with
a physical realization. The final remaining question regarding this connection of quantum
networks and open system dynamics concerns whether the Choi state of a map TN+1:1 corre-
sponds to an actual physical object, or if it is merely a mathematical tool with nice properties
that is used to describe open quantum evolution. It turns out that the former is the case.
We have already seen, that – up to normalization – the Choi state L ∈ B(Ho

s2
⊗Hi

s1
) of a

map L : B(Hi
s1
)→ B(Ho

s2
) is obtained by letting L act on one half of a maximally entangled

state Φ+ = ∑i=1
1√
ds
|is〉 |is〉, where {|is〉}ds

i=1 is the computational basis of Hi
s1
, and for the

remainder of this section, |Φ+〉 will denote the normalized maximally entangled state. We
have

L = ds(L⊗ Isi1
)
[
|Φ+〉〈Φ+|

]
. (4.29)

The resulting quantum state contains the temporal properties of the process in terms of spatial
correlations (see Fig. 4.7). From an experimental perspective, Eq. (4.29) means that – up to
normalization – the matrix L can be prepared without any knowledge of the underlying process.
In an analogous way, the Choi state TN+1:1 of a process tensor TN+1:1 can be prepared

experimentally by feeding one half of a maximally entangled state into the process at every
time tα, i.e., by an N-fold concatenation of Eq. (4.29) (see Fig. 4.8). Mathematically, we have

TN+1:1 = dN
s (TN+1:1

N⊗
α=1

R(α)
Φ+)[S

(α)
sa ] , (4.30)

10 In the original form, the space does not have to be extended by a tensor product, but merely a tensor sum. The
version we provide lends itself more easily to experimental implementation and is sufficient for our purposes.
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Figure 4.8: Experimental preparation of TN+1:1. At each time tα, one half of a maximally entangled
state is fed into the process by means of a swap operation (depicted by the light green vertical lines).
The resulting many-body quantum state (after tracing over the degrees of freedom of the environment)
is the Choi state TN+1:1 (denoted by the blue box with dotted outline). The brackets signify the degrees
of freedom of TN+1:1 that correspond to the different times tα of the process. Temporal correlations in
the process will be expressed as spatial correlations in TN+1:1.

where R(α)
Φ+ is the map that prepares the αth maximally entangled state, S(α)

sa is the swap
operation between the system s and one half aα of the αth maximally entangled state, and we
have omitted the respective identity maps [8].
The validity of Eq. (4.30) has been shown explicitly in [32]. As for the case of channels,

it implies, that TN+1:1 can be prepared experimentally – up to normalization – without any
knowledge of the process. Moreover, via the Choi isomorphism, all temporal correlations
of the process TN+1:1 – i.e., its memory structure – are mapped onto spatial correlations of
TN+1:1.

Indeed, we have already encountered this fact when we discussed the structure of superchan-
nels for the case of an initially uncorrelated system-environment state in Sec. 4.2. There, we saw
that the corresponding superchannel is of the form T = L⊗ ρs, which, as we will discuss below,
implies that the future dynamics is independent of the initial state preparation. Throughout
this chapter, all of our analysis of memory effects will rely heavily on this correspondence of
temporal correlations of the process, and the spatial correlations of its descriptor TN+1:1.

Having established process tensors as the most general descriptors of open quantum system
dynamics, as well as their equivalence to the theory of higher order quantum maps, we will
now use this framework, to analyze the memory properties of general open quantum processes.

81



open quantum system dynamics

4.6 memory in classical processes

As soon as the dynamics of a system is open, memory effects can play a non-negligible role.
Intuitively speaking, through the interaction with the environment, due to back-action, the
future dynamics at a time tα can depend one earlier states of the system, and not just on its
state at tα. Before we discuss this concept in detail, we shall first introduce it in the classical
realm.

In classical physics (without interventions), the definition of memory for a given process is
unambiguous; let P(xN+1, tN+1; xN , tN ; . . . ; x1, t1) denote the joint probability distribution
describing a process. Whenever there is no risk of confusion, for compactness, we will drop the
time arguments, and the respective time is denoted by the corresponding subscript, i.e., xα is
an outcome at tα.11 We consider the process to be memoryless or Markovian, if its conditional
probabilities satisfy

P(xN+1|xN , . . . ; x1) = P(xN+1|xN) ∀N . (4.31)

Intuitively, for a Markovian process, the probability to find the particle in region xN+1 at time
tN+1 only depends on the region it was found in at tN , but not at any of its positions at earlier
times.12 Put differently, the future evolution of a Markovian process from time tN onward only
depends on its state at tN , but not on its trajectory up to tN.
Importantly, even though we shall continue to call Markovian processes memoryless, this

memorylessness is in general only a conditional one. To see this more clearly, consider the case of
Markovian Brownian motion. Evidently, the probability to find a particle in some region xN+1

at time tN+1 is not independent of where it was initialized at t1. However, once its position at
time tN is known, the information of where it was initialized at t1 does not provide any new
information about the whereabouts of the particle at tN+1. As for a Markovian process the
conditional probabilities P(xN+1, tN+1|xN , tN ; . . . ; x1, t1) = P(xN+1, tN+1|xN , tN) depend
on the last time step only, they are sometimes considered to be ofMarkov order 1. A completely
memoryless process, like, for example, a coin flip, would then be a process of Markov order
zero, i.e.,P(xN+1, tN+1|xN , tN ; . . . ; x1, t1) = P(xN+1, tN+1) for all N. We generally drop this
explicit distinction, and unless stated otherwise, Markovian processes will be considered to be
processes of Markov order one or zero, and will be called memoryless.
Memoryless processes are of particular interest, as they allow one to obtain all higher

order joint probability distributions from transition probabilities and an initial probability
distribution. In detail, for a Markovian process, we have

P(xN+1, . . . , x1) = P(xN+1|xN , . . . , x1)P(xN , . . . , x1)

= P(xN+1|xN)P(xN , . . . , x1)

= · · · =
N+1

∏
α=2

P(xα|xα−1)P(x1) , (4.32)

11 Additionally, as we do not have to sum over outcomes in this section, we can strip down our subscripts a little, i.e.,
we will denote outcomes at tα simply as xα, instead of xjα . We shall return to more detailed subscripts whenever
necessary.

12 Obviously, the measured observable does not have to be position. Position is simply used for illustratory purposes.
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which implies a substantial simplification in modeling complexity. While generally, this com-
plexity grows exponentially with the length of the memory [163–165], here, it is sufficient to
know the transition probabilities P(xα|xα−1) and the initial distribution P(x1) to fully model
the process.

In an analogous way, we can define processes of higher Markov order. We consider a process
to be of Markov order `, if we have

P(xN+1|xN , . . . , x1) = P(xN+1|xN , . . . , xN−`+1) ∀N . (4.33)

As for the case of Markovian processes, processes of Markov order ` allow one to build up all
joint probability distributions from lower order ones; if the process is of Markov order `, then
we have

P(xN+1, . . . , x1) = P(xN+1|xN , . . . , x1)P(xN , . . . , x1)

= P(xN+1|xN , . . . , xN−`+1)P(xN , . . . , x1)

= · · · =
N+1

∏
α=`+1

P(xα|xα−1, . . . , xα−`)P(x`, . . . , x1) , (4.34)

and again, the process if fully characterized once the transition probabilities
P(xα|xα−1, . . . , xα−`) and the ‘initial’ probability distribution P(x`, . . . , x1) are known. As
already alluded to, understanding the memory structure of a process is of crucial importance
when trying to simulate a process, as well as in order to make assertions about the underlying
microscopic model. It is hence an important question, how to generalize the concept of
memory to the quantum case.

4.7 memory in quantum processes

While in classical physics it is clear – at least in principle – how to deduce the memory length of a
process, the situation presents itself much murkier in quantummechanics. Here, measurements
change the state of the system, and it is a priori not obvious how to meaningfully extend the
notion of Markovianity – which relies on conditional probability distributions – from the
classical to the quantum case. Consequently, a plethora of different, inequivalent definitions and
corresponding measures of Markovianity for quantum processes can be found.What is common
to most of these attempts to define non-Markovianity, is that they give sufficient conditions,
like, e.g., the breakdown of the monotonicity of trace-distance distinguishability [166], a
failure of the divisibility of dynamics [131, 167] (see also below), or the detectable presence
of initial correlations [136, 137, 168, 169], to name but a few (for a review of definitions of
non-Markovianity, see, e.g., [65, 170]). However, they fail to provide necessary conditions,
and, most importantly, none of the aforementioned definitions reduces to Eq. (4.32) in the
classical limit (for a review of different approaches to non-Markovianity that circumvent the
aforementioned problems, see, e.g., [66]).
Fundamentally, the shortcoming of most previous approaches is that they are based on a

description of open system dynamics in terms of quantum channels. As we have seen in the
previous sections, channels are not, in general, the correct descriptor of a quantum stochastic
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Figure 4.9: Action of a causal break Axαyα on a system-environment state ρse. First, a measurement
with corresponding effect Eyα is performed, followed by an independent preparation of a fresh state
ρ(yα). The resulting system-environment state is of the form ρ(xα) ⊗ trs(ρseET

yα
). Importantly, the causal

break introduces a break of information flow on the level of the system – any information from the
past that can be detected after the causal break must have ‘traveled’ through the environment.

process when memory effects play a role and when genuine multi-time correlations are of
interest; channels can – by design – only capture two point correlations, and consequently,
no definition of non-Markovianity in the quantum case that is based on the properties of
quantum channels can fully capture all memory effects. We will analyze this problem in
detail in Sec. 4.8 for the measure of CP divisibility, which is frequently employed to check
if open system dynamics are Markovian. Additionally, many of the measures in use, while
being mathematically well-defined, lack a proper operational underpinning. The process tensor
approach, that we encountered in the previous section is tailored to capture genuine multi-time
correlations, and allows one to remedy the problems encountered in properly defining the
boundary between Markovian and non-Markovian processes in an operationally meaningful
way which permits both the detection and quantification of memory effects.

Markovianity of a classical process is defined in terms of a conditional independence property;
conditioned on themost recent state of the system, the future statistics is independent of the past.
The problem of properly defining Markovianity in the quantum case lies in the invasiveness of
measurements, which seems to prevent the investigation of conditional probabilities. However,
as we have seen, the process tensor approach allows one to unambiguously define a process
independent of the control operations that an experimenter performs on the system, and as
such, it allows for the generalization of conditional probabilities to the quantum case [32].

Intuitively, the history-dependence of a process at time tN can be probed by fixing its state
at tN and analyzing its future evolution for different pasts. This intuition can be made manifest
as follows: Let the experimenter perform any admissible sequence of operations13MN−1:1 –
temporally correlated or not – at times tN−1, . . . , t1. At time tN they measure the system –
with corresponding effect EyN – and independently reprepare it in a known fresh state ρ

(xN)
s .

This operation has two purposes. On the one hand, the independent repreparation breaks the
flow of information on the level of the system (see Fig. 4.9). On the other hand, it leaves the
system in a known state, which will allow us to ‘condition’ the future statistics on this state.
We shall thus call the corresponding CP map a ‘causal break’ [105]. Mathematically, a causal
break at tN corresponds to a CP operation AxNyN , with its action on a system-environment
state defined as

(AxNyN ⊗ Ie)[ρse] = (EyN ⊗ ρ
(xN)
s ) ? ρse = ρ

(xN)
s ⊗ trs[ρse(ET

yN
⊗ 1e)] (4.35)

13 For ease of future notation, from here on, we will label all operations by subscripts.
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where ρse is the system-environment state at tN, EyN is the POVM element corresponding to
the performed measurement, and ρ

(yN)
s is the freshly prepared state [105]. From Eq. (4.35),

we can see that the system-environment state after a causal break is of product form, and the
system part only depends on the causal break, but not on ρse. However, the environment part
can explicitly depend on ρse, and as such on all the operationsMN−1:1, that were performed
before the causal break. Consequently, if at any time step tN′ > tN one can discern two
different sequences of past operations {MN−1:1,M′

N−1:1} and/or different measurements
(with corresponding POVM elements {EyN , E′yN

}), then memory must have passed through
the environment.

In more detail, just like in the classical case, a process has memory if the state of the system
at the next time step tN+1 does not only depend on the freshly prepared state ρ

(xN)
s , but also

on the measurement outcome at tN and/or the sequence of operationsMN−1:1 performed
previously [105]. Expressed in terms of the process tensor, a process is Markovian iff for all N

TN+1:1[AxNyN ,MN−1:1] ∝ TN+1:1[AxNy′N
,M′

N−1:1] , (4.36)

∀xN , yN , y′N ,MN−1:1,M′
N−1:1, where the proportionality appears instead of an equality, as

the operationsMN−1:1,M′
N−1:1,AxNyN and AxNy′N

are not necessarily trace preserving [105].
If Eq. (4.36) is not satisfied, then the process is non-Markovian, since the only way past actions
could influence the future evolution after a causal break is through some kind of memory that
‘traveled’ through the environment.

Put differently, if a quantum process is Markovian, once the state ρ
(xN)
s is known, then the

process after tN is independent of the past. This perfectly mirrors the conditional independence
of classical Markovian processes of their history. Here, the sequence of operationsMN−1:1 until
tN−1 together with the measurement associated to EyN constitutes the ‘history’ or ‘trajectory’
of the system up until tN, whereas ρ

(xN)
s is its state at tN. The concept of operationally well-

defined quantum trajectories14 has recently been used to define Markovianity in an equivalent
way to Eq. (4.36) [7, 128].

Notably, in (4.36) the measurement made at tN could also be temporally correlated with
the previous operationsMN−1:1 without making the definition of Markovianity more general
(see below). Since TN+1:1 is a linear operator, Eq. (4.36) allows for the process to be checked
for Markovianity with a finite number of experiments [32, 105]. At each time, there are d2

s

linearly independent POVM elements, and d2
s linearly independent repreparations, which

means that there are d4
s linearly causal breaks at each time step. Consequently, in order to check

if Eq. (4.36) is satisfied for all possible combinations of causal breaks and previous operations,
one would have to perform full tomographic reconstruction of TN+1:1. On the other hand,
finding two different pasts that lead to different future statistics is already sufficient to show
the non-Markovianity of a process.

The definition of Markovianity in terms of causal breaks at once remedies the shortcomings
that many traditional and experimentally employed approaches.15 On the one hand, it is a

14 Importantly, here we do not attach any ontological meaning to trajectories, but consider them as the sequence of
operations corresponding to a sequence of outcomes.

15 An equivalent definition of quantum Markovianity can also be given in terms of a Generalized Quantum Regression
Formula (see, e.g., [66]). As the definition in terms of causal breaks ties in more organically with the quantum
comb framework, we shall use it exclusively throughout this thesis.
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Figure 4.10: Process tensors and causal breaks. In order to check for Markovianity, one has to check for
independence of the final state at tN+1 from earlier operationsMN−1:1, and the measurement outcome
at tN (corresponding to the effect EyN ). If a dependence can be detected, then information/memory
must have traveled through the environment, and the process is non-Markovian. Note that the white
‘break’ in the figure signifies that the respective elements extend over several time steps, not that there
is a break in information flow. For better visibility, the labels of the effect and the repreparation are
placed under the corresponding graphical element.

logical statement of conditional independence, instead of a mathematical property, that might
or might not be directly connected to Markovianity. On the other hand, the definition given
in Eq. (4.36) coincides with the classical definition in the correct limit [105]; in detail, if we fix
the (potentially different) instruments Jα that can be used at each time, and each of them only
consist of causal breaks, we can label the CP maps that make up the instrument Jα by {Azα}.
As the instruments are fixed, we obtain probability distributions P(zN+1, zN , . . . , z1) from
using these instruments to interrogate the process. Now, it is obvious to see that in this case,
Eq. (4.36) implies that these probability distributions satisfy

P(zN+1|zN , . . . , z1) = P(zN+1|zN) ∀N , (4.37)

which corresponds to the classical definition of Markovianity. In particular, this holds true,
if all the causal breaks are projective measurements in the computational basis, i.e., Azα =

|zα〉〈zα| ⊗ |zα〉〈zα|, which, arguably, most closely resembles to what one would consider a
classical instrument. However, we already recover the original definition of Markovianity
under the slightly weaker requirement that all employed instruments are fixed, consist of
causal breaks only, and the process satisfies Eq. (4.36). However, this does not mean that such
processes are indeed classical; the corresponding joint probability distributions would not
necessarily have to satisfy Kolmogorov conditions.

Finally, even though the definition of Markovianity we introduced is intuitively plausible, it
seems to rely on the concept of causal breaks. However, as we shall now see, Markovianity
corresponds to a structural property of processes, that could be probed even without employing
causal breaks. To see this, we rewrite Eq. (4.36) in terms of Choi states. A process is Markovian
iff for all ρ(xN), EyN , E

′
yN
, MN−1:1, and M′N−1:1 we have

TN+1:1 ? ρ(xN) ? EyN ?MN−1:1 ∝ TN+1:1 ? ρ(xN) ? E′yN
?M′N−1:1 . (4.38)

By writing the link product out explicitly, this is equivalent to

trN+1o

[(
1osN+1

⊗ ρ(xN)T ⊗ ET
yN
⊗MT

N−1:1

)
TN+1:1

]
∝ trN+1o

[(
1osN+1

⊗ ρ(xN)T ⊗ E′TyN
⊗M′TN−1:1

)
TN+1:1

]
, (4.39)
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Figure 4.11: Structure of a Markovian process. Every Markovian process can be represented as a
concatenation of independent CPTP maps. As the maps are not connected by environmental wires, no
information can travel outside of the system, and the dynamics is Markovian.

where trN+1o signifies the trace over all spaces but H
o
sN+1

. In this form, it is easy to see that
for this conditional independence to hold for all possible histories, the process tensor has
to be of the form TN+1:1 = LN ⊗ TN:1, where LN ∈ B(HsoN+1

⊗HsiN
) is a CPTP map from

tN to tN+1 and TN:1 ∈ B(Ho
sN
⊗Hi

sN−1
⊗ · · · ⊗ Ho

s1
) is a (N − 1)-slot process tensor on the

times {tN , . . . , t1}. As this has to hold at all times, the process tensor TMarkov
N+1:1 of a Markovian

dynamics is of product form, i.e.,

TMarkov
N+1:1 = LN ⊗ LN−1 ⊗ · · · ⊗ L2 ⊗ ρs , (4.40)

where ρs ∈ B(Ho
s1
) is the initial state of the system. The process tensor of a Markovian

process is simply a tensor product of independent CPTP maps [42, 50, 147] (see Fig. 4.11). This
structural property also allows for the definition of operationally well-defined measures of
Markovianity [105] as the deviation of a given process tensor from the product structure of
Eq. (4.40). Importantly, the product form of Markovian processes does not coincide with CP
divisibility [131, 167] (see below), and is a direct consequence of the operational condition in
terms of causal breaks that we gave above, rather than the starting point of the discussion of
Markovianity in the quantum case. Markovianity, as it is defined here, is a logical statement
about conditional independence, and all mathematical properties follow from this requirement.
It is important to emphasize this point, as it does not apply for the mathematically appealing,
but not operationally motivated definitions of Markovianity in the quantum case, that exist in
the literature.
Additionally, Eq. (4.40) implies that Markovian processes can be reconstructed with expo-

nentially less resources than non-Markovian ones. Under the assumption that the experimenter
is guaranteed that the underlying process is memoryless, it suffices for them to tomograph-
ically reconstruct each of the individual maps Lα for a full characterization of the process.
Each channel reconstruction requires the collection of d4

s conditional probabilities and the
individual reconstructions can be carried out independently of each other. Concretely, this can,
for example, be achieved by means of projective measurements {|zjα〉〈zjα | ⊗ |zjα〉〈zjα |}

d2
s

jα=1,

where {|zjα〉〈zjα |}
d2

s
jα=1 constitutes a basis of B(Hs). Consequently, the number of necessary

measurements to reconstruct an N-step Markovian process scales as Nd4
s , while in general, in

the presence of memory effects, it scales as d4N
s .

The structure of Markovian processes given by Eq. (4.40) allows for another intuitive
interpretation: each of the maps Lα allows for a dilation in terms of an interaction (given by
the a unitary map Uα ) of the system with an initially uncorrelated environment state ηα that is
subsequently discarded (see Fig. 4.12). In this sense, Markovian dynamics can be considered as
a ‘collision’ of the system with a fresh environment state at each time tα [171–175]. Interpreted
in more physical terms, the characteristic time for memory to persist is significantly smaller

87



open quantum system dynamics

Figure 4.12: Possible dilation of a Markovian process. At each time tα the system ‘collides’ with a fresh
environment state ηα, which is discarded at the next time. Consequently, no memory can be transported
via the environment.

than the difference of times tα − tα−1 at which the system is interrogated, and the environment
relaxes to its equilibrium state in between control operations.

Below, we will discuss the extension of Markov order to the quantum case. However, first it
is important to use the gained insights to make sense of existing witnesses of non-Markovianity,
and examine their place in the wider framework of process tensors and the accompanying
unambiguous definition of Markovianity. Here, we shall do so for CP divisibility, one of the
predominantly used measures for Markovianity (or rather the absence thereof) in the literature.
The results of this investigation are based on the findings in [1].

4.8 cp divisibility and markovianity

The detection of Markovianity, and characterization of memory effects plays an important
technological role. For example, successful error correction depends on a clear understanding
of the underlying noise [176]. With the process framework introduced above, we can now
furnish many existing witnesses of memory effects with a clear-cut operational meaning in
terms of the temporal correlations that they can and cannot detect. Here, we shall do so for
CP divisibility, the concepts that underlies most measures of non-Markovianity that are in use.
To motivate the concept of CP divisibility, we approach it from its classical counterpart, and
then expand the corresponding ideas to the quantum case.
We have seen that for classical Markovian processes, once the initial distribution P(xj1)

and the transition probabilities P(xjα+1 |xjα) are known, the process is fully described. As we
discussed, in this case, all joint probability distributions can be built up via

P(xjN+1 , . . . , xj1) = P(xjN+1 |xjN ) · · ·P(xj2 |xj1)P(xj1) . (4.41)

The values P(xj1) can be considered as the elements of a probability vector ~P with ~Pj1 =

P(xj1). Analogously, we can regard the transition probabilities P(xjα+1 |xjα) to be elements of
a stochastic transition matrix Υα+1|α, with elements Υjα+1 jα = P(xjα+1 |xjα), where each of the
transition matrices can vary for different time steps. As the matrices Υα+1|α are stochastic, i.e.,
their entries are probabilities, and their columns sum to 1, they can be seen as a time evolution
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of the probability vector ~P between tα and tα+1, and from Eq. 4.41 we obtain the probability
vector at tN+1, with entries P(xjN+1), via

P(xjN+1) = ∑
jN ,...,j1

P(xjN+1 , . . . , xj1)

= (ΥN+1|N · ΥN|N−1 · · ·Υ2|1 · ~P)jN+1 := (ΥN+1|1 · ~P)jN+1 . (4.42)

The natural counterpart in quantum mechanics of probability vectors and stochastic matrices
are quantum states and CPTP maps, respectively. Consequently, by generalizing Eq. (4.42)
to the quantum case, one obtains the requirement that for Markovian dynamics, the CPTP
dynamics of the system state ρs from t1 to tN+1 should be given by

LN+1|1[ρs] = (LN+1|N ◦ LN|N−1 ◦ · · · ◦ L2|1)[ρs] , (4.43)

where each of the CPTP maps Lα+1|α is a dynamics from tα to tα+1, and LN+1|1 is the overall
map from t1 to tN+1. We can use this idea for the definition of CP-divisible dynamics [177]:

definition 4 .1: The dynamics of a system is CP-divisible, if its time evolution can be divided
into CPTP maps, i.e., for any three times u < v < w we have16

Lw|u = Lw|v ◦ Lv|u , (4.44)

where Lw|u, Lw|v and Lv|u are CPTP maps that describe time evolutions from u to w, v to w and
u to v, respectively.

Notably, Eq. (4.44) expresses a semi-group property of the dynamics [114], which provides
another motivation for a connection between CP divisibility and Markovianity, as dynamics
that satisfy semi-group properties can be considered the solution of a GKSL equation with
positive rates [116, 178], which are often used to model Markovian processes. Importantly,
though, while mathematically meaningful and well-defined [129], the operational meaning of
each of the maps Ly|x above is not entirely clear. That is, in an experimental setting, how
does one construct such a family of maps? Consequently, in the absence of a clear operational
understanding of the involved maps, it would be somewhat misleading to express Eq. (4.44)
in terms of a link product Lw|u = Lw|v ? Lv|u, as the link product suggest a structure of an
underlying quantum network, which is not given by Eq. (4.44) without further qualification.
At first glance, Eq. (4.44) seems to imply that the dynamics at any point in time is fully

described by a CPTP map that is independent of the respective history.17 Importantly though,
CP divisibility does not imply a product structure (of the form of Eq. (4.40)) of the underlying
process tensor, and as such, does not imply Markovian dynamics, not even in the classical
case [179]. From our previous discussion of Markovianity, this fact is obvious: On the one hand,
information about two-point correlations, as expressed by CPTP maps, is not enough to decide
the Markovianity of a process, which is a statement about multi-time correlations. On the other

16 To be closer to the notation used in the respective literature, and to strip it down a little bit, here, we denote times
by u, v and w. Conversion to the notational convention used throughout this thesis is always straightforwardly
possible.

17 Throughout this section, we will consider CPTP maps to describe dynamics of the state of the system between
two times, in contrast to a process tensor or comb, that constitute the full descriptor of the dynamics.
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hand, the definition of CP divisibility – even when supplied with an additional operational
meaning18 (see below) – is not a statement about conditional independence. Consequently,
while its mathematical relation to Markovianity might be plausible, its logical connection is
vague at best.

Nonetheless, many measures and witnesses for non-Markovianity are built upon the break-
down of CP divisibility (this holds true, for instance, for the measures introduced and used
in [65, 131, 136, 166–168, 170]) and it is thus of importance to explicitly work out, what kinds
of temporal conditions can exist despite the dynamics being CP-divisible. In turn, such a
discussion will provide further intuitive understanding of the breakdown of CP divisibility in
terms of information flow between the system and the environment [1, 65, 166, 181].

4.8.1 iCP and oCP Divisibility

As mentioned above, the constituents of the definition of CP divisibility do not possess a
clear operational meaning, unless one specifies, how the maps Ly|x are to be experimentally
reconstructed. While this lack of operational meaning is not a problem in terms of well-
definedness of CP divisibility, it prevents its interpretation with respect to prevalent memory
effects. An alternative definition of CP divisibility that furnishes the maps Ly|x with a clear-cut
meaning is thus desirable. There are (at least) two non-equivalent ways to do so.
The first possibility to give the respective maps an experimental meaning is to tomograph-

ically reconstruct the maps Lw|u and Lv|u, and obtain the third map by inversion. We shall
call the resulting definition of CP divisibility CP divisibility by inversion (iCP divisibility).
In detail, the underlying idea is, that at a fixed initial time u, the experimenter can prepare
fresh states, and measure the respective output states at any later time. Consequently, they can
reconstruct any map Lx|u that describes the dynamics of the system from time u to any later
time x. Now, for u < v < w, if the map Lv|u is invertible, one can compute a map Kw|v via

Kw|v = Lw|u ◦ L−1
v|u , (4.45)

where we denote the inferred map obtained by inversion with the symbol K to reserve L for
experimentally reconstructed maps (see Fig. 4.13a). With this, we obtain the definition of iCP
divisibility [1]:

definition 4 .2: For a fixed initial time u, a dynamics is iCP-divisible if for all w > v > u the
map Kw|v computed according to Eq. (4.45) is CPTP.

This definition of CP divisibility is advantageous from an experimental perspective, as it
only necessitates the reconstruction of quantum maps from a fixed initial time to later times,
but not the explicit construction of intermediate maps [65]. However, the operational meaning
of Kw|v, even when it is CPTP, is somewhat restricted.
In a particular sense, it is a fictitious map of the state of the system from time v to time w;

imagine an experimenter who has reconstructed themapLv|u, i.e., for any system state that they

18 One possible operational interpretation of CP-divisible dynamics – but not the maps Ly|x themselves or the
concept’s relation to Markovianity – has been considered elsewhere [180], but is unrelated to the subsequent
discussion.
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(a) Reconstruction of Lv|u and Lw|u. (b) Reconstruction of Lw|v.

Figure 4.13: Experimental scenarios for the reconstruction of the maps Ly|x. (a) For the reconstruction
of Ly|u, a basis of states is fed into the process at time u, and the corresponding output state is measured
at time y. (b) For the reconstruction of Ly|v, fresh states are fed in at time v > u (thus decoupling
system and environment at v), and the corresponding output state at time y > v is measured. For
the case considered in Ex. 4.1, both system and environment are qubits, the initial environment state
ηu is maximally mixed, and Uv|u and Uw|v are the partial swap and a controlled-not gate, respectively.
The (one-slot) process process tensor for both cases is depicted by the dotted blue line, with an open
input and output wire. Both experimental procedures differ by the control operations, but not by the
underlying process tensor.

feed into the process at time u (say ρu ), they would know the corresponding output state ρv at
time v.19 Letting the system, instead, evolve further to time w, the final state ρw = Lw|u[ρu]

could be understood as the result of the action of Kw|v on the system state at ρv. However,
as the experimenter did not intervene at v, this evolution is merely a mathematical crutch,
rather than an operationally meaningfully quantum channel. Nonetheless, evidently, if the
underlying dynamics is Markovian, and the maps from u to v are invertible, then the dynamics
also has to be iCP-divisible, which makes the breakdown of iCP divisibility (or the breakdown
of properties derived therefrom) an experimentally accessible witness of non-Markovianity.
In the form defined above, the definition of CP divisibility does not tie in nicely with

the process tensor framework, which presents us with a roadblock when trying to quantify
the temporal correlations that can be present in a CP-divisible process. This problem can be
circumvented by defining CP divisibility such that all involved maps have a clear operational
meaning. While above we assumed that one has only direct access to the maps Lv|u from the
initial time u to all later times v, and all intermediate maps Lw|v are obtained by inversion, one
could also imagine the scenario where an experimenter has the ability to manipulate the system
at any time v > u. Then, they can reconstruct any intermediate maps Lw|v by discarding the
system state at time v, preparing a fresh state ρv that is uncorrelated with the environment,
and measuring the corresponding output state at w. Consequently, the action of the map Lw|v
reconstructed in this way is given by

Lw|v[ρv] = trew

(
Uw|v[ ρv ⊗ ηv]

)
, (4.46)

where ηv is the state of the environment at v and Uw|v is the unitary dynamics between v and
w. With this, we can define oCP divisibility:

19 Here, and in what follows, we shall use subscripts on states to denote the time at which they are prepared.
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definition 4 .3: A dynamics is operationally CP-divisible (oCP-divisible), if for any u < v < w

Lw|u = Lw|v ◦ Lv|u (4.47)

holds, where the maps Ly|x are the maps defined in Eq. (4.46).

Importantly, complete positivity of the respective maps is guaranteed by design, as system-
environment correlations are discarded for the reconstruction ofLw|v. Here, it is the satisfaction
of the composition law in Eq. (4.47) that has to be checked for oCP divisibility to hold, while
in the case of iCP divisibility, the composition property is satisfied by design and complete
positivity has to be checked for. Operational CP divisibility does – unlike iCP divisibility – not
rely on the invertibility of Lv|u, as all of the involved maps are reconstructed experimentally.
Formally, Eq. (4.47) is the same as Eq. (4.44), but with the important distinction that here each
map has a clear operational meaning in terms of a quantum process tomography procedure.

However, we still have left a level of ambiguity in the reconstruction process of the interme-
diate maps: Suppose at time u, we begin the experiment with either ρu or ρ′u and then construct
the dynamics from v to w via the procedure outlined above. In principle, the environment
state at v could depend on the input state at u, and as such, the map Lw|v given by Eq. (4.47)
could also depend on the input state at u. In order for oCP divisibility to be well-defined, the
respective maps cannot depend on inputs at earlier times, which is an implicit assumption
when formulating oCP divisibility. This requirement constitutes a conditional non-signaling
condition [182–184], that we will use below to derive the structural properties of oCP-divisible
processes. Here, it is important to note that oCP divisibility requires independence of the map
Lw|v of the input state at time u.
This independence of the intermediate dynamics Lw|v from ρu is, for example, satisfied

if the environment state is constant in time. Naturally, before we discuss the relation of CP
divisibility and Markovianity, the question arises, if iCP divisibility and oCP divisibility are
equivalent (that is, in the cases where iCP divisibility is well-defined). Somewhat surprisingly,
this is not the case [1].

4.8.2 iCP Divisibility 6= oCP Divisibility

It is straightforward to see that oCP divisibility implies iCP divisibility: If Lw|u = Lw|v ◦ Lv|u
and Lv|u is invertible, then Kw|v = Lw|u ◦ L−1

v|u = Lw|v is CPTP, as Lw|v is by construction
CPTP (as can be seen from Eq. (4.46)). On the other hand, there are dynamics that are
iCP-divisible, but not oCP-divisible. We show this directly by example.

example 4 .1: To see that iCP divisibility 6= oCP divisibility, consider the two circuits in Fig. 4.13,
where both the system and the environment are considered to be qubits, and let the initial environ-
ment state be maximally mixed, i.e., ηu = 12/2. The first unitary between u and v is a partial
swap

Uv|u = cos(Ω∆t)14 − i sin(Ω∆t)S , (4.48)

92



4.8 cp divisibility and markovianity

where S |ij〉 = |ji〉 is the swap operator between system and environment, 14 is the identity oper-
ator on both qubits, and ∆t := v− u. The state of the system at v will be

ρv = cos2(Ω∆t)ρu + sin2(Ω∆t)12/2 , (4.49)

and if Ω∆t 6= π/2 then the corresponding dynamical map Lv|u is invertible. Next, let Uw|v be a
controlled-not gate with control on the environment, i.e.,

Uw|v |is je〉 = |(i⊕ j)s je〉 , (4.50)

where {|is〉}1
i=0 and {|je〉}1

j=0 are the computational basis of the system and the environment,
respectively, and ⊕ denotes addition modulo 2. In this case, it is easy to see, that without an in-
tervention at time v, the final state of the system at time w is 12/2, independent of the input at
u. Consequently, Kw|v = Lw|u ◦ L−1

v|u is the completely dephasing map, i.e., Kw|v[ρv] = 12/2,
which is a CPTP map, and the dynamics is thus iCP-divisible. However, if we discard the state of
the system at v and insert a fresh state ρv, we will find that the corresponding state at time w will
depend on ρu, the state that was inserted at time u. In other words we have conditional signaling,
and therefore the process is not oCP-divisible.

Here, for better intuition, we have chosen an example for iCP-divisible dynamics that is not
oCP-divisible, that is discrete in time. See App. B.2 for an example which is continuous in
time.

While the requirements for oCP divisibility are potentially harder to check experimentally
than those for iCP divisibility, as it necessitates intermediate interventions where fresh system
states are prepared, oCP divisibility has the twofold advantage that the involved maps have
an clear-cut operational meaning (unlike Kw|v ), and the property of oCP divisibility ties in
effortlessly with the process tensor framework. This allows one to explicitly work out the
memory effects that can and cannot be picked up by oCP divisibility (see below). Additionally,
as it is a strictly stronger requirement than iCP divisibility, oCP divisibility (or rather the
breakdown thereof) is a better witness of non-Markovian effects. However, as we shall see now,
it does still not coincide with Markovianity.

4.8.3 Markovianity and oCP Divisibility

To discuss the relation of CP divisibility and Markovianity, we will restrict ourselves to three
fixed times u, v, and w – a generalization to more times is always possible (albeit cumbersome)
– and only discuss oCP divisibility, as it is the stricter requirement. Importantly, there is no a
priori reason, why it should coincide with Markovianity.
To see this directly, we shall consider the following example presented in [1] and inspired

by collision models [171–174, 185] that use initially correlated environment states to model
memory effects [175, 186]: Let the initial system-environment state at time u be uncorrelated,
and let the environment be in a correlated state ηeuev . The se unitaries between times are such
that they only lead to interactions between the system and one part of the environment (the
part labeled by eu between time u and v, and the part labeled by ev between time v and w)
which is discarded after the interaction (see Fig. 4.14).
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Figure 4.14:Non-Markovian oCP-divisible process. Independent of the input state at u, the system state
at v is equal to the maximally mixed state. Analogously, if the system state is fed out at v, and a fresh
system state is fed into the process, the corresponding system state at w is equal to the maximally mixed
state, independent of the freshly prepared state. However, if the experimenter performs a measurement in
the z-basis at time v, then the output state at w will be |0〉 ( |1〉) for outcome 0 (outcome 1) independent
of what state is fed forward. The future statistics does thus not only depend on the last state that was
fed in, but earlier measurement outcomes, which implies that the process is non-Markovian.

It is easy to see, that the map Lw|v is well-defined, i.e., it is independent of the system state
that is fed into the process at time u, which implies that there is no signaling between times if
we discard and freshly reprepare the system at time v. Now, if we choose the unitaries Uv|u
and Uw|v to be swap operations, and the initial environment to be maximally entangled, then
each of the operations Lw|u,Lw|v and Lv|u coincides with the completely dephasing map,
i.e., Ly|x = 1oy ⊗ 1ix, and we have Lw|u = Lw|v ◦ Lv|u, which means that the dynamics is
oCP-divisible. It is not Markovian, though.

For example, if the system is a qubit, and the environment is initially in amaximally entangled
two-qubit state, then performing ameasurement in, say, the z-basis at time v that yields outcome
|0〉 ( |1〉) will leave the environment in state |0〉 ( |1〉). Now, say the experimenter feeds forward
a state ρv for either of these outcomes, then at time w they will obtain a system state |0〉 if
the measurement outcome at v was 0, and |1〉 it the measurement outcome at v was 1. This
dependence on past measurement outcomes implies that there are two different causal breaks
with the same state that is fed forward, that lead to different future statistics. The process is
thus non-Markovian (see Fig. 4.14 for more details).

In light of this example, we can give oCP divisibility a clear operational meaning: An oCP-
divisible process is Markovian on average. If we forget about the measurement outcomes, then
no memory effects can be detected. More generally, consider a multi-time process where an
experimenter measures the system at each time, before independently preparing it in a new
state. What oCP divisibility implies is that, if all past measurement outcomes are forgotten,
then the future statistics only depend on the current preparation. Forgetting the measurement
outcomes amounts to averaging over them, and is equivalent to discarding the system state
before repreparation. A quantum Markov process, in contrast, requires that the future statistics
only depend on the current preparation for any sequence of measurement outcomes [42, 50, 105,
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Figure 4.15: Descriptor Tw:v:u of a process defined on three times u, v, and w. For compact notation,
the wires are denoted by A, B, C, and D.

147]. For a graphical representation of the relation of Markovianity and iCP- and oCP-divisible
processes,20 see Fig. 4.16.

4.8.4 Temporal Correlations in oCP-Divisible Processes

Unlike for iCP divisibility, the memory effects that persist when the dynamics is oCP-divisible
can be quantified explicitly. To do so, we consider the one-slot process tensor depicted in Fig. 4.15
with an open input wire (corresponding to time u), and an open output wire (corresponding
to time w) and the middle slot corresponding to time v. This process tensor Tw:v:u – where
we choose the subscripts to emphasize what times it is defined on – could be the descriptor of
a stochastic process that is interrogated at three times. For compact notation, we denote the
wires by A (corresponding to time u), B,C (corresponding to time v, and D (corresponding
to time w), i.e., Tw:v:u ∈ B(HD ⊗HC ⊗HB ⊗HA). If the process was Markovian, then we
would have

TMarkov
w:v:u = Lw|v ⊗ Lv|u , (4.51)

where Lw|v = 1
dA

trAB(TMarkov
w:v:u ) and Lv|u = 1

dC
trCD(TMarkov

w:v:u ) are CPTP maps between times
v and w and between times u and v, respectively. They are deliberately denoted by the letter L,
as they correspond exactly to maps that one would obtain from the reconstruction procedure
outlined for the definition of oCP divisibility. It is important, though, to emphasize the
difference between Eq. (4.51) and Eq. (4.47); the former pins down a structural requirement for
Tw:v:u, the complete descriptor of the dynamics on times {u, v, w}, while the latter constitutes
a weaker requirement on particular two-time descriptors of the process. Consequently, there
are – as we have already seen – processes that satisfy Eq. (4.47) but are not Markovian, and do
thus not satisfy Eq. (4.51).
To express the property of oCP divisibility in terms of process tensors, we first phrase the

conditional non-signaling condition we encountered above in this language. Here, non-signaling
means, that the output state that is measured at time w cannot depend on the state that was
fed into the process at time u, if the system was discarded and freshly prepared at time v.
Superficially, this non-signaling condition is reminiscent of the no information back-flow from

20 An in-depth discussion and visualization of the full, multifaceted hierarchy of notions pertaining to (quantum)
non-Markovianity can be found in Ref. [66]. Where exactly iCP and oCP divisibility fit in this general hierarchy is,
a priori, unclear and left as an open question for future work.
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Figure 4.16: Hierarchy of processes. All Markovian processes are iCP and oCP-divisible, while the set
of iCP-divisible processes – in the case where it is well-defined – contains both the set of oCP-divisible
as well as that of Markovian processes. The inclusion is strict, i.e., there are, for example, iCP processes
that are not oCP, and none of the sets coincide. Notably, here, only the properties discussed in the
text are shown. In general, the space of non-Markovian processes presents itself as much more layered
(see [66] and, in particular, Fig. 1 therein for a more complete picture.).

the environment to the system that is attributed to CP-divisible processes [166]. However, in
our case, signaling is a genuinely three-time statement that quantifies how much information
about a preparation at time u is retained at time w given that the system state was discarded at
time v. On the other hand, the increase of trace distance between to states over some period of
time that is interpreted as an information backflow is a genuine two-time statement.
Expressed in terms of Choi states, the conditional non-signaling requirement for a process

tensor Tw:v:u relevant for oCP divisibility reads

trABC

[(
1DB ⊗ ρT

u ⊗ ρT
v

)
Tw:v:u

]
= trABC

[(
1DB ⊗ ρ′Tu ⊗ ρT

v

)
Tw:v:u

]
(4.52)

for all ρu, ρ′u ∈ B(HA) and all ρv ∈ B(HC), where we have used the fact that discarding
the system at time v corresponds to the effect 1B, and the labeling of Hilbert spaces follows
Fig. 4.17. In order for this equation to be satisfied for all possible input states at time u, we
must have

trB (Tw:v:u) = 1A ⊗ Lw|v , (4.53)

which, unsurprisingly, is reminiscent of the causality constraints for quantum combs we
encountered in Ch. 2 (see Fig. 4.17 for a graphical illustration). There, the corresponding trace
constraints guaranteed that overall, no signaling from the future to the past was possible. Here,
Eq. (4.53) ensures, that there is no signaling from time u to time w given that the system was
discarded at time v. In this sense, as we alluded to above, a dynamics that satisfies Eq. (4.53)
and is – in addition to that21– oCP-divisible, can be considered as a process that is Markovian
on average; while there can still be individual causal breaks that allow one to detect memory
effects, ‘averaged out’ causal breaks of the form ρv ⊗ 1B do not allow one to detect the non-
Markovianity of the process; put differently, the operations ρv ⊗ 1B can fail as witnesses for
the non-product form of Tw:v:u.

21 For an example of dynamics that satisfy conditional non-signaling, but are not oCP-divisible, see App. B.3.
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4.8 cp divisibility and markovianity

Figure 4.17: Non-signaling requirement for oCP divisible dynamics. Discarding the system at time v
(corresponding to wires B and C) disconnects the output at time w (corresponding to wire D) from
possible inputs at time u (corresponding to wire A).

Figure 4.18: Graphical representation of Lv|u. Tracing out the final state at time w and feeding a
unit trace state (here, the maximally mixed state, represented by 1) at time v leads to a trace on the
environment, due to the trace condition of the unitary map Uw|v. The channel from u to v exactly
corresponds to 1e ? Uv|u ? ηu.

Finally, we can express oCP divisibility as a constraint on Tw:v:u. Naturally, we obtain the
mapping Lw|u by ‘implementing’ a do-nothing channel at time v, i.e.,

Lw|u = trBC

[(
1AD ⊗Φ+T

BC

)
Tw:v:u

]
= 〈Φ+

BC| Tw:v:u |Φ+
BC〉 . (4.54)

On the other hand, using Eq. (4.53), we can compute Lw|v as

Lw|v =
1

dA
trAB (Tw:v:u) . (4.55)

Importantly, due to signaling effects, for general processes, one could not simply obtain
intermediate channels by tracing out over subsystems that correspond to earlier time steps,
and the channel Lw|v is only well-defined and independent of past preparations due to the
non-signaling condition (4.53). In a similar way, we can obtain Lv|u via

Lv|u =
1

dC
trCD (Tw:v:u) , (4.56)

where Lv|u would be well-defined even in the presence of signaling, due to the causality con-
straints of Tw:v:u (see Fig. 4.18). With this, we see that a process is oCP-divisible on times
{u, v, w}, iff its process tensor Tw:v:u satisfies Eq. (4.53) and

〈Φ+
BC| Tw:v:u |Φ+

BC〉 =
1

dC
trCD (Tw:v:u)⊗

1
dA

trAB (Tw:v:u) (4.57)

Evidently, this requirement does not force Tw:v:u to be of product form. We can see this
explicitly by representing Tw:v:u as

Tw:v:u =
1

dC
trCD (Tw:v:u)⊗

1
dA

trAB (Tw:v:u) + χ = Lw|v ⊗ Lv|u + χ , (4.58)
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where χ ∈ B(HD ⊗HC ⊗HB ⊗HA) contains all the temporal correlations of Tw:v:u that
corresponds to deviations from Markovian behavior. It satisfies trCD(χ) = trAB(χ) = 0. With
this, we see that non-Markovian correlations that can be present in a oCP-divisible process
satisfy

〈Φ+
BC| χ |Φ

+
BC〉 = 0 . (4.59)

As this does not imply χ = 0, this relation comprehensively quantifies the set of temporal
correlations that cannot be detected by the criterion of oCP divisibility, and allows one to
check if a given processes is oCP-divisible. For instance, for the example of Fig. 4.14 discussed
above, it is easy to see, that the corresponding process tensor Tw:v:u is given by

Tw:v:u =
1

dB
1AC ⊗Φ+

BD , (4.60)

where Φ+
BD is the unnormalized maximally entangled two-qubit state. While this process tensor

is not Markovian, as it does not display a product structure between AB and CD, it satisfies
Eq. (4.59); we have

Tw:v:u =
1
2
1AB ⊗

1
2
1CD +

1
4
1AC ⊗ (σx ⊗ σx − σy ⊗ σy + σz ⊗ σz) , (4.61)

where the correlation term χ = 1
41AC ⊗ (σx ⊗ σx − σy ⊗ σy + σz ⊗ σz) satisfies trCD(χ) =

trAB(χ) = 0 and 〈Φ+
BC| χ |Φ

+
BC〉 = 0, but is not equal to zero.

Defining CP divisibility such that its constituents possess an operationally clear-cut inter-
pretation thus allows one to quantify how well it works as a witness for non-Markovianity. If
no non-Markovianity can be detected via measurements that check for oCP divisibility, only
deviations fromMarkovianity of the form (4.59) can exist. In principle, one could carry out this
investigation in a more fine tuned manner by decomposing χ in terms of two-time, three-time,
and four-time correlations (see, for example [8]). Analogously, the above statements can be
extended to more times by defining a χ term that encapsulates the deviation of a multi-step
process Tz:y:x:··· from a Markovian process. Instead of one Eq. (4.59) one would then obtain a
set of equations for different combinations of time steps, where identity operations are inserted.
However, this discussion would prove to be quite cumbersome, without the benefit of

providing further intuitive insight into the nature of oCP divisible processes. Rather, we shall
now round off our discussion of the memory structure of general open processes, and briefly
touch upon the generalization of Markov order to the quantum case.

4.9 quantum markov order

Up to this point, we have discussed the generalization of the definition of Markovian processes
to the quantum regime. Quite naturally, such a generalization also exists for the concept of
Markov order, which we shall briefly discuss in this section. For a thorough introduction to, as
well as a comprehensive taxonomy of quantum processes with finite Markov order, see Refs. [5,
6, 187].
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As already mentioned in Sec. 4.6, a classical process with Markov order ` is a process that is
conditionally independent of the past, given the last ` outcomes, i.e.

P(xN+1|xN , . . . , x1) = P(xN+1|xN , . . . , xN−`+1) ∀N , (4.62)

and all multi-time joint probability distributions can be built up, once P(x`, . . . , x1) and
the transition probabilities P(xα|xα−1, . . . , xα−`) are known. To simplify notation, following
Ref. [6], we will group the times the process is defined on into future F = {tN+1, . . . , tα+1},
memory M = {tα, . . . , tα−`}, and history H = {tα−`−1, . . . , t1}, with the corresponding
sequences of outcomes and joint probability distribution denoted by xF, xM, and xH, and
PFMH, respectively. With this convention, Eq. (4.62) reads

PFMH(xF|xM, xH) = PFMH(xF|xM) . (4.63)

Importantly, as for the case of Markovian dynamics, the independence between the future
and the history is a conditional one, i.e., for a process with Markov order `, once the last `
outcomes are revealed, knowledge of any earlier outcomes does not provide any additional
advantage when predicting future statistics. However, if one did not know the last ` outcomes,
knowledge about the prior past would, in general, improve predictions about future outcomes.

Now, with the framework of process tensors at hand, a natural generalization of Eq. (4.63)
suggests itself: We could imagine an experimenter that uses (possibly temporally correlated)
instruments JF, JM, and JH to probe the system of interest at times in F, M, and H, respec-
tively. They would consider the process to be of (quantum) Markov order ` = |M| if, for
any choice of JF and JH, the statistics at F were independent of the statistics at H, given the
outcomes at M. We thus arrive at the definition of (quantum) Markov order [6]:

definition 4 .4 ( ( quantum) markov order): A process is said to be of (quantum) Markov
order |M| = ` with respect to an instrument JM, if for all possible instruments {JF,JH} the
relation

PFMH(xF,JF|xM,JM; xH,JH) = PFMH(xF,JF|xM,JM) (4.64)

is satisfied, where, PFMH(xF,JF|xM,JM; xH,JH) denotes the probability to measure outcome
xF, given that the outcomes xM and xH were obtained at M and H, and the instruments JF,JM,
and JH were used to probe the system.

Importantly, the above definition is with respect to a fixed instrument JM. Demanding
for it to hold for all possible instruments at M, is too strict a requirement [6]. This fact
notwithstanding, a process could also have finite quantum Markov order with respect to a
whole family of instruments [6].

Before we analyze the basic structural properties of process tensors that satisfy Eq. (4.64), a
plausibility check of this definition is in order. Firstly, Markovian processes as defined in the
previous section, are processes of Markov order |M| = 1, where the instrument JM consists of
causal breaks only. In the Markovian case, any instrument that only consists of causal breaks,
would satisfy Def. 4.4, and as such, a Markovian process has Markov order 1 with respect to a
whole family of instruments. Secondly, if all instruments correspond to sharp (i.e., projective)
measurements (or sequences thereof) in a fixed classical basis, then it is easy to see that Def. 4.4
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coincides with the classical definition [6]. Consequently, this definition of (quantum) Markov
order fits in nicely with existing classical definitions, as well as the definition of Markovianity
in the quantum case that we introduced above.

Evidently, Eq. (4.64) imposes structural restrictions on a process tensor of Markov order `
with respect to the instrument JM. To see this, let the corresponding process tensor be TFMH,
and let the instruments be JX = {MxX}. Then, the outcome probabilities can be written as

PFMH(xF,JF; xM,JM; xH,JH) = TFMH ?MxF ?MxM ?MxM , (4.65)

while the respective conditional probabilities are given by

PFMH(xF,JF|xM,JM; xH,JH)

= (TFMH ?MxF ?MxM ?MxH )/(TMH ?MxM ?MxH ) , (4.66)

where TMH = 1
dFi

trF(TFMH) and dFi is the dimension of all the input spaces that correspond
to times in F..22 In order for Eq. (4.64) to be satisfied, we must have

TFMH ?MxF ?MxM ?MxH

TMH ?MxM ?MxH

=
∑xH

TFMH ?MxF ?MxM ?MxH

∑xH
TMH ?MxM ?MxH

:=
TFMH ?MxF ?MxM ?MH

TMH ?MxM ?MH
, (4.67)

where we have defined the overall CPTP map23 MH of the instrument JH. Evidently, for
Eq. (4.67) to hold for all instruments {JF,JH}, and all CP maps MxM belonging to the fixed
instrument JM, it is sufficient that the action of MxM leaves the process tensor in a product,
i.e.,

TFMH ?MxM = T(xM)
F ⊗ T̃(xM)

H , (4.68)

where T(xM)
F is a causally ordered process tensor on F, and the set {T̃(xM)

H } forms a tester on

H, i.e., T̃(xM)
H ≥ 0 and T(JM)

H = ∑xM
T̃
(xM)
H is a deterministic comb. Indeed, plugging Eq. (4.68)

into Eq. (4.67), we obtain (see also App. B.4 for more details)

P(xF,JxF |xM,JM; xH,JH) = T(xM)
F ?MxF = P(xF,JxF |xM,JM) (4.69)

Intuitively, the structure of Eq. (4.68) exactly mirrors the classical definition of Markov order;
once the outcomes on the memory block M are given, the future and past are independent,
which is reflected by the product structure of the RHS of Eq. (4.68) (see also Fig. 4.19). The
fact that the resulting ‘process’ T̃(xM)

H is not necessarily a causally ordered process, but only a
tester element, might seem counterintuitive at first sight. However, it arises from conditioning
on an outcome on the memory block, and as we have seen in Ch. 2, conditioning can lead

22 Due to the causal ordering of TFMH , contraction with any deterministic comb yields the same process on M and
F, i.e., TFMH ?MF = TMH for every deterministic comb MF. The definition TMH = 1

dFi
trF(TFMH) then follows

from the choice MF = 1F/dFi .
23 If the respective instrument extends over several times, then MH is a deterministic comb, and its elements are tester

elements. As this distinction does not really affect the following results, we shall often continue to call MH a CPTP
map, and JX an instrument (instead of a tester).
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Figure 4.19: Process with finite Markov order. Every outcome xM of the fixed instrument JM ‘cuts’
the process tensor into two independent parts. Consequently, the future is conditionally independent
on the history, given that instrument JM was used on the memory block.

to processes that are non-deterministic. We will return to this point in Ch. 6, where we use
conditioning to simulate causally disordered processes.

In Ref. [6], it has been shown, that requirement (4.68) is not just sufficient but also necessary
for a process to be of Markov order ` = |M|, which leads to the following theorem:

theorem 4 .2: Aprocess hasMarkov order ` = |M|with respect to an instrumentJM = {MxM}
iff its process tensor satisfies

TFMH ?MxM = T(xM)
F ⊗ T̃(xM)

H , (4.70)

where all the terms of the equality are as defined above.

For comprehensiveness, the proof of this structural statement is reproduced in App. B.4.
Its graphical representation can be found in Fig. 4.19. Importantly, even though each of the
outcomes xM occurs probabilistically, the instrument JM blocks the memory deterministically;
no matter what outcome the experimenter receives at M (when using the instrument JM ), the
corresponding statistics of future and history are independent of each other. Put differently, in
every run of the experiment, the future and the past are independent if the memory blocking
instrument JM is used at times in M.
Using Thm. 4.2, one can straightforwardly deduce the explicit structure of processes that

have finite Markov order with respect to an instrument, and investigate the wealth of different
memory structures that exist for such processes. Here, we shall refrain from providing this
(somewhat technical) analysis, and refer the reader to the comprehensive investigation in
Refs. [5, 6, 187].
Importantly, the process tensor framework, and the operationally clear-cut understanding

of memory effects it provides, allows one to generalize key concepts from the study of classical
stochastic processes, and enables the comprehensive study of temporal correlations in both
classical and quantum physics. Indeed, even the classical definition of Markov order is an
ante litteram example of an instrument dependent definition of Markov order, as it is phrased
with the implicit assumption that all of the employed instruments only consist of projective
measurements in the classical basis. Allowing for active interventions – as one can in classical
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physics, and must in quantum mechanics – makes the instrument dependence of Markov order
obvious, and provides a rich tapestry of classical and quantum processes with finite Markov
order [5].

4.10 open quantum processes – summary

In this chapter, we have shed light on quantum stochastic processes from a physically motivated
direction, that of open quantum system dynamics, where the system an experimenter can
manipulate, is coupled in an uncontrollable way to an unknown environment. Trying to
overcome the problem of initial system-environment correlations, and implementing multi-
time statistics into the framework, one is forced to switch to an operational perspective. Here,
instead of system states, as in the traditional approach, experimentally controllable parameters
are considered input to the process, while uncontrollable parts of the dynamics are considered
the process itself.

In a sense, this is a consequent continuation of the program of quantum channels, that arise
from encapsulating all uncontrollable parts of the dynamics in a map that maps the inputs
(quantum states of the system) to outputs (quantum states of the system). Following this
path, higher order quantum maps arise naturally as the descriptor of open quantum system
dynamics, and provide a powerful tool for the investigation of memory properties. In a sense,
the seemingly long detour we took when discussing higher order maps, investigating their
properties, and laying out their use for the description of general quantum stochastic processes,
led us right to the heart of the theory of open quantum system dynamics, and the concepts we
worked out enable the characterization of different kinds of dynamics and their complexity.
As such, we have arrived at a comprehensive and cohesive picture of higher order quantum
maps, quantum stochastic processes, and open quantum processes.
Having a handle on the memory structures of open processes, as provided by the process

tensor approach, is not simply of theoretical appeal; building near-term quantum technologies
will require effective methods for addressing non-Markovian noise [176]. Here, we discussed
the memory properties of processes, in particular the structure of Markovian processes and
processes with finite Markov order. The concepts of Markovianity and Markov order are first
and foremost logical statements about conditional independence of the future from the past,
given a set of previous outcomes. Using the operational approach, we extended these logical
concepts to definitions in the quantum case, that can be expressed as structural requirements
of the corresponding process tensor, and can be probed for experimentally. In turn, these
structural consequences of the logical definitions we provided, allow for a clear delineation of
the memory effects that can and cannot be detected by witnesses of non-Markovian effects.

A natural check for non-Markovianity is to see if a process is indivisible. We have shed light
on CP divisibility from an operational point of view, which helps us to understand and identify
the classes of temporal correlations that may evade such a check. However, there are trade-offs
between uncovering temporal correlations and the requisite number of experiments that must
be performed. Our results enable experimenters to make informed decisions about investing
resources in classifying the non-Markovian noise at hand. Furthermore, they allow for quanti-
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tative and tangible assertions about the amount and the type of temporal correlations present
in an experiment. As such, they provide the starting point for an operational understanding of
existing witnesses of non-Markovianity, that are predominantly based on the breakdown of
CP divisibility.

Given all of these advantages of the process tensor description, it would be ideal to have
the experimental means to fully reconstruct them in in the laboratory. However, there are
limitations to what an experimenter can do in practice. On the one hand, as we discussed, the
number of necessary experiments for reconstruction grows exponentially with the number of
time steps. While process tensors with one slot have been reconstructed in the laboratory [145]
reconstruction for more times proves prohibitively cumbersome. On the other hand, even if
the number of necessary experiments was manageable, the reconstruction of a process tensor
would still require for the experimenter to have full control over the system of interest. In many
experimental situation, such a level of control is out of reach. Both of these problems pose
limits on the usability of the process tensor approach in practice. While efficient tomography is
an interesting subject in its own right [188, 189] we will put this question aside in the following
chapter, and focus on the second problem of process tensor reconstruction by means of limited
resources.
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5
PROCES S TENSORS AND L IM ITED RESOURCES

The process tensor framework overcomes the problems that traditional approaches to the
description of open quantum system dynamics are plagued by. However, in order to reconstruct
it experimentally, i.e., in order to collect all accessible information about the underlying
dynamics, it is necessary to be able to perform manipulations of the system that constitute
a basis of all physical operations; that is, a basis of the set of (trace non-increasing) CP maps
acting on the system of interest. This requirement of full local control is not met in most
real-world experiments.

Generally, experimenters are only interested in the effects of a restricted set of manipulations,
or the set of available manipulations is fundamentally limited by the experimental setup. Well-
known examples are ubiquitous in the field of quantum control [149], where, e.g., shaped
laser pulses are used to control the dynamics of molecules [150] or partial measurements are
employed to steer the system of interest to a desired final state [151]. Other prominent examples
include dynamical decoupling experiments [152], and experimental setups in quantum optics,
where beam splitters and phase shifters can be used to implement arbitrary (single-photon)
unitary gates [190], but no non-unitary operations.

A very recent concrete and important example of such a scenario is provided by the publicly
available quantum computer by IBM [191]. This computer only allows for a sequence of one
and two-qubit unitary gates followed by a final measurement on each qubit; a priori, it is not
obvious how to experimentally reconstruct a process tensor for this scenario, i.e., a map that
yields the correct output states for any sequence of unitary input operations. Neither is it clear,
what the operational meaning and the mathematical properties of such an object would be.

Understanding processes when only limited control is available plays, for instance, an
important role in building a model of (non-Markovian) errors and error correction in the
non-Markovian regime [192–194]. Intuitively, measuring the output states corresponding to
only a limited set of sequences of control operations still provides some information about the
dynamics of the underlying dynamics. Naturally, given their experimental relevance, we aim
to answer two questions in this chapter: How can we reconstruct meaningful process tensors
for any level of experimental control, and what can we learn from the resulting reconstructed
objects?
All of the experimental procedures listed above can readily and meaningfully be cast in

the language of the process tensor formalism as mappings from sequences of experimental
operations to a final state when the experiment has concluded [2]. However, neither the
influence of laser pulses, nor partial measurements, nor unitary operations, when taken as
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distinct sets, constitute a basis of the set of all possible manipulations of the system of interest.
To make matters worse, these operations do not even constitute a convex space, let alone a
linear vector space. It is therefore unclear if a meaningful process tensor can be experimentally
reconstructed from this limited set of accessible manipulations.

Moreover, on top of the mere experimental reconstruction, we can ask what can be inferred
about correlations and memory effects based on the resulting restricted process tensors. As we
have seen, the complete process tensor allows one to determine whether there are detectable
correlations between the system and its environment, and/or memory effects in the dynamics.
At first sight, it is not obvious to what extent similar assertions can be made based on only a
limited set of available experimental operations.

Slightly rephrased, the overarching theme of this chapter is to investigate: what is the maximal
information that can be inferred about a process based on a limited set of experimental resources?
Thus, we shall bring the process tensor framework closer to experimental realities in this chapter.
The corresponding discussion and results are based on Ref. [2].

Similar questions considering the reconstruction of quantum channels based on incomplete
information have been investigated (and answered) in [195, 196], while Ref. [144] examined the
superchannel description of a process, when only projective measurements on the system can
be performed. The corresponding descriptor is well-defined defined on the set of projective
preparations and we will see that it is a particular case of the restricted process tensors we
introduce in this chapter.

Finally, besides the experimental appeal, employing the concepts introduced throughout this
chapter, we will be able to answer a question we encountered in Ch. 3: How can we characterize
the set of processes that appear classical to an experimenter with only classical means of
measurement? To do so, we shall use the breakdown of Kolmogorov conditions as the defining
signature of non-classicality and use the framework of restricted process tensors to provide
a full characterization of classical multi-step processes. Thus, we extend the corresponding
characterization of Markovian dynamics given in Ref. [80] to the general, non-Markovian case,
where memory effects play a non-negligible role.

We shall begin this chapter by tailoring the experimental reconstruction of process tensors to
the case of limited control, and furnishing the resulting experimental procedure with concrete
examples.

5.1 restricted tomographic reconstruction

The process tensor TN+1:1, with its action defined on control operations at times {t1, . . . , tN}
provides the full description of an open system’s dynamics, i.e., it maps every possible se-
quence of operations to the correct output state at tN+1. We briefly reiterate its experimental
reconstruction to motivate its extension to the case of limited control.
In Ch. 4 we have seen that it can be reconstructed by measuring the output states ρ(

~j )′ at
tN+1 corresponding to a basis {M~j} of sequences of operations at times {t1, . . . , tN}:

TN+1:1 = ∑
~j

ρ(
~j )′ ⊗m∗~j , (5.1)
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where {m~j} is the dual set to {M~j}. If the basis elements {M~j} consist of independent operations,
then we have

M~j = MjN ⊗ · · · ⊗Mj1 , (5.2)

and, analogously, the corresponding dual set is of the form

m~j = mjN ⊗ · · ·mj1 . (5.3)

In what follows, we will consider the operations that can be implemented at different times to
be independent. A generalization to temporally correlated controls is always straightforwardly
possible.

Evidently, Eq. (5.1) only yields the full process tensor (with all of its appealing mathematical
properties), if the output states ρ(

~j )′ at tN+1 are recorded for a complete basis of sequences of
control operations. This fact notwithstanding, by assuming a distinctly operational stance,
meaningful statements can be made about a process based on limited control: An experiment is
fully described if one can predict the correct output state for any experimentally performable
sequence of operations. We shall employ this point of view in conjunction with Eq. (5.1), to
derive operationally meaningful descriptors of situations with restricted resources.

To do so, let us denote the set of experimentally available operations that can be performed
by the experimenter by R. For example, R could be the set of unitary operations acting
on the system, or a set of operations generated by a finite control algebra [152]. Now, this
restricted set of operations spans a vector space that we denote by W := Span(R), i.e., the
vector space W consists of linear combinations of elements of R. As we alluded to above,
a proper descriptor of an experimental procedure where at each time tα only the set R of
operations can be performed, must map every available input operation sequence to the correct
output state. The reconstruction of this descriptor, which we will henceforth call a restricted
process tensor follows directly from Eq. (5.1): It can be reconstructed by measuring the output
states corresponding to a basis of performable operations, which, in this case, is the basis of the
space W that R spans.1

In detail, there exists a set {Rγ}dw
γ=1 ⊂ R that constitutes a basis of W, where dw is the

dimension of W. Following Eq. (5.1), the restricted process tensor TR
N+1:1 is then given by

TR
N+1:1 = ∑

~γ

ρ′~γ ⊗ r∗~γ, (5.4)

where ρ′~γ is the output state corresponding to the sequence of operations R~γ = RγN ⊗ · · · ⊗ Rγ1

and {r~γ} is the dual set to {R~γ} [2]. Due to linearity, the resulting restricted process tensor
TR

N+1:1 yields the correct output state for any (possibly temporally correlated) admissible
sequence RN:1 that lies in W⊗N ; any such sequence can be written as a real linear combination
RN:1 = ∑~γ c~γR~γ of basis elements R~γ, with c~γ ∈ R, and hence we have

T R
N+1:1 [RN:1] = TR

N+1:1 ? RN:1 = ∑
~γ,~ω

c~γ ρ′~ω tr(r†
~ω R~γ) = ∑

~γ

c~γ ρ′~γ ,

1 We shall assume throughout this chapter that, at the end of the experiment, full state tomography can be performed.
However, the respective arguments would not change if at tN+1 only a set of measurements that is not IC can be
performed. In this case, the respective outputs that we use in the derivation of restricted process tensors have to be
adjusted accordingly.
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which means that the operator TR
N+1:1 reconstructed via Eq. (5.4) maps every experimentally

feasible operation in W⊗N to the correct output state. Importantly, in general, W contains
a larger set of CP maps than R. For example, the space spanned by the set of unitary maps
contains all unital maps (see Sec. 5.2.1 below), and a restricted process tensor reconstructed
from a set of unitary operations can predict the output state for any sequence of unital maps.

Eq. (5.4) establishes how a process tensor for an N-step process can be reconstructed based
on a restricted set R of local operations; given R, one derives the dimension dw of the vector
space W that R spans, determines a set {Rγ}dw

γ=1 ⊂ R of dw linearly independent operations,
and measures the output state for each of the dN

w possible R~γ. The reconstructed process tensor
yields the correct output state for any admissible sequence of operations RN:1 ∈W⊗N.

Unsurprisingly, outside the space W, the restricted process tensor does not yield meaningful
results; the vector space of all possible sequences of local operations at N times can be decom-
posed as

[
W ⊕W⊥

]⊗N, where W⊥ is the orthogonal complement of W, i.e., tr(w†w′) = 0
for all w ∈ W, w′ ∈ W⊥. Denoting a basis of W⊥ (W ) by {w′β}

d4−dw
β=1 ({Rγ}dw

γ=1), where d
is the dimension of the system of interest, the set of all possible N-fold tensor products of
elements of {Rγ} and {w′β} forms a basis of W⊗N =

[
W ⊕W⊥

]⊗N , and it is easy to see that

every basis element that does not exclusively contain elements of {Rγ}dw
γ=1 lies in the kernel of

T R
N+1:1. Consequently, the action of T R

N+1:1 and the corresponding full process tensor TN+1:1

coincide on W⊗N , but the restricted process tensor does not allow for meaningful predictions
of the output state for any sequence of operations BN:1 /∈W⊗N .

By how much the full and the restricted process tensor differ depends both on the number
of basis elements that get mapped to zero by T R

N+1:1, i.e., the dimension of its kernel, as well as
the action of the full process tensor on said basis elements. The number is given by d4N − dN

w ,
while the action of T N+1:1 outside of W⊗N depends on the system-environment unitary maps
that govern the evolution in between the times {tα}. Importantly, once the restricted process
tensor has been reconstructed, there is no further information about the process, that can be
gathered by means of operations in the set R, and as such, TR

N+1:1 is the maximal descriptor of
the process for the given experimental situation.

5.2 projective measurements and unitary control

Before we examine the mathematical properties of restricted process tensors, it is instructive
to illustrate their explicit reconstruction for two concrete extremal examples of experimental
control – the case where only unitary operations are available, and the case where only
projective measurements can be performed. These two cases are extremal in the sense that
unitary operations do not allow one to infer any information about the state of the system,
while projective measurements provide direct access to information, but lead to a collapse
into a definite (pure) state, and destroy system-environment correlations. As they decouple
the system from its environment, projective measurements enable the construction of direct
witnesses of correlations (see Sec. 5.4). On the mathematical side, these two sets of operations
are tractable enough to derive the dimensions of their respective spans.
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Additionally, unitary gates play a fundamental role in quantum computation [19, 191],
while the scenarios where only projective measurements would, for example, suffice to fully
reconstruct Markovian processes. Together, unitary maps and projective measurements are
exhaustive in the sense that being able to perform both unitary operations as well as projective
measurements is tantamount to having full experimental control over the system of interest.
For example, every causal break can be considered a projective measurement followed by a
unitary map that is independent of the measurement outcome.

5.2.1 Unitary Operations

A unitary map V : B(Ho
α) → B(Hi

α) acting on a quantum state ρ ∈ B(Ho
α) at time tα is of

the form V [ ρ] = Vρ V†, where V ∈ SU(d) is a unitary matrix. It is straightforward to see
that, up to normalization, a unitary map V corresponds to a pure, (unnormalized) maximally
entangled state V ∈ B(Hi

α ⊗Ho
α). We denote the span of the set of unitary maps by WU. As

trαi V = 1oα and trαo V = 1iα, any element Y ∈WU can be written as a real linear combination

Y = ∑
µ

bµ

(
1iα ⊗ 1oα +

d2−1

∑
k,l=1

c(µ)kl σi
k ⊗ σo

l

)
, (5.5)

where
{

σxk
}
are the d2 − 1 traceless generators of SU(d). The converse also holds; any map

that can be expressed in the form of Eq. (5.5) lies in WU [197]. The set of completely positive
maps contained in WU coincides with the set of unital maps (those that leave the completely
mixed state invariant) [198].

From the fact that the operators {1iα⊗1oα, σi
k ⊗ σo

l }
d2−1
k,l=1 are linearly independent, we deduce

that WU is du = (d2 − 1)2 + 1 dimensional (whereas the space of all possible local operations
is d4-dimensional). For example, in the qubit case we have du = 10 and a basis of WU that
consists of unitary maps can be readily constructed [2] (see App. C.1). In the general, higher
dimensional case, it is sufficient to randomly choose a set of du linearly independent unitary
maps for the construction of the restricted process tensor.
A process tensor T U

N+1:1 constructed based on the set of unitary local operations can be
meaningfully applied to any sequence YN:1 ∈W⊗N

U of (possibly temporally correlated) unital
maps. This means that, by measuring the output states for [(d2 − 1)2 + 1]N sequences of
independent unitary operations, the output state for any sequence of unital maps can be
predicted, and in a laboratory with only unitary operations at their disposal, the experimenter
has maximal deducible information about the process at hand.

5.2.2 Projective Operations

If the experimental setup only allows for projective measurements (in arbitrary bases) of the
system of interest, the set RP of available operations coincides with rank-1 projective maps
Pγ ∈ B(Ho

α ⊗Ho
α). We denote the span of RP by WP. The action of a projective map Pγ on a

quantum state ρ ∈ B(Ho
α) is given by

ρ′γ = Pγ[ ρ] = ΠγρΠγ = Πγ tr(Πγρ), (5.6)
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where Πγ is a projector on a pure state, and we have Pγ = Πγ ⊗ΠT
γ. The (unnormalized)

state ρ′γ after the action of Pγ is given by Πγ, and tr(ρ′γ) = tr(Πγρ) yields the probability to
measure the outcome corresponding to Πγ. Unlike unitaries, projective measurements destroy
any correlations between the system and its environment, as Pγ ⊗ Ie[ρse] = Πγ ⊗ trs[(Πγ ⊗
1e)ρse], where ρse is a system-environment state. Consequently, they can be used to construct
witnesses for system-environment correlations (see Sec. 5.4 and Ref. [144]).

As every projective map is of the form Pγ = Πγ ⊗ΠT
γ, any map N ∈WP can be written as

N = ∑
ν

bν Πν ⊗ΠT
ν , (5.7)

where Πν are pure states and bν ∈ R. WP is at most 1
4 d2(d+ 1)2 dimensional [2] (see App. C.2).

For the qubit case, a set {Πγ} of 1
4 d2(d + 1)2 = 9 pure states that correspond to linearly

independent maps {Pγ} has been constructed in Ref. [144]. For completeness, this set is
reproduced in App. C.2.
For example, a one-slot process tensor T P

2:1 (i.e., a superchannel) constructed based on
projections alone can be obtained by measuring the output states at t2 for 1

4 d2(d + 1)2 linearly
independent projections Pγ ∈ RP that were performed at t1. From examination of Eq. (5.7),
we see that it can be meaningfully applied to any CP map N that satisfies tr1o(N) ∼= (tr1i(N))T,
where we use ‘∼=’ instead of ‘=’ as both elements live on different – albeit isomorphic – spaces.
Analogously, an N-step restricted process tensor T P

N+1:1 can be reconstructed by measuring
the output states for 1

4 [d
2(d + 1)2]N linearly independent sequences of projections; it can be

applied to any physically admissible sequence of operations in W⊗N
P .

5.3 properties of restricted process tensors

The reconstruction scheme presented above shows how to obtain the maximal amount of
information that can be deduced about the process at hand by means of limited resources.
Naturally, besides the mere reconstruction, we are also interested in the structural properties
of the reconstructed restricted objects.

The full descriptor TN+1:1 of a process satisfies several important mathematical requirements,
each of them corresponding to a physical property of open quantum system dynamics. Here,
we shall discuss which of these properties still hold for restricted process tensors, and which of
them break down.
First, TN+1:1 acts linearly on the set of experimental interventions. This property is, by

construction, also satisfied by restricted process tensors TR
N+1:1, and the action of TN+1:1 and

TR
N+1:1 is identical on W = Span(R). Secondly, TN+1:1 displays a ‘containment property’ [32]

that we have already encountered when discussing the generalized Kolmogorov conditions that
apply for process tensors. Given TN+1:1, defined on times {t1, . . . , tN+1}, all process tensors
defined on subsets Λk ⊂ {t1, . . . , tN+1} can be obtained from TN+1:1. A priori, it is unclear if
this property also holds for restricted process tensors, and we will see shortly that in general,
restricted process tensors only possess a partial containment property.
Finally, process tensors are completely positive, and, in the correct sense, trace preserving.

As it turns out, neither of these properties is meaningful for restricted process tensors, as they
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Figure 5.1:Containment property of process tensors. Intermediate slots can be ‘removed’ by contracting
them with an identity channel, represented by Φ+, while final slots can be ‘removed’ by contraction
with a deterministic comb. Here, the process tensor T{t5,t2} defined on times {t5, t2} is obtained from
T5:1 defined on {t5, . . . , t1} by applying an identity map at t1 and t3 and a deterministic comb M5o4i

over the final time step. For improved visibility, the labels of the wires are placed above them.

do not even necessarily output proper states when acting on operations that lay outside W,
and in general their Choi states do not have to be positive or satisfy trace constraints. We
will discuss the breakdown of complete positivity and trace preservation for restricted process
tensors in detail after deriving their partial containment properties. Analogously, we shall
investigate trace preservation of restricted process tensors, and see, that is is not well-defined,
either.

5.3.1 Partial Containment Properties

As we have discussed in detail in Ch. 3, descriptors of a quantum stochastic process for different
sets of times satisfy a generalized containment property. Given the descriptor TΛK of a process
defined on times ΛK the correct descriptor TΛk defined on the times Λk ⊆ ΛK is obtained by
letting TΛK act on identity maps at the excessive times, i.e.,

TΛk = TΛKFα∈ΛK\Λk
Φ+

α . (5.8)

Here, the situation is slightly different, as the process tensors we consider have – in contrast
to the scenario discussed in Ch. 3 – a final open output line. However, the reasoning is still
fundamentally the same, with one slight difference.

To see this, consider a process tensor T5:1 with slots at times {t4, t3, t2, t1} and a final output
wire at t5 (see Fig. 5.1). If we want to obtain the correct process tensor T{t4,t2} that has one slot
at time t2 and a final open wire at t4, we have to contract the slots at t1 and t3 with identity
maps. The remaining wires that are not part of T{t4,t2}, i.e., the wires labeled by 4i and 5o

in Fig 5.1, cannot be contracted with an identity map, as they do not form a slot. However,
due to the causality constraint that T5:1 satisfies, the remaining wires (corresponding to the
spaces B(Hi

4) and B(Ho
5)) can be contracted with any deterministic comb to yield the correct

‘marginal’ (see Fig. 5.1). This slight difference of marginalization process is entirely technical in
nature, and does not represent a fundamental difference in how process tensors and quantum
stochastic processes are marginalized.
Now, to see in what sense restricted process tensors satisfy containment properties, let us

consider the analogous example of a restricted process tensor TR
5:1 defined on times {t5, . . . , t1},

and we wish to deduce the correct restricted process tensor TR
{t4,t2} defined on times {t4, t2},

with no initial input wire and a final output wire at t4 (see Fig. 5.1 for orientation). If the

111



process tensors and limited resources

Figure 5.2: Partial containment property. While the state of the system at t4 cannot generally be
deduced from TR

5:1, probabilities for intermediate operations (or sequences thereof) that lie in R can be
obtained. In the figure, the probability for the implementation of the map R2i3o ∈ R is represented.

experimental setup allows one to do nothing at a time step, i.e., Φ+ ∈ R, then we can contract
TR

5:1 with identity maps at times {t1, t3} to obtain

TR
{t5,t4,t2} = TR

5:1 ? Φ+
3 ? Φ+

1 , (5.9)

the correct restricted descriptor on times {t2, t4, t5}. If the experimental setup does not allow
one to do nothing, we can replace the identity map with the respective default map2 for the
process in the above equation, and, again, obtain the corresponding correct descriptor on
{t5, t4, t2}.
Now, in order to obtain the restricted process tensor that ends at t4 instead of t5, we would

have to be able compute the state of the system at t4 for any earlier sequence of implementable
operations. In general, the set R of available operations does not allow one to do so. For instance,
if the operations that the experimenter can implement are unitary (with measurements only
available at the final time t5), no information about the system is obtained when the respective
operations V1, . . . ,V4 are performed, and a restricted process tensor that was reconstructed
for sequences of unitary operations would not allow one to infer the state of the system at any
of the times tα 6= t5. However, the restricted process tensor TR

{t5,t4,t2} computed according to
Eq. (5.9) would enable the correct prediction of the probability of implementation of a CP map
R2i2o ∈ R at time t2, where we label maps by the respective Hilbert spaces they are defined
on, to simplify orientation. To compute it, we have to contract TR

{t5,t4,t2} with R2i3o and any
experimentally performable deterministic comb M5o4i4o = 1o5 ⊗M4i4o , where M4i4o ∈ R, i.e.,
this probability is equal to

TR
{t5,t4,t2} ? R2i3o ? 1

o
5 ⊗M4i4o . (5.10)

See Fig 5.2 for a graphical representation. With this, we can define a restricted process tensor

TR
{t2} = TR

{t5,t4,t2} ? (1
o
5 ⊗M4i4o) , (5.11)

that has one open slot at t2 and lets one predict the probability of implementation of any
CP map in R that is performed at t2, but not the corresponding output state at t4. In a sense,
it corresponds to the correct restricted process tensor TR

{t2}, but with the final output wire
cauterized. Consequently, while from TR

ΛK
we cannot in general obtain a restricted process

2 This could, for example, happen if the respective experimental setup is immobile, and different parts of it cannot
be turned off or removed independent of the rest. The default map at a time tα would then be the overall CPTP
map corresponding to the respective element of the setup.
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tensor TR
Λk

for fewer times Λk ⊂ ΛK, that yields the correct output states at the final time
tmax = max(Λk), we can always obtain a process tensor that yields the correct probabilities
on operations on any subset of times [2]. This process tensor is obtained by contracting the
given restricted process tensor TR

ΛK
with identity maps at times tα ∈ ΛK \ Λk that satisfy

tα < tmax = max(Λk), and with a performable deterministic comb on times tα ∈ ΛK \Λk

that satisfy tα ≥ tmax = max(Λk).
The resulting object might, in some cases, be trivial. For example, when the performable

operations are unitaries, all performable operations are CPTP, and the probability of implemen-
tation is (trivially) equal to 1. However, in more general cases, it yields the correct probability
to perform any non-deterministic sequence of CP operations that the restricted process tensor
can meaningfully act upon, and is thus a meaningful descriptor for the respective subset of times.
In this well-defined sense, restricted process tensors possess a partial containment property.
A particular case of experimental control is the one, in which the set of operations R

that is available to the experimenter allows them to perform an informationally complete
measurement. Given this experimental control, it is possible to derive ‘actual’ intermediate
restricted process tensors, that allow one to not only obtain the correct outcome probabilities,
but also the final state at any time tα ∈ ΛK. Availability of an informationally complete
measurement implies that the state of the system at each time can be inferred by simple post-
processing of the data contained in TΛK , and consequently all intermediate restricted process
tensors can be constructed [2] (see App. C.3 for details). This is the case when the set of
performable operations coincides with the set of projective measurements, and is the reason,
why classical processes display containment properties. Here, the set of projectivemeasurements
in the computational basis is informationally complete, and hence the a priori restricted
information given by joint probability distributions allows one to derive all descriptors for
fewer times by simple marginalization.

5.3.2 Complete Positivity and Trace Preservation

In Ch. 4 we discussed the meaning of complete positivity for process tensors. Basically, this
property ensures that every sequence of CP maps that acts on the system of interest and
potentially some ancillary degrees of freedom gets mapped to a completely positive map.

For restricted process tensors TR
N+1:1, complete positivity is not a well-defined property. By

construction, they can only be meaningfully applied to a subset of control operations, while
they yield physically nonsensical results for operations outside this subset. Put differently, there
are control operations M(sa)

N:1 defined on the system of interest and an ancilla, whose restriction
to the system degrees of freedom lies outside the set of operations that TR

N+1:1 is defined on.
In turn, this also implies that TR

N+1:1 is not necessarily a positive matrix, but can always be
extended to one (that is, its unrestricted counterpart TN+1:1). We should emphasize, though,
that even in the special case where the Choi state of a restricted process tensor is positive,
complete positivity is still not a well-defined property; a positive matrix TR

N+1:1 would indeed
map every CP map M(sa)

N:1 onto a CP map, but if M(sa)
N:1 lies outside the domain where TR

N+1:1 is
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well-defined, then the resulting map will not necessarily correspond to what would be observed
in the actual experiment.
Nonetheless, restricted process tensors are – unlike the non-CP briefly maps discussed in

the previous chapter – operationally well-defined and the possible ‘break-down’ of complete
positivity is not fundamental but merely due to the description of the process we chose. This
situation is similar to incomplete tomography of a quantum state; the probabilities obtained
from probing a state with a POVM that is not informationally complete might be faithfully
reproduced by a non-positive ‘density matrix’. This matrix would yield correct probabilities for
each of the POVM elements used to probe the state in the first place, but would not contain any
information about probabilities for other POVM elements. Quite obviously, the non-positivity
of such a ‘density matrix’ is neither fundamental, nor does it imply negative probabilities, but
is simply a remnant of the chosen representation.
An important example for a limited set of operations that always leads to a completely

positive restricted process tensor is when the performable operations are only projective
measurements in the computational basis. This is exactly the case for classical processes. Here,
the CP maps {|k〉〈k| ⊗ |k〉〈k|}d

k=1 are self-dual, and a process tensor reconstructed with these
duals is, by construction, positive. Nonetheless, such a restricted process tensor obtained from
projective control operations cannot be meaningfully applied to any control operation outside
the span of projective operations, even though it will always yield positive probabilities.
Finally, restricted process tensors do not necessarily satisfy causality constraints, i.e., they

are not trace preserving. While the structure of a restricted process tensor has to be such that
no performable causally ordered control comb can have any influence on past measurement
statistics, this requirement does not have to hold for deterministic control combs that the
restricted process tensor can not be meaningfully applied to. As was the case for complete
positivity, though, any restricted process tensor TR

N+1:1 can always be extended to a causally
ordered object (namely TN+1:1).
Before we continue, it is instructive to briefly review what we have learnt about restricted

process tensors so far: Restricted process tensors are distinctly operational objects in the
sense that they contain the maximum amount of information that can be inferred about a
process, given certain experimental limitations. For their construction, we give up axiomatic
considerations about the properties that open dynamics should satisfy, and switch to a full
input/output picture of dynamics; once the output state corresponding to any implementable
sequence of operations can be predicted, the process at hand is fully described for practical
purposes. This is exactly the descriptor that is provided by the restricted process tensor.
While some of the nice mathematical properties of full process tensors fail to hold in the

restricted case, importantly, we still recover partial containment properties. Perhaps most
notably, restricted process tensors have a clear-cut operational meaning, unlike NCP maps. A
priori, though, it is unclear, what additional conclusions can be drawn from the information
contained in a restricted process tensor. This question will be the subject of the subsequent
sections.
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5.4 witnesses for system-environment correlations from limited control

(a) Initial se-correlations. (b) Reconstruction of ΞR
2:1. (c) ‘Reconstruction’ of ξ2:1.

Figure 5.3: Different scenarios in the reconstruction of T2:1 and/or TR
2:1 (represented by the respective

dotted lines). If there are initial se-correlations, then χse = ρse − ρs ⊗ ηe 6= 0. The corresponding
‘reconstruction’ of ξ2:1 depicted in (c) is fictitious, and done by post-processing of T2:1.

5.4 witnesses for system-environment correlations from limited control

One of the key features of the process tensor formalism is that it can describe the dynamics
of open systems that are initially correlated with their environment. Additionally, besides
providing a descriptor of the dynamics, it allows for the unambiguous detection of correlations
and, more generally, memory effects. We shall now investigate, the extent to which similar
statements can be made based on limited process tensors.
First, we discuss the detection of initial correlations between the system of interest and

its environment. Such correlations are a generic feature of most experiments and represent a
record of past system-environment interactions. Therefore, detecting initial correlations, in
turn, implies detecting non-Markovian dynamics [2].

To see if it is still possible to witness se correlations by means of a restricted set R of control
operations, consider an initial system-environment state (before preparation) of the form

ρse = ρs ⊗ ηe + χse, (5.12)

where ρs = tre ρse, ρe = trs ρse, and χse = ρse − ρs ⊗ ηe contains all initial correlations
between the system of interest and its environment. If we had full experimental control, we
could probe the correlations by reconstructing a one-slot process tensor T2:1 defined on times
{t1, t2}, and check if it is of product form, i.e., if T2:1 = L2:1 ⊗ ρs, where L2:1 ∈ B(Ho

2 ⊗Hi
1)

is a CPTP map from t1 to t2 and ρs ∈ B(Ho
1) is the initial state of the system. Any deviation

ξ2:1 := T2:1 −
1
d

tr1o(T2:1)⊗ tr1i2o(T2:1) (5.13)

from this product form implies the existence of initial correlations. It is straightforward to see
that ξ2:1 can be expressed directly in terms of the se correlation term χse as

ξ2:1 = χse ? U2:1 ? 1e , (5.14)

where U2:1 is the se unitary map between t1 and t2 [31] (see Fig. 5.3 for a graphical repre-
sentation). ξ2:1 encapsulates the time evolution of the initial correlations χse. Importantly,
ξ2:1 6= 0 implies that the initial state ρse was correlated, while ξ2:1 = 0 merely implies that if
initial correlations were present, the unitary U2:1 does not allow for their detection via local
operations. In this sense, ξ2:1 is the maximal information about correlations that can be inferred
via local operations alone.
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Figure 5.4: Preparation of a product state. Two copies of the initial state, ρse and ρs′e′ , are created and
their system degrees of freedom are swapped. Subsequently, the degrees of freedom of the second copy
are disregarded. The resulting se state is of product form ρs ⊗ ηe. For better delineation, the wires that
correspond to degrees of freedom that are discarded are depicted in gray.

The direct derivation (5.13) of the correlation memory matrix ξ2:1 from T2:1 relies on the
fact that the experimenter has full control over the system of interest and its derivation is not
directly applicable to TR

2:1. Indeed, simply reiterating the derivation (5.13) would, in general,
yield false positives for witnessing correlations [2]. Even if the underlying process is Markovian,
there is no reason, why the corresponding restricted process tensor would have to be of product
form, and as such, a potential ξR

2:1 computed for a restricted process tensor TR
2:1 via Eq. (5.13)

might not vanish, even though the process is Markovian. In particular, this holds true, if the
available control operations are not causal breaks, i.e., not of product form.
However, there are several ways around this problem. Firstly, imagine an experimental

situation that allows for the preparation of two copies of the initial state, ρse and ρs′e′ , and
admits a swap operation between the two states. In detail, let Sss′ be a swap operation between
the system Hilbert spaces Hs and Hs′ of the two prepared initial states. With this, we can
prepare an initial product state by swapping the system degrees of freedom of both states,
and subsequently discarding the degrees of freedom of the second copy of the se state [2] (see
Fig. 5.4):

trs′e′
{

Sss′ [ρse ⊗ ρs′e′ ] S†
ss′

}
= ρs ⊗ ρe , (5.15)

where trs′e′ denotes the trace with respect to the degrees of freedom of the second copy
of the system-environment state. Now, using this product state as the initial state, we can
experimentally reconstruct the restricted process tensor ΞR

2:1 for this situation (see Fig. 5.3b)
and compare it to the original restricted process tensor TR

2:1; if they do not coincide, then there
are initial se correlations.
The corresponding correlation-memory matrix ξR

2:1 = TR
2:1 − ΞR

2:1 contains all the infor-
mation about correlations that can be detected by local preparations that are an element of
Span(R). As already mentioned, this construction is not equivalent to simply reiterating
Eq. (5.13) for restricted process tensor, i.e., is not obtained by post-processing of TR

2:1, but by
experimental reconstruction of both TR

2:1 and ΞR
2:1. Importantly, ξR

2:1 by construction cannot
yield false positives for the presence of initial system-environment correlations; if ξR

2:1 6= 0,
then there exist initial system-environment correlations. If, on the other hand ξR

2:1 = 0, no
correlations that can be detected by local preparations in Span(R) are present. Depending
on the dimension dw of Span(R) and the total system-environment dynamics U2:1, ξR

2:1 and
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ξ2:1 can contain the same information about the existence of initial correlations; in general,
though, they will differ (see Sec. 5.5.1 for explicit examples).

In principle, the swap operation enables the construction of witnesses for correlations for any
set R of available local operations, without requiring any knowledge of the initial system state
ρs (unlike, e.g., the similar correlation witnesses proposed in [168, 169, 199] and experimentally
reconstructed in [200]). This construction of witnesses makes full use of the resources available
to the experimenter, and ξR

2:1 is evidently the maximum of information about correlations
that can be inferred based on operations in R. However, its reconstruction requires both the
preparation of two copies of the same initial state as well as the availability of a swap operation
between the respective system degrees of freedom.
If the experimental setup does not allow one to deduce ξR

2:1, the feasibility of witnesses for
correlations depends on the set R of available operations. If Span(R) contains operations
M(α)

1o1i that decouple the system from its environment and map the system to a known state,
then witnesses can be straightforwardly reconstructed. For example, this is the case when the
set of available operations contains projective measurements (see Sec. 5.2.2 and [144]). Such
operations in general have the form of causal breaks, i.e.,

M(α)
1o1i = ρ

(α)
1i ⊗ E

(α)
1o , (5.16)

where E(α)1o is a POVM element and ρ
(α)
1i is a quantum state. Evidently, if the dynamics is

Markovian, then

TR
2:1 ? E

(α)
1o = pαOR

2:1 , (5.17)

where p ∈ [0, 1] is the probability to measure the outcome corresponding to E(α)1o and OR
2:1 ∈

B(Ho
2 ⊗Hi

1) is a (not necessarily positive) matrix that is independent of α. Basically, what
Eq. (5.17) says is that if the dynamics is Markovian and the experimenter has access to causal
breaks, they could perform partial tomography of the channel L2:1 from t1 to t2, yielding OR

2:1.
If they discover, that this channel (or rather the resulting matrix) depends on the measurement
outcome α, i.e., if Eq. (5.17) does not hold, then they know that there are initial correlations
that influence the dynamics of the system.
In what follows, for sake of clarity, we will focus on the case where ξR

2:1 can actually be
constructed, and compare its ability to detect initial correlations with that of ξR

2:1.

5.4.1 Witnesses for Non-Markovianity

If an experiment consists of more than one time-step, we can make assertions about the
propagation of memory effects throughout the dynamics. As we have seen in the previous
chapter, memory effects are present if for the same input state at tα, but different histories (or
trajectories [7]) of previous operations, the future statistics differ. Equivalently, expressed in
terms of link products, a process is Markovian iff at every time tα ≤ N, we have

TN+1:1 ?Mα:1 ∝ TN+1:α (5.18)
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Figure 5.5: Markovian process tensor. For every Tester element Mα:1 that ends on an output of the
process tensor, the resulting object TN+1:1 ?Mα:1 has to be – up to normalization – a proper process
tensor TN+1:α that is independent of Mα:1.

where TN+1:α ∈ B(Ho
N+1 ⊗ · · · Hi

α) is a proper process tensor and independent of Mα:1 ∈
B(Ho

α ⊗ · · · ⊗ Ho
1). Importantly, the above equation only holds if Mα:1 ends on an output

space of the process tensor (see Fig. 5.5).
Demanding Eq. (5.18) to hold for all tα then implies the product structure (4.40) ofMarkovian

processes:

TMarkov
N+1:1 = LN ⊗ LN−1 ⊗ · · · ⊗ L1 ⊗ ρs , (5.19)

where each Lα is a channel from tα to tα+1.
For the investigation of the Markovianity of a process by means of restricted process tensors,

there are – just like for the case of initial se-correlations – two cases that have to be distinguished.
Firstly, whenever Span(R) contains at least one causal break, Eq. (5.18) can be evaluated

directly; if we find different performable histories Mα:1,M′α:1 ∈ R⊗α (ending on an output of
the process) such that at some time tα

TR
N+1:1 ?Mα:1 �∝ TR

N+1:1 ?M
′
α:1 (5.20)

then the process is non-Markovian. As for the case of full control, this criterion can be tested for
in a finite number of experiments, but requires that the experimenter can perform operations
that end on an output, i.e., allow for the preparation of fresh states that are independent of the
history. Naturally, the converse of Eq. (5.20) does not hold; if the restricted set of operations
fails to detect a history dependence/memory, it does not mean that there is none, rather, that it
could not be detected within the experimental limitations. An example of an experimental setup
for which Span(R) contains causal breaks, but does not allow to unambiguously decide for
the existence of memory effects is one in which the experimenter can only perform projective
measurements.
The second case that has to be investigated is the one where Span(R) does not contain

causal breaks and a direct evaluation of Eq. (5.20) is not possible. A prominent example of
this is the case where R is the set of unitary operations (see Sec. 5.2.1). As the detection of
non-Markovianity hinges on the availability of causal breaks, such a set of local operations
seems to be inadequate for the investigation of the Markovianity of a process. However, as
discussed above, such a set of operations can, in principle, be employed for the detection of se
correlations, if an additional swap operation can be performed.

It is intuitively clear that, if correlations can be detected at any time via local operations, the
process must be non-Markovian [2]. Correlations constitute a memory of past interactions, and
their detection implies that memory plays a non-negligible role in the process. Consequently,
non-Markovianity can be tested for by checking for system-environment correlations at each
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time tα, for varying earlier sequences of operations Mα:1. Again, the converse statement does
not hold. On the one hand, a restricted set of local operations does not necessarily allow for
the detection of all locally detectable correlations. On the other hand, a process can also be
non-Markovian without any system-environment correlations being present at any point in
time [105].

Additionally, it is questionable if an experimental setup that does not allow for causal breaks
offers the possibility of a swap operation with an additional auxiliary system. Consequently,
the resort to the detection of non-Markovianity via the detection of se correlations by means
of a swap operation is rather mentioned for completeness than potential applicability. For a
feasible direct detection of non-Markovianity, causal breaks are inescapable.

A very interesting alternative approach for the detection and quantification of non-Markovian
effects based on restricted experimental control has recently been proposed in [148]. There,
the authors trained a machine learning algorithm to decide, whether or not a given dynamics
was Markovian. Specifically, under the assumption that the experimenter can only perform
one of the Pauli matrices {1, σx, σy.σz} at each time tα (and a measurement at the final time
tN+1), i.e., only reconstruct a restricted process tensor, they trained the algorithm on a set of
known circuits to decide both the presence of memory, as well – when it existed – the size
of the corresponding environment, for new, unknown dynamics. Naturally, this approach is
limited by the size of the environment that the algorithm can be trained on. Here, we will not
follow this route, and stick with the restricted correlation matrices ξR

2:1, that can, in principle
be reconstructed, and possess a clear-cut operational interpretation.

5.5 examples and applications of restricted process tensors

Having introduced restricted process tensors in the previous sections, it is now time to illustrate
the concepts we encountered for some instructive examples, chosen such that the effects we aim
to study are present and can be straightforwardly investigated. Consequently, we are not going to
present examples with fully realistic dynamics, as the corresponding computational complexity
would overshadow the conceptual points we want to make. This fact notwithstanding, the
reconstruction of restricted process tensors and of the witnesses for correlations and memory
effects that we have presented in the previous sections, is, in practice, independent of the
complexity of the underlying dynamics, and scales with the size of the system of interest and
the number of time steps ‘only’.3 As such, even though our examples are toy models, the
corresponding experimental reconstruction of TR

N+1:1 would, in principle, be no more difficult
than for any other kind of dynamics.

5.5.1 Reconstruction of Qubit Dynamics

It is instructive to start the illustration of the reconstruction of restricted process tensors and
correlation witnesses with a low dimensional and computationally accessible example. For ease
of notation, for the most part, we restrict the investigation to the one-slot process tensors TU

2:1

3 As for the case of full process tensors, it scales exponentially with the number of times it is defined on.
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and TP
2:1, reconstructed from local unitary and projective maps, respectively. The generalization

to restricted N-slot process tensors is always possible in a straightforward way.
The simplest conceivable open quantum system is the case of a qubit coupled to another qubit

that serves as the environment. While in general the initial system-environment state before
preparation is considered constant and part of the dynamics, here, we shall investigate a family
of initial states in order to explicitly analyze the set of detectable correlations. We choose the
seven-dimensional family of X-states [201, 202] as a blueprint for initial system-environment
states ρse. X-states are states of the form

ρX
se =


a11 0 0 a14

0 a22 a23 0

0 a∗23 a33 0

a∗14 0 0 a44

 (5.21)

in a given basis (in our case the eigenbasis of σs
z ⊗ σe

z ). Eq. (5.21) describes a valid quantum
state iff ρX

se has unit trace, a22a33 ≥ |a23|2 and a11a44 ≥ |a14|2. The family of X-states includes
both entangled states and separable, as well as product states. Hence, it is well-suited for the
analysis of the detectability of correlations by means of local unitary operations or projective
measurements. For our system-environment Hamiltonian we choose

Hse = ω
(

σs
x ⊗ σe

x + σs
y ⊗ σe

y + σs
z ⊗ σe

z

)
, (5.22)

where ω ∈ R \ {0}. These choices of Hse and ρX
se allow for an analytical construction of T2:1,

TU
2:1 and T

P
2:1, but are also non-trivial enough to exhibit the features we would like to investigate,

in particular the effects of initial system-environment correlations.
We can now explicitly construct the full one-step process tensor, as well as the restricted

ones. To this end, we compute the output states for a full basis of the space B(Hi
1 ⊗Ho

1) of
local operations at time t1. Such a possible basis is given by the set {Qk ⊗QT

` }2
k,`=1, where the

pure states

Q1 =
1
2
(1+ σz) , Q2 =

1
2
(1+ σx) , Q3 =

1
2
(1− σx) , Q4 =

1
2
(
1+ σy

)
(5.23)

constitute a basis of B(Hi
1) and B(Ho

1). Measuring the state of the system after the time
∆t := t2 − t1 has lapsed would then yield the corresponding output states

ρ(k`)
′
= 1e ? U2:1 ? Qk` ? ρX

se, (5.24)

where Qk` = Qk ⊗ QT
` , and U2:1 is the Choi matrix of the unitary map U2:1[ρse] =

e−i Hse∆tρse ei Hse∆t. Each of the maps Q(k`) corresponds to a projection of the system state
on Q`, followed by a repreparation of Qk. The full one-step process tensor T2:1 can be calcu-
lated, using Eq. (4.25), as

T2:1 =
4

∑
k,`=1

ρ(k`)
′ ⊗ q∗k ⊗ q∗` , (5.25)

with tr(q†
mQn) = δmn .
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Accordingly, in order to construct TU
2:1 based on the set of unitary preparations, we fix

a basis of the space spanned by the unitary maps. Here, we choose the basis {Vβ} =

{V0,V(k,±),V(k+`+1,+)} (with k, ` ∈ {1, 2, 3} and k < `), derived in App. C.1. However,
in principle, any set of (d2 − 1)2 + 1 = 10 linearly independent unitary operations would
yield the same results. The output states corresponding to each of these unitary preparations
are given by

ζ(β)′ = 1e ? U2:1 ? Vβ ? ρX
se , (5.26)

and the corresponding restricted process tensor TU
2:1 can be constructed via

TU
2:1 =

10

∑
β=1

ζ(β)′ ⊗ v∗β, where tr(v†
βVγ) = δβγ . (5.27)

In the same vein, we construct TP
2:1 by using the basis of the set of projective maps introduced in

Eq. (C.10). Importantly, each of these prescriptions is an operational one, i.e., the reconstruction
that we are carrying out numerically, could be conducted in exactly the sameway in a laboratory.
Given T2:1, the correlation-memory matrix ξ2:1 can be readily derived by using Eq. (5.13);

the restricted correlation-memory matrix ξU
2:1 (ξ

P
2:1) is obtained by constructing the one-step

process tensor ΞU
2:1 (Ξ

P
2:1) for the uncorrelated initial state ρ̃X

se = ρX
s ⊗ ηX

e and subtracting it
from TU

2:1 (T
P
2:1). As the explicit matrix representations of T2:1, TU

2:1, and T
P
2:1 are not particularly

insightful in their own right, we refrain from providing them here,4 and rather report the
corresponding results with respect to the detection of initial correlations.
It turns out that, except for trivial total dynamics (ωt = n π

2 ), the restricted correlation-
memory matrices ξU

2:1 and ξP
2:1 are equal to zero iff [2]

a23 = a14 = 0 and a22a33 = a11a44. (5.28)

However, we have ξU
2:1 6= ξP

2:1 and the total correlation-memory matrix ξ2:1 differs from both
ξU

2:1 and ξP
2:1; nonetheless, ξ2:1 can detect exactly the same kinds of correlations, as it is also

equal to zero iff Eq. (5.28) is fulfilled.
X-states that satisfy Eq. (5.28) are product states, which means that in this particular case

any correlations (classical or quantum) between the system and the environment could be
detected with both ξU

2:1 and ξP
2:1 (and hence also with the unrestricted correlation-memory

matrix ξ2:1).
On the other hand, the ‘do nothing’ correlation-memory matrix ξI2:1, i.e., the correlation-

memory matrix that can be constructed without performing any local operation (except for
the swap Sss′ necessary to create an uncorrelated system-environment state), would be zero
iff Im (a23) = 0 (i.e., a23 ∈ R). Unsurprisingly, performing local operations substantially
increases the set of detectable correlations.
In this example, unitary preparation and projections can reveal exactly the same kinds of

initial correlations as the full set of local operations. This is not generally true. Consider, for
example, a two-qubit state with correlation matrix χse = κ σs

z ⊗ σe
x, where κ ∈ R \ {0}, and a

4 The corresponding calculations are – as already mentioned – not computationally demanding and can be carried
out at ease.
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total unitary evolution between t1 and t2 that is given by the swap operator S between system
and environment. The action of ξU

2:1 on an arbitrary unitary map V reads

ξU
2:1 ? V = 1e ? S ? V ? χse = κ tre(σ

s
x ⊗ V [σe

z ]) = 0 , (5.29)

where S is the Choi state of the swap operator, and hence ξU
2:1 = 0. On the other hand, ξ2:1 6= 0;

for example, if we consider the causal break operation |0〉〈0| ⊗ |1〉〈1|, we obtain

ξ2:1 ? (|0〉 〈0| ⊗ |1〉 〈1|) = κ 〈1| σz |1〉 tre(σx ⊗ |0〉〈0|)
= −κ tre(σx ⊗ |0〉〈0|) = −κσx . (5.30)

In this case, the fact that the correlations cannot be detected by unitary transformations alone,
stems from a particular interplay between the total unitary evolution (the swap operation S)
and the correlation matrix χse.

5.5.2 Restricted Process Tensors and Quantum Control

An important field where a restricted set of performable local operations and the presence of
non-Markovian effects come into play together is that of quantum control of open systems
(see for example Ref. [149] for an introduction). Here, generally speaking, the goal is to steer
the system of interest to a desired final state by means of local, time-dependent Hamiltonians,
which can be controlled by the experimenter. For microscopic models that assume knowledge
of the total system-environment Hamiltonian, the impact of these local Hamiltonians on the
dynamics of the system can often be readily deduced. However, if only local information like,
for example, a master equation description, is at hand, it is in general unclear how to include
the influence of a local operation into the description [127]. The process tensor approach is
tailored to solve this problem in an operational manner.
The presence of memory effects is of particular importance for dynamical decoupling

experiments [152], where the local Hamiltonians are employed in such a way that they average
out the influence of the environment and, effectively, keep the system decoupled from its
environment. This is only possible if memory effects are present [127]. Under the assumption
that the time span over which the local Hamiltonians act is small compared to typical time
scales of the dynamics of the system (i.e., the Hamiltonians basically act at fixed times as ‘kicks’
of infinite strength [203]), such an experimental setup can be described as a mapping from
an initial state ρs ∈ B(Hi

0) of the system at time t0 and a sequence of unitary maps {Vα}N
α=1,

that act on the system at times {tα}N
α=1, to a final state

ρ′s = TN+1:0[VN , . . . ,V1, ρs] = TN+1:0 ? VN ? · · · ? V1 ? ρs . (5.31)

To demonstrate the applicability of the restricted process tensor framework to quantum control
and dynamical decoupling, here, we will show how it can be used to find an ideal decoupling
sequence in the scenario where decoupling is required at a single fixed time tN+1 (as opposed
to decoupling for all times).

To this end, we shall consider a sequence of unitary maps V1, . . . ,VN to be decoupling, if at
the time tN+1 the state ρ′s of the system is related to the input state ρs at t0 by a known unitary
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Figure 5.6: Goal of dynamical decoupling. By applying the correct sequence of unitary operations
V1, . . . ,VN , the resulting overall dynamics should become a known unitary – and thus correctable –
dynamics U .

map U , i.e., ρ′s = U [ρs] for all initial system states ρs (see Fig. 5.6). In this case, as U is known
and reversible, the effect of the coupling between system and environment on the state of the
system can be fully corrected for.

In order for dynamical decoupling to be operationally meaningful, must to assume that the
initial state at t0 is controllable by the experimenter, and thus, in what follows, we will consider
process tensors with an additional open wire at t0, that, as already assumed in Eq. (5.31),
constitutes a mapping from the controllable inputs {ρs,V1, . . . ,VN} to the final output state
at time tN+1. Its experimental reconstruction is achieved by measuring the output states for a
basis {ρ(µ)s }d2

µ=1 of input states and a basis of sequences of unitaries, i.e.,

TU
N+1:0 = ∑

~j,µ

ρ(µ,~j )′ ⊗ v∗~j ⊗ r
∗
µ, (5.32)

where {rµ}d2

µ=1 is the dual set to {ρ(µ)}d2

µ=1, ρ(µ,~i )′ denotes the output state corresponding to

the sequence {ρ(µ)s ,Vj1 , . . . ,VjN} of inputs, and {v~j = vj1 ⊗ · · · ⊗ vjN} are the duals to the
sequences of unitary operations. Now, if a sequence of unitaries Z1, . . . ,ZN is a successful
decoupling sequence, then

TU
N+1:0 ? Z1 ? · · · ? ZN = U , (5.33)

where U ∈ B(Ho
N+1 ⊗Hi

0) is the Choi state of a unitary map (see Fig. 5.6). Hence, given
the restricted process tensor of a process, it is then merely a numerical sampling problem to
find such a successful decoupling sequence (if it exists for the chosen time steps). To explicitly
illustrate this description of dynamical decoupling in terms of a restricted process tensor, we
reiterate the shallow pocket model discussed in Ref. [127].

For this example, let Hse =
g
2 σs

z ⊗ x̂ be the total, time-independent Hamiltonian for a qubit
(the system) coupled to a particle on a line (the environment), where x̂ is the position operator.
The system is initially prepared in state ρs(0) and uncorrelated with the environment, which
we choose to be in state ηe = |Ψ〉〈Ψ|, with 〈x|Ψ〉 =

√
γ
π

1
x+iγ and γ > 0. The free evolution

of the system state, i.e., the evolution without intermediate local operations, is given by

ρs(t) =

 ρ00(0) ρ01(0)e−gγt

ρ∗01(0)e
−gγt ρ11(0)

 with ρkl(0) = 〈k|ρs(0)|l〉 , (5.34)

which constitutes a purely dephasing dynamics [127]. A possible experimental decoupling
procedure could consist of a preparation of the initial system state ρsρs(0), a free evolution of
the system-environment state generated by Hse for a time ∆t, a local unitary operation Z , and,
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finally, a tomography of the system state after another free evolution for a time ∆t. Let TU
2:0 be

the restricted process tensor for this experiment. We have

T U
2:0[ρs,Z ] = tre {U∆t [Z [U∆t [ρs(0)⊗ |Ψ〉〈Ψ|]]]} = TU

2:0 ? ρs ? Z (5.35)

where U∆t[ρse] = e−i Hse∆tρseei Hse∆t and we have omitted an identity map on the environment.
A unitary map Z that leads to successful decoupling would satisfy

TU
2:0 ? Z = U , (5.36)

where U is a unitary map. Having reconstructed the process tensor for this experimental
scenario, one could numerically search for the best decoupling operation, for example by
sampling unitaries Z and checking if Eq. (5.36) is satisfied. Here, due to the computationally
simple structure of the problem, this question can be answered analytically [127]. Choosing a
unitary matrix Z(a,b) = aσx + bσy, with |a|2 + |b|2 = 1, a, b ∈ R, and corresponding unitary
map Z(a,b)[ρs] = Z(a,b)ρsZ†

(a,b), we obtain

TU
2:0 ? Z(a,b) = Z(a,b), (5.37)

where Z(a,b) is the Choi state of the map Z (a,b)[ρs] = Z†
(a,b)ρsZ(a,b). Consequently, any local

operation of the form Z(a,b) decouples the system of interest from its environment for the
given process. This can also be shown directly from the total Hamiltonian Hse [127]. However,
if the se Hamiltonian is unknown, or computationally intractable, this is no longer an option.
On the other hand, the restricted process tensor can be reconstructed without any knowledge
of the underlying Hamiltonian, and allows for a numerical search of a sequence ZN:1 of unitary
operations, such that Eq. (5.33) holds. Even if perfect decoupling is not possible, this procedure
still allows one to find the best implementable decoupling sequence, where ‘best’ in this case
means that the resulting overall map is closest to the set of unitary operations.
In contrast, a description of the dynamics in terms of a master equation would fail to

reproduce these results (as shown in Ref. [127]). The master equation of the free open evolution
of the system is given by

ρ̇s(t) = L [ρs(t)] = −g
γ

4
[σz, [σz, ρs(t)]] , (5.38)

where L is the Lindbladian of the time evolution. The resulting time evolution of ρs is then
given by ρs(t) = eLt[ρs(0)]. Naïvely, when implementing an intermediate local operation
Z(a,b) after free evolution for a time ∆t, one might assume that the evolution of the system
state from t = 0 to t = 2∆t, including the unitary operation in the middle would be described
by

ρs(2∆t) =
(

eL∆t ◦ Z(a,b) ◦ eL∆t
)
[ρs(0)] . (5.39)

However, given that eL∆t is a purely dephasing channel, we conclude that eL∆t ◦ Z(a,b) ◦ eL∆t

cannot be equal to a unitary transformation, and Eq. (5.39) is thus not the correct description
of the dynamics with intermediate intervention. As soon as the dynamics are non-Markovian,
standard master equations fail to capture the influence that local operations at intermediate
time steps have on the dynamics of the system of interest [80].
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This example, in turn, also provides further proof for our statement that there are CP-
divisible dynamics that are not Markovian. Master equations of Lindblad type lead to CP
dynamics that satisfy a semi-group property. Thus, as in this case all the involved maps are
invertible, the dynamics is iCP-divisible. It can also be checked straightforwardly, that it is
oCP-divisible. However, the system can be decoupled by means of intermediate operations,
and the dynamics is thus non-Markovian [80, 127].

5.6 classical resources

Throughout this chapter, we have frequently alluded to the fact that classical stochastic processes
are a particular set of restricted process tensors, namely those pertaining to situations where the
experimenter only has projective measurements in a fixed (classical) basis at their disposal to
probe the process. Evidently, limitation to projective measurements does not magically make
a process classical. Rather, the set of classical processes with respect to a given measurement
basis form a subset of all possible processes. Here, building on the intuition we gained in the
previous sections for process tensors and limited control, we will define explicitly, what we
mean by a classical process, and provide their full characterization. In this sense, this section
is an extension of the discussion of classical processes and the breakdown of Kolmogorov
conditions that we carried out in Ch. 3, but with the advantage, that we are now in a position
to make full use of the process tensor formalism, and can thus derive all structural properties
of classical processes.

When probing classical processes (without interventions), experimental control at every time
tα is limited to projective measurements in a fixed orthogonal basis, denoted by {|x〉α}d

xα=1.
Now, performing measurements at times tα ∈ ΛK in this fixed basis, the experimenter collects
joint probability distributions PΛK(xΛK), where xΛK is a sequence of outcomes at times ΛK. If
the underlying process is classical, then these probability distributions satisfy the Kolmogorov
properties we discussed in Ch. 3. As satisfaction of these conditions is the only5 defining property
of a classical process, following Ref. [80] we will define classical processes accordingly:

definition 5 .1: A process is classical on times ΛK, if its joint probability distributions obtained
from sequences of projective measurements in the fixed basis {xα}d

xα=1 satisfy Kolmogorov condi-
tions, i.e., if

PΛk(xΛk) = ∑
ΛK\Λk

PΛK(xΛK) , ∀Λk ⊆ ΛK , (5.40)

where ∑ΛK\Λk
denotes the sum over all times in ΛK \Λk and xΛk is the restriction of xΛK to times

Λk.

If Kolmogorov conditions hold for the joint probability distributions that an experimenter
deduces, then there is a possible – albeit potentially complicated – classical explanation for the
experimental observations. If they do not hold, then the experiment can only be described by

5 Up to some technical regularity properties of the joint probability distributions.
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Figure 5.7: Markovian process that leads to classical statistics. If the maps {Lα} satisfy the NCGD
condition, then a classical experimenter, i.e., an experimenter that can only prepare states that are
diagonal in a fixed orthogonal basis, and only performs projective measurements in said basis, cannot
distinguish this process from a classical one.

employing quantum mechanics.6 Evidently, Def. (5.1) is purely operational in nature. Basically,
it asserts that ‘if it looks like a classical process, swims like a classical process, and quacks like
a classical process then it is a classical process’. Consequently, there can be processes that are
implemented by means of quantum resources, but will be indistinguishable to an experimenter
that can only perform projective measurements in the fixed basis {|xα〉}.
While one might misunderstand this fact as a weakness of the above definition, we should

rather consider it a strength. It provides us with an experimentally probable criterion for
classicality, that does not rely on inaccessible entities – like, for example, the unitaries governing
the underlying process – and thus offers a clear-cut delineation between classical and genuinely
quantum processes. Additionally, it does not a priori define classicality based on coherence, a
mathematical property, that has been claimed to be a genuinely quantum trait. In this sense,
this definition is similar to the definition of Markovianity in quantum mechanics, that we gave
above, which relied on logical conditional independence of observable joint statistics, instead
of the satisfaction of some mathematical properties, like. e.g., CP-divisibility.

5.6.1 Classical Markovian Dynamics

Having our definition of classical processes at hand, we can now answer the question regarding
what the set of classical process tensors looks like. To this end, in a first step, it is instructive
to reiterate the results of Ref. [80], where this question has been answered for the case of
Markovian dynamics. As discussed, a Markovian process tensor is of the form

TMarkov
N+1:1 = LN ⊗ LN−1 ⊗ · · · ⊗ L1 , (5.41)

where each of the maps Lα ∈ B(Ho
α+1 ⊗ Hi

α) is a CPTP map, and for simplicity of the
discussion, we assume that the process tensor starts with an open wire (see Fig. 5.7). Now,
an experimenter that only has access to classical resources to probe the process, can prepare
an initial state at t1, that is diagonal in the fixed basis {|x1〉}d

x1=1 and perform projective
measurements in this basis at later times. For ease of notation, and as we will encounter it
frequently in what follows, we will denote the set of all quantum states that are diagonal in the
classical basis {|xα〉}, i.e., the set of all incoherent states by Θ:

Θ := {ρ | ρ =
d

∑
xα=1

pxα |xα〉〈xα| , with pxα ≥ 0 and
d

∑
xα=1

pxα ≤ 1} , (5.42)

6 Importantly, this only holds true, if the experimenter can be sure that they only perform projective measurements,
and do not perform active interventions. Otherwise, as we have seen in Ch.3, Kolmogorov conditions can also be
violated in classical physics.
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Figure 5.8: Definition of the maps Lβ|α. The maps Lγ|β are defined in an analogous way.

Figure 5.9: NCGD dynamics. Dephasing maps at t1 and tN+1 imply that only incoherent states can
be fed into the process, and only projective measurements in the classical basis can be performed. For
these available experimental resources, the identity map at tα is indistinguishable from the completely
dephasing map.

where, for generality, we also allow for subnormalized states. If a state is not diagonal in the
fixed basis, we shall consider the off-diagonal terms to be its coherences. Evidently, if none of
the maps {Lα} in Eq. (5.41) can create coherences, i.e., if ρ ∈ Θ implies Lα[ρ] ∈ Θ, then the
resulting dynamics can be understood as a time evolution of a probability vector (the diagonal
of the state of the system), and it will look classical to an experimenter that can only probe it
by classical means.

Quantum maps that cannot create coherences out of incoherent states are called maximally
incoherent operations (MIO) in the literature and play an important role in the resource theory
of coherence [204, 205]. While maximal incoherence of the maps {Lα} is sufficient for a
Markovian process to be classical, it is not necessary. The process can still appear classical if
the maps {Lα} can create coherences, as long as these coherences cannot be picked up at a
later point by means of projective measurements in the classical basis. Put differently, if the
process is classical, then none of the maps Lα creates coherences that can be transformed into
populations, i.e., enact changes of the diagonal entries of the state of the system, at a later time.

Specifically, let Lβ|α = Lβ−1 ◦ · · · ◦ Lα and Lγ|β = Lγ−1 ◦ · · · ◦ Lβ be the dynamics from
tα to tβ and from tβ to tγ, respectively (see Fig. 5.8). Then, we have the following definition,
due to Smirne et al. [80]:

definition 5 .2: A Markovian dynamics is considered non-coherence-generating-and-detecting
(NCGD), if for all tα < tβ < tγ we have

D ◦ Lγ|β ◦ D ◦ Lβ|α ◦ D = D ◦ Lγ|β ◦ Lβ|α ◦ D , (5.43)

where D[ρ] = ∑x 〈x| ρ |x〉 |x〉〈x| is the completely dephasing map in the classical basis at the
respective times (tα, tβ, and tγ ).

Intuitively, if the dynamics is NCGD, the presence of coherences – if they exist – cannot be
detected at any point by means of measurements in the classical basis. Equivalently, Eq. (5.43)
can be read as stating, that if the dynamics is NCGD, then the completely dephasing map Dβ

in between Lγ|β and Lβ|α is indistinguishable from an identity map for a classical observer
(see Fig. 5.9 for a graphical representation). This understanding of Eq. (5.43) coincides exactly
with the Kolmogorov conditions, that require that summing over measurement outcomes –
which is the same as applying the completely dephasing map – is indistinguishable from not
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performing a measurement. Consequently, Markovian dynamics is classical in the sense of
Def. 5.1 iff it is NCGD [80].

In anticipation of the generalization to non-Markovian dynamics, it is insightful to rephrase
the definition of NCGD in terms of Choi states. A Markovian dynamics is NCGD if for all
tα < tβ < tγ, we have

Dγ ? Lγ|β ? Dβ ? Lβ|α ? Dα = Dγ ? Lγ|β ? Φ+
β ? Lβ|α ? Dα , (5.44)

where Ly|x is the Choi state of Ly|x, and Dx and Φ+
x are the Choi states of the completely

dephasing map and the identity map at tx, respectively. Importantly, Eq. (5.44) completely
determines the structural requirements that the matrices Ly|x have to satisfy to be NCGD (in
detail, these requirements correspond to the ones mentioned in Lemma 1 of [80] for the maps
Ly|x ). One advantage of the quantum comb formalism lies in the fact that similar structural
requirements can be readily derived in the case of non-Markovian dynamics. Before we do so,
it is insightful to briefly discuss the above result about the connection between classicality and
NCGD.

First and foremost, the results of [80] establish a clear link between coherence and classicality,
that stems from logical reasoning, rather than from the assumption that coherence is a priori
an inherently quantum trait. Classical dynamics does not imply that there is no coherence
created at any time in the process [80]. Rather, if any coherence is created, its presence cannot
be detected by the classical means available to the experimenter. In particular, maximally
incoherent operations form a strict subset of maps that lead to NCG dynamics, and thus – in
the Markovian case – result in classical statistics.

Secondly, the reasoning that led to the connection between coherence and classicality cannot
be straightforwardly employed in the non-Markovian case; for the case of Markovian dynamics,
the classicality of a process can be decided on the level of quantum channels, as all higher
order joint probability distributions can be constructed from two point correlations, which,
in turn, are encapsulated by the maps Ly|x. Consequently, in the memoryless case, the relation
between coherences in the system of interest, and the classicality of the underlying process is
direct, since there are no non-classical correlations between the system and its environment
that permeate memory effects. As we will see below, neither of these properties holds in the
non-Markovian case. In particular, even if the state of the system is diagonal in the classical basis
at each time, the process does not necessarily satisfy Kolmogorov conditions if the underlying
dynamics is non-Markovian.

5.6.2 Maximally Incoherent Combs (MIC)

Before comprehensively characterizing the set of classical non-Markovian combs, it is insightful
to analyze the interplay of coherence and classicality for non-Markovian processes. While in
the Markovian case, their relation is relatively direct, it turns out to be more subtle when
memory effects play a role.

As we discussed, in the memoryless setting, if the maps {Lα} are MIO, then the underlying
dynamics is classical. The concept of maximally incoherent operations can straightforwardly be
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Figure 5.10: Maximally incoherent comb. If all the inputs to the comb (here, T6:1 ) are classical, and the
system state at every time is classical, then no coherence can be ‘extracted’ from the comb, and it is
maximally incoherent.

generalized to the non-Markovian case. We will consider a combmaximally incoherent, if it can-
not create coherent system states for any classical control operations (including interventions),
that are ‘plugged’ into its slot.
Specifically, as before, let Θ be the set of (potentially subnormalized) incoherent states in

the fixed computational basis {|xα〉} and let the experimenter have access to purely classical
operations only. For example, they could perform projective measurements in the computa-
tional basis, or perform classical interventions. Consequently, in terms of Choi states, the set
Γ̃cl of fully classical operations is given by

Γ̃cl =

{
∑

xα,yα

pyα|xα
|yα〉〈yα| ⊗ |xα〉〈xα|

}
, (5.45)

where pyα|xα
≥ 0, ∑yα

pyα|xα
≤ 1, and |yα〉〈yα| ⊗ |xα〉〈xα| is the Choi state of an operation

that prepares state |yα〉〈yα| upon measuring the system in state |xα〉〈xα|. As it should classically
also be allowed to not perform an operation, we add the identity operation Φ+ to the set of
classical operations, i.e., Γcl = Γ̃cl ∪ {Φ+}.7 We then have the following natural extension of
the definition of MIO to the non-Markovian case:

definition 5 .3 (maximally incoherent comb (mic) ): The comb/process tensor of a
process defined on times {tN+1, . . . , t1} is called a maximally incoherent comb (MIC) if for any
incoherent initial state ρ1 ∈ Θ at t1, any time tβ ∈ {tN+1, . . . , t1}, and any sequence of classical
operations {Mα ∈ Γcl} that were performed at times {tβ−1, . . . , t2}, the resulting state ρβ at tβ is
incoherent, i.e., ρβ ∈ Θ.

A graphical representation of this definition can be found in Fig. 5.10. Intuitively, a comb is
an MIC if no coherence can be extracted from it by means of classical resources/operations.
Quite obviously, for one time step, when the comb TN+1:1 is simply a quantum channel
L1, the definition of MIC coincides with the definition of maximally incoherent operations,
and, consequently, in the Markovian case, maximally incoherent combs satisfy Kolmogorov
conditions. However, somewhat counterintuitively, in the non-Markovian case, an MIC does
not necessarily lead to joint probability distributions that satisfy Kolmogorov conditions. To
see this, consider the following example:

7 Defined in this way, the set Γcl is not convex, which is somewhat unsatisfactory from a resource theoretic point of
view. This ‘problem’ could be alleviated by replacing Γcl by its convex hull. Such a replacement would not affect
any of the subsequent arguments, though.

129



process tensors and limited resources

Figure 5.11:Non-classical MIC. The state of the system is classical at every step of the process (maximally
mixed at t2, and a classical mixture of projectors onto |0〉 and |1〉 at t3 ), so the corresponding process
tensor (blue outline) is MIC. However, the inferred statistics do not satisfy the Kolmogorov condition.

example 5 .1 (mic��⇒ kolmogorov conditions): If the dynamics is described by an MIC,
the state of the system does not display any coherences at any point in time if the inputs to the process
are classical. Consider the following circuit (see also Fig. 5.11): Let the initial state of the environ-
ment be given by a (normalized) maximally entangled two qubit state state Φ+

ee′ ∈ B(He ⊗He′)

and let the system be a qubit.8 Between t1 and t2 the state of the system is swapped with one half
(corresponding to the label e) of the environment state, i.e., the state of the system at t2 is ρ2 = 1/2,
independent of the system state that was initialized at t1. Between t2 and t3, the system and the sec-
ond half of the environment (the part labeled by e′ ) undergo a CPTP map G2 (which could – in
principle – be dilated to a unitary, but for conciseness, we restrict ourselves to the relevant part of
it), that yields output |0〉〈0| on the system, when system and environment are in the state Φ+, and
|1〉〈1| otherwise. Written in its Choi form, we have

G2 = |0〉〈0| ⊗Φ+ + |1〉〈1| ⊗
(
1−Φ+

)
. (5.46)

It is easy to check that G2 is indeed CPTP, and the state of the system at t3 is a convex mixture of
|0〉〈0| and |1〉〈1|, i.e., the resulting comb is MIC.9 However, it does not satisfy the Kolmogorov
condition. To see this, consider the probabilities for a measurement in the computational basis at t3,
with no operation performed at t2 and a random default state fed into the process at t1. In this case,
the system-environment state before G2 is equal to Φ+, which means that we have ρ3 = |0〉〈0|.
Consequently, the measurement in the computational basis at t3 yields the probabilities

P(0, t3) = 1 and P(1, t3) = 0 . (5.47)

On the other hand, performing a measurement at t2 and discarding the outcomes, amounts to
performing the completely dephasing map D2. After this map, i.e., right before G2, the system-
environment state is of the form

ρse′
2 =

1
2 ∑

i=1
|i〉〈i| ⊗ |i〉〈i| = 1

2
(
Φ+ + Φ−

)
, (5.48)

8 Importantly, even though we denote them by the same symbol, the environment state should not be confused with
the Choi state of an identity map.

9 For this example, we could even allow for non-classical states and operations at t1 and t2, respectively, and still not
see any coherence in the state of the system at t3.
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where Φ− = (σz ⊗ 1)Φ+(σz ⊗ 1) is a Bell state. Consequently, in this case the final system state
ρ3 at time t3 is of the form ρ3 = 1

2 (|0〉〈0|+ |1〉〈1|). Finally, the obtained probabilities, given
that the completely dephasing maps D2 was performed at t2 are of the form

PD2(0, t3) = ∑
x2

P(0, t3; x2, t2) =
1
2

and PD2(1, t3) = ∑
x2

P(1, t3; x2, t2) =
1
2

, (5.49)

which does not coincide with (5.47). Even though the state of the system is incoherent at every
time, i.e., appears to be classical, the multi-time statistics do not satisfy the Kolmogorov condition.
Another case of non-Markovian dynamics that does not allow for the extraction of coherences, but is
non-classical nonetheless, can be found in [80]; here, the examples for non-Markovian dynamics that
are NCGD but not classical also constitute an ante litteram example of non-classical MICs [206].

Unlike in the Markovian case, where the set of operations that do not create coherences is
contained in the set of NCGD dynamics, and as such leads to statistics that satisfy Kolmogorov
conditions, this is not the case when memory effects play a non-negligible role. Put differently,
when memory effects are present, the connection between coherences and the classicality of
the underlying dynamics is not straightforward anymore.

In general, it is both the coherences of the system state, as well as the non-classical correlations
between the system and its environment that can lead to non-classical behavior. Intuitively,
while the completely dephasing map leaves the system unchanged if the underlying dynamics
is MIC, it does not necessarily leave the overall system-environment state invariant. Specifically,
if the comb is an MIC, then at every time tα we have Dα[ρs

α] = I [ρs
α], but not necessarily

(Dα ⊗ I)[ρse
α ] = I [ρse

α ] for all times tα; Even if the state of the system is classical at all times,
the completely dephasing map can still be invasive, and as such, its influence can potentially
be differentiated from the ‘do-nothing’ operation at some later point in time. While it is not
necessary for the satisfaction of Kolmogorov conditions, that the action of the completely
dephasing map and the identity map coincide, it is sufficient, and as such directly relates the
classicality of dynamics to quantum discord [207, 208]:

lemma 5 .1: If the system-environment state has the form

ρse
α =

d

∑
m=1

pm
α Πm

α ⊗ ηm
α , (5.50)

at every time tα, where {pm
α } are probabilities that add to unity, {Πm

α } are orthogonal projectors in
the classical basis, and {ηm

α } are quantum states on the environment, then the underlying dynamics
is classical, i.e., satisfies the Kolmogorov conditions.

Before we prove this statement, it is insightful to discuss the form of the se-states defined
in Eq. (5.50). States of this form have vanishing quantum discord [207–210], i.e., they do not
display quantum correlations between the system and the environment. For a general zero-
discord state, the set {Πm

tj
} could be any set of mutually orthogonal projectors, and the state is

considered classical, since there exists a measurement with d perfectly distinguishable outcomes
that overall leaves the total state undisturbed [207, 210] (see also the proof below). As we only
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allow for measurements in a fixed basis, it is not sufficient for us to have a system-environment
state that has vanishing discord, but it has to vanish in the correct basis, i.e., the one in which
the experimenter’s measurements act. Consequently, we will call states of the form (5.50)
discord zero states with respect to the classical basis, keeping in mind that, in general, quantum
discord is not basis dependent, but obtained by a minimization procedure over all possible
measurement scenarios. Throughout the remainder of this chapter, whenever we consider a
state to be of discord zero, we will always implicitly mean that it can be represented as (5.50)
with the projectors being diagonal in the classical basis. Importantly, this basis dependence
mirrors the basis dependence of coherence, which is also always defined with respect to a fixed
classical basis.

Proof. Let the se-state at every time tα be of the form

ρse
α =

d

∑
m=1

pm
α Πm

α ⊗ ηm
α , (5.51)

For this state, the completely dephasing map on s has the same effect as the ‘do-nothing’
channel, i.e.,

Dα ⊗ Ie[∑
m

pm
α Πm

α ⊗ ηm
α ] = Is ⊗ Ie[∑

m
pm

α Πm
α ⊗ ηm

α ] . (5.52)

This equivalence of the action of the identity map and the completely dephasing map directly
implies that a measurement in the classical basis overall does not disturb the system-environment
state. Consequently, if the system-environment state has vanishing discord with respect to the
classical basis at all times, the resulting statistics satisfy the Kolmogorov conditions.

While the above lemma is unsurprising, it sheds light on the properties that a general
non-Markovian dynamics has to satisfy to appear classical. We will see that classical non-
Markovian processes mirror Markovian ones, but with coherence replaced by discord. We
have already seen that maps Lα that do not produce coherences lead to classical Markovian
dynamics. Analogously, system-environment unitary dynamics that cannot create discord
(with respect to the classical basis), will evidently induce classical non-Markovian dynamics.
However, in the Markovian case, it is not necessary, that all maps Lα are MIOs for the dynamics
to be classical, but rather, the dynamics has to be such that if coherences are created at some
point, they cannot be picked up by classical measurements at some later point. In the same
vein, it is not necessary for classical non-Markovian dynamics that all system-environment
unitaries are only non-discord creating, but it suffices that discord that is created cannot be
detected at any later time. In clear analogy to the Markovian case, we shall dub such dynamics
non-discord-generating-and-detecting (NDGD). We will define the set of NDGD maps in the
following section.
Importantly, with our understanding of discord in mind, incoherent system states can be

considered to be discord zero states of the form Eq. (5.50), with a trivial environment, and
NCGD dynamics are a special case of NDGD dynamics, for the case where no memory is
propagated. As we will see now, NDGD dynamics naturally extend the concept of classicality
to the non-Markovian case, and dynamics display classical statistics if they are NDGD.
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Figure 5.12: Concise dilation of an open process. By absorbing the initial state and the final trace into
the respective CPTP maps, every open process can be represented as a sequence of CPTP maps Gα

(under the assumption of an initially uncorrelated system-environment state). Once these maps are
known, all joint probability distributions can be computed.

5.6.3 Non-Discord-Generating-and-Detecting Dynamics and Classical Processes

In the Markovian case, classicality of the process can be decided on the level of the CPTP
maps as in the absence of memory all higher order probability distributions can be obtained
from the initial state ρ1 at time, and the transformation maps Lβ|γ and Lγ|β. It suggests itself
to employ this intuition in the non-Markovian case. As we have seen in the previous chapter,
every non-Markovian dynamics can be dilated to a concatenation of an initial (potentially
correlated) system-environment state, and unitary se-dynamics, interspersed by the operations
on the system alone, performed at times {tα}. Equivalently, to make notation more concise,
we can consider this open dynamics as a concatenation of CPTP maps, interspersed by the
operations on the system alone, performed at times {tα}, and the respective CPTP maps are
connected by wires that can transport memory (see Fig. 5.12 for reference). In what follows,
we will denote these CPTP maps by Gα to clearly distinguish them from the Markovian case.
On this dilated level, the dynamics is Markovian – there are no additional external wires can
carry memory forward – and all higher order joint probability distributions could be built up
when the individual CPTP maps Gα and the initial state of the environment ρse

1 are known. For
simplicity, and easier connection to the Markovian case, in what follows we shall assume that
the initial system environment state at time t1 is uncorrelated. A generalization to correlated
initial states is straightforward, and rather a notational than a conceptual obstacle. With this,
we can define NDGD dynamics:

definition 5 .4 ( ndgd): An open dynamics on times {tα}N+1
α=1 with CPTPmaps {Gα} is called

non-Discord-generating-and-detecting (NDGD) if it satisfies

Dα ? Gβ|α ? Dβ ? Gγ|β ? Dγ = Dα ? Gβ|α ? Φ+
β ? Gγ|β ? Dγ (5.53)

for all t1 < tα < tβ < tγ ≤ tN+1, where Gy|x is the Choi state of the CPTP map Gy|x =

Gy−1 ◦ · · · ◦ Gx+1 ◦ Gx and Dx are completely dephasing maps acting on the system.

Agraphical representation of this definition can be found in Fig. 5.13. Formally, it is equivalent
to the definition of NCGD dynamics, with the difference, that the involved intermediary maps
between times are now the system-environment maps, instead of the CPTP maps Ly|x that
acted on the system alone.
Analogously to the case of NCGD, an NDGD dynamics, i.e., a dynamics that satisfies

Eq. (5.53), cannot create discord (with respect to the classical basis) that can be detected at
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Figure 5.13:NDGD. From the perspective of a classical observer, the identity map at any time tj cannot
be distinguished from the completely dephasing map. Any discord (with respect to the classical basis)
that is present in the initial se-state, or created by the system-environment unitaries, cannot be detected
by a classical observer.

a later time by means of classical measurements. Or, equivalently, an experimenter that can
only perform measurements in the classical basis, cannot distinguish between a completely
dephasing map and an identity map. As such, it is the natural extension of NCGD to the
non-Markovian case. Indeed, for the case of memoryless dynamics, Eq. (5.53) is the same as
Eq. (5.44), and the definitions of NCGD and NDGD coincide. Somewhat unsurprisingly, we
then have the following theorem:

theorem 5 .1 ( ndgd and classicality): A non-Markovian dynamics is classical, if it is
NDGD.

The proof of this theorem can be found in App. C.4. In order to further elucidate the relation
of discord and classicality in stochastic processes, it is insightful to discuss the proximity of
Thm. 5.1 to the corresponding results in [80] for the Markovian case. Thm. 5.1 establishes the
importance of the role of quantum discord for the classicality of non-Markovian dynamics.
While in the memoryless case, it is coherence – or the impossibility of detection thereof – that
makes a process classical; here, this role is played by discord, with the only difference that
instead of describing the dynamics in terms of maps that are solely defined on the system
of interest, we are forced to dilate the dynamics to a system-environment space, where it is
Markovian. Consequently, the classicality of a process cannot be decided based on a master
equation that describes the evolution of the system alone [80]. However, given a Hamiltonian
that generates the corresponding system-environment dynamics, it can be decided if a dynamics
is classical by checking the validity of Eq. (5.53).

It would be desirable, if NDGD were a sufficient and necessary criterion for the classicality
of non-Markovian dynamics. However, this is not the case. NDGD as defined in Eq. (5.53) is a
statement about the entire system-environment dynamics, and holds for any possible input
state on the environment. However, by means of projective measurements on the system alone,
one only has access to the system part, and the dynamics cannot be fully probed. Consequently,
the criterion (5.53) will, in general, be too strong for a given experimental scenario. We provide
an example of dynamics that is not NDGD, but nonetheless leads to classical dynamics in
App. C.4.

This fact notwithstanding, Thm. 5.1 completes the results of [80] and provides as much of a
clear connection between discord and classical processes as can be obtained. We now finish the
chapter with a comprehensive analysis of temporal correlations that can be present in a classical
process, and explicitly connect the reconstruction of classical processes to the framework of
restricted process tensors.
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5.6.4 Temporal Correlations in Classical Processes

To end this chapter, it remains to show, what ‘non-classical’ temporal correlations can still
persist, despite the dynamics being considered classical. Here, ‘non-classical’ has to be put in
quotation marks, as, up until this point, we have defined classicality in purely operational
terms; if the statistics a classical observer obtains from an experiment look classical, we consider
the underlying dynamics to be classical. We shall continue to take this distinctly operational
perspective on the classicality of a process. Nonetheless, it is an interesting question to ask, what
structural properties classical combs {TN:1} satisfy. It turns out that most classical combs are
not diagonal in the classical basis, and as such, for the remainder of this section, we shall consider
the corresponding off-diagonal terms to correspond ‘non-classical’ temporal correlations. Put
differently, in accordance with the overall theme of this chapter, in this section we analyze the
set of correlations that an experimenter with only restricted, classical resources – projective
measurements in a fixed orthogonal basis – is blind to. For lack of a better term, we shall
continue to dub these correlations ‘non-classical’, but we will keep the quotation marks to
clearly distinguish this algebraic notion of ‘non-classicality’ from the operationally well-defined
one that we advocated for in the previous sections.

To give meaning to the idea of ‘non-classical’ temporal correlations, we return to the proof
of the classical Kolmogorov extension theorem, that we provided in App. A.3. There, we
used the fact that for any classical joint probability distribution PN:1(xjN , . . . , xj1) on times
{t1, . . . , tN}, we can construct a corresponding process tensor

TN:1 = ∑
jN ,...,j1

PN:1(xjN , . . . , xj1)1
i
N ⊗ |xjN 〉〈xjN | ⊗ · · · ⊗ 1

i
1 ⊗ |xj1〉〈xj1 | , (5.54)

where, for simplicity, we assume that TN:1 has no open input and output wires. Evidently, the
process tensor defined in Eq. (5.54) is diagonal in the classical product basis, and yields the
correct probabilities when applied to a sequence of classical projective measurements:

tr
[(
PxjN
⊗ · · · ⊗ Pxj1

)
TN:1

]
= PN:1(xjN , . . . , xj1) , (5.55)

where Pxjα
= |xjα〉〈xjα | ⊗ |xjα〉〈xjα | is the Choi state of a projective measurement in the fixed

basis at time tα with outcome xjα . Additionally, we can see that the action of the ‘do-nothing’
channel at any time tα coincides with the action of a completely dephasing map, and as such,
this comb satisfies Kolmogorov conditions.

Now, there are a lot of terms χN:1 that could be added to TN:1 defined in Eq. (5.54) without
changing the resulting statistics when the process is probed by projective measurements in the
classical basis. In particular, any proper process tensor

T̃N:1 = TN:1 + χN:1 , (5.56)

with

tr
[(
PxjN
⊗ · · · ⊗ Pxj1

)
χN:1

]
= 0 , ∀ PxjN

⊗ · · · ⊗ Pxj1
(5.57)

will still satisfy Eq. (5.55), i.e., lead to the same classical statistics. Unsurprisingly, this situation
is reminiscent of the case of restricted process tensors we discussed in the previous sections.
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Restricted process tensors are well-defined on the span of available operations, but cannot
make assertions about operations that lay in the orthogonal complement. Analogously, here,
projective measurements in the classical basis are blind to correlations that lie outside their
span. We will denote the orthogonal complement of the span of sequences in the classical basis,
i.e., the set of χN:1 ∈ B(Hi

N ⊗ · · · ⊗Ho
1) that satisfy Eq. (5.57) by Q(N).

While the addition of a term χN:1 ∈ Q(N) to a given process tensor does not change the
observed statistics when the process is probed at times {t1, . . . , tN}, it might still lead to a
violation of Kolmogorov conditions. To see this clearly, let us consider for a moment the case
of three times {t1, t2, t3}. The corresponding process tensor is of the form

T3:1 = ∑
j3,j2,t1

P3(xj3 , xj2 , xj1)1
i
t3
⊗ |xj3〉〈xj3 | ⊗ 1

i
t2
⊗ |xj2〉〈xj2 | ⊗ 1

i
t1
⊗ |xj1〉〈xj1 | (5.58)

+ χ3:1 , (5.59)

where P3(xj3 , xj2 , xj1) is the experimentally observable joint probability distribution and
χ3:1 ∈ Q(3). Now, if the process is classical, then, for instance, a ‘do-nothing’ operation at time
t2 has to be indistinguishable from a completely dephasing map for a classical observer, i.e.,

T3:1 ? Pxj1
? Φ+

2 ? Pxj3
− T3:1 ? Pxj1

? D2 ? Pxj3
= 0 ∀ Pxj1

,Pxj3
, (5.60)

which, in turn, implies

χ3:1 ? Pxj1
? Φ+

2 ? Pxj3
− χ3:1 ? Pxj1

? D2 ? Pxj3
:= χ3:1 ? Pxj1

? A2 ? Pxj3
= 0 , (5.61)

for all projective measurements Pxj1
,Pxj3

, where we have defined the matrix A2 = Φ+
2 − D2 =

∑j2 6=k2
|j2〉〈k2| ⊗ |j2〉〈k2|. Eq. (5.61) constitutes an additional requirement for the terms χ3:1,

in order for the process tensor to be classical.
In general, this requirement has to hold for any subset ∆ ⊆ ∆N := {t1, . . . , tN} of times.

Setting ∆̄ = ∆N \ ∆, we can define the corresponding set S of correlation terms as

S = {χN:1 ∈ B(Hi
N ⊗ · · · ⊗Ho

1)|χN:1F
α∈∆

Aα F
β∈∆̄

Pxjβ
= 0, ∀∆,Pxjβ

} . (5.62)

While this definition is somewhat clunky, it exactly expresses the intuition we built above
algebraically; in particular, correlation terms χN:1 ∈ S cannot lead to violations of the
Kolmogorov conditions. Finally, with this we can fully characterize the set of classical process
tensors on the set ∆N :

theorem 5 .2 ( classical process tensors): A process tensor TN:1 defined on times ∆N

leads to classical statistics iff it is of the form

TN:1 = ∑
jN ,...,j1

PN(xjN , . . . , xj1)1
i
tN
⊗ |xjN 〉〈xjN | ⊗ · · · ⊗ 1

i
t1
⊗ |xj1〉〈xj1 |+ χN:1 ,

(5.63)

where PN(xjN , . . . , xj1) is a joint probability distribution and χN:1 ∈ Q∩ S .

Admittedly, this characterization is not the poster child of simplistic beauty, but nonetheless
provides a full characterization of classical process tensors on N times. Additionally, the trouble
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in providing a simple and intuitively insightful characterization of the set of classical processes
is in line with similar troubles in the characterization of classical Markovian processes [80], and
as such not all that surprising. Despite the technical obstacles, the possibility of unambiguously
defining the set of classical processes, demonstrates the versatility of the theory of restricted
process tensors, that we have relied upon heavily in the above derivation

5.7 limited resources – summary

In this chapter, we have first brought the framework of process tensors closer to experimental
reality by analyzing its restriction to limited control scenarios, and then used the resulting
insights to discuss the definition and theory of classical processes in light of this analysis. While
general non-Markovian quantum dynamics can be unambiguously described and characterized
experimentally if the experimenter has unlimited control, we have seen that the situation is
more layered when this is not the case.
On the positive side, in the case of limited experimental control, it is still possible – inde-

pendent of the existence of memory effects – to reconstruct a restricted process tensor, as
long as the dimension of the space that is spanned by the available operations is known. The
thusly obtained restricted process tensor contains the maximal amount of information about
the process that can be inferred locally, based on the set of available operations. Additionally,
restricted process tensors still satisfy partial containment properties. They can be applied to
any operation that lies in the span of the available operations, and provide an operationally
meaningful complete dynamical description of the underlying dynamics. Surprisingly, the
set of operations a restricted process tensor can be applied to can exceed the experimentally
available ones. For example, if the set of available manipulations coincides with the set of
unitary maps, the reconstructed process-tensor can, e.g., be applied to any sequence of unital
operations.
On the negative side, restricted process tensors are in general not completely positive –

or rather, complete positivity is not even a meaningful property for these objects – and do
not allow one to make assertions on the nature of the underlying process based on their
structural properties. Nonetheless, we saw that if one further local operation, a swap with an
identically prepared system, is performable, or if the span of the set of performable operations
contains operations that decouple the system from its environment, it is possible to construct
operationally well-defined witnesses for initial system-environment correlations and the non-
Markovianity of a process. We have seen how to make maximal use of the available operations
in the construction of these witnesses and illustrated their applicability for two extremal cases:
the set of unitary operations, where no information about the system can be inferred from
the operation; and the set of projective measurements, where information about the system
is obtained, but it collapses to a pure state in the process. In both cases, the reconstructed
witnesses detect initial correlations, as well as the non-Markovianity of the underlying process.

The quality of these witnesses, i.e., their ability to detect correlations, depends crucially on
the dimension of the space that is spanned by the available local operations and the interplay
between correlations and the total unitary dynamics. However, the conjecture suggests itself
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that for any reasonable scenario, i.e., a general total unitary dynamics and a set of performable
local operations that is not ‘too small’, it is always possible to detect system-environment
correlations by means of the experimentally realizable local operations. Total unitary dynamics
that prevent correlations from local detection should be mere pathological examples.
Finally, we applied the theoretical apparatus we developed to the case of experimental

control, where the experimenter can only perform projective operations in a fixed orthogonal
basis. Here, we considered restricted process tensors through the lens of classical processes
and provided an operationally clear-cut definition of said processes, and, banking on ideas
from Ch. 3, developed a full characterization of classical process tensors. Furthermore, for
comprehensiveness, we connected classicality of processes to the concept of quantum discord,
thereby extending to their full completion corresponding results for Markovian dynamics and
coherence.
Restricted process tensors bridge the gap between the theoretical description of non-

Markovian quantum dynamics and experimental reality and offer a versatile toolbox to discuss
many different experimental situations in the same language. Consequently, there are manifold
of possible extensions and applications of the restricted process tensor framework.
On the applied side, it naturally suggests itself for the description of quantum control and

dynamical decoupling. In order to simplify the calculations, we have demonstrated this for a
time-independent total Hamiltonian. In practice, however, the restricted process tensor can
be reconstructed experimentally for any conceivable total dynamics. Given the restricted
process tensor, it is then simply a numerical sampling problem to find the optimal sequence of
operations that steers the system as close as possible to to a desired final state. Our framework
is also flexible enough to describe decoupling experiments and it allows one to search for the
sequence of local operations that comes closest to achieving decoupling at some fixed final
time. While this is not the original aim of dynamical decoupling, it nonetheless provides a
new perspective: if decoupling at selective points in time is sufficient, decoupling schemes
based on restricted process tensors might prove more efficient and less error-prone than
traditional schemes that rely on the implementation of decoupling cycles much faster than
typical correlation times [152].

Even if perfect decoupling will in general not be possible for randomly chosen time steps tα,
the process tensor approach is nonetheless fruitful: it opens up an avenue to benchmarking the
deviation from perfect decoupling for a given choice of time steps and translates the question
of whether perfect decoupling is possible to an inversion problem of the process tensor for the
underlying process.
On the more theoretical side, the results and concepts we developed for classical process

tensors pave the way to a fully-fledged resource theory of non-classicality of non-Markovian
processes.10 We have mentioned that the concept of MIO can be extended to the non-Markovian
case. Analogously, since any process tensor possesses a Kraus decomposition [17, 32], it would
analogously be possible to extend the definition of incoherent operations (IO) [212], and
strictly incoherent operations (SIO) [213, 214] to the non-Markovian case. The former would
be MICs that admit at least one set of corresponding Kraus operators, such that none of the
individual Kraus operators allows one to extract coherence from the process. The latter would

10 A first step in this direction, albeit with a very different aim in mind has recently been proposed in [211].
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be MICs that allow for a set of corresponding Kraus operators that are all incoherent, where
incoherent in this context means that they are diagonal in a classical product basis. Our results
would then provide the ideal basis for the operational interpretation of the results of such a
resource theory. However, work in these direction will have to be relegated to the future.

Now, having discussed open quantum processes in detail, it is time to drop one of the major
assumption this discussion was based on – global temporal order – and see where it leads us.
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6
CAUSALLY INDEF IN ITE PROCES SE S

Throughout this thesis we have frequently hinted at the fact, that many of the derived results do
not rely on the existence of a global temporal order. For example, for the generalized extension
theorem to hold, it is not a prerequisite that the sets Λk that the corresponding joint probability
distributions are defined on are times that signify a chronology of events. Analogously, the
framework of higher order quantum maps is not erected on the principle of causal ordering as
its foundation; rather, temporal order imposes structural requirements on the corresponding
quantum combs, and we have seen that causally disordered combs can describe situations in
which not all the elements of the underlying quantum network are deterministic.

On the other hand, for the entire discussion of open quantum processes in the previous
two chapters, we always had an underlying circuit dilation and clear experimental scenario
of successive interrogations of the system of interest in mind. In light of this, allusion to
temporally disordered processes seems more like a mathematical afterthought, than a deeper
statement in its own right. After all, what would it mean for a process to lack a clear causal
order, and how would we describe such processes mathematically? Or, more fundamentally,
is it even possible to construct a physical theory without global order that does not run into
paradoxes?
Putting temporal order into question seems somewhat unnatural, as it is one of the basic

pillars that both our everyday understanding of the world, as well as our physical theories,
are built on. Events, no matter how complicated the underlying dynamical theory, seem to
happen in a causal succession, and there is a clear arrow of time that defines in which direction
they can influence each other. Although according to our intuition, causality seems built into
the fabric of reality its position as an axiom can and should be scrutinized. Future experiments
might challenge the idea that causal order is fundamental, and may reduce it to a property that
exists locally but is violated globally.
For instance, an experiment could consist of two parties (Alice and Bob) conducting mea-

surements in their separated laboratories. The temporal order of events would be heralded
by the joint probability distributions of their measurement outcomes. While Alice and Bob
experience a well-defined temporal order in their respective laboratories, it is fathomable that a
third party (Charlie) that receives measurement data from both Alice and Bob is unable to
assign a relative causal order to them based on the received data.

Specifically, if we consider for a moment, that both Alice’s and Bob’s experiment consists of
receiving a quantum system, manipulating it (i.e., implementing an instrument), and sending
the resulting system forward (see Fig. 6.1), then Alice and Bob will always be sure about the
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causal order of events in their respective laboratories, but the joint probabilities they measure
may not allow one to deduce a relative ordering between both laboratories. Importantly,
phrasing this scenario in terms of instruments and probability distribution already suggests
that all of these scenarios can be described by higher order quantum maps. Then, ‘all’ we have
to do to capture potential exotic temporal correlations is to relax the causality constraints we
imposed on them, to reflect only local, rather than global temporal ordering.

An experimental example of a causally unordered process is the quantum switch, theoretically
introduced in [53] and experimentally realized in [215–217]. Besides the quantum switch, no
other exotic causal structure has been implemented experimentally so far. Nonetheless, the
mathematical description of such structures is well developed [53, 54, 63, 64] and is subject
to active research, both from a foundational perspective (see, e.g., Refs. [42, 158, 218–223]), as
well as in terms of possible applications (see, e.g., Refs. [224–227]). As already alluded to, the
main mathematical object to represent such general processes are higher order quantum maps –
dubbed process matrices in this context – introduced in [54] for two parties and later extended
to multiple parties in Ref. [42]. Consequently, we will be able to discuss causally disordered
process with only minimal alterations to the formalism we have been using throughout this
thesis.

Importantly, in Ref. [54], the authors showed that there exist so-called causally non-separable
process matrices – i.e., valid process matrices that cannot be written as a probabilistic mixture of
causally ordered ones. These causally non-separable process matrices respect local causality, i.e.,
in the respective laboratories of Alice and Bob in the example above, but go beyond what can
be described by quantum mechanics that abides by global causal order. Additionally, causally
non-separable process matrices also encapsulate processes that can violate causal inequalities,
i.e., they do not allow for an underlying causal model. As an aside, this situation for temporal
correlations is reminiscent of the analogous case for spatial correlations; quantum states that
cannot be written as a probabilistic mixture of product states are called non-separable and can
violate Bell inequalities.1

By definition, no process that is compatible with a global causal order exhibits correlations
that are obtained from a causally non-separable process matrix.2 On the other hand, in our
discussion of higher order quantum maps, we have already seen that processes that do not
satisfy causally constraints can be simulated non-deterministically, i.e., by conditioning the
collection of data on an additional measurement outcome. For example, Charlie might measure
an additional system that he possesses, which has previously interacted with both Alice and Bob.
He could choose to only record the data he receives from Alice and Bob when the measurement
of his system yields a particular outcome. Even if the global causal ordering of Alice’s and
Bob’s laboratory is fixed, the data that Charlie records could lead him to believe that there
is no temporal ordering between Alice and Bob. In this way, any process matrix – causally

1 In the same way in which there are entangled stated that do not violate a Bell inequality [228], causal non-separability
is a necessary, but not sufficient, prerequisite for the violation of a causal inequality.

2 This seemingly innocuous statement has recently been put into question by the results of [229].
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ordered or not – can be implemented experimentally by a quantum circuit (i.e., a causally
ordered process) with an additional measurement [15, 17, 52, 111].3

In this chapter, building on the theory of open quantum system dynamics we developed
earlier, we shall consider the task of experimentally implementing processes with indefinite
causal order by means of conditioning. We will answer two natural questions that suggest
themselves: Given a process matrix, what is its implementation in terms of an open process
(with measurement)? What resources are necessary to simulate a causally non-separable process?
In this sense, our motivation is less foundational – we shall not discuss the meaning of the
potential absence of global temporal order – but rather operational: Assuming the set of
permissible process matrices as given, what resources would one need to recreate any one
of them experimentally. Nonetheless, we will see that this investigation provides a clear
connection between the quantumness of the required implementation resources and the causal
non-separability of the process matrix that is to be simulated.

Specifically, we will obtain a general implementation scheme for arbitrary causally disordered
processes which requires a genuinely tripartite entangled initial state. Moreover, we will derive
necessary and sufficient conditions for a general circuit with measurement to yield a valid
process, and give an explicit example of causally non-separable process matrices that can be
simulated with a probability that exceeds 50%, thus outperforming previous simulation proto-
cols. Finally, we shall see that – independent of the implementation scheme – the simulation
of causally non-separable process matrices requires both genuine tripartite entanglement in
the initial state, as well as nonlocal unitary dynamics, i.e., it requires the underlying causal
process to be non-Markovian and genuinely quantum. Importantly, the results we encounter
in this chapter, which are based on Ref. [3], provide a constructive way to experimentally
simulate arbitrary process matrices and establish a clear connection between entanglement,
non-Markovianity and causal non-separability.
Consequently, this chapter can be read in two different ways. On the one hand, as an

exercise in applying the framework used to describe open quantum processes to other fields,
thus demonstrating its versatility. On the other hand – more interestingly – it can be seen as
connecting the areas of causally ordered and causally disordered processes via the resources
that are needed to simulate the latter by means of the former. Before we proceed with a brief
recapitulation of the structural properties of causally ordered processes, a short disclaimer
is in order. Firstly, our discussion of causally disordered processes will be distinctly device
dependent: that is, we will assume that we know the dimensions of the involved systems, and
trust the devices that Alice and Bob use to make their measurements. This assumption allows
us to use the process matrix framework as a descriptive tool (for device-independent discussions
of causal disorder, see, for example, Refs. [42, 234]). Secondly, we will mostly consider the
two-party case, as the definition of causally ordered processes becomes cumbersome in the
multipartite case [42, 235], and definitive results cannot be easily obtained.4 We shall mention
explicitly, whenever results apply to the multipartite case as well. With these disclaimers out

3 In a slightly different context, schemes involving conditioning of data are also actively investigated both theoretically
as well as experimentally with respect to the simulation of closed timelike curves (see, e.g., Refs. [230–233]).

4 This situation is reminiscent of the complexity of multipartite entanglement as compared to the bipartite case.

143



causally indefinite processes

(a) Alice goes before Bob. (b) Bob goes before Alice. (c) Alice and Bob do not influ-
ence each other.

Figure 6.1: Possible global temporal orders for Alice’s and Bob’s respective experiments. The blue
arrows depict a possible physical system entering and leaving the respective laboratories. (a) If Alice
goes before Bob, her experiment can influence the statistics of Bob’s measurements. (b) If Bob goes
before Alice, his experiment can influence the statistics of Alice’s measurements. (c) If Alice’s and Bob’s
experiments are independent of each other, neither experimenter can influence the outcome statistics of
the other. For explanation of the notation used in the text, inputs and outputs to the laboratories are
labeled by the respective Hilbert spaces they are defined on.

of the way, we can now discuss causally disordered processes from the perspective of open
quantum system dynamics.

6.1 causally ordered processes – recap

In order to render the structure of causally disordered processes more transparent, connect
them to the theory of open quantum processes, and provide a meaningful definition of causal
indefiniteness, we shall briefly reiterate the structural properties of causally ordered processes
that we derived in Ch. 2. In this way, the explicit requirements that are dropped, and the ensuing
relaxed structural properties of process matrices become perspicuous. To keep notational
overhead minimal, we will phrase what follows for two parties only. The generalization to
more parties is always straightforwardly possible.

As already alluded to in the introduction to this chapter, we shall consider two laboratories A
(Alice’s laboratory) and B (Bob’s laboratory), in which both parties can implement instruments
JA = {MAiAo

x ∈ B(Hi
A ⊗Ho

A)} and JB = {MBiBo

y ∈ B(Hi
B ⊗Ho

B)}.
In correspondence with the notation we employed throughout this thesis, Xo (Xi) labels the

Hilbert space of the system that enters (leaves) laboratory X (see Fig. 6.1). Additionally, for
better orientation, we shall frequently garnish themaps we consider with additional superscripts
to make clear what Hilbert spaces they live on, and XYiYo

implies that X ∈ B(Hi
Y ⊗Ho

Y).
For succinct notation, whenever there is no risk of confusion, we will set A = AiAo and
B = BiBo when applicable, i.e., MAx ∈ B(Hi

A ⊗ Ho
A) and M

B
y ∈ B(Hi

B ⊗ Ho
B), and we

shall drop the superscripts whenever they are not needed for further clarification. Notably,
considering laboratories as the backdrop of our considerations has the advantage of introducing
labels for events without the allusion to time or temporal order.
Now, as we have already discussed for the case of causally ordered processes, Alice and

Bob can perform generalized measurements in their respective laboratories and collect the
joint probability distributions P(x, y|JA,JB) to measure outcomes x (y) in Alice’s (Bob’s)
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Figure 6.2: Causally ordered process A ≺ B without an open output wire. Every causal process can be
represented as an open quantum circuit with a trace over the final output line. Due to this final trace, the
corresponding process tensor decomposes into WBiBoAiAo

A≺B = 1Bi ⊗WBoAiAo

A≺B , where the superchannel
WBoAiAo

A≺B (blue box with dotted borders) is causally ordered.

laboratory, given that the instrument JA (JB ) was used to interrogate the respective system
of interest. This joint probability can be computed via

P(x, y|JA,JB) = tr
[(
MAiAoT

x ⊗MBiBoT

y

)
WBiBoAiAo

]
= MAiAo

x ?MBiBo

y ?WBiBoAiAo

, (6.1)

where we have introduced the process matrix WBiBoAiAo ∈ B(HBi ⊗HBo ⊗HAi ⊗HAo) [54].
Formally, Eq. (6.1) looks equivalent to the corresponding equations for temporally ordered

processes, and we have, for example, already encountered it in Eq. (3.16) when discussing the
GET. As before, Eq. (6.1) corresponds to a generalized Born rule [87]. However, here, we
will not assume a fixed temporal ordering between events happening in Alice’s and Bob’s
laboratories, respectively.5 To emphasize this potential lack of global causal ordering, in this
chapter, we will denote processes by W instead of C or T.
As we have seen, global causal ordering would impose structural properties on WBiBoAiAo

.
For example, a general process WBiBoAiAo

A≺B where Alice’s experiment comes before Bob’s – i.e.,
Alice’s output system becomes Bob’s input system (see Fig. 6.2 for reference) – would be
described by a process matrix of the form

WBiBoAiAo

A≺B = 1Bi ⊗WBoAiAo

A≺B , (6.2)

where WBoAiAo

A≺B is a causally ordered superchannel, i.e., satisfies

trBo(WBoAiAo

A≺B ) = 1Ai ⊗ ρAo , (6.3)

with ρAo the initial system state in Alice’s laboratory [17, 31]. This requirement guarantees
that, overall, Bob has no influence on Alice’s statistics, i.e., Alice’s statistics are independent of
the CPTP map that Bob implements in his laboratory (see Ch. 2). Analogously, if B ≺ A, we
obtain the same requirements, but with the labels of A and B interchanged.
Finally, if the experiments of Alice and Bob are completely independent of each other

(denoted by A||B), then

WBiBoAiAo

A||B = 1AiBi ⊗ ρAoBo , (6.4)

where ρAoBo is the initial (potentially correlated) state of Alice and Bob (see Fig. 6.3). Neither of

5 In fact, in Ch. 3, when we discussed the generalized extension theorem, we did not make this assumption either. In
the current chapter, though, we will finally make the structural consequences of a lack of global temporal order
manifest.
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Figure 6.3: Process where Alice and Bob are independent. Events in neither laboratory can influence the
outcome statistics in the other laboratory, respectively. However, Alice and Bob can share a correlated
initial state ρAoBo .

the causally ordered processes WA≺B, WB≺A, and WA||B with the structural properties defined
above display any causal anomalies. Additionally, one can imagine an experimental situation,
where the causal structure is not known with certainty, or depends on an exterior statistical
parameter (like, for example, the outcome of a coin flip). Such a scenario would be described
by a convex combination of causally ordered process matrices, which implies the following
definition due to Oreshkov et al. [54]:

definition 6 .1 ( causally separable processes ): A process WBiBoAiAo that can be writ-
ten as

WBiBoAiAo

= qWBiBoAiAo

A≺B + (1− q)WBiBoAiAo

B≺A (6.5)

= q
(
1Bi ⊗WBoAiAo

)
+ (1− q)

(
1Ai ⊗WAoBiBo

)
, q ∈ [0, 1] (6.6)

is called causally separable.

Evidently, the nomenclature stems from the similar definition of separable quantum states.
There is still some level of ambiguity in Def. 6.1, as a process matrix WA||B can be either
considered to be belong to the term WA≺B, or the term WA≺B in Eq. (6.5). Importantly,
though, the property of causal separability of a process is independent of this choice.

The set of causally separable process matrices comprises all processes that one would deem
permissible if global causal order was a fundamental trait of nature. However, it has been
shown – and we will reiterate the corresponding arguments shortly – that there are process
matrices outside the set of causally separable process matrices, that nonetheless do not lead
to logical paradoxes [53, 54]. These kinds of process matrices and their simulation shall be
the topic of the remainder of this chapter, and we will – interchangeably – call them causally
non-separable, causally indefinite, causally disordered, or simply acausal processes.

6.2 local causal order

There is no fundamental principle that demands the global causal ordering of events (say, for the
sake of concreteness, between the laboratories A and B). However, it seems reasonable not to
drop the idea of causality altogether. Evidently, an experimenter that performs a measurement
has a clear notion of their local causal ordering of events. To see this, consider a laboratory
where one can open a hatch h1 to let a system enter, then performs a measurement on said
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(a)Graphical representation
of Eq. (6.1)

(b) Standard H-shape of (a)

Figure 6.4: Sketch of causal disorder. Alice’s and Bob’s laboratory are embedded in some unknown
spacetime structure. Locally, they experience causal order, but globally, there does not have to be a clear
ordering between events. To emphasize the potential absence of global causal order, the corresponding
process matrices are drawn in a H-shape that does not suggest any a priori ordering between events.

system, and afterwards lets it leave the laboratory through another hatch h2. Independent of
the overall spacetime that the laboratory is embedded in, which could dictate a clear causal
ordering between events in different laboratories or not, our experimenter can distinguish
between inputs and outputs in their respective laboratory. Put differently, they have certainty
about the fact that the system first entered through h1 and afterwards left through h2, and
not the other way round. Additionally, this statement has to hold independently of what
other experimenters in different laboratories do. Consequently, any meaningful theory should
preserve this local notion of causality, and not, for example, allow for influence from the output
at h2 on the input at h1. On the other hand, there is no a priori reason for a fixed temporal
ordering between events in different laboratories.6

We shall formalize the above statements for the two party case. The ‘spacetime’ that Alice
and Bob are embedded in is described by a process matrix WBiBoAiAo

that contains all tem-
poral correlations between events in both laboratories (see Fig. 6.4). Now, demanding that
local causality holds in Alice’s laboratory independently of what Bob does, is equivalent to
demanding that WBiBoAiAo

?MB yields a causally ordered process on Alice’s side for all CPTP
maps MB on Bob’s side, i.e.:

WBiBoAiAo

?MB = WAiAo

B = 1Ai ⊗ ρAo|B, ∀ CPTP maps MB , (6.7)

where the subscript |B implies that the state ρAo can depend on the CPTP map that Bob
implemented. For a graphical representation, see Fig. 6.5. Analogously, Bob has to experience
local causality, independent of what Alice does in her laboratory, which implies

WBiBoAiAo

?MA = WAiAo

B = 1Ai ⊗ ρAo|B ∀ CPTP maps MA. (6.8)

Combining these two conditions into one, we thus obtain the definition of valid process
matrices for the two party case due to Oreshkov et al. [54] (generalization to the many party
case is straightforward [42]):

6 We are somewhat lax in our usage of laboratory. In general, it is sufficient to think of it as a ‘small’ region of
spacetime. For a more thorough discussion, see, for example, Ref. [229].
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Figure 6.5: Local causality of process matrices. Independent of the CPTPmapMB that Bob implements,
the process on Alice’s side is causally ordered. The subscript |B signifies that, the resulting causally
ordered process can depend on the CPTP map MB. We shall depict process matrices in the form of a ‘H’
to emphasize that they do not have to possess a global causal ordering.

definition 6 .2 ( valid process matrices ): AmatrixWBiBoAiAo ∈ B(Hi
B⊗Ho

B⊗Hi
A⊗

Ho
A) is a valid process matrix if it satisfies

WBiBoAiAo ≥ 0 , (6.9)

and

WBiBoAiAo

?MA ?MB = tr
[(
MA

T ⊗MBT
)
WBiBoAiAo

]
= 1 , (6.10)

for all CPTP maps {MA,MB}.

Positivity of WBiBoAiAo
ensures that probabilities are positive7, while condition (6.10) en-

forces local causality in the respective laboratories. Importantly, though, it does not fix a global
temporal order between Alice and Bob. Inserting the two CPTP maps MA = 1

dAi
1Ai ⊗ 1Ao

and MB = 1
dBi
1Bi ⊗ 1Bo into Eq. (6.10), we see that any valid process matrix satisfies

tr(WBiBoAiAo

) = dAidBi . (6.11)

Naturally, all causally separable processes satisfy Reqs. (6.9) and (6.10), but there are processes
that are valid processes but not causally separable.

It is important to note the structural similarities and differences between the conditions (6.9)
and (6.10) for process matrices, and the causality conditions imposed on deterministic quantum
combs. Process matrices yield unit probability on the affine span of the set of product CPTP
maps, i.e., all valid combs that can be written as ∑γ κγ MB

γ ⊗MA
γ , where all MB

γ , MA
γ are CPTP

and ∑γ κγ = 1; the set of all deterministic combs that can be decomposed in this way coincides
with the set of no-signaling operations [53, 182, 237] between Alice and Bob. Consequently,
valid process matrices form the dual set to the set of non-signaling processes [183]. On the
other hand, every causally ordered (say, A ≺ B) deterministic comb yields unit probability
when applied to another deterministic comb of the same ordering (and such that no open
wires remain). In this particular sense, the set of causally ordered processes is self-dual.8

7 More precisely, positivity of WBiBoAiAo
is sufficient for positive probabilities, but not necessary [236]. Demanding

WBiBoAiAo ≥ 0 can be justified under the additional assumption that Alice and Bob can initially share a maximally
entangled state in addition to the spatio-temporal correlations that are given by WBiBoAiAo

[54, 225].
8 Strictly speaking, this is not entirely correct, as the original comb and the comb it acts on have to have slightly
different structures, so that no open wires remain after contraction. However, in the logic of this comparison, we
can neglect this technical difference.
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6.2 local causal order

Additionally, since the set of no-signaling maps is strictly smaller than the set of causally
ordered combs, the set of admissible process matrices WBA is strictly larger than the set
of temporally ordered processes. As we have argued in Ch. 2, every CPTP map MA (and
analogously MB) map can be written as a linear combination of generalized Pauli matrices Γ,
i.e.,

MA =
1

dAi

1Ai ⊗ 1Ao +
dAi

2−1

∑
α=1

aαΓAi

α ⊗ 1Ao +

d2
Ai−1

∑
β=1

d2
Ao−1

∑
γ=1

cβγΓAi

β ⊗ ΓAo

γ , (6.12)

where, importantly, terms of the form 1Ai ⊗ ΓAo are absent. Consequently, Eq. (6.10) defines
what terms can and cannot appear in a similar decomposition of a valid process matrix WBA.
We list the explicit restrictions that local causality imposes on process matrices in App. D.1.
Notably, the set of permissible Pauli terms for causally ordered process matrices is strictly
smaller than the corresponding set for general ones, which only guarantee local, but not global,
temporal order.

remark 6 .1: As alreadymentioned, we will not be concerned with the ontological meaning of the
potential absence of global causal ordering.However, before we embark on themore applied analysis
of their simulation, a brief remark on the concept of causally indefinite processes is in order. A priori,
there is no fundamental physical concept that guarantees or forces global causal ordering.9 Due to
satisfaction of Eq. (6.10), causally indefinite process matrices do not lead to paradoxical situations
and can therefore not directly be refuted on logical grounds. This makes them a potentially fruitful
area of research in their own right.

More broadly, throughout the history of physics and science in general, the investigation of con-
cepts that are not fundamentally forbidden, but seemingly against common sense, has produced
highly celebrated results. Two prime examples that spring to mind are entanglement, and the theory
of general relativity. While the former concept follows from the vector space structure of quantum
mechanics, but implies highly counterintuitive consequences, the latter starts from the minimal as-
sumption that, locally, one can always transform to a free-falling coordinate system, but this is not
necessarily the case globally. Above all, in light of this second example, the reasoning that led to the
minimal requirements for valid process matrices seems to point into the right direction.
These arguments notwithstanding, up to this point, no such causal anomalies have been observed

in nature – outside of experimental simulations – and it remains to see if the concept of causal in-
definiteness can withstand further theoretical scrutiny [158]. Nonetheless, even if causally indefinite
processes were to turn out to be incompatible with more fundamental principles, like, for example,
purification postulates, their investigation would still advance our understanding of causality and
temporal order in general.

With this theoretical prelude out of the way, we can now turn to more concrete questions
surrounding process matrices, and connect them to the theory of open quantum system
dynamics. This analysis can be carried out independently of the actual existence of causally
indefinite processes, and everything we shall discuss is operationally well-defined, and can be
realized within the framework of causally ordered processes we encountered in the previous
chapters.

9 For a somewhat opposing view, and a thorough discussion of role of causality in physics, see, e.g., Ref. [238].
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6.3 conditional simulation of causally indefinite processes

Having rigorously introduced the framework for causally disordered processes, we shall now
focus on their simulation by means of causally ordered processes, i.e., by means of open
quantum system dynamics. By definition, if the process to be simulated does not adhere to the
same causal ordering as the circuit invoked for its simulation, then, such a simulation cannot
be achieved deterministically. However, as we have already seen, every process matrix can be
simulated probabilistically by a quantum circuit with additional postselection [15, 17, 52, 111].

Explicitly, this means that the deducible joint probability distributions P(x, y|JA,JB) cor-
responding to a given process matrixWBA can be simulated by conditioning the outcome prob-
abilities of Alice and Bob in a causally ordered process on an additional measurement outcome
of a measurement performed (say, by Charlie) on an environmental degree of freedom. This
means, that for every process matrix WAB, there is a causally ordered process and a condition-
ing on the environment, such that P(x, y|JA,JB) = p(x, y, µsucc|JA,JB,JC)/p(µsucc|JC),
where µsucc is the outcome of Charlie’s measurement that we condition on.10 Here, and in
what follows, we will distinguish between probabilities P, obtained from process matrices, and
probabilities p, obtained from the causally ordered process we use for the simulation
In this section, we will give a direct, and constructive proof (in the spirit of the one given

in [15]) that every process matrix can be simulated by a circuit with postselection, and, impor-
tantly, provide a concrete implementation scheme. With respect to existing results of this type,
our construction is advantageous, as it yields a higher probability of success. Subsequently, we
shall analyze how, and under what circumstances, a valid process matrix emerges in general
from a conditioned circuit. This analysis will then enable an investigation of the necessary
resources to simulate a causally inseparable process.

6.3.1 Conditional Simulation of Arbitrary Causally non-Separable Processes

Causally ordered circuits, like the ones depicted in Figs. 6.2 and 6.3, yield a joint probability
distribution p(x, y|JA,JB) to obtain the outcomes x and y in Alice’s and Bob’s laboratory,
respectively. Now, to simulate causally disordered processes, we allow for an additional final
measurement with a fixed instrument JC on the environment, carried out by Charlie (see
Fig. 6.6). With this additional measurement on the environment, one obtains a joint probability
distribution p(x, y, µ|JA,JB,JC). In what follows, for compact notation, we will omit the
explicit dependence on JC to emphasize that we consider Charlie’s instrument to be fixed and
part of the underlying process. By conditioning p(x, y, µ|JA,JB) on a measurement outcome
on the environment, i.e., by only recording data when the measurement on the environment
yields a specific outcome, it is possible to simulate any process – causally non-separable or not.
We have the following theorem [3]:

10 Importantly, conditioning on the other measurement outcomes µ 6= µsucc can also lead to valid process matrices
(see, e.g. Ex. 6.1).
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6.3 conditional simulation of causally indefinite processes

(a) Serial circuit with postselection. (b) Parallel circuit with postselection.

Figure 6.6: Causally ordered circuit with an additional measurement on the environment. After Alice’s
and Bob’s experiments have concluded, and the respective output systems and the environment have
gone through the corresponding system-environment unitaries, Charlie measures the environment.
The respective outcome µ for the fixed instrument JC corresponds to the POVM element Eµ. For
simulation of causally disordered processes, Alice’s and Bob’s results are only recorded when Charlie
obtains the ‘correct’ measurement outcome.

theorem 6 .1: Any process matrix WBA can be simulated by a circuit of the form of Fig. 6.7,
with an initial state

ρAoBoe := ρsoe =
1

dAoBo
Φ+

Ao ⊗Φ+
Bo ⊗Π(0)

r , (6.13)

where Π(0)
r = |0〉〈0| is a pure state of an environment r, Φ+

Xo ∈ B(HXo ⊗HXo) is an unnor-
malized maximally entangled state, and dAoBo = dAodBo . After the instruments JA and JB are
applied, the systems and the environment evolve through the unitary U that satisfies

tre[Π
(0)
r U] =

√
λmax

−1
√
WBA

T
, (6.14)

where λmax is the largest eigenvalue of WBA. The desired process is simulated by measuring the
environment in the computational basis and conditioning on the outcome 0. The probability of
success is

psucc =
1

dAoBo λmax
. (6.15)

Before we prove the theorem, it is important to emphasize that it is constructive; for any
given process matrix WBA, it allows one to find an explicit circuit plus conditioning procedure
that will yield the same statistics as the process matrix. This circuit is depicted in Fig. 6.7,
where, in the spirit of open quantum system dynamics, we delineate between different spaces:
the initial system space so includes one half of Φ+

Ao and Φ+
Bo , i.e., so = AoBo, while the other

half, along with r, makes up the environment e.
Additionally, this theorem is very close in spirit to Neumark’s theorem [159–161], that states

that every POVM element can be implemented by means of a dilated process. Unsurprisingly,
this theorem is a crucial ingredient to the proof of our statement.

Proof. For a given process matrix WBA, probabilities are calculated via

P(x, y|JA,JB) = tr
[(
MAx ⊗MBy

)
WT
]

, (6.16)
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(a) Circuit of Thm. 6.1. (b) Corresponding process matrix.

Figure 6.7: Circuit that can simulate any process matrix. For better delineation between what is
considered system, i.e., what can bemanipulated byAlice and Bob, respectively, and the environment, the
inaccessible halves of Φ+

Ao and Φ+
Ao are labeled by e1 and e2, such that e = re1e2, with the understanding

thatHe1
∼= HAo andHe2

∼= HBo . For better orientation, in the right panel the resulting process matrix
is shaded in blue, yielding the H form that we use to depict them.

where we have set W := WBA. Now, rolling back the Choi isomorphism, this can be rewritten
as

P(x, y|JA,JB) = tr
{[

(MA
x ⊗ I)[Φ+

Ao ]⊗ (MB
y ⊗ I)[Φ+

Bo ]
]
WT
}

(6.17)

which has the form of a quantum circuit with a final measurement. In detail, sinceWT is positive
we can think of it as a POVM element (up to normalization). By Neumark’s theorem, there
is a unitary U and a projector Π(0)

r := |0〉〈0| such that
√

αWT = trr[Π
(0)
r U], where α > 0

depends on W and is chosen such that 1− αWT ≥ 0, i.e., αWT is a proper POVM element.
Putting it all together, we obtain

P (x, y|JA,JB) =
1
α

tr
{

Π(0)
r U

[(
MA

x ⊗MB
y

) [
Φ+

Ao ⊗Φ+
Bo

]
⊗Π(0)

r

]
U†
}

(6.18)

The right-hand side of (6.18), up to a normalization factor dAoBo , describes a circuit with a
measurement on r in the computational basis that yields 0. The probability to measure 0 on
the environment is

p(0) = ∑
x,y

p(x, y, 0) =
α

dAoBo
∑
x,y
P(x, y|JA,JB) =

α

dAoBo
, (6.19)

where p(x, y, 0) is the probability to measure x, y and 0 in Alice’s, Bob’s, and Charlie’s
laboratory, respectively. We shall see below, that for proper process matrices, as Eq. (6.19)
already implies, this probability does not depend on the instruments that Alice and Bob employ.
The maximum success probability psucc is hence obtained for α = λ−1

max, where λmax is the
maximal eigenvalue of W.

Importantly for potential experimental implementations, the result of Thm. 6.1 is robust;
due to the linearity of the scheme, a deviation of order ε of the experimentally prepared initial
state, or the employed unitary U, from the target one leads to a deviation from the desired
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6.3 conditional simulation of causally indefinite processes

process matrix of the same order. Making the conditioning process more manifest, we can
succinctly express Eq. (6.18) as

P(x, y|JA,JB) =
1

p(0)
p(x, y, 0|JA,JB) , (6.20)

which explicitly corresponds to a conditional probability. Quite naturally, we can also express
these statements in terms of a link product; for every process matrix W, there exists an initial
state ρsoe and a unitary U, such that

W =
1

p(0)
ρsoe ? U ? Π(0)

r ? 1r , (6.21)

where Π(0)
r = |0〉〈0| and 1r denotes the final trace over all the degrees of freedom except for

the ones corresponding to the environment r (see Fig. 6.7a). However, the notation we chose
makes the connection to open quantum system dynamics more explicit. We shall rely heavily
on the link product in the derivations below. It is easy to see that, unlike most of the following
results, Thm. 6.1 does not only hold for the bipartite case, but can readily be extended to the
multipartite one, thus providing a very general simulation scheme.
The simplest implementation of Theorem 6.1 is one where the ancilla is a qubit. Defining

X := WT/λmax and X] := 1− X, a possible unitary U which implements the desired process
matrix W, as one of two possible process matrices {W, W]}, can be written as

U =
√
X ⊗ |0〉〈0| −

√
X] ⊗ |0〉〈1|+

√
X] ⊗ |1〉〈0|+

√
X ⊗ |1〉〈1| . (6.22)

This choice of U is indeed well-defined and unitary, as [
√
X ,
√
X] ] = 0, and X] is a positive

operator. Conditioning on the outcome 0 yields W, whereas conditioning on 1 yields the
process matrix W]. As such, the case where the conditioning happens on a qubit already
includes the case of higher dimensional environments; if r does not correspond to a qubit,
then one outcome in the computational basis can be labeled as 0, while all the other other
ones can be grouped together as outcome 1, thus, effectively, providing a qubit space from the
perspective of postselection.
We conclude this section by illustrating Thm. 6.1 for an explicit example.

example 6 .1: In [54], Oreshkov, Costa and Brukner, introduced the following process matrix
WOCB as an example for a causally indefinite process:

WBiBoAiAo

OCB =
1
4

(
1BiBoAiAo +

1√
2

(
σBo

z ⊗ σAi

z + σBi

z ⊗ σBo

x ⊗ σAo

z

))
, (6.23)

where σX
a are Pauli matrices on the Hilbert space HX = C2, and we have omitted the respective

identitymatrices. The experimental situation thatWOCB describes is onewhere the input and output
spaces of Alice and Bob are qubits, respectively. It is not obvious at first glance thatWOCB is indeed
causally indefinite, i.e., cannot be written as a convex mixture of causally ordered processes. This
fact was shown in [54] directly, by constructing an information theoretic game that can be won by
exploiting WOCB with higher probability than would be possible with any causally ordered process
or convex combinations thereof.
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For this process matrix, we can choose α in (6.18) to be equal to 2. Consequently:

√
X =

1
2

(
1BiBoAiAo +

1√
2

(
σBi

z ⊗ σBo

x ⊗ σAo

z + σBo

z ⊗ σAi

z

))
,

√
X] =

1
2

(
1BiBoAiAo − 1√

2

(
σBi

z ⊗ σBo

x ⊗ σAo

z + σBo

z ⊗ σAi

z

))
. (6.24)

The corresponding unitary U for simulation can be constructed using (6.22), and the maximal
probability p(0) of success for the outcome 0 on the environment for this choice of unitary is equal
to 1/2. The process matrix W] that one would obtain by conditioning on the outcome 1 is given
by W] = p(1)X] = 1

21− W. Both W and W] are causally non-separable; conditioning data on
either of the outcomes 0 or 1 on the environment, Charlie could not ascribe a causal order to Alice
and Bob’s actions based on the joint probability distributions he obtains. However, as expected, the
average of W and W] is causally ordered.

In anticipation of the resource analysis of the simulation procedure, it is instructive to investigate
the properties of the employed building blocks for the simulation. By construction, the initial state
ρsoe exhibits genuine tripartite entanglement, as it is pure and entangled across all possible bipar-
titions {Ao : Boe, Bo : Aoe, e : AoBo}. On top of that, it is easy to check, that the constructed U
is nonlocal, i.e., it cannot be written as UAi ⊗ ZBie, UBi ⊗ ZAie or UBiAo ⊗ Ze. For this exam-
ple, it is even tripartite entangling.11 We will see in Sec. 6.4 that both of these properties – initial
tripartite entanglement and a nonlocal unitary – are necessary requirements for the simulation of
causally non-separable process matrices.

6.3.2 Conditional Circuits and Valid Processes

In the previous section, we have shown that every process – causally separable or not – can be
obtained via a particular circuit with additional conditioning. On the other hand, not every
circuit with measurement yields a valid process. The following theorem fixes the set of circuits
that lead to a valid process matrix when conditioned on an outcome µ on the environment [3]:

theorem 6 .2: A circuit with measurement on the environment yielding outcome µ leads to a
valid process matrix via conditioning iff the success probability p(µ) does not depend on the choices
of instruments JA and JB.

We have already encountered this independence in the derivation of Thm. 6.1. In a slightly
different context, this fact has also been discussed in [111], where the authors pointed out that
valid process matrices can be simulated by two-time states that have the property that the
probability rule becomes linear, i.e., probabilities do not depend on the choice of instruments.
Below, we provide a direct proof of this statement. Thm. 6.2 implies that the conditioned
simulation of a process matrix is well-defined; since the probability of success does not depend
on Alice’s and Bob’s instruments, the reconstructed process matrix is independent of how Alice
and Bob choose to run their respective experiments. Consequently, conditioning is well-defined
and clear-cut experimental prescription. However, this also means that the respective circuits
are highly fine-tuned; an arbitrary circuit with measurement would almost always lead to

11 In general, nonlocality of a unitary operation is necessary for it to be entangling, but not sufficient.

154



6.3 conditional simulation of causally indefinite processes

success probabilities that depend on the choices of instruments, or, put another way, would
lead to a reconstructed process that violates local causality.

Proof. We prove this statement for the serial case depicted in Fig. 6.6a, with two system-
environment unitary maps U and V. The parallel case, as well as the generalization to the
multi-party scenario, follows in a similar vein. The probability to measure x, y and µ in a run
of a general two-step circuit with measurement on the environment (with a fixed instrument
JC ) is given by:

p(x, y, µ|JA,JB) = tr(ρAoe ? U ?MAx ? V ?MBy ? Eµ) . (6.25)

Now, if the probability of success, p(µ), is independent of the instruments that Alice and
Bob use, we can compute it via p(µ) = ∑x,y p(x, y, µ|JA,JB). Notably, due to the lack of
Kolmogorov conditions in quantum mechanics, this would generally not be possible. Setting

WBA :=
1

p(µ)
ρAoe ? U ? V ? Eµ ? 1e , (6.26)

where 1e corresponds to the final trace over all but the environmental degrees of freedom (see
Fig. 6.6a), we see that

WBA ?MA ?MB = 1 ∀CPTP maps MA,MB . (6.27)

As the thusly defined WBA is positive by construction, it is hence a valid process matrix.
To prove the converse statement, let the circuit with measurement be such that, for a choice

of (informationally complete) instruments J̃A, J̃B on Alice’s and Bob’s side respectively, one
obtains a valid process matrix Wµ by conditioning on Charlie’s outcome. Per se, the respective
success probability p̃(µ) can depend on the employed instruments J̃A and J̃B. Using the
arguments from above, we see that the reconstructed process matrix is given by

Wµ =
1

p̃(µ)
ρAoe ? U ? V ? Eµ ? 1e . (6.28)

As, by assumption, Wµ is a valid process matrix, we know that it yields unit probability for
any CPTP maps on Alice’s and Bob’s side, respectively. Thus, for any instruments JA,JB,
with corresponding CP maps {MAx }, {MBy }, we have

∑
x,y

tr(ρAoe ? U ?MAx ? V ?MBy ? Eµ) = p̃(µ)∑
x,y

tr[(MAx ⊗MBy )WT
µ ] = p̃(µ) , (6.29)

which implies that the success probability is independent of the instruments JA,JB.

While the process matrix obtained by conditioning on a particular measurement outcome
can causally non-separable, the average process matrix is compatible with a definite causal order,
as it must be. For example, if, as in Thm. 6.1, the conditioning is carried out for a parallel
circuit (as the one depicted in Fig. 6.6b), then the overall process without postselection is of
the form 1BiAi ⊗ ρBoAo , and we have

∑
µ

p(µ)Wµ = 1BiAi ⊗ ρBoAo = WA||B , (6.30)
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where Wµ is the process matrix corresponding to outcome µ, respectively. This is in agreement
with the results from Ex. 6.1, where we had p(0)W+ p(1)W] =

1
41BA and ρBoAo = 1

41AoBo .
On the other hand, if, like in Fig. 6.6a, the underlying causally ordered circuit is of serial

form (say, with order A ≺ B), then we have

∑
µ

p(µ)Wµ = 1Bi ⊗WBoAiAo

= WA≺B , (6.31)

where WBoAiAo is a causally ordered process tensor for Alice’s laboratory. The require-
ments (6.30) and (6.31) impose causality constraints on the success probability of simula-
tion [233], which we shall exploit in the following section to find maximal success probabilities
for the simulation of particular process matrices.

6.3.3 Probability of Success

The probability of success for simulating a process matrix depends – amongst others – on its
causal structure and the protocol that is employed for its implementation [233]. While we
consider maximal success probabilities below, here, using the scheme provided in Sec. 6.3.1,
we can show the following notable property:

remark 6 .2: With the protocol of Theorem 6.1, the success probability for the implementation of
a process matrix that violates a causal inequality can exceed 1/2.

Before we give a proof by example, it is necessary to briefly comment on causal inequalities.
As we alluded to in the introduction of this chapter, the discussion of causal structures in terms
of process matrices is distinctly instrument dependent, as we assume that we have knowledge
of the respective dimension of the involved Hilbert spaces and that quantum mechanics holds
in each of the laboratories. On the other hand, we could take a point of view where we do
not trust the respective experimenters and do not assume that quantum mechanics necessarily
holds locally, which is the instrument independent viewpoint. In this case, it is possible to
derive inequalities that must be satisfied if there is a clear causal ordering (or convex mixture
thereof) between events on the level of joint probability distributions only [54, 220, 221].

It has been shown, that there are causally non-separable process matrices that do not violate
any causal inequalities [225]. Correspondingly, violation of a causal inequality is – in a sense – a
stronger signature of acausality then causal non-separability. This is similar to the situation for
quantum correlations, where there are entangled states that do not violate Bell inequalities (see,
for example, Ref. [239]). In this chapter, except for the above remark, we are not concerned with
this distinction, and only differentiate between causally separable and causally non-separable
processes, i.e., we will assume a device/instrument dependent point of view. However, as
the above remark also holds for the violation of causal inequalities, and not just for causal
non-separability, is is worth making the more general statement. We now give an explicit
example to illustrate Rem. 6.2.
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Proof. It has been shown in Ref. [240] that the process matrix of Ex. 6.1 can be mixed with a
certain amount of white noise and remain causally non-separable. In detail, the process matrix

W′ =
γ

4(γ + 1)
1+

1
1 + γ

WOCB is causally non-separable for γ ∈ [0,
√

2 − 1) ,

(6.32)

where WOCB is the process matrix defined in (6.23). In order to be able to implement W′ with
success probability p = α(dA1 dA2)

−1 according to the procedure provided in Sec. 6.3.1, the
relation 1− αW′ ≥ 0 has to hold. The minimal eigenvalue of 1− αW′ is equal to 4 + 4γ−
2α− αγ. For γ→

√
2 − 1, the maximal allowed α tends to 4

√
2 /(1 +

√
2 ). Consequently,

there are causally non-separable process matrices that can be implemented with a probability
arbitrarily close to p =

√
2 /(1 +

√
2 ) ≈ 0.59. As W′ also violates a causal inequality for

γ <
√

2 − 1 [240], this means that there are process matrices that violate causal inequalities
that can be implemented with a success probability of more than 50%.

It is important to contrast this result with the scheme for the simulation of process matrices
proposed in [52]; there, independent of the process matrix that is to be simulated, the proposed
scheme always yields a success probability of 1/16.

Finally, before discussing the resources necessary for the simulation of causally non-separable
process matrices, we briefly have a look at maximal success probabilities for the simulation of
a given process matrix W.
As pointed out above, the process matrices Wµ obtained by conditioning on an outcome

µ have to add up to a causally ordered process. For example, for the parallel case, we have
∑µ p(µ)Wµ = 1AiBi ⊗ ρAoBo , which, as all Wµ ≥ 0, implies

pW ≤ 1AiBi ⊗ ρAoBo , (6.33)

where W is the process matrix that is to be simulated and p is the corresponding success
probability. Consequently, when searching for the maximal probability of simulation for a
given W by means of a parallel circuit, we aim to

maximize: p

subject to: pW ≤ 1AiBi ⊗ ρAoBo

tr ρAoBo = 1, ρAoBo ≥ 0.

This constitutes a semidefinite program (SDP) [241, 242] (albeit not in its standard form), that
can be readily solved numerically, by using standard tools (for example CVX, a package for
specifying and solving convex programs [243, 244]). For WOCB, this evaluation yields – up to
numerical precision – a maximal simulation probability of pmax = 1/2, which implies, that,
in this particular case, the simulation procedure of Thm. 6.1 is already optimal.
Analogously, for the case of an underlying simulation circuit with causal ordering A ≺ B,

we obtain the following maximization problem:

maximize: p

subject to: pW ≤ 1Bi ⊗WBoAiAo

trBo WBoAiAo
= 1Ai ⊗ ρAo , tr ρAo = 1, ρAo ≥ 0.
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This, again, constitutes an SDP that can readily be solved and yields a maximum success
probability of pmax =

√
2 (
√

2 − 1) ≈ 0.59. The same result holds true for simulation via a
circuit with causal order B ≺ A. The serial case slightly outperforms the parallel one in the
simulation of WOCB, but the solution of the SDP has the drawback that it does not provide us
with an explicit circuit for the ideal implementation. On the other hand, it offers us with the
means to gauge the optimality of the simulation circuit provided by Thm. 6.1 for any given W.
It is now time to discuss the extent to which entanglement, nonlocal operations, and non-

Markovian features are needed to simulate process matrices that are causally non-separable.

6.4 resources for causally non-separable process matrices

The constructive procedure presented in Sec. 6.3.1 to simulate any process matrix W via
conditioning requires both genuine tripartite entanglement, as well as a nonlocal unitary U.
In this section, we shall see that the simulation of a causally non-separable process matrix
via conditioning always requires both a genuinely entangled initial state, as well as a nonlocal
unitary – no matter the strategy. As a first step, we will prove this statement for the special
case of the parallel circuit depicted in Fig. 6.6b. This circuit is, in turn, a special case of a serial
circuit, including two unitary evolutions (depicted in Fig. 6.6a), and it is natural to ask if the
requirement of initial entanglement can be lifted if two intermediary evolutions are available.
We show in Sec. 6.4.2 that this is not the case, and both initial entanglement and nonlocal
unitaries are indeed crucial for the simulation of a causally non-separable process matrix.

6.4.1 The Parallel Case

The parallel case is described by a triple {ρAoBoe = ρsoe, U, Eµ}, i.e., an initial total state,
an intermediary unitary dynamics and a conditioning on the environment. By Neumark’s
theorem, without loss of generality, we can choose Eµ to correspond to an orthogonal projection.
Possible resources for the simulation of a causally non-separable process matrix are the initial
state ρsoe, as well as the unitary U. We have the following theorem [3]:

theorem 6 .3: For the conditional simulation of a causally non-separable process matrix W by
means of a parallel circuit, it is necessary that both the initial state ρsoe is genuinely tripartite en-
tangled as well as the unitary matrix U is nonlocal, i.e., it cannot be written as a product operation
in any possible bipartition.

Proof. For the proof, we will make use twomain ingredients. Firstly, we will employ the formal
resemblance of entanglement and causal non-separability, and show that separability of the
initial state, or locality of the unitary U directly translates to causal separability. Secondly, we
will make use of the fact that certain terms cannot appear in the generalized Pauli decomposition
of a valid process matrices. For example, in the decomposition of W, a term of the form
ΓBi ⊗ 1Bo ⊗ ΓAi ⊗ 1Ao is not allowed, as it violates local causality. We shall dub such a term
an BiAi term. Analogously, a term of the form ΓBi ⊗ ΓBo ⊗ 1Ai ⊗ 1Ao , would be denoted an
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(a) Graphical representation of Eq. (6.34). (b) Graphical representation of Eq. (6.35).

Figure 6.8: Structural consequences of an initial product state in a parallel circuit. Due to the product
structure, the resulting process matrix decomposes into a tensor product, too, as can be seen by the
presence of open wires that are disconnected from the rest of the circuit (the wires labeled by Ao and
Bo in (a), and the wire labeled by Ao in (b).)

BiBo term, etc. A full list of generalized Pauli terms that cannot exist in the decomposition of
a valid process matrix is given in App. D.1.
Now, to prove the first part of the theorem, let U be an arbitrary unitary matrix, Eµ an

arbitrary orthogonal projection on the environment, and let the initial system-environment
state be of the product form ρsoe = ρso ⊗ ξe. Following the arguments of the proof of Thm. 6.2,
we see that for this scenario, we have

Wµ =
1

p(µ)
(ρso ⊗ ξe) ? U ? Eµ ? 1e

=
1

p(µ)
ρso ⊗ (ξe ? U ? Eµ ? 1e) := ρso ⊗Θsi , (6.34)

where we have ordered the link product according to the elements that are contracted with
one another (see Fig. 6.8a for a graphical representation) and we have set si = AiBi.
Local causality forbids terms of the form AiBi, Bi or Ai to appear in the process matrix

Wµ (see App. D.1). If Θsi is not proportional to 1si , one of these terms is bound to appear
in Wµ. Consequently, if Wµ is a proper process matrix, then it is of the form form 1si ⊗ ρso ,
which is causally ordered (non-signaling).

A similar argument holds for the case ρsoe = ρAo ⊗ ξBoe. Here, we have

Wµ =
1

p(µ)
(ρAo ⊗ ξBoe) ? U ? Eµ ? 1e

=
1

p(µ)
ρAo ⊗ (ξBoe ? U ? Eµ ? 1e) := ρAo ⊗ΘBiBoAi . (6.35)

See Fig. 6.8b for a graphical representation. As before, local causality forbids certain Pauli
terms; in particular the ones of the form Bi, AiBi, BiBo and AiBiBo. This forces ΘBiBoAi to
be decomposable as ΘBiBoAi = 1Bi ⊗ ζBoAi (where ζBoAi ∈ B(HBo ⊗HAi)), which implies
that the process matrix (6.35) is causally ordered (Alice goes before Bob). The same argument
applies for an initial state of the form ρsoe = ρBo ⊗ ξAoe. Consequently, any initial state ρsoe of
the form

ρsoe = q ρAoBo ⊗ ξe + t ρAo ⊗ ξBoe + (1− q− t) ρBo ⊗ ξAoe , (6.36)
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(a) Graphical representation of Eq. (6.37). (b) Graphical representation of Eq. (6.38).

Figure 6.9: Structural consequences of a unitary of product form. Due to the product structure of the
respective elements, the resulting process matrix decomposes into a tensor product, too, as can be seen
by the presence of open wires that are disconnected from the rest of the circuit (the wires labeled by
Ai and Bi in (a), and the wire labeled by Ai in (b).) For compactness, the superscripts of the unitary
maps are suppressed in both figures.

does not lead to a causally non-separable process matrix for all coefficients {q, t ∈ [0, 1] | q+ t ∈
[0, 1]}. As such, for the simulated process matrix to be causally non-separable, it is necessary
that the initial state is genuinely tripartite entangled, which provides a direct link between
genuine quantum resources and the causal indefiniteness of a process.

To prove the second part of the theorem, i.e., the necessity of a nonlocal unitary, let ρsoe be
an arbitrary state and U = UAi′Bi′AiBi ⊗ Ze′e a unitary of product form, where UAiBiAi′Bi′

is
the Choi state of a unitary map that acts on Alice’s and Bob’s outputs, and Zee′ is the Choi
state of a unitary map on the environment (see Fig. 6.9a). The resulting process matrix is given
by

Wµ =
1

p(µ)
ρsoe ? (UAi′Bi′AiBi ⊗ Ze′e) ? Eµ ? 1Ai′Bi′

=
1

p(µ)
(ρsoe ? Ze′e ? Eµ)⊗ (UAi′Bi′AiBi

? 1Ai′Bi′ )

=
1

p(µ)
1AiBi ⊗ (ρsoe ? Ze′e ? Eµ) , (6.37)

which is causally ordered (specifically, it is non-signaling).
Analogously, if the unitary map is of the form U = UAi′Ai ⊗ ZBi′ e′Bie, we obtain the

following process matrix:

Wµ =
1

p(µ)
ρsoe ? (UAi′Ai ⊗ ZBi′ e′Bie) ? Eµ ? 1Ai′Bi′

=
1

p(µ)
1Ai ⊗ (ρsoe ? ZBi′ e′Bie ? Eµ) . (6.38)

See Fig. 6.9b for a graphical representation. Again, this process matrix is causally ordered (it
allows signaling from Bob to Alice, but not the other way round). A similar argument holds
for total unitaries of the form U = UBi′Bi ⊗ ZAi′ e′Aie. Consequently only non-product – and
as such nonlocal – unitaries lead to causally non-separable process matrices.

In agreement with the results in Sec. 6.3.1 genuine tripartite entanglement does not mean
that Alice and Bob have to initially share entanglement amongst each other. However, the
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total state of the environment, Alice, and Bob has to be entangled in any possible bipartition.
Genuine tripartite entanglement in the initial state constitutes a quantum memory of the past,
that can be used to implement a causally non-separable process. In other words, pre-shared
quantum memory is a crucial resource for the simulation of causal non-separability.
Non-product unitaries are signaling [44, 182, 245], which makes the above theorem per-

spicuous; causal non-separability can only be simulated if a resource is available that enables
communication between Alice, Bob and the environment. Such a unitary propagates the initial
memory in a detectable way. Consequently, it is the non-Markovianity of the underlying circuit
that enables the simulation of causally indefinite processes. Having these results for the parallel
case at hand, we are now in a position to discuss, if the requirements of initial entanglement
and nonlocal unitaries can be relaxed in the serial case, i.e., when two intermediate unitary
dynamics are available.

6.4.2 The Serial Case

In the previous sections, we have analyzed the implementation of causally non-separable
processes by means of a parallel circuit with additional conditioning. Evidently, if we allow
for any possible initial state, the parallel circuit is a special case of the serial one (depicted in
Fig. 6.6a), i.e., a circuit with two intermediary unitaries.

For such a circuit, the resources available for the simulation of a causally indefinite process
matrix are the entanglement of the initial state between the system and the environment, and
the nonlocality of the two unitary maps U and V. It is then natural to ask, if a serial circuit
with measurement allows us to relax the resource requirements for the simulation of causally
non-separable process matrices. This question is answered by the following theorem [3]:

theorem 6 .4: The conditional simulation of a causally non-separable process matrix by means
of a serial circuit requires initial system-environment entanglement and nonlocal intermediate
system-environment unitaries.

Proof. Without loss of generality, we will show this statement for the case of an underlying
circuit of causal order A ≺ B. The prove proceeds in the same manner as the proof of Thm. 6.3:
Let ρAoe = ρAo ⊗ ξe be the initial system-environment state and let U and V be arbitrary
system-environment unitary maps. The resulting process matrix obtained by conditioning on
outcome µ on the environment is (see Fig. 6.10a):

Wµ =
1

p(µ)
(ρAo ⊗ ξe) ? U ? V ? Eµ ? 1e

=
1

p(µ)
ρAo ⊗ (ξe ? U ? V ? Eµ ? 1e) , (6.39)

where, as before, 1e denotes the trace over all spaces but the final environment (labeled by e′′

in Fig. 6.10a). Eq. (6.39) means that for the serial case with initial product state, the resulting
process matrix is of the same form as the one in Eq. (6.35) in the proof of Thm. 6.3, and it thus
has to be causally ordered (A ≺ B) for the same reasons.
Analogously, we can prove the necessity of nonlocal unitaries unitaries U and V. Firstly,

let V = VBi′Bi ⊗ Ze′′e′ . It is straightforward to see, that in this case, the resulting process
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(a) Graphical representation of Eq. (6.39). (b) Graphical representation of Eq. (6.40).

Figure 6.10: Structural consequences of product state and product unitary (serial case). Due to the
product structure, the resulting process matrix decomposes into a tensor product, too, as can be seen
by the presence of open wires that are disconnected from the rest of the circuit (the wires labeled by
Ao in (a) and the wires Ai and Bo in (b)) For compactness, the superscripts of the unitary maps are
suppressed in both figures.

matrix Wµ is one-way signaling (A ≺ B), and consequently causally ordered. Secondly, setting
U = UBoAi ⊗ Ze′e, we obtain

Wµ =
1

p(µ)
ρAoe ? Ze′e ? V ? Eµ ? 1e ⊗ UBoAi

:= ΘBiAo ⊗ UBoAi

. (6.40)

A graphical representation of this equation can be found in Fig. 6.10b.
As UBoAi

is the Choi matrix of a unitary map, up to normalization, it corresponds to a
maximally entangled state, which implies that terms of the form BoAi appear in its decompo-
sition. This fact forces ΘBiAo in Eq. (6.40) to satisfy certain structural requirements. As terms
of the form BiBoAo and BiBoAiAo cannot appear in the decomposition of Wµ, we must have
ΘBiAo

= 1Bi ⊗ ΘAo , which means that the resulting process matrix in Eq. (6.40) is causal
(A ≺ B).

As for the parallel case, the nonlocality of the system-environment unitaries is clear. If the
first unitary U was of product form, local causality in Alice’s laboratory would automatically
dictate a global order between the two laboratories. The nonlocality of the second system-
environment unitary V enables communication between Bob and the environment, which is
necessary to ‘blur’ the causal order between Alice and Bob.

Put differently, for a process that does not allow to store information in the environment and
access it at a later time, local causality fixes the global temporal order, and our theorems show
the importance of genuine pre-existing quantum memory, and system-environment unitaries
that transport memory in a detectable way. As such, we have shown what we set out to show
in this chapter: independent of the strategy, genuine quantum non-Markovianity is necessary
for the simulation of (bipartite) causally non-separable processes.

6.5 causally indefinite processes – summary

In principle, quantum mechanics is compatible with the existence of processes that lack a
definitive predefined causal order. To date, however, no such processes has been found in nature
or has been realized experimentally, besides the quantum switch [53, 215, 216]. In this chapter,
we set out to analyze the less ambiguous question of providing a constructive procedure to
probabilistically simulate every causally disordered process by means of a causally ordered
circuit with additional conditioning. With respect to previous results of this type, the strategy
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we found yields a higher probability of success, facilitating the experimental simulation of
causal anomalies.
The simulation of causally indefinite processes can be obtained by a simple circuit with

measurement on the environment. Importantly – in contrast to the results of [52, 111] – the
conditioning procedure we encountered happens on the environment, and not on the outputs
of Alice and Bob; consequently, Charlie can decide whether or not to record data, without
having direct access to Alice’s or Bob’s degrees of freedom. Additionally, beyond the proof of
existence, we provided a constructive way to obtain a triple of initial state, unitary evolution
and measurement outcome on the environment that yields the desired given process matrix W.

At first glance, conditioning might seem like a cherry-picking of data to obtain statistics that
display causal anomalies. However, what we have provided is not amathematical post-processing
procedure, performed offline, but an experimental procedure: data is collected whenever the
measurement on the environment yields the correct outcome, and we have thus predominantly
used the term ‘conditioning’ throughout this chapter, rather than ‘postselection’.

This understanding of the conditioning process makes causality become an emergent average
property. For example, for the conditioning process presented in Ex. 6.1, both process matrices
W and W] obtained by conditioning on the two possible outcomes 0 and 1 are causally non-
separable, but their average p(0)W + p(1)W] is – as it should be – causally ordered. We can
give further credence to this statement by considering the overall process tensor with an open
line on the environment (i.e., before it is contracted with a measurement) that one obtains
for this example. It simply of the form p(0)W ⊗ |0〉〈0|+ p(1)W] ⊗ |1〉〈1|, where |0〉〈0| and
|1〉〈1| are pure orthogonal states on the environment, and can be considered flags that herald
the two different causally disordered processes. Stretching the operational meaning of causality,
we can then go a step further and interpret this decomposition in the following way: In every
run of the experiment, one of the two disordered processes {W, W]} ‘exists’, and Charlie’s
measurement outcome simply reveals which one of the two it was. Looked at under this
light, causality really is an average property, that cannot be meaningfully attributed to the
individual runs of the experiment. Importantly, this argument relies on the fact that the above
decomposition is a convex one, and it would not hold for coherent superpositions of causally
disordered processes.
However, interpretations like the above one have to be taken with a grain of salt. Despite

the idea of causality (or the lack thereof) in each individual run being the guiding principle
of the definition of causally separable processes [42, 235], one should not attach too much
meaning to this concept; after all, causality is fundamentally a concept that can only be probed
by changing parameters and observing the effect of this change on the outcomes on other
events, which cannot be decided in a single run of an experiment.
We have seen that the simulation of causally unordered processes is highly fine-tuned. A

randomly chosen combination of initial state, unitary evolutions and conditioning almost
always leads to a matrix Wµ that violates local causality. Put differently, there are spatial
correlations that cannot be sensibly understood as temporal correlations [246]. A natural
question that suggests itself is that of robustness of the conditioning procedure: Are there
circuits that yield causally non-separable process matrices for every conceivable conditioning
on the environment? Evidently, Ex. 6.1 is not such a case, as conditioning in the {|+〉 , |−〉}
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basis results in a maximally incoherent process matrix (for either outcome). While numerically,
one can construct situation with a wide range of post-selection procedures that result in causally
indefinite processes, it is unclear if there are circuits that are fully robust when it comes to the
basis that the conditioning occurs in [247].

Finally, we analyzed in detail the resources necessary to probabilistically implement a causally
non-separable process matrix. Our results show that the implementation of causally unordered
processes requires both genuine tripartite entanglement in the initial state as well as nonlocal
unitary dynamics. The requirement of initial entanglement cannot be lifted even if we allow for
more nonlocal communication by introducing a second system-environment unitary. Initial
entanglement represents a genuine quantum memory of the past, while a nonlocal unitary
dynamics allows for a detectable propagation of this quantum memory. Hence, the obtained
results – loosely speaking – establish that only genuinely quantum non-Markovian processes
allow for the simulation of causally non-separable processes via conditioning. This result,
however, only holds for the two-party case; if more parties are involved, causal inequalities can
be violated with purely classical processes [248].
While the connection of entanglement, nonlocality and causal inseparability is insightful,

it by no means provides a resource theory of causal disorder. The same holds true for the
analysis of the impact of causally indefinite spatio-temporal correlations on computational
and communication tasks [53, 226, 249]. A fully-fledged resource theory, with a well-defined
measure of acausality12, is still missing. Its future development will shed further light on the
operational meaning and potential applications of causal indefiniteness.

12 In [95], causal robustness is suggested as a measure that satisfies certain desirable properties. However, it arguably
lacks a clear operational interpretation.
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7
CONCLUS IONS

Within this thesis, we have looked at general stochastic processes from a multitude of angles,
and established higher order quantum maps as their natural descriptor. It has turned out that,
fundamentally, many frameworks that apply to apparently different situations are sides of the
same coin, and can be accommodated in our generalized extension theorem.

The generalized extension theorem (GET) we have derived not only provides an ‘umbrella
theorem’ that establishes an axiomatic underpinning for causal modeling and stochastic pro-
cesses, but also advocates for the distinctly operational point of view that we have adopted
throughout. A process (classical, quantum, or beyond) is fully described once the outputs to
all implementable inputs can be predicted, and, as soon as one has a descriptor that satisfies
this requirement, no further information can be learnt about it. Following this approach,
we have been able to recover generalized Kolmogorov conditions, and provide the minimal
requirements for the existence of a quantum stochastic process.

Experimentally, these descriptors are meaningful due to the linearity of quantum mechanics,
which allows for their reconstruction in a finite number of experiments. We can use the general
ideas of process tomography to make deterministic quantum combs amenable to experimental
investigation when only limited experimental resources are available. Additionally, besides
merely describing the stochastic process at hand, the structural properties of process tensors
enable the characterization and quantification of persistent memory effects. In particular, we
have given a full characterization of quantum Markov order, and provided an operational
understanding of CP divisibility. Importantly, in all of our discussions, the guiding principle
has not been the resulting mathematical properties, but the logical concepts, such as conditional
independence in the case of Markov order. Structural properties were – as they should be – the
end, rather than the starting point of our considerations.

Naturally, the first question for future research that comes to mind, is that of reconstruction
complexity. The number of measurements necessary for the reconstruction of a process tensor
scales exponentially with the number of time steps, which seems to put a pin into the feasibility
of their actual experimental reconstruction. Consequently, in the future, compressed sensing
ideas, as they have been developed for the tomographic reconstruction of sparse or low rank
density matrices [188, 250] will have to be generalized to the temporal setting, to efficiently
recover process tensors from experimental data.
On the other hand, quite often, it will be sufficient to gauge the non-Markovianity of a

process without attempting its full reconstruction. We have encountered oCP divisibility as a
witness of non-Markovianity that, in addition, allows one to decide what temporal correlations
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can and cannot be present. Evidently, there is a large range of possible, operationally well-
defined alternative witnesses to be discovered based on the process tensor framework, that
are potentially better suited to the task, and easier to access experimentally. In general, our
operational approach will lead to witnesses, that not only reveal the non-Markovianity of a
process, but make quantitative assertions about the existing memory effects.
More fundamentally, the GET offers us a versatile toolbox to abstractly model quantum

stochastic processes and their continuous limit, without the need to resort to a system-
environment Hamiltonian. We have provided the example of a 1→ 3 adapter, that, at each
iteration, triples the number of time steps the process tensor acts on. Such a generation of
quantum stochastic processes makes the resulting underlying field theory accessible. For exam-
ple, it could potentially be obtained in a similar way as continuum limits of quantum lattice
systems [251].

Apart from this possibility of explicitly analyzing the underlying process, the combination
of the GET and the concept of restricted process tensors has also provided us with an opera-
tionally clear-cut way to determine the boundary between classical and quantum processes.
The corresponding analysis in Ch. 6 demonstrates the intimate relation between discord and
classicality in temporal processes, and enables the comprehensive classification of classical
stochastic processes. With said classification at hand, further analysis of the structural properties
of classical process tensors suggests itself, as does the development of a resource theory of
classicality for temporal processes. Such a theory would allow for a clear quantification of the
value of non-classical correlations in time, and would thus be of tremendous technological
importance.
Finally, in our discussion of causally disordered processes, we have discovered a direct

connection between multipartite entanglement, non-locality, and the simulability of causal
non-separability. These results open up many interesting novel research directions. As we have
seen, the constructive approach we provided is not necessarily ideal, and optimization of the
simulation circuit would simplify future experimental implementation. Additionally, while we
analyzed the resources that go into the simulation of causal indefiniteness, we have not fully
investigated how stable the simulation procedure is. Obtaining a clearer, more quantitatively
tangible relation, between the quantumness of the employed resources and the causal non-
separability of the simulated process matrix, would shed further light on the interconvertibility
of quantum correlations and causal disorder.

Intimately intertwined with this question is that of development of a fully-fledged resource
theory of causal disorder. Such a theory would allow one to value the causal non-separability of
a given process matrix, and give an operational meaning the the degree of causal indefiniteness
displayed by a process. This, in turn, would give more credence to the concept of causally
disordered processes per se.
Switching to an operational description of temporal processes by means of higher order

quantum maps makes them amenable to direct analysis, and answers many open questions.
Luckily, though, for theoretical physicists working in the field, it allows one to phrase even
more questions than it answers, and sheds light on a multitude of fruitful future research
avenues.
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APPENDIX





A
CAUSAL MODEL ING AND GENERAL STOCHAST IC PROCES SE S

a.1 definition of stochastic processes

For completeness, here we give the definition of a stochastic process as it can be found in
literature (see, e.g., [70, 71]), using the concept of random variables X, which are defined as
follows [71]:

definition a.1 ( random variable): Let (Ω, F) and (Ω′, F′) be measurable spaces. A map
X: Ω→ Ω′ is called a random variable, if ∀ f ′ ∈ F′, we have X−1( f ′) ∈ F.

Random variables are useful for several reasons. In general, the σ-algebra F could be some
very abstract set, and it is often helpful to introduce a mapping X : Ω→ Ω′ to some new, more
tangible, σ-algebra F′. For example, the set Ω′ is often taken as the real line, i.e., X : Ω→ R,
which is helpful, as real numbers allow for further computation [71]. In this sense, the mapping
X could be something as benign as a mapping X : {H, T} → {0, 1} from the outcomes H
(heads) and T (tails) to the integers 0 and 1 for a coin flip. On the other hand, X could also
specify, what aspects of an experiment are of interest. For example, the original sample space
could contain the outcomes {1, . . . , 6}, but one might only be interested in whether or not
the outcome was odd or even. The corresponding random variable could then be of the form
X(1) = X(3) = X(5) = 0 and X(2) = X(4) = X(6) = 1.
In order to be meaningfully defined, the mapping X should respect measurability. If the

space Ω′ is equipped with a σ-algebra F′, then, for every f ′ ∈ F′, we must have X−1( f ′) ∈ F;
every pre-image of a measurable set f ′ has to be an element of the σ-algebra F, and as such
measurable.

As mentioned, in practice the image space is quite often the real line R, and the space R has
a natural σ-algebra B, the σ-algebra corresponding to the set of open subsets of R [72] (the
so-called Borel σ-algebra).
If (µ, Ω, F) is a probability space, then X induces a probability measure P on (Ω′, F′) via

P( f ′) = µ(X−1[ f ′]) , (A.1)

and as such induces a new probability space (P, Ω′, F′). Using the the notion of a random
variable we then can define the concept of a classical stochastic process:

definition a.2 ( classical stochastic process ): Let (Ω, F) be a measurable space and
let Λ be a set. A stochastic process is a mapping

X : Ω×Λ→ R , (A.2)
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where X(t) : Ω → R is a random variable for every t ∈ Λ. For a fixed ω ∈ Ω the curve
t 7→ X(ω, t) is called a trajectory of the stochastic process (see Fig. 3.1) .

The functional dependency X(t) contains all statistical correlations of the process at hand,
like, e.g., its memory length, and the joint probability distribution PΛk that we used in our
Def. 3.4 of classical stochastic processes relates to the above definition via

PΛk(xk, . . . , x1) = P(X(tk) ∈ xk, . . . , X(t1) ∈ x1) , (A.3)

where Λk = {tk, . . . , t1}, the events xk, . . . , x1 are elements of F′, and P(X(tk) ∈
xk, . . . , X(t1) ∈ x1) is the probability for the random variable to take values that lie in
xα at tα. In this sense, directly defining stochastic processes in terms of probability spaces – as
we did in the main text – has the advantage of incorporating the mapping (Ω, F)→ (Ω′, F′)
given by the random variable, at the expense of losing the flexibility that random variables
provide.
Naturally, this equivalence carries over to the general case of |Λ| = ∞, and we have

PΛ(xΛ) = P(X(t) ∈ xt) , with t ∈ Λ . (A.4)

For all intents and purposes, both definitions of classical stochastic processes are equivalent.
In practice, we are rarely ever concerned with random variables or their trajectories per se,
but only with actually measurable quantities. For example, coming back to the example of
Brownian motion, it does not make sense to ask for the probability to measure a certain
trajectory of the particle. Consequently, for our purposes, it proved to be more insightful to
define classical stochastic processes without resorting to random variables.

a.2 proof of the generalized extension theorem (get)

Here, we prove the general extension theorem for processes with interventions. The structure
of the proof follows the derivation of the KET presented in [72]; given a family of compatible
combs, we use the consistency condition to define a unique comb C]Λ, that contains all finite
ones as ‘marginals’, on a large enough ‘container space’. Due to its properties (linearity and
boundedness) C]Λ can then be uniquely extended to a comb C]Λ on the closure of said container
space.
Let Λ be a (possibly uncountable) set, {Λk}Λk⊆Λ the set of all finite subsets of Λ, and let
{CΛk}Λk⊆Λ be the corresponding family of combs. For ease of notation, we assume all CP maps
that the combs act on to have the same input and output space, i.e.,Mxjα

: B(Hα)→ B(Hα);
a generalization to maps with distinct input and output spaces is straightforward.1 We denote
the space of these maps by F (Hα). Consequently, we have CΛk : FΛk → R, where FΛk =⊗

α∈Λk
F (Hα) and

⊗
α∈Λk

denotes a tensor product over all times tα ∈ Λk. Let the family of
combs satisfy the consistency condition CΛk [ ] = CΛK

[
IΛK\Λk

,
]
for all finite Λk ⊆ ΛK ⊆ Λ,

where IΛK\Λk
=
⊗

α∈ΛK\Λk
Iα.

1 Here, the restriction to CP maps is not of importance, but merely assumed to establish a clear connection to the
quantum case. In principle, the mapsMxjα

could be any linear maps between spaces of bounded operators.
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Now, we ‘lift’ this family of combs to a comb C]Λ that contains all of them as ‘marginals’. To
this end, we define the inverse projection π−1

Λk
: FΛk → FΛ, with

π−1
Λk

[ξΛk ] = ξΛk

⊗
α∈Λ\Λk

Iα (A.5)

for all ξΛk ∈ FΛk , which trivially extends any ξΛk to a corresponding operator that lies in FΛ;
Eq. (A.5) should be read as defining the operator that acts non-trivially on B(⊗α∈Λk

Hα), and
trivially on all other spaces. The inverse projection operator π−1

Λk
[ξΛk ] exists and is unique for

any finite Λk ∈ Λ and all ξΛk ∈ FΛk [252].
In the same way, we can define a partial inverse projection π−1

Λk←ΛK
: FΛk → FΛK for any

two finite sets Λk ⊆ ΛK ⊆ Λ, i.e., π−1
Λk←ΛK

[ξΛk ] = ξΛk

⊗
α∈ΛK\Λk

Iα. In terms of partial
inverse projections, the consistency property reads

CΛk [ξΛk ] = CΛK

[
π−1

Λk←ΛK
[ξΛk ]

]
. (A.6)

Let F ]
Λ denote the set of all ‘lifted’ operators, i.e.,

F ]
Λ = {ξ ∈ FΛ : ξ = ξΛk

⊗
α∈Λ\Λk

Iα, for some finite Λk} . (A.7)

It is straightforward to see that this set forms a vector space; for any α, β ∈ R and ξ =

π−1
Λk

[ξΛk ], ζ = π−1
ΛK

[ζΛK ], we have

α ξ = π−1
Λk

[α ξΛk ] ∈ F
]
Λ and α ξ + β ζ = π−1

Λk∪ΛK
[ΓΛk∪ΛK ] ∈ F

]
Λ , (A.8)

where ΓΛk∪ΛK = π−1
Λk←Λk∪ΛK

[α ξΛk ] + π−1
ΛK←Λk∪ΛK

[β ζΛK ] ∈ FΛk∪ΛK . Additionally, L
]
Λ be-

comes a normed vector space by setting ‖ξ‖ = ‖π−1
Λk

[ξΛk ]‖ := ‖ξΛk‖op, where ‖ ‖op is the
operator norm in FΛk . On this vector space, we can define the comb C]Λ via C]Λ[ξ] := CΛk [ξΛk ],
where ξ = π−1

Λk
[ξΛk ].

C]Λ is well-defined: if there are two different operators ξΛk ∈ FΛk and ξΛK ∈ FΛK , such
that ξ = π−1

Λk
[ξΛk ] = π−1

ΛK
[ξΛK ], the consistency property ensures that C]Λ[ξ] is unique; it is

straightforward to see that π−1
Λk←Λk∪ΛK

[ξΛk ] = π−1
ΛK←Λk∪ΛK

[ξΛK ] := ξΛk∪ΛK . Employing the
consistency condition yields

CΛk [ξΛk ] = CΛk∪ΛK [π
−1
Λk←Λk∪ΛK

[ξΛk ]] = CΛk∪ΛK [ξΛk∪ΛK ]

= CΛk∪ΛK [π
−1
ΛK←Λk∪ΛK

(ξΛK)] = CΛK [ξΛK ] , (A.9)

and consequently C]Λ[ξ] is independent of the representation of ξ.
The operator C]Λ is bounded, because every CΛk is bounded. It is also linear; due to the

linearity of CΛk and the linearity of the inverse projection operators, we have

C]Λ[αξ + βη] = αC]Λ[ξ] + βC]Λ[η] (A.10)

for all α, β ∈ R and η, ξ ∈ F ]
Λ. Any linear bounded transformation from a normed vector space

X to a normed complete vector space Y can be uniquely extended to a linear transformation
from the completion X of X to Y [253]. Consequently, there exists a unique map C]Λ defined
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on the completion F ]
Λ of F ]

Λ (this completion is sometimes called quasilocal algebra in the
literature [18, 254]) that has – by construction – the family {CΛk}Λk⊆Λ as ‘marginals’. This
concludes the proof. �

It is important to note thatF ]
Λ does not coincide withFΛ (they coincide iff Λ is finite [252]).

Consequently, there might be different combs CΛ defined on FΛ with coinciding action on all
elements of F ]

Λ. This, however, is not problematic. On the one hand, F ]
Λ ‘is in a way more

important than’ FΛ because its elements arise from the ones of F (Hα) ‘by extension and
algebraical and topological processes’ [252]. On the other hand – just like for the KET [71]
– the different possible combs on FΛ all lead to the same measurement statistics on any
experimentally accessible set of times, so this non-uniqueness is not accessible/detectable in
practice.

a.3 proof get ⇒ ket

Here, we show that the GET contains the KET as a corollary. In detail, we show that any
family of classical joint probability distributions can be mapped onto a family of quantum
combs that satisfies the generalized consistency condition. The GET then guarantees that there
is an underlying classical comb CclΛ, and thus also an underlying classical process PΛ.

For the proof, we exploit the structural requirements a classical comb has to satisfy. To make
these requirements evident, we employ the Choi-Jamiołkowski isomorphism, denoting the
combs by CΛk , and the CP maps they act on by Mxjα

∈ B(Hi
α ⊗Ho

α).2 Then, the action of a
comb is expressed via

CΛk [Mxjk
, . . . ,Mxj1

] = tr
[(
MT

xjk
⊗ · · · ⊗MT

xj1

)
CΛk

]
, (A.11)

where, as usual, T denotes the transpose in the reference basis. In this notation, letting a comb
act on identity maps amounts to projecting it on maximally entangled states, i.e.,

C|Λk
Λk

= trΛK\Λk

1Λk

⊗
α∈ΛK\Λk

Φ+
α

 CΛK

 , (A.12)

where trΛK\Λk
signifies a trace over the Hilbert spaces corresponding to times tα ∈ ΛK \Λk

and 1Λk is the identity matrix on the remaining Hilbert space HΛk :=
⊗

α∈Λk
(Hi

α ⊗Ho
α).

A classical family of joint probability distributions PΛk can be represented by a family of
classical combs

Ccl
Λk

= ∑
jk ,...,j1

PΛk(xjk , tk; . . . ; xj1 , t1)1
i
k ⊗ |xjk〉〈xjk | ⊗ · · · ⊗ 1

i
1 ⊗ |xj1〉〈xj1 | , (A.13)

where 1iα ∈ B(Hi
α) are identity matrices and |xjα〉〈xjα | ∈ B(Ho

α) are orthogonal pure states
corresponding to the measurement outcomes xjα . The classical combs defined by (A.13) are
diagonal in the reference basis and correctly reproduce the probabilities given by PΛk ; indeed,
it is easy to see that we have

tr
[(
PT

xjk
⊗ · · · ⊗ PT

xj1

)
Ccl

Λk

]
= PΛk(xjk , tk; . . . ; xj1 , t1) , (A.14)

2 As classical processes form a subset of quantum processes, here, we do not lose generality by explicitly employing
the CJI.
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Figure A.1: Graphical representation of a 1→ 3 adapter A1→3. This figure is a copy of Fig. 3.9 in the
main text, and shown here for ease of reference.

where Pxjα
= |xjα〉〈xjα | ⊗ |xjα〉〈xjα | is the CP map that corresponds to a projection onto

|xjα〉〈xjα |.
As I and the completely dephasing map D have the same effect on this classical comb, i.e.,

Ccl
Λk
F

α∈Λk′
Φ+

α = Ccl
Λk
F

α∈Λk′
Dα ∀Λk′ ⊆ Λk , (A.15)

the consistency property of the joint probability distributions induces a consistency property
of the family of classical combs

{
Ccl

Λk

}
constructed via to Eq. (A.13). Then, according to

the GET, there exists a classical comb Ccl
Λ that has all the finite combs Ccl

Λk
as ‘marginals’, i.e.,

Ccl
Λk

= Ccl|Λk
Λ for all finite Λk ⊆ Λ. This implies the existence of a joint probability distribution

PΛ that has all finite PΛk as marginals, which proves the original KET as a corollary of the
GET. �

a.4 properties of 1→ 3 adapters

As mentioned in the main text, the ordering of the wires g and c of the 1→ 3 adapter with
respect to the remaining wires can be chosen freely (see Fig. A.1). Here, we choose it such that
a and b can influence measurement statistics at g, and c can influence d (and obviously g), and
everything that comes after d. With this choice, we can represent the adapter A1→3 in a more
explicit way in terms of a quantum network (see Fig. A.2), consisting of a quantum state ρ,
two deterministic quantum maps L and K and the deterministic effect 1. The arrangement of
these elements makes the the causal relation between events manifest.
From Fig. A.2, we can derive the corresponding 1→ 3 adapter:

A1→3 = ρa′a ? Ldd′ca′b ? Kg f ′ f d′e ? 1 f ′h , (A.16)

where, for better orientation, we have labeled all elements by the Hilbert spaces they are
defined on, e.g., ρa′a ∈ B(Ha′ ⊗Ha). To avoid confusion, it is important to note that these
subscripts do not correspond to matrix elements, and we will not address individual matrix
elements at any point in this section. Now, if the resulting A1→3 satisfies Eq. (3.21), i.e., if it
is a universal 1→ 3 adapter, then the elements of this deterministic network have to satisfy
certain conditions. In detail, we have

A1→3 ? Φ+
ba ? Φ+

h f = ρa′a ? Ldd′ca′b ? Kg f ′ f d′e ? 1 f ′h ? Φ+
ba ? Φ+

h f

= ρa′b ? Ldd′ca′b ? tr f f ′
(
Kg f ′ f d′e

)
:= L̃dd′c ? K̃ged′

!
= Φ+

dc ⊗Φ+
ge , (A.17)
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Figure A.2: Possible deterministic quantum network corresponding to a 1→ 3 adapter. L and K are
deterministic quantum maps, ρ is a quantum state, and 1 is the deterministic effect corresponding to
the trace operation. For better orientation, all wires, including the ones that are not open, are labeled.

Figure A.3: Graphical representation of Eq. (A.17).

where we have used 1 f ′h ? Φ+
h f = 1 f ′ ⊗ trh Φ+

h f = 1 f f ′ , and the fact that ρa′a ? Φ+
ba is simply a

relabeling of Hilbert spaces, as Φ+
ba corresponds to the identity channel (see Fig. A.3).

Writing Eq. (A.17) explicitly, we obtain

trd′
[(
1ge ⊗ L̃

Td′
dd′c

) (
1cd ⊗ K̃ged′

)]
= Φ+

dc ⊗Φ+
ge (A.18)

To make this requirement on L̃dd′c and K̃ged′ more concrete, we express both maps in terms of
a basis, i.e.,

L̃dd′c = ∑
ij

r(ij) ρ
(i)
dc ⊗ η

(j)
d′ and K̃ged′ = ∑

pq
s(pq) ξ

(p)
ge ⊗ ∆(q)∗

d′ , (A.19)

where3 r(ij), s(pq) ∈ R, {ρ(i)dc } is a basis of B(Hd ⊗Hc), {η(j)
d′ } is a basis of B(Hd′), {ξ

(p)
ge }

is a basis of B(Hg ⊗He), and {∆(q)
d′ } is the dual set to {η

(j)
d′ }, i.e., tr

(
∆(q)†

d′ η
(j)
d′

)
= δqj (see

App. B.1 for an explicit construction of dual sets). Additionally, let both bases be such that
ρ
(1)
dc = Φ+

dc and ξ
(1)
ge = Φ+

ge. With this representation, Eq. (A.18) reads

trd′
[(
1ge ⊗ L̃

Td′
dd′c

) (
1cd ⊗ K̃ged′

)]
= ∑

ijpq
r(ij)s(pq) tr

(
∆(q)†

d′ η
(j)
d′

)
ρ
(i)
dc ⊗ ξ

(p)
ge

= ∑
j

r(1j)s(1j)Φ+
dc ⊗Φ+

ge + ∑
i=2
p=2

∑
j

r(ij)s(pj)ρ
(i)
dc ⊗ ξ

(p)
ge . (A.20)

In order for Eq. (A.18) to hold, the second term in Eq. (A.20) has to vanish, which is equivalent
to ∑j r(ij)s(pj) = 0 for all i, p ≥ 2. While this requirement is in general not easy to fulfill in
conjunction with the remaining requirements imposed on r(ij) and s(pq) – both L̃ and K̃ have to
be positive and trace preserving – it is, for example sufficient to choose the parameters such that
if r(ij) 6= 0 for some i ≥ 2, then s(pj) = 0 and vice versa. While this is a stricter requirement, it
allows for an easy construction of L̃ and K̃, such that they are positive, trace preserving, and
Eq. (A.18) is satisfied. Importantly, neither L̃ nor K̃ have to be of product form, which implies

3 We use superscripts here, to not create the impression that r(ij) and s(pq) are operators onHilbert spaces, respectively.
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that there are non-trivial 1→ 3 adapters of the causal order we discussed in this section. In a
similar way to the construction above, one could go from L̃ to L and ρ, and from K̃ to K.
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B
OPEN QUANTUM SYSTEM DYNAMICS

b.1 dual matrices

In this appendix, for comprehensiveness, we provide the proof for the existence of a set of dual
matrices for any set of linearly independent matrices {Aj} and provide an explicit construction.
Note, that this proof is a slight generalization of the original one, presented in [68] for the case
of Hermitian matrices Aj.

lemma b.1: For any set of linearly independent matrices {Aj}, there exists a dual set {∆k} satis-
fying tr[∆†

k Aj] = δjk.

Proof. Write Aj = ∑` gj`Γ`, where gj` are complex numbers and {Γ`} form a Hermitian, self-
dual linearly independent basis of the space Aj is defined on, satisfying tr[ΓmΓn] = 2δmn [60].
Since the matrices {Aj} constitute a linearly independent set, the columns of matrix G =

∑ij gj` |j〉〈`| are linearly independent vectors, which means that G has an inverse. Let the
matrix F† = G−1, then GF† = 1, implying that the columns of F∗ are orthonormal to the
columns of G. We define ∆k =

1
2 ∑` fk`Γ`, where fk` = 〈k| F |l〉 are elements of F.

Our definition of dual matrices differs from the one in [68] by an adjoint to make the relation
to the scalar product, i.e., the Hilbert-Schmidt product, explicit. In general, the dual matrices
are are not all positive, even if the basis {Aj} only consists of positive matrices. However, for
the case where all basis matrices Aj are Hermitian, we have ∆†

k = ∆k, as in this case all fkl are
real. Furthermore, the duals satisfy ∑k ∆†

k = ∑k ∆∗k = 1 if all Aj are of unit trace. We have

tr

(
∑

k
∆†

k A

)
= ∑

k,`
r` tr

(
∆†

k A`

)
= ∑

`

r` = tr(A) ∀A , (B.1)

where we have used A = ∑` r`A`. The only matrix M that satisfies tr(MA) = tr(A) for all
A is the identity matrix.

b.2 proof that ocp divisibility 6= icp divisibility

Here, we give an alternative, continuous example of oCP-divisible dynamics that are not iCP-
divisible. Let the system and the environment both be qubits, and let the initial environment
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state at time u be maximally mixed, i.e., ηu = 1/2. In what follows, without loss of generality,
we choose u = 0. The system-environment dynamics is given by a partial swap

Uv|0 = exp(−iΩvS) = cos(Ωv)14 − i sin(Ωv)S (B.2)

where S |ij〉 = |ji〉 is the action of the swap operator between system and environment. For
this dynamics, the system state at time v is given by ρv = cos2(Ωv)ρ0 + sin2(Ωv)12/2, where
ρ0 is the system state at time u = 0. Denoting by R1 the point map that replaces every state
by 1/2, we see that

Lv|0 = cos2(Ωv)I + sin2(Ωv)R1, (B.3)

which is invertible for Ωv ∈ [0, π/2). We have

Kw|v = Lw|0 ◦ L−1
v|0

=
cos2(Ωw)

cos2(Ωv)
I + cos2(Ωv)− cos2(Ωw)

cos2(Ωv)
R1 (B.4)

which is CP for w ≥ v with Ωw ∈ [0, π/2), and, consequently, the dynamics is iCP-divisible
in this interval. However, it is not oCP-divisible. Between time u = 0 and v, the environment
is partially swapped with the initial state ρ0. Subsequently, after the system state is discarded
and freshly prepared at time v, between time v and w, the system is partially swapped again
with the environment state, which depends on the state of the system at u = 0. Consequently,
there is conditional signaling from time u = 0 to time w, and the process is not oCP-divisible.

b.3 conditional non-signaling processes that are not ocp-divisible

As mentioned in Sec. 4.8.1, conditional non-signaling is necessary for oCP divisibility
to hold, but not sufficient. To see this, consider the following example: Let ηeuev =
1
4

(
1euev + σ

(x)
eu ⊗ σ

(z)
ev

)
be a correlated two-qubit environment state with euev := e, where

{σ(x), σ(y), σ(z)} are the Pauli matrices. Initially, i.e., at time u, the one-qubit system is un-
correlated with the environment. Let the system-environment dynamics between time u and
time v be given by the swap Sseu . If the system-environment dynamics from v to w only acts
non-trivially on s and ev, then there is no conditional signaling between u and w. Nonetheless,
the process is not necessarily oCP-divisible.

For example, if the unitary evolution Uw|v between v and w is given by the unitary matrix

Uw|v = 1√
3

(
1sev + iσ(y)

s ⊗ 1ev + iσ(x)
s ⊗ σ

(z)
ev

)
, with trivial action on eu. With this, the final

system state at time v, without intervention at at time v is ρ̃ = 1
21s +

1
3 σ

(y)
s , independently

of the input state at u. Consequently, the action of the overall map Lw|u can be written as
Lw|u[ρu] = tr(ρu)ρ̃. On the other hand, the map Lv|u simply replaces the system state at u
with trev (ηeuev) =

1
21eu , which means, that for oCP divisibility to hold, the map Lw|v would

have to be of the form Lw|v[ρv] = tr(ρv)ρ̃. However, it is easy to check, that for an input state

ρv =
1
2
(1s + aσ

(x)
s + bσ

(y)
s + cσ

(z)
s ) , (B.5)
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at time v, the corresponding output state at time w is given by

Lw|v[ρv] =
1
2
1s +

1
6
(a− 2b)σ(x)

s +
b
2

σ
(y)
s +

1
6
(2a− c)σ(z)

s , (B.6)

and the process is thus not oCP-divisible.

b.4 structural properties of processes with finite markov order

If a quantum process is of Markov order |M| = `, then there exists an instrument JM, such
that for every CP map MxM of the instrument, the past and future statistics are independent.
As we have seen in the main text, this implies, that for all history and future instruments JH

and JF we have

TFMH ?MxF ?MxM ?MxH

TMH ?MxM ?MxH

=
∑xH

TFMH ?MxF ?MxM ?MxH

∑xH
TMH ?MxM ?MxH

:=
TFMH ?MxF ?MxM ?MH

TMH ?MxM ?MH
, (B.7)

where MH = ∑xH
MxH is the CPTP map (or, more precisely, the deterministic comb, for the

case of a temporally correlated instrument) corresponding to the instrument JH. By causality,
we know that TMH := ∑xF

TFMH ?MxF is independent of the instrument JF. Eq. (B.7) has
to hold for all instruments JH. As we can vary the CP maps MxH without changing the the
overall CPTP map MH, this implies that

TFMH ?MxF ?MxM ?MxH

TMH ?MxM ?MxH

=
TFMH ?MxF ?MxM ?Mx′H

TMH ?MxM ?Mx′H

, (B.8)

for all CP maps MxH ,Mx′H
. As the above equality also has to hold for all MxF , we see that

(TFMH ?MxM) ?MxH

TMH ?MxM ?MxH

=
(TFMH ?MxM) ?Mx′H
TMH ?MxM ?Mx′H

. (B.9)

Put differently, this implies that

(TFMH ?MxM) ?MxH ∝ (TFMH ?MxM) ?Mx′H
, (B.10)

and as (TFMH ?MxM) ?MxH is a matrix, the only way for this proportionality to hold for all
possible CP maps MxH , is if TFMH ?MxM is of product form, i.e.,

TFMH ?MxM = T(xM)
F ⊗ T̃(xM)

H , (B.11)

where T(xM)
F is by construction a causally ordered process tensor on the times F, while the

structure of T̃(xM)
H is a priori not clear. In general, T̃(xM)

H constructed via contraction of a process
tensor with a CP operation MxM (and tracing over the times F) does not have to be a properly
causally ordered object (see Ch. 6). If T̃(xM)

H is not causally ordered, then the probability to
obtain outcomes on the memory block depends on the instrument that was used at times H;
we have

P(xM|JM,JH) = T̃
(xM)
H ?MH (B.12)
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which in general depends on MH. This dependence on past instruments is in line with the
breakdown of Kolmogorov conditions that we discussed in Ch. 3. However, when summing
over the possible outcomes xM, we must have ∑xM

P(xM|JM,JH) = 1 for all possible
instruments JH, which implies

∑
xM

T̃
(xM)
H ?MH = 1 ∀MH . (B.13)

Consequently, the positive matrices T(xM)
H have to add up to a deterministic comb T

(JM)
H =

∑xM
T̃
(xM)
H when summed over the possible outcomes xM, which means that the set {T̃(xM)

H }
forms a tester; every CP operation MxM corresponding to an outcome of an instrument that
blocks the memory between F and H leaves the process tensor in a product of a deterministic
comb T(xM)

F on the future F, and an element T̃(xM)
H of a tester on the history. This mathematical

structure coincides nicely with physical intuition, since, when conditioning on an outcome of
the memory blocking instrument, the statistics of future and history have to be independent.
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C
PROCES S TENSORS AND L IM ITED RESOURCES

c.1 basis of unitary maps acting on a qubit

Here, we construct a basis of the space of unitary maps for the case of qubits, i.e., d = 2.
Importantly, this does not amount to constructing a basis of the set of unitary matrices. There
are d2 unitary matrices that span the space of unitary matrices [255, 256], while the space of
unitary maps is (d2 − 1)2 + 1–dimensional. This is analogous to the case of pure states and
density matrices. Every vector corresponding to a pure state of a d–dimensional system can
be represented as a linear combination of d basis vectors, while one needs d2 projectors do
represent every projector of a d–dimensional system.
Any unitary matrix V ∈ SU(2) can be expressed in terms of Pauli matrices {σk} (where

k ∈ {x, y, z}) in the following form:

V(ϑ,~a) = cos
(

ϑ

2

)
1− i sin

(
ϑ

2

) 3

∑
`=1

a`σ`, (C.1)

where |~a| = 1. Hence, a generic unitary 1-qubit map is of the form

V(ϑ,~a)[ ρ] =c2
ϑ/2 1ρ1︸︷︷︸

(I)

+s2
ϑ/2

3

∑
k=1

a2
k (σk ρ σk)︸ ︷︷ ︸

(I I)

+cϑ/2sϑ/2

3

∑
k=1

ak i(1 ρ σk − σk ρ1)︸ ︷︷ ︸
(I I I)

+ s2
ϑ/2

3

∑
k<`

aka` (σk ρ σ` + σ` ρ σk)︸ ︷︷ ︸
(IV)

, (C.2)

where sϑ/2 := sin(ϑ/2) and cϑ/2 := cos(ϑ/2). The term (I) in Eq. (C.2) can be accounted
for by choosing V0 = 1. Following the analogous derivation for the case of projective maps
in [144], we set

V(k,±) =
1√
2
(1± iσk) . (C.3)

With the six matrices given in Eq. (C.3) both (II) and (III) can be obtained:

σk ρ σk = 2
(
V(k,+) + V(k,−)

)
[ ρ]− V0[ ρ]

and i (1 ρ σk − σk ρ1) = 2
(
V(k,−) − V(k,+)

)
[ ρ]. (C.4)

The three remaining terms (IV) can be obtained with the three additional unitary matrices

V(k+`+1,+) =
1√
2

(
1+

i√
2

σk +
i√
2

σ`

)
, (C.5)
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with k < `. We have

σk ρ σ` + σ` ρ σk =2
{

2V(k+`+1,+) −
(

1 +
√

2
) (
V(k,+) + V(`,+)

)
−
(

1−
√

2
) (
V(k,−) + V(`,−)

)}
[ ρ]. (C.6)

Hence, any unitary map V [ ρ] = VρV† acting on a qubit can be represented as a linear
combination of the ten unitary maps

{
V0,V(k,±),V(k+`+1,+)

}
. A one-step process tensor

constructed based on this set of operations can meaningfully be applied to any completely
positive map that lies in its linear span, which, in this case, is the set of all one-qubit unital
maps.

c.2 basis of projective maps

As was the case for unitary maps and unitary matrices, constructing a basis of projective maps
is not equivalent to constructing a basis of the space of projectors. The action of any rank-1
projective map P acting on a d–dimensional state ρ can be written as:

P [ ρ] = ΠρΠ, (C.7)

where Π = ∑d
k,`=1 ckc∗` |k〉 〈`| is a (d–dimensional) pure state and and {|k〉}d

k=1 is a set of d
orthogonal states. The Choi matrix of the map P has the form Π⊗ΠT. Any map N ∈WP

can be represented as

N = ∑
ν

bνΠν ⊗ΠT
ν = ∑

ν

bν

d

∑
k,`=1

k′,`′=1

c(ν)k c(ν)
∗

` c(ν)
∗

k′ c(ν)`′ |kk′〉 〈``′| . (C.8)

The elements of anyN ∈WP with respect to the basis |kk′〉 〈``′| possess the following symmetry
properties:

(1) Nkk′; ``′ = N`′`; k′k (2) Nkk′; ``′ = Nk`; k′`′ (3) N∗kk′; ``′ = Nk′k; `′`. (C.9)

By counting the number of remaining independent entries in the matrix N, one can deduce that
the vector space of matrices with the properties given by Eq. (C.9) is 1

4 d2 (d + 1)2-dimensional.
In principle, it remains to be shown that WP actually coincides with this vector space, as the
matrix N given in Eq. (C.8) could have further symmetries than the ones accounted for in
Eq. (C.9). However, for the qubit case, a set of 1

4 d2 (d + 1)2 = 9 pure states {Πµ} that yields
linearly independent projective maps has been constructed in Ref. [144]:

Π(ω,±) =
1
2
(1± σω) and Π(ε+κ+1) =

1
2

(
1+

1√
2

σε +
1√
2

σκ

)
, (C.10)

where ω, ε, κ ∈ {1, 2, 3}, ε < ν, and {σ1, σ2, σ3} ≡ {σx, σy, σz}. For other low-dimensional
cases, it is possible to numerically find 1

4 d2(d + 1)2 linearly independent projective maps.
Here,we have shown that the set of projective maps is at most 1

4 d2(d + 1)2–dimensional, and
we shall leave the statement that this upper bound is tight as a conjecture.
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c.3 derivation of intermediate restricted process tensors

Here, we show how to obtain intermediate restricted process tensors in the case where Span(R)
contains an informationally complete set of measurements. We have already seen that a re-
stricted process tensor can be reconstructed, once the output state for any performable sequence
of operations is known. If the set of performable operations allows for an informationally
complete measurement at each time, given TR

ΛK
, we can deduce the state of the system at any

time tα ∈ ΛK for any sequence of performable previous operations. Thus, we can reconstruct
any intermediary restricted process tensor on times Λk ⊆ ΛK. To keep notational overhead to
a minimum, we shall show this explicitly for the derivation of TR

{t4,t2} from TR
5:1, the case already

used in the main text as a guiding example. The general case then follows straightforwardly.
From Eq. (5.9), we know that given TR

5:1 we can compute the correct restricted process tensor
TR
{t5,t4,t2} defined on times {t5, t4, t2} by inserting identity maps at times {t1, t3}. Now, let

{Mx4 ∈ WR}d2

x4=1 be a set of experimentally performable CP maps that corresponds to an
informationally complete measurement at t4. We can calculate the probability P(x4, x2) to
obtain an outcome x4 corresponding to Mx4 and an outcome corresponding to the operation
Mx2 ∈ R at t2 via

P(x4, x2) = TR
{t5,t4,t2} ? 1

o
5 ?Mx4 ?Mx2 , (C.11)

where we suppress the dependence of the probabilities on the respective instruments that
are used to interrogate the system, and it is understood that outcome xα corresponds to the
map Mxα . Each of the CP maps Mx4 ∈ B(Hi

4 ⊗Ho
4) has a corresponding POVM element

Ex4 = tr4i Mx4 . With this, we can compute the state ρ′4|x2
of the system at time t4, given that

the operation Mx2 was performed at t2:

ρ′4|x2
= ∑

x4

P(x4, x2)e∗x4
, (C.12)

where {ex4}d2

x4=1 is the dual set to {Eα4}d2

α4=1. Indeed, the states given by the above equation
yield the correct probabilities for every element of the informationally complete measurement
at time t4. If the operations Mx2 form a basis of Span(R), then Eq. (C.12) yields the output
states for a full basis, and as such allows for the reconstruction of TR

{t4,t2} via

TR
{t4,t2} = ∑

x2

ρ′4|x2
⊗m∗x2

, (C.13)

where {mx2}d2

x2=1 is the dual set to {Mx2}d2

x2=1. The generalization to more times follows in a
straightforward manner.

While the algebraic derivation of intermediate restricted process tensors appears somewhat
cumbersome, the underlying intuitive idea is very clear: If the set of available operations
allows for an informationally complete set of measurements, the the restricted process tensor
TR

N+1:1 contains enough information to deduce the state of the system at every time tα ∈
{tN+1, . . . , t1}, and intermediate restricted process tensors with an open final output wire can
be derived.
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c.4 ndgd and classicality

To prove theorem 5.1, we first note that measurements in the classical basis commute with the
completely dephasing map, i.e., for every projective measurement Pxα (say, at time tα ) in the
classical basis, with outcome xα, we have

Pxα = Dα ◦ Pxα = Pxα ◦ Dα . (C.14)

Now, following the considerations in the main text, the probability to measure the outcomes
{x1, . . . , xN} at times {t1, . . . , tN} is given by

P(x1, . . . , xN) = px1 |x1〉〈x1| ? G1 ? Px2 ? · · · PxN−1 ? GN−1 ? PxN ? 1seN
N , (C.15)

where px1 is the probability to prepare state |x1〉〈x1| at time t1, Pxα = |xα〉〈xα| ⊗ |xα〉〈xα| is
the map corresponding to the projective measurement in the classical basis that yields outcome
xα at time tα, and the initial state of the environment is absorbed into G1. Here, we run into a
slight notational asymmetry considering the first time t1, where we conduct a preparation –
denoted by |x1〉〈x1| – instead of a projective measurement – denoted by |x1〉〈x1| ⊗ |x1〉〈x1| –
which stems from the fact that we considered the initial system state to be an experimental
choice, instead of part of the uncontrollable underlying process. While being notationally
cleaner, the latter would have made the connection to the results for Markovian dynamics
less direct, which is why we opted to keep the initial state an experimental choice. Naturally,
this has no bearing on the correctness of the results, and either way, NDGD dynamics lead to
classical statistics.
Using the property that the dynamics is NDGD, we can now show that averaging over

a time step is the same as not performing an operation from the point of view of a classical
observer. To this end, we shall consider the average over a time tα ≤ tN. The corresponding
relevant part of Eq. (C.15) is

· · · ? Pxα−1 ? Gα−1 ? Dα ? Gα ? Pxα ? · · ·
= · · · ? Pxα−1 ? Dα−1 ? Gα−1 ? Dα ? Gα ? Dα+1 ? Pxα+1 ? · · ·
= · · · ? Pxα−1 ? Gα−1 ? Φ+

α ? Gα ? Pxα ? · · · , (C.16)

where in the second line we employed Eq. (C.14), and in the last line we used that the dynamics
is NDGD, i.e., it satisfies Eq. (5.53). As we can successively replace all occurring completely
dephasing maps by identity maps in the same manner, dynamics that are NDGD display
classical statistics when probed by measurements in the classical basis.
On the other hand, it is relatively straightforward to construct examples of dynamics that

are not NDGD but display classical dynamics. For instance, one can consider the following
example, which is similar in spirit to Ex. 5.1 (see Fig. C.1 for a graphical representation):
Let the system be a qubit, and let the initial environment be in a maximally entangled two-
qubit state Φ+

ee′ . The first dynamics G1 from t1 to t2 swaps the system with one half (denoted
by e) of the environment state and then discards it. The dynamics G2 from t2 to t3 yields
a system-environment state 1s/2⊗ |0〉〈0| if the se′ input state is Φ+

se′ , and 1s/2⊗ |1〉〈1|
otherwise. Consequently, when the completely dephasing map is applied at t2, the system-
environment state at t3 is 1s/2⊗ 1e/2, while it is equal to 1s/2⊗ |1〉〈1| if the identity map
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Figure C.1: Non-NDGD dynamics that leads to classical statistics. The first map G1 (blue transparent
box) swaps the system with one half of a maximally entangled state and then discarded. The subsequent
CPTP map G2 maps Φ+ and 1/4 onto two different system-environment states with the same reduced
system state ρt3 = 1/2. The final CPTP map G3 is such that it induces a unital dynamics on the
system. Consequently, the system state at t2, t3, and t4 is maximally mixed independent of whether the
completely dephasing, or the identity map was implemented at t2 and t3.

was implemented, and as such, the dynamics is not NDGD. However, the system state is always
maximally mixed, independent of whether D2 or I2 was implemented. To make the example
non-trivial, we add a third dynamics G3 from t3 to t4. We choose this dynamics such that it
induces a unital dynamics on the level of the system, independent of the environment state at
t3. For example, this happens when the corresponding system-environment Hamiltonian is of
product form, i.e., Hse = Hs⊗ He, independent of the explicit form of the respective terms [7].
With this final dynamics, the system state at each of the times t2, t3, and t4 is maximally mixed,
and the resulting statistics satisfy Kolmogorov conditions, i.e., they are classical.
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D
CAUSALLY INDEF IN ITE PROCES SE S

d.1 allowed terms in the process matrix WB2B1 A2 A1

For completeness, here, we provide the generalized Pauli terms that cannot appear in a process
matrix that respects local causality. Originally, they were derived in [54].

Process matrices must respect local causality. This requirement is expressed explicitly by the
requirement

tr[(MA ⊗MB)WABT
] = 1 ∀ CPTP maps MA,MB . (D.1)

The process matrix WAB is positive (and Hermitian). Consequently, it can be written in the
form [54]

WBiBoAiAo

= ∑
αβγε=0

wαβγεΓBi

α ⊗ ΓBo

β ⊗ ΓAi

γ ⊗ ΓAo

ε (D.2)

where the matrices {ΓXz

a }
d2

Xz−1
a=0 are generalized Pauli matrices, i.e., they are traceless (except for

ΓXz

0 = 1Xz ) and tr(ΓXz

a ΓXz

b ) = dXzδab. The prefactor w0000 is equal to 1
dA1B1

for correct normal-

ization. Not all positive matrices WA2 A1B2B1 of the form (D.2) satisfy the requirement (D.1)
for local causality; in order for (D.1) to hold for all CPTP maps MB and MA, WAB can only
contain Pauli terms that do not appear in (MA)T⊗ (MB)T (except for 1A2 A1B2B1 ). Otherwise,
it would always be possible to find two valid CPTP maps, such that (D.1) is violated [54].

Using the trace property trXi(MXiXo
) = 1Xo of CPTP maps, we can explicitly write down

conditions that define the terms that can appear in the decomposition (D.2). In a concise
notation, we have

tr
(

ΓXi

α WT
)
= 0, tr

[(
ΓXi

α ⊗ ΓYi

β

)
WT
]
= 0 tr

[(
ΓXi

α ⊗ ΓXo

β

)
WT
]
= 0,

tr
[(

ΓXi

α ⊗ ΓXo

β ⊗ ΓYi

γ

)
WT
]
= 0, and tr

[(
ΓXi

α ⊗ ΓXo

β ⊗ ΓYi

γ ⊗ ΓYo

ε

)
WT
]
= 0 ,

(D.3)

where we have omitted the respective identity matrices, W := WBiBoAiAo
, α, β, γ, ε ≥ 1,

X, Y ∈ {B, A} and X 6= Y when they both appear in the same equation. For simplicity of
notation, following the convention of [54], we label terms in the decomposition (D.2) of the
form ΓAi

α ⊗ 1AoBiBo (α ≥ 1) by Ai, terms of the form 1BiBo ⊗ ΓAi

α ⊗ ΓAo

β (α, β ≥ 1) by
AiAo, etc.. In this notation, for example, the second equation in (D.3) states that terms of the
form AiAo and BiBo cannot appear in a valid process matrix.
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