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Abstract
A multiplicative cascade model called HiDRUS is developed, and tested in the greater Mel-
bourne region (Australia) by downscaling coarse resolution ERA-I rainfall to 1 km horizontal
and 6 minute temporal resolutions. The parameters required for the cascade model are com-
puted from radar observations of rain events during 2008–2015, and a library of rainfall events
and their associated synoptic conditions created. Each day, the area-averaged rainfall and syn-
optic conditions are taken from ERA-I and compared with the library. From the library, similar
days are chosen randomly and downscaled using the cascade model. Ensembles of 100 real-
izations per day are produced for the period 1995–2004. The downscaled rainfall is compared
with 6-minute rain gauges and daily gridded rain-gauge data at four locations in the greater
Melbourne region. HiDRUS reproduces the monthly variability of rainfall, frequency distribu-
tion of daily and 6-minute rainfall, and the auto-correlation function satisfactorily. Changes in
heavy rainfall are also captured by HiDRUS but with increasing uncertainty as the intensities
increase.

1 Introduction

The design criteria for 20th Century urban water infrastructure have mostly been based
on historical rain-gauge observations of intensity, duration and frequency of rainfall. However,
vulnerabilities of the existing infrastructure have been exposed with rapid urbanization and
climate change [Ashley et al., 2005; Whitehead et al., 2009]. As the impact of climate change
is realized through changing rainfall, among other things, the resilience of the urban water
infrastructure needs to be re-assessed [Wong and Brown, 2009; Arnbjerg-Nielsen et al., 2013].

Current General Circulation Models (GCMs) make climate change projections for the
21st Century at relatively coarse space-time resolutions, typically around 100 km and several
hours. Such a resolution is unsuitable for the assessment of climate change on urban water in-
frastructure due to the fast hydrological response to rainfall, particularly in urban catchments,
and due to the high space-time variability of rainfall [Cristiano et al., 2017]. Therefore, to bet-
ter meet the needs of urban water infrastructure design and the assessment of climate change
impacts, among other things, rainfall downscaling methods have been devised to generate fine-
scale details from the large-scale predictions [Kim et al., 1984; Willems et al., 2012]. Detailed
reviews of these downscaling methods can be found in Wilby and Wigley [1997]; Fowler et al.
[2007]; Benestad et al. [2008]; Ekström et al. [2015].

Downscaling methods fall in two main groups: dynamical downscaling and empirical
downscaling. In dynamical downscaling, a regional climate model (RCM) is run at a higher
resolution than a GCM (typically by the factor of 3–5) over a limited area and driven by
boundary conditions from the coarser-resolution GCM. Multiple nested domains are often
used to achieve progressively finer horizontal resolution. Dynamical downscaling is some-
times thought to be better for climate change studies than empirical downscaling as the mod-
els explicitly represent the local physical processes. However, physical processes at small
(cumulus) scales are not accurately represented in RCMs and consequently the models do not
produce realistic sub-hourly time series of rainfall. In that respect, RCMs suffer from similar
problems to GCMs, and they inherit the errors of their parent GCM through the boundary
conditions [Mitchell and Hulme, 1999]. Moreover, dynamical models are computationally ex-
pensive, which limits the length of the simulations and size of ensemble.

Empirical models are fundamentally statistical and assume stationarity. The approaches
to empirical downscaling can be broadly categorized as follows.

1. Analogue methods assign past events to similar future events. It is a non-linear and
non-parametric approach that correctly represents the spatial variability [Zorita and
Von Storch, 1999]. Due to the rarity of extreme events, however, they are reassigned
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several times for long term simulations. This method is limited by the length of the
available dataset [Timbal et al., 2003].

2. Regression methods assume that there is a relationship between the large-scale state
of the atmosphere and the small-scale state that can be linear or non-linear [von Storch
et al., 1993]. These methods have worked well with temperature [Goyal and Ojha,
2011]. However, they have not reproduced the observed variability of rainfall well
and have underestimated the magnitude of change in accumulations [Schoof and Pryor,
2001].

3. Parametric stochastic models, also known as weather generators (WGs) [Wilks, 1999],
produce time series of some characteristic of the weather (such as dry and wet days)
using Markov chains. Weather generators reproduce the variability of daily rainfall at a
single site well. Novel methods are developed to achieve spatial coherency in multisite
downscaling [Srikanthan and Pegram, 2009; Steinschneider and Brown, 2013].

4. Weather Typing is sometimes considered a downscaling method. However, it is al-
most always used with another downscaling method to refine how the parameters are
selected. For example, synoptic weather types have been used to condition the param-
eters for regression methods and weather generators [Vrac et al., 2007].

5. Multi-fractal space-time models can reproduce the fine-scale hierarchical structure of
rainfall through scaling laws. They can generate a realistic space-time evolution of a
rainfall field [Seed et al., 1999; Deidda, 2000]. However, the spatially identical dis-
tributed nature of these models result in flat fields of long-term accumulations [Raut
et al., 2018]. Moreover, these models need radar coverage or dense network of rain-
gauges [Rupp et al., 2012] to estimate the parameters of the cascade model.

The above empirical downscaling methods are usually applied with one of two ob-
jectives in mind: (i) to produce high-resolution time series at a point, or (ii) produce high-
resolution spatial information. For urban hydrological purposes, however, a downscaling
method should produce textitrealistic space-time structures at the resolution of a kilometer and
few minutes in order to fill the resolution gap between meteorological models and hydrologi-
cal models. Multi-fractal methods are a potential solution as they reproduce fine-scale rainfall
patterns using fewer parameters compared to other parametric methods. Multiplicative cas-
cade parameters are usually computed from radar or rain-gauge data, and used to disaggregate
rainfall in space and/or time [Rupp et al., 2012]. For downscaling applications, the multiplica-
tive cascade parameters can be conditioned on the GCM predictors to achieve a dependence
on the synoptic weather regimes [Over and Gupta, 1994; Raut et al., 2012].

Since the mid-1980s there have been investigations of the multi-fractal properties of the
rainfall over a wide range of scales and intensities [Lovejoy and Schertzer, 1985; Waymire,
1985; Schertzer and Lovejoy, 1988], and multiplicative random cascades have been theorized
to model the scaling behaviour of rainfall fields in space [Menabde et al., 1997; Deidda et al.,
1999] and time [Veneziano et al., 1996; Olsson, 1998; Schmitt et al., 1998; Seed et al., 2000].
Space-time multiplicative cascades based on space-time scaling of the rainfall were formulated
[Marsan et al., 1996; Venugopal et al., 1999; Deidda, 2000]. Importantly for the present study,
Seed et al. [1999] and Seed [2003] developed a radar-based nowcasting system, known as the
Short-Term Ensemble Prediction System (STEPS), using multiplicative cascades to simulate
the horizontal reflectivity field. STEPS also includes a Lagrangian advection model along
with a hierarchical autoregressive model of order 2 (AR2) to evolve the rain field in time.

STEPS has been used for nowcasting (up to 90 min) [Seed et al., 2013] and for design
storm simulations [Seed et al., 2014]. Recently, Raut et al. [2018] reported long simulations
of rainfall at a time and space resolution of minutes and a kilometer using STEPS. The model
was run with perfect cascade parameters estimated from radar observations for each time step
of the simulation. The model reproduced the frequency distributions, the spatial and tempo-
ral autocorrelation, and the duration and arrival times of storms for heavy rain simulations
in downscaling-like runs. The model also reproduced annual accumulations and frequency
distributions when run continuously with 7 years of radar data. Due to its stochastic nature,

–3–



Confidential manuscript submitted to JGR-Atmospheres

The Yarra Ranges

Otw
ay R

anges

Macedon Ranges

Figure 1. Elevation map for the metropolitan area of Melbourne and surrounding regions. The locations

of the 4 sites used to compare the simulated rainfall with the 6-minute rain-gauge data are marked. They

are: Melton, Melbourne Regional Office (MRO), Narre Warren North (NWN) and Toolangi. The principal

mountain ranges are marked: the Otway Ranges, the Macedon Ranges and the Yarra Ranges.

the model can be run many times with the same parameters to produce an ensemble of sim-
ulations. Thus, in principle, STEPS meets the requirements for a high-resolution space-time
model that can be used to downscale rainfall if provided the appropriate cascade parameters.

In the current paper, STEPS, as implemented in Raut et al. [2018], is used to downscale
coarse-resolution ERA-I rainfall data to horizontal and temporal resolutions of 1 km and 6
minutes. The main purpose of the study is to evaluate the feasibility of STEPS as a downscal-
ing model for the future application to GCMs. From this perspective, the ERA-I rainfall is
taken to be the best possible model-produced rainfall. The downscaling model developed and
used here is called High-resolution Downscaling of Rainfall Using STEPS (HiDRUS) and is
outlined in Section 2. Frequency distributions of the downscaled rainfall are compared with
observations for the period 1995–2004 in Section 3. Section 4 provides a discussion of the
results and summarises the main points of the study.

2 Downscaling Model and Data

2.1 Data

Radar reflectivity data at a 1 km constant altitude plan position indicator for the pe-
riod 2008–2015 were obtained from Bureau of Meteorology (BoM), Australia. These data
are available at 6 minute intervals and at 1 km horizontal resolution over a domain covering
250×250 km centered over Melbourne. Sea Level Pressure (SLP), 10 m horizontal wind vec-
tors and daily precipitation data are taken from the ECMWF Interim reanalysis [ERA-I, Dee
et al., 2011]. Rain-gauge observations at 6 minute intervals also come from the BoM and are
used to evaluate the downscaled rainfall. Four locations with continuous rain-gauge data in
the period 1995–2004 are marked on Figure 1. They are: Melton, Melbourne Regional Office
(MRO), Narre Warren North (NWN) and Toolangi. Gridded daily rainfall accumulations at
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5 km resolution from the Australian Water Availability Project [AWAP, Raupach et al., 2009;
Jones et al., 2009] are also used to evaluate the downscaled daily frequencies of rainfall. All
days with more than 0.2 mm of accumulated rain are considered rain days and used in the
downscaling.

2.2 Disaggregation Model for Downscaling

A detailed description of STEPS can be found in Seed et al. [1999]. In brief, STEPS
comprises a set of algorithms to decompose a radar reflectivity field into cascades and to
evolve these cascades in time using AR2 models. In nowcasting applications, real-time radar
images of the reflectivity are used to estimate a set of cascade parameters; these parameters are
the area-mean reflectivity (µ), the spatial variance (σ2) and the slopes of the power spectrum
below and above a predefined scale break (β1 and β2 respectively). Advection vectors com-
puted from the radar images translate the cascades in space and the AR2 coefficients evolve
the field in Lagrangian coordinates. The field is then normalized by the observed density dis-
tribution of reflectivity. Ensemble simulations define the probability of rainfall in the domain.

When applied to nowcasting, the radar reflectivity field also defines the initial structure
of the rainfall, after which the cascade parameters are held constant as the rainfall is evolved
forward in time. In contrast, when applied to downscaling, the initial realization of the hor-
izontal reflectivity field must be generated before advecting the cascade. The procedure by
which the initial realization is generated and evolved is outlined below in Section 2.3.

Due to the identically distributed nature of the cascade generator, STEPS does not pro-
duce geographical variations in the long-term rainfall field. For this reason Raut et al. [2018]
introduced a multiplicative bias correction, defined as ratio of annual-mean rainfall at each
point in the domain and the area-mean rainfall. AWAP gridded rain-gauge data for the period
1989–2010 are used to generate the bias correction factors due to the long-term availability
and reliability of the data. An explanation of the model setup and bias correction is given in
Raut et al. [2018].

2.3 HiDRUS Methodology

HiDRUS is the name given to the entire downscaling model and, as illustrated in Figure
2, it has two stages. In the preprocessing stage, the radar reflectivity images are used to
compute µ, σ, β1, β2 and the mean advection vectors for the field. The first five parameters
are domain averages and therefore do not fully describe the reflectivity fields. Therefore,
probability distributions of reflectivity fields are are also saved for each time step as suggested
in Raut et al. [2018].

As part of the preprocessing, a library of rainfall events is constructed. Rainfall events
are produced by sampling a rainfall time series with a moving window of 24 hours duration
(240, 6-minute scans). A rainfall event contains one or more rainfall episodes that are defined
as at least three consecutive radar scans with the mean area rainfall above 0.1 mm/hr. Figure
3 illustrates the procedure with an example in which 4 rainfall events are generated from 5
rainfall episodes. Episodes 2, 3 and 4 are repeatedly selected and concatenated. The daily-
mean rainfall and the synoptic conditions accompanying each rainfall event are also recorded
in the library.

Occasionally there may be insufficient radar data to generate extreme daily rainfall
events. On these occasions, many events with larger than the observed daily accumulations are
generated by connecting two or more adjacent episodes after removing dry periods between
them or by repeating the same episode. In this way, the arrival of the storm and its evolution
in these synthetically generated events will be realistic. As the time series constructed for
one day is independent of the next, a rainfall threshold on the first and the last time-steps is
imposed so that instantaneous heavy rainfall does not mark the beginning or end of the day.
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Figure 2. A schematic of the High-resolution Downscaling of Rainfall Using STEPS (HiDRUS) model

components and steps.

In the application stage, the ERA-I rainfall is downscaled. For each day, the domain-
averaged daily-mean rainfall from ERA-I is calculated and the synoptic conditions identified.
These properties are used to match the day with like rainfall events in the library. First events
with the matching accumulation of the rainfall are short-listed and then the domain-averaged
winds and surface pressure used to select synoptically-similar events, one of which will be
selected randomly as the event for that day. Due to the random selection of rainfall events, the
ensemble members have different storm structures for the same day.

After selecting parameters for the entire period of simulation (i.e., all the rainy days in
the ERA-I), the disaggregation model (STEPS) is invoked to generate space-time downscaling
of rainfall at 1 km resolution and 6 min interval. This rainfall disaggregation step works as
described in Raut et al. [2018]. The second step is repeated 100 times to generate an ensemble
of the ERA-I downscaled rainfall. Because of the stochastic nature of the model, individual
bursts of rain vary in time and space. Hence, even though the domain-averaged properties of
the rainfall are preserved, the individual members of the ERA-I downscaled ensemble have a
variety of space-time structures suitable for an investigation of the uncertainty associated with
the unpredictable scales of the rainfall processes.

2.4 Comparison of the ERA-I Rainfall with AWAP

In the following section (Section 3), the downscaled ERA-I rainfall from the HiDRUS
model is compared with observations from 6-minute rain gauges and AWAP daily gridded
rain-gauge data. However, before doing so, the properties of the ERA-I rainfall before down-
scaling are investigated. Figure 4 compares the area mean ERA-I rainfall (land only) with the
AWAP rainfall and the mean of four 6-minute rain gauges.

Although the daily rainfall is underestimated in ERA-I compared to AWAP, their corre-
lation coefficient (CC=0.91) is significant (Figure 4a). It is known that models tend to produce
frequent drizzle and less extreme rainfall [Sun et al., 2006]. These model biases are evident
from the comparison of frequency histograms shown in Figure 4b. For example, there are 10
events in ERA-I where the mean area accumulation exceeds 20 mm day−1 compared with 37
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Figure 3. The sampling strategy for the rain library is illustrated with an example. Threshold for a rainfall

episode is 0.1 mm/hr. A rainfall episode can be sampled several times to create a large library of events. Four

different realisations for the time evolution of the area-average rain rates are shown.

in AWAP. The mean annual rainfall and the 99th percentile are both low for ERA-I rainfall
(573 mm, 14 mm respectively) compared to AWAP (760 mm, 19.8 mm, respectively).

Time series of the monthly accumulations in all three data sets (Figure 4c) captures
the variability of the rainfall. ERA-I rainfall has a higher correlation with AWAP rainfall
(correlation coefficient of 0.93) than with the 6-minute rain-gauge data (correlation coefficient
of 0.69). Although the mean of the 6-minute rain gauges need not be representative of area
mean rainfall, the downscaled ERA-I rainfall is compared with these rain-gauge observations
in Section 3, and it is therefore useful to document the properties of these datasets.

3 Results

This section evaluates the downscaled rainfall ensemble from ERA-I against 6-minute
rain-gauge observations at four sites (Melton, Melbourne Regional Office, Narre Warren North
and Toolangi) and AWAP daily gridded rain-gauge reanalyses.

3.1 Monthly and Seasonal Rainfall

The monthly-mean downscaled ERA-I rainfall ensemble from the HiDRUS model at
the four verification sites are plotted in Figure 5. For comparison, the 6-minute rain-gauge
accumulations at each site and their nearest AWAP grid point are also plotted. The differences
in the monthly-mean accumulations between the sites are replicated in the downscaled rain-
fall. Although, the ensemble mean is relatively smooth, individual realizations (gray shaded
lines) tend to reproduce the monthly fluctuations well. The sites with higher rainfall, and con-
sequently larger variability, are better represented by the ensemble mean than sites with lower
rainfall. Moreover, the correlation coefficients increase from the driest site (Melton) to wettest
site (Toolangi) for both AWAP and the 6-minute rain-gauge observations. The correlation
between the downscaled ERA-I rainfall with AWAP is 0.42 at Melton and 0.72 at Toolangi,
while the correlation with the 6-minute rain-gauge observations increases from 0.31 to 0.60.
Like the ERA-I monthly-mean rainfall discussed in Section 2.4 (Figure 4), the ensemble mean
of the downscaled ERA-I rainfall is better correlated with AWAP than with the 6-minutes rain
gauge observations. Note that the 6-minute rain-gauge observations are point measurements
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Figure 4. A comparison of the ERA-I rainfall with the AWAP rainfall. a) Domain average ERA-I rainfall

(land only) versus AWAP rainfall. b) The frequency distribution of daily rainfall, and c) the monthly-mean

rainfall time series for the simulation period. Correlation coefficients of monthly ERA-I rainfall with AWAP

and rain gauges are shown at the top of panel c.

whereas AWAP is spatially interpolated. Being spatial simulations, the downscaled ERA-I
rainfall compares better to AWAP than to the 6-minute rain-gauge observations. In addition,
missing data and under-estimation of heavy rain in the 6-minute rain-gauge observations could
be partially responsible for the relatively low correlations.

The annual cycle of monthly-mean rainfall at the four verification sites (Figure 6) has
attributes similar to the original-resolution ERA-I rainfall (Figure 4). For example, there is an
overestimation of rainfall in AWAP and an underestimation in the 6-minute rain-gauge obser-
vations during winter months. The downscaled ERA-I rainfall ensemble has a pronounced sea-
sonal cycle with amplitudes comparable to observations at Narre Warren North and Toolangi.
The seasonal variations in the downscaled ERA-I rainfall ensemble closely follow the varia-
tions in the observations. However, the downscaled rainfall peaks in winter over Melton and
MRO which does not agree well with the observations.

The seasonal-mean rainfall in all the downscaled ensemble members on land is com-
pared to the seasonal-mean of AWAP rainfall in Figure 7. The spatial patterns of rainfall are
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well reproduced, with rainfall maxima along the Yarra Ranges to the east of Melbourne, the
Macedon Ranges to the north of Melbourne, and the Otway Ranges to the southwest. The
rainfall, however, is underestimated in the ensemble mean due mainly to the underestimation
of heavy rainfall in ERA-I.

3.2 Frequency Distributions

One aim of downscaling the ERA-I rainfall is to provide realistic frequency distributions
of rainfall intensities at finer temporal scales. Figure 8 shows the frequency distributions of the
daily-mean rainfall at the four verification sites for the ERA-I downscaled rainfall ensemble,
AWAP and the 6-minute rain-gauge accumulations. The frequency distributions of AWAP at
the nearest grid points and 6-minute rain-gauge accumulations are consistent at all four veri-
fication sites and they fall within the envelop of the downscaled frequency distributions. Over
the wetter sites (Toolangi and Narre Warren North) most ensemble members underestimate the
frequency of the larger (>10 mm) daily accumulations. The spread, and hence uncertainty,
within the ensemble increases with the intensity of the rainfall due to fewer occurrences of
heavier rainfall.

The frequency distributions at the HiDRUS model’s native temporal resolution of 6
minutes are plotted in Figure 9. The frequency distributions for the ERA-I downscaled rainfall
ensemble match closely that for the 6-minute rain-gauge accumulations at all sites except
Toolangi, which is elevated. At this site the frequency of light rain is over-estimated and the
frequency of heavy rain under-estimated more than at the other three sites. Such biases are
introduced by the model’s underlying assumption that the location of each rainfall event in the
domain is random, and it cannot be fixed by a multiplicative bias correction factor. Raut et al.
[2018] discussed the possibility of the multiplicative cascades, that could be spatially biased
to favor genesis in some regions, thereby generating differential frequencies in the events over
the domain.

3.3 Autocorrelations

Accurate probabilities of the rain rates is a prerequisite for accurate hydrological mod-
els. Moreover, the time structure of the rainfall has a significant impact on the peak flow
estimation, especially in urban catchments. With this in mind, the auto-correlation functions
for the 6-minute rain-gauge observations and the ERA-I downscaled rainfall ensemble are
compared. As shown in Figure 10, the slope of the observed auto-correlation function falls
within the ERA-I downscaled rainfall ensemble at all four verification sites. Auto-correlations
to a lag of about 18–24 minutes (3–4 time steps) are correctly replicated in the the ERA-I
downscaled rainfall ensemble, indicating that the convective-scale evolution of the rain field
is well represented. The time taken for the auto-correlations to fall to 0.3 is shortest at Melton
(3 time steps) and longest for Toolangi (7 time steps). Narre Warren North and Toolangi rain
more than the other sites due to the orography, the effect of which is not included in the cas-
cade model (see Raut et al. [2018] for more discussion). Therefore, the auto-correlations in
the ERA-I downscaled rainfall ensemble continue to fall at these two locations at a rate faster
than that observed. This is a limitation of the HiDRUS model requiring future improvement.

3.4 Heavy Rainfall

A large spread in the ensemble at extreme rain rates is evident from the frequency dis-
tributions of the 6-minute rainfall intensity shown earlier in Figure 9. With the increasing
resolution of downscaling in space and time, extreme rain rates at a point location are ex-
pected to be less robust, and the largest of the values become more uncertain due to stochastic
nature of the sampling procedure. Nonetheless, the probabilities of the occurrences of heavy
rainfall and their changes in time should be replicated in the ERA-I downscaled rainfall en-
semble. The capacity of the HiDRUS model to replicate the occurrence of heavy rainfall and
its trend is examined now.
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Figure 11 shows the anomalies in 99th and 99.99th percentiles of the hourly-mean rain
rates for each year, hereafter called P99 and P99.99 respectively The uncertainty (spread) in
the P99 anomaly calculated from the ERA-I downscaled rainfall ensemble is less than the an-
nual variability and the trends are comparable with that of the observations at all sites. The
ensemble mean of P99 from the ERA-I downscaled rainfall each year follows that from the
6-minute rain-gauge observations for all sites with a few exceptions, e.g. an over-estimation at
Melton. The anomalies of P99.99 rain rates from the ERA-I downscaled rainfall ensemble are
noisy and the ensemble means are not variable enough at the drier sites. Nonetheless, the en-
semble mean is representative of the heavy rain anomalies over the wetter sites, namely Narre
Warren North and Toolangi, albeit with high uncertainty. The annual variability of P99.99
is larger for individual ensemble members than for the observations due to the increasing
stochasticity with rainfall rate in the HiDRUS model. Thus, the uncertainty in the prediction
of the extreme values of point rainfall is large, as one would expect.

4 Discussion and Conclusions

A multiplicative cascade model, originally developed for nowcasting, is applied to the
downscaling for the first time. The ability of the cascade model, called HiDRUS, to reproduce
realistic rainfall structures in space and to evolve these structures realistically in time was
demonstrated in our earlier work [Raut et al., 2018]. Here this ability is successfully exploited
to downscale ERA-I rainfall from spatial and temporal scales of 100 km and daily respectively
to 1 km and 6 minutes. Radar data are used to estimate the cascade model parameters for every
time step in which there is rain. A library of rainfall events is created with all the parameters
and associated synoptic conditions for a given day. During the simulation, events are matched
with those from the library based on the domain average rainfall and synoptic conditions on
that day. The model is then run with different combinations of matched events to generate
100 realizations of the day. The ERA-I downscaled rainfall is evaluated against AWAP rain-
fall and 6-minute rain-gauge observations. The downscaled rainfall is shown to reproduce the
variability in the monthly-mean accumulations and the seasonal cycle at four verification sites
representative of different rainfall conditions in the region. The observed frequency distribu-
tion of the daily-mean rainfall and 6-minute rain rates fall within the ensemble spread. The
correlation structure of 6-minute rainfall time series at the four verification sites is replicated
well by the ERA-I downscaled rainfall ensemble. In addition, anomalies in the probability
of heavy rainfall based on the ERA-I downscaled rainfall ensemble are in reasonable agree-
ment with the observations although, of course, the ensemble spread increases as the rain rates
increase.

Due to the spatially identical distribution of modeled rain intensity, orographic enhance-
ment and suppression of rainfall is accomplished with a multiplicative bias correction. In Raut
et al. [2018], simulations made with the cascade model were compared with radar observa-
tions, and hence the bias mask used was created from the same radar data. In the present study,
the annual-mean gridded rain-gauge observations are used to correct the orographic biases due
to their better quality and coverage. The bias correction results in the correct rainfall accumu-
lations at each site while still reproducing the frequency distribution of the rainfall. Moreover,
the bias correction does not affect the auto-correlation.

The HiDRUS model captures heavy rainfall, with increasingly large ensemble spread as
the rainfall rate increases. The probability of extreme hourly-mean accumulations at a point is
not directly a function of the intensity of convective core, but is determined in large measure by
stochastic factors such as the organization of convective regions with respect to the location,
the propagation speed of the system and the movement of individual convective cells with
respect to the large-scale rain field. In this way, successive convective cells pass embedded
in a slow-moving system can cause heavy rainfall at a point. The orographic enhancement
of rainfall also causes large accumulations at a location. Although the model reproduces the
seasonal and interannual variations in heavy rainfall intensities, the trends at higher values are
noisy due to the stochastic nature of the processes.
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The HiDRUS model will be used to downscale climate model projections for hydrolog-
ical purposes. As in the downscaling described in the present paper, the time series of the
cascade model parameters from actual rainfall events will be used to create realizations of
rainfall events. The application of this method to GCM projections is of practical interest to
the wider hydrological community. We have performed preliminary studies of the HiDRUS
model output using GCMs for evaluating the reliability of stormwater infrastructure as an
alternative water supply in Melbourne, Australia [Zhang et al., 2019]. Similar work will be
reported on in future studies.
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Figure 5. Monthly-mean ERA-I downscaled rainfall at the four verification sites (Melton, Melbourne

Regional Office, Narre Warren North and Toolangi) for 100 simulations (gray) and the ensemble mean of

downscaled rainfall (dark gray). 6-minute rain-gauge accumulations (purple) and their nearest AWAP grid

point (green). Cross-correlations between downscaled data and others are shown at the top of each panel.
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Figure 6. Annual cycle of the monthly-mean ERA-I downscaled rainfall at the four verification sites

(Melton, Melbourne Regional Office (MRO), Narre Warren North (NWN) and Toolangi) for 100 simulations

(box and whiskers). Annual cycle of the monthly-mean nearest AWAP grid point (green) and the 6-minute

rain-gauge accumulations (purple).
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Figure 7. Seasonal-mean rainfall maps (land only) for the period 1995-2004. Top: AWAP. Bottom:

ensemble-mean of 100 realizations of downscaled ERA-I rainfall. The four verification sites Melton (Mlt),

Melbourne Regional Office (MRO), Narre Warren North (NWN), and Toolangi (Tlg)) are marked.
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Figure 8. Frequency distribution of the daily-mean rainfall at the four verification sites (Melton, Melbourne

Regional Office (MRO), Narre Warren North (NWN). ERA-I downscaled rainfall ensemble (gray), AWAP

nearest grid point (green) and 6-minute rain-gauge accumulations (purple).
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Figure 10. Correlograms of the 6-minute rainfall intensities from the downscaled ERA-I rainfall ensemble

and rain gauges at the four verification sites (Melton, Melbourne Regional Office (MRO), Narre Warren North

(NWN).
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Figure 11. Anomalies in annual 99th (left) and 99.99th (right) percentile of hourly rainfall at the four

verification sites (Melton, Melbourne Regional Office (MRO), Narre Warren North (NWN).–18–
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