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ABSTRACT 

 

Complex dynamical systems can shift abruptly from a stable state to an alternative stable 

state at a tipping point. Before the critical transition, the system either slows down in its 

recovery rate or flickers between the basins of attractions of the alternative stable states. 

However, whether the heart critically slows down or flickers before it transitions into and 

out of atrial fibrillation (AF) and ventricular tachycardia (VT), which are two common 

cardiac arrhythmias, is still an open question. In this thesis, we will address this 

fundamental question by studying the RR interval fluctuations derived from ECG data. We 

propose methods, which are currently non-existing, to define cardiac states based on the 

RR interval fluctuations, and to detect flickering. According to the theory of critical 

transition, an increasing lag-1 autocorrelation of the cardiac states is evidence for critical 

slowing down. On the other hand, flickering of the cardiac state between the two alternative 

basins of attractions would lead to a bimodal distribution of the cardiac states, where one 

mode corresponds to the Near-Normal State and the other mode corresponds to the Near-

Disease State. Our results show flickering precedes the critical transitions for both AF and 

VT, instead of critical slowing down. Flickering of the cardiac state could be used as part 

of an early warning or screening system for the arrhythmias. It could also be used to develop 

new pharmaceuticals and control methods to prevent the onset of the arrhythmia, as well as 

new termination methods for intervention. Furthermore, the methods developed in this 

study may be adapted to study the dynamics preceding critical transition for other chronic 

episodic diseases.   
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INTRODUCTION 
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1.1 Critical Transition 

 

Complex systems refer to systems that have many interconnecting components that interact 

with each other, creating a large number of possible variables that are difficult to model 

thoroughly [2]. Dynamical systems describe systems that have phases or states that evolve 

or change over time [3]. Many complex dynamical systems from a wide range of fields 

exhibit tipping points where the system suddenly shifts from a stable state into a contrasting 

alternative stable state. This sudden shift from one stable state to an alternative stable state 

is known as a critical transition. Examples of critical transition include ecological systems 

[4-9], for example a forest or savannah area becoming barren, a sudden collapse of coastal 

ecosystems, arid ecosystems (lacking in rainfall) becoming deserts, and clear lakes 

becoming eutrophic (having excessive nutrients) leading to disruption of the aquatic life 

within the lake. The study of critical transition is also prevalent in efforts to understand 

changes to our earth’s climate [10-12] and past global financial crises [13, 14]. In the fields 

of medicine and chronic diseases, examples of critical transition include asthma attacks 

[15], depression [16], diabetes [17, 18] epileptic seizures [19-21] and other conditions [22-

25]. 

 

In critical transition theory, critical thresholds or tipping points correspond to catastrophic 

bifurcations in the system state [26, 27]. Figure 1 shows a model of critical transition with 

bifurcation i.e. tipping points at T1 and T2. The solid curve in the figure represent alternative 

stable states, which are also known as attractors [1]. The dotted curve represents unstable 

states, which is a border between the basins of attraction of the two alternative stable states. 

The basin of attraction of an attractor is the set of all initial states that ultimately converge 

to the attractor.  
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Figure 1. Model of critical transition. Figure adapted from [1]. The solid lines represent 

alternative stable states or attractors. The dashed line represents the border separating the 

two basins of attractions. Process [A] is a critical transition from one stable state to an 

alternative stable state at the bifurcation point T1. Process [B] is flickering between the 

basins of attraction of the two alternative attractors within the bistable region.  

 

Critical transitions are hard to predict, as the system may show little change in state before 

the tipping point or critical threshold is reached [22, 27, 28]. However, there are certain 

signs common across many cases of critical transition as they approach the tipping point. 

Prior to the critical transition, systems can either experience ‘critical slowing down’, or 

‘flickering’ [27, 28]. By identifying which of the mechanisms underlies the approach to the 

critical transition, the critical transition can be anticipated, and steps taken to avert the 

impending shift into a contrasting state. 
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Critical slowing down describes a known phenomenon in dynamical systems theory [29], 

whereby as a system approaches a tipping point it becomes increasingly slower in 

recovering from even small perturbations. Moreover, analysis of various models show that 

critical slowing down typically starts to occur even far from the bifurcation point (tipping 

point) and recovery rates decrease smoothly to zero as the tipping point is approached [30]. 

A simple dynamical model of critical slowing down, describing why recovery rates tend to 

zero when approaching the tipping point, was presented in Box 2 in [27]. The model has 

two equilibria, a stable state and the other is unstable (or an alternative stable state). It 

showed that when the state of the equilibrium is disturbed, the eigenvalue λ which 

represents the recovery rate of the system reaches zero at the bifurcation point where the 

two equilibria meet. The major implication from critical slowing down is that analysis of 

the recovery rates after a small experimental external perturbation can be used as an 

indicator of how close a system is to a tipping point, as the increased ‘lethargy’ of the 

system in recovering from perturbations can be detected in the form of a reduced rate of 

recovery [30, 31]. In addition to a reduced rate of recovery, critical slowing down also 

allows us to predict certain characteristic changes in the system, such as an increasing lag-

1 autocorrelation of the fluctuations in the system state [28, 32]. The increasing pattern of 

the lag-1 autocorrelation can be easily understood: because critical slowing down causes 

the recovery rates to become increasingly slower near the tipping point, the current state of 

the system becomes increasingly similar to its recent past state between successive 

observations close to the tipping point [27]. 

 

Not all critical transitions are preceded by critical slowing down. In stochastic dynamical 

systems, a different phenomenon called flickering [27, 33] occurs near the bifurcation point. 

Flickering describes a behaviour whereby stochastic noise in the system moves the system 
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state back and forth across the boundary (dashed line in Figure 1) between the basins of 

attraction of two alternative stable states or attractors in the bistable region [34]. This would 

lead to a bimodal distribution of system states [28, 34, 35]. A stochastic model of flickering 

is the Threshold Autoregressive model. There are two stochastic processes in the model, 

where one process switches to the other at a threshold value. The two processes are 

described by two Autoregressive models – mathematical details of the model are given in 

[36]. In highly stochastic systems, flickering typically start to happen even when far away 

from bifurcation points [28], thereby making flickering behaviour also useful to be 

considered as an early warning to the proximity of a tipping point. Eventually, if the 

underlying change of conditions or perturbations to the system persists, the system shifts 

into the alternative stable state as a result of flickering. Flickering has been suggested to 

precede transitional shifts in ecological systems such as lake eutrophication and tropic 

cascades [37, 38], as well as characterising the end of the Younger Dryas cold climatic 

period leading into the current warmer Holocene epoch [12, 39].  

 

1.2 Aims 

 

In the context of diseases, we name the two alternative stable states or attractors as ‘Normal 

State’ and ‘Disease State’, and the corresponding basin of attraction as ‘Near-Normal State’ 

and ‘Near-Disease State’. Olde Rikkert et al. [23] hypothesized recently that critical 

transition to the Disease State in chronic episodic disorders – such as asthma, cardiac 

arrhythmias, migraine, epilepsy and depression – are preceded by critical slowing down 

instead of flickering. 
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Only a couple of studies have addressed this hypothesis so far – a study on depression [16] 

and a study on epileptic seizure [40], which support the hypothesis. Thus, whether the 

hypothesis is true for other chronic episodic disorders is still an open question. The primary 

aim of this study is to investigate the hypothesis by focusing on two common cardiac 

arrhythmias, namely (i) Atrial Fibrillation (AF), and (ii) Ventricular Tachycardia (VT). 

Additionally, we will study if the hypothesis is true for the reverse transition, i.e. transition 

to the Normal State, for AF and VT. 

 

For cardiac arrhythmias, earlier studies on the dynamics of the transition from normal sinus 

rhythm to arrhythmia are based only on theories of non-linear dynamics and chaos [41-45], 

which suggest that cardiac fibrillation is a form of spatial-temporal chaos that arises via a 

quasiperiodic transition [46, 47]. The emergence of cardiac arrhythmia has also been linked 

to a period-doubling bifurcation, which manifests as an alternating cardiac rhythm [48, 49]. 

 

For each of the chronic diseases, the dynamics preceding critical transition to arrhythmia 

will be studied through the analysis of RR interval fluctuations, which are obtained from 

electrocardiogram (ECG) data, during the Normal Sinus Rhythm (NSR) stage prior to the 

shift. The reverse transition from arrhythmia to NSR will be studied in the same manner. 

In the next chapter we will propose methods, which do not currently exist, to define cardiac 

states based on the RR interval fluctuations and to detect flickering. 

 

It can be shown mathematically [27] that critical slowing down will lead to an increase in 

the lag-1 autocorrelation of the cardiac states. Other trends in the lag-1 autocorrelation 

function would rule out critical slowing down as the underlying mechanism. For flickering, 

there is no unique trend for the lag-1 autocorrelation, it could be either increasing [36] or 
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decreasing [34]. However, flickering between the Near-Normal and Near-Disease States 

would lead to a bimodal distribution [28, 35] of the cardiac states, where one mode 

corresponds to the Near-Normal State and the other mode corresponds to the Near-Disease 

State. 

 

Before proceeding to the next chapter, some relevant background information will be given 

in the rest of this chapter. This includes information on cardiac beats and rhythms, as well 

as some information on the cardiac arrhythmias and their clinical classifications. 

 

1.3 Cardiac Beats and Rhythms 

 

In heart rate variability (HRV) analysis, there are many HRV metrics that have been 

suggested and used. These can be broadly grouped into 3 types, time-based measurements, 

frequency-based measurements, and non-linear measurements [50, 51]. Typically, the usual 

starting point of any HRV analysis is the RR interval. The RR interval refers to the time 

interval between two R-peaks of an ECG heart beat waveform – the ‘R’ notation is taken 

from the PQRST heart wave-complex. Occasionally, the notation ‘NN’ is used to indicate 

that only normal R-peaks are used in the analysis [52]. 

 

For the majority of healthy populations without any cardiac problems, the cardiac rhythm 

mainly consists of Normal Sinus Rhythm (NSR), typically described as a steady heart 

beating at a regular pace of between 60 to 100 beats per minute (bpm) [53]. There are some 

rare exceptions to this case, for example very fit athletes could have a heart rate as low as 

40 bpm [54]. Irregularities of the cardiac heart rhythm (which affects the consistency of the 
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RR beat interval) can mainly be attributed to two causes – ectopic beats/rhythm and 

arrhythmia. 

 

Ectopic beats are premature atrial or ventricular contractions of the heart. They are 

sometimes detected as singular, isolated premature beats but could also manifest in specific 

patterns and form an ectopic rhythm; among the common ectopic rhythms are bigeminy 

(one normal sinus beat alternated by one premature beat) and trigeminy (a repeated pattern 

of two normal sinus beats followed by one premature beat). A very high rate of detected 

ectopic beats could be of clinical significance of an underlying undetected heart disease 

[55] but most of the time, ectopic beats are benign and occasionally can occur even in 

healthy populations. Usually, no cause can be attributed to these occasional benign ectopic 

beats and they typically tend to disappear on their own after some time [56].  

 

Arrhythmia generally describes a problem with the rate or rhythm of the heartbeat, which 

can be either too fast, too slow or highly irregular relative to what is considered healthy 

normal sinus rhythm. There are many types of arrhythmia, too numerous to sufficiently 

cover in this short introductory section, so I will only mention the arrhythmias relevant to 

our study – Atrial Fibrillation and Ventricular Tachycardia. 

 

1.4 Cardiac Arrhythmias and Classifications 

 

1.4.1 Atrial Fibrillation (AF)   

 

Atrial fibrillation is one of the most common types of arrhythmia [57]. Patients with AF 

commonly experience an irregular heart rhythm coupled with tachycardia (very fast heart 
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rate), upwards of 400 bpm in some cases. AF can be classified according to the duration 

(and severity) of its episodes – Paroxysmal (episodes tend to terminate spontaneously on 

their own, usually within a week), Sustained or Persistent (requiring electrical or 

pharmacological cardioversion for termination), and Permanent (unable to be terminated 

even with intervening cardioversion) [58]. During episodes of AF, the upper and lower 

heart chambers become unsynchronised, and the lower chambers cannot function at full 

capacity to pump enough blood to the lungs and the rest of the body, causing patients to 

feel uncomfortable (from the irregular rhythm), tired, and dizzy [57]. A higher incidence of 

stroke has been associated with patients with untreated paroxysmal AF [59]. For some 

patients, AF can be an ongoing heart problem that lasts for years; eventually the symptoms 

can increase in duration and severity, which may lead to further serious complications.  

 

1.4.2 Ventricular Tachycardia (VT) 

 

In ventricular tachycardia, the cardiac dysfunction originates from the lower chambers of 

the heart (in contrast with AF which starts from the upper chambers). The electrical signals 

from the heart’s lower chambers activate abnormally, interfering with the natural 

pacemaker operation of the heart [53]. As a result the heart chambers do not fill completely 

in between contractions, and blood flow to the rest of the body is compromised. Patients 

with VT experience a fast heart rate, often between 100-250 bpm with other symptoms 

associated with compromised blood circulation – dizziness, palpitations and even loss of 

consciousness. Prolonged episodes of VT (even more than a few seconds) can be very 

dangerous and intervention is recommended. Untreated, VT may degenerate into very 

serious conditions including ventricular fibrillation (VFib, disorganised electrical heart 

signals which leads to cardiac arrest), asystole (cardiac flatline) and sudden cardiac death 
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[59]. Classifications of VT typically include the duration of its episodes – Paroxysmal or 

Non-Sustained VT (asymptomatic, lasting for less than 30 seconds) and Sustained VT (VT 

that lasts for more than 30 seconds, or is symptomatic) [60] as well as some less clinically 

common classifications including Persistent VT (multiple recurrent Sustained VT) [61], 

and Incessant VT (continuous Sustained VT that can last for several hours, promptly 

reoccurring despite repeated intervention) [62]. Aside from duration characteristics, VT is 

also commonly described in terms of its QRS morphology (e.g. monomorphic or 

polymorphic). 
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Overview 

 

In this chapter, we define cardiac states and propose how flickering prior to a critical 

transition can be detected.  

 

2.1 Definition of Cardiac State 

 

For this study, we adapted the usage of RR interval fluctuations (RRI fluctuations), defined 

as the difference between successive natural logarithm of the RR interval, from the work 

by Lan and Toda [63] to define cardiac state. Mathematically, the RRI fluctuations are given 

by 

ln(RRIi) - ln(RRIi-1),  

 

where RRIi indicates the ith RR interval. This is similar to log-returns in the field of finance 

or econophysics [64], which is used to track the variability of the returns of investment over 

a specified time. The RRI fluctuation similarly measures the variability of the RRI intervals. 

The reason for using ‘log-returns’ rather than the non-transformed original data is because 

studying the changes can yield better insight of the underlying dynamics. The series of RRI 

fluctuations is divided into equal, non-overlapping data intervals (note that this is not the 

same as equal time-length windows). Each window has the same number of RRI 

fluctuations, but the total accumulated time within each separate window will be different 

due to natural variations in the RR intervals. Regardless, as our intent is to track the change 

from one window to the next subsequent window in the RRI fluctuation series, both equal 

data-length and equal time-length approach would work, but the equal data-length approach 
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was relatively easier to implement. The cardiac state in a window is defined by the standard 

deviation of the RRI fluctuations. 

 

2.2 Normal and Disease States 

 

To determine the distribution of standard deviations of the RRI fluctuations for the Normal 

State, we use the long term, sustained normal sinus rhythm (NSR) data from the MIT-BIH 

Normal Sinus Rhythm (MIT-BIH NSR) database [65]. For each dataset, after pre-

processing (details in section 3.2) the RR intervals are calculated, followed by the RRI 

fluctuations. The RRI fluctuation series is then divided into non-overlapping, equal data-

length windows. For each window, we calculate the standard deviation of the RRI 

fluctuations. The standard deviations obtained from all the datasets are used to determine 

the distribution. 

 

For AF State (the corresponding Disease State in AF), sustained AF rhythm data was 

obtained from the Long Term Atrial Fibrillation database [66, 67]. The criteria for sustained 

AF rhythm samples was that the AF rhythm spanned the entire length of recorded data (each 

sample duration was between 20 – 24 hours). The distribution of standard deviations of the 

RRI fluctuations for the AF State is determined using the Sustained AF rhythm data in a 

similar manner as for the Normal State. The range of standard deviation of RRI fluctuations 

for the Normal State and AF State are shown in Figure 2. 

 

For all data window sizes, the standard deviations of the RRI fluctuations for the Normal 

State and AF State are not normally distributed (D'Agostino–Pearson, p-value <0.001). The 

Mann-Whitney test showed significant difference between the standard deviations for the 
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Normal State and AF State (p-value <0.001). There is an overlap between the tail of the 

distribution of the standard deviations for the Normal State and AF State – see Figure 3, 

where the tails of the distributions intersect at about 0.125. 

 

a

 

b

 

c

 

d

 

 

Figure 2. Range of standard deviations of RRI fluctuations for the Normal State (left) and 

AF State (right), for data window sizes of (a) 5, (b) 10, (c) 15 and (d) 20. Whiskers show 

minimum and maximum values. 
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Figure 3. Distribution of standard deviations of RRI fluctuations, Normal State versus AF 

State, for window size 15.  

 

For VT however, long term sustained cardiac rhythm data for these diseases are much 

harder to come by because in most cases during an opportune data recording when the 

disease manifests, intervention would have been applied by the monitoring clinical staff. 

Unlike sustained AF cardiac rhythm, which can be moderately tolerated without the risk of 

immediate life-threatening danger [68], sustained VT rhythm can lead to ventricular 

fibrillation which is life threatening [59]. The classification of VT rhythm that would be 

most suitable for use to define VT State (i.e. the Disease State for VT) is the rare form 

known as Incessant VT. We were unable to obtain data for Incessant VT.  

 

2.3 Near-Normal and Near-Disease States, and Flickering Detection 

 

For the data segment before AF onset or termination, if the distribution of the standard 

deviations of RRI fluctuations is bimodal, where one mode is close to the Normal State 
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distribution (low standard deviations) and the other mode is close to the AF State 

distribution (high standard deviations), the standard deviations in the former and latter 

modes can be attributed to respectively Near-Normal and Near-AF States. The cardiac state 

flickers between the Near-Normal State and Near-AF State if the standard deviation 

switches between the low and high values repeatedly. 

 

For VT, although we lack data for Incessant VT to define the VT State, the Normal State 

distribution is sufficient as a reference for comparison. For a pre-transition segment, if the 

distribution of the standard deviations of RRI fluctuations is bimodal, the standard 

deviations in the mode that is close to the Normal State distribution can be attributed to 

Near-Normal State, whereas the standard deviations in the mode that is not close to the 

Normal State distribution can be attributed to Near-VT State. Flickering of the cardiac state 

is evidenced if the standard deviation switches between values in the former and latter 

modes.     
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3.1 Source and Selection 

 

All data in this study was obtained from Physionet [69, 70], a large collection of high-

quality physiologic signals made publicly available under the ODC Public Domain 

Dedication and License. The following subsections detail information regarding each of the 

databases sampled from, and the sampling criteria. 

 

ECG-based datasets in the Physionet repository typically include the original (digitised) 

ECG waveforms, corresponding R-peak timings as well as additional information in the 

form of beat and rhythm annotations contributed by various researchers who collected the 

original data. In the context of digitised ECG data, a ‘beat’ refers to an R-peak and its timing 

information (counted from start of data record, and/or the time interval from the last 

detected beat). The R-peaks are usually detected, and compiled using an R-peak detection 

algorithm scanning through the digitised ECG waveform. Beat annotations give 

information for every individual beat, whether it is normal or ectopic, but can also contain 

more advanced information such as an expected, but missing beat (predicted based on 

moving pattern of previous beats), or a noise distortion which could mask a genuine beat. 

Rhythm annotations – typically tagged onto the closest beat prior to a change in cardiac 

rhythm – mark the start of a rhythm section (and the end of the previous rhythm). Noise 

artifacts can be presented as either beat, or rhythm annotations. 

 

All databases available on Physionet are anonymised. Some non-identifiable information 

are sometimes included (e.g. age, gender and medication if relevant). Often the samples in 

the database can be multiple sets of records from the same patients, or some of the data 
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collected during the original study has been excluded from the database because of 

confounding factors. 

 

3.1.1 Sustained Normal Sinus Rhythm Data 

 

Data for long term, sustained normal sinus rhythm (NSR) is obtained from the MIT-BIH 

Normal Sinus Rhythm Database (MIT-BIH NSR) (Table 1). There are 18 datasets in this 

database, each about 24 hours in duration collected from subjects who were verified to have 

had no arrhythmias. The subjects include 5 men aged between 26 – 45 years, and 13 women 

aged between 20 – 50 years [65, 69]. The majority of the beats are annotated as normal, and 

a non-significant number of beats are ectopic (0.02%), which is common in a healthy heart 

[56]. Noise is indicated as beat annotations. All 18 datasets in the MIT-BIH NSR Database 

were used to compile reference standard deviations of RRI fluctuations for Normal State. 

 

Table 1. Sustained normal sinus rhythm samples from MIT-BIH NSR database. 

No. Physionet 

Record 

Length 

(hours) 

Length 

(data points) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

nsr16265.atr 

nsr16272.atr 

nsr16273.atr 

nsr16420.atr 

nsr16483.atr 

nsr16539.atr 

nsr16773.atr 

nsr16786.atr 

nsr16795.atr 

nsr17052.atr 

nsr17453.atr 

25.4 

25.0 

24.6 

23.9 

25.9 

24.6 

23.9 

24.5 

23.5 

23.1 

24.4 

99408 

83448 

89389 

101432 

103925 

107548 

47208 

101425 

85520 

86602 

99720 



20 
 

12 

13 

14 

15 

16 

17 

18 

nsr18177.atr 

nsr18184.atr 

nsr19088.atr 

nsr19090.atr 

nsr19093.atr 

nsr19140.atr 

nsr19830.atr 

25.9 

23.7 

23.8 

24.1 

23.2 

24.1 

23.2 

114561 

101822 

76475 

80855 

64747 

96320 

108041 

 

3.1.2 Atrial Fibrillation (AF) Data 

 

The Long-Term Atrial Fibrillation Database (LTAF) [66, 67, 69] consists of 84 records 

(each 20-24 hours) of subjects with paroxysmal or sustained AF (alongside various other 

types of arrhythmia). Both beat and rhythm annotations are available, via a manual review 

of the output of an automated ECG analysis system courtesy of MEDICALgorithmics Ltd 

(Warsaw, Poland).  

 

The LTAF database originated from a study by Petrutiu et.al [67], who studied spontaneous 

termination of paroxysmal atrial fibrillation (PAF). Additional information regarding the 

subjects in the study can be found from this excerpt from the paper, “A total of 44 patients 

were included in this study, 24 with PAF and a control group of 20 patients with sustained 

AF. Patients with PAF ranged from 43 to 89 years (mean ± SD, 67 ± 11 years). There were 

12 men and 12 women. Patients with sustained AF ranged in age from 39 to 87 years (66 ± 

12 years). There were 15 men and 5 women. Twenty-six patients were not taking any 

cardioactive drugs. Eighteen patients were taking cardioactive medications including beta-

blockers (10 patients), calcium channel blockers (6 patients), digoxin (1 patient) and 

amiodorone (1 patient)” [67]. 
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The LTAF database included 12 datasets where the sustained AF rhythm spanned the entire 

length of the data (around 24 hours each) without self-terminating into NSR or transposing 

into a different cardiac arrhythmia. These 12 datasets were used to compile reference values 

for AF State (Table 2) using the methodology outlined in the previous chapter. 

 

For paroxysmal AF onset and termination, the following sample selection criteria (below) 

was used. For uniformity a similar sample selection criteria is used for both onset and 

termination. 

 

AF Onset Sample Selection Criteria: 

 Each sample consists of a pair of consecutive rhythms, specifically NSR rhythm 

transitioning into AF rhythm. 

 The first and last set of rhythms in each dataset is excluded from selection, to 

remove the possibility of truncated data i.e. all rhythm selected are complete in 

terms of actual start, and endpoint of the rhythm. 

 Duration criteria – For pre-transition NSR rhythm (“Pre-AF”), 5 samples were 

selected from each category - ‘15-30 minutes’, ‘30 minutes–1 hour’, ‘1–2 hours’ 

and ‘above 2 hours’ - to adequately represent the duration ranges available. No 

duration criteria was imposed on the following AF rhythm.   

 

AF Termination Sample Selection Criteria: 

 Each sample consists of a pair of consecutive rhythms, specifically AF rhythm 

transitioning into NSR rhythm. 
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 The first and last set of rhythms in each dataset is excluded from selection, to 

remove the possibility of truncated data, i.e. all rhythm selected are complete in 

terms of actual start, and endpoint of the rhythm. 

 Duration criteria – For AF rhythm, 5 samples were selected from each category - 

‘15-30 minutes’, ‘30 minutes–1 hour’, ‘1–2 hours’ and ‘above 2 hours’ - to 

adequately represent the duration ranges available. No duration criteria was 

imposed on the following NSR rhythm.  

 

In total, the number of data samples collected for the AF study was 12 for the reference AF 

State, 20 for the AF onset subset (Table 3) and 20 for the AF termination subset (Table 4).  

 

Table 2. Sustained AF rhythm samples from LTAF database. 

No. Physionet 

Record 

Length 

(hours) 

Length 

(data points) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

12.atr 

17.atr 

18.atr 

21.atr 

54.atr 

69.atr 

70.atr 

71.atr 

75.atr 

202.atr 

205.atr 

208.atr 

24.1 

24.8 

24.9 

20.9 

24.9 

23.7 

26.1 

24.0 

20.8 

23.9 

23.8 

23.9 

117141 

138057 

141510 

81590 

118196 

141521 

128333 

125199 

126769 

145621 

116498 

120740 
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Table 3. AF onset samples from LTAF database. 

No. Physionet 

record 

Start 

Sample #  

End 

Sample #  

Length 

(minutes) 

Length 

(data points) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

16.atr 

28.atr 

39.atr 

55.atr 

104.atr 

06.atr 

08.atr 

16.atr 

45.atr 

104.atr 

05.atr 

51.atr 

110.atr 

115.atr 

116.atr 

08.atr 

35.atr 

102.atr 

104.atr 

116.atr 

7814978 

6137071 

908273 

8501531 

2938232 

1462835 

1193512 

8914669 

8235043 

251969 

6142734 

4919271 

803255 

171497 

2801091 

4152729 

936004 

3518805 

784823 

4278071 

8008281 

6267517 

1086583 

8667459 

3078843 

1712593 

1454383 

9181420 

8631336 

573629 

6614565 

5538182 

1683075 

728545 

3335027 

10197279 

3022380 

6510073 

1945472 

5240930 

25.2 

16.9 

23.2 

21.6 

18.3 

32.5 

33.9 

34.7 

51.6 

41.8 

61.4 

80.6 

114.5 

72.5 

69.5 

787.1 

271.6 

389.5 

151.1 

125.3 

2024 

1057 

2024 

1431 

1654 

2444 

2406 

2826 

2964 

3578 

4938 

5328 

9173 

5746 

6145 

58798 

17231 

25487 

12945 

9403 

  

Table 4. AF termination samples from LTAF database. 

No. Physionet 

Record 

Start 

Sample #  

End 

Sample #  

Length 

(minutes) 

Length 

(data points) 

1 

2 

3 

4 

5 

03.atr 

06.atr 

28.atr 

42.atr 

105.atr 

8220287 

84888 

6653733 

1968181 

9345883 

8361252 

271318 

6774889 

2192454 

9504247 

18.3 

24.3 

15.8 

29.2 

20.6 

1475 

2870 

2064 

3461 

1151 
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6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

03.atr 

39.atr 

51.atr 

200.atr 

200.atr 

35.atr 

39.atr 

39.atr 

72.atr 

121.atr 

07.atr 

56.atr 

105.atr 

117.atr 

122.atr 

8364287 

3575542 

4248960 

1934327 

10100154 

4832998 

2882805 

3928464 

9225225 

6085527 

8510411 

5235075 

7242184 

319311 

3692357 

8657694 

3808159 

4682899 

2331593 

10436367 

5593149 

3406245 

4394407 

9871750 

6933986 

9447553 

9279261 

8823033 

4052981 

6428070 

38.2 

30.2 

56.5 

51.7 

43.7 

99.0 

68.1 

60.6 

84.1 

110.4 

122.0 

526.5 

205.8 

486.1 

356.2 

3588 

3057 

3719 

3214 

2235 

7026 

6854 

5587 

8379 

10312 

10988 

46165 

9805 

62395 

19083 

  

3.1.3 Ventricular Tachycardia (VT) Data 

 

Data for VT samples are obtained from the LTAF database described above in addition to 

2 other separate databases listed here. The MIT-BIH Arrhythmia Database (MITDB) was 

originally compiled as standard test material for evaluation of cardiac arrhythmia detector 

performance (dating back to 1980), and later expanded its usage into research for cardiac 

dynamics [69, 71, 72]. The database contains 48 records, each approximately 30 minutes 

in duration. The source of the recordings is a set of long-term Holter recordings obtained 

by the Beth Israel Hospital Arrhythmia Laboratory (now the Beth Israel Deaconess Medical 

Center (BIDMC), Boston, USA). Subjects were sampled from a mixture of inpatients and 

outpatients to the hospital at 60:40 ratio. The subjects were 25 men (age 32 to 89 years) and 

22 women (age 23 to 89 years) [73].  
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Approximately half of the records (23 out of 48) in the MITDB were selected at random 

from the original Holter set, and the remaining were chosen to include a variety of rare but 

clinically important cardiac arrhythmia samples that otherwise would not be well 

represented by small random sampling. In the first batch of 23, the random sampling was 

performed by using a random number table to select Holter tapes, and then to select half-

hour segments from each, which finally passed a signal quality check by experts. The 

second batch of records were selectively chosen to include rare and complex arrhythmias 

and cardiac abnormalities, as well as for features of rhythm, QRS morphology variation, or 

signal quality which might be expected to present difficulties for arrhythmia detectors [73]. 

The types of arrhythmias in this database include (but not limited to) ectopic rhythms, 

supraventricular tachyarrhythmia, both atrial and ventricular flutter, as well as paroxysmal 

AF and VT.  

 

Both beat and rhythm annotations are included with the MITDB database. The initial beat 

detection and annotation was performed by a simple QRS detector, which labelled each 

beat as a normal beat. This was later independently edited by two cardiologists, who added 

missing and/or deleted erroneous beat placements, changed labels to correctly identify 

abnormal beats, as well as adding in rhythm annotations, signal quality labels and other 

additional comments. Any discrepancies between the two independent cardiologists were 

resolved by consensus.  

 

The other source of VT samples came from the MIT-BIH Malignant Ventricular 

Arrhythmia Database (VFDB), which consists of 22 recordings, each approximately 30 

minutes long in duration, of subjects who experienced episodes of sustained VT, ventricular 

flutter (VFlutter), or ventricular fibrillation (VFib) [69, 74, 75]. There were no beat 
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annotations included with the VFDB database, although rhythm annotations were available. 

To obtain the R-beat timings, we used a commercial heart rate variability analysis software 

which also included an R-peak detection algorithm. After obtaining the R-peak timings, the 

RR intervals and RRI fluctuations can be calculated. 

 

The recordings in the VFDB database originate from a research masters study to develop 

arrhythmia detection schemes to discriminate VT, VFlutter and VFib from electrode motion 

noise [75]. The original database was compiled, specifically, to include examples of 

ventricular arrhythmias (a general term inclusive of VT, VFlutter and VFib) and a 

secondary database containing electrode motion artifacts. Long-term Holter recordings 

from 16 patients (age and gender not disclosed) with ventricular arrhythmias were obtained 

from ECG tape libraries of Brigham and Women's Hospital (Boston, USA) and the Beth 

Israel Hospital (now Beth Israel Deaconess Medical Center, Boston, USA). 22 half-hour 

segments (those included in the VFDB database) from the long-term Holter records were 

digitised and selected as the ventricular arrhythmia dataset. Rhythm annotations were later 

manually added in, each change in rhythm is indicated by the starting time counted from 

the beginning of the sample. 

 

For VT onset and termination, the sample selection criteria needed to take into account the 

relatively shorter duration of records in the two databases – both the MITDB and the VFDB 

database contained records of approximately 30 minutes in duration each – and the fact that 

paroxysmal VT generally only lasts for less than 1 minute [59] before self-terminating. A 

minimum duration for VT rhythm samples is however necessary to ensure there was enough 

data for meaningful analysis. The smaller pool of available VT rhythm data also meant that 

we could not afford to exclude the first and last set of rhythms from each data sample as we 
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did for AF, therefore there is a possibility that some of the rhythm data is truncated. This is 

particularly true for the MITDB database, since some of the records were originally 

compiled by random sampling of 30 minute duration blocks. Similar to paroxysmal AF, 

both onset and termination of VT samples were collected for analysis. The sample selection 

criteria for onset and termination of VT rhythm are outlined below, using the same criteria 

for LTAF, MITDB and VFDB databases.   

 

VT Onset Sample Selection Criteria: 

 Each sample consists of a pair of consecutive rhythms, specifically NSR rhythm 

transitioning into VT rhythm. 

 Duration criteria – Pre-transition NSR rhythm (“Pre-VT”) of minimum 5 minutes 

(300 seconds), followed by VT rhythm of any duration. 

 

VT Termination Sample Selection Criteria:  

 Each sample consists of a pair of consecutive rhythms, specifically VT rhythm self-

terminating into NSR rhythm.  

 Duration criteria – VT rhythm of minimum 30 seconds, followed by NSR rhythm 

of any duration.  

 

Based on the sample selection criteria, there are 12 samples for VT onset (Table 5) and 3 

samples for VT termination (Table 6). 
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Table 5. VT onset samples. Database sources: *LTAF, +MITDB and #VFDB. 

No. Physionet 

Record 

Start 

Sample #  

End 

Sample #  

Length 

(minutes) 

Length 

(data points) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

47.atr* 

47.atr* 

56.atr* 

118.atr* 

205.atr+ 

205.atr+ 

205.atr+ 

215.atr+ 

223.atr+ 

420.atr# 

422.atr# 

612.atr# 

4119703 

5567829 

9279328 

4274082 

229 

110298 

334395 

64973 

49694 

69038 

253961 

18 

4176961 

5609895 

9437410 

5529137 

107505 

333687 

525692 

443058 

208009 

357538 

333211 

426846 

7.4 

5.4 

20.5 

163.4 

5.0 

10.3 

8.8 

17.5 

7.3 

19.2 

5.2 

28.4 

725 

363 

2240 

11897 

450 

949 

755 

1961 

617 

1286 

535 

1330 

 

Table 6. VT termination samples. Database sources: +MITDB and #VFDB. 

No. Physionet 

Record 

Start 

Sample #  

End 

Sample #  

Length 

(seconds) 

Length 

(data points) 

1 

2 

3 

223.atr+ 

223.atr+ 

421.atr# 

208252 

375669 

333961 

227765 

389421 

371519 

55.0 

38.9 

151.2 

97 

67 

513 

 

3.2 Data Pre-processing 

 

A custom pre-processing filter was applied on all samples for AF and VT prior to analysis. 

It consisted of a ‘non-physical’ filter which checked and removed instances of RRI > 3 

seconds. A concurrent filter checked for noise-annotated beats and removed affected RRI 

values. The filter was applied before calculating the RRI fluctuations. Noise-annotated 
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rhythms are avoided by specifying the rhythm types accepted in the sample selection 

criteria.  
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CHAPTER 4 

RESULTS 
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Overview 

 

The results of the study will be grouped and presented by disease type. For each of the 

diseases, first the lag-1 autocorrelation results will be presented and analysed. This will 

then be followed by the analysis for flickering preceding onset, and finally analysis for 

flickering preceding termination.  

 

The lag-1 autocorrelation function is given by: 

�� =
�[(����)(������)]

��
� ,  

 

where μ is the mean and σ2 is the variance of variable zt [76]. Input data for the lag-1 

autocorrelation uses the standard deviation values of RRI fluctuations calculated in non-

overlapping windows for various window sizes. The lag-1 autocorrelation is calculated in 

a moving window at 50% of input data length.  

 

For AF, the standard deviations of RRI fluctuations are calculated in non-overlapping 

window sizes of 5 to 20 data points, in increments of 5. For VT, the window size is limited 

to only 5 and 10, due to the very short durations of the VT termination samples. All figures 

presented in this chapter are based on calculations using window size of 10.   

 

4.1 AF Analysis and Results 

4.1.1 Trend in Lag-1 Autocorrelation 

 

Figures 4 and 5 show the lag-1 autocorrelation trends prior to AF onset and termination, 

respectively. 
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Figure 4. Lag-1 autocorrelation prior to AF onset. Y axis: Autocorrelation at lag-1, X axis: Data index at the end of the moving window used for 

the autocorrelation calculation. Pre-AF durations indicated by (t). (a1-a5) 15mins<t<30mins, (b1-b5) 30mins<t<1h, (c1-c5) 1h<t<2h and (d1-d5) 

t>2h. Sequence of samples follow the indexing order in Table 3 (a1=1, a2=2, etc.). 

a1  a2  a3  a4  a5  

b1  b2  b3  b4  b5  

c1  c2  c3  c4  c5  

d1  d2  d3  d4  d5  
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a1  a2  a3  a4  a5  

b1  b2  b3  b4  b5  

c1  c2  c3  c4  c5  

d1  d2  d3  d4  d5  

Figure 5. Lag-1 autocorrelation prior to AF termination. Y axis: Autocorrelation at lag-1, X axis: Data index at the end of the moving window 

used for the autocorrelation calculation. AF durations indicated by (t). (a1-a5) 15mins<t<30mins, (b1-b5) 30mins<t<1h, (c1-c5) 1h<t<2h and (d1-

d5) t>2h. Sequence of samples follow the indexing order in Table 4 (a1=1, a2=2, etc.). 
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Critical slowing down will lead to an increase in the lag-1 autocorrelation of the cardiac 

states near the transition [28]. However here there is no indication of any common pattern 

among the results, with some of the lag-1 autocorrelation showing an increasing trend near 

the transition for AF onset (Figs 4a2, 4a5, 4b1, 4c5 and 4d3) as well as for AF termination 

(Figs 5b3, 5b5, 5d2, 5d3 and 5d5). Meanwhile other samples show a prominent decreasing 

lag-1 autocorrelation trend near onset (Figs 4b2, 4b3, 4c1 and 4d5), and similarly near 

termination (Figs 5a1, 5a2, 5a3, 5a5, 5b4, 5c4 and 5d4). In many samples for both onset 

and termination, it merely fluctuates without a clear trend (Figs 4a1, 4a3, 4a4, 4b4, 4b5, 

4c2, 4c3, 4c4, 4d1, 4d2, 4d4, 5a4, 5b1, 5b2, 5c1, 5c2, 5c3, 5c5 and 5d1). The lag-1 

autocorrelation results indicate that critical slowing down is not the underlying mechanism 

for the critical transition for either AF onset or termination. These results are similar for all 

window sizes of input data for the lag-1 autocorrelation.  

 

4.1.2 Flickering Prior to AF Onset 

 

The standard deviations of RRI fluctuations for each Pre-AF sample are significantly 

different from the values for the Normal State (Mann-Whitney test, p-value <0.001 for all). 

Thus the cardiac state is not Normal prior to AF onset.  

 

Figure 6 shows the distribution of standard deviations of RRI fluctuations for a Pre-AF 

sample. Two modes are apparent in the distribution: one mode is close to the distribution 

for the Normal State and the other mode is close to the distribution for the AF State. Thus 

the standard deviations in the former and latter modes can be attributed to respectively 

Near-Normal and Near-AF States.  
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Figure 6. Distribution of standard deviations of RRI fluctuations for a Pre-AF sample, 

which is bimodal, superimposed on the distributions for the Normal State and AF State. 

 

 

Figure 7. Time series of the standard deviation of RRI fluctuations for the Pre-AF sample 

in Figure 6. The horizontal dotted line is the boundary between Near-Normal and Near-AF. 
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From the histograms in Figure 6, the boundary between the Near-Normal and Near-AF 

standard-deviation values can be estimated to be where the distributions for the Normal and 

AF States intersect, which is approximately at 0.125. Based on this boundary, the standard 

deviation time series in Figure 7 shows that flickering between the Near-Normal and Near-

AF States occurs very often throughout, up until the heart finally undergoes critical 

transition. 

 

 

 

Figure 8. Distribution of standard deviations of RRI fluctuations for a Pre-AF sample, 

which is dominated by the Near-Normal mode, superimposed on the distributions for the 

Normal State and AF State. 
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Figure 9. Time series of the standard deviation of RRI fluctuations for the Pre-AF sample 

in Figure 8. The horizontal dotted line is the boundary between Near-Normal and Near-AF. 

 

 

Figure 10. Distribution of standard deviations of RRI fluctuations for a Pre-AF sample, 

which is dominated by the Near-AF mode, superimposed on the distributions for the 

Normal State and AF State. 
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Figure 11. Time series of the standard deviation of RRI fluctuations for the Pre-AF sample 

in Figure 10. The horizontal dotted line is the boundary between Near-Normal and Near-

AF. 

 

A distinct bimodal distribution of standard deviations as the one shown in Figure 6 is 

apparent in 6 out of the 20 AF onset samples (dataset no. 4, 5, 10-12, and 20 in Table 3). 

The value of 0.125 is also a good approximation for the boundary between the Near-Normal 

and Near-AF standard-deviation values in these cases. Based on this boundary, the majority 

of the Pre-AF samples (12 of 20) have distributions which are dominated by the Near-

Normal mode (dataset no. 1, 2, 7-9, 13-19 in Table 3), such as shown in Figure 8. The 

remaining 2 samples have distributions which are dominated by the Near-AF mode (dataset 

no. 3 and 6 in Table 3) - one example is shown in Figure 10. For these two types of 

distributions which are dominated by one mode, flickering still occurs. However, the 

cardiac state spends an inordinate amount of time either Near-Normal (Figure 9) in the 



39 
 

former case or Near-AF (Figure 11) in the latter case, while only occasionally flickering 

over to the alternative basin of attraction. 

 

4.1.3 Flickering Prior to AF Termination 

 

The standard deviations of RRI fluctuations for each AF termination sample are 

significantly different from the values for the AF State (Mann-Whitney test, p-value <0.001 

for all). Thus the cardiac state is not AF State prior to termination. 

 

A similar bimodal distribution is observed in 2 of the 20 AF termination samples (dataset 

no. 7 and 12 in Table 4) (example in Figure 12), where flickering also occurs before AF 

termination (Figure 13). The boundary value of 0.125 between Near-Normal and Near-AF 

is also a good approximation in both cases. 

 

For the remainder of the samples, the distributions are dominated by the Near-AF mode 

(example in Figure 14), where the cardiac state spends most of its time Near-AF 

(understandably so, since the cardiac rhythm is AF rhythm), while occasionally flickering 

over to Near-Normal (Figure 15).   
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Figure 12. Distribution of standard deviations of RRI fluctuations for an AF termination 

sample, which is bimodal, superimposed on the distributions for the Normal State and AF 

State. 

 

 

Figure 13. Time series of the standard deviation of RRI fluctuations for the AF termination 

sample in Figure 12. The horizontal dotted line is the boundary between Near-Normal and 

Near-AF. 
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Figure 14. Distribution of standard deviations of RRI fluctuations for an AF termination 

sample, which is dominated by the Near-AF mode, superimposed on the distributions for 

the Normal State and AF State. 

 

 

Figure 15. Time series of the standard deviation of RRI fluctuations for the AF termination 

sample in Figure 14. The horizontal dotted line is the boundary between Near-Normal and 

Near-AF. 
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The distribution pattern of the standard deviations of RRI fluctuations, the boundary 

between Near-Normal and Near-AF, and flickering are robust across all window sizes (for 

standard deviation calculation) for AF onset as well as termination. 

 

4.2 VT Analysis and Results 

 

4.2.1 Trend in Lag-1 Autocorrelation 

 

Figures 16 and 17 show the lag-1 autocorrelation trends prior to VT onset and termination, 

respectively.  

 

The lag-1 autocorrelation results prior to VT onset as well as VT termination do not indicate 

any commonality in trend. Although some samples show an increasing lag-1 

autocorrelation close to the critical transition (Figs 16a1, 16a2, 16c1, 16c2 and 16c3), a 

decreasing trend can be seen in others (Figs 16a4, 16b1, 16b2, 16b4, 17b and 17c), or the 

lag-1 autocorrelation merely fluctuates without any particular trend (Figs 16a3, 16b3, 16c4 

and 17a). This suggests that critical slowing down is not the underlying mechanism for VT 

onset or termination. The lag-1 autocorrelation results are similar irrespective of the 

window size of the input data.
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a1  a2  a3  a4  

b1  b2  b3  b4  

c1  c2  c3  c4  

Figure 16. Lag-1 autocorrelation prior to VT onset. Y axis: Autocorrelation at lag-1, X axis: Data index at the end of the moving window used for 

the autocorrelation calculation. Sequence of samples follow the indexing order in Table 5 (a1=1, a2=2, etc.).   
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a  b  c  

Figure 17. Lag-1 autocorrelation prior to VT termination. Y axis: Autocorrelation at lag-1, 

X axis: Data index at the end of the moving window used for the autocorrelation calculation. 

Sequence of samples follow the indexing order in Table 6 (a=1, b=2, c=3). 

 

4.2.2 Flickering Prior to VT Onset 

 

The standard deviations of RRI fluctuations for each Pre-VT sample are significantly 

different from the values for the Normal State (Mann-Whitney test, p-value <0.001 for all). 

Thus the cardiac state is not Normal prior to VT onset.  

 

Some of the Pre-VT samples also exhibit bimodality for the distribution of standard 

deviations of RRI fluctuations (example in Figure 18), where one mode is close to the 

distribution for the Normal State, and the other mode, which is not close to the distribution 

for the Normal State, should be close to the VT State. The former and latter modes can thus 

be characterized as Near-Normal and Near-VT modes respectively. The dividing standard 

deviation value between these two modes can be approximated by 0.125 also. The cardiac 

state flickers across this boundary between the two modes (Figure 19).   
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Figure 18. Distribution of standard deviations of RRI fluctuations for a Pre-VT sample, 

which is bimodal, superimposed on the distribution for the Normal State.   

 

 

Figure 19. Time series of the standard deviation of RRI fluctuations for the Pre-VT sample 

in Figure 18. The horizontal dotted line is the boundary between Near-Normal and Near-

VT. 
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A total of 7 out of 12 Pre-VT samples show a bimodal distribution (dataset no. 2, 3, 7-9, 11 

and 12 in Table 5), the remaining 5 have a distribution that is dominated by the Near-

Normal mode (dataset no. 1, 4-6 and 10 in Table 5) (example in Figure 20), where the 

cardiac state occasionally flickers to Near-VT (Figure 21).  

 

 

 

Figure 20. Distribution of standard deviations of RRI fluctuations for a Pre-VT sample, 

which is dominated by the Near-Normal mode, superimposed on the distribution for the 

Normal State. 
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Figure 21. Time series of the standard deviation of RRI fluctuations for the Pre-VT sample 

in Figure 20. The horizontal dotted line is the boundary between Near-Normal and Near-

VT. 

 

4.2.3 Flickering Prior to VT Termination 

 

Within the limited samples available for VT termination, two samples showed a bimodal 

distribution (dataset no. 1 and 3 in Table 6) (example in Figure 22). The standard-deviation 

value of 0.125 is a good approximation as well for the boundary between the Near-Normal 

and Near-VT modes. Prior to VT termination, the cardiac state flickers between Near-

Normal and Near-VT (Figure 23). The remaining sample has a distribution that is 

dominated by the Near-VT mode (Figure 24), where the cardiac state flickers to Near-

Normal once (Figure 25). 
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Figure 22. Distribution of standard deviations of RRI fluctuations for a VT termination 

sample, which is bimodal, superimposed on the distribution for the Normal State. 

 

 

Figure 23. Time series of the standard deviation of RRI fluctuations for the VT termination 

sample in Figure 22. The horizontal dotted line is the boundary between Near-Normal and 

Near-VT. 



49 
 

 

Figure 24. Distribution of standard deviations of RRI fluctuations for a VT termination 

sample, which is dominated by the Near-VT mode, superimposed on the distribution for 

the Normal State. 

 

 

Figure 25. Time series of the standard deviation of RRI fluctuations for the VT termination 

sample in Figure 24. The horizontal dotted line is the boundary between Near-Normal and 

Near-VT. 
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The distribution pattern of the standard deviations of RRI fluctuations, the boundary 

between Near-Normal and Near-VT, and flickering are robust across all window sizes (for 

standard deviation calculation) for both VT onset and termination. 
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CHAPTER 5 

SUMMARY AND DISCUSSION 
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5.1 Summary of Findings 

 

Analysis of the lag-1 autocorrelation of the cardiac state in samples of AF onset as well as 

termination indicate that critical slowing down is not the mechanism leading to the critical 

transition. Instead, our results show that the critical transition into and out of paroxysmal 

AF is preceded by flickering. Supporting evidence of flickering is provided by a bimodal 

distribution of the cardiac states prior to the critical transition, where the cardiac state 

flickers between the Near-Normal and Near-AF states attributed to the two modes, 

respectively. 

 

Similar conclusions can be drawn from our analysis of the VT onset and termination 

samples; i.e. the critical transition is preceded by flickering, rather than critical slowing 

down. Similar to AF, the lag-1 autocorrelation of the cardiac state does not always exhibit 

the increasing trend near the transition as expected for critical slowing down [28]. Evidence 

of flickering prior to the critical transition into and out of VT is similarly provided by a 

bimodal distribution of the cardiac states as well as flickering of the cardiac state between 

the Near-Normal and Near-VT states attributed to the two modes, respectively. 

 

Thus, we conclude that the critical transition for onset and termination of AF and VT is 

preceded by flickering, contrary to the hypothesis put forward by Olde Rikkert et al. [23]. 

Clinically, paroxysmal AF has been observed to be triggered by ectopic beats in normal 

sinus rhythm prior to paroxysmal AF [77-79]. Further analysis of our Pre-AF data also 

supports this clinical observation. Among the standard deviations of RRI fluctuations that 

are associated with Near-AF State, those that included at least one or more ectopic beats 

accounted for 77.29%, 87.10%, 91.51% and 93.51% for window size 5, 10, 15 and 20 
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respectively, averaged over the 20 Pre-AF datasets. In contrast, among the standard 

deviations of RRI fluctuations that are associated with Near-Normal State, those that 

included at least one or more ectopic beats accounted for 8.19%, 8.30%, 6.88% and 8.05% 

for window size 5, 10, 15 and 20 respectively, averaged over the 20 Pre-AF datasets. In 

other words, when the cardiac state is near-AF, the beats are dominated by ectopic ones. 

The ectopic beats are not dominant when the cardiac state is near-Normal. 

 

5.2 Limitations of Study 

 

Although we were unable to obtain data for Incessant VT to serve as reference for the VT 

State, the Normal State data alone has proven to be sufficient as a reference to construe the 

Near-VT State. The availability of long term Incessant VT data would enable the boundary 

separating the standard deviations of RRI fluctuations for Near-Normal and Near-VT to be 

determined more accurately.  

 

5.3 Potential Applications 

 

The flickering of cardiac state prior to AF or VT onset could be used as an early warning. 

A simple implementation could involve triggering an alarm if the cardiac state flickers 

across the boundary between the Near-Normal and Near-Disease states for the first time. It 

should be pointed out however, that the flickering of cardiac states cannot be employed as 

the sole indicator, as it is unable to distinguish between the two types of arrhythmia. Other 

indicators would need to be included in the early warning.  
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There is increasingly interest in the use of wearable technology with ECG tracking 

capability to monitor cardiac health, as can be seen in a recently concluded study involving 

the Apple Watch [80, 81]. The main objective of the Apple Watch study is to determine if 

measurement of pulse rate irregularity or variability can be used to screen for AF. A small 

percentage of the participants who volunteered for the initial trial participated in the second 

phase of the trial, which involved wearing a portable ECG monitor for up to a week [80], 

if they were notified of a ‘potential problem’ by the Apple Watch. Approximately 33% of 

the participants in the second phase were reported to have AF [81]. In this regard, cardiac 

state flickering could perhaps be used to augment pulse rate irregularity to improve the 

accuracy of the screening process. 

 

The flickering of cardiac state preceding the onset of AF and VT could be used to guide the 

development of new pharmaceuticals and control methods to prevent the onset of the 

arrhythmia. In addition, the flickering of cardiac state preceding the termination of the 

arrhythmia could be used to guide the development of new termination methods, for 

example, instead of using random large currents for defibrillation and cardioversion, 

perhaps using shaped pulses with smaller amplitudes [82-85] and optimised timing might 

be more effective. 

 

Finally, our methods of defining system states and detection of flickering could potentially 

be adapted to test the critical slowing down hypothesis for other chronic episodic diseases.    
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