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Abstract

Data is ubiquitous in this digitized world. When given a dataset, most

machine-learning applications need to model the dataset in some way be-

fore it can be employed to perform a particular task. Data depth and

density are two popular representatives of such modelling methods. Data

Depth measures the inner-outward ranking of the data points in a dataset.

It has been widely adopted for multivariate statistical analysis since it pro-

vides a non-parametric approach that does not rely on the assumption of

normality. On the other hand, density describes the probability density

of each location in the data space. It aims to capture details of the local

distributions of the data points. Despite their widespread application,

there are critical shortcomings with the two approaches. When choosing

a data depth method, efficiency and robustness are two important fea-

tures to be considered. However, no existing data depth methods possess

these two features simultaneously. As to density, it has some fundamen-

tal weaknesses in its application. For example, density-based clustering

algorithms have difficulty detecting all clusters correctly because of large

density variation among clusters. Also, in anomaly-detection tasks, den-

sity ratio-based scores are susceptible to the change rate of local densities.

This thesis aims to address these shortcomings of data depth and density

based on a recent data modelling mechanism called mass estimation. Mass

estimation generates random regions in the data space. Via measuring the

mass in each region and aggregating these, it provides a score for each data

point. Mass estimation is a general method which does not require equal

volume regions as density estimation does. With different designs it can

behave flexibly, from resembling a data depth method that captures global

features to resembling a density method which captures the local features

of a dataset.

To address the shortcomings of data depth, this thesis proposes a max-

imally robust and efficient data depth method named Half-space Mass,



which is a product of generalizing one-dimensional mass estimation to

multidimensional cases. This thesis also provides theoretical proofs of

four desirable properties of Half-space Mass as a data depth method.

To overcome the weaknesses of the density approach, this thesis proposes

an alternative method, Neighbourhood Contrast, which is devised with the

mass estimation mechanism. Neighbourhood Contrast possesses proper-

ties that effectively address the shortcomings of density. In clustering, it

can simply replace density in the clustering procedure to eliminate the

density variation issue. In anomaly detection, it provides a better score

than the density ratio since it is stable regardless of the change rate of

densities in the local regions.

Extensive experiments are conducted to benchmark the proposed meth-

ods. The work in this thesis contributes to the theoretical and applica-

tional developments of the mass estimation methodology.
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Chapter 1

Introduction

1.1 Project motivation

Data modelling is the basis of many machine-learning applications. Learning algo-

rithms need to model data in some form in order to perform accurate predictions, clas-

sifications or detection of anomalies. Data depth [39] is one data-modelling method

that provides a centre-outward ranking of data points. Data depth methods have

been extensively studied in the field of statistics since they provide a useful tool in

non-parametric inference for multivariate data [72]. When selecting a data depth

method, efficiency and robustness are considered to be the two most important fac-

tors [43]. However, despite extensive studies, to the best of my knowledge there has

not been a data depth method that is both efficient and robust. For instance, the

L2 depth [43] is a robust data depth method but a very inefficient one, while a much

more efficient method, Tukey depth [61], is not robust, i.e., it is easily influenced by

outliers.

Another important data-modelling method is density estimation, which seeks to

estimate the underlying probability distribution of a dataset. Density has been uti-

lized in a variety of applications. In clustering and anomaly detection, many popular

methods such as Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) [19], Clustering by Fast Search and Find of Density Peak (DP) [50] and Local

Outlier Factor (LOF) [12] rely on density to model the structure of a dataset in order

to detect clusters in high-density regions or to detect anomalies in relatively low-

density regions. Despite its success, the use of density has its shortcomings in both

tasks. In clustering, density-based algorithms have difficulty detecting all clusters

correctly when there is a large density variation among clusters. Low-density clus-

ters are likely to be ignored while high-density ones suffer the risk of being merged.

In anomaly detection, when local anomalies lie near a dense cluster using density
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ratio based scores is an effective technique for detecting such anomalies, which are

easily masked by normal points of lower density clusters. However, the density ra-

tio is susceptible to the rate of change of local densities. An anomaly that sits in

a neighbourhood with slowly changing densities is much harder to detect than one

that sits in a neighbourhood with sharp changes in densities. Figure 1.1 provides two

toy datasets that exemplify such shortcomings in clustering and anomaly detection

respectively.

Figure 1.1: Two one-dimensional datasets as examples of hard cases in density-based
clustering and anomaly detection. In (a) the low-density cluster on the right will be
ignored and rendered as noise if DBSCAN is used and the density threshold is set
higher than its peak. In (b) the left anomaly that sits in a region with slowly changing
densities will receive a much lower LOF score than the right anomaly that sits in a
region with sharply changing densities. Therefore the left anomaly is much harder to
detect. More details of (b) are provided in Figure 4.3.

Recent research has proposed a new data-modelling methodology called mass es-

timation [58, 59] which is based on measuring the probability mass of partitions in

a data space. Mass estimation first generates random partitions in the data space

via a carefully designed process. It then counts the number of data points falling in

each partition. The masses of the different partitions are then aggregated to provide

a final score for each data point. Its key difference from density estimation is that the

random partitions can have different volumes and the final score is an aggregation

of different partitions. Because mass estimation does not require pairwise distance

calculations, this methodology is efficient and scalable in terms of dataset size. It also
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provides additional tools and perspectives for various applications. For example, iFor-

est [38], which is essentially a form of mass estimation methodology, provides a new

perspective to look at the anomaly-detection problem; this methodology also leads

to some data-dependent dissimilarity measures [7, 60], which can provide additional

options when choosing a metric for specific tasks. A number of other works in various

applications have also arisen utilizing the mass-based methodology, such as density

estimation [55, 56], anomaly detection [8, 59], clustering [57] and classification [6]. In

many applications, methods using the mass-based methodology not only have better

efficiency, but also have improved task-specific performances [38, 8, 59, 7, 60, 57].

1.2 Research objectives and contributions

The mass estimation methodology is efficient and the one-dimensional mass distribu-

tion as defined by Ting et al. [59] has been shown to be concave. Concavity is an

important characteristic for a data depth method. Since a data depth method pro-

vides a centre-outward ranking of points, a concave data depth function can locate

the “deepest” point more easily via some optimization technique. A generalization

of one-dimensional mass to multidimensional mass can preserve the concavity and

lead to a new data depth method with unique properties. On the other hand, mass

estimation is based on generating small regions in the data space. The sizes of these

regions are adaptive to local data distribution, unlike density estimation which re-

quires fixed-size regions. Furthermore, contrasting the masses of these regions can

lead to an indication of the relative density regardless of the absolute density value or

the rate of change in density. These characteristics of mass estimation could empower

a new measure with desirable properties to substitute for density in clustering and

anomaly detection.

Motivated by the aforementioned reasons, this project seeks to apply the mass

estimation methodology to address the shortcomings in data depth and density. In

particular, the objectives of this project are to utilize mass estimation to devise:

1. a data depth method that is both efficient and maximally robust; and

2. a better alternative measure than density for detecting clusters and anomalies.

To achieve the first objective, this thesis proposes a new data depth method named

Half-space Mass (HM). It is the first data depth method which is both maximally

robust and efficient. HM is a product of generalizing a level-1 mass estimation

from a one-dimensional case to a multidimensional case. Furthermore, via theoretical
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analysis this thesis reveals that HM possesses four properties that are desirable for

a data depth method, including maximal robustness.

To achieve the second objective, this thesis proposes an alternative to density

called Neighbourhood Contrast (NC) which also employs mass estimation. NC pos-

sesses properties that effectively address the shortcomings of density in both tasks of

clustering and anomaly detection. In clustering, it can simply replace density in the

clustering procedure to eliminate the density variation issue. In anomaly detection,

it produces a better score than the density ratio since it is not affected by the rate of

change of density in the local area.

The above two achievements constitute the key contributions of this thesis.

1.3 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 reviews the key concepts

and methods that are most relevant to this thesis in the areas of density estimation,

data depth, mass estimation, clustering and anomaly detection. Chapter 3 introduces

HM , analyzes its properties and empirically evaluates its performance in clustering

and anomaly detection. Chapter 4 consists of the proposal of NC, its implementation

and properties, its derivative methods in both clustering and anomaly detection, and

experiments that verify its effectiveness. Concluding remarks and possible future

extensions of the work in this thesis are provided in Chapter 5.
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Chapter 2

Methodological Background

In this chapter, I review important literature that is related to the research objec-

tives of this project in the following five areas: density estimation, data depth, mass

estimation, clustering and anomaly detection.

2.1 Density estimation

Density estimation methods regard a dataset as a random sample drawn from an

unknown underlying probability density function (pdf). These methods then con-

struct a distribution based on the dataset, as an estimate of the underlying pdf. To

understand their mechanism as well as their limitations, here I review some classic

and well-known density estimation methods.

2.1.1 Parametric methods

Parametric density estimation methods assume that the observed data can be mod-

eled by a well-defined probability distribution which can be fully described by a set

of parameters. These methods then estimate the parameters based on the data. This

approach requires certain prior knowledge of the underlying distribution. Therefore,

while it can be effective when the assumption is valid with the data, an appropriate as-

sumption is often difficult to find in practice, especially for datasets whose generating

processes are complex.

2.1.1.1 Method of moments

One basic parametric method to estimate the density function from a sample dataset

is the method of moments [36]. It estimates the parameters of interest by equating

population moments to sample moments. Suppose D = {xi, i = 1, . . . , n} is an
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independent and identically distributed (iid) sample of a density function f(x; θ),

where θ is the parameters of f . Denote the population r-th moment of f with

ur(θ) = Eθx
r and the sample r-th moment with

mr =
1

n

n∑
i=1

xri .

Then the estimate θ̂ of θ is derived by solving the following k equations

mr = ur(θ̂), r = 1, ..., k.

Taking the Gaussian distribution for example, the parameters θ = {µ, σ2}. Esti-

mating the first and second population moments with the sample moments gives the

estimated θ̂ as

µ̂ =
1

n

n∑
i=1

xi, (2.1)

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2. (2.2)

2.1.1.2 Maximum likelihood estimation

Another important method of estimating the parameters of a density function f is

Maximum Likelihood Estimation (MLE) [36]. Let

L(θ;D) =
n∏
i=1

f(xi; θ)

denote the likelihood function of θ given the sample D. The MLE of θ is then given

by

θ̂ = arg max
θ

L(θ;D).

In practice, since a natural logarithm is a monotonically increasing function, the log-

likelihood function `(θ;D) is often used instead of the likelihood function L(θ;D) for

the maximization, because it is often easier to solve the problem analytically this way,

especially when xi are iid samples. That is,

θ̂ = arg max
θ

`(θ;D)

= arg max
θ

log[L(θ;D)]

= arg max
θ

n∑
i=1

log[f(xi; θ)].
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If `(θ;D) is differentiable, θ̂ is often obtained by solving

∇θ`(θ;D) = 0,

where ∇ is the gradient operator.

Using the one-dimensional Gaussian distribution as an example,

L(θ;D) =
n∏
i=1

f(xi; θ)

=
n∏
i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
,

thus

`(θ;D) = log

(
n∏
i=1

f(xi; θ)

)

= −n
2

log(2πσ2)− 1

2

n∑
i=1

(xi − µ)2

σ2
.

θ̂ can then be obtained by solving

∂`(θ;D)

∂µ
=

n∑
i=1

xi − µ̂)

σ̂2
= 0,

∂`(θ;D)

∂σ2
= − n

2σ̂2
+

1

2

n∑
i=1

(xi − µ̂)2

(σ̂2)2
= 0,

which yields the same result as in Equations (2.1) and (2.2).

There are certain limitations of parametric methods for density estimation. Firstly,

they do not always yield unbiased estimates of the parameters of the assumed distri-

bution, e.g., in Equation (2.2) the estimator of σ2 is biased. It needs to be adjusted.

Secondly and more importantly, they require an assumption of a certain probabil-

ity distribution from which observed samples are generated. This can be difficult in

practice when data samples are generated from unknown or complex sources [10]. If

the chosen distribution was a poor model of the true source distribution, then this

method would lead to poor predictive performance.

2.1.2 Non-parametric methods

Non-parametric methods of density estimation make no assumption of a particular

probability distribution. Instead, they use the following principle that, to estimate

the density of a particular point x, the data points that lie in the neighbourhood of

x should be considered [10]. How the neighbourhood is defined differs in different

methods.
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2.1.2.1 Kernel density estimators

For a dataset D = {yi, i = 1, . . . , n}, the Kernel Density Estimator (KDE) [29] takes

the following general form to estimate the density f(x) at location x:

f(x) =
1

n

n∑
i=1

Kh(x− yi), (2.3)

where Kh(·) is a kernel function with bandwidth parameter h satisfying the following

conditions:

Kh(u) ≥ 0,∫
Kh(u)du = 1.

The parameter h plays the role of a smoothing parameter. An h which was too small

would cause overfitting, while a too large h would cause oversmoothing and fail to

capture local features. A trade-off between the two should be considered while tuning

h to the optimal value.

A popular choice of the kernel function Kh(·) is the Gaussian, which gives rise to

the following estimator (in univariate case as an example):

f(x) =
1

n

n∑
i=1

1√
2πh2

exp

(
−(x− yi)2

2h2

)
,

where h is the standard deviation of the Gaussian distribution here.

2.1.2.2 Nearest-neighbour methods

The KDE can be viewed as fixing the volume (by fixing the bandwidth parameter h)

and accumulating density contributions from each point in the dataset. In contrast,

the K-nearest-neighbour (KNN) density estimator can be viewed as fixing the number

of data points K or the probability mass K
n

, and normalizing it with the volume taken

up by the K-nearest-neighbours [10].

A general form of the KNN density estimator is:

f(x) =
K

nVK(x)
, (2.4)

where K is the chosen parameter and VK(x) is the volume of a predefined space which

contains the K-nearest-neighbours of x.
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2.1.3 Limitation of density estimation

All of the density estimation methods I have reviewed so far inevitably involve pairwise

distance calculations. When applying these methods in machine-learning tasks such

as clustering or anomaly detection, a major limitation is that the time complexity is

at least O(n2). For applications that involve searching for the K-nearest-neighbours,

the time complexity is even higher. Although some indexing schemes can be applied

to speed up the search process, the pairwise-distance input requirement still hampers

the scalability of such methods.

2.2 Data depth

Unlike density estimation, which models data points by seeking to recover the under-

lying pdf, data depth [39] models data points by measuring their “depth”, or “inly-

ingness”, leading to a natural centre-outward ranking of all data points, or even of all

locations in the data space. It is a unimodal function regardless of the distribution of

the data points. Figure 2.1 provides a comparison between the characteristics of the

two: density estimation captures the local features, while data depth is designed to

provide a centre-outward ranking of the dataset. Data depth has been widely used in

non-parametric multivariate data analysis, such as defining the multivariate median.

Figure 2.1: A comparison between modelling data distribution with data depth (Half-
space Depth) and with density estimation (KDE), using a synthetic dataset.
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2.2.1 Half-space (Tukey) Depth

Half-space Depth (HD), or Tukey depth [61], is probably the most studied data

depth method. The idea is to define the “depth” of a point by the minimum amount

of probability mass separated by a hyperplane that goes through this point. The HD

of a point x with respect to a dataset D can be defined as

HD(x|D) = min
H∈H(x)

[PD(H)], (2.5)

where PD(·) is a empirical probability measure w.r.t. the given dataset D and H(x)

is the set of all closed half-spaces containing x.

HD is popularly used to define the multivariate median. However, the “deepest”

location of HD, i.e., the location with the maximum depth, is generally not a unique

point but a closed, bounded convex set of points [4]. In such cases, the half-space

median is defined to be the average of such a set.

Donoho and Gasko [16] investigated the robustness of HD. They define the break-

down point ε of a location estimator T and a given dataset D of size n as

ε(T,D) = min

(
m

n+m
: sup
Q(m)

|T (D ∪Q(m))− T (D)| =∞

)
, (2.6)

where Q(m) is a contaminating dataset of size m.

The breakdown point defined this way can be interpreted as the minimum pro-

portion of contaminating points required to shift the location estimator arbitrarily

far away. By letting

T (D) = ave{arg max
x

HD(x|D)},

where ave{·} denotes the average of a set of points, it is shown that the breakdown

point of HD is between [ 1
1+d

, 1
3
], where d ≥ 2 is the dimensionality of the data space

[16].

HD with respect to a dataset D, as in Equation (2.5), can only rank locations

within the convex hull of D. Any location outside the convex hull of D has zero

depth. Dutta et al. [17] discussed this phenomenon of HD and pointed out that, in

high-dimensional cases where d > n, HD will have a zero measure almost everywhere

because the convex hull of the dataset will occupy zero volume in the data space. In

such cases, HD does not carry any useful statistical information.
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2.2.2 L2 depth

L2 depth [43] is a data depth method based on L2 distance, which is defined as

L2D(x|D) =

(
1 +

1

|D|
∑
y∈D

||x− y||2

)−1

. (2.7)

From Equation (2.7) it is obvious that L2 depth maximizes at

x∗ = arg min
x

[∑
y∈D

||x− y||2

]
,

which is generally a unique point, unless the data points in D lie in a straight line

and |D| is an even number.

Lopuhaa and Rousseeuw [40] showed that a location estimator w.r.t. a dataset D

defined as

T (D) := arg min
x

[∑
y∈D

||x− y||2

]
has a breakdown point of no less than 1

2
. Since the breakdown point of any estimator

cannot exceed 0.5 [51], L2 depth is maximally robust in terms of the breakdown point

of its maximum.

The main limitation of L2 depth is its time complexity. In applications such as

anomaly detection, when L2 depth is used to rank a dataset in terms of outlyingness,

it requires pairwise distance calculations, which severely hinders its scalability.

2.3 Mass estimation

Mass estimation [58, 59] is a new data-modelling method that is different from density

estimation and data depth. It models the data space based on the probability masses

of a set of local regions. It is efficient since it employs partitioning and counting with-

out the need to calculate pairwise distances. Before this project, a formal definition

of mass was given in one-dimensional cases only.

2.3.1 One-dimensional mass

One-dimensional mass as defined in [58] is stated as follows. Let x1 < x2 < · · · <
xn−1 < xn on the real line, D = {xj, j = 1, . . . , n}. Let si, i ∈ {1, . . . , n − 1} be

a binary split between xi and xi+1, splitting D into two non-empty subsets DL
i =

11



{xj, j = 1, . . . , i} and DR
i = {xj, j = i + 1, . . . , n}. The mass base function mi(x|D)

as a result of si, is defined as

mi(x|D) =

{
|DL

i | if x is on the left of si
|DR

i | if x is on the right of si
,

where |DL
i | = n− |DR

i | = i.

The mass M(xa|D) for a point xa ∈ D is defined as a summation of a series of

mass base functions mi(x|D) weighted by P (si) as follows

M(xa|D) =
n−1∑
i=1

mi(xa|D)P (si|D)

=
n−1∑
i=a

iP (si|D) +
a−1∑
i=1

(n− i)P (si|D), (2.8)

where P (si|D) = (xi+1 − xi)/(xn − x1) is the probability of selecting si within the

range of D, defined to be proportional to the width of the interval each si lies in. It

is stipulated that M(xa|D) = 0 if |D| ≤ 1.

Ting et al. [58] have shown that M(xa|D) as defined above has two properties:

first, it maximizes at its median; second, M(xa|D) is a concave function defined with

respect to D.

The mass defined in Equation (2.8) is based on single binary splits. Its two

properties stipulate that it is a concave function with the maximum at its median,

regardless of the underlying probability distribution which generates the data. In

other words, it only captures the global features of the dataset in terms of centrality

or outlyingness, disregarding any local features.

To capture local features, a level-h mass distribution is proposed [58]. Let the

mass defined in Equation (2.8) with respect to a dataset D be regarded as the level-1

mass, denoted by M(xa|D, 1). Consequently, the level-h mass M(xa|D, h) of a point

xa ∈ D can be defined as

M(xa|D, h) =

|D|−1∑
i=1

Mi(xa|D, h− 1)P (si|D), (2.9)

where the function Mi(xa|D, h) is defined as

Mi(xa|D, h) =

{
M(xa|DL

i , h) if a ≤ i
M(xa|DR

i , h) if a > i
.

The level-h mass function is calculated recursively until it terminates at the level-1

mass.

12



Unlike the level-1 mass, which captures global features only, the level-h mass

captures the local features of the dataset. The higher h is, the more localized details

it captures. Figure 2.2 shows the changes in the mass distribution as h increases.

Figure 2.2: A figure from [58] comparing level-h mass with KDE.

2.3.2 Multidimensional mass

The formal definitions of level-1 and level-h mass, as in Equations (2.8) and (2.9), are

one-dimensional only. While there are no clear definitions of multidimensional mass

in the literature, Ting et al. [59] proposed estimating multidimensional mass using

binary trees.

Let T h(·) denote a level-h binary partitioning of the data space, named half-space

tree, yielding at most 2h regions (or external nodes). Let T h(x) denote the region

which x falls in; and m(T h(x)|D) denote the mass base functionof this region, which

is the number of points in D that fall in this region.

To estimate the mass of a point M(x|D), a collection of t half-space trees T h(·)
should be constructed. Let T hi (·) denote the i-th half-space tree and mi(x|D) :=

m(T hi (x)|D); then M(x|D) is given by

M(x|D) =
1

t

t∑
i=1

mi(x|D). (2.10)

To achieve a good estimation, each T hi (·) should involve some stochastic process

in partitioning the space. The construction of each T hi (·) is done in the following

way. First, a random hyper-rectangular work space S ⊂ <d which contains the whole

dataset D is generated. Second, a random dimension q ∈ {1, . . . , d} is selected, then a

split point sq, which is the middle value in the range of S along dimension q, divides S

into two equal-sized half-spaces. Third, for each half-space the partitioning happens
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Figure 2.3: A demonstration from [59] as an example of T h(·) partitioning in <2.

recursively in the same manner, until it reaches level-h or minimum node size. An

example of partitioning is shown in Figure 2.3.

The half-space tree implementation provides an effective way to estimate multi-

dimensional mass. However, the lack of a formal definition has prevented discovery

of its new properties. A generic definition of mass is one of the motivations for this

project.

2.4 Applications

In this project, I focus on the application areas of clustering and anomaly detection

because these are areas where density is often used. As a result, they are susceptible to

the shortcomings of density. In this section, I review popular clustering and anomaly-

detection methods with an emphasis on density-based methods.

2.4.1 Clustering

Clustering is the task of grouping a set of data points based on their similarity. It

is a technique widely used in exploratory data analysis [2]. Below I review various

clustering methods including the classic K-means [33], density-based ones such as

DBSCAN [19] and DP [50], and others.

Although the K-means is not a density-based method, it is related to a pro-

posed method in this thesis which has a similar procedure to the K-means. Hence it

is included in this review. The review of density-based methods is focused on DB-

SCAN and DP because DBSCAN is a popularly used and extensively studied method,
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whereas DP is the state-of-the-art density-based method.

2.4.1.1 K-means

The K-means [33] is the classic and perhaps most well-known method of clustering.

It partitions data points into K groups by minimizing the sum of squared errors

between the mean and the data points in each group. That is, for a dataset D, let

G = {Gk, k = 1, . . . , K} denote the clusters and µk denote the mean of cluster Gk;

then the objective function of the K-means is

obj(G) =
K∑
k=1

∑
xi∈Gk

||xi − µk||2.

The K-means finds a grouping of data points that minimizes this objective func-

tion. The K-means algorithm operates in an iterative fashion. It starts by selecting

K random points as group centres. Next, all points are assigned to the same group

as their closest group centres. Lastly, the group centres are updated by averaging the

group members. This process is repeated until convergence. The K-means algorithm

always converges. However, the global optimum is not guaranteed since the K-means

only converges to a local minimum [32].

In spite of its popularity, the K-means algorithm has the following limitations [53]:

i. It is sensitive to its initial group centres.

ii. It has difficulty finding clusters that have non-spherical shapes or widely differ-

ent sizes or densities.

iii. It is susceptible to the influence of outliers.

The robust data depth method proposed in this thesis can be used as a remedy to

address the above limitations, as shown in Section 3.8.3.1.

2.4.1.2 DBSCAN

Many clustering methods use density estimation as their underlying technique for

the task. One typical and widely studied example is DBSCAN [19], which uses low-

density regions as separations between clusters in order to detect arbitrarily shaped

clusters.

DBSCAN uses a fixed-distance neighbourhood to estimate the density of all points.

More specifically, given a dataset D the density of a point x ∈ D is given by

f(x) = |Nε(x)|, (2.11)
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where Nε(x) = {y ∈ D : dis(x,y) ≤ ε} is the set of points that in the ε-

neighbourhood of x.

Note that the estimated density via Equation (2.11) is the count of data points.

Yet it can be regarded as a surrogate for density because each ε-neighbourhood has

the same volume.

DBSCAN defines core points as points that have densities no less than a threshold

minPts. If the distance between two core points is no greater than ε then they are

said to be linked. A maximal set of transitively linked core points forms a cluster

core. All points within the ε-neighbourhood of any member of a cluster core forms a

cluster. Non-core points in a cluster are called border points. Lastly, points that do

not belong to any cluster are designated as noise.

With a single density threshold, DBSCAN often fails to detect all clusters when

they have hugely varying densities. Researchers have proposed various improved ver-

sions of DBSCAN to tackle this issue from different perspectives. For example, the

Density Differentiated Spatial Clustering (DDSC) [11] assumes a homogeneous den-

sity within a cluster by connecting core points of similar densities only. Instead of

using one global ε value, the Enhanced Density Based Spatial Clustering of Applica-

tions with Noise (EDBSCAN) [47] uses different values of ε for density estimation to

adapt to local densities. The Ordering Points To Identify the Clustering Structure

method (OPTICS) [5] goes a step further by getting rid of the ε parameter completely.

It calculates a reachability distance for each point and draws a reachability distance

plot to extract clusters. Another example is the Shared Nearest Neighbours (SNN)

[18], which employs a shared-nearest-neighbour dissimilarity to replace distance in

order to mitigate density variation.

The above improvements were designed without knowing the exact condition un-

der which density-based algorithms fail to discover all clusters with hugely varying

densities in a dataset. This condition has been identified recently in [70]. It is restated

here as follows. Let pk denote the maximum density in cluster k, path(i, j) denote a

sequence of points that connects cluster i and j, and gij denote the minimum density

along a path(i, j). Density-based clustering algorithms such as DBSCAN can only

detect all clusters if the data distribution satisfies the following condition:

min
k

(pk) > max
i 6=j

(gij).

In other words, the data distribution must have the minimum density of all cluster

modes to be greater than the maximum density of all valleys of any paths connecting

two cluster modes. Otherwise, DBSCAN will fail to detect all clusters in the dataset.
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2.4.1.3 DP

Rodriguez and Laio [50] proposed a novel and powerful density-based clustering

method named Clustering by Fast Search and Find of Density Peak (DP). Unlike

DBSCAN, which uses a threshold to identify dense regions as clusters, DP identifies

cluster centres as points that have local maximum density and are well separated. It

then assigns each remaining point to one of the cluster centres via a linking scheme.

The clustering procedure of DP has three steps. Firstly, for each point x DP

calculates its density f(x) using an ε-neighbourhood density estimator, in the same

way as Equation (2.11). Another quantity δ(x), which is the distance between x and

its nearest neighbour with a higher density, is also calculated, by

δ(x) = min
y:f(y)>f(x)

dis(x,y).

In the second step, DP plots a decision graph for all points where the y-axis is

f(x)δ(x), sorted in descending order in the x-axis. The top K points with the highest

f(x)δ(x) (i.e., high density values and relatively high minimum distance values) are

then selected as the cluster centres.

Lastly, each remaining point is connected to its nearest neighbour with a higher

density, and the points connected or transitively connected to the same cluster centre

are assigned to the same cluster.

DP incorporates an additional factor δ in finding cluster centres rather than relying

on density alone. This idea leads to its superior clustering performance compared to

DBSCAN.

DBSCAN and DP represent two different types of clustering procedures. DB-

SCAN uses a density threshold to select core points. These core points form the basic

shapes of clusters. The number of clusters is later determined by the linking scheme.

On the other hand, DP firstly finds the cluster centres. The number of clusters is

fixed by the number of centres. Yet the shapes of clusters are unknown until the

assignment of the rest of the points to each centre is completed. In other words,

DBSCAN outlines the cluster shapes first, while DP locates a fixed number of centres

first.

A crucial step in both DBSCAN and DP is to identify the key points in the clusters.

This is currently conducted by either selecting core points above a global density

threshold (DBSCAN) or locating the peak for each cluster (DP). These methods rely

on the estimation of density and are therefore susceptible to density variations and

poor scalability to large datasets. Furthermore, DP allows one density peak and one
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peak only for each cluster, which leads to its inability to detect a cluster with multiple

density peaks [68].

2.4.2 Anomaly detection

Anomaly detection is an important task in various applications such as credit card

fraud detection, network intrusion detection and spam email filtering. While there

are a vast number of anomaly-detection techniques described in the literature, such as

classification-based, clustering-based, nearest neighbours-based techniques, etc. [13],

I will only review a few methods which are most relevant to this thesis, that is,

methods that use density ratio-based or mass-based scores in ranking the data points.

2.4.2.1 LOF

The Local Outlier Factor (LOF) [12] is a nearest neighbours-based anomaly-detection

technique that utilizes the density ratio. The anomaly score LOF assigns to each point

is the ratio between the average density of the k nearest neighbours of the point and

the density of the point itself. The idea is that, because an anomaly will have a local

density significantly lower than its nearest neighbours, it becomes distinguishable

from normal points by a large LOF score.

The local reachability density of a point x is defined as [12]:

fk(x) =
|Nk(x)|∑

y∈Nk(x)

max{dk(y), dis(x,y)}
,

where Nk(x) is the set of k nearest neighbours of x; and dk(y) is the distance from y

to its k-th nearest neighbour.

The LOF of a point x is the ratio between the average local reachability density

of x’s k-nearest-neighbours and fk(x) [12]:

LOF (x) =
1

|Nk(x)| · fk(x)

∑
y∈Nk(x)

fk(y).

The LOF is effective in detecting both global and local outliers. However, its

requirements for pairwise-distance measures and k-nearest-neighbours searches sig-

nificantly impair its efficiency.
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2.4.2.2 iForest

Based on the assumption that anomalies are more susceptible to isolation than nor-

mal data points, Liu et al.[38] proposed a novel anomaly-detection technique called

isolation forest (iForest). In contrast to the LOF’s expensive computational cost,

iForest is acclaimed for its efficiency.

Given a dataset D ∈ <d, a forest of t isolation trees {Ti}i=1,...,t is built. A sub-

sample Di of size ψ is randomly drawn from D and used to grow tree Ti. Each internal

node of Ti selects a random attribute q and a random splitting value sq to partition

the points in the node into two non-empty subsets. This process repeats until all

points are isolated, i.e., each leaf node contains one point and one point only.

In the testing phase, let Ti(x) denote the leaf node of tree Ti into which a test

point x falls; and li(x) denote the path length of Ti(x), i.e., the number of edges x

traverses from the root node to the leaf node in tree Ti. The anomaly score for x is

then given by

S(x) =
1

t

t∑
i=1

li(x).

iForest ranks data points by their average path lengths. Ting et al. [59] showed

that the path length of iForest is a proxy for mass. Since anomalies are more suscep-

tible to isolation, the smaller the path length is, the more likely a point is to be an

anomaly. Because iForest uses sub-samples in an ensemble way and does not need any

distance calculations, it is superior in efficiency compared to the LOF. The limitation

of iForest is that it is not good at detecting local anomalies.

2.4.2.3 RMF

To address the limitation of iForest in detecting local anomalies, Aryal et al.[8] pro-

posed ReMass-iForest (RMF), an improved variant which uses the mass ratio instead

of the path length as the anomaly score for data points. The underlying idea of RMF

is that the mass ratio between a leaf node and its parent node can better reflect the

relative density in a local neighbourhood than path length. Thus, the mass ratio can

be viewed as an efficient proxy for the density ratio in this regard.

RMF uses the same tree-building process as iForest, as described in Section 2.4.2.2,

except for the condition of terminating the growth of a tree. A tree node becomes

a leaf node and stops further splitting when either it reaches the height limit h =

dlog2(ψ)e or it has a mass no greater than a user set parameter minPts. Let T ∗i (x)
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denote the immediate parent node of a leaf node Ti(x). The mass ratio [8] for x based

on a single tree Ti is then given by

Si(x) =
1

ψ

|T ∗i (x)|
|Ti(x)|

,

where |Ti(x)| = |{y ∈ Di : y ∈ Ti(x)}| is the number of training points that fall in

Ti(x); and similarly for |T ∗i (x)|.
The final anomaly score for x over t trees is given by

S(x) =
1

t

t∑
i=1

Si(x).

RMF is better able to detect local anomalies than iForest because, by using mass

ratio instead of path length, RMF takes into account local density distributions.

By using either mass ratio or density ratio, both RMF and the LOF enjoy the

effectiveness of relative measures in detecting local anomalies. However, these relative

scores can be easily affected by the rate of change in density in the local regions. This

issue is further investigated in Chapter 4.

2.4.3 Evaluation methods

In order to find appropriate evaluation methods to benchmark the performance of

the proposed methods, I review the following evaluation methods commonly used in

clustering and anomaly detection, as well as popular benchmark datasets.

2.4.3.1 Evaluation methods for clustering

There are two categories of evaluation methods for clustering, namely, internal meth-

ods and external methods [66]. Internal methods are typically applied for evaluating

algorithms that have a specific objective function [25]. Since density-based cluster-

ing methods usually do not have a objective function, external evaluations are more

suitable for them. Therefore, I focus this review on external evaluation methods only.

Adjusted Rand Index

Given a dataset D, let G = {Gk1}k1=1,...,K1 denote a set of clusters which is a partition

of D resulting from a clustering algorithm. Let Ω = {Ωk2}k2=1,...,K2 denote another

partition of D based on the ground truth class labels. A contingency table of the two

partitions of D is shown in Table 2.1, where nk1k2 = |Gk1 ∩ Ωk2|.
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Table 2.1: A contingency table of two partitions of D

Ω1 Ω2 . . . ΩK2 Sums
G1 n11 n12 . . . n1K2 a1

G2 n21 n22 . . . n2K2 a2
...

...
...

. . .
...

...
GK1 nK11 nK12 . . . nK1K2 aK1

Sums b1 b2 . . . bK2 n

The Adjusted Rand Index (ARI) [31, 63] is defined as

ARI(G,Ω) =

∑
k1k2

(
nk1k2

2

)
− [
∑

k1

(
ak1
2

)∑
k2

(
bk2
2

)
]/
(
n
2

)
1
2
[
∑

k1

(
ak1
2

)
+
∑

k2

(
bk2
2

)
]− [

∑
k1

(
ak1
2

)∑
k2

(
bk2
2

)
]/
(
n
2

) ,

where nk1k2 , ak1 and bk2 are counts from the contingency table.

The ARI is a corrected-for-chance version of the original Rand Index (RI) [48],

which intuitively measures the degree of agreement between two partitions. The ARI

is superior to the RI since it takes into account the expected similarity of two random

partitions.

Normalized Mutual Information

Normalized Mutual Information (NMI) [65] is an information theory-based evaluation

method. Given two partitions G and Ω of a dataset D, and a contingency table as

shown in Table 2.1, NMI is defined as follows:

NMI(G,Ω) = 2
I(G; Ω)

H(G) +H(Ω)
,

where

I(G; Ω) =

K1∑
k1=1

K2∑
k2=1

nk1k2
n

log
nk1k2 · n
ak1bk2

is the mutual information and

H(G) = −
K1∑
k1=1

ak1
n

log
ak1
n
,

H(Ω) = −
K2∑
k2=1

bk2
n

log
bk2
n

are the entropy of G and Ω, respectively.

Since NMI is a normalized measure, it is popularly used to compare clustering

results with different number of clusters. However, both ARI and NMI have a common
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drawback that, when clustering algorithms designate some of the data points as noise,

ARI and NMI will favour an algorithm that produces more noise points [71].

F-measure

To address the drawback of ARI and NMI, one remedy is to include both precision

and recall in the evaluation. The F-measure [46] is one of such methods. For a

particular cluster Gk1 with respect to a particular class Ωk2 , the F-measure is defined

as

Fk1k2 = 2
Pre(k1, k2)Rec(k1, k2)

Pre(k1, k2) +Rec(k1, k2)

where

Pre(k1, k2) =
nk1k2
ak1

,

Rec(k1, k2) =
nk1k2
bk2

are the precision and recall respectively.

The overall F-measure is then defined as the weighted average over the best match

between the clusters G and the classes Ω:

F (G,Ω) =

K1∑
k1=1

nk1Φ(k1)

n
Fk1Φ(k1)

where Φ(k1) ∈ {1, ..., K2} is given by the Hungarian algorithm for the assignment

problem [37] to obtain the best match between the clusters and the labels.

The F-measure is more suitable for evaluating clustering algorithms that produce

noise points, as it will be penalized by the recall. Therefore, in this thesis the F-

measure is adopted to evaluate the performance of clustering algorithms.

2.4.3.2 Evaluation methods for anomaly detection

The Area Under the ROC Curve (AUC) [13] is a commonly used quantitative measure

for evaluating anomaly-detection performance. In this thesis AUC is used for the

evaluation of anomaly-detection methods.

The Receiver Operating Characteristic (ROC) curve [28] is a graphical plot that

depicts the overall quality of a binary classifier as the discriminating threshold varies.

In the context of anomaly detection, given a dataset D and its scores, with a specific

threshold, the ROC plots the true positive rate on the y-axis and the false positive

rate on the x-axis. A set of different thresholds ranging from the minimum to the
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Figure 2.4: An example of an ROC curve.

maximum of the scores will draw an ROC curve from (0,0) to (1,1) in the ROC space,

as shown in Figure 2.4.

The AUC effectively summarizes the quality of a method represented by an ROC

curve. Hence it can be conveniently used to compare different methods. The value

of the AUC is between 0 and 1, since it is a portion of the area of an unit square.

A method that generates random scores will result in an AUC of approximately 0.5,

while scores that perfectly rank the data points will have an AUC equal to 1 [20].

The value of the AUC can also be interpreted as the probability of a method giving a

higher score to a randomly chosen positive point than to a randomly chosen negative

point [20].

2.5 Chapter summary

The two important features of a data depth method, robustness and efficiency, are

yet to be found in a single data depth method. As reviewed above, the HD is a

non-concave function which does not guarantee a unique maximum. The robustness

of its median is at most 1/3 in multidimensional cases. On the other hand, L2 depth

possesses all the desirable properties: concavity, a unique maximum and maximal

robustness. However, it is very computationally expensive. This thesis fills the gap
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in data depth by proposing a method that possesses the features of both robustness

and efficiency, as introduced in Chapter 3.

This thesis demonstrates the shortcomings of density in two application areas:

clustering and anomaly detection, since density is popularly used in these two tasks.

Table 2.2 and Table 2.3 summarize the characteristics of the different clustering and

anomaly-detection methods mentioned above. Despite the use of different techniques

to mitigate the adverse effect of large density variation, density-based clustering meth-

ods still suffer from this effect to some extent. In anomaly detection, density-based

scores are susceptible to the change rate of densities. In order to address the root

cause of these shortcomings, this thesis proposes an alternative to density for both

applications.

Table 2.2: Characteristics of different clustering methods.

Method

Detects
arbitrary
shape
clusters

Requires
pairwise
dissimilarities

Requires
nearest
neighbours
search

May suffer
from den-
sity varia-
tion

K-means No No No N/A
DBSCAN Yes Yes No Yes
DDSC Yes Yes No Yes
EDBSCAN Yes Yes No Yes
OPTICS Yes Yes No Yes
SNN Yes Yes Yes Yes
DP Yes Yes Yes Yes

Table 2.3: Characteristics of different anomaly-detection methods.

Method
Detects
global
anomalies

Detects
local
anomalies

Ratio-
based
score

Susceptible to
change rate of
density

LOF Yes Yes Yes Yes
iForest Yes No No No
RMF Yes Yes Yes Yes
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Chapter 3

Half-space Mass

“Most important for the selection of a depth statistic in applications are

the questions of computability and - depending on the data situation -

robustness.” - Karl Mosler [43]

Data depth is a statistical method which models data distribution in terms of

centre-outward ranking, rather than density or linear ranking. While there are many

studies of data depth, a method which is both robust and efficient is still lacking.

To fill this gap, in this chapter I introduce Half-space Mass (HM), which utilizes

the mass estimation methodology. HM is the only data depth method that is both

maximally robust and efficient, to the best of the author’s knowledge.

This chapter is organized as follows. Section 3.1 discusses the motivation for this

work. Section 3.2 introduces the formal definitions of HM as well as the proposed

implementation. Sections 3.3 and 3.4 provide its theoretical properties and proofs,

respectively. Section 3.6 discusses the relationship between HM and other data

depth methods. Section 3.7 describes applications of HM in anomaly detection and

clustering. Section 3.8 reports the empirical evaluations. Section 3.9 discusses the

relationship of HM to mass estimation and Section 3.10 summarizes the chapter.

3.1 Motivation

In 1975, Tukey [61] proposed a way to define the multivariate median in a data

cloud, known as Half-space Depth (HD) or Tukey depth. Since then HD has been

extensively studied. Donoho and Gasko [16] revealed the breakdown point of the HD

median and Dutta et al. [17] investigated the properties of HD. Meanwhile, the

concept of data depth has been adopted for multivariate statistical analysis since it
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provides a non-parametric approach that does not rely on the assumption of normality

[39].

Figure 3.1: Distributions of HD and HM of a simple dataset. White circle markers
denote the data points, while the color indicates the depth/mass value at each location
of the space.

Despite its popularity, the following characteristics of HD hamper its application.

As demonstrated by a simple example in Figure 3.1, the “deepest point”, or HD

median, is not guaranteed to be unique [16]. A set of discrete data points has a

layered depth distribution which is not concave. Moreover, HD is not a maximally

robust depth method, i.e., its distribution is easily disturbed by outliers [16]. While a

maximally robust method exists, i.e., L2 depth [43], this is computationally expensive

since it requires pairwise-distance calculations.

To address the shortcomings of existing data depth methods, HM is proposed as

a new data depth method which is efficient and maximally robust. HM utilizes the

mass estimation [59] methodology and can be viewed as a generalization of the level-1

univariate mass estimation [59] in multidimensional cases.

3.2 Half-space Mass

The proposed HM is formally defined in this section.

3.2.1 Definitions

Let f(x) be a probability density on x ∈ <d, d ≥ 1; R ⊂ <d be a convex and closed

region covering the domain of f ; and H be a closed half-space formed by separating <d
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with a hyperplane that intersects R. Note that the probability mass of H computed

with respect to f is 0 ≤ Pf (H) = Pf (H ∩R) ≤ 1.

Definition 3.1. Half-space Mass (HM) of a point x ∈ <d with respect to f is defined

as:

HM(x|f) = EH(x)[Pf (H)]

= lim
H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

Pf (H)

where H(x) := {H : x ∈ H} is a set of all closed half-spaces H which contains the

query point x and H(x) ⊂ H(x).

Figure 3.2: An illustration of a dataset (round blue markers), a query point x (dia-
mond black marker), the convex region R and two half-spaces H1 and H2.

The definition of HM can be conceptualized as the expectation of the probability

mass of a randomly selected half-space H which is defined for R and contains the

query point x, given that every half-space is equally likely. An illustration of R with

two sample half-spaces is given in Figure 3.2. This definition happens to have a

certain similarity to that of HD [61]. While HD takes the minimum of probability

mass of a random half-space containing query point x as the depth value (as defined

in Equation (2.5) ), HM takes the expectation of the probability mass. This key
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difference gives HM more desirable properties, which will be discussed in Section 3.3

and Section 3.4.

Practically, an iid sample D is usually given instead of the source density dis-

tribution f . The sample version of HM(x|f) is obtained by replacing f with D as

follows.

Definition 3.2. Half-space Mass (HM) of a point x ∈ <d with respect to a given

dataset D is defined as:

HM(x|D) = EH(x)[PD(H)]

= lim
H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

PD(H)

where PD(H) is the empirical probability measure of H with respect to D, i.e., the

proportion of data points in D that lie in H. Note that 0 ≤ PD(H) ≤ 1.

HM(x|D) can be estimated by sampling t half-spaces from H(x) for each query

point x. By selecting H(x) ⊂ H(x) with size |H(x)| = t, this estimator is defined as:

ĤM(x|D) =
1

|H(x)|
∑

H∈H(x)

PD(H)

=
1

t

t∑
i=1

PD(Hi) (3.1)

where Hi are elements of H(x).

A computation-friendly version to estimate HM(x|D) is also proposed. Instead

of using the whole dataset D to calculate PD(Hi) in (3.1), a small subsample Di ⊂ D

with size |Di| = ψ � |D| is randomly selected from D without replacement for

i = 1, ..., t. Let Ri be a convex region covering Di, Hi(x) be a randomly selected

half-space containing x and intersecting Ri, for i = 1, ..., t.

Definition 3.3. A computation-friendly estimator for HM(x|D) is defined as:

H̃M(x|D) =
1

t

t∑
i=1

PDi
(Hi(x))

=
1

tψ

t∑
i=1

ψ∑
j=1

I(yj ∈ Hi(x))

where I(·) is an indicator function and yj is a point in Di.
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3.2.2 Implementation

In general, HM is a concave function in R, as will be shown in Section 3.3 and

Section 3.4; therefore it provides a distinct centre-outward ordering in the region R,

while concavity outside of R is not guaranteed.

When concavity needs to be guaranteed in a region larger than the convex hull

of D, a larger R would be desirable. To this end, a projection-based algorithm is

proposed to estimate HM(x|D) in which the region R or Ri is determined by a size

parameter λ. It is the ratio of the diameters between R and the convex hull of D

along every direction. The value of λ should be no less than 1. When λ = 1, R or

Ri is the convex hull of D or Di. The larger λ is, the larger R or Ri expands to from

the convex hull of D or Di. Figure 3.3 gives an example of the effect of λ.

Figure 3.3: An example dataset and its corresponding R region with different λ values.
On the left, λ = 1, while on the right λ = 1.5 .

Algorithm 1 is the training procedure for H̃M(·|D). The half-space is implemented

as follows: all data points in D are projected onto a random direction ` in <d, t times.

For each projection, a split point s is randomly selected between a range adjusted

by λ and then the number of points that fall on either side of s are recorded. A

demonstration of this process is provided in Figure 3.4.

Algorithm 2 is the testing procedure when H̃M(x) is ready. Given a query point

x, it is projected onto each of the t directions and the number of training points that

fall on the same side as x are averaged and output as the estimated HM value for x.

A demonstration of the testing process is provided in Figure 3.5.
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Figure 3.4: A demonstration of two projections in the training process. The dataset
and the region R are both projected onto a direction which is perpendicular to the
hyperplane of the half-space. Note that the data points are not fully shown in this
graph and the shape of R is merely figurative, not necessarily spherical.

3.2.3 Parameter setting

Here a general guide for setting the parameters is provided. The parameter t affects

the accuracy of the estimation. The larger t is, the more accurate the estimation is.

In high-dimensional datasets or datasets which are elongated significantly in some

directions but not others, t shall be set to a large value in order to gather sufficient

information from all directions.

When the computation-friendly version H̃M(x|D) is used, it is worth pointing out

that Ri can be significantly smaller than R, especially when subsample size ψ is much

smaller than |D|. Thus a small ψ would produce a more concentrated distribution

than that produced with a large ψ, as shown in Figure 3.6. This is the case where

λ > 1 can be used for some applications. Another effect of a small ψ value when

λ = 1 is that it limits the range of H̃M(x|D) values. Note that by Definition 3.3,

when λ = 1, 1
ψ
≤ PDi

(Hi(x)) ≤ ψ−1
ψ

, thus 1
ψ
≤ H̃M(x|D) ≤ ψ−1

ψ
. This is because,
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Figure 3.5: A demonstration of the testing process. The query point x is projected
onto each direction to obtain the number of training points that are on the same side
of the splitting hyperplane as x.

Algorithm 1: Training algorithm of H̃M(·|D).

input : D - training dataset; t - number of half-spaces; ψ - subsample size; λ - R
size parameter

output: H̃M(·) with {`i, si,ml
i,m

r
i}, for i = 1, . . . , t

1 for i = 1, ..., t do
2 Generate a random direction `i in <d, the data space of D.
3 Generate a subsample Di by randomly selecting ψ points from D without

replacement.
4 Project Di onto `i, denoted by D`ii .

5 maxi ← max(D`ii ), mini ← min(D`ii ), midi ← maxi+mini

2
.

6 Randomly select si in (midi − λ
2
(maxi −mini),midi + λ

2
(maxi −mini)).

7 ml
i ←

|{x∈D`i
i | x<si}|
ψ

8 mr
i ←

|{x∈D`i
i | x≥si}|
ψ

9 end
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Algorithm 2: Testing algorithm of H̃M(x).

input : x - query point
output: estimated value H̃M(x) for x
1 HM = 0
2 for i = 1, ..., t do
3 Project x onto `i, denoted by x`i

4 if x`i < si then
5 HM ← HM +ml

i

6 else
7 HM ← HM +mr

i

8 end

9 end
10 return HM/t

in practice, when λ = 1, the splitting value si in Algorithm 1, is almost surely larger

than mini and smaller than maxi.

Figure 3.6: A comparison of distributions of HM using ψ = |D| and ψ = 10 on a
dataset D of 10000 points generated from a bivariate Gaussian. Both distributions
are generated using t = 5000 and λ = 1.

For the rest of this chapter, Algorithm 1 and Algorithm 2 are used to estimate

HM . The parameter λ is set to 1 by default unless mentioned otherwise.

3.3 Properties of Half-space Mass

HM as defined in the previous section has four properties which are desirable for a

data depth method. They are summarized as follows.
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i. HM is concave in the region R that covers the source density distribution or

the data cloud. An example is shown in Figure 3.1.

ii. HM has a unique maximum point, which can be regarded as a multidimensional

median.

iii. The maximum point of HM , which has a breakdown point equal to 1
2
, is max-

imally robust.

iv. HM extends the depth information carried in a dataset to a higher dimensional

space in which the dataset has a zero-volume convex hull.

The lemmas and theorems are provided in the following four subsections. The

proofs of the lemmas and theorems in this section are provided in Section 3.4.

3.3.1 Concavity

Lemma 3.1. HM(x|f) under Definition 3.1 is a concave function for any finite f

in any finite R in a univariate real space <.

Using this lemma, we can obtain the following theorem on the concavity of the

multidimensional HM distribution.

Theorem 3.1. HM(x|f) under Definition 3.1 is a concave function for any finite f

in any finite, convex and closed R ⊂ <d.

Similarly, HM(x|D) is also concave in the convex region R covering D.

3.3.2 Unique median

Based on Theorem 3.1, a unique location in R which has the maximum HM value is

guaranteed, as stated in the following theorem:

Theorem 3.2. The “centre” of a given density f based on Half-space Mass

x∗ := arg max
x

HM(x|f)

is a unique location in R, given that f covers an area more than a straight line in <d.
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3.3.3 Breakdown point

For a given dataset D of size n and a location estimator T , the breakdown point

ε(T , D) is defined in the following way as given by Donoho and Gasko [16], which

is the minimum proportion of strategically chosen contaminating points required to

render the estimated location arbitrarily far away from the original estimation:

ε(T , D) = min

(
m

n+m
: sup
Q(m)

||T (D ∪Q(m))− T (D)||2 =∞

)
(3.2)

where Q(m) is a set of contaminating data points of size m.

Note that Equation (3.2) differs from Equation (2.6) because it is in general a

multidimensional case that uses the L2 norm instead of a scalar absolute value.

Let a location estimator based on HM be defined as follows:

T (D) := arg max
x

HM(x|D).

It is an asymptotically maximally robust estimator with properties given in the fol-

lowing theorem:

Theorem 3.3. The breakdown point of T , ε(T , D) > n−1
2n−1

→ 1
2

as n→∞.

3.3.4 Extension across dimension

Dutta et al. [17] revealed that, for a size n dataset in a d > n dimensional space,

since the d-dimensional volume of the convex hull of such a dataset is going to be

zero, HD will behave anomalously, having 0 measures almost everywhere in <d. In

such cases, HD does not carry any useful statistical information.

On the other hand, the definition of HM enables it not only to rank locations

outside the convex hull of the training dataset in the lower dimensional space where

this convex hull has positive volume, but also to extend the ranking of locations to a

higher dimensional space where the convex hull has zero volume.

As demonstrated in Figure 3.7, the training data points are located on a straight

line, thus the volume of their convex hull in <2 is zero. This causes HD to have zero

measures almost everywhere unless the query point lies in the line segment. On the

other hand, it can be seen that HM is able to rank almost every location in <2 based

on their closeness to the centre of the dataset. This ability of HM to extend the

information carried in a dataset to a higher dimensional space can be very useful in

high-dimensional problems, especially when the sample size is limited.
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Figure 3.7: Distributions of HD and HM in <2 with 4 training data points on a one-
dimensional line shown in white circle markers. The color indicates the depth/mass
values.

3.4 Proofs

This section provides the proofs for the lemma and theorems given in the last section.

The proofs for Lemma 3.1, Theorems 3.1, 3.2 and 3.3 are presented in the following

four subsections.

3.4.1 Proof of Lemma 3.1

Given R = [rl, ru], H(x) is a set of all half-spaces containing x formed by splitting <
at any point s ∈ R, then HM(x|f) is represented as follows:

HM(x|f) = lim
H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

Pf (H)

= lim
H(x)→H(x)

1

|H(x)|
∑

H∈H(x)

(
I(s < x)

∫ ru

s

f(y)dy + I(s ≥ x)

∫ s

rl

f(y)dy

)

= lim
∆s→0

1

ru − rl
∆s

(
mx∑
i=1

∫ ru

si

f(y)dy +
m∑

i=mx+1

∫ si

rl

f(y)dy

)

=
1

ru − rl

(∫ x

rl

∫ ru

s

f(y)dyds+

∫ ru

x

∫ s

rl

f(y)dyds

)
where ∆s = (ru−rl)/|H(x)|; m and mx are |H(x)| and the number of H ∈ H(x) whose

splitting point s is less than x, respectively. Since HM(x|f) is a double-integrated

function of the finite f(x), it is twice differentiable.
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dHM(x|f)

dx
= lim

∆x→0

HM(x+ ∆x|f)−HM(x|f)

∆x

= lim
∆x→0

1

ru − rl
1

∆x

(∫ x+∆x

rl

∫ ru

s

f(y)dyds+

∫ ru

x+∆x

∫ s

rl

f(y)dyds

−
∫ x

rl

∫ ru

s

f(y)dyds−
∫ ru

x

∫ s

rl

f(y)dyds

)

= lim
∆x→0

1

ru − rl
1

∆x

∫ x+∆x

x

(∫ ru

s

f(y)dy −
∫ s

rl

f(y)dy

)
ds

= lim
∆x→0

1

ru − rl
1

∆x

∫ x+∆x

x

(
CR − 2

∫ s

rl

f(y)dy

)
ds

=
1

ru − rl

(
CR − 2

∫ x

rl

f(y)dy

)
(3.3)

⇒ d2HM(x|f)

dx2
= − 2

ru − rl
f(x) ≤ 0, (3.4)

where CR =
∫ s
rl
f(y)dy +

∫ ru
s
f(y)dy = 1.

Since the double differential of HM(x|f) is non-positive, HM(x|f) is concave.

3.4.2 Proof of Theorem 3.1

Let H`(x) ⊂ H(x) be a set of all half-spaces in H(x) whose splitting hyperplanes are

perpendicular to direction ` in <d. Let L be a set of all directions ` ∈ <d. Define

HM(x|f, `) := lim
H`(x)→H`(x)

1

|H`(x)|
∑

H∈H`(x)

Pf (H)

where H`(x) is a subset of H`(x).

From Definition 3.1, HM(x|f) can be decomposed as

HM(x|f) = EL[HM(x|f, `)]

= lim
L→L

∑
`∈L

HM(x|f, `)P` (3.5)

where P` := P (H ∈ H(x) s.t. H ∈ H`(x)) is the probability of a random half-space

H from H(x) belonging to the set H`(x) and L ⊂ L is the set of all directions `

corresponding to H(x).

HM(x|f, `) is equivalent to the univariate mass distribution on ` where f is pro-

jected onto `. Accordingly, from Lemma 3.1, for all x ∈ R it is concave in the

direction of ` and constant in the direction vertical to `. Thus, HM(x|f, `) is concave

in R. Since the summation of multiple concave functions is also concave, HM(x|f)

is concave in R.
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3.4.3 Proof of Theorem 3.2

Here Theorem 3.2 is proved by contradiction.

Suppose there exists more than one location in R that has the maximum HM

value, say x1 and x2. Let x` denote the projection of x on a line along direction ` in

<d, f ` denote the projection of density f on `. Let L = {x1 + c(x2 − x1)|c ∈ (0, 1)}
denote the segment that connects x1 and x2, and L` = {x`1 + c(x`2 − x`1)|c ∈ (0, 1)}
denote the projection of L. The concavity and the upper bound by the maximum

value lead to the following:

HM
(
cx1 + (1− c)x2|f

)
= cHM(x1|f) + (1− c)HM(x2|f),∀c ∈ (0, 1). (3.6)

The one-dimensional HM of f projected on ` is also concave in the projection of R;

thus

HM
(
cx`1 + (1− c)x`2|f `

)
≥ cHM(x`1|f `) + (1− c)HM(x`2|f `), ∀`,∀c ∈ (0, 1). (3.7)

Since HM(x|f) = EL[HM(x`|f `)],∀x, combining Equations (3.6) and (3.7) we have

HM
(
cx`1 + (1− c)x`2|f `

)
= cHM(x`1|f `) + (1− c)HM(x`2|f `), ∀`,∀c ∈ (0, 1). (3.8)

Equation (3.8) shows that HM(x`|f `) is linear for all x` ∈ L`; thus whenever

HM(x`|f `) is twice differentiable, by Equation (3.4) we have

(3.8)⇒ d2HM(x`|f `)
d(x`)2

= − 2

ru − rl
f `(x`) = 0, ∀`,∀x` ∈ L`

⇒ f `(x`) = 0,∀`, ∀x` ∈ L` (3.9)

where ru − rl is the length of the projection of R on `.

But since f covers an area more than a straight line, there will always exist an

` and x such that x` ∈ L` and f `(x`) > 0, which will contradict Equation (3.9).

Therefore, there is one unique location that has the maximum HM value in R.

3.4.4 Proof of Theorem 3.3

Suppose for a size n dataset D, a contaminating set Q of size n − 1 is strategically

chosen. Let U denote the convex hull of D and U ` denote its projection segment on

a line along direction `, assuming U has a finite volume in <d.
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For any `, the median point of the projection of D ∪ Q on ` will lie within U `

because, if it lies outside of U `, then at least n out of 2n − 1 points are on one side

of the median, which contradicts the definition of a median. Since Ting et al. [59]

showed that the univariate mass is maximized at its median, the maximum value of

HM(x`|D` ∪Q`) occurs in the segment U ` for all `.

For a given query point x, let L−x = {` : x` /∈ U `} denote the set of directions in

<d on which the projection of x lies outside of the projection of the convex hull of D;

and L+
x = {` : x` ∈ U `} denote the rest of the directions.

For any ` ∈ L−x , the one-dimensional mass HM(x`|D` ∪ Q`) increases when x`

moves a small enough distance towards U `, since it is a concave function with the

maximum value occurring somewhere in the segment U `.

Let HL−x (x) ⊂ H(x) be a set of all half-spaces in H(x) whose splitting hyperplanes

are perpendicular to directions ` ∈ L−x in <d; and HL+x (x) be defined in the same way.

By Definition 3.1, HM(x|D ∪ Q) can be decomposed into the sum of two parts as

follows:

HM(x|D ∪Q) = EL[HM(x`|D` ∪Q`)]

= PL−xEL−x [HM(x`|D` ∪Q`)] + PL+xEL+x [HM(x`|D` ∪Q`)]

where PL−x := P (H ∈ H(x) s.t. H ∈ HL−x (x)) is the probability of a random half-

space H from H(x) belonging to HL−x (x); and PL+x is defined similarly.

Note that as the distance between x and U goes to infinity, for a random direction

` in <d, P (` ∈ L−x ) → 1 and P (` ∈ L+
x ) → 0, hence PL−x → 1 and PL+x → 0, A

demonstration is shown in Figure 3.8.

The location estimator T (D) is within U , the convex hull of D. If the distance

between T (D ∪ Q) and T (D) is infinity, then the distance between T (D ∪ Q) and

U is also infinity. Thus suppose x∗ = T (D ∪ Q) is infinitely far away from U , then

the solid angle of U over x∗ is 0; therefore almost surely ` ∈ L−x∗ ,∀` ∈ <d and

HM(x∗|D ∪ Q) = EL−
x∗

[HM(x∗`|D` ∪ Q`)]. Any movement of finite length from x∗

towards U will increase the one-dimensional mass values HM(x`|D` ∪Q`), ∀` ∈ L−x ;

thus increasing the mass value HM(x|D∪Q), which contradicts the assumption that

HM(x∗|D ∪ Q) is the maximum. Therefore T (D ∪ Q) can only be finitely far away

from T (D) for a contaminating dataset Q of size n− 1.

Using the same inference as above, any contaminating dataset Q of any size be-

tween 1 to n − 1 combining dataset D of size n can only cause a finite shift of the

location estimator T . Therefore ε(T , D) > n−1
2n−1

.
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Figure 3.8: Demonstration of L−x and L+
x in <2. As the distance between x and U

increases to infinity, the solid angle of U over x goes to 0, thus L+
x shrinks to a single

direction.

3.5 Locating the median of Half-space Mass

Data depth models data distribution in terms of centre-outward ranking rather than

density or linear ranking, and it is a means to define the multivariate median. The-

orem 3.2 states that HM has one unique maximum. This unique maximum can be

regarded as the HM median. Solving the location of the HM median analytically is

difficult, because of its mathematical form. An alternative way is using a grid search.

However, a grid search will quickly become infeasible as the number of dimensions

grows. Here I provide an efficient numerical solution for locating the HM median.

From Equation (3.3), the derivative of the one-dimensional HM(x|f) can be ob-

tained by
dHM(x|f)

dx
=

1

ru − rl

(
1− 2

∫ x

rl

f(y)dy

)
. (3.10)

Equation (3.5) decomposes HM(x|f) into the sum of projections on different direc-

tions:

HM(x|f) = lim
L→L

∑
`∈L

HM(x|f, `)P`.

Hence, the gradient of HM(x|f) can also be decomposed as

∂HM(x|f)

∂x
= lim

L→L

∑
`∈L

P`
∂HM(x|f, `)

∂x
. (3.11)

In each direction `, the gradient ∂HM(x|f,`)
∂x

is equivalent to the univariate derivative
dHM(x|f)

dx
on direction ` and can be obtained using Equation (3.10). More specifically,

each ∂HM(x|f,`)
∂x

can be found using the following procedure. Firstly, x and f need
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to be projected on `. Then, the univariate derivative can be computed by Equation

(3.10). Lastly, the derivative needs to be transformed back to the gradient in <d using

`. After obtaining the gradients of different directions, the overall gradient ∂HM(x|f)
∂x

is simply the weighted sum of them. In practice, since for each direction ` only one

hyperplane is sampled for estimation, all directions can be regarded as equally likely

and the weight P` is simply 1
t
. When a dataset D is given instead of f , a similar

procedure can be applied.

Based on the above idea, an algorithm via gradient ascent [52] for locating the

HM median is provided in Algorithm 3.

Algorithm 3: locating HM median(D, t, e, α).

input : D - dataset; t - number of half-spaces; e - a starting location, α - learning
rate

output: e∗ - HM median
1 for i = 1, ..., t do
2 Generate a random direction `i in <d, the data space of D.
3 Project D onto `i, denoted by Di.
4 rangei ← max(Di)−min(Di).

5 end
6 while e has not converged do
7 Project e on `i for all i, denoted by ei.

8 mi ← |{x∈Di:x<ei}|
|Di| , for all i

9 gi ← 1−2mi

rangei
(Equation (3.10))

10 Transform gi on direction `i back to <d, denoted by vector gi.

11 g← 1
t

∑t
i=1 gi (Equation (3.11))

12 e← e + αg

13 end
14 return e∗ = e

Algorithm 3 starts from an arbitrary location e. It then estimates the gradient g

based on dataset D and shifts e by a small step αg in each iteration. The step length

is controlled by the learning rate α. Since HM is proven to be concave and has an

unique maximum, Algorithm 3 via gradient ascent is guaranteed to always converge

to the HM median, given a proper learning rate α.

Figure 3.9 provides an example to show the effectiveness of using Algorithm 3 to

locate the HM median.
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Figure 3.9: An example run of Algorithm 3 showing the convergence of the HM
median. The red diamond marker is the estimated HM median in each iteration
step.

3.6 Comparison with other data depth methods

To be compared with HM , the definitions of HD and L2 depth are given in Table

3.1 and their associated median definitions are provided in Table 3.2. HD and L2

depth are chosen because the former employs the same half-spaces as in HM and the

latter is another maximally robust method. The definition of HM is also provided

for comparison.

It is interesting to note the similarity between HM and HD, i.e., they are both

based on the probability mass of half-spaces. The key difference is between taking

the expectation or the minimum over the probability mass of half-spaces. This has

led to the improvement of the breakdown point and the uniqueness of the median, as

shown in Table 3.2.

L2 depth and HM have the same four properties: concavity, unique median,

maximal robustness and extension across dimensions. The key difference is the core

mechanism: one employs half-spaces and the other uses distance. The computation

without distance calculations leads directly to the advantage of HM in time com-

plexity, as shown in Table 3.2.
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Table 3.1: Definitions of HM , HD and L2 depth with a given dataset D.

Depth function Definition Equation

Half-space
Mass

The expectation of
probability mass of
all half-spaces cover-
ing x

HM(x|D) = EH(x)[PD(H)]

Half-space
depth

The minimum of
probability mass
of all half-spaces
covering x [61]

HD(x|D) = min
H∈H(x)

[PD(H)]

L2 depth

The reciprocal of 1
plus the average of L2

distances between x
and each data point
in D [43]

L2D(x|D) =

(
1 +

1

|D|
∑
y∈D

||x− y||2
)−1

Table 3.2: Comparison of HM , HD and L2 depth.

Depth
function

Multivariate
median

Breakdown
point;
median
unique?

Extension
across
dimension

Time complexity

Half-
space
Mass

The point x which has
the largest expected
probability mass of all
half-spaces covering x.

1
2
;

unique
Yes

O(nt)
(sample version)
O(ψt)
(computation-
friendly version)

Half-
space
depth

The point x which
maximizes the mini-
mum probability mass
of all half-spaces cov-
ering x.

[1/(1+d),1/3];
Not unique [4]

No

O(nt)
(An imple-
mentation as in
Equation (3.12))

L2

depth

The point which mini-
mizes the sum of Eu-
clidean distances to
all points in a given
dataset.

1
2
;

unique [40]
Yes O(n2)

Implementation of HD and L2D. The implementation of HD is done by

using a technique similar to that used for ĤM(x|D). In the same context given in
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Definition 3.2, an estimator of HD is defined as follows:

ĤD(x|D) = min
H∈H(x)

[PD(H)] (3.12)

To estimate HD, t half-spaces which cover x and intersect the convex hull of the

given dataset are generated to find the one that gives the minimum probability mass.

The implementation is similar to those shown in Algorithm 1 and Algorithm 2. The

differences are: in training ĤD(x|D), ψ must be equal to |D| and it is most efficient

to set λ = 1. In the testing phase, ĤD(x) finds the minimum probability mass of

half-spaces, instead of averaging.

The implementation of L2 depth is straightforward: given a query point x, com-

pute the sum of Euclidean distances to all points in D. The output of L2D(x|D) is

computed as specified in Table 3.1.

3.7 Applications of Half-space Mass

Applications ofHM in two tasks: anomaly detection and clustering, are demonstrated

in this section.

3.7.1 Anomaly detection

The application of HM to anomaly detection is straightforward since the distribu-

tion of HM is concave with centre-outward ranking. Once every point in the given

dataset is given a score, they can be sorted and those close to the outer fringe of the

distribution, i.e., having low scores, are more likely to be anomalies.

The above property is the same for HD and L2 depth. Thus, all three methods

can be directly applied to anomaly detection.

3.7.2 Clustering

To utilize HM in clustering, a simple algorithm called the K-mass is proposed. This

algorithm is designed in a fashion that is similar to the K-means clustering algorithm.

Let xi ∈ D, i = 1, ..., n denote data points in dataset D and Yi ∈ {1, ..., K} denote

the cluster labels, where K is the number of clusters. Let Gk := {xi ∈ D : Yi = k},
where k ∈ {1, ..., K} denote the points in the k-th group.

The K-mass clustering procedure is given in Algorithm 4. The procedure begins

with an initialization that randomly splits the dataset into K equal-size groups. Each

iteration consists of two steps. First, the data in each group is used to generate a
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mass distribution H̃M . Second, each point xi in the dataset is then regrouped based

on the mass distributions as follows: H̃M for each group produces a mass value for

xi and it is assigned to the group which gives the maximum mass value. To achieve

better stability, the mass values are normalized by the global minimum mass value to

give small groups a better chance of surviving the process. The above two steps are

iterated until the group labels stay unchanged, between two subsequent iterations,

for at least p proportion of the points in the dataset. The time complexity of K-mass

is O(ntlK) where l is the number of iterations and K is the number clusters.

Algorithm 4: K-mass clustering algorithm

input : D - dataset; p - proportion of D; K - number of clusters
output: {Gk, k = 1, . . . , K}
1 Initialize: segregate the dataset D into K equal-sized groups
{Gk, k = 1, . . . , K} with hyperplanes of random directions, and ∀ xi ∈ Gk,
label Yi = k.

2 while labels stay unchanged in less than p proportion of D do

3 For each group Gk, k = 1, . . . , K, build H̃M(·|Gk).
4 for i = 1, ..., n do

5 Yi ← arg max
k∈{1,...,K}

H̃M(xi|Gk)

minj∈{1,...,n} H̃M(xj|Gk)

6 end
7 Update Gk ← {xi ∈ D : Yi = k}
8 end
9 return {Gk, k = 1, . . . , K}.

The K-means clustering algorithm [32] is provided in Algorithm 5 for comparison.

The K-mass algorithm and the K-means algorithm share the same algorithmic struc-

ture. They differ only in the action required in each of the two steps in the iteration

process.

Note that, when considering K-means as an Expectation-Maximisation (EM) al-

gorithm [36], the K-means implements the expectation step in line 3 and the min-

imisation step in lines 4-6 in Algorithm 5. Similarly, the K-mass implements a step

similar to the expectation step in line 3 and a step similar to the maximisation step

in lines 4-6 in Algorithm 4.

3.8 Experiments

This section reports on experiments conducted to investigate the advantages of utiliz-

ing HM in anomaly detection and clustering, firstly with toy datasets and secondly
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Algorithm 5: K-means clustering algorithm

input : D - dataset; p - proportion of D; K - number of clusters
output: {Gk, k = 1, . . . , K}
1 Initialize: segregate the dataset D into K equal-sized groups
{Gk, k = 1, . . . , K} with hyperplanes of random directions, and ∀ xi ∈ Gk,
label Yi = k.

2 while labels stay unchanged in less than p proportion of D do
3 For each group Gk, k = 1, . . . , K, obtain a group centre Ck, by averaging its

members.
4 for i = 1, ..., n do
5 Yi ← arg min

k∈{1,...,K}
||xi −Ck||2

6 end
7 Update Gk ← {xi ∈ D : Yi = k}
8 end
9 return {Gk, k = 1, . . . , K}.

with benchmark datasets. In both cases, robustness is the key determinant for HM

to gain advantage over its contenders.

To simplify notations, HM and HM∗ are used hereafter to denote the sample

version (ψ = |D|) and the computational-friendly version (ψ � |D|) of Half-space

Mass, respectively. And L2D denotes L2 depth.

3.8.1 Experimental setup

An artificial dataset and 14 benchmark datasets [49, 67, 35, 41, 15]1 as shown in Table

3.3 are used in the experiments on anomaly detection. Three artificial datasets and

19 benchmark datasets [15, 21, 34, 62, 24, 44]2 as described in Table 3.4 are used in

the experiments on clustering.

These benchmark datasets have been selected because of their diversity in terms

of size, dimensionality, percentage of anomalies or number of classes. These datasets

have also been chosen because of their popularity in the literature, e.g. [18, 50, 70,

8, 54, 38, 57, 60, 56, 64, 23, 9, 45, 69].

The AUC [1] is used to measure the detection accuracy of an anomaly detector.

AUC=1 indicates that the anomaly detector ranks all anomalies in front of normal

points; AUC=0.5 indicates that the anomaly detector is a random ranker. In the

1The sources of the datasets are: mulcross [49]; smtp [67]; wilt [35]; htru2 [41]; and the rest are
from the UCI repository [15].

2The sources of the datasets are: jain [34]; d31 [62]; dim [21]; aggregation [24]; shape [44]; and
the rest are from the UCI repository [15].
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Table 3.3: Benchmark datasets for anomaly detection; “ano%” indicates the percent-
age of data points that are anomalies.

Dataset n d ano%

breastw 683 9 35
covertype 286048 10 0.96
diabetes 768 8 34.9
http 567497 3 0.39
htru2 17898 8 9.2
ionosphere 351 32 35.9
isolet 7797 617 3.85
mfeat 2000 649 10
mulcross 262144 4 10
satellite 6435 36 31.6
shuttle 49097 9 7.15
smtp 95156 3 0.03
wdbc 569 30 37.3
wilt 4339 5 1.7

Table 3.4: Benchmark datasets for clustering

Dataset n d K

abalone 4177 8 3
aggregation 788 2 7
banknote 1372 4 2
breast 699 9 2
column 310 6 3
d31 3100 2 31
diabetes 768 8 2
dim 1024 1024 16
haberman 306 3 2
htru2 17898 8 2
iris 150 4 3
jain 373 2 2
seeds 210 7 3
shape 160 17 9
thyroid 215 5 3
wdbc 569 30 2
wilt 4339 5 2
wine 178 13 3
yeast 1484 8 10

46



experiments on clustering, the performance of a clustering method is measured in

terms of F-measure [46].

3.8.2 Anomaly detection

In this section, HM , HD and L2 depth are used for anomaly detection. That is,

given a dataset, HM is constructed as described in Algorithms 1 and 2; HD and

L2D are constructed as described in Section 3.6. Then, each of the models is used to

score each point in the dataset. In all cases, points with low mass/depth scores are

more likely to be anomalies. The final ranking of the points is sorted based on the

scores produced from each model.

In the first experiment, visualizations are used to show the impact of robustness.

When comparing AUC values in the second experiment, a t-test with 5% significance

level is conducted based on the AUC values from multiple runs.

The t parameter for both HM and HD is set to 5000 in the experiments, which

is sufficiently large since further increases in t show no observable AUC improvement.

L2 depth has no parameter setting.

3.8.2.1 Anomaly detection with artificial data

This experiment demonstrates the importance of robustness of an anomaly detector

in identifying anomalies. An artificial dataset with two clusters of data points is

generated for the experiment. As shown in Figure 3.10, the dataset consists of a

cluster of sparse normal points along with a few local anomalies on the left and a

dense cluster of anomalies on the right. Centre-outward ranking scores are calculated

using HM , HD and L2D.

The AUC results, presented in the first row in Figure 3.10, show that both HM

and L2D performed much better than HD. In this example, all of the three methods

failed to detect some local anomalies, but HD failed to detect the anomaly cluster on

the right while the other two methods separated the anomaly cluster from the normal

points perfectly.

The second row of the plots in Figure 3.10 shows the contour maps of mass/depth

values when normal points contaminated with noise were used to train the anomaly

detectors, and the third row of the plots shows the contour maps when normal data

points only were used to train the anomaly detectors.

The contrast between the second row and the third row of the plots is a testament

to the impact of robustness. Being maximally robust, the contour maps of HM
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Figure 3.10: Anomaly detection on an artificial dataset using HM , HD and L2D.
The first row of the plots shows the ROC curves, the second row shows all the data
points and the contour maps, and the third row shows the normal data points only
and the contour maps built with only these normal points. The white star markers
denote normal points, while the magenta dot markers denote anomalous points. The
color bar indicates the mass/depth value.

and L2D remain centred inside the normal cluster. In contrast, the contour map of

HD is significantly stretched towards the anomaly cluster. This resulted in many

clustered anomalies (on the right) being scored with high depth values as equivalent

to many normal points and thus impaired its ability to detect anomalies. Anomalies

are contamination to the distribution of normal points. An anomaly detector which

is not robust to contamination often results in poor ranking outcomes in relation to

detecting anomalies. This example shows the impact of contamination on an anomaly

48



detector which is not robust.

3.8.2.2 Anomaly detection with benchmark datasets

In this experiment, the performance of HM , HM∗, HD and L2D in anomaly de-

tection is evaluated using 14 benchmark datasets, as shown in Table 3.3. The AUC

values and runtime results are shown in Table 3.5. The figures are the average of 10

runs except for L2D which is a deterministic method. Boldface figures in the HM ,

HM∗ and L2 columns indicate that the differences are significant compared to HD,

while boldface figures in the HD column indicate that the differences are significant

compared to any of the other methods.

In comparison with HD, both HM and HM∗ have 10 wins and 4 losses, which is

evidence that HM performed better than HD in most datasets.

Note that HM and L2D have similar AUC results. This is not surprising since

both have the same four properties shown in Table 3.2.

HM∗ using ψ = 10 performed comparably with HM in 10 out of the 14 datasets.

This suggests that the performance of HM∗ can be further improved by tuning ψ.

The major disadvantage of L2D is its computational cost. L2D ran orders of

magnitude slower than the other methods in most datasets. This is because L2D has

a time complexity of O(n2). Avoiding pairwise-distance calculations is an important

feature of HM which makes it much more efficient.

Note that HD performed poorly in both of the high-dimensional datasets, “isolet”

and “mfeat”. Our investigation suggests that, as the number of dimensions increases,

an increasing percentage of points will appear at the outer fringe of the convex hull

covering the dataset. Because HD assigns the same lowest depth value to all these

points, they are thus unable to be meaningfully ranked. This is the reason why the

AUC results for HD in these three datasets are close to 0.5, equivalent to random

ranking. In a nutshell, HD performs poorly in high-dimensional scenarios because of

its lack of the fourth property of HM .

HD outperformed the two other methods in the “covertype”, “ionosphere” and

“smtp” datasets. A visualization of the smtp dataset reveals that all anomalous points

are located at one corner of the data space close to one normal cluster, as shown in

Figure 3.11. Being at the corner, HD assigned these anomalies with the same lowest

score as all points at the outer fringe, while HM or L2 would assign them higher

scores since they are closer to the centre than other fringe points. Had the points

located in-between two clusters had the same distance from the same cluster, HD

would have regarded them as normal points. In other words, HD is better able to
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Table 3.5: Anomaly-detection performance with the benchmark datasets, where n is
data size, d is the number of dimensions and “ano” is the percentage of anomalies.

Dataset n d
ano
(%)

AUC Runtime (second)
HM HM∗HD L2 HM HM∗ HD L2

breastw 683 9 35 0.99 0.99 0.88 0.99 0.1 0.1 0.1 0.1
covertype 286048 10 0.96 0.87 0.78 0.92 0.87 45.7 35.3 44.5 5251.3
diabetes 768 8 34.9 0.68 0.70 0.61 0.68 0.1 0.1 0.1 0.1
htru2 17898 8 9.2 0.91 0.92 0.81 0.91 1.3 0.8 2.6 10.3
http 567497 3 0.39 1.00 1.00 0.99 1.00 55.1 57.3 54.4 7794.4
ionosphere 351 32 35.9 0.81 0.79 0.84 0.81 0.1 0.1 0.1 0.0
isolet 7797 617 3.85 0.82 0.85 0.68 0.84 24.9 13.4 25.0 229.1
mfeat 2000 649 10.00 0.92 0.93 0.56 0.92 5.6 3.3 5.7 17.8
mulcross 262144 4 10.00 1.00 1.00 0.86 1.00 30.3 26.3 30.3 2213.0
satellite 6435 36 31.60 0.61 0.62 0.57 0.62 1.1 0.8 1.2 11.2
shuttle 49097 9 7.15 0.99 0.99 0.92 0.99 5.4 5.3 5.2 133.5
smtp 95156 3 0.03 0.77 0.73 0.83 0.78 6.9 8.0 6.7 218.9
wdbc 569 30 37.3 0.78 0.83 0.59 0.79 0.1 0.1 0.1 0.1
wilt 4339 5 1.7 0.44 0.43 0.46 0.43 0.4 0.3 0.4 0.6

detect them in this dataset simply because of the special positions the anomalies are

placed in.3

The runtimes shown in Table 3.5 are the sum of training time and testing time.

Because the efficiency of the computation-friendly version affects the training process

only, Table 3.6 is provided to show the training and testing times of HM and HM∗

separately. With a small subsample size ψ = 10, HM∗ runs at least two orders of

magnitude faster than HM in the training phase in large datasets. Note that, in Table

3.6, the testing time of HM∗ is noticeably longer than that of HM for most datasets,

while they are theoretically expected to be equal since the amount of computation is

exactly the same. My investigation reveals that this is due to a computational issue

of Matlab.4

3It is possible that the result in the “covertype” dataset is due to a similar reason, but this could
not be confirmed by visualization due to its dimensionality.

4When comparing a fixed size vector to a scalar in Matlab, the runtime of such a comparison is
not constant. It varies significantly depending on the value of the scalar. The closer the scalar is to
the median of the numbers in the vector, the longer it takes for the comparison. Because HM∗ uses
a small subsample for projection, the split points si in Algorithm 1 are selected within a narrower
range than if the whole dataset were used. Thus si lies near the median of the whole dataset more
often in HM∗ than in HM . As a result, the comparisons take significantly longer in HM∗ than in
HM in the testing stage. However, this effect is dampened in high dimensional datasets because
the high dimensionality makes the range after projection much longer, even for a small subsample.
This irregularity would not occur if another programming language was used.
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Figure 3.11: Visualization of the “smtp” dataset projected on the first two dimensions.
Since almost all points have very similar values in the third feature, neglecting the
third dimension does not affect the point of this visualization. Note that all anomalous
points are located at the lower left corner, where dense clusters of normal points are
located.

In summary, HM is the best anomaly detectors among the three methods, as it

has significantly better detection accuracy than HD and runs orders of magnitude

faster than L2D.

3.8.3 Clustering

This section reports the empirical evaluation of the K-mass in comparison with the

K-means. The first experiment examines the three scenarios in which the K-means

is known to have difficulty finding all clusters [53], i.e., clusters with different sizes,

densities and the presence of noise. The second experiment evaluates the clustering

performance using 19 benchmark datasets, as shown in Table 3.4.

With each dataset, the K-mass or K-means is executed for 40 runs and the best

clustering result is reported. This is a commonly used methodology for finding a

better initialization [26, 14, 42]. Visualizations of the clustering results are presented

in the first experiment.
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Table 3.6: The training and testing times of HM and HM∗ with subsample size
ψ = 10.

Dataset n d
Training time (seconds) Testing time (seconds)
HM HM∗ HM HM∗

breastw 683 9 0.05 0.04 0.06 0.05
covertype 286048 10 15.63 0.08 30.07 35.22
diabetes 768 8 0.04 0.02 0.04 0.05
htru2 17898 8 0.67 0.02 0.61 0.81
http 567497 3 17.71 0.07 37.39 57.23
ionosphere 351 32 0.03 0.03 0.03 0.04
isolet 7797 617 11.95 0.51 12.95 12.89
mfeat 2000 649 2.81 0.43 2.79 2.87
mulcross 262144 4 9.29 0.07 21.01 26.23
satellite 6435 36 0.43 0.08 0.67 0.72
shuttle 49097 9 1.55 0.07 3.86 5.23
smtp 95156 3 1.64 0.07 5.26 7.93
wdbc 569 30 0.05 0.03 0.04 0.05
wilt 4339 5 0.21 0.03 0.19 0.23

The K-mass employs HM∗ which uses ψ = 5 and t = 2000 as defaults in all ex-

periments; it uses λ = 3 in the first experiment and λ = 1.6 in the second experiment.

Recall that λ controls the size of the convex hull covering the dataset. Because the

sample size is ψ = 5, the convex hull should be enlarged (using λ > 1) in order to

allow more points in the cluster to have a higher score. Via empirical trials, it is

found that the above λ values work more stably. For the stopping criterion p, both

the K-mass and K-means use p = 1 in the first experiment and search for the best

result with p = 0.98 and 1 in the second experiment.

3.8.3.1 Clustering with synthetic datasets

Figures 3.12, 3.13 and 3.14 show the clustering results of the K-mass and K-means on

three synthetic datasets, representing scenarios having clusters with different sizes,

densities and the presence of noise, respectively.

In scenario 1, as shown in Figure 3.12, the dataset consists of two sparse clusters

and two significantly denser clusters. The K-mass easily converged to the global

optimal result. But the K-means converged to a local optimal result which wrongly

assigned some points. While it is possible that the K-means could converge to the

global optimal result if an ideal initialization was generated, this is unlikely because

the sparse and dense clusters have largely different data sizes.
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Figure 3.12: Clustering of data groups with different densities. The best converged
F-measures are 1 and 0.88 for K-mass and K-means, respectively.

Figure 3.13: Clustering of data groups with same density but different group sizes.
The best converged F-measures are 1 and 0.84 for K-mass and K-means, respectively.

In scenario 2, the four clusters are of equal density but with different data sizes,

as shown in Figure 3.13. The K-mass worked well in separating the four clusters, but

the K-means failed to converge to the global optimum because of its tendency to split

half-way between group centres.

Scenario 3 demonstrates the importance of robustness in clustering. The dataset

consists of four clusters of equal size and density with the presence of noise scattered

around the four clusters. Figure 3.14 shows that the K-mass, in spite of having a

F-measure less than 1 because the noise points were assigned to the nearest clusters,

was able to separate the four clusters perfectly, while the K-means wrongly assigned
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Figure 3.14: Clustering of data groups with the same density and same group size,
with the presence of noise points. The best converged F-measures are 0.89 and 0.84
for K-mass and K-means, respectively.

many points of the four clusters. This is because the K-means is not robust against

outliers; therefore the group centres could be easily influenced by noise.

In summary, the K-mass perfectly separated the four clusters while the K-means

failed to do so in all three scenarios.

3.8.3.2 Clustering with benchmark datasets

Table 3.7 lists the best results of the K-mass and K-means on the benchmark datasets

in terms of the F-measure. The K-mass outperforms the K-means with 15 wins, 1

draw and 3 losses. The K-mass runs slower than the K-means because it must train

K models at each iteration and the K-mass is expected to have more iterations before

convergence than the K-means in general.

3.9 Discussion

Mass estimation [59] was proposed as an alternative to density estimation in data

modelling. It has significant advantages over density estimation in efficiency and/or

efficacy in various data-mining tasks such as anomaly detection, clustering, classifica-

tion and information retrieval [59]. Despite this success, the formal definition of mass

is only univariate and its theoretical analysis is limited to two properties: (i) its mass

distribution is concave; and (ii) its maximum mass point is equivalent to the median

[59].

54



Table 3.7: Clustering results with benchmark datasets; the best F-measures out of 40
runs. The header “time” means the runtime (in seconds) corresponding to the best
F-measure and l is the number of iterations before reaching the stopping criterion.

Dataset n d K
K-mass K-means

Best F p time l Best F p time l

abalone 4177 8 3 0.530 0.98 1.38 4 0.524 1 0.010 3
aggregation 788 2 7 0.909 0.98 0.79 6 0.909 1 0.009 6
banknote 1372 4 2 0.725 0.98 0.59 4 0.602 0.98 0.012 8
breast 699 9 2 0.963 0.98 0.44 4 0.961 0.98 0.002 2
column 310 6 3 0.684 0.98 2.13 18 0.675 0.98 0.002 4
d31 3100 2 31 0.886 0.98 13.12 8 0.977 0.98 0.056 6
diabetes 768 8 2 0.679 0.98 4.36 81 0.672 0.98 0.002 4
dim 1024 1024 16 1 1 29.16 2 1 1 0.308 2
haberman 306 3 2 0.560 1 0.42 12 0.554 0.98 0.002 7
htru2 17898 8 2 0.925 0.98 14.56 19 0.924 0.98 0.057 6
iris 150 4 3 0.933 1 0.4 4 0.920 0.98 0.001 3
jain 373 2 2 0.863 1 0.31 9 0.811 1 0.002 5
seeds 210 7 3 0.923 0.98 0.53 5 0.919 0.98 0.001 2
shape 160 17 9 0.690 0.98 0.85 5 0.677 0.98 0.005 7
thyroid 215 5 3 0.906 0.98 29.78 584 0.883 0.98 0.002 9
wdbc 569 30 2 0.934 0.98 0.59 5 0.929 0.98 0.004 5
wilt 4339 5 2 0.872 0.98 8.34 35 0.653 1 0.010 4
wine 178 13 3 0.944 0.98 0.86 8 0.966 1 0.002 4
yeast 1484 8 10 0.448 0.98 10.79 27 0.520 0.98 0.021 10

The HM can be viewed as a generalization of the univariate mass estimation to

multidimensional spaces and it has four properties rather than the two revealed pre-

viously. The one-dimensional mass estimation is defined as the weighted probability

mass. In the one-dimensional scenario, half-space splits reduce to binary splits, and

the HM reduces to the weighted probability mass as defined in [59].

The two additional properties of HM , i.e., maximal robustness and extension

across dimension, are important in understanding the behaviour of any algorithms

designed based on HM , as has been shown in the empirical evaluation section.

The proof of concavity in Lemma 3.1 made use of the same idea for the concavity

proof as presented by Ting et al. [59]. The other ideas in this chapter are new.

The successful application of HM in the K-mass implies that other data depth

methods may also be applicable in the K-mass. Our investigation reveals that, be-

cause HD can only provide its estimations within the convex hull of a given dataset

(i.e., the lack of the fourth property stated in Section 3.3.4), it cannot be applied to

the K-mass. A K-mass version using L2 depth exhibits a better convergence property
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than the K-mass. However, its performance in terms of the F-measure is in general

worse than the K-mass. One possible reason is that HM is a randomized method

while L2 is a deterministic method. The stochastic nature of HM makes it more

likely to “escape” some local optimums than L2. Another drawback of L2 depth is

that it is very costly to compute in large datasets.

Despite all the advantages of the K-mass over the K-means shown in this chapter,

a caveat is in order here: there is no proof yet that the K-mass will always converge

like the K-means. In an attempt to address this issue, experiments utilizing partial

assignment of data points to groups have been conducted with some success. However,

it is still not a satisfactory solution. An ideal fix must come from a proof of its

convergence.

3.10 Chapter summary

To addresses the shortcoming of data depth, this chapter has proposed Half-space

Mass, a new data depth method which utilizes the mass estimation methodology.

More specifically, this chapter makes three key contributions:

First, this chapter has proposed the first formal definition of HM , which is a

significantly improved version of HD and is the only data depth method which is

both robust and efficient, to the best of the author’s knowledge.

Second, this chapter has revealed four theoretical properties of HM : (i) it is

concave in a convex region; (ii) it has a unique median; (iii) the median is maximally

robust; and (iv) its estimation extends to higher dimensional space in which training

data occupies a zero-volume convex hull.

Third, this chapter has demonstrated applications of HM in two tasks: anomaly

detection and clustering. In anomaly detection, it outperforms the popular HD

because it is more robust and able to extend across dimensions; and it runs orders of

magnitude faster than L2 data depth. In clustering, a new method, the K-mass, is

introduced by using HM instead of a distance function in the clustering procedure.

Experiments have shown that the K-mass overcomes three weaknesses of the K-means.

The maximal robustness property of HM contributes directly to these outcomes in

both tasks.
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Chapter 4

Neighbourhood Contrast

Density estimation as a basic data-modelling technique is widely used in clustering

and anomaly-detection tasks. However, the use of density has certain limitations in

these applications: most density-based clustering algorithms perform poorly when a

dataset has large density variations among clusters, while anomaly detectors using the

density ratio are susceptible to the influence of the rate of change in local densities.

In this chapter, a new measure named Neighbourhood Contrast (NC) is proposed to

address these shortcomings of density. NC possesses unique properties that make it

a better measure in detecting clusters. In anomaly detection, NC-based scores are

robust to the varying rates of change in local densities.

This chapter is organized as follows. Section 4.1 discusses the motivation of this

work. Section 4.2 proposes the formal definition of NC, as well as its properties

and estimation algorithms. Section 4.3 provides applications of NC in the areas of

clustering and anomaly detection. Experiments are reported in Section 4.4, followed

by a summary of the chapter.

4.1 Motivation

The shortcomings of density have motivated the proposal of NC. In this section the

shortcomings of density are analyzed with respect to two application areas, clustering

and anomaly detection.

4.1.1 Shortcoming of density in clustering

Density-based clustering methods rely on the estimated density distribution to detect

clusters in a dataset. High-density regions are recognized as clusters and low-density

areas are regarded as separations between clusters [27]. However, most density-based
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methods are known to have difficulty clustering datasets with greatly varying densities

[18, 11, 47].

DBSCAN [19] is one of the best-known and most widely studied density-based

methods. It first estimates the density of each point in a given dataset with an ε-

neighbourhood estimator. It then designates all points with density higher than a

global threshold as core points. These core points are then connected via a linking

scheme to form clusters. With a single density threshold, DBSCAN often fails to

detect all clusters when they have greatly varying densities. More specifically, in a

density distribution if the minimum density of some path connecting two clusters

is greater than the maximum density of a cluster, DBSCAN will fail to detect all

clusters in the dataset [70]. Figure 4.1 provides an example where DBSCAN fails to

detect all clusters.

Figure 4.1: Clustering result of DBSCAN on a synthetic dataset consisting of 4
clusters, with the density threshold minPts equal to 5,6 and 7 respectively. The −1
cluster label denotes noise points. Because of the varying densities, DBSCAN either
merges the 2 clusters at the bottom (see left diagram) or renders the whole cluster
in the middle as noise (see centre and right diagrams). The clustering result with
minPts = 6 has the highest F-measure.

Unlike DBSCAN [19] or DENCLUE [30], which both use a threshold to identify

dense regions as clusters, the current state-of-the-art clustering algorithm DP [50]

identifies cluster centers which have local maximum density and are well separated,

and then assigns each remaining point to one of the cluster centers via a linking

scheme. It assumes that cluster centers are located at the modes of the estimated

density while sufficiently separated from each other. The procedure of DP can be

summarized as follows. Firstly, for each x ∈ D, DP calculates the density f(x) and

the distance between x and its nearest neighbour with a higher density δ(x). DP then

selects the top K points with the highest f(x)δ(x) as the cluster centers. Lastly, the
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rest of the points are connected to their nearest neighbour with a higher density to

form clusters.

Compared to DBSCAN, DP performs significantly better by incorporating an

additional factor δ in finding cluster centers, rather than relying on density alone.

However, DP is not completely immune to the influence of varying densities. DP

requires that these cluster modes must be ranked at the top in the sorted list of

f(x)δ(x) if they are to be selected as cluster centers. The exact condition under

which DP fails to detect all clusters is shown as follows.

Theorem 4.1. Given a dataset D which consists of M clusters as the ground truth,

let C = {cm,m = 1, ...,M} denote the M cluster modes, i.e., the points with the

maximum density in each cluster with respect to a density estimator f(x). A necessary

condition for DP to correctly identify all M clusters is given as follows:

min
x∈C

f(x)δ(x) > max
y∈D\C

f(y)δ(y). (4.1)

Proof. A violation of Equation (4.1) means that at least one point z ∈ C is not

among the top M points in the sorted list of f(x)δ(x). Then, one of the following

three situations will occur:

i. If fewer than M points are selected as cluster representatives, then not all

clusters are identified.

ii. If more than M points are selected as cluster representatives, then some clusters

are divided.

iii. If exactly M points are selected as cluster representatives, then point z ∈ C is

not selected as a representative. As a result, z will be assigned a label from a point

with a higher density. Since z is the density maximum in its own cluster, the point

that z links to cannot be from the same cluster. Hence, z and its neighbouring points

will be mislabelled as belonging to different clusters.

In all the above cases, having violated Equation (4.1), DP can not correctly iden-

tify all clusters in the dataset.

Note that the condition provided in Theorem 4.1 is independent of the density

estimator used.

Theorem 4.1 states that, for DP to detect the correct cluster centers, the density

maxima from all clusters must be ranked at the top in terms of fδ. However, some

data distributions can produce a cluster center of low fδ that is ranked lower than

some points which are not cluster centers. This ranking outcome leads to a poor
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clustering result. Figure 4.2 provides an example of such a case, where there is an

elongated cluster among the greatly varying clusters in a dataset.

Figure 4.2: Clustering result of DP on a synthetic dataset, with the number of selected
cluster centers K equal to 4, 6 and 7. The best result in terms of the F-measure is
when K = 6. To identify the centre cluster on its own, K needs to be at least 7,
which would divide the top cluster into four.

In a nutshell, a crucial step in both DBSCAN and DP is to identify representative

points of each cluster in the given dataset. This is currently conducted by either

identifying points above a global density threshold (DBSCAN) or locating the peak

for each cluster (DP). These methods rely on the estimation of density and are there-

fore susceptible to density variations. For a measure which addresses this issue, the

necessary property is to admit all cluster centers, regardless of their densities, to have

approximately the same highest value of the measure. Density, by definition, does

not possess this property.

4.1.2 Shortcoming of density in anomaly detection

Density estimation is also widely used in anomaly detection. As reviewed in Section

2.4.2, the classic density-based anomaly detector LOF [12] uses the density ratio as

the anomaly score for ranking data points. Another tree-based method, RMF [8],

uses the mass ratio, which can be viewed as a proxy for the density ratio. These

methods utilize density ratios to better detect local anomalies. However, the density

ratio is easily influenced by the rate of change in local densities. Anomalous points

can have greatly different density ratios if they are located in different regions where

their rates of change in density are greatly different.

For example, if two anomalies in a dataset which have approximately the same

low density but are in different regions such that their neighbourhood areas have

very different rates of change in density, then the one with a sharply changing rate
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will have a much higher relative score than the one with a slowly changing rate. An

example of this effect is provided in Figure 4.3.

Figure 4.3: Distributions of anomaly scores generated by RMF, LOF and NCAD on
a one-dimensional synthetic dataset where the two points with the lowest density are
marked as anomalies. Details of NCAD are provided in Section 4.3.2. The density
distribution of the dataset (shown in (a)) is calculated by a KDE with a Gaussian
kernel of bandwidth 0.01. Parameters used are: ψ = 1024 for RMF; k = 5 for
LOF; and L = 0.15n for NCAD. Each setting produces the best AUC result obtained
through a search of a range of values specified in Table 4.5 in Section 4.4.3.

Figure 4.3 shows the shortcoming of two existing relative scores, LOF and RMF.

The two anomalies are the points having the lowest density: One is in the neighbour-

hood with a slowly changing rate of density; and the other is in the neighbourhood

with a fast changing rate. Both the LOF and RMF, shown in subfigures (b) and (c)

in Figure 4.3, exhibit the behaviour as stated above: the anomalies have greatly dif-

ferent relative scores and the low-score anomaly has a score lower than some normal

points, especially those at the fringes of the high-density clusters. As a result, the

anomalies cannot have the highest scores, which causes the AUC to be lower than 1.

This shortcoming arises because the relative score is sensitive to the local density

distribution. A better score is one which produces approximately the same high score
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for all anomalies, even if they are located in regions of varied rates of change in

density.

4.1.3 Summary of motivation

The use of density has its shortcomings in both clustering and anomaly detection.

Density-based clustering methods suffer from large density variations, while density

ratio-based anomaly scores are easily influenced by the rate of change in local densi-

ties.

To address the source of the problem in using density in both clustering and

anomaly detection, it is desirable to have a new measure that does not vary much

among clusters and is not easily influenced by the rate of change in densities. These

properties are the key motivations of the proposal of NC.

In clustering, NC has the desirable property of significantly reducing variation

between clusters. In anomaly detection, NC is also immune to the influence of

changing rates of local density. Subfigure (d) in Figure 4.3 shows that a new anomaly

detector NCAD, based on NC, yields the highest score for these two anomalies in

comparison with all other points. NCAD will be described in Section 4.3.2.

4.2 Neighbourhood Contrast

The formal definition of NC and its properties are provided in this section.

4.2.1 Definition

For a query point x ∈ Rd, let T and T ′ be a pair of neighbouring non-overlapping

and symmetric regions which are generated from a random process and one of the

two regions must cover x. Let T (x) denote the region covering x and T ′(x) denote

the other region.

Definition 4.1. Given a dataset D, the Neighbourhood Contrast of x is the probability

that T (x) has larger probability mass than T ′(x), i.e.,

NC(x) = P (|T (x)| > |T ′(x)|), (4.2)

where |T (x)| = |{y ∈ D : y ∈ T (x)}| is the number of points in T (x).

Intuitively, NC measures how often the region which has x “out-weighs” its neigh-

bouring region. For low-density points this is less likely to happen, while for high-

density points there is a high chance that T (x) has a larger mass than T ′(x). In other
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words, NC has a close connection with density distribution, but it is not determined

by the absolute values of density. Section 4.2.2 formally reveals the properties of NC.

NC(x) can be estimated by generating multiple pairs of regions and calculating

the proportion of times x falls in the region with a larger mass. An illustration of

pairs of random regions covering a point is given in Figure 4.4. The algorithm for

estimating NC are provided in Section 4.2.3.

Figure 4.4: Two random pairs of neighbouring regions covering a data point x in a
dataset. The red point x falls in the region with higher mass in both cases here.

4.2.2 Properties of Neighbourhood Contrast

Theorem 4.1. If a local density distribution is isotropic in an adjacent region of a

density maximum x∗ , i.e., the density decreases at the same rates while moving away

from x∗ along any direction, then NC(x∗) = 1.

Proof. Let x∗ be an isotropic density maximum, as shown in Figure 4.5. For any point

x near x∗, the larger the distance dis(x,x∗), the smaller the density of x. Suppose a

random pair of regions T (x∗) and T ′(x∗) is generated as shown in subfigures (b) and

(c) in Figure 4.5. For an arbitrary point x in T (x∗), let x′ be its mirror counterpart

in T ′(x∗). Because dis(x,x∗) < dis(x′,x∗), hence f(x) > f(x′) for all x ∈ T (x∗).

Therefore,
∫
T (x∗)

f(x)dx >
∫
T ′(x∗)

f(x′)dx′. In other words, the probability mass in

T (x∗) is always larger than that in T ′(x∗), which leads to NC(x∗) = 1.

Theorem 4.2. If a local density distribution is isotropic in an adjacent region of a

density minimum x∗ , i.e., the density increases at the same rates while moving away

from x∗ along any direction, then NC(x∗) = 0.
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Figure 4.5: (a) A local density maximum x∗ where the density of its neighbouring
points decreases isotropically, with concentric contours centred at x∗. (b) A pair of
random regions: T (x∗) and its sister region T ′(x∗). (c) An arbitrary point x in T (x∗)
and its mirror counterpart x′ in T ′(x∗): x′ is always further away from x∗ than x.

The proof for Theorem 4.2 can be easily derived similarly to the proof of Theo-

rem 4.1. Theorem 4.1 and Theorem 4.2 are the basis of two important properties of

NC.

In a dataset, although the estimated density contours near a density peak may

not be exactly isotropic, the region T (x∗) which covers the density peak is very likely

to have larger mass than T ′(x∗). Hence based on Theorem 4.1, the first property of

NC is provided as follows:

Property 4.1. For any local density maximum x∗, its Neighbourhood Contrast NC(x∗)

approximates 1, regardless of its density.

A comparison of density and NC distributions of a synthetic dataset is shown in

Figure 4.6. In subfigure (a) in Figure 4.6, the sparse cluster in the centre exhibits

significantly lower density than the other three clusters. In contrast, subfigure (b)

in Figure 4.6 shows that core regions of all 4 clusters have similar NCs, by virtue of

Property 4.1.

Theorem 4.2 states that the NC of a local density minimum equals 0 if the distri-

bution is isotropic, no matter what the rate of change of density is. Hence, another

property of NC can be derived based on Theorem 4.2 as follows.

Property 4.2. For any local density minimum x∗, its Neighbourhood Contrast NC(x∗)

approximates 0, regardless of the rate of change of density in the region.

Figure 4.7 provides a demonstration of Property 4.2. The two red points are local

density minima which sit in regions with obviously different change rates of density.

However, their NCs are both close to 0.
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Figure 4.6: Density vs NC distribution, a two-dimensional example.

Figure 4.7: Density vs NC distribution, a one-dimensional example.

4.2.3 Estimating Neighbourhood Contrast

In order to estimate the NCs of points in a dataset D, random pairs of regions

need to be generated. Binary trees are used to partition the data space and produce

such regions. Each tree partitions a random hyper-rectangular region S that covers

the whole dataset into small cells, and each cell in the outcome of the partition

corresponds to a leaf node of the tree. Algorithm 6 is used to build an ensemble of

trees. The two functions it calls are given in Algorithms 7 and 8. The process is

described as follows.

Given a dataset D, a random rotation of D is applied before each tree is built.

That is, the coordinate system of D is randomly rotated by multiplying D with a

randomly orientated orthonormal basis u. Let D′ = Du denote the projection of D

in the new coordinate system. The initial space S is then generated via Algorithm 7

and it is axis-aligned with the basis u.

Let T denote a binary tree. The root node of the tree represents the initial region
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Algorithm 6: Build NC Regions(D, t, h,L)

input : D - dataset; t - ensemble size; h - maximum tree level; L - leaf node mass
threshold

output: {Tj}j=1,...,t - an ensemble of t trees
1 for j = 1, ..., t do
2 U← a randomly orientated orthonormal basis of <d
3 D′ ← DU
4 q ← a randomly selected value in {1, ..., d}
5 S ← Initial Space(D′)
6 Tj ← Build Tree(D′, h, 1, S, q,L)

7 end

Algorithm 7: Initial Space(D)

input : D - dataset
output: S - axis-aligned hyper-rectangular region such that D ⊂ S
1 for q = 1, ..., d do
2 minq ← min{xq : x ∈ D}
3 maxq ← max{xq : x ∈ D}
4 zq ← uniformly random value in [minq,maxq]
5 rq ← maxq −minq
6 Slq ← zq − rq, the lower bound of S on q

7 Suq ← zq + rq, the upper bound of S on q

8 end

S. At each level, a feature q ∈ {1, ..., d} is selected in a round-robin manner, and each

branch node at this level is split by the centre point of feature q of the node space

into two child nodes. A node becomes a leaf when either it reaches level h or its mass

is no larger than a threshold L. The tree-building procedure is given in Algorithm 8.

A demonstration of an ensemble of two trees is given in Figure 4.8.

An ensemble of trees {Tj}j=1,...,t is built independently to estimate NC(x). Let

T (x) denote the leaf node of tree T in which x falls. Let T ′(x) denote the sister node

of T (x). Note that T ′(x) could be either a branch node or a leaf node. The NC of a

point x ∈ D is then estimated by

NC(x) =
1

t

t∑
j=1

I{|Tj(x)|>|T ′j(x)|}. (4.3)

For notation brevity, NCi = NC(xi) is used to denote the NC of point xi.
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Algorithm 8: Build Tree(D, h, l, S, q,L)

input : D - dataset; h - maximum tree level; l - current tree level; S - current
space; q - current attribute; L - leaf node mass threshold

output: T - binary tree that partitions S
1 if l > h then
2 Terminate and return S as a leaf node region
3 else
4 if |D| ≤ L then
5 Terminate and return S as a leaf node region
6 else
7 q ← q + 1
8 if q > d then
9 q ← q − d

10 end
11 sq ← (Slq + Suq )/2

12 D(l) ← {x ∈ D : xq < sq}
13 D(r) ← {x ∈ D : xq ≥ sq}
14 Split S at sq into S(l) and S(r)

15 left← Build Tree(D(l), h, l + 1, S(l), q,L)
16 right← Build Tree(D(r), h, l + 1, S(r), q,L)

17 end

18 end

Figure 4.8: Two example partitionings of a dataset with h = 4 and L = 3. Note
that the cells in a tree do not have equal sizes because nodes might become leaves at
different levels of the tree.
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4.3 Applications of Neighbourhood Contrast

In this section applications of NC are provided in relation to two tasks, clustering

and anomaly detection.

4.3.1 Clustering

Two ways of applying NC in clustering are provided. NC can be applied directly in

existing procedures to replace density. Alternatively, an entirely new method utilizing

NC is also provided.

4.3.1.1 Improving DP with Neighbourhood Contrast

It is easy to utilize NC in existing density-based clustering procedures to improve

their performance. By simply replacing density with NC in the procedure of DP [50]

I have created NC-DP, a version that better handles density variation. The procedure

of NC-DP consists of the following three steps, the same as DP except that density

is replaced with NC.

The first step is to estimate NC. Given a dataset D, NC(x) for all x ∈ D are

estimated as described in Section 4.2.

The second step is to find K points that have the largest NC(x)× δ(x) values as

cluster centres, where K is the number of clusters specified by a user and δ is defined

as follows,

δ(x) =

 min
NC(y)>NC(x)

dis(x,y), ∀x ∈ D \ {xω}

max
y∈D

dis(x,y), if x = xω
, (4.4)

where xω is the point having the maximal NC.

The last step is to assign every unassigned point to one of the K cluster centres.

All points are sorted in descending order of NC, then one by one from the top down

each unassigned point is assigned to the same cluster as its nearest neighbour with a

higher NC.

Note that, by replacing density f(x) with NC(x), the original δ(x) based on

density is redefined to be based on NC, as shown in Equation (4.4).

The condition under which NC-DP fails to detect all clusters is similar to that of

DP described in Theorem 4.1. However, Equation (4.1) is less likely to be violated

if f(x) is replaced by NC(x) and δ(x) is also redefined accordingly with respect to

NC, because of Property 4.1. This means NC-DP is more robust than DP.
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4.3.1.2 Neighbourhood Contrast Clustering

The NC-DP described above improves the ability of DP to detect clusters of varying

densities, which will be shown in Section 4.4.2. However, it requires pairwise-distance

calculations and nearest-neighbour searches, both of which hinder its scalability.

In this section, I present a new clustering algorithm named Neighbourhood Con-

trast Clustering (NCC). By reusing the trees built for estimating NC, NCC per-

forms clustering without requiring pairwise-distance calculations or nearest-neighbour

searches—it is hence highly scalable. The procedure of NCC consists of the following

key steps:

i. NCs are estimated for each point in the given dataset.

ii. Cluster nexuses are identified and the number of clusters is detected.

iii. For each point, a membership score with respect to each cluster is calculated;

and each point is assigned to the cluster in which it has the highest membership

score.

The key algorithmic differences from DP are: (i) NCC employs cluster nexuses

instead of cluster centres; and (ii) DP assigns points based on the nearest neighbour

with a higher density, while NCC assigns points based on membership scores which

are computed without distance calculations. A comparison of the key steps of DP

and NCC is given in Table 4.1.

Table 4.1: Key steps of DP and NCC.

Step DP NCC
1 Estimate density f(x) and distance

δ(x), ∀x ∈ D
Estimate NC(x),∀x ∈ D

2 Select the top K points with the
largest f(x)δ(x) and and label them
as cluster centres of Clusters 1, ..., K

Identify core points Z = {x ∈ D :
NC(x) > γ} and link core points
into K cluster nexuses

3 Order all points in descending order
of f(x). Following the order, assign
each unlabelled point to the same
cluster of its nearest neighbour with
higher f(x)

Assign x to cluster label Y =
arg maxk(ηk(x)) ∀x ∈ D. Output K
clusters Gk ← {x ∈ D : Y = k},∀k

The top layer procedure of NCC is provided in Algorithm 9. The implementation

of step 1 has been provided in Section 4.2. Details of steps 2 and 3 are provided as

follows.
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Algorithm 9: NCC(D, t, h,L, γ)

input : D - dataset; t - ensemble size; h - maximum tree level; L - leaf node mass
threshold; γ - core point threshold

output: {Gk}k=1,...,K - K groups of points
1 {Tj}j=1,...,t ← Build NC Regions(D, t, h,L)

NCi ← 1
t

∑t
j=1 I{|Tj(xi)|>|T ′j(xi)|}, for i = 1, ..., n

Let D, {Tj}, {NCi} be global variables accessible by all functions
2 {Mk}k=1,...,K ← Form Cluster Nexuses(γ,L, h)
3 {η̄k(xi)}k=1,...,K, i=1,...,n ← Membership Score({Mk})

Yi ← arg maxk(η̄k(xi)), ∀i
Gk ← {xi ∈ D : Yi = k},∀k

Core points and cluster nexuses

After obtaining {NCi}i=1,...,n in step 1, points that have higher NCs than threshold

γ are selected as core points. If two core points are covered by the same cell which

reaches the maximum level h, then these two core points are linked. A group of

transitively linked core points is called a cluster nexus, denoted by Mk. This process

is given in Algorithm 10. Note that, in the process of forming cluster nexuses, only

the cells that reach the maximum level h are used to link core points. Larger cells

that do not reach level h are not used because they are likely to cover sparse areas

between clusters, producing undesirable linkages.

Algorithm 10: Form Cluster Nexuses(γ,L, h)

input : γ - core point threshold; L - leaf node mass threshold; h - maximum tree
level

output: {Mk}k=1,...,K - K cluster nexuses
1 Set of core points Z ← {xi : NCi > γ}
2 for each tree Tj in {Tj}j=1,...,t do
3 for each level-h cell in tree Tj do
4 if at least 2 core points in Z are in this cell then
5 link these core points together
6 end

7 end

8 end
9 K ← number of groups of transitively linked core points

10 {Mk}k=1,...,K ← the K groups of transitively linked core points

It is worth pointing out that Algorithm 10 determines the number of clusters K,

unlike DP where the number of clusters needs to be determined by user.
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Once the number of cluster nexuses is determined, it is used as the number of

clusters in D in the rest of the NCC procedure. A demonstration of forming cluster

nexuses is given in subfigures (a), (b) and (c) in Figure 4.9. Note that the four

groups of points at the top in subfigure (c) in Figure 4.9 belong to a single cluster

nexus because they are transitively linked.

Figure 4.9: Demonstration of the NCC procedure on the synthetic dataset. The four
cluster nexuses identified are shown in (c). The membership score distribution for
each of the four clusters is shown in (d), (e), (f) and (g), respectively.

Assigning non-core points

The last step of NCC is assigning the non-core points to the cluster nexuses. The

assignment of a non-core point x is based on a membership score ηk(x) which indicates

the degree of support for x to be assigned to cluster k. Details of this assignment

step are as follows.

For each cluster nexus Mk, membership scores ηk(x) are computed for all points.

To be efficient, ηk(·) is computed via a nexus expansion process which is done for all

nexuses in one go. The procedure is given in Algorithm 11, where Cj
m denotes the

m-th cell in tree Tj.

A brief description is provided here. All points are initialized to have ηk(x) = 1.

Then, each tree is examined one at a time until all trees are exhausted. In each tree,
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Algorithm 11: Membership Score({Mk})
input : {Mk}k=1,...,K - cluster nexuses; W - number of repetitions for smoothing
output: η̄k(xi),∀i, k
1 for w = 1, ...,W do
2 Shuffle the orders of {Tj}
3 Initialize ηwk (xi)← 1,∀i, k
4 for j = 1, ..., t do
5 if Mk = D, ∀k then
6 Exit innermost level for-loop
7 end
8 for m = 1, ...,# of cells in Tj do
9 for k = 1, ..., K do

10 if Cj
m ∩Mk 6= ∅ and Cj

m \Mk 6= ∅ then

11 ηwk (xi)← min( |C
j
m|
n
,min{ηwk (xo) : xo ∈ Cj

m}),∀i ∈ {o : xo ∈
Cj
m \Mk}

12 Mk ←Mk ∪ Cj
m

13 end

14 end

15 end

16 end
17 ηwk (xi)← 0,∀i ∈ {o : xo ∈ D \Mk},∀k
18 end

19 η̄k(xi) = 1
W

∑W
w=1 η

w
k (xi), ∀i, k

while considering cluster k, all cells which cover members and non-members of Mk

are identified. Mk is expanded to include all non-members in these cells, converting

all non-members into members of Mk. Then, ηk(·) of these new members are updated

to be the smaller of the following two quantities: the normalized mass of the cell, or

the minimum of the current ηk(·) of all points in the cell. In other words, ηk(·) for

each new member records the lowest mass it has encountered so far and passes this

on to future new members as an upper bound. This process ensures that ηk(·) can

only decrease while Mk expands. Once a point is a member of Mk its ηk(·) will no

longer be updated.

An illustration of this nexus expansion process is shown in Figure 4.10. At the

end of this process, for every point y which is not reached by Mk, ηk(y) is set to 0.

Example distributions of the membership scores are given in subfigures (d), (e), (f)

and (g) in Figures 4.9.

Note that the order in which the trees are examined may affect the expansion

path of Mk and, hence, the values of ηk(·). To address this issue, an averaged η̄k(·)
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Figure 4.10: Illustration of the expansion process of a cluster nexus Mk described in
Algorithm 11. Red points are members of Mk while black ones denote non-members
of Mk. (a) The initial Mk. (b) For tree T1, cells that cover both member and non-
member points of Mk are identified (shaded cells). (c) Non-members in these cells
become members of Mk and their ηk() are updated to be the smaller quantity of the
following two: the normalized mass of the cell, or the minimum of the current ηk(·)
of all points in the cell. (d) (e) When tree T1 is done, another tree T2 is used and the
process continues until all trees are exhausted or all points are already members of
Mk.

is produced by calculating ηk(·) multiple times, each time with a randomly shuffled

order of trees.

After the membership score calculation, for each non-core point xi its cluster label

is assigned as Yi = arg maxk(η̄k(xi)) (stated in step 3 in Algorithm 9). Note that the

mass of cells is used here in the updating of ηk(·). Because the mass of a cell reflects

the local density, using mass allows different clusters to have their borders in the

regions of low densities. This enables NCC to detect clusters of arbitrary shapes.

Influence of the parameters

The three parameters h, L and γ are important for the outcome of the NCC procedure.

The γ parameter determines the number of core points and hence the sizes of the

cluster nexuses. γ should be low enough to determine the core points from all potential
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clusters, but not too low in order to keep the cluster nexuses small and distant from

each other so that they are not easily merged. The h parameter decides the size of

level-h cells which are used to merge core points into nexuses. Level-h cells which are

too small might split a nexus into several smaller nexuses, while overlarge ones can

cause undesirable inter-nexus linkages. The L parameter helps to prevent undesirable

linkages by preventing sparse regions reaching level h. If L is set too high, local density

modes of low-density regions might not be captured by the NC distribution.

4.3.2 Anomaly detection

The properties of NC imply that it can be directly applied in anomaly detection.

Using NC for detecting anomalies is straightforward. Given a dataset D, the NC

values can be used as anomaly scores to rank the data points. In order to follow the

convention of larger anomaly scores indicating greater likelihood of being anomalies,

1−NC instead of NC is used as the anomaly score for each data point. This anomaly-

detection method based on NC is named the Neighbourhood Contrast Anomaly

Detector or NCAD. The full procedure of the NCAD is given in Algorithm 12.

Algorithm 12: NCAD(D, t,L)

input : D - dataset; t - ensemble size; L - leaf node mass threshold
output: NCAD(x),∀x ∈ D - anomaly scores of D
1 Set h =∞
2 {Tj}j=1,...,t ← Build NC Regions(D, t, h,L)
3 for i = 1, ..., |D| do

4 NC(xi) = 1
t

∑t
j=1 I(|Tj(xi)|>|T ′j(xi)|)

5 NCAD(xi) = 1−NC(xi)

6 end
7 Return sorted NCAD(x),∀x ∈ D in descending order

Note that, in Algorithm 12, the first step is to set h to infinity. In practice, it

suffices to set h to a large integer, for example, 9999. By eliminating the h parameter,

the tree-building process will be terminated solely by the L threshold. The reason for

getting rid of h is because, in anomaly detection, we do not need to control the size

of the maximum level cells to produce better cluster nexuses. In contrast, allowing

each tree to grow until reaching the L threshold allows it to better adapt to different

density regions; that is, dense regions will be more sufficiently partitioned to produce

more accurate NCs. As a result, the NCAD only needs to tune one parameter L
which controls the tree size. L is recommended to be set to a proportion of the
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given dataset size, because a constant number will not suit datasets of different sizes.

Example NC distributions using heat maps, generated using different settings of L
on a synthetic dataset, are shown in Figure 4.11.

Figure 4.11: Heat maps of NCAD generated with different settings of L.

4.4 Experiments

This section reports on experiments conducted to test the properties of NC and

evaluate its performance in the tasks of clustering and anomaly detection.

4.4.1 Experimental setup

In the clustering experiments, the same benchmark datasets as shown in Table 3.4

in Chapter 3 are used to compare the different methods. In the experiments on

anomaly detection, an artificial dataset is used in the first experiment and the same

benchmark datasets from Table 3.3 are used in the second experiment. In accordance

with Chapter 3, the clustering performance is measured in terms of the F-measure

and the anomaly detectors are evaluated with the AUC.

4.4.2 Clustering

In clustering, the two NC-based methods NC-DP and NCC are tested alongside the

state-of-the-art method DP and the commonly used method DBSCAN.
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4.4.2.1 Clustering on benchmark datasets

In this experiment, NC-DP and NCC are compared to DP and DBSCAN using the

benchmark datasets. For all algorithms, their parameters are searched as shown in

Table 4.2 and their best F-measures are reported. Because NC-DP and NCC are

randomized methods, for each dataset the average result of 10 runs and its standard

error are reported. For DP and DBSCAN, they are executed only once. The ensemble

size t of all NC estimations is set to 1000, except for the four smallest datasets, “iris”,

“shape”, “wine” and “seeds”, where t is set to 5000 for better stability.

Table 4.2: Parameters of different clustering methods and their search ranges

NC-DP NCC
h: 5, 6, ..,min(80, 6d) h: 5, 6, ..,min(80, 6d)
L: 3, .., d

√
ne L: 3, ..., d

√
ne

K: 2, 3, .., 31 γ: 50%, 51%, ..., 99% quantiles of NC
DP DBSCAN
dc: 0.1%, 0.2%, ..., 10% ε: 0.01,0.02,..,2
K: 2, 3, ..., 31 minPts: 2, 3, ..., 50

The clustering performances of NC-DP, NCC, DP and DBSCAN are given in

Table 4.3. NC-DP outperforms DP with 11 wins, 2 draws and 6 losses; and NCC

outperforms DP with 10 wins, 1 draw and 8 losses. NC-DP is the best performer in

terms of average rank, followed by NCC and DP. The p-values of pairwise Friedman

tests are reported in Table 4.4. NC-DP, NCC and DP are all significantly better than

DBSCAN at a 1% significance level.

NCC performed relatively poorly on some datasets, e.g., “shape” and “jain”.

This is due to a weakness in the assignment process in step 3: when clusters are

not separated by a low enough density region, some low-density points might receive

similar membership scores for different clusters. As a result, some of these points

are assigned to the wrong clusters. Note that this is not the same issue as in the

varying densities problem which has prevented existing density-based clustering from

identifying all clusters. This shortcoming of NCC causes low-density points to be

incorrectly assigned, rather than high-density points.
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Table 4.3: Best clustering performances on 19 datasets in terms of the F-measure.

Dataset n d K
F-measure

NC-DP (SE) NCC (SE) DP DBSCAN

abalone 4177 8 3 0.483 (0.0089) 0.419 (0.0113) 0.509 0.255
aggregation 788 2 7 0.997 (0.0004) 0.995 (0.0004) 0.996 0.991
banknote 1372 4 2 0.991 (0.0000) 0.764 (0.0263) 0.991 0.952
breast 699 9 2 0.965 (0.0021) 0.962 (0.0016) 0.917 0.867
column 310 6 3 0.609 (0.0071) 0.475 (0.0292) 0.701 0.349
d31 3100 2 31 0.970 (0.0003) 0.974 (0.0003) 0.970 0.914
diabetes 768 8 2 0.622 (0.0096) 0.618 (0.0142) 0.602 0.538
dim 1024 1024 16 1.000 (0.0000) 1.000 (0.0000) 1.000 1.000
haberman 306 3 2 0.643 (0.0026) 0.634 (0.0040) 0.616 0.630
htru2 17898 8 2 0.972 (0.0004) 0.957 (0.0023) 0.944 0.889
iris 150 4 3 0.952 (0.0084) 0.954 (0.0049) 0.967 0.880
jain 373 2 2 0.989 (0.0078) 0.957 (0.0023) 0.972 0.964
seeds 210 7 3 0.896 (0.0022) 0.910 (0.0018) 0.909 0.750
shape 160 17 9 0.743 (0.0033) 0.548 (0.0082) 0.699 0.642
thyroid 215 5 3 0.854 (0.0015) 0.863 (0.0087) 0.707 0.584
wdbc 569 30 2 0.875 (0.0158) 0.890 (0.0144) 0.830 0.547
wilt 4339 5 2 0.974 (0.0000) 0.975 (0.0000) 0.974 0.975
wine 178 13 3 0.863 (0.0163) 0.832 (0.0085) 0.931 0.610
yeast 1484 8 10 0.399 (0.0045) 0.377 (0.0053) 0.359 0.220
win/draw/loss wrt NC-DP 6/1/12 6/2/11 1/1/17
win/draw/loss wrt NCC 12/1/6 8/1/10 3/2/14
average rank 1.74 2.21 2.21 3.47

Table 4.4: Pairwise Friedman tests: p-values.

NCC DP DBSCAN
NC-DP 0.1573 0.3458 0.0002
NCC 0.6374 0.0076
DP 0.0010

4.4.2.2 Scale-up test

A scalability test1 with respect to dataset size is provided in Figure 4.12. It shows

that NCC, having a linear time complexity O(n), is much more scalable than the

other three methods, which all have complexity O(n2). Note that, when n is small,

both NC-based methods take longer time due to the overhead computation of build-

1The datasets are draw randomly from a mixture of bivariate Gaussian distributions with in-
creasing sample size. The four methods achieve similar F-measures.
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ing the ensemble of trees. However, when n grows large NC-based methods are

more efficient than density-based ones. This is even the case for NC-DP, which has

complexity O(n2), where the gap between NC-DP and DP increases as the data size

increases. This is because, when n is large, NC estimation is more efficient than

density estimation.

Figure 4.12: Runtimes of the four methods as the dataset size n increases.

4.4.3 Anomaly detection

This section compares the anomaly-detection performance of NCAD, iForest [38],

LOF [12] and RMF [8]. LOF and RMF were selected because they employ relative

scores, which has a shortcoming as identified in Section 4.1.2. iForest was selected as

the baseline because RMF is its improved version. For RMF, only the ψ parameter

is searched while the minPts parameter is fixed to 5 (as used in [8]) throughout the

experiments.

4.4.3.1 Anomaly detection on a synthetic dataset

A synthetic dataset is used here to showcase the detection power of NCAD. The

dataset consists of data points distributed in two doughnut shapes with one anomaly

at the centre of each doughnut. This is an example in which the two anomalies are
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located in two regions where their rates of change in density are greatly different.

The left plot in Figure 4.13 shows the data distribution.

Figure 4.13: Best AUCs of different anomaly detectors on a synthetic dataset of size
n = 2499. The parameters used here are: k = 5 for LOF; ψ = 1024 for iForest and
RMF; and L = 0.01n for NCAD.

The best AUCs of the four anomaly detectors and the distributions of their

anomaly scores are shown in the right four plots in Figure 4.13. NCAD has the

highest AUC with almost perfect ranking since the two anomalies have similar high-

est scores. LOF has a lower AUC because the two anomalies have quite different

LOF scores: the one in the larger doughnut (which has a lower rate of change in

density than the one in the smaller doughnut) has a significantly lower score. This

phenomenon accords with the discussion in Section 4.1.2. RMF has the same issue

leading to a low AUC, although it has a significantly better AUC than iForest. RMF

has an additional issue, i.e., outer fringe points receive much higher scores than the

two local anomalies. This issue will be further discussed in Section 4.4.3.5.
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4.4.3.2 Anomaly detection on benchmark datasets

In this experiment, the benchmark datasets are used to conduct an empirical evalu-

ation of NCAD, iForest, LOF and RMF. For all methods, their key parameters are

searched in certain ranges and the best AUCs are recorded. The search ranges of

the parameters are given in Table 4.5. For NCAD, iForest and RMF, the ensemble

size t is set to 100. The average AUCs of NCAD, iForest and RMF over 10 runs are

reported, since they are randomized methods. The AUCs of LOF are the results of

one run only, since it is a deterministic method. The rankings of the four methods

on each dataset, and a significance test based on these ranks, i.e., the Friedman test

[22], are also provided. Note that for dataset “http” its AUC for LOF is not given

since its runtime is intractable (would take more than a month when k = 1000 by es-

timation) due to its size. Consequently, regarding dataset “http” it is excluded when

counting the number of wins/draws/losses with respect to LOF. Dataset “http” is

also excluded in the calculations of average ranks and Friedman tests.

Table 4.5: Ten searched values of each parameter for NCAD, iForest, LOF and RMF.

Method Key parameter and search range
NCAD L: {0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5} of n

RMF and iForest ψ: {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}
LOF k: {5, 10, 20, 30, 50, 100, 150, 200, 500, 1000}

The results presented in Table 4.6 show that NCAD is the best performer of the

four methods in terms of average rank (shown in the last row), followed by LOF and

RMF. NCAD outperforms the other two tree-based methods with a large margin: 12

wins out of 14 datasets compared to RMF and iForest.

The Friedman test results given in Table 4.7 show that NCAD is better than

iForest at the 0.05 significance level and better than RMF at the 0.01 significance

level.

Note that LOF has significantly lower AUCs than the other methods for a few

datasets, e.g., “mulcross” and “shuttle”, shown in Table 4.6. This is due to the sensi-

tivity of the k parameter and LOF may need a large k for these datasets. Searching

a finer grid and a much larger range of k values may improve its AUCs. However,

in practice it comes with a large expense in runtime. On the other hand, LOF has

its advantages in high-dimensional datasets. For example, LOF performs better than

RMF on “isolet” and outperforms all three other methods on “mfeat”. A possible
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Table 4.6: Best AUCs and corresponding parameter settings on 14 datasets.

Dataset n d ano%
AUC (parameter)

NCAD (L) iForest (ψ) LOF (k) RMF (ψ)

breastw 683 9 35 0.994 (0.5) 0.993 (8) 0.955 (500) 0.947 (8)
covertype 286048 10 0.96 0.955 (0.01) 0.912 (1024) 0.944 (1000) 0.953 (256)
diabetes 768 8 34.9 0.719 (0.5) 0.681 (32) 0.723 (200) 0.683 (8)
http 567497 3 0.39 0.997 (0.5) 0.994 (32) N/A (N/A) 0.999 (128)
htru2 17898 8 9.2 0.924 (0.5) 0.931 (2) 0.826 (1000) 0.942 (8)
ionosphere 351 32 35.9 0.896 (0.3) 0.849 (256) 0.894 (10) 0.887 (256)
isolet 7797 617 3.85 0.871 (0.2) 0.801 (256) 0.801 (1000) 0.758 (8)
mfeat 2000 649 10 0.604 (0.5) 0.534 (1024) 0.946 (1000) 0.567 (1024)
mulcross 262144 4 10 1.000 (0.5) 0.988 (4) 0.610 (30) 0.999 (16)
satellite 6435 36 31.6 0.734 (0.15) 0.710 (512) 0.793 (1000) 0.715 (128)
shuttle 49097 9 7.15 0.991 (0.1) 0.997 (16) 0.592 (1000) 0.923 (32)
smtp 95156 3 0.03 0.939 (0.01) 0.917 (1024) 0.954 (1000) 0.921 (1024)
wdbc 569 30 37.3 0.870 (0.5) 0.817 (8) 0.863 (200) 0.841 (8)
wilt 4339 5 1.7 0.891 (0.001) 0.632 (1024) 0.863 (10) 0.786 (1024)
win/draw/loss wrt iForest 12/0/2 8/1/4 11/0/3
win/draw/loss wrt LOF 9/0/4 4/1/8 4/0/9
win/draw/loss wrt RMF 12/0/2 3/0/11 9/0/4
average rank 1.54 3.23 2.31 2.85

Table 4.7: Pairwise Friedman tests: p-values.

iForest LOF RMF
NCAD 0.013 0.166 0.002
iForest 0.248 0.052
LOF 0.166

reason is that tree-based methods have a shortcoming in high-dimensional cases: the

data space is too large to be sufficiently partitioned by a binary tree.

4.4.3.3 Scale-up test

Results of a scalability test of the four methods is shown in Figure 4.14. The test

employs subsets of increasing sizes drawn from the covertype dataset. Parameters of

all methods are fixed. NCAD has time complexity O(nt log(n)); while both iForest

and RMF have O(nt log(ψ)). In contrast, LOF has O(n2) and is the least efficient

method.
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Figure 4.14: Runtime of the four methods while data size increases on covertype.
Parameter settings used are: L = 0.05n for NCAD, k = 5 for LOF, ψ = 256 for
iForest and RMF.

4.4.3.4 Sensitivity of parameters

To see how sensitive each method is to its parameter, results of a sensitivity test is

shown in Figure 4.15. Three datasets with different dimensionalities were selected for

the test. AUCs are plotted against 10 different values of each method’s parameter,

as shown in Table 4.5. For each one of the three datasets, the standard deviations of

AUCs of each method are calculated. The averaged standard deviations over three

datasets are provided in Figure 4.16. The results indicate that LOF is the most sen-

sitive method, while iForest is the least sensitive to the parameter setting. A possible

explanation is that the calculation of density-ratio based scores of LOF is greatly

influenced by how many nearest neighbours of a point are taken into consideration.

In comparison, the path length of iForest is mainly determined by how easily a point

is isolated in the dataset. Drawing a larger or smaller sample does not affect this

much.

4.4.3.5 Further differences and similarities

Some other interesting findings in relation to differences and similarities among NCAD,

LOF and RMF are provided below.
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Figure 4.15: AUCs of 3 datasets with low (“smtp”), medium (“satellite”) and high
(“isolet”) dimensions, achieved with different parameter settings. The parameter
index corresponds to the values shown in Table 4.5.

Figure 4.16: Average standard deviations of AUCs shown in Figure 4.15.

Centre-outward ranking

Interestingly, when L = 0.5n, NCAD becomes a ranking measure similar to Half-

space Mass and data depth that yields a centre-outward ranking of a data cloud, as

shown in the last plot of Figure 4.11. Both LOF (with a large k) and RMF (with

a low ψ) exhibit similar behaviour, as shown in Figure 4.17. The centre-outward

ranking is the best when the dataset is a uni-modal distribution, but is not good for
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multi-modal distributions.

Figure 4.17: Heat maps of anomaly scores of LOF and RMF with different parameter
settings, on the synthetic spiral dataset shown in Figure 4.11.

Effect of random rotation

Figure 4.18 provides heat maps of scores by RMF, a modified version of RMF and

NCAD on the spiral dataset. Note that, in subfigure (b) in Figure 4.18, there are

light-colored vertical and horizontal “stripes” in the heat map. These axis-parallel

“patterns” are a direct result of using the axis-parallel splitting in RMF. Therefore,

a modified version of RMF with NC trees, that is, trees built with Algorithm 6,

is provided in subfigure (c) in Figure 4.18 for comparison. As shown in the figure,

the use of random rotations in NC trees avoids this issue and enables more general

patterns to be modelled.

Bias of mass ratio

The use of the mass ratio in RMF creates a bias towards the fringe points of a data

cloud. This is shown in subfigures (b) and (c) in Figure 4.18, where the fringe points

of the data cloud generally have higher scores than points in the centre of the data

cloud. This is because, if a fringe point is isolated at the first level of a tree from

the rest of the training points, it becomes a leaf node and has a large mass ratio. In

comparison, NC has a significantly reduced bias compared to the mass ratio: points
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Figure 4.18: Heat maps of RMF, a modified version of RMF (RMF with NC trees)
and NCAD. ψ = 1024 for RMF, and L = 0.005n for NCAD. Scores are scaled for
better presentation.

in-between the spirals have similar scores to those on the outer corners. This can be

seen by comparing subfigures (c) and (d) in Figure 4.18. It shows the fundamental

difference between using mass ratio and using NC when both scores are derived from

the same NC trees: the difference in scores between points at the centre and points at

the corner is smaller using NC than those using mass ratios—the result of sensitivity

to the rate of change in density as stated in Sections 4.1.2.

Table 4.8 summarizes the differences and similarities among NCAD, LOF and

RMF as discussed above. NCAD, although being a tree-based method like RMF,

has avoided the undesirable axis-parallel “patterns” and bias towards fringe points,

thanks to the use of random rotations and NC.

Table 4.8: Differences and similarities among NCAD, LOF and RMF.

Centre-outward
ranking

Axis-parallel
“patterns”

Bias towards
fringe points

NCAD Yes (with a large L) No No
LOF Yes (with a large k) No No
RMF Yes (with a large ψ) Yes Yes
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4.5 Chapter summary

To addresses the shortcomings of density in clustering and anomaly detection, this

chapter has proposed a solution, Neighbourhood Contrast, as an alternative to den-

sity. The proposed NC has two unique properties that make it a better measure than

density in both tasks.

In clustering, it is common knowledge that density-based methods fail to detect

all clusters in datasets that have a large variation in density. However, many ex-

isting improvements still rely on density to detect clusters. Because NC admits all

local density maxima, regardless of their densities, to have similar NC values, NC

addresses the density-variation issue from its root cause. This chapter provides two

ways of applying NC. First, NC can be easily incorporated in an existing procedure

to replace density, as demonstrated by NC-DP. Second, a new procedure, Neighbour-

hood Contrast Clustering (NCC), is proposed which is based on space partitioning

and hence has a linear time complexity.

In anomaly detection, the analysis of density ratio-based scores reveals a key

shortcoming: anomalies located in different regions, where their rates of change in

density are largely different, can have greatly different scores. By virtue of the second

property of NC, it provides a direct fix for this issue, because all local density minima

will have similarly low NCs regardless of the rate of change in local densities in

the region. The proposed Neighbourhood Contrast Anomaly Detector (NCAD) is

powerful in detecting anomalies and robust against local density variations.

The empirical evaluations of both tasks have shown that NC-based methods out-

perform density-based and density ratio-based methods on most benchmark datasets,

which confirms the effectiveness of the properties of NC in addressing the shortcom-

ings of density. NC-based methods also enjoy the efficiency of the mass estimation

methodology they utilize. NC-DP and NCC are more efficient then DP and DBSCAN,

while NCAD is much more scalable than LOF.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion of the thesis

Mass estimation is a novel data-modelling methodology which is efficient and has

unique characteristics. This thesis has developed two new methods based on the

mass estimation methodology to effectively address the shortcomings of data depth

and density, namely, Half-space Mass (HM) and Neighbourhood Contrast (NC).

The proposed HM is an efficient and maximally robust data depth method. This

thesis shows that HM possesses four properties that are desirable for a data depth

method. The proposed NC remedies the shortcomings of density in in its applica-

tion to clustering and anomaly detection, by virtue of its two unique properties. In

clustering, NC is not affected by large density variations among clusters; in anomaly

detection, NC-based scores are robust to the influence of the rate of change in density.

Specifically, this thesis has made the following contributions in two parts. In

addressing the shortcomings of data depth, this thesis has:

• formally introduced HM , the first efficient and maximally robust data depth

method, which is implemented utilizing the mass estimation methodology;

• theoretically proved the four properties of HM , namely, concavity, unique max-

imum (median), maximal robustness and extension across dimensions;

• introduced an algorithm for locating the median of HM via gradient ascent,

which is guaranteed to converge by virtue of the concavity property of HM ;

• introduced an HM -based clustering algorithm, the K-mass, which overcomes

three weaknesses of the K-means clustering algorithm;
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• empirically evaluated the effectiveness of HM when applied in clustering and

anomaly detection using popular benchmark datasets.

In addressing the shortcomings of density, this thesis has:

• proposed NC as a common solution to address the shortcomings of the use of

density in clustering and anomaly detection;

• revealed the two properties of NC which make it a better measure than density

in both tasks of clustering and anomaly detection;

• implemented NC utilizing the mass estimation methodology, which allows NC

to have better efficiency than density;

• proposed NC-DP, a much improved version of the DP clustering algorithm, by

replacing density with NC in the procedure of DP;

• devised a new clustering algorithm, Neighbourhood Contrast Clustering (NCC),

which is not affected by density variation among clusters and has a linear time

complexity;

• proposed a new anomaly detector named Neighbourhood Contrast Anomaly

Detector (NCAD), which is powerful in detecting anomalies, and robust against

local density variations;

• verified the effectiveness of NC-based methods against their traditional counter-

parts in both clustering and anomaly detection via empirical evaluations using

popular benchmark datasets.

5.2 Future work

The K-mass clustering algorithm using HM has better clustering performance com-

pared to the K-means. This indicates the importance of the robustness of the cluster

centres, since the median is much more robust than the mean. However, the current

version of the K-mass does not always converge as the K-means does. Furthermore,

the K-mass is sometimes unstable in the sense that some clusters might disappear

during the iterations, because all their members are re-assigned to other clusters. A

possible solution would be using the dissimilarities between a point and group cen-

tres, instead of the HMs of different groups, to do the point assignment. The HM
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medians can be used as the group centres and can be located efficiently with Algo-

rithm 3. However, in order to prove that the algorithm will always converge, a better

dissimilarity measure needs to be found. More specifically, the desired dissimilarity

measure needs to guarantee that the objective function will improve in each iteration,

which would in turn ensure the algorithm converges, at least to a local optimum.

HM can be viewed as a generalization of the level-1 mass estimation from uni-

variate cases to multivariate cases. Ting et al. [59] also gave a definition of higher

level mass estimation, which can be viewed as a localized version of a level-1 mass

estimation. I have limited my exposition to level-1 mass estimation in Chapter 3 so

that I have been able to make a direct comparison with data depth and its proper-

ties. As a result, it is limited to data modelling with a unimodal distribution having

a unique maximum as the median. In datasets which have multi-modal distribu-

tion, HM will perform poorly. HM can be extended to higher levels, as shown in

the one-dimensional case [59], which will produce a localized HM method similar

to a localized data depth method [3]. One simple way to do that is to use the NC

trees {Tj}j=1,...,t and modify the estimation of NC in Equation (4.3) to estimate the

localized HM as

localHM(x) =
1

t

t∑
j=1

|Tj(x)|
|D|

.

That is, use the average of the normalized masses of the leaf nodes that x falls

in as the estimation of localized HM . However, the interpretation of a localized

HM is unclear because, similar to density, it captures the local features of a data

distribution. It is also unclear what sort of advantages such a localized data depth

method has over density in applications such as clustering and anomaly detection.

Discovering the properties and applicability of such a localized data depth method

remains a challenging task that awaits further endeavour.

In the definition of NC, the notion of contrast is independent of the mechanism

and base measure employed. In this thesis, in order to achieve efficiency I have chosen

to implement NC using the tree mechanism and mass as the base measure. Imple-

mentations using different mechanisms and base measures are possible. For example,

grid-based partition is a possible substitute for tree-based partition. Instead of con-

trasting mass, contrasting densities is another option. Existing work such as LOF is

an example of making use of the densities of a point x and its nearest neighbours.

However, LOF is using the ratio of densities as the anomaly score instead of doing

contrast. Investigating the properties of different implementations under the notion

of contrast might lead to useful new inventions.
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[25] Stephan Günnemann, Ines Färber, Emmanuel Müller, Ira Assent, and Thomas

Seidl. External evaluation measures for subspace clustering. In Proceedings of

the 20th ACM International Conference on Information and Knowledge Man-

agement, pages 1363–1372. ACM, 2011.

[26] Greg Hamerly and Charles Elkan. Alternatives to the k-means algorithm that

find better clusterings. In Proceedings of the 11th International Conference on

Information and Knowledge Management, pages 600–607. ACM, 2002.

[27] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 3rd edition, 2011.

[28] James A Hanley and Barbara J McNeil. A method of comparing the areas under

receiver operating characteristic curves derived from the same cases. Radiology,

148(3):839–843, 1983.

[29] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-

tistical Learning. New York: Springer, 2009.

[30] Alexander Hinneburg and Hans-Henning Gabriel. Denclue 2.0: Fast clustering

based on kernel density estimation. In Advances in Intelligent Data Analysis

VII, pages 70–80. Springer, 2007.

93



[31] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classi-

fication, 2(1):193–218, 1985.

[32] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition

letters, 31(8):651–666, 2010.

[33] Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall,

Inc., 1988.

[34] Anil K Jain and Martin HC Law. Data clustering: A user’s dilemma. In Pro-

ceedings of the International Conference on Pattern Recognition and Machine

Intelligence, pages 1–10. Springer, 2005.

[35] Brian Alan Johnson, Ryutaro Tateishi, and Nguyen Thanh Hoan. A hybrid

pansharpening approach and multiscale object-based image analysis for map-

ping diseased pine and oak trees. International Journal of Remote Sensing,

34(20):6969–6982, 2013.

[36] Dirk P Kroese and Joshua CC Chan. Statistical modeling and computation.

Springer, 2014.

[37] Harold W Kuhn. The hungarian method for the assignment problem. Naval

research logistics quarterly, 2(1-2):83–97, 1955.

[38] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Proceedings

of the eighth International Conference on Data Mining, pages 413–422. IEEE,

2008.

[39] Regina Y Liu, Jesse M Parelius, Kesar Singh, et al. Multivariate analysis by data

depth: descriptive statistics, graphics and inference. The annals of statistics,

27(3):783–858, 1999.

[40] Hendrik P Lopuhaa and Peter J Rousseeuw. Breakdown points of affine equiv-

ariant estimators of multivariate location and covariance matrices. The Annals

of Statistics, pages 229–248, 1991.

[41] R. J. Lyon, B. W. Stappers, S. Cooper, J. M. Brooke, and J. D. Knowles. Fifty

years of pulsar candidate selection: from simple filters to a new principled real-

time classification approach. Monthly Notices of the Royal Astronomical Society,

459(1):1104–1123, 2016.

94



[42] Boris Mirkin. Clustering for data mining: a data recovery approach. Chapman

and Hall/CRC, 2005.

[43] Karl Mosler. Depth statistics. In Robustness and Complex Data Structures, pages

17–34. Springer, 2013.
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