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Summary

Etamaterials formed by combining different types of nanoparticles are
M gaining increasing research attention due to their unprecedented capa-
bilities to manipulate light at the nanoscale. Metal nanoparticles (MNPs) and
quantum dots (QDs) are two categories of widely studied nanoparticles whose
exceptional photophysical properties synergize when combined. Metal nanopar-
ticles much smaller than the wavelength of the incident light (A) exhibit strong
dipolar excitations in the form of localized surface plasmon resonances, which
give them a remarkable ability to concentrate optical energy in the nanoscale.
This enables the use of individual MNPs as nanoscale optical cavities that can
focus electromagnetic energy to spots much smaller than A, overcoming the half-
wavelength size limitation of the conventional optical cavities. This strong elec-
tric field localization can significantly enhance the interactions of metal nanopar-
ticles with excitonic gain media such as QDs. Semiconductor quantum dots have
strong luminescent capabilities widely used in a plethora of applications such
as bio-sensing. QDs possess unique optical properties which make them quite
appealing as in-vivo and in-vitro fluorophores in a variety of diagnoses, and as
the optical gain medium of spasers (the nanoscale counterparts of lasers). When
a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole
coupling occurs between the two nanoparticles giving rise to fascinating optical
signatures in the absorbed and scattered spectra. This coupling makes the two
nanoparticles behave like a single hybrid molecule possessing novel and inter-

esting optical signatures which are tunable using a multitude of system proper-
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ties such as the particle sizes, composition, inter-particle distance and the optical
properties of the submerging medium. When an exciton-plasmon nanohybrid is
optically excited, an additional electric field superposed on the external driving
field is experienced by the MNP due to the dipole moment of the optical transi-
tions in the QD. The resulting electric field induces a dipole moment in the MNP
which in turn alters the field experienced by the QD, leading to a self-feedback.
Due to this interaction, artificial hybrids formed by MNPs placed in nanoscale
proximity to QDs exhibit a variety of optical phenomena that can be exploited
in a wide array of applications such as spasing, optoelectronics, photovoltaics
and bio-sensing. This thesis entails improved and computationally efficient an-
alytical and numerical studies of such exciton-plasmon nanohybrids formed by
illuminating a metal nanoparticle-quantum dot pair, placed in nanoscale vicinity,

followed by a numerical demonstration of their prospects in bio-sensing.
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Chapter 1

Introduction

1.1 Background and Motivation

A metal nanoparticle (MNP) placed in the nanoscale proximity to a semiconduc-
tor quantum dot (QD) forms a tunable hybrid system which exhibits remarkable
optical phenomena upon coherent illumination. Small MNPs exhibit nanocavity-
like optical concentration capabilities due to the presence of strong dipolar exci-
tation modes in the form of localized surface plasmons. QDs possess strong lumi-
nescent capabilities widely used in many applications such as biosensing. When
a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole cou-
pling occurs between the two nanoparticles which gives rise to various optical
signatures in the absorbed and scattered spectra. This coupling makes the two
nanoparticles behave as an exciton-plasmon hybrid molecule [2].

Due to the synergizing impact excitons and plasmons placed in nanoscale
vicinity exhibit on each other, nanohybrids formed by optically coupling MNPs
to QDs possess a potential of emerging as strong candidates for a plethora of
applications [4]. Such applications include bio-sensing, optoelectronics, photo-
voltaics and transmission of quantum information [4-7]. The exciton-plasmon
nanohybrid can also be interpreted as the basic building block of a spaser, which
is the nanoscale counterpart of a laser, proposed by Bergman and Stockman in

2003 [8]. A number of leading laboratories around the globe are currently inves-
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tigating spasers, as its successful realization holds the potential to revolutionize
the field of nano-optics by providing a coherent, intense, ultrafast (with pulse
durations down to a few femtoseconds), source of optical energy concentrated to
nanoscale [8]. A thorough understanding of the physical properties of the basic
building block would definitely be useful in the context of design and realization
of spasers.

In this thesis we theoretically study exciton-plasmon nanohybrids formed by
coupling semiconductor quantum dots to metal nanoparticles placed in nanoscale
proximity, with the aid of external coherent illumination. We aim at devising
improved analytical models that account for the non-classical plasmonic effects
observable at nanoscale, and their impact on the optical properties of the nanohy-
brid. Our improved analytical treatments offer the luxury of simulating exciton-
plasmon nanohybrids at much lesser levels of computational complexity com-
pared to the conventional, local response approximation based, numerical Bloch
equation solving approaches widely followed in the literature, and the ab initio
methods such as the density functional theory. Following our theoretical study,
we numerically demonstrate the vivid prospects of exciton-plasmon nanohybrids
in minimally-invasive bio-sensing applications, namely, in-vitro and in-vivo early

cancer screening.

1.2 Research Aims

Development of a generalized nonlocal optical response method assisted cav-
ity quantum electrodynamical model of an MNP-QD hybrid molecule

Hybrid molecules made of metal nanoparticles (MNPs) coupled to semiconduc-
tor quantum dots (QDs), under the influence of an external driving field, have
been extensively studied in literature, using the local response approximation

(LRA) based numerical models. However, such previous work in this area were
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not adequate to explain some experimental observations such as the size depen-
dent resonance shifts of metal nanoparticles which become quite significant with

decreasing diameter.

The nonlocal response of metallic nanostructures which is hitherto disregarded
by many studies currently available in the literature is a main reason for such non-
classical effects. The generalized nonlocal optical response (GNOR) model pro-
vides a computationally less demanding path to incorporate such properties into
the theoretical models. It allows unified theoretical explanation of observed ex-
perimental phenomena which previously seemed to require ab initio microscopic
theory. In this stage, we aim to analytically model an MNP-QD hybrid molecule
incident by a coherent external driving field, as an open quantum system, using

a GNOR assisted cavity-QED approach.

Analysis and comparison of different resonator based exciton-plasmon nanohy-
brids

In this stage, we aim to propose a simple, elegant relative figure of merit (RFoM),
which focuses on maximizing the scattered intensity and the refractive index sen-
sitivity of nanohybrids, to rank them in the order of their scattering prowess
for sensing applications. The proposed RFoM will be used to analyse the opti-
cal spectra of noble, transition, post transition and alkali metal based MNP-QD
nanohybrids using the representative metals Au, Ag, Cu, Al and Na, adopting
the generalized nonlocal optical response (GNOR) method based cavity QED ap-

proach developed in the earlier stage.

This stage also aims to assess the suitability of MNP-QD nanohybrids for scat-
tered intensity based sensing applications, in comparison to the individual con-

stituents.
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Investigating the effects of nonlocal plasmonic response on coherent dynamics
of vicinal excitons

In this stage, we aim to analytically characterize the influence of a neighboring
metal nanoparticle on the behavioral trends of a quantum dot using a GNOR
based approach, taking the MNP distance dependent modifications to the QD
population relaxation and dephasing rates into account. Attempts to incorporate
MNP nonlocal effects in the analytical characterization of vicinal excitons found
in literature utilize the phenomenological hydrodynamic model and assume the
absence of MNP interband effects. Moreover, they are only applicable to narrow
parameter regions. In this stage, we will present an analytical characterization
which overcomes these drawbacks and lends to the perusal of the system over
wide continua of various parameters. This enables us to get an elevated view at
a much lesser level of complexity compared to the conventional LRA based nu-

merical methods or the ab initio approaches of accounting for the nonlocal effects.

Improved modeling of plasmonic metaresonances

Plasmonic metaresonances (PMRs) form a class of optical events gaining increas-
ing popularity due to their promising prospects in sensing and switching applica-
tions. Unlike the basic excitonic and plasmonic resonances in MNP-QD nanohy-
brids, PMRs occur in the space/time domain. A nanohybrid experiences PMR
when system parameters such as the QD dipole moment, MNP-QD centre sepa-
ration or the submerging medium permittivity reach critical values, resulting in
the plasmonically induced time delay of the effective Rabi frequency experienced
by the QD asymptotically tending to infinity. Theoretical analyses of PMRs avail-
able in the literature utilize the local response approximation (LRA) which does
not account for the nonlocal effects of the MNP, and neglect the MNP dependence
of the QD decay and dephasing rates which hinder their applicability to QDs in

the close vicinity of small MNPs. In this stage, we aim to address these limita-



1.3 Thesis Outline 5

tions using an approach based on the GNOR formalism. We also aim to suggest
prospective applications of PMR based nanoswitches, and mimic an example of
the in vivo operation of PMR based nanoswitches using a two-dimensional skin

tumour model.

Further investigation of the bio-sensing prospects

In the final stage, we aim to theoretically demonstrate the prospect of using ther-
moresponsive polymer capped MNP-QD nanohybrids for minimally invasive
detection of skin cancer tissue and for feedback control of tumor temperature
in localized hyperthermia therapy conducted using gold nanorods, to minimize
damage to the surrounding healthy tissue, using the GNOR based cavity QED

model developed in stage 1.

1.3 Thesis Outline

This thesis comprises twelve chapters which are organized as follows:

Chapter 1 introduces the topic of this thesis by outlining the background and
motivation, which are followed by the research objectives. A detailed literature
review is then presented in the chapters 2, 3 and 4, to equip the reader with the
analytical tools utilized in the chapters that follow. In chapter 2, we present a de-
tailed and rigorous overview of three different approaches of modeling localized
surface plasmons in metal nanoparticles, namely, the local response approxima-
tion, the hydrodynamic and the generalized nonlocal optical response models.
Chapter 3 presents the quantum mechanical formalism used to treat quantum
dots as artificial atoms with discrete levels of energy that interact with incom-
ing radiation followed by chapter 4, where the density matrix formalism and
methodologies of accounting for the environmental interaction of a quantum me-

chanical system are discussed.
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Chapter 5 presents a generalized nonlocal optical response method based fully
analytical approach to model the behaviour of an exciton in a semiconductor
quantum dot, placed in nanoscale proximity to a metal nanoparticle. Chapter
6 utilizes the analytical model developed in chapter 5 to peruse the system over
wide continua of parameters while comparing the results to those obtained us-
ing the conventional local response approximation, followed by chapter 7 which
presents a detailed numerical analysis of the plasmonic metaresonances in exciton-
plasmon nanohybrids. The astute reader will notice that the thesis chapters do
not follow the exact order of the research aims to enhance the readability and
flow.

In chapter 8, we devise a quantum mechanical model for the entire exciton-
plasmon nanohybrid utilizing a GNOR assisted cavity QED formalism. In chap-
ter 9 that follows, we numerically analyse the Rayleigh scattering spectra of dif-
ferent nanoresonator based nanohybrids using the cavity QED formalism intro-
duced in the earlier chapter. In chapter 10, we demonstrate the superior and
versatile scattering prowess of exciton-plasmon nanohybrids compared to the in-
dividual constituents and introduce a relative figure of merit (RFoM) that can
be utilized to arrange a set of nanohybrid configurations in the order of their
scattering prowess. In chapter 11 we numerically demonstrate the prospects of
exploiting the interaction of exciton-plasmon nanohybrids with incoming radia-
tion for minimally invasive in-vivo and in-vitro cancer diagnoses and monitoring
procedures. Finally in chapter 12, we summarize the research contributions of the
thesis and outline the prospective future research stemming from the presented

contributions.



Chapter 2

Localized Surface Plasmons

Figure 2.1: (a) The Lycurgus cup [1] made of ruby glass by the ancient Romans.
In daylight, when light is reflected off the cup, it appears in green, whereas when
light is shone within the cup and transmitted through the ruby glass, it appears in
red. (b) Formation of surface plasmons in a small metal nanoparticle embedded
in an oscillating electric field.

Localized surface plasmons (LSPs) are non-propagating modes of excitation
of conduction electrons in metallic nanostructures which form due to their cou-
pling with an externally incident oscillating electromagnetic field [2]. An effective
restoring force is exerted on the electrons (driven by externally incident field) due
to the curved surface of the particle which leads to an amplification of the electric
field both inside and in the near-field of the outside. The resonant condition of the

above phenomenon is termed the localized surface plasmon resonance (LSPR) [9].

For noble metal nanoparticles such as silver and gold, LSPR resides in the visi-

7
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ble region of the electromagnetic spectrum resulting in the exquisite bright colors
exhibited by such nanoparticles both in reflected and transmitted light, owing
to the resonant enhancement in absorption and scattering [9]. Such nanoparti-
cles own a rich history which dates back to the times of ancient Romans where
they were used in the staining of glass for windows and ornamental cups [10].
A classic example would be the Lycurgus cup made of ruby glass by the ancient
Romans in the fourth century, depicted in Fig. 2.1(a).

When the particle dimensions are much smaller than the wavelength of the
incident light as depicted in Fig. 2.1(b), the interaction can be analyzed using
the simple quasi-static approximation. For such particles, the phase of the elec-
tromagnetic field would be apparently constant over the particle volume due to
its miniature size, enabling one to assume that the spatial field experienced by
the particle takes an electrostatic form [5]. Once the solutions to the scattering
problem under quasi-static field distribution are known, the harmonic time de-
pendence can then be added to arrive at their final form. It has been shown that
this lowest-order approximation of the full scattering problem provides solutions
that adequately describe the behavior of optically illuminated particles of sizes

below 100 nm for a multitude of purposes [9].

2.1 The Local Response Approximation

We first analyse the interaction of a metal nanoparticle (MNP) with an applied
optical field using the conventional local response approximation (LRA). We con-
sider a homogeneous, non-magnetic, isotropic metal sphere of radius a and di-
electric permittivity €, situated at the origin of the coordinate system. The MNP
is driven by an electromagnetic wave with angular frequency w which propa-
gates in the £ direction, comprising a time-varying electric field along Z as in-

dicated in Fig. 2.1(b). The submerging medium is assumed to be isotropic and
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non-absorbing with a dielectric permittivity constant €.

The common basis of theoretical modeling of plasmonic phenomena in such
metallic systems is the set of Maxwell’s equations. In the linear regime of our
interest, the displacement field D inside the MNP at position vector 7 is related to

the electric field E as [11],
D) = e / 7 em(7,7,w)E(F) 2.1)

where €y denotes the vacuum permittivity and the nonlocal permittivity of the
metal is denoted by e (7,7, w). In the LRA, the nonlocal effects of the MNP are
neglected, hence en (7,7, w) = §(¥ — ¥)em(w), which enables straightforward
evaluation of the integral (2.1) as, D(¥) = €gem(w)E(¥), where e (w) is spatially
constant and is commonly modeled using the Drude-like dielectric function,

2

p

€m(CU) = €core(w) — “

In the above equation, w, and 7y denote the bulk plasma frequency and the bulk
damping rate of the metal, respectively. The response from the bound ions and

electrons that account for effects such as inter-band transitions is denoted by €core.

Since we are interested in very small MNPs in the order of 10nm which are
much smaller than the wavelength of the incident optical field (390 — 750 nm) [5],
we can assume that the particle experiences a static field Egrive = Eo2, under
the quasi-static approximation, with the aim of adding the sinusoidal time depen-
dence later. In order to calculate the response electric field (Eyes) generated by the
MNP, we solve Gauss’ law in the absence of charges, V.en,E = 0, where E de-
notes the electric field experienced by an arbitrary point in space with a position
vector 7. When substituted with the electric scalar potential ¥V which abides by
the relationship E = —VV, our problem reduces to solving the Laplace’s equation

V2V = 0[5,9]. In a system with azimuthal symmetry such as ours, the solution to
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the Laplace’s equation can be obtained as a sum of Legendre polynomials presented
in terms of spherical coordinates as follows, according to the working elaborated
in Appendix A.1 [9],

[ee]

V(r,0)=)

n=0

1 n+1
A" + B, (;) ] P, [cos(0)], (2.3)

where the coefficients A, and B, are yet to be determined using boundary condi-

tions and Py, (x) is given by the Rodrigue’s formula [12],

Pu(x) = 2”111! (%y (*-1)" @4

Using the substitutions of the form A, — A, /a" and B,, — Ba"t1! and separating

out the potentials inside and outside the MNP, we can write (2.3) as,

0 [An ()" + By (%)nﬂ} P, [cos(9)], forr <a

V(r,0) = 1
Yoo [«4; ()" + 8, (%)wr } P, [cos(0)], forr>a

(2.5)

Using appropriate boundary conditions (see Appendix A.2), the following solu-

tion for the electric potential is obtained [5],

— L Eyrcos(6), forr <a
V(o) ={ " ) (2.6)

,BLRAa?’EO%Z cos(f) — Egrcos(0), forr>a
where €. = (2€b + €m)/3€b and

(em - €b)

—( 2ey+ €m) (2.7)

BLRA =

The term BrRra is termed the Clausius Mossotti factor (in this case, obtained under

the local response approximation) which is directly proportional to the polariz-
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ability of the MNP [9,13]. Using the relation E = —VV, the total electric field is
obtained as (see Appendix A.3) [2,5],

=

1
—gEdrive, forr <a

E = (2.8)
Eres + Egrive, forr > a.
where
3
= LRAa = AN A =
Eres(r > LZ) = P /3 [3(Edrive-r)r - Edrive} . (2.9)

with 7 being the radial unit vector of our position of interest in space.

It is now evident that 1 / €eff and Brra are the two functions we need to know,
in order to evaluate the response of a metal nanoparticle to an external field, in
the quasi-static limit. The screening-factor 1 /€. governs the field inside the MNP,
or the absorption properties whereas the Clausius Mossotti factor Prra governs
response outside the MND, or the scattering properties [5].

The LRA has so far being the most prevalent and and commonly applied
constitutive description to model localized surface plasmons [11]. Studies have
shown that it successfully explains a multitude plasmonic phenomena and exper-
iments based on, optical far-field measurements [14,15], electron energy loss spec-
troscopy (EELS) [16,17], cathodoluminescence [18,19] and near-field microscopy
[20]. It has even been able to successfully explain plasmonic particles with nanome-
ter sized separations [21] and plasmonic effects in the two-dimensional material
graphene [11,22]. Our extensive literature review on exciton plasmon nanohy-
brids suggested that, almost all recent studies of quantum dots subjected to near
fields of MNPs [23-30] utilize the LRA to model the MNP, without taking the

nonlocal plasmonic effects into account.
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2.2 Nonlocal Response in Metal Nanoparticles

2.2.1 Importance of Nonlocal Modeling

Despite the merits listed above, the sufficiency of modeling plasmons using the
classical LRA, which overlooks the nonlocality of the MNP, has appeared ques-
tionable due to several reasons [11]. One example is its insufficiency in account-
ing for the MNP size-dependent surface plasmon line-width broadening exper-
imentally observed in metal clusters and small MNPs [31-33]. Other examples
include MNP size-dependent resonance shifts observed in optical [34, 35] and
EELS [36,36] measurements of noble metal nanoparticles and the multipole plas-
mons [37] supported by metal-vacuum interfaces due to electron spill-out be-
yond the classical metal boundary [11]. It has also been shown that thin metal
films support resonant excitations above the plasma frequency due to the exis-
tence of confined longitudinal waves [38, 39] which are not accounted for un-
der the LRA [11]. Moreover, several recent experiments based on MNP dimers
conducted with particles placed in sub-nanometer proximity have revealed that
plasmonic effects certainly go beyond the LRA [11,40-43].

As a metal nanoparticle gets increasingly smaller, the ratio of the number
of surface atoms to the number atoms in the bulk or core of the particle grows
larger, causing the surface effects to dominate the physics of the nanoparticle [5].
Studies have shown the origin of the size dependence in nonlocal response as
the smearing of surface charges, induced by an external illumination, over a fi-
nite distance (few A) into the metal due the presence of longitudinal waves [13].
However, the classical LRA assumes that the charges induced by external illumi-
nation reside only on the geometric surface of a metal nanoparticle [11]. Due to
such assumptions, nanoplasmonic experiments defy explanations with the clas-
sical LRA [11,34, 36,44, 45].

Experimentally observed effects such as the size dependence of the surface
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plasmon resonance energy, which strengthen as the particle size decreases, are
believed to be consequences of the quantum properties of the MNP free electron
gas [46]. Theoretical explanations utilizing ab initio approaches such as density
functional theory (DFT) [47-50] are capable of accurately describing the micro-
scopic interaction effects of electrons in metals. Nevertheless, these methods
put forth extensive computational demands which hinder their applicability to
generic plasmonic systems beyond few nanometers in size [51] (where not a
handful, but a large number of electrons contribute to the optical response), even
with strong approximations such as time dependent local density approxima-
tion [49]. This is because they use extremely resource greedy approaches such as
solving the Shrodinger equation for a large, but finite number of electron wave

functions for all atoms considered in the system.

Surpassing the LRA using nonlocal response theories such as the nonlocal hy-
drodynamic model or the generalized nonlocal optical response (GNOR) model
would be a simpler and computationally much less demanding alternative to the
ab initio calculations [11,52]. Combining these nonlocal models with fully ana-
lytical characterizations of exciton-plasmon nanohybrids enables the generation
of insightful fully analytical models and the optimization of the large parame-
ter space associated with device designing while taking the nonlocal effects into
account, a functionality not fully offered by the methods currently available in

literature [13].

The concept of nonlocal response in metal nanoparticles was first introduced
phenomenologically, and was later based on the semi-classical hydrodynamic
model (HDM) [13,44]. This approach has been able to theoretically describe size-
dependent resonance shifts of noble metal nanoparticles and gap-dependent res-
onance shifts in particle-film systems [53]. The hydrodynamic approach is bene-
ficial in the theoretical studies of generic plasmonic systems with large (> 10nm)

feature sizes [11] which cannot be practically studied with ab initio approaches
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due to extensive computational demands.

The generalized nonlocal optical response (GNOR) model emerged as a re-
cent generalization and an extension of the aforementioned HDM model. It goes
beyond HDM by taking into account, both the convection current and electron
diffusion phenomena in the MNPs [44]. It better captures both size dependent
localized surface plasmon resonance shifts and line-width broadening of the ex-
tinction cross section which strengthen with decreasing MNP dimensions. Ex-
periments based on dimers with few nanometer sized gaps have revealed that
the GNOR model yields results in plausible agreement with the experimentally-
measured spectra, without the need of invoking the quantum mechanical effect

of tunneling, at an extremely less level of computational complexity [11,13].

In the next two sections, we will walk through the nonlocal modeling of local-

ized surface plasmons using the hydrodynamic and GNOR models, respectively.

2.2.2 Hydrodynamic Model

Let us now walk through the derivation of the exact nonlocal Clausius Mossotti fac-
tor of a spherical metal nanoparticle embedded in a non-absorbing homogeneous
dielectric medium which was first presented by Raza et al. in [11,36], initially as-
suming that the free electrons in the MNP are characterized by the semi-classical
hydrodynamic model. This model accounts for the nonlocal effects of the MNP
while neglecting the effects of electron spill-out due to the finiteness of the con-
tining potential [11,36]. As detailed derivations of the hydrodynamic model have
been reported in earlier studies [54-56] this section will mainly focus on the es-
sential steps of nonlocal characterization of localized surface plasmon resonances

based on the HDM model.

Maxwell’s equations of our interest for a non-magnetic material can be ex-
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pressed as [12,57],

V.D = —en, (2.10a)
V.H=0, (2.10b)
V x E = iwuoH, (2.10¢)
VxH=—iwD+] (2.10d)

where n denotes the free-electron density, e is the elementary charge, y is the
vacuum permeability, J denotes the free-electron current and H is the magnetic
field. The displacement field is defined in terms of the bound or core electron
response of the MNP, €core, as D= eoecoref. Obtaining the divergence of the left
and right hand sides of (2.10d) and using (2.10a), we can arrive at the continuity
equation which relates the free-electron density to the free-electron current as
follows [36],

V.J = —iwen (2.11)

The fundamental assumption of the hydrodynamic model is that the many-
electron energy and dynamics of a metal are characterized by the electron den-
sity (a scalar field n(7 t)) and the hydrodynamic velocity (a vector field 7(7,t)),
respectively [11], using which the hydrodynamic equation of motion and the con-

tinuity equation for charge conservation are expressed as [11,54],

[ﬁ + v.V} U= _E[E + 7 x B| — EVEGM — 7, and (2.12a)
a —
3= —V.(nd), (2.12b)

where m denotes the mass of an electron. The first term on the right hand side
of the equation of motion (2.12a) relates to the Lorentz force, whereas the sec-
ond term of the same is related to the internal kinetic energy of the electron gas.

The last term which accounts for the damping has been added phenomenolog-
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ically [11]. The simplest and most popular approach is to obtain the functional
G[n] using the Thomas-Fermi model, which accounts only for the kinetic energy
of the electron gas [11,54]. By solving equations (2.12b) and (2.12a) using the
detailed approach presented in the references [11, 54, 56], the following coupled

electromagnetic equations of the hydrodynamic model can be obtained [11,58,59],

V x V x E(F,w) = (?) ecore E(F, w) + iwnoJ (7, w), (2.13a)
2

In the high frequency limit (w > +) of our interest, x = 3/5v%, where v is
the Fermi-velocity. The Drude conductivity ¢ is related to the Drude permittiv-
ity equation (2.2) as €y (w) = €core + i0 / (eow) and the response of the bound
electrons can be obtained from the experimentally measured bulk permittivity
€exp(w) (such as the dataset by Johnson and Christy [60] used in this thesis) us-
ing the recipe €core(w) = €exp(w) + w;% / (w? +iyw) [11]. It is readily observable
that (2.13b) reduces to the Ohm’s law when k¥ — 0.

Pressure of the electron gas is taken into account in the above hydrodynamic
description. This gives rise to compression (longitudinal) waves, leading to spa-
tial dispersion which is truly observable in nanoplasmonic experiments [36]. The

corresponding longitudinal wave vector is characterized by [11,52,61],
k= em(w) /3, (2.14)

where the nonlocal parameter ¢ is defined in the hydrodynamic model abides by

the relationship,

2 . ecore(w)KZ
& (@) oy = w(wti) (2.15)

We are interested in metal-dielectric interfaces where an additional bound-

ary condition should augment Maxwell’s boundary conditions. This additional
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boundary condition which states that the normal component of the free-electron
current density must vanish, can be derived by neglecting the spill-out of elec-

trons [36,57,59].

Similar to the electric scalar potential V' defined as E = —VV), the current
scaler potential A is characterized by the relation, ] = —V [36]. Using these
relations with hydrodynamic equations (2.10), (2.11) and (2.13b), the following
equations governing the scalar potentials inside the MNP can be obtained as [36,

62],

(v2 + k{) n=0, (2.16a)
vy =S (2.16b)
€0€core
_ 1 2y, .2
Y = w7 (eowPV ex ) . (2.16¢)

The scalar potential  must satisfy the usual Laplace’s equation V2V = 0 due to
the current density J and electron density 7 vanishing in the surrounding dielec-
tric, and the general solutions to the electric scalar potential and the free electron

density can be obtained as [36],

n(r<a)=Y_ Aji(ker)Yim (6, ¢), (2.17a)
Im

n(r>a)=0, (2.17b)

V(r<a) =Y |Dp' = A———ji(ker) | Yim(6,9), (2.17¢)
1m €O€c0rekL

Vir>a) =Y [Blrl n clr—U“)] Y (6,0), (2.17d)
Im

where A; to D; are coefficients to be determined. The functions j; and Y}, denote
the spherical Bessel function of the first kind (of angular-momentum order 1)

and spherical harmonics, respectively. Following the same quasi-static approach
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as in section 2.1 where lim,_,o V = —Egz = —Egr cos(0), all orders of I, m in the
summations in equation (2.17) can be excluded except (I,m) = (1,0) [36]. Apply-
ing Maxwell’s boundary conditions with the hydrodynamic additional boundary
condition for the scalar potentials and following the usual approach to introduc-
ing the Clausius-Mossotti factor outlined in section 2.1 and reference [9], its gen-
eralized form which takes the nonlocal effects of the MNP into account can be

obtained [36],

€m — Gb(l + (SNL)
= h 2.1
BNL e T 2601 £ onL)’ where, (2.18a)

b, = S —Ccore 1K) (2.18b)

€core kLa].i (kLa)’

where prime denotes the differential with respect to the argument. It can be
readily observed that when x — 0, N1, — 0 and the classical, size-independent

Clausius-Mossotti factor is retrieved [36].

2.2.3 Generalized Nonlocal Optical Response Model

Although the hydrodynamic model we discussed above accounts for the convec-
tive currents due to pressure, it neglects contributions of electron diffusion. The
generalized nonlocal optical response (GNOR) model extends the hydrodynamic
theory to account for electron diffusion using the following constitutive relation
for current density (2.13b) as [11,52],

_© + b VIV.JF )]+ J(Fw) =] (7 w) (2.19)

w(w+1iy)  iw R T ’ '
The above equation can be arrived at by setting k> — x2 + D(y — iw) in (2.13b),

where D is the diffusion constant on the MNP. Thus, the nonlocal parameter in
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the GNOR model can be found as [11,52],

core 2 + D —1
e

using which the longitudinal wave vector in the GNOR model can be obtained.
Thus we can obtain the nonlocal polarizability Sy in the GNOR approach bu
substituting k, = ey (w) / [Cz(w) ‘GNOR] in (2.18).

The factor k¥ « v is associated with the pressure waves in the electron gas
whereas the diffusion constant D relates to the charge carrier diffusion. While
the former (k) is prevalently known to cause blue-shifts (shifting resonances to-
wards higher frequencies), the latter (D) causes line-width broadening in the
plasmon resonances in metals. Thus, the GNOR theory unites both quantum-
pressure effects and induced-charge diffusion kinetics [52], which enables it to
successfully account for the main features observed in recent nanoplasmonic ex-
periments [63-65].

It has recently been shown that nonlocal effects may manifest over distances
far exceeding atomic dimensions and hence become comparable metallic struc-
ture dimensions such as the MNP radius or the gap distance of an MNP dimer,
as a result, it has been proven that the generalized nonlocal optical response even
dominates pure quantum mechanical effects in optical frequency regime such as
the anticipated effect of quantum mechanical tunneling currents in dimers placed
at sub-nanometer gaps [52].

Due to all aforementioned merits of the GNOR theory including its ability to
capture the experimentally observed plasmonic phenomena at an extremely low
computational cost, we utilize the GNOR model for the preceding nonlocal mod-
eling of our exciton-plamon nanohybrids while comparing the results to those

obtained using the conventional LRA as and when needed.






Chapter 3

Quantum Dots as Artificial Atoms
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Figure 3.1: (a) Conceptual illustration of an exciton in a quantum dot which com-
prises an electron-hole pair coupled via Coulombic interaction. (b) Visualization
of the one dimensional analogue of the infinite square well or the “particle in a
box” model

Even though the use of surface plasmons in noble metals can be traced to an-
tiquity as we outlined in chapter 2, the semiconductor quantum dot is a much
later development [66]. Present semiconductor physics is increasingly focusing
on artificially made semiconductor systems of reduced dimensionality which ex-
hibit fascinating properties that are entirely different from those of solid-state
bulk materials [67]. Semiconductor quantum dots are currently being used and
considered for a wide range of applications ranging from solar-energy conversion
to biological imaging [68]. They have quickly appeared as attractive alternatives
to organic fluorescent dyes for bio-imaging applications because of their high re-
sistance to photobleaching and bright, narrow emission that has enabled highly

sensitive real-time observation of molecules [68].

21
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Quantum dots form a special class of quasi zero-dimensional semiconductor
structures, which can be modeled by a single electron wavefunction confined in
all three spatial dimensions by the particle boundaries that serve the purpose of
infinite potential energy barriers that prevent the electron from escaping [69,70].
Even though the single-electron wavefunction of a QD extends over thousands
of lattice atoms, the electron-hole pair which is termed as an exciton exhibits a
quantized and coherent behaviour [69]. It has been shown that the superposition
of the ground and excited states of these quasi zero dimensional QDs tends to de-
phase at rates slower than those of higher-dimensional semiconductor structures.
Moreover, QDs generally possess larger dipole moments (50-100 fold) compared
to atoms. Owing to these properties, the aforementioned coherence can be de-
tected and controlled optically, which allows scientists to manipulate the wave-
function of a single quantum dot for a multitude of diverse applications [69,71].

In non-zero dimensional semiconductor systems such as quantum wires, quan-
tum wells and bulk semiconductors, the optical excitation raises an energy con-
tinuum due to the exciton’s freedom of movement inside the crystal. However, in
QDs which can be approximated as point-like objects, the exciton is completely
localized and can also be strictly limited to a single state, owing to the ability
to forbid unwanted states that lie outside the desired bandwidth using selec-
tion rules and optical polarization [69]. Once such states are inaccessible, we can
model the QD as a two-level atom-like system where an exciton is either present
(excited state) or absent (ground state) [2]. Given the existence of sufficiently long
phase coherence time, a strong coherent field has the ability to rotate the Bloch
vector of such systems, driving them completely to the excitonic state and back

to the ground state, which is termed known as a Rabi oscillation [69, 72].
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3.1 The Infinite Square Well and Exciton Formation

A characteristic feature of semiconducting material is the existence of a band gap
in the allowed electronic energy levels, which is usually the difference in energy
between the valence and conduction band electrons. When energy is applied to
such materials in form of an electric field, electrons in the valence energy band
tend to absorb energy and move to the conduction band, once in which they can

flow through the material. [5].

As quantum dots (QDs) are very small three-dimensional systems with di-
mensions less than the de Broglie wavelength of slow electrons, quantum confine-
ment effects are quite prominent. Hence the electronic energy states constitute a
discrete series similar to those of atoms [73] and the conduction band of QDs can
be modelled using the “particle in a box” model or as an electron trapped in an
infinite square well potential. In this model, the wave function of the trapped

electron is given by [5] (see appendix B.1),

Y (ny, ny,n;) = 8 sin Ma7ex sin 7ty sin fz112 , (3.1)
lxlylz lx ly ZZ

with the associated energy,

222 2 2 2
E(ny, ny, 1) = % [(7—5) + (7—5) + (7—;) ] (3.2)

where 1y, ny, n; are the quantum numbers of the state ¥, Iy, [, [, are potential

well dimensions, (x,y, z) is the particle position, % is the reduced Planck constant
and m is the electronic mass. For the ease of visualization, the one dimensional
analogue of the above model is illustrated in Fig. 3.1(b). From (3.2) it is readily
observable that, irrespective of the physical shape of the semiconducting particle,
the separation between the energy levels increases as the dimensions are made

smaller, enabling the creation of a quantum dot, where only the lowest conduc-
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tion band energy level is effectively reachable with all higher levels being beyond
reach for typical electrons. Under near resonant monochromatic optical illumi-
nation, the first electron which reaches the conduction band will further detune
the valence-conduction energy gap away from the incident frequency, prohibiting
another electron to reach the conduction band [5]. This creates a hole in the va-
lence band in the void where the electron previously resided. Due to the Coulom-
bic attraction between the electron and the hole, they will act as a quasi-particle
known as the exciton [74] as depicted in Fig. 3.1(a). As long as energy (related to
frequency) of the source of radiation is closely resonant with the excitonic band-
gap, we can safely approximate the QD as an effective two-level atom with the

two state ground (exciton absent) and excited (exciton present) [5].

3.2 Two-Level Atoms

Pertaining to our earlier explanations, it is clear that a judicious choice of the
polarization and frequency composition of the exciting optical field can allow
us to realize effective two (or if necessary three) levels atoms from QDs. In the
context of this thesis, we mainly focus on the simple but extremely useful and
versatile two-level model which can include the complex structure of such atom-
like systems into just two parameters for effective analytical modeling. These two
characteristic parameters are, the energy splitting between the two levels of the
un-driven atom and the transition dipole moment that couples it to the externally
incident driving field. It is evident that a detailed understanding of the related
physics and spectroscopy is required for the reduction of a real system to a two-
level description, and that care must be taken at the laboratory for the successful
realization of a two-level atom such a system. Let us now look into the two level

atomic model in detail.
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3.2.1 The Unperturbed Atomic Hamiltonian

Let us define ground and excited states (the basic eigenstates) of the unperturbed

atomic Hamiltonian as [5],

1g) = (1) and |e) = (0) , (3.3)
0 1

which possess the energies E; and E, respectively. They are orthonormal such

that,
(elg) = Oegs (3.4)

and form a linearly independent basis set to the Hilbert space of the atomic
Hamiltonian, in the absence of perturbations, where any state vector of the atom
can be written as a linear combination [75]. The atomic transition frequency
would then be wqq = (Ee — Eg)/h. The corresponding (time-dependent) two

level state vector in the Schrédinger picture would be [75],
(D) = cglg) e 4 ce[e) e B, (3.5)

where |c,|? and |c.|* denote the probabilities of electron occupation in the ground
and excited states, which also represent the probabilities of energy measurements

yielding the values E; and E,. For the normalization of |¥), [75],
leg® + lee|* = 1. (3.6)
The eigenstates |¢) and |e) relate to the atomic Hamiltonian #, as [75],

Halg) = Eglg) (3.7a)
Hale) = Ecle). (3.7b)
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Pg = |cg| = cos*(Q,t)

P.=lc > =sin*(Qy)

Figure 3.2: (a) Energy level illustration of a two-level atom interacting with an
externally incident coherent electromagnetic field (b) Population probability os-
cillations of the same two level atom at Rabi frequency (g

Multiplying both sides of (3.7a) and (3.7b) by (g| and (e| respectively, we can
arrive at, H,[g) (§| = E¢|g) (¢ and H,le) (e] = E.le) (e|. By adding these
equations together and utilizing the completeness relation of the basis (|g) (g| +
le) (e] = I, where I is the identity matrix), we arrive at the Hamiltonian of the

unperturbed two level atom,
Ha = Eg|g) (8| + Ecle) {e|, (3.8)
which will take the following form in the matrix representation,

E; 0
0 E.
Throughout this work, as we are concerned of the energy differences in the sys-

tem, we choose the zero energy level of our atom to lie in the close vicinity of Ej.

Hence the unperturbed atomic Hamiltonian would take the form,
H, ~ hwgq le) (e, (3.10)

given that the frequency separation between the ground and excited levels are

defined as wggq.
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3.2.2 Interaction with an Oscillating Electric Field

Let us now look at the interaction between a two level atom which is modeled
quantum mechanically and an oscillating coherent electric field which is modeled
classically, as depicted in Fig. 3.2(a). The system Hamiltonian for this scenario
would take the form,

H=Ha+ Hing, (3.11)

where 7, is the unperturbed atomic Hamiltonian we derived earlier and,
Hint = —d.E (3.12)

is the dipole interaction energy between the atom. The externally incident field
is denoted by E=E cos(wt)Z and the transition dipole moment is d [76,77]. As
appropriate to transitions between states of definite parity, the diagonal elements
of the dipole moment operator are obtainable as (g| d |g) = pge and (e| d |e) = jree
would both be zero. The dipole moment operator would be characterized by its
off diagonal matrix elements pe, = (e|d |g) = pge = (g|d|e) = p due to atomic
symmetry [77].

Exploiting the completeness relation of the basis vectors (|g) (g| + |e) (e| = I)

on (3.12), we can write,

Hine = —{13) (5] + ) (el}AE{Ig) (5] + le) (el (313)
the expansion of which yields,
Hine = — {13) (51 1) (5] + Ie) (el d[g) (] + 1) (] de) (e] + le) el de) (e]}.E.
Using (g]d|g) = (¢| d|e) = 0and (¢| d|g) = (g]d|e) = 1, we obtain,

H ~ hwga le) (] + uEo{le) (8] + [g) (e|} cos(wt). (3.15)
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By adding and subtracting fiw |e) (e| to the RHS of (3.15) we can arrive at,
H ~ hw |e) (e] +1Aga le) (e| + uEo{le) (g] + |3) (e]} cos(wt), (3.16)

where Agg = wqq — w. We now perform the standard operation of moving the
Schodinger picture Hamiltonian to the interaction picture in order to eliminate
the non-perturbed component of the Hamiltonian. The Schrodinger picture de-
fines states as time-dependent and operators as time-independent, whereas in
the interaction picture, both operators and states carry a time dependence [78].

The transformation can be done as [79,80],
Ty = ot/ Mpe—iHot /1, (3.17)

where Ty = hw |e) (e| and V = hiAgq |e) (e| + uEo{|e) (g + |g) (e|} cos(wt).

For an eigenstate |k) of 71y with an eigenvalue E;, where % |k) = Ex |k),

gy ) () ()
et/ k) = o k) + 11 k) + 21 k) + ... = B/ k) (3.18)

can be obtained by repeatedly applying the eigenvalue relations. Similarly, it is

straightforward to show that,
e~ Pt/ |y = e TEt/M k). (3.19)
From the adjoints [81] of (3.18) and (3.19),

(k| eHot/h — (k| elExt/M (3.20a)
(k| e THot/f — (| oiExt/N (3.20b)

According to the above formulations, when |e) and |g) are eigenstates of Hg
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with eigenvalues E; ~ hiw and E; ~ 0 respectively, we can obtain the following

eigenvalue equations for our two-level atomic model,

pEiHot/h le) = et e}, (3.21a)
(el et/ _ (e| e, (3.21b)
M g) = |g), (3219)
(gl pEifot/h _ (g] (3.21d)

Exploiting the eigenvalue relations (3.21) to simplify (3.17) yields,
5 Eo, ; i i i
Ay = R le) (e] + E22 {6 e) (5] + [g) (el ' (! +e7)  (3:22)

Eliminating fast rotating (high frequency) terms that average to zero using the
rotating wave approximation (RWA) [82], we arrive at the final interaction picture
Hamiltonian of a two level atom interacting with a near-resonant classical optical

field (in the absence of damping),
Hi = idga le) {e] + 10 Je) (] + I3 fel}, (3.23)

where we have defined the Rabi frequency of the atom as ()9 = uE / (2#h) [5]
(some authors like to define the same as ()9 = uEy / h). Finally, the transformation
of the Shrodinger picture state vector (3.5) to the interaction picture can be done
as [80],

W), = el ¥ (E)),. (3.24)

Due to our choice of eigen-energies where E; ~ 0 and E, ~ liwyq, and the eigen

value relations (3.21), the above equation simplifies to,

¥ (1), = cg|g) + coe 2" Je) . (3.25)
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3.2.3 Rabi Oscillations

In the interaction picture, the states evolve as per the interaction part of the

Hamiltonian such that [78],
., 0 ~
i [¥(1)), = Fi(t) [¥ (), (3.26)

By substituting for |¥()); and H; from (3.25) and (3.23) respectively, and assum-

ing near-resonant conditions (vanishing detuning) we can arrive at,

. d
zg{cg 18) +celey} =g (cgle) +celg)) - (3.27)

Equating the coefficients of |e) and |g) separately, we obtain,

0
5% = —i0pce, (3.28a)

Differentiating (3.28) again and substituting from the same, we can obtain

92
;%8 = —i0fcy, (3.29a)
aZ

For the atom to be in the ground state, the coefficients should be of the form,
cg = cos(Qpt) and c, = sin(Qpt). Thus, the state occupation probabilities can

now be obtained as,

P, = |cg|2 = cos?(Qgt), (3.30a)
P, = |c.|* = sin?(Qpt). (3.30b)
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It is evident that the amplitude of the incident field determines the frequency of
population oscillation or the Rabi frequency of the atom. This concept is graphi-
cally illustrated in Fig. 3.2(b). From this figure, we can observe that the coherent
electric field incident on the two level atom causes population probability oscil-
lations with periodic time 7r/()y. Moreover, application of the external field for

half the periodic time leads to complete population inversion.

3.3 Overview of Multi-Level Atoms

According to the theory of coherent dynamics, the level populations of N-level
atoms oscillate at N — 1 Rabi frequencies [83,84]. In the quasi-static limit where
temporal phase variations are neglected, the atomic transition from level i — 1
to i is assumed to be induced by near resonant radiation of magnitude E; =
Eipcos(wit). Ejy denotes the amplitude of the ith field whereas w; denotes the
corresponding angular frequency. Within the electric dipole approximation, the
Hamiltonian of an N—level atom which interacts with N — 1 near resonant co-

herent electric fields can be written as [84,85],
A N1
N =Ho— Y uiki (3.31)
i=1
where # is the unperturbed atomic Hamiltonian and y; is the ith dipole moment.
As we are mostly concerned of coherent monochromatic electric fields nearly

resonant with the plasmonic resonance, we use the two level atomic description

to model the quantum dots in our exciton-plasmon nanohybrids.






Chapter 4

Density Matrix Theory and Open
Quantum Systems

Before we move into our detailed analysis of exciton-plasmon nanohybrids where
initially the QD, and consequently the entire MNP-QD nanohybrid, will be mod-
eled as quantum mechanical systems, it is important to get a glimpse of a pow-
erful tool used throughout our work. This section will outline the basics of the
density matrix and its time evolution needed for the analytical models built in

the chapters that follow.

4.1 Density Matrix Theory

Suppose a statistical mixture comprises an ensemble of quantum systems with
independently prepared states |¥,), where n = 1,2, 3... with corresponding sta-
tistical weights Wy,. The states |'¥5) need not necessarily form an orthonormal set.
The statistical operator g, also known as the density matrix, for a mixture of this

form is obtained as [86],

p=Y Wnl|¥n) (¥n|. (4.1)

The selection of a convenient basis {|1),|¢2), [¥3) ...} which fulfills the su-

33
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perposition principle such that,

[Fn) = L ), (4.22)
(Fal = Y {a}", (], (4.2b)

enables recasting (4.1) as [86],
p= 1 War (o} [¥m) (¥unl. (4.3)

As W, represents the probability of finding the system in the state |'¥y,), and as

2
‘ ar(r? ) ‘ represents the probability of finding |¥y,) in |{m), the probability of finding
the system in basis state |im,) can be found using the corresponding diagonal

element pmm of the density matrix such that [86],

2

alD) (4.4)

Pmm = an

The density matrix p is a Hermitian operator. Moreover, it can be used to
obtain the expectation value of any operator Q using the trace of the product of p
and Q as,

(Q) =Tr (pQ), (4.5)

The density matrix is said to contain all physically significant information of a
quantum mechanical system as it can be used to obtain the expectation value of

any operator as above [5,86].

For a quantum mechanical system in a pure state |¢), the density operator is

obtainable as,

0= 1[v) (y|, (4.6)

and a sufficient and necessary condition for a given density matrix p to describe
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a pure system is given by [86],
Tr (pz) = (p)%. 4.7)

Such pure states |ip) can always be expressed as a linear or completely coherent

superposition of basis states.

4.2 Time Evolution of the Density Matrix

4.2.1 Time Evolution in the Schrodinger picture
The time evolution of a quantum mechanical state ¥ (f) can be described by the
Schrodinger equation [79, 86, 87],

.0 A

i () = A¥(1), (4.5)
where # and ¥(t) are the system Hamiltonian and the state in the Schrodinger
picture. Using the quantum mechanical adjoint of (4.8), we obtain [81],

., 0 -
—ihs (¥ ()] = ()|, (49)

Obtaining the time derivative of (4.1) using the product differential rule,
J . d
3P = ang ([¥n(t)) (Fn(t)])

Y, { (% \‘Yn(t)>) (Fn(b)] + [¥n (1)) (% <‘F“(t)‘> }

Substituting from (4.8) and (4.9),

350 = W { =L IE(0) (1a(0)] + 5 [¥a(0)) (0] 7
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{#ip—pH}.

I

Using the standard notation for commutation operation, we arrive at [5],

9. iy .
Sh=— [0, 412)

St =

where ¢ is the system density matrix/operator in the Schrodinger picture.

4.2.2 Moving to the Interaction Picture

Let us now assume that the total system Hamiltonian under a small external time-

dependent perturbation can be written in the form,
H(t) = Ho + V(t). (4.13)

It is assumed that % is time-independent and V(t) is caused by a coherent ex-
ternal electric field incident on the system which causes transitions between the
eigenstates of . The state vectors of the system in the Schrédinger and interac-

tion pictures are related such that [86],
¥ (1) = e~ /Mot [y (f)) . (4.14)
Thus, using the Schrodinger equation (4.8) with (4.14) for a Hamiltonian of the

form (4.13) yields,

in 9 (o0t (1))} = (Ho +D()) e DR (), (415)
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By simplifying the above equation, we can finally obtain the the equation for time

evolution of the interaction picture state vector |'¥ (#));,
. 0 .
i [¥(0); = Vi(0) (1), @.16)

where Vi(t) = e@/MHotP(#)e= (/WA From (4.16) it is evident that the time de-
pendence of |¥(t)); is entirely caused by the external perturbation V(t). More-
over, when V(t) is small compared to o, [¥(t)) will slowly vary against time, en-
abling (4.16) to possess an approximate solution with time-dependent perturba-
tion theory which is more practically calculable compared to its Schrodinger pic-
ture counterpart. Such solvability is achieved due to the removal of rapidly vary-

ing factors due to the Hamiltonian component T from the system states [86].

Applying the unitary transformations (4.18) and (4.14) to the Schrédinger pic-

ture density operator and states in (4.1) yields,
pi(t) = an [¥n(8))1 (Fnlt)l; (4.17)
n

As an operator O(t) in the Schrodinger picture can be transformed to the inter-

action picture using the following transformation,
O ()1 = /WAt O (1)~ (/M Hat, (4.18)

we can substitute p(t) = e~ (1/ hmotﬁl(t)e(i/ MHot to obtain the Liouville equation in

the interaction picture (see appendix C.1),

501(t) = —% [Dr(t), pr(t)] - (4.19)

In the chapters that follow, both Schrédinger and interaction picture interpreta-

tions presented above would be used interchangeably for the ease of calculation.



38 Density Matrix Theory and Open Quantum Systems

Up to this point, our concern was focused on closed quantum systems which
are assumed to be isolated from the external environment. However, realistic
modeling mandates taking the environmental influences, such as bath induced
excitations, decays and dephasing, into account [2]. Thus, the next section will

focus on open quantum systems which interact with the submerging environment.

4.3 Open Quantum Systems

A realistic quantum system would be in continuous contact with its environment,
which leads to changes in the system properties such as energy and polariza-
tion. The gradual evolution of a system initially in a non-equilibrium state, to
a state of equilibrium determined by external environmental (bath) conditions
(such as temperature) is known as a relaxation process. Unlike the Schrodinger
and Liouville equations which denote fundamental equations of motion of closed
quantum systems, such relaxation phenomena represent irreversible processes
attributable to open quantum systems [86]. Two popular approaches of mod-
eling the time evolution of the system density matrix in the presence of such

irreversible phenomena are, the Lindblad and Redfield formalisms.

4.3.1 The Lindblad Formalism

The Lindblad equation [88] is a versatile tool usable for the treatment of irreversible
and non-unitary evolutions ranging from dissipation and decoherence to quan-
tum measurements [87,89]. It is considered the “workhorse of open quantum
systems” due to its well-behaved mathematical properties and relative simplic-
ity [90]. A common example relevant to our context would be the modeling of
spontaneous emission of a two-level atom using the Lindblad formalism. Lind-

blad terms in the time-evolution of an open quantum system represent effects
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caused by 