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Summary

MEtamaterials formed by combining different types of nanoparticles are

gaining increasing research attention due to their unprecedented capa-

bilities to manipulate light at the nanoscale. Metal nanoparticles (MNPs) and

quantum dots (QDs) are two categories of widely studied nanoparticles whose

exceptional photophysical properties synergize when combined. Metal nanopar-

ticles much smaller than the wavelength of the incident light (λ) exhibit strong

dipolar excitations in the form of localized surface plasmon resonances, which

give them a remarkable ability to concentrate optical energy in the nanoscale.

This enables the use of individual MNPs as nanoscale optical cavities that can

focus electromagnetic energy to spots much smaller than λ, overcoming the half-

wavelength size limitation of the conventional optical cavities. This strong elec-

tric field localization can significantly enhance the interactions of metal nanopar-

ticles with excitonic gain media such as QDs. Semiconductor quantum dots have

strong luminescent capabilities widely used in a plethora of applications such

as bio-sensing. QDs possess unique optical properties which make them quite

appealing as in-vivo and in-vitro fluorophores in a variety of diagnoses, and as

the optical gain medium of spasers (the nanoscale counterparts of lasers). When

a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole

coupling occurs between the two nanoparticles giving rise to fascinating optical

signatures in the absorbed and scattered spectra. This coupling makes the two

nanoparticles behave like a single hybrid molecule possessing novel and inter-

esting optical signatures which are tunable using a multitude of system proper-
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ties such as the particle sizes, composition, inter-particle distance and the optical

properties of the submerging medium. When an exciton-plasmon nanohybrid is

optically excited, an additional electric field superposed on the external driving

field is experienced by the MNP due to the dipole moment of the optical transi-

tions in the QD. The resulting electric field induces a dipole moment in the MNP

which in turn alters the field experienced by the QD, leading to a self-feedback.

Due to this interaction, artificial hybrids formed by MNPs placed in nanoscale

proximity to QDs exhibit a variety of optical phenomena that can be exploited

in a wide array of applications such as spasing, optoelectronics, photovoltaics

and bio-sensing. This thesis entails improved and computationally efficient an-

alytical and numerical studies of such exciton-plasmon nanohybrids formed by

illuminating a metal nanoparticle-quantum dot pair, placed in nanoscale vicinity,

followed by a numerical demonstration of their prospects in bio-sensing.
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Chapter 1

Introduction

1.1 Background and Motivation

A metal nanoparticle (MNP) placed in the nanoscale proximity to a semiconduc-

tor quantum dot (QD) forms a tunable hybrid system which exhibits remarkable

optical phenomena upon coherent illumination. Small MNPs exhibit nanocavity-

like optical concentration capabilities due to the presence of strong dipolar exci-

tation modes in the form of localized surface plasmons. QDs possess strong lumi-

nescent capabilities widely used in many applications such as biosensing. When

a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole cou-

pling occurs between the two nanoparticles which gives rise to various optical

signatures in the absorbed and scattered spectra. This coupling makes the two

nanoparticles behave as an exciton-plasmon hybrid molecule [2].

Due to the synergizing impact excitons and plasmons placed in nanoscale

vicinity exhibit on each other, nanohybrids formed by optically coupling MNPs

to QDs possess a potential of emerging as strong candidates for a plethora of

applications [4]. Such applications include bio-sensing, optoelectronics, photo-

voltaics and transmission of quantum information [4–7]. The exciton-plasmon

nanohybrid can also be interpreted as the basic building block of a spaser, which

is the nanoscale counterpart of a laser, proposed by Bergman and Stockman in

2003 [8]. A number of leading laboratories around the globe are currently inves-
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tigating spasers, as its successful realization holds the potential to revolutionize

the field of nano-optics by providing a coherent, intense, ultrafast (with pulse

durations down to a few femtoseconds), source of optical energy concentrated to

nanoscale [8]. A thorough understanding of the physical properties of the basic

building block would definitely be useful in the context of design and realization

of spasers.

In this thesis we theoretically study exciton-plasmon nanohybrids formed by

coupling semiconductor quantum dots to metal nanoparticles placed in nanoscale

proximity, with the aid of external coherent illumination. We aim at devising

improved analytical models that account for the non-classical plasmonic effects

observable at nanoscale, and their impact on the optical properties of the nanohy-

brid. Our improved analytical treatments offer the luxury of simulating exciton-

plasmon nanohybrids at much lesser levels of computational complexity com-

pared to the conventional, local response approximation based, numerical Bloch

equation solving approaches widely followed in the literature, and the ab initio

methods such as the density functional theory. Following our theoretical study,

we numerically demonstrate the vivid prospects of exciton-plasmon nanohybrids

in minimally-invasive bio-sensing applications, namely, in-vitro and in-vivo early

cancer screening.

1.2 Research Aims

Development of a generalized nonlocal optical response method assisted cav-
ity quantum electrodynamical model of an MNP-QD hybrid molecule

Hybrid molecules made of metal nanoparticles (MNPs) coupled to semiconduc-

tor quantum dots (QDs), under the influence of an external driving field, have

been extensively studied in literature, using the local response approximation

(LRA) based numerical models. However, such previous work in this area were
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not adequate to explain some experimental observations such as the size depen-

dent resonance shifts of metal nanoparticles which become quite significant with

decreasing diameter.

The nonlocal response of metallic nanostructures which is hitherto disregarded

by many studies currently available in the literature is a main reason for such non-

classical effects. The generalized nonlocal optical response (GNOR) model pro-

vides a computationally less demanding path to incorporate such properties into

the theoretical models. It allows unified theoretical explanation of observed ex-

perimental phenomena which previously seemed to require ab initio microscopic

theory. In this stage, we aim to analytically model an MNP-QD hybrid molecule

incident by a coherent external driving field, as an open quantum system, using

a GNOR assisted cavity-QED approach.

Analysis and comparison of different resonator based exciton-plasmon nanohy-
brids

In this stage, we aim to propose a simple, elegant relative figure of merit (RFoM),

which focuses on maximizing the scattered intensity and the refractive index sen-

sitivity of nanohybrids, to rank them in the order of their scattering prowess

for sensing applications. The proposed RFoM will be used to analyse the opti-

cal spectra of noble, transition, post transition and alkali metal based MNP-QD

nanohybrids using the representative metals Au, Ag, Cu, Al and Na, adopting

the generalized nonlocal optical response (GNOR) method based cavity QED ap-

proach developed in the earlier stage.

This stage also aims to assess the suitability of MNP-QD nanohybrids for scat-

tered intensity based sensing applications, in comparison to the individual con-

stituents.
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Investigating the effects of nonlocal plasmonic response on coherent dynamics
of vicinal excitons

In this stage, we aim to analytically characterize the influence of a neighboring

metal nanoparticle on the behavioral trends of a quantum dot using a GNOR

based approach, taking the MNP distance dependent modifications to the QD

population relaxation and dephasing rates into account. Attempts to incorporate

MNP nonlocal effects in the analytical characterization of vicinal excitons found

in literature utilize the phenomenological hydrodynamic model and assume the

absence of MNP interband effects. Moreover, they are only applicable to narrow

parameter regions. In this stage, we will present an analytical characterization

which overcomes these drawbacks and lends to the perusal of the system over

wide continua of various parameters. This enables us to get an elevated view at

a much lesser level of complexity compared to the conventional LRA based nu-

merical methods or the ab initio approaches of accounting for the nonlocal effects.

Improved modeling of plasmonic metaresonances

Plasmonic metaresonances (PMRs) form a class of optical events gaining increas-

ing popularity due to their promising prospects in sensing and switching applica-

tions. Unlike the basic excitonic and plasmonic resonances in MNP-QD nanohy-

brids, PMRs occur in the space/time domain. A nanohybrid experiences PMR

when system parameters such as the QD dipole moment, MNP-QD centre sepa-

ration or the submerging medium permittivity reach critical values, resulting in

the plasmonically induced time delay of the effective Rabi frequency experienced

by the QD asymptotically tending to infinity. Theoretical analyses of PMRs avail-

able in the literature utilize the local response approximation (LRA) which does

not account for the nonlocal effects of the MNP, and neglect the MNP dependence

of the QD decay and dephasing rates which hinder their applicability to QDs in

the close vicinity of small MNPs. In this stage, we aim to address these limita-
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tions using an approach based on the GNOR formalism. We also aim to suggest

prospective applications of PMR based nanoswitches, and mimic an example of

the in vivo operation of PMR based nanoswitches using a two-dimensional skin

tumour model.

Further investigation of the bio-sensing prospects

In the final stage, we aim to theoretically demonstrate the prospect of using ther-

moresponsive polymer capped MNP-QD nanohybrids for minimally invasive

detection of skin cancer tissue and for feedback control of tumor temperature

in localized hyperthermia therapy conducted using gold nanorods, to minimize

damage to the surrounding healthy tissue, using the GNOR based cavity QED

model developed in stage 1.

1.3 Thesis Outline

This thesis comprises twelve chapters which are organized as follows:

Chapter 1 introduces the topic of this thesis by outlining the background and

motivation, which are followed by the research objectives. A detailed literature

review is then presented in the chapters 2, 3 and 4, to equip the reader with the

analytical tools utilized in the chapters that follow. In chapter 2, we present a de-

tailed and rigorous overview of three different approaches of modeling localized

surface plasmons in metal nanoparticles, namely, the local response approxima-

tion, the hydrodynamic and the generalized nonlocal optical response models.

Chapter 3 presents the quantum mechanical formalism used to treat quantum

dots as artificial atoms with discrete levels of energy that interact with incom-

ing radiation followed by chapter 4, where the density matrix formalism and

methodologies of accounting for the environmental interaction of a quantum me-

chanical system are discussed.
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Chapter 5 presents a generalized nonlocal optical response method based fully

analytical approach to model the behaviour of an exciton in a semiconductor

quantum dot, placed in nanoscale proximity to a metal nanoparticle. Chapter

6 utilizes the analytical model developed in chapter 5 to peruse the system over

wide continua of parameters while comparing the results to those obtained us-

ing the conventional local response approximation, followed by chapter 7 which

presents a detailed numerical analysis of the plasmonic metaresonances in exciton-

plasmon nanohybrids. The astute reader will notice that the thesis chapters do

not follow the exact order of the research aims to enhance the readability and

flow.

In chapter 8, we devise a quantum mechanical model for the entire exciton-

plasmon nanohybrid utilizing a GNOR assisted cavity QED formalism. In chap-

ter 9 that follows, we numerically analyse the Rayleigh scattering spectra of dif-

ferent nanoresonator based nanohybrids using the cavity QED formalism intro-

duced in the earlier chapter. In chapter 10, we demonstrate the superior and

versatile scattering prowess of exciton-plasmon nanohybrids compared to the in-

dividual constituents and introduce a relative figure of merit (RFoM) that can

be utilized to arrange a set of nanohybrid configurations in the order of their

scattering prowess. In chapter 11 we numerically demonstrate the prospects of

exploiting the interaction of exciton-plasmon nanohybrids with incoming radia-

tion for minimally invasive in-vivo and in-vitro cancer diagnoses and monitoring

procedures. Finally in chapter 12, we summarize the research contributions of the

thesis and outline the prospective future research stemming from the presented

contributions.



Chapter 2

Localized Surface Plasmons

Figure 2.1: (a) The Lycurgus cup [1] made of ruby glass by the ancient Romans.
In daylight, when light is reflected off the cup, it appears in green, whereas when
light is shone within the cup and transmitted through the ruby glass, it appears in
red. (b) Formation of surface plasmons in a small metal nanoparticle embedded
in an oscillating electric field.

Localized surface plasmons (LSPs) are non-propagating modes of excitation

of conduction electrons in metallic nanostructures which form due to their cou-

pling with an externally incident oscillating electromagnetic field [2]. An effective

restoring force is exerted on the electrons (driven by externally incident field) due

to the curved surface of the particle which leads to an amplification of the electric

field both inside and in the near-field of the outside. The resonant condition of the

above phenomenon is termed the localized surface plasmon resonance (LSPR) [9].

For noble metal nanoparticles such as silver and gold, LSPR resides in the visi-
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ble region of the electromagnetic spectrum resulting in the exquisite bright colors

exhibited by such nanoparticles both in reflected and transmitted light, owing

to the resonant enhancement in absorption and scattering [9]. Such nanoparti-

cles own a rich history which dates back to the times of ancient Romans where

they were used in the staining of glass for windows and ornamental cups [10].

A classic example would be the Lycurgus cup made of ruby glass by the ancient

Romans in the fourth century, depicted in Fig. 2.1(a).

When the particle dimensions are much smaller than the wavelength of the

incident light as depicted in Fig. 2.1(b), the interaction can be analyzed using

the simple quasi-static approximation. For such particles, the phase of the elec-

tromagnetic field would be apparently constant over the particle volume due to

its miniature size, enabling one to assume that the spatial field experienced by

the particle takes an electrostatic form [5]. Once the solutions to the scattering

problem under quasi-static field distribution are known, the harmonic time de-

pendence can then be added to arrive at their final form. It has been shown that

this lowest-order approximation of the full scattering problem provides solutions

that adequately describe the behavior of optically illuminated particles of sizes

below 100 nm for a multitude of purposes [9].

2.1 The Local Response Approximation

We first analyse the interaction of a metal nanoparticle (MNP) with an applied

optical field using the conventional local response approximation (LRA). We con-

sider a homogeneous, non-magnetic, isotropic metal sphere of radius a and di-

electric permittivity εm situated at the origin of the coordinate system. The MNP

is driven by an electromagnetic wave with angular frequency ω which propa-

gates in the x̂ direction, comprising a time-varying electric field along ẑ as in-

dicated in Fig. 2.1(b). The submerging medium is assumed to be isotropic and
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non-absorbing with a dielectric permittivity constant εb.

The common basis of theoretical modeling of plasmonic phenomena in such

metallic systems is the set of Maxwell’s equations. In the linear regime of our

interest, the displacement field ~D inside the MNP at position vector~r is related to

the electric field ~E as [11],

~D(~r) = ε0

∫
d~r′εm(~r,~r′, ω)~E(~r′) (2.1)

where ε0 denotes the vacuum permittivity and the nonlocal permittivity of the

metal is denoted by εm(~r,~r′, ω). In the LRA, the nonlocal effects of the MNP are

neglected, hence εm(~r,~r′, ω) = δ(~r −~r′)εm(ω), which enables straightforward

evaluation of the integral (2.1) as, ~D(~r) = ε0εm(ω)~E(~r), where εm(ω) is spatially

constant and is commonly modeled using the Drude-like dielectric function,

εm(ω) = εcore(ω)−
ω2

p

ω(ω + iγ)
. (2.2)

In the above equation, ωp and γ denote the bulk plasma frequency and the bulk

damping rate of the metal, respectively. The response from the bound ions and

electrons that account for effects such as inter-band transitions is denoted by εcore.

Since we are interested in very small MNPs in the order of 10 nm which are

much smaller than the wavelength of the incident optical field (390− 750 nm) [5],

we can assume that the particle experiences a static field ~Edrive = E0ẑ, under

the quasi-static approximation, with the aim of adding the sinusoidal time depen-

dence later. In order to calculate the response electric field (~Eres) generated by the

MNP, we solve Gauss’ law in the absence of charges, ∇.εm~E = 0, where ~E de-

notes the electric field experienced by an arbitrary point in space with a position

vector~r. When substituted with the electric scalar potential V which abides by

the relationship ~E = −∇V , our problem reduces to solving the Laplace’s equation

∇2V = 0 [5,9]. In a system with azimuthal symmetry such as ours, the solution to
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the Laplace’s equation can be obtained as a sum of Legendre polynomials presented

in terms of spherical coordinates as follows, according to the working elaborated

in Appendix A.1 [9],

V(r, θ) =
∞

∑
n=0

[
Anrn + Bn

(
1
r

)n+1
]

Pn [cos(θ)] , (2.3)

where the coefficients An and Bn are yet to be determined using boundary condi-

tions and Pn(x) is given by the Rodrigue’s formula [12],

Pn(x) =
1

2nn!

(
d

dx

)n (
x2 − 1

)n
(2.4)

Using the substitutions of the form An → An/an and Bn → Ban+1 and separating

out the potentials inside and outside the MNP, we can write (2.3) as,

V(r, θ) =

∑∞
n=0

[
An
( r

a
)n

+ Bn
( a

r
)n+1

]
Pn [cos(θ)] , for r < a

∑∞
n=0

[
A′n
( r

a
)n

+ B′n
( a

r
)n+1

]
Pn [cos(θ)] , for r ≥ a

(2.5)

Using appropriate boundary conditions (see Appendix A.2), the following solu-

tion for the electric potential is obtained [5],

V(r, θ) =

−
1

εeff
E0r cos(θ), for r < a

βLRAa3E0
1
r2 cos(θ)− E0r cos(θ), for r ≥ a

(2.6)

where εeff = (2εb + εm)
/

3εb and

βLRA =
(εm − εb)

(2εb + εm)
(2.7)

The term βLRA is termed the Clausius Mossotti factor (in this case, obtained under

the local response approximation) which is directly proportional to the polariz-
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ability of the MNP [9, 13]. Using the relation ~E = −∇V , the total electric field is

obtained as (see Appendix A.3) [2, 5],

~E =

−
1

εeff
~Edrive, for r < a

~Eres + ~Edrive, for r ≥ a.
(2.8)

where

~Eres(r ≥ a) =
βLRAa3

r3

[
3(~Edrive.r̂)r̂− ~Edrive

]
. (2.9)

with r̂ being the radial unit vector of our position of interest in space.

It is now evident that 1
/

εeff and βLRA are the two functions we need to know,

in order to evaluate the response of a metal nanoparticle to an external field, in

the quasi-static limit. The screening-factor 1
/

εeff governs the field inside the MNP,

or the absorption properties whereas the Clausius Mossotti factor βLRA governs

response outside the MNP, or the scattering properties [5].

The LRA has so far being the most prevalent and and commonly applied

constitutive description to model localized surface plasmons [11]. Studies have

shown that it successfully explains a multitude plasmonic phenomena and exper-

iments based on, optical far-field measurements [14,15], electron energy loss spec-

troscopy (EELS) [16, 17], cathodoluminescence [18, 19] and near-field microscopy

[20]. It has even been able to successfully explain plasmonic particles with nanome-

ter sized separations [21] and plasmonic effects in the two-dimensional material

graphene [11, 22]. Our extensive literature review on exciton plasmon nanohy-

brids suggested that, almost all recent studies of quantum dots subjected to near

fields of MNPs [23–30] utilize the LRA to model the MNP, without taking the

nonlocal plasmonic effects into account.
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2.2 Nonlocal Response in Metal Nanoparticles

2.2.1 Importance of Nonlocal Modeling

Despite the merits listed above, the sufficiency of modeling plasmons using the

classical LRA, which overlooks the nonlocality of the MNP, has appeared ques-

tionable due to several reasons [11]. One example is its insufficiency in account-

ing for the MNP size-dependent surface plasmon line-width broadening exper-

imentally observed in metal clusters and small MNPs [31–33]. Other examples

include MNP size-dependent resonance shifts observed in optical [34, 35] and

EELS [36,36] measurements of noble metal nanoparticles and the multipole plas-

mons [37] supported by metal-vacuum interfaces due to electron spill-out be-

yond the classical metal boundary [11]. It has also been shown that thin metal

films support resonant excitations above the plasma frequency due to the exis-

tence of confined longitudinal waves [38, 39] which are not accounted for un-

der the LRA [11]. Moreover, several recent experiments based on MNP dimers

conducted with particles placed in sub-nanometer proximity have revealed that

plasmonic effects certainly go beyond the LRA [11, 40–43].

As a metal nanoparticle gets increasingly smaller, the ratio of the number

of surface atoms to the number atoms in the bulk or core of the particle grows

larger, causing the surface effects to dominate the physics of the nanoparticle [5].

Studies have shown the origin of the size dependence in nonlocal response as

the smearing of surface charges, induced by an external illumination, over a fi-

nite distance (few Å) into the metal due the presence of longitudinal waves [13].

However, the classical LRA assumes that the charges induced by external illumi-

nation reside only on the geometric surface of a metal nanoparticle [11]. Due to

such assumptions, nanoplasmonic experiments defy explanations with the clas-

sical LRA [11, 34, 36, 44, 45].

Experimentally observed effects such as the size dependence of the surface
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plasmon resonance energy, which strengthen as the particle size decreases, are

believed to be consequences of the quantum properties of the MNP free electron

gas [46]. Theoretical explanations utilizing ab initio approaches such as density

functional theory (DFT) [47–50] are capable of accurately describing the micro-

scopic interaction effects of electrons in metals. Nevertheless, these methods

put forth extensive computational demands which hinder their applicability to

generic plasmonic systems beyond few nanometers in size [51] (where not a

handful, but a large number of electrons contribute to the optical response), even

with strong approximations such as time dependent local density approxima-

tion [49]. This is because they use extremely resource greedy approaches such as

solving the Shrödinger equation for a large, but finite number of electron wave

functions for all atoms considered in the system.

Surpassing the LRA using nonlocal response theories such as the nonlocal hy-

drodynamic model or the generalized nonlocal optical response (GNOR) model

would be a simpler and computationally much less demanding alternative to the

ab initio calculations [11, 52]. Combining these nonlocal models with fully ana-

lytical characterizations of exciton-plasmon nanohybrids enables the generation

of insightful fully analytical models and the optimization of the large parame-

ter space associated with device designing while taking the nonlocal effects into

account, a functionality not fully offered by the methods currently available in

literature [13].

The concept of nonlocal response in metal nanoparticles was first introduced

phenomenologically, and was later based on the semi-classical hydrodynamic

model (HDM) [13,44]. This approach has been able to theoretically describe size-

dependent resonance shifts of noble metal nanoparticles and gap-dependent res-

onance shifts in particle-film systems [53]. The hydrodynamic approach is bene-

ficial in the theoretical studies of generic plasmonic systems with large (> 10 nm)

feature sizes [11] which cannot be practically studied with ab initio approaches
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due to extensive computational demands.

The generalized nonlocal optical response (GNOR) model emerged as a re-

cent generalization and an extension of the aforementioned HDM model. It goes

beyond HDM by taking into account, both the convection current and electron

diffusion phenomena in the MNPs [44]. It better captures both size dependent

localized surface plasmon resonance shifts and line-width broadening of the ex-

tinction cross section which strengthen with decreasing MNP dimensions. Ex-

periments based on dimers with few nanometer sized gaps have revealed that

the GNOR model yields results in plausible agreement with the experimentally-

measured spectra, without the need of invoking the quantum mechanical effect

of tunneling, at an extremely less level of computational complexity [11, 13].

In the next two sections, we will walk through the nonlocal modeling of local-

ized surface plasmons using the hydrodynamic and GNOR models, respectively.

2.2.2 Hydrodynamic Model

Let us now walk through the derivation of the exact nonlocal Clausius Mossotti fac-

tor of a spherical metal nanoparticle embedded in a non-absorbing homogeneous

dielectric medium which was first presented by Raza et al. in [11, 36], initially as-

suming that the free electrons in the MNP are characterized by the semi-classical

hydrodynamic model. This model accounts for the nonlocal effects of the MNP

while neglecting the effects of electron spill-out due to the finiteness of the con-

fining potential [11,36]. As detailed derivations of the hydrodynamic model have

been reported in earlier studies [54–56] this section will mainly focus on the es-

sential steps of nonlocal characterization of localized surface plasmon resonances

based on the HDM model.

Maxwell’s equations of our interest for a non-magnetic material can be ex-
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pressed as [12, 57],

∇.~D = −en, (2.10a)

∇.~H = 0, (2.10b)

∇× ~E = iωµ0~H, (2.10c)

∇× ~H = −iω~D +~J (2.10d)

where n denotes the free-electron density, e is the elementary charge, µ0 is the

vacuum permeability, ~J denotes the free-electron current and ~H is the magnetic

field. The displacement field is defined in terms of the bound or core electron

response of the MNP, εcore, as ~D = ε0εcore~E. Obtaining the divergence of the left

and right hand sides of (2.10d) and using (2.10a), we can arrive at the continuity

equation which relates the free-electron density to the free-electron current as

follows [36],

∇.~J = −iwen (2.11)

The fundamental assumption of the hydrodynamic model is that the many-

electron energy and dynamics of a metal are characterized by the electron den-

sity (a scalar field n(~r, t)) and the hydrodynamic velocity (a vector field ~v(~r, t)),

respectively [11], using which the hydrodynamic equation of motion and the con-

tinuity equation for charge conservation are expressed as [11, 54],

[
∂

∂t
+ ~v.∇

]
~v = − e

m
[~E + ~v× ~B]− 1

m
∇ δ

δn
G[n]− γ~v, and (2.12a)

∂

∂t
n = −∇.(n~v), (2.12b)

where m denotes the mass of an electron. The first term on the right hand side

of the equation of motion (2.12a) relates to the Lorentz force, whereas the sec-

ond term of the same is related to the internal kinetic energy of the electron gas.

The last term which accounts for the damping has been added phenomenolog-
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ically [11]. The simplest and most popular approach is to obtain the functional

G[n] using the Thomas-Fermi model, which accounts only for the kinetic energy

of the electron gas [11, 54]. By solving equations (2.12b) and (2.12a) using the

detailed approach presented in the references [11, 54, 56], the following coupled

electromagnetic equations of the hydrodynamic model can be obtained [11,58,59],

∇×∇× ~E(~r, ω) =
(ω

c

)2
εcore~E(~r, ω) + iωµ0~J(~r, ω), (2.13a)

σ~E(~r, ω) =
κ2

ω(ω + iγ)
∇[∇.~J(~r, ω)] +~J(~r, ω). (2.13b)

In the high frequency limit (ω � γ) of our interest, κ = 3/5v2
F, where vF is

the Fermi-velocity. The Drude conductivity σ is related to the Drude permittiv-

ity equation (2.2) as εm(ω) = εcore + iσ
/
(ε0ω) and the response of the bound

electrons can be obtained from the experimentally measured bulk permittivity

εexp(ω) (such as the dataset by Johnson and Christy [60] used in this thesis) us-

ing the recipe εcore(ω) = εexp(ω) + ω2
p
/
(ω2 + iγω) [11]. It is readily observable

that (2.13b) reduces to the Ohm’s law when κ → 0.

Pressure of the electron gas is taken into account in the above hydrodynamic

description. This gives rise to compression (longitudinal) waves, leading to spa-

tial dispersion which is truly observable in nanoplasmonic experiments [36]. The

corresponding longitudinal wave vector is characterized by [11, 52, 61],

k2
L = εm(ω)

/
ξ2, (2.14)

where the nonlocal parameter ξ is defined in the hydrodynamic model abides by

the relationship,

ξ2(ω)
∣∣
HDM =

εcore(ω)κ2

ω(ω + iγ)
(2.15)

We are interested in metal-dielectric interfaces where an additional bound-

ary condition should augment Maxwell’s boundary conditions. This additional
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boundary condition which states that the normal component of the free-electron

current density must vanish, can be derived by neglecting the spill-out of elec-

trons [36, 57, 59].

Similar to the electric scalar potential V defined as ~E = −∇V , the current

scaler potential A is characterized by the relation, ~J = −∇ψ [36]. Using these

relations with hydrodynamic equations (2.10), (2.11) and (2.13b), the following

equations governing the scalar potentials inside the MNP can be obtained as [36,

62],

(
∇2 + k2

L

)
n = 0, (2.16a)

∇2V =
e

ε0εcore
n, (2.16b)

ψ =
1

iω− γ

(
ε0ω2

pV − eκ2n
)

. (2.16c)

The scalar potential V must satisfy the usual Laplace’s equation ∇2V = 0 due to

the current density ~J and electron density n vanishing in the surrounding dielec-

tric, and the general solutions to the electric scalar potential and the free electron

density can be obtained as [36],

n(r < a) = ∑
l,m

Al j1(kLr)Ylm(θ, φ), (2.17a)

n(r ≥ a) = 0, (2.17b)

V(r < a) = ∑
l,m

[
Dlrl − Al

e
ε0εcorek2

L
j1(kLr)

]
Ylm(θ, φ), (2.17c)

V(r ≥ a) = ∑
l,m

[
Blrl + Clr−(l+1)

]
Ylm(θ, φ), (2.17d)

where Al to Dl are coefficients to be determined. The functions j1 and Ylm denote

the spherical Bessel function of the first kind (of angular-momentum order 1)

and spherical harmonics, respectively. Following the same quasi-static approach
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as in section 2.1 where limr→∞ V = −E0z = −E0r cos(θ), all orders of l, m in the

summations in equation (2.17) can be excluded except (l, m) = (1, 0) [36]. Apply-

ing Maxwell’s boundary conditions with the hydrodynamic additional boundary

condition for the scalar potentials and following the usual approach to introduc-

ing the Clausius-Mossotti factor outlined in section 2.1 and reference [9], its gen-

eralized form which takes the nonlocal effects of the MNP into account can be

obtained [36],

βNL =
εm − εb(1 + δNL)

εm + 2εb(1 + δNL)
, where, (2.18a)

δNL =
εm − εcore

εcore

j1(kL)

kLaj′1(kLa)
, (2.18b)

where prime denotes the differential with respect to the argument. It can be

readily observed that when κ → 0, δNL → 0 and the classical, size-independent

Clausius-Mossotti factor is retrieved [36].

2.2.3 Generalized Nonlocal Optical Response Model

Although the hydrodynamic model we discussed above accounts for the convec-

tive currents due to pressure, it neglects contributions of electron diffusion. The

generalized nonlocal optical response (GNOR) model extends the hydrodynamic

theory to account for electron diffusion using the following constitutive relation

for current density (2.13b) as [11, 52],

[
κ2

ω(ω + iγ)
+

D
iω

]
∇[∇.~J(~r, ω)] +~J(~r, ω) = σ~J(~r, ω) (2.19)

The above equation can be arrived at by setting κ2 → κ2 + D(γ− iω) in (2.13b),

where D is the diffusion constant on the MNP. Thus, the nonlocal parameter in
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the GNOR model can be found as [11, 52],

ξ2(ω)
∣∣
GNOR =

εcore[κ2 + D(γ− iω)]

ω(ω + iγ)
, (2.20)

using which the longitudinal wave vector in the GNOR model can be obtained.

Thus we can obtain the nonlocal polarizability βNL in the GNOR approach bu

substituting kL = εm(ω)
/ [

ξ2(ω)
∣∣
GNOR

]
in (2.18).

The factor κ ∝ vF is associated with the pressure waves in the electron gas

whereas the diffusion constant D relates to the charge carrier diffusion. While

the former (κ) is prevalently known to cause blue-shifts (shifting resonances to-

wards higher frequencies), the latter (D) causes line-width broadening in the

plasmon resonances in metals. Thus, the GNOR theory unites both quantum-

pressure effects and induced-charge diffusion kinetics [52], which enables it to

successfully account for the main features observed in recent nanoplasmonic ex-

periments [63–65].

It has recently been shown that nonlocal effects may manifest over distances

far exceeding atomic dimensions and hence become comparable metallic struc-

ture dimensions such as the MNP radius or the gap distance of an MNP dimer,

as a result, it has been proven that the generalized nonlocal optical response even

dominates pure quantum mechanical effects in optical frequency regime such as

the anticipated effect of quantum mechanical tunneling currents in dimers placed

at sub-nanometer gaps [52].

Due to all aforementioned merits of the GNOR theory including its ability to

capture the experimentally observed plasmonic phenomena at an extremely low

computational cost, we utilize the GNOR model for the preceding nonlocal mod-

eling of our exciton-plamon nanohybrids while comparing the results to those

obtained using the conventional LRA as and when needed.





Chapter 3

Quantum Dots as Artificial Atoms

Figure 3.1: (a) Conceptual illustration of an exciton in a quantum dot which com-
prises an electron-hole pair coupled via Coulombic interaction. (b) Visualization
of the one dimensional analogue of the infinite square well or the “particle in a
box” model

.

Even though the use of surface plasmons in noble metals can be traced to an-

tiquity as we outlined in chapter 2, the semiconductor quantum dot is a much

later development [66]. Present semiconductor physics is increasingly focusing

on artificially made semiconductor systems of reduced dimensionality which ex-

hibit fascinating properties that are entirely different from those of solid-state

bulk materials [67]. Semiconductor quantum dots are currently being used and

considered for a wide range of applications ranging from solar-energy conversion

to biological imaging [68]. They have quickly appeared as attractive alternatives

to organic fluorescent dyes for bio-imaging applications because of their high re-

sistance to photobleaching and bright, narrow emission that has enabled highly

sensitive real-time observation of molecules [68].

21
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Quantum dots form a special class of quasi zero-dimensional semiconductor

structures, which can be modeled by a single electron wavefunction confined in

all three spatial dimensions by the particle boundaries that serve the purpose of

infinite potential energy barriers that prevent the electron from escaping [69, 70].

Even though the single-electron wavefunction of a QD extends over thousands

of lattice atoms, the electron-hole pair which is termed as an exciton exhibits a

quantized and coherent behaviour [69]. It has been shown that the superposition

of the ground and excited states of these quasi zero dimensional QDs tends to de-

phase at rates slower than those of higher-dimensional semiconductor structures.

Moreover, QDs generally possess larger dipole moments (50-100 fold) compared

to atoms. Owing to these properties, the aforementioned coherence can be de-

tected and controlled optically, which allows scientists to manipulate the wave-

function of a single quantum dot for a multitude of diverse applications [69, 71].

In non-zero dimensional semiconductor systems such as quantum wires, quan-

tum wells and bulk semiconductors, the optical excitation raises an energy con-

tinuum due to the exciton’s freedom of movement inside the crystal. However, in

QDs which can be approximated as point-like objects, the exciton is completely

localized and can also be strictly limited to a single state, owing to the ability

to forbid unwanted states that lie outside the desired bandwidth using selec-

tion rules and optical polarization [69]. Once such states are inaccessible, we can

model the QD as a two-level atom-like system where an exciton is either present

(excited state) or absent (ground state) [2]. Given the existence of sufficiently long

phase coherence time, a strong coherent field has the ability to rotate the Bloch

vector of such systems, driving them completely to the excitonic state and back

to the ground state, which is termed known as a Rabi oscillation [69, 72].
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3.1 The Infinite Square Well and Exciton Formation

A characteristic feature of semiconducting material is the existence of a band gap

in the allowed electronic energy levels, which is usually the difference in energy

between the valence and conduction band electrons. When energy is applied to

such materials in form of an electric field, electrons in the valence energy band

tend to absorb energy and move to the conduction band, once in which they can

flow through the material. [5].

As quantum dots (QDs) are very small three-dimensional systems with di-

mensions less than the de Broglie wavelength of slow electrons, quantum confine-

ment effects are quite prominent. Hence the electronic energy states constitute a

discrete series similar to those of atoms [73] and the conduction band of QDs can

be modelled using the “particle in a box” model or as an electron trapped in an

infinite square well potential. In this model, the wave function of the trapped

electron is given by [5] (see appendix B.1),

Ψ(nx, ny, nz) =

√
8

lxlylz
sin
(

nxπx
lx

)
sin
(

nyπy
ly

)
sin
(

nzπz
lz

)
, (3.1)

with the associated energy,

E(nx, ny, nz) =
π2h̄2

2m

[(
nx

lx

)2

+

(
ny

ly

)2

+

(
nz

lz

)2
]

(3.2)

where nx, ny, nz are the quantum numbers of the state Ψ, lx, ly, lz are potential

well dimensions, (x, y, z) is the particle position, h̄ is the reduced Planck constant

and m is the electronic mass. For the ease of visualization, the one dimensional

analogue of the above model is illustrated in Fig. 3.1(b). From (3.2) it is readily

observable that, irrespective of the physical shape of the semiconducting particle,

the separation between the energy levels increases as the dimensions are made

smaller, enabling the creation of a quantum dot, where only the lowest conduc-
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tion band energy level is effectively reachable with all higher levels being beyond

reach for typical electrons. Under near resonant monochromatic optical illumi-

nation, the first electron which reaches the conduction band will further detune

the valence-conduction energy gap away from the incident frequency, prohibiting

another electron to reach the conduction band [5]. This creates a hole in the va-

lence band in the void where the electron previously resided. Due to the Coulom-

bic attraction between the electron and the hole, they will act as a quasi-particle

known as the exciton [74] as depicted in Fig. 3.1(a). As long as energy (related to

frequency) of the source of radiation is closely resonant with the excitonic band-

gap, we can safely approximate the QD as an effective two-level atom with the

two state ground (exciton absent) and excited (exciton present) [5].

3.2 Two-Level Atoms

Pertaining to our earlier explanations, it is clear that a judicious choice of the

polarization and frequency composition of the exciting optical field can allow

us to realize effective two (or if necessary three) levels atoms from QDs. In the

context of this thesis, we mainly focus on the simple but extremely useful and

versatile two-level model which can include the complex structure of such atom-

like systems into just two parameters for effective analytical modeling. These two

characteristic parameters are, the energy splitting between the two levels of the

un-driven atom and the transition dipole moment that couples it to the externally

incident driving field. It is evident that a detailed understanding of the related

physics and spectroscopy is required for the reduction of a real system to a two-

level description, and that care must be taken at the laboratory for the successful

realization of a two-level atom such a system. Let us now look into the two level

atomic model in detail.
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3.2.1 The Unperturbed Atomic Hamiltonian

Let us define ground and excited states (the basic eigenstates) of the unperturbed

atomic Hamiltonian as [5],

|g〉 =

1

0

 and |e〉 =

0

1

 , (3.3)

which possess the energies Eg and Ee respectively. They are orthonormal such

that,

〈e|g〉 = δeg, (3.4)

and form a linearly independent basis set to the Hilbert space of the atomic

Hamiltonian, in the absence of perturbations, where any state vector of the atom

can be written as a linear combination [75]. The atomic transition frequency

would then be ωqd = (Ee − Eg)/h̄. The corresponding (time-dependent) two

level state vector in the Schrödinger picture would be [75],

|Ψ(t)〉s = cg |g〉 e−iEgt/h̄ + ce |e〉 e−iEet/h̄, (3.5)

where |cg|2 and |ce|2 denote the probabilities of electron occupation in the ground

and excited states, which also represent the probabilities of energy measurements

yielding the values Eg and Ee. For the normalization of |Ψ〉s [75],

|cg|2 + |ce|2 = 1. (3.6)

The eigenstates |g〉 and |e〉 relate to the atomic HamiltonianHa as [75],

Ha |g〉 = Eg |g〉 (3.7a)

Ha |e〉 = Ee |e〉 . (3.7b)
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Figure 3.2: (a) Energy level illustration of a two-level atom interacting with an
externally incident coherent electromagnetic field (b) Population probability os-
cillations of the same two level atom at Rabi frequency Ω0

Multiplying both sides of (3.7a) and (3.7b) by 〈g| and 〈e| respectively, we can

arrive at, Ha |g〉 〈g| = Eg |g〉 〈g| and Ha |e〉 〈e| = Ee |e〉 〈e|. By adding these

equations together and utilizing the completeness relation of the basis (|g〉 〈g|+

|e〉 〈e| = I, where I is the identity matrix), we arrive at the Hamiltonian of the

unperturbed two level atom,

Ha = Eg |g〉 〈g|+ Ee |e〉 〈e| , (3.8)

which will take the following form in the matrix representation,

Ha =

Eg 0

0 Ee

 . (3.9)

Throughout this work, as we are concerned of the energy differences in the sys-

tem, we choose the zero energy level of our atom to lie in the close vicinity of Eg.

Hence the unperturbed atomic Hamiltonian would take the form,

Ĥa ≈ h̄ωqd |e〉 〈e| , (3.10)

given that the frequency separation between the ground and excited levels are

defined as ωqd.
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3.2.2 Interaction with an Oscillating Electric Field

Let us now look at the interaction between a two level atom which is modeled

quantum mechanically and an oscillating coherent electric field which is modeled

classically, as depicted in Fig. 3.2(a). The system Hamiltonian for this scenario

would take the form,

Ĥ = Ĥa + Ĥint, (3.11)

where Ĥa is the unperturbed atomic Hamiltonian we derived earlier and,

Ĥint = −d̂.~E (3.12)

is the dipole interaction energy between the atom. The externally incident field

is denoted by ~E = E0 cos(ωt)ẑ and the transition dipole moment is d̂ [76, 77]. As

appropriate to transitions between states of definite parity, the diagonal elements

of the dipole moment operator are obtainable as 〈g| d̂ |g〉 = µgg and 〈e| d̂ |e〉 = µee

would both be zero. The dipole moment operator would be characterized by its

off diagonal matrix elements µeg = 〈e| d̂ |g〉 = µge = 〈g| d̂ |e〉 = µ due to atomic

symmetry [77].

Exploiting the completeness relation of the basis vectors (|g〉 〈g|+ |e〉 〈e| = I)

on (3.12), we can write,

Ĥint = −{|g〉 〈g|+ |e〉 〈e|}d̂.~E{|g〉 〈g|+ |e〉 〈e|}, (3.13)

the expansion of which yields,

Ĥint =− {|g〉 〈g| d̂ |g〉 〈g|+ |e〉 〈e| d̂ |g〉 〈g|+ |g〉 〈g| d̂ |e〉 〈e|+ |e〉 〈e| d̂ |e〉 〈e|}.~E.

Using 〈g| d̂ |g〉 = 〈e| d̂ |e〉 = 0 and 〈e| d̂ |g〉 = 〈g| d̂ |e〉 = µ, we obtain,

Ĥ ≈ h̄ωqd |e〉 〈e|+ µE0{|e〉 〈g|+ |g〉 〈e|} cos(ωt). (3.15)
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By adding and subtracting h̄ω |e〉 〈e| to the RHS of (3.15) we can arrive at,

Ĥ ≈ h̄ω |e〉 〈e|+ h̄∆qd |e〉 〈e|+ µE0{|e〉 〈g|+ |g〉 〈e|} cos(ωt), (3.16)

where ∆qd = ωqd − ω. We now perform the standard operation of moving the

Schödinger picture Hamiltonian to the interaction picture in order to eliminate

the non-perturbed component of the Hamiltonian. The Schrödinger picture de-

fines states as time-dependent and operators as time-independent, whereas in

the interaction picture, both operators and states carry a time dependence [78].

The transformation can be done as [79, 80],

ĤI ≈ eiĤ0t/h̄V̂e−iĤ0t/h̄, (3.17)

where Ĥ0 = h̄ω |e〉 〈e| and V̂ = h̄∆qd |e〉 〈e|+ µE0{|e〉 〈g|+ |g〉 〈e|} cos(ωt).

For an eigenstate |k〉 of Ĥ0 with an eigenvalue Ek, where Ĥ0 |k〉 = Ek |k〉,

eiĤ0t/h̄ |k〉 =

(
iĤ0t

h̄

)0

0!
|k〉+

(
iĤ0t

h̄

)1

1!
|k〉+

(
iĤ0t

h̄

)2

2!
|k〉+ ... = eiEkt/h̄ |k〉 (3.18)

can be obtained by repeatedly applying the eigenvalue relations. Similarly, it is

straightforward to show that,

e−iĤ0t/h̄ |k〉 = e−iEkt/h̄ |k〉 . (3.19)

From the adjoints [81] of (3.18) and (3.19),

〈k| eiĤ0t/h̄ = 〈k| eiEkt/h̄ (3.20a)

〈k| e−iĤ0t/h̄ = 〈k| e−iEkt/h̄. (3.20b)

According to the above formulations, when |e〉 and |g〉 are eigenstates of Ĥ0
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with eigenvalues E1 ≈ h̄ω and E2 ≈ 0 respectively, we can obtain the following

eigenvalue equations for our two-level atomic model,

e±iĤ0t/h̄ |e〉 = e±iωt |e〉 , (3.21a)

〈e| e±iĤ0t/h̄ = 〈e| e±iωt, (3.21b)

e±iĤ0t/h̄ |g〉 = |g〉 , (3.21c)

〈g| e±iĤ0t/h̄ = 〈g| (3.21d)

Exploiting the eigenvalue relations (3.21) to simplify (3.17) yields,

ĤI = h̄∆qd |e〉 〈e|+
µE0

2
{eiωt |e〉 〈g|+ |g〉 〈e| e−iωt}

(
eiωt + e−iωt

)
(3.22)

Eliminating fast rotating (high frequency) terms that average to zero using the

rotating wave approximation (RWA) [82], we arrive at the final interaction picture

Hamiltonian of a two level atom interacting with a near-resonant classical optical

field (in the absence of damping),

ĤI = h̄∆qd |e〉 〈e|+ h̄Ω0{|e〉 〈g|+ |g〉 〈e|}, (3.23)

where we have defined the Rabi frequency of the atom as Ω0 = µE0
/
(2h̄) [5]

(some authors like to define the same as Ω0 = µE0
/

h̄). Finally, the transformation

of the Shrödinger picture state vector (3.5) to the interaction picture can be done

as [80],

|Ψ(t)〉I = eiĤ0t/h̄ |Ψ(t)〉s . (3.24)

Due to our choice of eigen-energies where Eg ≈ 0 and Ee ≈ h̄ωqd, and the eigen

value relations (3.21), the above equation simplifies to,

|Ψ(t)〉I = cg |g〉+ cee−i∆qdt |e〉 . (3.25)
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3.2.3 Rabi Oscillations

In the interaction picture, the states evolve as per the interaction part of the

Hamiltonian such that [78],

ih̄
∂

∂t
|Ψ(t)〉I = ĤI(t) |Ψ(t)〉I (3.26)

By substituting for |Ψ(t)〉I and ĤI from (3.25) and (3.23) respectively, and assum-

ing near-resonant conditions (vanishing detuning) we can arrive at,

i
∂

∂t
{cg |g〉+ ce |e〉} = Ω0

(
cg |e〉+ ce |g〉

)
. (3.27)

Equating the coefficients of |e〉 and |g〉 separately, we obtain,

∂

∂t
cg = −iΩ0ce, (3.28a)

∂

∂t
ce = −iΩ0cg (3.28b)

Differentiating (3.28) again and substituting from the same, we can obtain

∂2

∂2t
cg = −iΩ2

0cg, (3.29a)

∂2

∂2t
ce = −iΩ2

0ce (3.29b)

For the atom to be in the ground state, the coefficients should be of the form,

cg = cos(Ω0t) and ce = sin(Ω0t). Thus, the state occupation probabilities can

now be obtained as,

Pg = |cg|2 = cos2(Ω0t), (3.30a)

Pe = |ce|2 = sin2(Ω0t). (3.30b)
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It is evident that the amplitude of the incident field determines the frequency of

population oscillation or the Rabi frequency of the atom. This concept is graphi-

cally illustrated in Fig. 3.2(b). From this figure, we can observe that the coherent

electric field incident on the two level atom causes population probability oscil-

lations with periodic time π/Ω0. Moreover, application of the external field for

half the periodic time leads to complete population inversion.

3.3 Overview of Multi-Level Atoms

According to the theory of coherent dynamics, the level populations of N-level

atoms oscillate at N − 1 Rabi frequencies [83, 84]. In the quasi-static limit where

temporal phase variations are neglected, the atomic transition from level i − 1

to i is assumed to be induced by near resonant radiation of magnitude Ei =

Ei0 cos(ωit). Ei0 denotes the amplitude of the ith field whereas ωi denotes the

corresponding angular frequency. Within the electric dipole approximation, the

Hamiltonian of an N−level atom which interacts with N − 1 near resonant co-

herent electric fields can be written as [84, 85],

ĤN = Ĥ0 −
N−1

∑
i=1

µiEi, (3.31)

where Ĥ0 is the unperturbed atomic Hamiltonian and µi is the ith dipole moment.

As we are mostly concerned of coherent monochromatic electric fields nearly

resonant with the plasmonic resonance, we use the two level atomic description

to model the quantum dots in our exciton-plasmon nanohybrids.





Chapter 4

Density Matrix Theory and Open
Quantum Systems

Before we move into our detailed analysis of exciton-plasmon nanohybrids where

initially the QD, and consequently the entire MNP-QD nanohybrid, will be mod-

eled as quantum mechanical systems, it is important to get a glimpse of a pow-

erful tool used throughout our work. This section will outline the basics of the

density matrix and its time evolution needed for the analytical models built in

the chapters that follow.

4.1 Density Matrix Theory

Suppose a statistical mixture comprises an ensemble of quantum systems with

independently prepared states |Ψn〉, where n = 1, 2, 3... with corresponding sta-

tistical weights Wn. The states |Ψn〉 need not necessarily form an orthonormal set.

The statistical operator ρ̂, also known as the density matrix, for a mixture of this

form is obtained as [86],

ρ̂ = ∑
n

Wn |Ψn〉 〈Ψn| . (4.1)

The selection of a convenient basis {|ψ1〉 , |ψ2〉 , |ψ3〉 ...} which fulfills the su-

33
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perposition principle such that,

|Ψn〉 = ∑
m’

a(n)m’ |ψm’〉 , (4.2a)

〈Ψn| = ∑
m
{a(n)m }∗, 〈ψm| , (4.2b)

enables recasting (4.1) as [86],

ρ̂ = ∑
mm’

Wna(n)m’ {a
(n)
m }∗ |ψm’〉 〈ψm| . (4.3)

As Wn represents the probability of finding the system in the state |Ψn〉, and as∣∣∣a(n)m

∣∣∣2 represents the probability of finding |Ψn〉 in |ψm〉, the probability of finding

the system in basis state |ψm〉 can be found using the corresponding diagonal

element ρmm of the density matrix such that [86],

ρmm = ∑
n

Wn

∣∣∣a(n)m

∣∣∣2. (4.4)

The density matrix ρ̂ is a Hermitian operator. Moreover, it can be used to

obtain the expectation value of any operator Q̂ using the trace of the product of ρ̂

and Q̂ as,

〈Q̂〉 = Tr
(
ρ̂Q̂
)

, (4.5)

The density matrix is said to contain all physically significant information of a

quantum mechanical system as it can be used to obtain the expectation value of

any operator as above [5, 86].

For a quantum mechanical system in a pure state |ψ〉, the density operator is

obtainable as,

ρ̂ = |ψ〉 〈ψ| , (4.6)

and a sufficient and necessary condition for a given density matrix ρ̂ to describe
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a pure system is given by [86],

Tr
(

ρ̂2
)
= (ρ̂)2 . (4.7)

Such pure states |ψ〉 can always be expressed as a linear or completely coherent

superposition of basis states.

4.2 Time Evolution of the Density Matrix

4.2.1 Time Evolution in the Schrödinger picture

The time evolution of a quantum mechanical state Ψ(t) can be described by the

Schrödinger equation [79, 86, 87],

ih̄
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (4.8)

where Ĥ and Ψ(t) are the system Hamiltonian and the state in the Schrödinger

picture. Using the quantum mechanical adjoint of (4.8), we obtain [81],

−ih̄
∂

∂t
〈Ψ(t)| = 〈Ψ(t)| Ĥ, (4.9)

Obtaining the time derivative of (4.1) using the product differential rule,

∂

∂t
ρ̂ = ∑

n
Wn

∂

∂t
(|Ψn(t)〉 〈Ψn(t)|)

= ∑
n

Wn

{(
∂

∂t
|Ψn(t)〉

)
〈Ψn(t)|+ |Ψn(t)〉

(
∂

∂t
〈Ψn(t)|

)}

Substituting from (4.8) and (4.9),

∂

∂t
ρ̂ = ∑

n
Wn

{
− i

h̄
Ĥ |Ψn(t)〉 〈Ψn(t)|+

i
h̄
|Ψn(t)〉 〈Ψn(t)| Ĥ

}
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= − i
h̄
{
Ĥρ̂− ρ̂Ĥ

}
.

Using the standard notation for commutation operation, we arrive at [5],

∂

∂t
ρ̂ = − i

h̄
[
Ĥ, ρ̂

]
. (4.12)

where ρ̂ is the system density matrix/operator in the Schrödinger picture.

4.2.2 Moving to the Interaction Picture

Let us now assume that the total system Hamiltonian under a small external time-

dependent perturbation can be written in the form,

Ĥ(t) = Ĥ0 + V̂(t). (4.13)

It is assumed that Ĥ0 is time-independent and V̂(t) is caused by a coherent ex-

ternal electric field incident on the system which causes transitions between the

eigenstates of Ĥ0. The state vectors of the system in the Schrödinger and interac-

tion pictures are related such that [86],

|Ψ(t)〉 = e−(i/h̄)Ĥ0t |Ψ(t)〉I . (4.14)

Thus, using the Schrödinger equation (4.8) with (4.14) for a Hamiltonian of the

form (4.13) yields,

ih̄
∂

∂t

{
e−(i/h̄)Ĥ0t |Ψ(t)〉I

}
=
{
Ĥ0 + V̂(t)

}
e−(i/h̄)Ĥ0t |Ψ(t)〉I . (4.15)
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By simplifying the above equation, we can finally obtain the the equation for time

evolution of the interaction picture state vector |Ψ(t)〉I,

ih̄
∂

∂t
|Ψ(t)〉I = V̂I(t) |Ψ(t)〉I , (4.16)

where V̂I(t) = e(i/h̄)Ĥ0tV̂(t)e−(i/h̄)Ĥ0t. From (4.16) it is evident that the time de-

pendence of |Ψ(t)〉I is entirely caused by the external perturbation V̂(t). More-

over, when V̂(t) is small compared to Ĥ0, |Ψ(t)〉will slowly vary against time, en-

abling (4.16) to possess an approximate solution with time-dependent perturba-

tion theory which is more practically calculable compared to its Schrödinger pic-

ture counterpart. Such solvability is achieved due to the removal of rapidly vary-

ing factors due to the Hamiltonian component Ĥ0 from the system states [86].

Applying the unitary transformations (4.18) and (4.14) to the Schrödinger pic-

ture density operator and states in (4.1) yields,

ρ̂I(t) = ∑
n

Wn |Ψn(t)〉I 〈Ψn(t)|I (4.17)

As an operator Ô(t) in the Schrödinger picture can be transformed to the inter-

action picture using the following transformation,

Ô(t)I = e(i/h̄)Ĥ0tÔ(t)e−(i/h̄)Ĥ0t, (4.18)

we can substitute ρ̂(t) = e−(i/h̄)Ĥ0tρ̂I(t)e(i/h̄)Ĥ0t to obtain the Liouville equation in

the interaction picture (see appendix C.1),

∂

∂t
ρ̂I(t) = −

i
h̄
[
V̂I(t), ρ̂I(t)

]
. (4.19)

In the chapters that follow, both Schrödinger and interaction picture interpreta-

tions presented above would be used interchangeably for the ease of calculation.
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Up to this point, our concern was focused on closed quantum systems which

are assumed to be isolated from the external environment. However, realistic

modeling mandates taking the environmental influences, such as bath induced

excitations, decays and dephasing, into account [2]. Thus, the next section will

focus on open quantum systems which interact with the submerging environment.

4.3 Open Quantum Systems

A realistic quantum system would be in continuous contact with its environment,

which leads to changes in the system properties such as energy and polariza-

tion. The gradual evolution of a system initially in a non-equilibrium state, to

a state of equilibrium determined by external environmental (bath) conditions

(such as temperature) is known as a relaxation process. Unlike the Schrödinger

and Liouville equations which denote fundamental equations of motion of closed

quantum systems, such relaxation phenomena represent irreversible processes

attributable to open quantum systems [86]. Two popular approaches of mod-

eling the time evolution of the system density matrix in the presence of such

irreversible phenomena are, the Lindblad and Redfield formalisms.

4.3.1 The Lindblad Formalism

The Lindblad equation [88] is a versatile tool usable for the treatment of irreversible

and non-unitary evolutions ranging from dissipation and decoherence to quan-

tum measurements [87, 89]. It is considered the “workhorse of open quantum

systems” due to its well-behaved mathematical properties and relative simplic-

ity [90]. A common example relevant to our context would be the modeling of

spontaneous emission of a two-level atom using the Lindblad formalism. Lind-

blad terms in the time-evolution of an open quantum system represent effects
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caused by the system-bath interaction, and they naturally arise as a consequence

of the Markov approximation. For a detailed derivation of the emergence of Lind-

bladians, the reader is referred to [89]. The current section of the thesis will only

outline the summary required by the subsequent exciton-plasmon models.

The general form of the Lindblad equation is [2, 13, 89],

∂

∂t
ρ̂sys = −

i
h̄
[
Ĥsys, ρ̂sys

]
+ ∑

j
λj

(
2L̂jρ̂sys L̂†

j −
{

L̂†
j L̂j, ρ̂sys

})
, (4.20)

where ρ̂sys and Ĥsys are the density matrix and the relevant Hamiltonian of the

quantum system under study, which should be appropriately selected pertaining

to our earlier discussions. For given two system operators Â and B̂,
{
Â, B̂

}
=

ÂB̂ + B̂Â denotes the anti-commutation. The system operators L̂j are called

Lindblad operators and the factors λj represent system parameters attributable

to relevant relaxation processes.

It can be readily observed that the first term on the RHS resembles the unitary

evolution of the density operator which we discussed in the previous sections. If

the Lindblad operators, L̂j represent Hermitian observables, the above Lindblad

equation is usable to model the measurement processes. When L̂j represent non-

Hermitian operators such as an excitation annihilation operator, it is usable to

model phenomena such as dissipation, decay or decoherence [89].

From the general equation (4.20), we can observe that for a given system op-

erator L̂j, the Lindblad term L(L̂j) can be expanded as follows,

L(L̂) = λj

(
2L̂jρ̂sys L̂†

j − L̂†
j L̂jρ̂sys − ρ̂sys L̂†

j L̂j

)
, (4.21)

which accounts for the contribution of one relaxation process.

Having obtained the general idea, let us now walk through a specific example

of the Lindblad equation relevant to the context of this thesis, in order to obtain a

deeper understanding of the concept. Consider the example of a two-level atom
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which is allowed to have three types of interactions with the submerging bath,

namely, incoherent decay of the excited state into the atomic ground state, bath

induced incoherent excitation of the ground to excited state and bath induced

elastic scattering processes.

Let σ̂ be the ladder operator which causes transition from the atomic excited

state to the ground state. Quantum mechanical master equation for the atom,

modeled as an open quantum system, with Lindblad terms for each of the three

aforementioned interactions takes the form [5],

∂

∂t
ρ̂sys = −

i
h̄
[
Ĥsys, ρ̂sys

]
+ λ1L(σ̂) + λ2L(σ̂†) + λ3L(σ̂†σ̂). (4.22)

In the above equation λ1L(σ̂), λ2L(σ̂†) and λ3L(σ̂†σ̂) are attributable to the three

relaxation processes; bath induced decay, bath induced excitation and elastic scat-

tering, respectively.

Using (4.21), (4.22) can be expanded as,

∂

∂t
ρ̂sys = −

i
h̄
[
Ĥsys, ρ̂sys

]
+ λ1

(
2σ̂ρ̂sysσ̂† − σ̂†σ̂ρ̂sys − ρ̂sysσ̂†σ̂

)
+

λ2

(
2σ̂†ρ̂sysσ̂− σ̂σ̂†ρ̂sys − ρ̂sysσ̂σ̂†

)
+

λ3

(
2σ̂†σ̂ρ̂sysσ̂†σ̂− σ̂†σ̂ρ̂sys − ρ̂sysσ̂†σ̂

)
(4.23)

where we have use the simplification (σ̂†σ̂)(σ̂†σ̂) = σ̂†σ̂ for σ̂ = |g〉 〈e|.

4.3.2 Bloch-Redfield Formalism

A summary of the Bloch-Redfield formalism is presented below to provide a com-

plete picture of the density matrix and its time evolution in our background study.

Readers are referred to [90] for a thorough understanding of the derivation and

details. The Bloch-Redfield Formalism assumes a system-bath Hamiltonian of
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the form,

Ĥsys-bath = Ĥsys + Ĥbath + Ĥint-SB, (4.24)

where Ĥsys is the Hamiltonian of the quantum system of our interest, Ĥbath de-

notes the Hamiltonian of the submerging bath and Ĥint-SB is the Hamiltonian

attributable to the interaction between the system and bath which takes the form,

Ĥint-SB = ∑
j

ŝjB̂j. (4.25)

Bath operators and system operators are denoted by B̂j and ŝj, respectively. It is

assumed that the eigenstates of the system Hamiltonian Ĥsys
∣∣ψsys

〉
n = En

∣∣ψsys
〉

n

are connected to an arbitrary basis |φ〉n by the transformation matrix,

V̂ = ∑
n

∣∣ψsys
〉

n 〈φ|n. (4.26)

For the system described above, the general and compact form of the Bloch-

Redfield equations is given by [90],

∂

∂t
ρ̂sys = −

i
h̄
[
Ĥsys, ρ̂sys

]
+

1
h̄2 ∑

j,k

(
− ŝjV̂r̂jkV̂†ρ̂sys + V̂r̂jkV̂†ρ̂sysŝj− ρ̂sysV̂q̂jkV̂† ŝj

+ ŝjρ̂sysV̂q̂jkV̂†) (4.27)

where r̂jk and q̂jk are obtained such that they abide by the relationships,

〈φ|n r̂jk |φ〉m = 〈φ|n V̂† ŝkV̂ |φ〉m
1
2

Cjk(Em − En), (4.28a)

〈φ|n q̂jk |φ〉m = 〈φ|n V̂† ŝkV̂ |φ〉m
1
2

Ckj(En − Em), (4.28b)

Cjk(ω) =
∫ ∞

−∞
dτeiωτ〈B̃j(τ)B̃k(0)〉. (4.28c)



42 Density Matrix Theory and Open Quantum Systems

where the Fourier transform of the correlation function in the interaction picture(
B̃j(τ) = eiB̂τ B̂je−iB̂τ

)
is used to obtain the spectral function Cjk(ω) which char-

acterizes the submerging bath.

Bloch-Redfield formalism does not guarantee the positivity of the density ma-

trix and is computationally complex compared to the Lindblad formalism [91].

Thus, the Lindblad formalism presented in the earlier section was selected to

model the relaxation processes included in the chapters that follow.



Chapter 5

Analytical Study of Exciton Behaviour
in a Plasmonic Near Field

Figure 5.1: The schematic diagram of a quantum dot (QD) in the vicinity of a
metal nanoparticle (MNP). The MNP-QD nanohybrid is illuminated by a coher-
ent external electric field with magnitude E and angular frequency ω. The exciton
in the QD undergoes dipole interaction with the coherent external drive and the
near field of the localized surface plasmon resonances in the MNP. The bare ex-
citonic energy of the QD is h̄ωqd. The MNP-QD centre separation distance is
R. The dielectric permittivities of the MNP and the host medium are εm and εb,
respectively.

The objective of this chapter is to analytically characterize the influence of a

neighboring metal MNP on the behavioral trends of a QD using a GNOR method

43
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based approach, taking the MNP distance dependent modifications to the QD

population relaxation and dephasing rates into account. As it was discussed

earlier, the GNOR model is a recent generalization and an extension of the hy-

drodynamic Drude model (HDM), which goes beyond the HDM by taking into

account, both the convection current and electron diffusion in the MNPs. It al-

lows unified theoretical explanation of some experimentally observed plasmonic

phenomena which otherwise would require ab initio analysis as the conventional

local response approximation (LRA) fails to account for them. Attempts to incor-

porate MNP nonlocal effects in the analytical characterization of vicinal excitons

found in literature [92] utilize the phenomenological hydrodynamic model and

assume the absence of MNP inter-band effects. Moreover, they are only applica-

ble to narrow parameter regions [13].

This chapter presents a complete analytical characterization which overcomes

these drawbacks and lends to the perusal of the system over wide continua of

various parameters, enabling to get an elevated view at a much lesser level of

complexity compared to the conventional LRA based numerical methods or the

ab initio methods of accounting for the nonlocal effects.

5.1 Model Overview

Let us consider an MNP-QD hybrid nanosystem consisting of an MNP with ra-

dius rm and a QD with a relatively negligible radius, separated by a distance R,

as depicted in Fig. 5.1. Throughout this chapter, bold fonts, hat notation, tilde no-

tation and bolded hat notation are used to indicate vectors, quantum mechanical

operators, slowly varying amplitudes and unit vectors, respectively.

The system is submerged in an environment of relative permittivity εb and ex-

periences an externally applied coherent electric field ~E = ẑE0(e−iωt + eiωt)/2 =

ẑE, where i is the imaginary unit, ω is the angular frequency and ẑ is a unit vector
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along or perpendicular to the MNP-QD axis. The direction of the incident field is

chosen to be parallel/perpendicular to the axis of the MNP-QD system. All dis-

tances are assumed to be small enough for the retardation effects to be ignored

and ephemeral thermal effects [93, 94] are assumed to be negligible in the model.

When the QD is irradiated with an external field nearly resonant with the

energy gap between its valence and the first conduction bands, a bound electron-

hole pair (an exciton) is created [95]. The QD is modeled as a spherical semicon-

ductor with a dielectric constant εs, containing a two-level atom-like quantum

system (exciton) at the centre. This is a good approximation when studying op-

tical processes at frequencies that are nearly resonant with the frequency corre-

sponding to the lowest excitonic transition energy of the QD [96, 97]. The dipole

moment operator element of the QD is denoted by µ and the bare excitonic energy

is h̄ωqd .

In cases where inter-band effects are absent and only the conduction band

electrons contribute to the optical properties of the material, it can be assumed

that that εcore = 1, following the usual procedure in literature [92]. However, in

common plasmonic material such as gold and silver, inter-band transitions play

an important role in determining the plasmonic response. Therefore, this work

uses a Drude-like dielectric function εm(ω) which takes the inter-band effects of

the MNP into account, pertaining to our discussions in Sec. 2.2.

5.2 The Quantum Dot as an Open Quantum System

Let σ̂ = |g〉 〈e| and σ̂† = |e〉 〈g| be the exciton creation and annihilation opera-

tors, where |g〉 and |e〉 are the energy eigen vectors of the unperturbed atomic

Hamiltonian representing the exciton ground and excited states, respectively.

Using (3.11) and (3.12), Hamiltonian of the QD under the influence of the
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MNP and the externally applied electric field can be given as [23, 98–100],

Ĥqd = h̄ωqdσ̂†σ̂− Eqdµ
(

σ̂ + σ̂†
)

(5.1)

where Eqd is the (magnitude of) the total electric field experienced by the exciton

at the centre of QD. We model dipolar polarizability of the MNP using the GNOR

based approach presented in Sec 2.2. In this context the LRA based dipolar polar-

izability βLRA of the conventional dipole response model is replaced by βNL. Eqd

comprises the influence of the externally incident coherent illumination E and the

dipole response field of the vicinal MNP at the QD location given by [2],

Eres =
sαPmnp

(4πε0εbR3)
, (5.2)

where ε0 denotes the free space permittivity, sα = 2(−1) is an orientation param-

eter which indicates that the external field is parallel(perpendicular) to the axis

connecting the MNP and QD centres.

The field experienced by the quantum system at the centre of the QD will be

screened due to εs such that Eqd = (E + Eres)
/

εeffS where εeffS = (2εb + εs)
/

3εb

[23]. Magnitude of the MNP polarizarion denoted by Pmnp is given by [5, 13],

Pmnp = 4πε0εbrm
3
(

βNLẼ+
mnpe−iωt + β∗NLẼ−mnpeiωt

)
(5.3)

where Ẽ+
mnp and Ẽ−mnp are the positive and negative frequency coefficients of

Emnp, which is the electric field felt by the MNP, given by,

Emnp = E +
1

4πε0εb

sαPqd

εeffSR3 (5.4)

with the QD polarization denoted as Pqd = µ (ρ12 + ρ21) [24, 101], using the off

diagonal density matrix elements ρ12 and ρ21 of the QD. Both MNP and QD po-
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larize along the incoming radiation ~E. By factoring out the high frequency time

dependence of the off diagonal density matrix elements of the QD where [5],

ρ12 = ρ̃12eiωt, (5.5a)

ρ21 = ρ∗12, (5.5b)

Eqd can be recast as,

Eqd =
h̄
µ

{
Ωeff

12 + G ρ̃21

}
e−iωt + h.c. = Ẽ+

qde−iωt + h.c. (5.6)

Throughout this thesis, h.c. stands for hermitian conjugate. The Rabi frequency in

the absence of quantum coherence is denoted by Ωeff
12 [102] and G arises due to the

MNP electric field component induced as a result of the QD dipole response field

incident on the MNP, hence can be thought of as the self interaction of the QD

[5]. These quantities can be obtained in terms of the MNP dipolar polarizability

as [5, 13],

Ωeff
12 = Ω0

(
1 +

sαβNLrm
3

R3

)
(5.7a)

G =
s2

αβNLrm
3µ2

4πε0εbh̄ε2
effSR6

(5.7b)

where,

Ω0 = (µE0)
/
(2h̄εeffS) (5.8)

is the Rabi frequency of the bare external field when the MNP and QD are isolated

(large R). The factor 1
/

εeffS arises due to the screening of the externally incident

field by the QD permittivity, as the excitonic system is assumed to form at the

centre of the QD.

We obtain the effective or normalized Rabi frequency [103, 104] of the QD

under the influence of both MNP and the external field using the effective field
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incident on the QD exciton given by (5.6) as [102],

Ωr
12 =

µ

h̄
Ẽ+

qd = Ωeff
12 + G ρ̃21, (5.9)

where Ẽ+
qd is the positive frequency coefficient of Eqd. Using the Rabi frequencies

under bare external illumination and in the presence of the MNP, the coherent

plasmonic field enhancement (CPFE) experienced by the excitonic system in the

QD is defined as [29, 105],

CPFE =

∣∣Ωr
12

∣∣
Ω2

0
. (5.10)

The Hamiltonian of the QD given by equation (5.1) describes a closed quantum

system where the effects of the environment are not yet taken into account. The

QD couples with the environment, forming an open quantum system with irre-

versible dynamics [2].

Quantum dynamics of the system coupled with the environments can be ac-

counted for by solving the following master equation for the QD density matrix

ρ̂ [5], which is assumed to take the form presented in (4.23) with ρ̂sys = ρ̂ and

Ĥsys = Ĥqd in the Schröinger picture. Matrix form of the aforementioned master

equation in the basis space formed by |g〉 , |e〉 reads (refer appendix D.1 for the

derivation),

∂

∂t
ρ̂ =

i
h̄

 −µEqd(ρ12 − ρ21) −µEqd(ρ11 − ρ22) + h̄ωqdρ12

−µEqd(ρ22 − ρ11)− h̄ωqdρ21 −µEqd(ρ21 − ρ12)


−

 2λ2ρ11 − 2λ1ρ22 (λ1 + λ2 + λ3)ρ12

(λ1 + λ2 + λ3)ρ21 2λ1ρ22 − 2λ2ρ11

 (5.11)

where the latter component is the relaxation matrix Γ(ρ̂) of the quantum system.

For optical frequencies, λ2 ≈ 0 even near room temperature [5]. Let,

τ = 1
/
(2λ1) (5.12a)
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T = 1
/
(λ1 + λ3). (5.12b)

Using (5.12a), (5.12b) and ρ11 + ρ22 = 1,

Γ(ρ̂) ≈

(ρ11 − 1)
/

τ ρ12
/

T

ρ21
/

T ρ22
/

τ

 (5.13)

where ρmn refers to the density matrix element located at the mth row and nth

column. Therefore, the master equation can be approximated using (5.13) for

optical frequencies of our interest as,

∂

∂t
ρ̂ =

i
h̄
[
ρ̂, Ĥqd

]
− Γ(ρ̂). (5.14)

where Γ(ρ̂) is given by (5.13) and its matrix form is now simplified to,

 ∂
∂t ρ11

∂
∂t ρ12

∂
∂t ρ21

∂
∂t ρ22

 =

{− i
h̄ µEqd(ρ12 − ρ21)− (ρ11−1)

τ

} {
− i

h̄ µEqd∆ + iωqdρ12 − ρ12
T
}

{ i
h̄ µEqd∆− iωqdρ21 − ρ21

T
} {

− i
h̄ µEqd(ρ21 − ρ12)− ρ22

τ

}
 (5.15)

where the QD population difference is denoted as ∆ = (ρ11 − ρ22).

The energy or population relaxation time of the QD which will lead to a mix-

ing between ρ11 and ρ22 is denoted by τ. The relaxation time τ includes a con-

tribution from non radiative decay to the dark states [106]. T refers to the po-

larization relaxation or dephasing time [92, 105] which will cause losses in the

off diagonal density matrix elements of the QD. Both population relaxation and

dephasing causes loss of coherence in the system [5].

The normalized decay rates in the vicinity of the MNP can be expressed as

follows, taking the nonlocal effects of the MNP into account, according to the
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two linearly independent orientations of the QD dipole moment [107, 108];

(
1/τ

1/τ0

)
⊥
= 1 +

3
2k3

∞

∑
n=1

[
Im{αn(ω)}(n + 1)2

(a + R)2(n+2)

]
(5.16a)(

1/τ

1/τ0

)
‖
= 1 +

3
2k3

∞

∑
n=1

[
Im{αn(ω)}n(n + 1)

2(a + R)2(n+2)

]
(5.16b)

where τ0 is the population relaxation time of the QD in the absence of the MNP,

k = ω/c is the wave number and αn is the nth polarizability of the MNP and ⊥

and ‖ denote the radial (sα = 2) and tangential (sα = −1) orientations of the QD

dipole with respect to the MNP. Using above equations, it can be shown that, in

the dipole limit where n = 1 and α = βNL(ω)a3, the QD relaxation time depends

on the MNP nonlocal dipolar polarizability as,

τ(ω) =
τ0

1 + f Im{α(ω)}
/
{k3(rm + R)6}

(5.17)

where the factor f = 6 when sα = 2 and f = 3/2 when sα = −1. Using (5.12a),

(5.12b) and tp = 1/λ3 where tp corresponds to pure dephasing due to elastic

scattering, the relationship between the QD dephasing rate and the MNP nonlo-

cal dipolar polarizability can be arrived at as [13, 92],

T(ω) =
2τ(ω)tp

tp + 2τ(ω)
. (5.18)

Using R→ ∞ in (5.17) and (5.18) [13],

tp = 2τ0T0
/
(2τ0 − T0). (5.19)



5.3 Steady State Analytical Solution 51

5.3 Steady State Analytical Solution

As a majority of QD related applications operate well away from the rise time of

the applied field where the transients have settled-down [4,30,102,105], we focus

on the steady state solution of the system in this chapter.

Let us first define the following relations to be used when solving the master

equation (5.14),

ρ̃12 = A+ iB (5.20a)

ρ̃21 = A− iB (5.20b)

Ωeff
12 = Ωre + iΩim (5.20c)

G = Gre + iGim. (5.20d)

Using element-wise comparison on (5.15) and by substituting for Eqd, we can

arrive at the system Bloch equations defining the behavior of the QD under the

influence of the MNP and the externally incident field (see appendix D.2),

∂

∂t
ρ22 ≈ −

ρ22

τ(ω)
+ iΩr

12ρ̃12 − iΩr∗
12ρ̃21 (5.21a)

∂

∂t
ρ11 ≈

ρ22

τ(ω)
− iΩr

12ρ̃12 + iΩr∗
12ρ̃21 (5.21b)

∂

∂t
ρ̃21 ≈ −

[
i(ωqd −ω) + 1

/
T(ω)

]
ρ̃21 + iΩr

12∆. (5.21c)

By rearranging (5.21) using (5.20), we can arrive at the following form of the sys-

tem Bloch equations [5, 13],

∂

∂t
A = − A

T(ω)
+ δqdB − (Ωim + GimA− GreB)∆ (5.22a)

∂

∂t
B = − B

T(ω)
− δqdA− (Ωre + GreA+ GimB)∆ (5.22b)

∂

∂t
∆ =

1− ∆
τ(ω)

+ 4
[
ΩimA+ ΩreB + Gim

(
A2 + B2

)]
(5.22c)
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where δqd = ω − ωqd denotes the detuning of the external field with the QD

excitonic transition. In the steady state where the temporal derivatives approach

zero, using (5.22a) and (5.22b),

A =
−(δqdΩre + Ωim/T(ω))∆− (GimΩim + ΩreGre)∆2

(Gim∆ + 1/T(ω))2 + (δqd + Gre∆)2 (5.23a)

= −Re

(
Ωeff

12 ∆
δqd + G∆ + i/T(ω)

)
(5.23b)

B =
(δqdΩim −Ωre/T(ω))∆ + (GreΩim −ΩreGim)∆2

(Gim∆ + 1/T(ω))2 + (δqd + Gre∆)2 (5.23c)

= Im

(
Ωeff

12 ∆
δqd + G∆ + i/T(ω)

)
(5.23d)

It is evident that if we solve (5.22) for ∆ in the steady state, we can easily find A

and B using the above equations. Hence by solving (5.22c) for ∆ in the steady

state, let us obtain [92],

w3∆3 + w2∆2 + w1∆ + w0 = 0, (5.24)

where,

w3 = T(ω)2
(
G2

re + G2
im

)
,

w2 = 2T(ω)2δqdGre + 2T(ω)Gim − T(ω)2
(
G2

re + G2
im

)
,

w1 = T(ω)(4τ(ω)|Ωeff
12 |2 − 2Gim) + T(ω)2(δ2

qd − 2δqdGre) + 1,

w0 = −T(ω)2δ2
qd − 1.

Setting w̃i = wi/w3 for i = 0, 1 and 2,

∆3 + w̃2∆2 + w̃1∆ + w̃0 = 0. (5.25)

Using Cardano’s method for solving cubic equations [109] we can obtain the three
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possible solutions for ∆ as,

∆1 = (p1 + p2)− w̃2/3, (5.26a)

∆2 = −(p1 + p2)/2− w̃2/3 + i
√

3(p1 − p2)/2, (5.26b)

∆3 = −(p1 + p2)/2− w̃2/3− i
√

3(p1 − p2)/2. (5.26c)

In the above equation,

p1 = P1/3
1 , where P1 = r +

√
q3 + r2, (5.27a)

p2 = P1/3
2 , where P2 = r−

√
q3 + r2, (5.27b)

where q = w̃1/3− w̃2
2/9 and r = (w̃1w̃2 − 3w̃0)/6− w̃3

2/27.

As ∆ = ρ11 − ρ22 is the QD population difference, only the real roots of ∆

satisfying the condition −1 ≤ ∆ ≤ 1 are useful [92]. The first Cardano root of

(5.25), ∆1, given by (5.26a), holds the only real root which readily satisfies this

condition when q3 + r2 >= 0, where we have easily picked the real cubic roots of

P1 and P2 as p1 and p2 respectively.

However, when q3 + r2 < 0, P1 possesses three complex cubic roots, the com-

plex conjugates of which will appear as the cubic roots of P2. Careful observation

of (5.26) reveals that, all three roots of ∆ (∆1, ∆2 and ∆3) are real in such condi-

tions. Under this condition, the physically valid root of ∆ in (5.25) is given by ∆1

in (5.26a) when the cubic roots of P1 and P2 are picked using De Moivre’s nth

root theorem for complex numbers as (see appendix D.3),

p1 = |P1|1/3 [cos (θ1/3) + i sin(θ1/3)] and p2 = p∗1 , (5.28)

where P1 = |P1|∠θ1 in the polar form. The above analytical results were verified

for the large parameter space considered in chapter 6, against the steady state

numerical solutions of (5.22) and (5.23). Thus, the complete and physically valid
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analytical solution of (5.25) for the aforementioned parameter region is given by

∆ = p1 + p2 − w̃2/3 [13] where,

p1 = (P1)
1/3 ∈ R and p2 = (P2)

1/3 ∈ R for q3 + r2 >= 0,

p1 = |P1|1/3 cos (θ1/3) and p2 = p∗1 for q3 + r2 < 0.

5.4 Absorption, Energy and Dephasing Rate Normal-
izations

Variation of optical properties such as QD absorption, red and blue shifts of exci-

ton energy and dephasing rates in the presence of plasmonic nanocavities could

be exploited for the development of nanoscale plasmonic devices particularly for

chemical and biological sensing applications [30,102]. We now proceed to analyt-

ically characterize such QD properties using the GNOR based approach.

The energy absorption of the QD can be obtained using the QD population

difference as [5],

Qqd = h̄ωqdρ22/τ(ω) = h̄ωqd(1− ∆)/(2τ(ω)), (5.30)

where we have replaced the conventional LRA based population difference with

the newly suggested GNOR based ∆.

The system Bloch equation (5.21c) for the off diagonal density matrix element

ρ21 can be recast as (see appendix D.4) [13, 102],

∂

∂t
ρ̃21 ≈ − [i(Π21 −ω) + Λ21] ρ̃21 + iΩeff

12 ∆. (5.31)

The astute reader will notice that Π21 and Λ21 denote the normalized energy

and the Föster-enhanced broadening (normalized dephasing rate) of the QD ex-

citonic transition caused by the presence of the vicinal MNP [102] given by Π21 =
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ωqd − Gre∆ and Λ21 = 1/T(ω) + Gim∆. We call the two factors Π f = Gre∆ and

Λ f = Gim∆ the exciton transition energy (red) shift and FRET rate factor (or the

dephasing rate blue shift) respectively.

5.5 Quantum State Purity

Recently, there has been considerable progress in investigating the potential of

using semiconductor quantum dots as qubits, where identifying and ameliorat-

ing sources of decoherence are important steps in understanding and improving

system performance [110, 111]. It has also been proposed that directed nanoscale

information transfer can be achieved by coupling qubits, for example in QDs, to

plasmonic nanostructures [24]. To exploit this paradigm, it is vital to understand

the effects of MNP-QD coupling on the properties of QD, including how non-

classical phenomena such as the MNP nonlocal response could affect the quan-

tum information. A GNOR based analytical characterization of the quantum state

purity of the QD could be useful in this context.

A system’s ability to exhibit quantum interference or “coherence” is a char-

acteristic of a system in a pure quantum state that is maximally specified within

quantum mechanics [112], whereas mixed states are classical statistical mixtures

[81]. Coherence is represented by the off-diagonal elements of the system density

matrix, which will be zero for a system in a completely mixed state and non-zero

for a system with partial or full coherence. However, as the presence or absence

of off-diagonal density matrix elements could be basis-dependent, it is always

considered more appropriate to check purity as [81, 112],

Purity = Tr(ρ̂2), (5.32)
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where the bounds of system purity are set such that,

1/d ≤ Purity ≤ 1. (5.33)

The dimension of the associated Hilbert space is denoted by d. If the system’s

quantum state is pure (Purity = 1), it spans a one-dimensional subspace of the

system Hilbert space [112]. A state that falls within the bounds without being

pure or completely mixed (Purity = 1/d) is a “partially coherent state” [81].

For the excitonic system of our concern, using (5.32), (5.20a) and (5.20b) it can

be shown that (see appendix D.5) [13],

Purity =
1 + ∆2

2
+ 2(A2 + B2) =

1 + ∆2

2
+ 2|ρ12|2. (5.34)

Then the mixedness of the system can be naturally defined as the complement of

system purity such that [112],

Mixedness = 1− Purity . (5.35)

It is important to note that both purity and mixedness are invariant under trans-

formations of the form ρ̂ → Ûρ̂Û†, where Û is a unitary operator. For example,

this invariance holds under the dynamical mapping Û(t, t0) = e−
i
h̄ Ĥ(t−t0) where

Ĥ is the system Hamiltonian [112]. Moreover, when A2,B2 � 1 and ∆ ≈ 1 (5.34)

reduces to,

Purity ≈ 1 + ∆2

2
≈ ∆2 ≈ ∆. (5.36)

Hence, purity is expected to roughly follow the behaviour of ∆ under such con-

ditions.

Finally, for comparison purposes, we derive the system purity in the absence

of the vicinal MNP. We nullify the effect of the MNP by setting R → ∞, T → T0

and τ → τ0. Then from (5.7a) and (5.7b), G → 0 and Ωeff
12 → Ω0. This leads to the
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reduction of the cubic equation (5.24) to a linear equation with the coefficients,

w0 → −T2
0 δ2

qd − 1, (5.37a)

w1 → 4τ0T0|Ω0|2 + T2
0 δ2

qd + 1, (5.37b)

w2 → 0, (5.37c)

w3 → 0, (5.37d)

where we recall that T0 and τ0 denote the dephasing and decay rates of the iso-

lated QD, respectively. Substituting these back in (5.24) yields the steady state

analytical population difference of the isolated QD as,

∆iqd = −w0

w1
=

T2
0 δ2

qd + 1

4T0τ0|Ω0|2 + T2
0 δ2

qd + 1
. (5.38)

The steady state expressions for the real and imaginary parts of the slowly time

varying off diagonal density matrix element of the isolated QD then become [13],

Aiqd = −Re

(
Ω0∆iqd

δqd + i/T0

)
, (5.39a)

Biqd = Im

(
Ω0∆iqd

δqd + i/T0

)
, (5.39b)

{Purity}iqd =
(

1 + ∆2
iqd

) /
2 + 2(A2

iqd + B2
iqd). (5.39c)

5.6 Summary and Conclusion

This chapter presented a fully analytical characterization of a quantum dot placed

in the vicinity of an MNP, and illuminated by an external coherent driving field.

The presented analytical equations were verified for the full parameter space

used in chapter 6.
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Note that if one sets δNL → 0 in the presented model, the GNOR based nonlo-

cal βNL of the MNP approaches the Clausius Mossotti factor βLRA defined in the

LRA given by (2.7). Thus, using δNL → 0, τ → τ0 and T → T0, the conventional

LRA based equation set [5, 23, 24, 26, 28, 30, 102, 105, 106] can be obtained. Using

R → ∞, τ → τ0 and T → T0, the relevant equations for the isolated QD can be

obtained [13].



Chapter 6

Numerical Simulation of Exciton
Behaviour in a Plasmonic Near Field

6.1 Numerical Model Overview

Using the analytical model presented in chapter 5, let us now study the behav-

ior of an exciton situated in a plasmonic near-field, over continua of several

system parameters. Unless specifically mentioned otherwise, the default pa-

rameters used for the generated results are as follows: incident field intensity

I0 = 1× 103 W cm−2, orientation parameter sα = 2, polarization relaxation (de-

phasing) time of the isolated quantum dot (QD) T0 = 0.3 ns, energy or popula-

tion relaxation time of the isolated QD τ0 = 0.8 ns [106], dielectric constant of

the submerging medium εb = 1, dielectric constant of the QD material εs = 6

[106] and QD resonance frequency ωqd = 3.5 eV [113] such that the quantum

dot, metal nanoparticle (MNP) and the incoming coherent radiation are near-

resonantly coupled. The analysis uses a silver MNP where the bulk plasma

frequency h̄ωp = 8.99 eV, bulk damping rate h̄γ = 0.025 eV, Fermi velocity

v f = 1.39× 106 m s−1 [11], D ≈ 9.624× 10−4 m2 s−1 [114] and the experimen-

tal bulk dielectric data εexp are obtained from the tabulations by Johnson and

Christy [60]. The amplitude E0 and the intensity I0 of the coherent external field

are related using E0 =
√

2I0/(ε0c), where c is the speed of light in vacuum [92].

As the main objective of this chapter is to study the behaviour of an exciton in a

59
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Figure 6.1: Second and third rows depict the top view of the x = ω (range:
3.499− 3.501 eV), y = a (range: 3− 30 nm) surface plots of LRA based (subscript
L) and the GNOR based (subscript NL) results of Qqd (first column), Π f (second
column) and Λ f (third column), respectively. The first row depicts the line plots
corresponding to the cross sections marked in black and pink on the respective
surface plots in the same column. Solid lines represent the GNOR based plots
whereas the dashed lines are the conventional LRA based plots. The final row de-
picts the signed percentage difference ∆X = (XL − XNL)/XNL% where X denotes
the physical quantity of the relevant column. For all subplots, R = a + 10 nm and
µ = 1.3 e nm where e denotes the elementary charge.



6.2 Absorption, Field Enhancement, Exciton Energy and Dephasing Rate 61

nanohybrid over continua of system parameters, we have not restricted the anal-

ysis to a given type of quantum dot.

6.2 Absorption, Field Enhancement, Exciton Energy
and Dephasing Rate

Let us analyse the variation of QD absorption rate Qqd (in the vicinity of an MNP),

MNP induced red-shift of the QD excitonic energy Π f and MNP induced blue-

shift of the QD dephasing rate Λ f with varying MNP radius a and coherent ex-

ternal illumination frequency ω, as depicted in Fig. 6.1. Sub-figures in the second

and third rows depict the LRA based and GNOR based results of the three afore-

mentioned QD properties, presented in the form of colour-coded surface plots

(top view). Sub-figures in the first row depict the line plots corresponding to the

cross sections indicated in pink and black on the LRA and GNOR based surface

plots in the two successive rows of the same column. The solid lines represent

the GNOR based results whereas the dashed lines represent the relevant LRA

based results. The final row shows the surface plots of the percentage difference

between the respective LRA and GNOR based results (normalized by the GNOR

based result).

Fig. 6.1(a) reveals that Qqd follows a singly-peaked distribution along ω (in

both LRA and GNOR based models) with a peak near the QD resonance 3.5 eV.

It can be observed using subplots 6.1(a), (b) and (c) that the LRA based model

suggests smaller peak amplitudes and larger absorption line-widths along the

frequency axis compared to the respective GNOR based counterparts. Moreover,

as seen in 6.1(c), the GNOR model suggests a higher asymmetry of peaks along

the frequency axis compared to the LRA based model. The signed percentage

difference ∆Q = (∆qd-L − ∆qd-NL)
/

∆qd-NL% depicted in Fig. 6.1(d) reveals that

the LRA based model underestimates the QD absorption by more than 23% com-
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Figure 6.2: Second and third rows depict the top view of the x = µ, y = I surface
plots of LRA based (subscript L) and the GNOR based (subscript NL) results
of the QD energy absorption Qqd (first column), excitonic energy (red) shift Π f
(second column) and dephasing rate (blue) shift Λ f (third column), respectively.
The first row depicts the line plots corresponding to the cross sections marked in
black and pink on the respective surface plots in the same column. Solid lines
represent the GNOR based plots whereas the dashed lines are the conventional
LRA based plots. The final row depicts the signed percentage difference ∆X =
(XL−XNL)/XNL% where X denotes the physical quantity of the relevant column.
For all subplots, the MNP radius a = 3 nm, MNP-QD centre separation R =
13 nm, frequency of the coherent external illumination ω = 3.4995 eV.
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pared to the GNOR based model, in the entire region under study.

From the second and third columns of Fig. 6.1, it can be seen that both Π f

and Λ f possess singly dipped distributions along the ω axis (under both LRA

and GNOR based models). From Fig. 6.1(h), it can be seen that ∆Π = (Πf-L −

Πf-NL)
/

Πf-NL% is < −20% in the entire region under consideration, implying

that the LRA based model under-estimates the MNP induced red-shift of the ex-

citonic resonance frequency by more than 20%. Fig. 6.1(h) indicates that this per-

centage difference exceeds 80% in magnitude when the external field frequency

ω gets close to the bare excitonic resonance ωqd implying the dominance of non-

local effects in the region. Fig. 6.1(l) shows that, a substantial over-estimation

of the LRA based Λ f over the GNOR based result is suggested for MNP radius

a < 10 nm when the dark blue region with very small detunings from the exciton

resonance is exceeded [13].

We then study the behavior of Qqd, Π f and Λ f when the coherent external

field intensity I and the QD dipole moment µ are varied in continua, using Fig.

6.2. All subplots are in the same constellation as Fig. 6.1. From Fig. 6.2(d), it is

evident that ∆Q = (QL − QNL)/QNL% < −40% in the entire region, suggesting

that the LRA based model under-estimates the QD absorption compared to the

case where the nonlocal effects are taken into account. It can also be observed that

this percentage difference is almost invariant along the I axis for a given value of

µ.

From the second and third columns of Fig. 6.2, it can be seen that both Π f

and Λ f are almost invariant along the I axis for a given µ. Fig. 6.2(h) shows that

∆Π = (Πf-L−Πf-NL)/Πf-NL% < −14% in the entire parameter region suggesting

that the GNOR based model results in higher red-shifts to the exciton resonance

when in the near field of an MNP. From Fig. 6.2(I), it is evident that the GNOR

based model suggests smaller blue shifts to the QD dephasing compared to the

LRA based model, resulting in ∆Λ = (Λf-L−Λf-NL)/Λf-NL% > 350% in the entire
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Figure 6.3: Second and third rows depict the top view of the x = ω, y = µ surface
plots of LRA based (subscript L) and the GNOR based (subscript NL) results of
CPFE (first column), Π f (second column) and Λ f (third column), respectively.
The first row depicts the line plots corresponding to the cross sections marked in
black and pink on the respective surface plots in the same column. Solid lines
represent the GNOR based plots whereas the dashed lines are the conventional
LRA based plots. The final row depicts the signed percentage difference ∆X =
(XL−XNL)/XNL% where X denotes the physical quantity of the relevant column.
For all subplots, a = 3 nm, R = 13 nm.
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region under consideration.

Using Fig. 6.3, we can study the variation of coherent plasmonic field en-

hancement (CPFE) experienced by the QD, Π f and Λ f when µ and ω are varied,

using the usual arrangement of sub-figures. The first column depicts the LRA

and GNOR based predictions (both as line and surface plots) of CPFE and their

percentage difference. From Fig. 6.3(a)-(c), it can be observed that the GNOR

based model suggests a Fano-like distribution for CPFE whereas the LRA based

model suggests a modified Fano-like distribution. From Fig. 6.3(d), it is evident

that the GNOR based model entails significant modification of CPFE from the

LRA based model as µ increases and the detuning of ω from ωqd decreases. The

second and third columns of Fig. 6.3 correspond to Π f and Λ f respectively, both

of which follow narrow, singly dipped frequency distributions for all µ, under

both LRA and GNOR based models. In line with the observations in the earlier

parameter spaces, the GNOR model suggests higher red-shifts (Π f ) to the exci-

ton resonance in the entire parameter region. It suggests lower blue-shifts (Λ f )

to the QD dephasing rate compared to the LRA based model, except at coherent

illumination frequencies extremely close to ωqd [13].

6.3 Effects of Centre Separation Variation

We then study the behavior of the QD as the MNP-QD centre separation (R) and

the QD dipole moment (µ) are varied. The first, second and third columns of

Fig. 6.4 correspond to the real component of the normalized QD Rabi frequency

Re
[
Ωr

12
]
, the QD population difference ∆ and QD absorption Qqd in the usual

arrangement of subplots.

The solid lines of Fig. 6.4(a) which correspond to the GNOR based prediction

have four distinguishable features, especially when µ > 1 e nm; (i) For large R, it

can be seen that Re
[
Ωr

12
]
→ Ω0, and the field experienced by the QD approaches
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Figure 6.4: Second and third rows depict the top view of the x = R, y = µ surface
plots of LRA based (subscript L) and the GNOR based (subscript NL) results of
Re Ωr

12 (first column), ∆ (second column) and Qqd (third column), respectively.
The first row depicts the line plots corresponding to the cross sections marked in
black and pink on the respective surface plots in the same column. Solid lines
represent the GNOR based plots whereas the dashed lines are the conventional
LRA based plots. The final row depicts the signed percentage difference ∆X =
(XL−XNL)/XNL% where X denotes the physical quantity of the relevant column.
For all subplots a = 3 nm, ω = ωqd.
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the externally applied field. (ii) Re
[
Ωr

12
]
, and hence the field experienced by the

QD slightly increases above Ω0 as R decreases. (iii) This enhancement reaches a

peak and then starts to decrease with further decrease of R, which is an indica-

tion of the competition between Förster energy transfer from QD to MNP and the

plasmonic field enhancement near QD. (iv) This follows by an encounter of an

abrupt and significant decrease of Re
[
Ωr

12
]
, and hence the field experienced by

the QD, as R decreases further. This could be identified as near PMR(plasmonic

meta-resonance)-like behavior of the MNP-QD hybrid nano-system [105]. PMR

corresponds to a “molecular-type” resonance which is quite different from the

conventional atomic resonances. It occurs under strong exciton-plasmon cou-

pling, when separately distinguishable bright and dark states are experienced

by the QD. The dark state which corresponds to dramatic screening of the effec-

tive field experienced by the QD, due to the presence of the MNP, is an indica-

tion of the PMR. PMR-like behavior of MNP-QD nanohybrids has recently been

under study for a multitude of applications such as in-vivo nanoscale switch-

ing [29, 105]. Plasmonic metaresonances will be further investigated in detail in

chapter 7.

Juxtaposition of Fig. 6.4(c), (g) and (k) reveal that the dip in the distribution

of ∆ along R axis and the corresponding peak of Qqd coincide with the relevant

PMR related dip along the R axis in (c) for µ > 1 e nm. Moreover, the percentage

difference plots (Fig. 6.4(d), (h) and (I)) indicate that both LRA and GNOR based

models converge towards the same values when R exceeds 30 nm.

6.4 Population Difference and Quantum State Purity

We then study the resemblance of QD population difference ∆ to its quantum

state purity using Fig. 6.5. In this figure, subplots (b), (c) and (d) in the first

column depict the variation of the LRA based (∆L), GNOR based (∆NL) and the
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Figure 6.5: Second, third and fourth rows depict the top view of the x = ω, y = µ
surface plots of LRA based (subscript L), GNOR based (subscript NL) and iso-
lated QD (subscript iqd) results of ∆ (first column) and Purity (second column),
respectively. The first row depicts the line plots corresponding to the cross sec-
tions marked in black and pink on the respective surface plots in the same col-
umn. Solid lines represent the GNOR based plots whereas the dashed lines
are the conventional LRA based plots and the dotted-dashed lines are the iso-
lated QD plots.The final row depicts the signed percentage difference ∆X =
(XL−XNL)/XNL% where X denotes the physical quantity of the relevant column.
For all subplots, a = 3 nm, R = 13 nm.
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Figure 6.6: Comparison of sample HDM and GNOR based results. Figures depict
the top view of the x = ω (range: 3.499− 3.501 eV), y = a (range: 3− 30 nm)
surface plots of HDM based (subscript H) and the GNOR based (subscript G)
results of Qqd (first row), Π f (second row) and Λ f (third row), respectively. The
final column depicts the signed percentage difference ∆X = (XH − XG)/XG%
where X denotes the physical quantity of the relevant row. For all subplots, R =
a + 10 nm and µ = 1.3 e nm.

isolated QD (∆iqd) population differences, respectively, with varying ω and µ.

Fig. 6.5(a) depicts the line-plots corresponding to the cross-sections marked in

pink and black on the three subsequent surface plots. The solid, dashed and

dotted-dashed lines correspond to the GNOR based, LRA based and the isolated

QD cases, respectively. Fig. 6.5(e) shows the usual surface-contour plot of the

LRA and GNOR percentage difference ∆∆ = (∆L − ∆NL)/∆NL%. The second

column of Fig. 6.5 depicts the same constellation of subplots as the preceding

column for the quantum state purity of the QD.

Comparison of the first column to the corresponding plots of the second re-
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Figure 6.7: Comparison of sample HDM and GNOR based results. Figures de-
pict the top view of the x = R, y = µ surface plots of HDM based (subscript
H) and the GNOR based (subscript G) results of normalized Rabi frequency Ωr

12
(first row), population difference ∆ (second row) and QD absorption rate Qqd
(third row), respectively. The final column depicts the signed percentage differ-
ence ∆X = (XH−XG)/XG% where X denotes the physical quantity of the relevant
row. For all subplots a = 3 nm.

veals that the plot shapes of population difference bear a high resemblance to

the respective quantum state purity plots. It can also be observed that when

∆→ 1, Purity→ ∆ suggesting the existence of the QD in a completely pure state

where the state occupation probabilities, ρ11 → 1 and ρ22 → 0. In contrast, when

∆ → 0, Purity → 0.5 (the minimum possible value of purity of a two state sys-

tem) suggesting that ρ11 → 0.5 and ρ22 → 0.5, leading the QD to a completely

mixed state. Observation of the first three sub-plots of each column reveals that

both ∆ and Purity possess singly dipped frequency distributions for each value

of µ where ∆ → 0 (and Purity → 0.5) when the detuning of the external field
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with the QD resonance decreases, for all three cases under study. The isolated

QD spectra for ∆ and Purity exhibit a symmetric dip near ωqd which constantly

broadens with increasing µ. The LRA based model suggests a symmetric dip

around ωqd, the broadening of which is lesser than that of the isolated QD case,

towards higher values of µ. In contrast, the GNOR based model suggests a dip

around ωqd with growing asymmetry as µ increases. Fig. 6.5(e) indicates that the

percentage difference between the LRA and GNOR based ∆ predictions become

significant as the detuning of the external field (with respect to ωqd) decreases.

∆ and Purity values from both models tend to coincide at high detunings from

ωqd [13].

6.5 Comparison between HDM and GNOR

Finally, let us peruse a comparison between HDM based and the proposed GNOR

based characterizations of the QD influenced by a near-field MNP. From Fig. 6.6,

it is evident that the observed differences are quite significant for MNP radii less

than 10 nm, where the experimentally observed size dependent resonance shifts

of metal nanoparticles (attributed to nonlocal effects) are most significant [36].

The differences observed between the HDM and GNOR based results mainly

arise as the GNOR model accounts for the electron diffusion phenomenon in the

MNP which arises mainly due to surface effects such as Landau damping [11].

From a similar analysis in the µ vs R space using Fig. 6.7, it was observable that

the difference between HDM and GNOR based results are significant in the near-

PMR region and both models tend to give similar predictions when R increases

beyond 30 nm (when a = 3 nm), due to the decreased impact of the MNP [13].
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6.6 Summary of Physical Observations

Using the above results and discussion, it can be concluded that the GNOR based

characterization of a QD exciton situated in the near field of an MNP displays

higher levels of energy absorption (Qqd), compared to its LRA based counterpart,

at least in the large parameter space under study. It also suggests steeper spectral

line-widths along the frequency axis for Qqd and larger MNP induced red-shifts

(Π f ) to the excitonic resonance frequency compared to the LRA based model. The

following interesting phenomena (left unrevealed by the LRA based model) were

also displayed by the proposed GNOR based model, in the selected parameter

regime. It suggests a Fano-like spectrum near the bare excitonic resonance for the

coherent plasmonic field enhancement (CPFE) experienced by the QD. Moreover,

incorporation of the nonlocal effects introduces an asymmetry to the dips of QD

population ∆ and quantum state purity near the bare excitonic resonance ωqd.

Overall, it is evident that the GNOR based model predicts strong modifications to

various QD properties such as population difference, absorption, MNP induced

shifts to excitonic energy and Förster enhanced broadening, coherent plasmonic

field enhancement and quantum state purity, compared to the conventional LRA

based predictions. Such modifications are prominent with small MNP radii, high

QD dipole moments, small detunings (of the coherent external illumination from

the bare excitonic resonance) and near parameter regions exhibiting plasmonic

meta resonance (PMR)-like behavior.



Chapter 7

Plasmonic Metaresonances

Figure 7.1: Graphical illustration of an example of the near-plasmonic metareso-
nant switching action of exciton-plasmon nanohybrids. This figure depicts the
usability of thermoresponsive polymer conjugated metal nanoparticle (MNP)-
quantum dot (QD) metamolecules for temperature sensing, based on the MNP-
QD centre separation. The solid black line corresponds to the QD absorption rate
curve for a silver-based metamolecule with QD dipole moment 1 e nm (same as
the solid blue curve in Fig. 7.5), where e denotes the elementary charge. T de-
notes the temperature of the submerging medium and LCST is the lower critical
solution temperature of the mediating polymer strand.

In this section, let us study the plasmonic metaresonances encountered in sec-

tion 6.7 in detail. It has been revealed that, when a quantum dot (QD) is placed in

the near field of a metal nanoparticle (MNP) with both being driven by a coher-

ent optical field, molecular-like collective states or “resonances” that are different

from localized surface plasmons could form in the system due to the quantum

coherence generated in the QD by the external field and its ability to dramatically

73
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influence the plasmonic field (coherent plasmonic effects) [105, 115]. Such molec-

ular resonances are known as plasmonic metaresonances (PMRs). These PMRs

are not analogous to frequency domain resonances such as excitons in QDs and

plasmons in MNPs, and primarily occur in the space/time domain [116]. PMRs

form a class of optical events gaining increasing popularity due to their promis-

ing prospects in sensing and switching applications.

When influenced by the plasmonic near-field of an MNP, the interaction of

a QD with a time-dependent coherent optical field constitutes a two-stage cou-

pling process [115]. At the first stage, the optical field experienced by the QD is

dramatically suppressed, leading to a plasmonically induced time delay τp. At

the second stage, the QD is driven with a Rabi frequency normalized by the plas-

monic effects. A nanohybrid experiences PMR when system parameters such as

QD dipole moment, MNP-QD centre separation or submerging medium permit-

tivity reach critical values, resulting in the plasmonically induced time delay of

the effective Rabi frequency experienced by the QD asymptotically tending to in-

finity, leaving the system in the first stage [115]. In this chapter τp is obtained as

the time required for the effective Rabi frequency Ωr
12 of the system to reach half

of its steady state value, in response to a step-like rise of the amplitude (E0) of the

externally incident field.

In near-PMR regions where selected parameters are tuned to be on the verge

of their “critical” values, the QD coupled to the MNP and the external field acts

as an ultra-fast nano-switch that exhibits highly sensitive transitions between co-

herent “dark” and “bright” metaresonant states. In the bright state, the effective

field experienced by the QD is enhanced and in the dark state which corresponds

to PMR (where τp → ∞ as stated earlier), the optical field felt by the QD is signif-

icantly screened [105]. Thus, Plasmonic metaresonances can potentially form the

basis for a wide range of chemically, biologically or physically triggered optical

nanoswitches that are sensitive to ultra-small variations in the environment [105].
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For example, given that the refractive index of the host medium and other system

properties are kept constant, PMR occurs when the MNP-QD centre separation

reaches a critical value (Rc) which enables the detection of distance variations at

sub-nanometer resolution using optical techniques, as illustrated in Fig. 7.1(b).

All previous theoretical studies on PMR encountered so far utilize the con-

ventional local response approximation (LRA) [11] when modeling the plasmonic

near-field, and MNP-independent decay and dephasing rates when modeling the

QD [29,30,102,105,115,116]. This chapter focuses on addressing these limitations

via improved modeling of plasmonic metaresonances, by taking the nonlocal

plasmonic response, and MNP polarization dependent QD decay and dephasing

into account. An approach based on the generalized nonlocal optical response

(GNOR) theory [11, 11, 13, 114] is utilized for this purpose. When referring to the

proposed nonlocal and the conventional local models, the plasmonically induced

time delay τp will be referred to as τNL and τL, respectively, throughout this chap-

ter.

7.1 Numerical Model Overview

Both analytical and numerical solutions to the modified system Bloch equations

in (5.22) were used to obtain the steady state and temporal simulation results pre-

sented in this section. The numerical solutions were obtained using the ODE45

solver in MATLAB software. The default set of parameters used throughout this

chapter is as follows. The input to the system is an external coherent electric field

with an angular frequency ω = 2.28 eV and a step amplitude E0 with a 10 ns de-

lay (during which E0 = 0) and a steady state value of 2× 104 V m−1. This field

is assumed to be polarized parallel to the hybrid molecular axis (sα = 2). Po-

larization and population relaxation times of the isolated QD are T0 = 0.37 ns−1

and τ0 = 0.8 ns−1, respectively [105]. The relative dielectric constant of the QD,
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εs = 6 [13]. The angular frequency of the QD excitonic resonance, ωqd = 2.28 eV

and the QD is assumed to be in exact resonance with the externally incident

field (ω = ωqd). The nanohybrid used in this study comprises a silver MNP

with radius a = 8 nm, bulk plasma frequency ωp = 8.99 eV, bulk damping

rate γ = 0.025 eV, Fermi velocity vF = 1.39× 106 m s−1 and diffusion constant

D ≈ 9.624× 10−4 m2 s−1 [11, 114] whereas the experimental dielectric permittiv-

ity of silver (εexp) is obtained using the tabulations of Johnson and Christy in

Ref. [60]. The centre separation between the MNP and QD is initially fixed at

R = 18 nm and the permittivity of the submerging aqueous medium is assumed

to be εb = 1.8 [115, 116]. The above set of parameters would be used throughout

this section except where it is specifically mentioned otherwise.

7.2 Impact of Submerging Permittivity Variations

Fig. 7.2 portrays the QD behavior when the host medium permittivity is varied

in the close vicinity of εb = 1.8, as predicted by both LRA and GNOR based

approaches. Fig. 7.2(b), (e) and (h) depict the top view of the x = εb, y = µ

surface plots of the real part of the normalized Rabi frequency experienced by

the QD (Re
[
Ωr

12
]
), QD population difference (∆) and QD absorption rate (Qqd),

respectively, in the presence of a near-field MNP modeled using the conventional

LRA based framework. Sub-figures (c), (f) and (i) depict the respective quantities

obtained using the GNOR based formalism.

From equation (5.9), it is evident that Ωr
12 is a direct measure of the effective

field felt by the QD. As PMR relates to the dramatic screening of the effective field

experienced by the QD due to coherent plasmonic effects, the dark blue areas

where Re
[
Ωr

12
]
≈ 0 in Fig. 7.2(b) and (c) correspond to the PMR predictions by

the LRA and GNOR models. Close inspection of the aforementioned sub-figures

reveals that the regimes of transition from the dark (PMR) to bright metastates are
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Figure 7.2: The steady state near-PMR behavior of the QD with varying permit-
tivity of the submerging aqueous medium, analyzed using the conventional LRA
and the proposed GNOR based approaches. Second and third columns depict
the top view of x = εb (range: 1.775-1.825), y = µ (range: 1.5-1.75 e nm) color
coded surface plots of the LRA based (subscript L) and GNOR based (subscript
NL) results for the real part of the effective Rabi frequency experienced by the
QD Re

[
Ωr

12
]

(first row), QD population difference ∆ (second row), and QD ab-
sorption rate Qqd (third row), respectively. The pink and purple dotted lines in all
surface plots correspond to the cross sections with the µ values where the PMR-
related phase change is predicted when εb = 1.8, by the LRA and GNOR models,
respectively. The first column depicts the line-plots corresponding to the cross
sections marked in pink and purple on the surface plots in the same row where
solid lines represent the GNOR based plots (cross sections of the third column)
and the dashed lines represent the conventional LRA based plots (cross sections
of the second column).
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observable as nearly horizontal (slant) boundaries near µ ≈ 1.732 e nm (where e

denotes the elementary charge) and µ ≈ 1.515 e nm for the LRA and GNOR based

predictions, respectively, for our chosen system parameter space. For the purpose

of comparison in the context of PMR-related applications suggested in Sec. 11,

we focus on the surface plot cross section where PMR-related phase transition

occurs when the submerging permittivity reaches εb = 1.8. The two relevant

cross sections are marked as pink (at µ = µL ≈ 1.732 e nm) and purple (at µ =

µNL ≈ 1.515 e nm) dotted lines on both surface plots in Fig. 7.2(b) and (c). The

line-plots corresponding to these surface-plot cross sections are shown in Fig.

7.2(a), where the dashed lines correspond to the LRA based cross sections (pink

and purple) and the solid lines correspond to the respective GNOR based results.

When the QD dipole moment µ = µL, the LRA based model predicts a state shift

from bright to dark state at εb = 1.8, whereas the GNOR based model states

that the system remains in the dark state for all host permittivities considered. In

contrast, at µ = µNL where the GNOR based model predicts the bright to dark

state shift at εb = 1.8, the LRA based model predicts the system to be remaining

in the bright state for all host permittivities, as shown in Fig. 7.2(a). Comparison

between the above LRA and GNOR based results reveals that omitting the MNP

nonlocal response substantially over-estimates the QD dipole moment needed to

achieve near-PMR state switching for the submerging medium of our interest.

The second and third rows of Fig. 7.2 depict similar analyses for the QD pop-

ulation difference ∆ and QD absorption rate Qqd. Juxtaposition of Fig. 7.2(a) and

(d) reveals that the bright to dark state switching maps to a QD population dif-

ference shift from 0 to (approximately) 0.5. Moreover, as shown in Fig. 7.2(g), the

predictions for Qqd obtained using both LRA and GNOR formalisms are qualita-

tively similar to the respective Re
[
Ωr

12
]

counterparts.
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Figure 7.3: Analysis of the temporal dynamics predicted by the conventional
LRA based (subscript L) and GNOR based (subscript NL) analyses for µ = µL ≈
1.732 e nm and µ = µNL ≈ 1.515 e nm, for different submerging medium permit-
tivities in the close vicinity of εb = 1.8.
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Figure 7.4: Variation of the plasmonically induced response delay for the LRA
(subscript L) and GNOR (subscript NL) based nanoswitches operating at εb =
1.8.

7.3 Environmental Impact on Temporal Dynamics

In this section, using Fig. 7.3, let us analyse the near-PMR temporal dynamics cor-

responding to the four line-plots observed in Fig. 7.2(a), where we identified µL

and µNL as the two dipole moment values corresponding to the LRA and GNOR

based selections for µ to achieve PMR switching at εb = 1.8, when all other pa-

rameters are kept common. The bare Rabi frequencies experienced by isolated

QDs with dipole moments µL and µNL upon the incidence of an electric field with

amplitude E0 (which has a delay time of 10 ns) results in the respective blue and

red solid lines replicated in all subplots, Fig. 7.3(a)-(f). It can be observed that the

bare Rabi frequency (Ω0) follows the same step-rise as the input signal amplitude

in the absence of any plasmonic influence.

The steady state values of the solid lines in each sub-figure of Fig. 7.3 corre-

spond to dots extracted from Fig. 7.2(a) for six different εb values in the close

vicinity of εb = 1.8. The plasmonically induced time delay τp is labeled as τL for

the LRA based case and as τNL for the GNOR based case, in each sub-figure. The
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yellow and blue solid lines of Fig. 7.3 correspond to the two scenarios with PMR

switching at εb = 1.8. For the solid yellow lines which depict the temporal vari-

ation of Re
[
Ωr

12
]

as predicted by the LRA based model for µ = µL ≈ 1.732 e nm,

the predicted response delay for εb ≈ 1.799 is approximately 398 ns. The same

exceeds 1000 ns when the value of εb tends to 1.7999. This behaviour mimics

the fall of the corresponding steady state curve depicted by the pink dashed line

in Fig. 7.2(a) from the bright to dark state. Similarly, the variation of the solid

blue temporal curves in Fig. 7.3 mimic the PMR switching of the GNOR based

(µ = µNL ≈ 1.515 e nm) purple solid line in Fig. 7.2(a). For these curves, the

GNOR based plasmonic time delay τNL ≈ 98 ns at εb ≈ 1.799 which subsequently

exceeds 1000 ns at εb ≈ 1.8003.

The green curves in Fig. 7.3(a)-(f) represent the temporal variation of Re
[
Ωr

12
]

obtained using the LRA based formalism for µ = µNL ≈ 1.515 e nm. It is read-

ily observable that these curves display nearly zero plasmonic time delay for all

near-PMR εb values considered, which mimics the system residing in the bright

state for all submerging permittivities as shown in the purple dashed line of Fig.

7.2(a). In contrast, the GNOR based curves for µ = µL ≈ 1.732 e nm (pink) in

Fig. 7.3(a)-(f) comprise τp > 1000 ns for all considered εb values, which is a clear

indication of the system residing in the dark or PMR state, as indicated by the

pink solid line in Fig. 7.2(a).

Finally, using Fig. 7.4, we peruse the variation of the plasmonically induced

time delays of the LRA (τL) and GNOR (τNL) based nanoswitches operating at

εb = 1.8. It is evident that τL far exceeds τNL for all near-PMR εb values considered.

7.4 Distance Dependent Plasmonic Metaresonances

As it was outlined earlier in the introduction section, PMRs occur in the space/time

domain and switching can be achieved by tuning different nanohybrid and host
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Figure 7.5: The steady analysis of the system as a function of MNP-QD centre
separation R, for two different values of the QD dipole moment µ, in an aqueous
submerging medium with εb = 1.8. The solid red and blue lines depict the GNOR
based results for nanohybrids with QD dipole moments µ = 0.5 e nm and 1 e nm,
respectively. The dashed curves depict the corresponding LRA based results. (a)
Variation of the real part of effective Rabi frequency Ωr

12 experienced by the QD
in the presence of coherent plasmonic effects (b) Variation of QD population dif-
ference ∆ (c) Coherent plasmonic field enhancement Pcoh experienced by the QD
(d) Imaginary part of the effective Rabi frequency Ωr

12 (e) QD energy absorption
rate Qqd (f) Variation of the quantum state purity of the QD under the influence
of the MNP
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medium properties such as the QD dipole moment, submerging permittivity and

MNP-QD centre separation. In this section, let us focus on analyzing the MNP-

QD centre separation dependence of plasmonic metaresonances.

Fig. 7.5 depicts the real and imaginary parts of the effective Rabi frequency

Ωr
12, QD population difference ∆, coherent plasmonic field enhancement Pcoh, QD

absorption rate Qqd and the quantum state purity as functions of the MNP-QD

centre separation R, in the temporal steady state. It is assumed that the MNP-QD

nanohybrid is be submerged in the same aqueous host medium with permittivity

εb = 1.8. The displayed results have been obtained for µ = 0.5 e nm and µ =

1 e nm, using both LRA and GNOR based approaches.

Fig. 7.5(a) shows the variation of Re
[
Ωr

12
]

which adheres to the distinct near

PMR behavior of the effective Rabi frequency identified in literature [105]. For

both values of µ considered (µL and µNL), and for both LRA and GNOR based

models, Re
[
Ωr

12
]
≈ Ω0 for large R, and the field experienced by the QD is ap-

proximately equal to the externally incident field. When R is decreased, Re
[
Ωr

12
]

(and hence the effective field experienced by the QD) shows an overall increas-

ing trend. When R is decreased further, we reach a critical distance Rc where the

effective field exhibits an abrupt, significant decrease. Thus, Rc marks the tran-

sition from the bright state (where QD experiences a sizable effective plasmonic

field) to the dark state (where the effective field experienced by the QD is dra-

matically screened), which is an indication of the system reaching a PMR. For

µ = 0.5 e nm the LRA based model predicts Rc ≈ 14.2 nm whereas the GNOR

based model predicts Rc ≈ 15 nm. Similarly, the approximate LRA and GNOR

based predictions for Rc when µ = 1 e nm are 16.2 nm and 16.8 nm, respectively.

Moreover, as portrayed in Fig. 7.5(c), all curves of coherent plasmonic field en-

hancement Pcoh display qualitatively similar variations to the respective Re
[
Ωr

12
]

in Fig. 7.5(a), with scaled magnitudes due to normalization by the bare Rabi fre-

quency Ω0. When R→ ∞, Pcoh → 1 as Ωr
12 → Ω0.
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It is evident from Fig. 7.5(d) that the effective Rabi frequency (and hence the

effective field) experienced by the QD becomes complex valued for MNP-QD cen-

tre separations close to Rc. The physical interpretation of this observation would

be that the coherent plasmonic effects induced by the neighboring MNP cause the

generation of an extra phase in the effective field [105]. It can be observed that

Im
[
Ωr

12
]
→ 0 when R→ ∞ resulting in Ωr

12 → Ω0, due to diminishing plasmonic

impact. When R is gradually decreased, Im
[
Ωr

12
]

non-linearly increases, reach-

ing a peak at Rc. It experiences an abrupt decrease at Rc after which it gradually

tends to zero. This qualitative behavior of Im
[
Ωr

12
]

is commonly followed by all

four curves portrayed in Fig. 7.5(d). It is interesting to note that, under both LRA

and GNOR based modeling, the value of µ seems to have negligible contribution

to the peak magnitude of Im
[
Ωr

12
]
, in contrast to its real valued component. It

can also be observed that the LRA model significantly under-estimates the peak

values of Im
[
Ωr

12
]

for both values of µ considered.

Fig. 7.5(b) depicts the variation of QD population difference ∆ as a function of

MNP-QD centre separation R. At small values of R preceding Rc which map to

the PMR (dark) state where the effective field on QD is dramatically screened,

∆ ≈ 1, which implies a high probability of the QD residing in the excitonic

ground state. As R is increased, ∆ decreases gradually until it encounters a dra-

matic vertical drop at R = Rc and the nanohybrid switches to the bright state

where ∆ → 0 and QD exhibits nearly equal probabilities of residing in the exci-

tonic ground or excited states (ρ11 ≈ ρ22). It can be observed that the LRA model

predicts the bright state ∆ values to be more closer to 0 compared to the relevant

GNOR based predictions. Moreover, both models predict lower bright state ∆

values at the higher µ value.

Comparison of Fig. 7.5(b) with Fig. 7.5(f) reveals that the variation of popula-

tion difference bears a high (qualitative) resemblance to the respective quantum

state purity plots. We can also observe that when ∆ → 1 with decreasing R in
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Figure 7.6: Analysis of the temporal dynamics predicted by the conventional LRA
based (subscript L) and GNOR based (subscript NL) methods for µ = 1 e nm at
different near PMR centre separation distances. In all sub-figures, the solid blue
line shows the Rabi frequency experienced by the isolated QD, which follows the
step-rise of the input field amplitude E0. The orange and green curves represent
the LRA and GNOR based results, respectively whereas τL and τNL refer to the
plasmonically induced time delay τp as predicted by the two models.
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Figure 7.7: Variation of the plasmonically induced response delay for the LRA
(subscript L) and GNOR (subscript NL) based nanoswitches operating at εb = 1.8
and µ = 1 e nm. RcL and RcNL refer to the LRA and GNOR based predictions for
the critical centre separation where PMR switching occurs.

Table A1: Comparison of near-PMR response delays predicted by LRA and
GNOR based models for different R

R(nm) τL(ns) τNL(ns)
16.2 > 2000 > 2000

16.2889 10.6185 > 2000
16.3778 6.3925 > 2000
16.4667 4.7429 > 2000
16.5556 3.8098 > 2000
16.6444 3.1837 > 2000
16.7333 2.7304 > 2000
16.8222 2.3815 10.6989
16.9111 2.1036 4.2486

17 1.8849 2.9372

the dark (PMR) state, Purity → 1 which is an indication of the QD residing in a

completely pure quantum state [13]. Moreover, when ∆ → 0 in the bright state,

Purity → 0.5 where ρ11 → 0.5 and ρ22 → 0.5 leading the QD to a completely

mixed quantum state.

Let us finally study the variation of Qqd depicted in Fig. 7.5(e). It reveals that

the LRA based model substantially underestimates the QD absorption rate in the
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bright state (R > Rc). The GNOR based plots also reveal that the peak absorption

rate (observed at the relevant Rc) for µ = 0.5 e nm surpasses the peak absorption

rate at µ = 1 e nm which could be attributable to the incomplete vanishing of ∆

for µ = 0.5 e nm near Rc.

Impact of Centre Separation on Temporal Dynamics

Using Fig. 7.6, we can analyse the near-PMR temporal dynamics of the µ =

1 e nm system introduced earlier in section 7.4, using both LRA and GNOR based

formalisms. The bare Rabi frequency experienced by the isolated QD, which un-

dergoes the same step-like variation as E0, is shown by a solid blue line in each

sub-figure. At the onset of its step-rise, both orange and green curves that cor-

respond to the respective LRA and GNOR based predictions of Re
[
Ωr

12
]

display

transient oscillations, after which both systems predict a period of plasmonically

induced screening of the effective field. We study the temporal variation at dif-

ferent centre separation values from 16.2− 17 nm using ten subplots where we

have labeled the plasmonically induced time delay τp predicted by the LRA and

GNOR models as τL and τNL respectively, following our usual convention. It can

be observed that both τL and τNL decrease with increasing R, and that τL < τNL, for

the selected parameter region. These results are summarized using Table A1.

Fig. 7.7, depicts the variation of τL and τNL as functions of R, where asymptotes

are observable near the Rc values predicted by the LRA (RcL) and GNOR (RcNL)

models. The values of centre separations at the asymptotes closely match the

respective R values where the abrupt drops of Re
[
Ωr

12
]

were observed in Fig.

7.5(a), as both scenarios indicate the system switching from the bright to the dark

(PMR) state.
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7.5 Summary of Physical Observations

The aim of this chapter was to peruse numerically modeled plasmonic metares-

onances (PMRs) in a coherently illuminated quantum dot (QD), coupled to a

neighboring metal nanoparticle (MNP), using a generalized nonlocal optical re-

sponse (GNOR) method based approach, taking the MNP dependence of the QD

decay and dephasing rates into account. It revealed the impact of different sys-

tem parameters such as QD dipole moment, MNP-QD centre separation and sub-

merging medium permittivity on the formation of PMRs, under both the conven-

tional LRA based and the improved GNOR based approaches. Comparison of

the improved GNOR based results with the conventional LRA based counter-

parts clearly indicated that the omission of MNP nonlocal response and MNP in-

duced decay and dephasing rate modifications causes implications such as signif-

icant over-estimation of the QD dipole moment required to achieve PMR, under-

estimation of the critical centre separation and prediction of significantly lower

near-PMR QD absorption rates, in comparison to the GNOR based predictions.

Later in this thesis, chapter 11 will utilize the GNOR based approach of mod-

eling PMRs to demonstrate the prospects of using PMR based nanoswitches in

prospective biomedical applications.



Chapter 8

Cavity-QED based Characterization of
Nanohybrid Scattering Spectra

Figure 8.1: The schematic diagram of the MNP-QD hybrid molecule in the ex-
ternal driving field [2]. The right insert shows an example Rayleigh scattering
spectrum of the hybrid molecule.

Taking a step further from the previous semi-classical descriptions, where the

quantum dot (QD) is treated quantum mechanically and the metal nanoparticle

(MNP) is treated classically, this chapter is dedicated to analytically modeling the

entire MNP-QD hybrid molecule incident by an external driving field as an open

quantum system using a cavity-QED approach. The process incorporates quan-

89



90 Cavity-QED based Characterization of Nanohybrid Scattering Spectra

tum mechanically modeling the dipole moment operator and the dipole response

field of the metal nanoparticle taking the nonlocal effects into account using the

usual GNOR based approach.

When a hybrid MNP-QD nanomolecule is optically excited, an additional

electric field superposed on the external driving field is experienced by the MNP

due to the dipole moment of the optical transitions in the QD. The resulting elec-

tric field induces a dipole moment in the MNP which in turn alters the field ex-

perienced by the QD leading to a self-feedback [117]. Due to this interaction,

artificial hybrid nanomolecules formed by placing MNPs in close proximity with

QDs exhibit fascinating scattering properties. This chapter presents an analytical

model usable to study such scattering spectra.

8.1 Overview of the Model

Pertaining to our earlier discussions, this chapter too considers a hybrid molecule

comprising a spherical, non-magnetic MNP of radius rm coupled to a QD of

radius rqd embedded in a homogenous dielectric bath with a real positive rel-

ative permittivity εb as shown in Fig. 8.1. The MNP and QD are separated

by a distance R, allowing no direct tunneling between them (R − rm − rqd >

2× 10−9 m) [97]. The hybrid molecule is excited by an external electric field

Edrive = ẽ(E+
0 e−iωt + E−0 eiωt) where i is the imaginary unit, ω is the angular

frequency and ẽ is a unit vector along or perpendicular to the axis of the hy-

brid molecule. Let us recall that the physics sign convention where a positive

energy h̄ω maps to a positive frequency component, oscillating as e−iωt [118] is

used throughout this thesis. Therefore, E+
0 and E−0 are the respective positive

and negative frequency coefficients, where E+
0 = E−0 = E0 for the case of Edrive.

The applied field polarizes both the MNP and the QD, allowing a dipole-dipole

coupling between them.
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8.2 Cavity QED based Analysis of the Nanohybrid

Let us now analyse our hybrid molecule in the external driving field (see Fig. 8.1)

quantum mechanically, with the aid of cavity QED methods.

In this chapter, the field arising due to the surface plasmons (SPs) in the metal

nanoparticle is quantized by associating each mode with a quantum simple har-

monic oscillator. For each oscillator mode k, nk and |nk〉 denote the number of

surface plasmons and the Fock (or number) state, respectively. For subwave-

length particles, SP resonance corresponds to a dipole mode [119]. Assuming the

resemblance to a cavity mode with the the vacuum state placed at zero energy

level, the Schrödinger picture Hamiltonian of the unperturbed SP dipole mode

can be written as,

ĤSch
m = h̄ωm â† â, (8.1)

where ωm, â and â† denote the plasmonic resonance energy, SP annihilation and

creation operators, respectively [120]. Then, the Hamiltonian of our coupled

quantum system in the Schrödinger picture is obtainable as follows,

ĤSch
sys = ĤSch

m + ĤSch
qd + ĤSch

int + ĤSch
drive. (8.2)

where ĤSch
qd , ĤSch

int and ĤSch
drive denote the unperturbed QD Hamiltonian, the inter-

action Hamiltonian between the QD and MNP, and the interaction Hamiltonian

of the total hybrid molecule with the external driving field, respectively.

In chapter 5, the QD state raising and lowering operators were obtained as

σ̂† = |e〉 〈g| and σ̂ = |g〉 〈e|. Re-defining ωqd as the frequency of the excitonic

transition between |e〉 and |g〉 (to easily distinguish QD and MNP resonances)

and the energy of the ground state to be zero, we can obtain ĤSch
qd = h̄ωqdσ̂†σ̂ [2].

The Hamiltonian component ĤSch
int can be calculated as the dipole energy of

the QD kept in the dipole response field created by the MNP. In the cavity QED



92 Cavity-QED based Characterization of Nanohybrid Scattering Spectra

treatment of the hybrid molecule, the electric field operator of the surface plas-

mon Êm is approximated by a cavity mode [97], where its positive frequency

component relates to the plasmon field annihilation operator as [121–123],

Ê+
m ≈ iE â. (8.3)

An expression for the coefficient E will be derived towards the end of this section.

The optical decay of the QD from the excited state |e〉 to the ground state |g〉

is associated with the transition dipole operator d̂qd = µ∗qdσ̂ + µqdσ̂†. With the

dipole moment element µqd assumed real, this simplifies to [124],

d̂qd = µqd
(
σ̂ + σ̂†) = d̂+qd + d̂−qd, (8.4)

where d̂+qd = µqdσ̂ and d̂−qd = µqdσ̂† denote the positive and negative frequency

components that will oscillate as e−iωt and eiωt respectively, when converted to

the interaction picture. Following the description of atom-light coupling within

the dipole approximation [76, 98], ĤSch
int can be written as,

ĤSch
int = −d̂qd.Êm ≈ −

(
d̂+qdÊ−m + d̂−qdÊ+

m
)
, (8.5)

where the non-energy conserving fast oscillating terms have been eliminated us-

ing the rotating wave approximation. Substituting (8.3) and (8.4) in (8.5), we

arrive at,

ĤSch
int = ih̄g

(
σ̂â† − σ̂† â

)
, (8.6)

where the coupling constant g is defined as [97],

g =
µqdE

h̄
. (8.7)

Let us now proceed to derive an expression for the Hamiltonian term ĤSch
drive
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which results from the dipole interaction of the MNP and QD with Edrive. We first

define the dipole moment operator of the MNP as,

d̂m = d̂+m + d̂−m = µ∗m â + µm â†, (8.8)

where µm is the dipole moment element of d̂m. This enables us to write,

ĤSch
drive = −Edrive(d̂qd + d̂m) (8.9)

By substituting for Edrive, d̂qd, d̂m and applying the rotating wave approximation,

we can arrive at,

ĤSch
drive = −E0

(
µm â†e−iωt + µ∗m âeiωt)− E0µqd

(
σ̂†e−iωt + σ̂eiωt). (8.10)

Substituting these results in (8.2) yields the complete expression for the sys-

tem Hamiltonian in the Schrödinger picture. For the ease of proceeding with the

calculations, we can then convert it to the interaction picture where the interac-

tion frame rotates at the driving field frequency ω. Let us first recast the system

Hamiltonian in the Schrödinger picture to the following form,

ĤSch
sys = Ĥ0 + h̄∆m â† â + h̄∆qdσ̂†σ̂ + ĤSch

int + ĤSch
drive, (8.11)

where Ĥ0 = h̄ωâ† â + h̄ωσ̂†σ̂. The two detunings of the MNP and QD from Edrive

are given the notations ∆m = (ωm −ω) and ∆qd = (ωqd −ω), respectively.

The interaction picture Hamiltonian in a frame rotating at frequency ω is de-

fined as [125],

ĤInt
sys = Û †

0 V̂ Û0, (8.12)

where Û0 = e−iĤ0t/h̄ and V̂ = ĤSch
sys − Ĥ0.

Simplification of (8.12) using a procedure similar to that outlined in section
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3.2.2 results in the complete expression for the system Hamiltonian in the inter-

action picture [2],

ĤInt
sys = h̄∆m â† â + h̄∆qdσ̂†σ̂ + ih̄g(â†σ̂− âσ̂†)− E0

(
d̂m + d̂qd

)
. (8.13)

ĤInt
sys possesses dressed eigenstates [126] which govern the behaviour of the hy-

brid system.

The above Hamiltonian describes a closed quantum system where we have

not yet taken the effects of the environment or the reservoir into account. How-

ever, the nanohybrid couples with the environment forming an open quantum

system with irreversible dynamics. This interaction is modelled as a Markovian

process [87]. The full quantum dynamics of the coupled nanosystem can be de-

rived using the following master equation for the interaction picture density op-

erator [97, 127],
∂

∂t
ρ̂ =

i
h̄
[
ρ̂, ĤInt

sys
]
+ L̂qd + L̂m, (8.14)

where the Liouvillian terms L̂qd and L̂m are given by [87, 97, 127],

L̂qd =
γqd

2
(
2σ̂ρ̂σ̂† − σ̂†σ̂ρ̂− ρ̂σ̂†σ̂

)
, (8.15a)

L̂m =
γm

2
(
2âρ̂â† − â† âρ̂− ρ̂â† â

)
, (8.15b)

where the Markovian interaction with the reservoirs determines the decay rates

γqd and γm for the QD exciton and the MNP surface plasmon respectively [97].

Recall that the expectation value of an observable Q̂ can be obtained using the

trace of the product of ρ̂ and Q̂ as 〈Q̂〉 = Tr[ρ̂Q̂] [86]. Using this claim, we can

obtain the equation of motion of 〈â〉 in the interaction picture as,

∂

∂t
〈â〉 = ∂

∂t
Tr[âρ̂] = Tr

[
∂

∂t
(
âρ̂
)]

= Tr
[

â
∂

∂t
ρ̂

]
. (8.16)
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By inserting (8.13) in (8.14) and obtaining the trace of the entire expression multi-

plied by â yields,

∂

∂t
〈â〉 = Tr

[
â
(

i
h̄
[
ρ̂, ĤInt

sys
]
+ L̂qd + L̂m

)]
. (8.17)

Assuming the QD and MNP operators commute and using bosonic commutator

relations for the MNP operators together with the cyclic property of trace, we can

simplify (8.17) to obtain (see appendix E.1),

∂

∂t
〈â〉 = −Dm〈â〉+ g〈σ̂〉+Mm, (8.18)

where Dm =
(
i∆m + γm

/
2
)

and Mm = iµmE0
/

h̄. Solving (8.18) for the steady

state by setting ∂
∂t 〈â〉 = 0 yields [2],

〈â〉 = (g〈σ̂〉+Mm) /Dm. (8.19)

Similarly, as 〈σ̂〉 = Tr [σ̂ρ̂] we can write,

∂

∂t
〈σ̂〉 = Tr

[
σ̂

(
i
h̄
[
ρ̂, ĤInt

sys
]
+ L̂qd + L̂m

)]
. (8.20)

Using the definitions of σ̂, σ̂† and the orthogonality relation of |e〉, |g〉 in the sim-

plification of (8.20) we can arrive at the equation of motion for 〈σ̂〉 as (see ap-

pendix E.2),

∂

∂t
〈σ̂〉 = −Dqd〈σ̂〉 −

(
1− 2〈σ̂†σ̂〉

) (
g〈â〉 −Mqd

)
, (8.21)

where Dqd =
(
i∆qd + γqd

/
2
)

andMqd = iµqdE0
/

h̄. In the semiclassical formal-

ism where the fields are well-defined (noise-free), the expectation values of the

products of MNP and QD operators are separable [128]. The latter property was

utilized in arriving at the result in (8.21).
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For weak fields where the excitonic populations are minute (〈σ̂†σ̂〉 � 1) [97],

we obtain the coupled expression for 〈σ̂〉 at steady state as,

〈σ̂〉 ≈
(
−g〈â〉+Mqd

) /
Dqd. (8.22)

Solving the two coupled equations (8.19) and (8.22) we can obtain the decou-

pled analytical solutions for 〈â〉 and 〈σ̂〉 for weak fields, at steady state [2],

〈â〉 ≈
MmDqd + gMqd

DmDqd + g2 , (8.23a)

〈σ̂〉 ≈
MqdDm − gMm

DmDqd + g2 . (8.23b)

Let us now proceed to obtain expressions for the plasmon field amplitude E

and the dipole matrix element µm. If the electric field operator is replaced with its

mean value, we obtain the classical electric field that satisfies the Maxwell’s equa-

tions [129]. Note that 〈â〉 in (8.23a) is the expectation value of the Schrödinger

picture annihilation operator, obtained using the interaction picture density ma-

trix. Hence, 〈â〉 yields the slowly varying amplitude of the expectation value of

the interaction picture annihilation operator, 〈âI(t)〉 = 〈â〉e−iωt. Similarly, for the

QD, 〈σ̂I(t)〉 = 〈σ̂〉e−iωt.

Let us first model the MNP under the LRA [11] where the nonlocal effects are

neglected and the optical response is described by the LRA based polarizability

(2.7). In this context, the classical positive electric field coefficient of the surface

plasmon field felt by the QD is given in the LRA as (see appendix E.3),

E+
res

∣∣∣
r=R
≈ sαd+m

4πε0εbR3 . (8.24)

where d+m is the positive frequency component of the MNP’s classical dipole mo-
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ment,

d+m ≈ 4πε0εbβLRAr3
m

(
E0 +

sαd+qd

4πε0εbR3

)
. (8.25)

Equating the classical positive electric field coefficient of the surface plasmon

field felt by the QD in (8.24), with the expectation value of the relevant quantum

mechanical operator in (8.3), we obtain: E+
res
∣∣
r=R

= 〈Ê+
m〉 = iE〈â〉. Similarly, from

the expectation value of (8.4), we can obtain d+qd = 〈d̂+qd〉 = µqd〈σ̂〉.

Substituting for E+
res
∣∣
r=R

using (8.24) and (8.25), for 〈â〉 using (8.19) and by

separately equating the MNP response field components arising due to the QD

and Edrive, we can arrive at the following under the LRA,

E =
sα

R3

√
βLRAr3

mh̄Dm

4iπε0εb
, (8.26a)

µm = −
√

4iπε0εb βLRAr3
mh̄Dm. (8.26b)

Let us now use (8.26b) and (8.19) to obtain an expression for−µm〈â〉 and compare

the result with (8.25) as,

−µm〈â〉 = 4πε0εbβLRAr3
m

(
E0 +

sαd+qd

4πε0εbR3

)
= d+m. (8.27)

The astute reader will recall that obtaining the expectation value of (8.8) re-

sults in d+m = 〈d̂+m〉 = µ∗m〈â〉. Therefore, −µm ≈ µ∗m is the necessary condition

for a given MNP to be successfully modeled by the cavity QED model. In the fol-

lowing section, we derive the approximate expression for µm of metals exhibiting

good plasmonic properties that will meet this criteria [2].
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8.3 Good Plasmonic Approximations

This section will present an overview of the good plasmonic materials that will

be useful in our subsequent derivations.

A necessary condition for the existence of surface plasmons is Re [εm(ω)] ∈

R− [130]. Such material show good plasmonic properties when [131],

Im [εm(ω)]� −Re [εm(ω)] . (8.28)

Let us recall that the dipolar polarizability of the MNP α abides by the pro-

portionality relation α ∝ r3
mβLRA = r3

m (εm − εb)
/
(εm + 2εb) [9]. It is evident

that the polarizability experiences a resonant enhancement when |εm(ω) + 2εb|

is a minimum. For small Im[εm(ω)] around the resonance, this simplifies to the

Frölich condition in the LRA [9, 131],

Re [εm(ωm)] ≈ −2εb. (8.29)

The magnitude of α at resonance is limited by the incomplete vanishing of its

denominator, since Im[εm(ω)] 6= 0.

The rate of energy loss from the SP mode is proportional to Im [εm(ω)] [132].

This leads to a finite lifetime of the SPs leading to a near-resonance decay rate

[97, 131],

γm ≈ 2η Im [εm(ωm)] , (8.30)

where,

η =

(
d Re [εm(ω)]

d ω

)−1

ω=ωm

. (8.31)

When the dielectric losses are relatively small (which is applicable to the entire

plasmonic region of noble metals), the Kramers-Kronig relations for εm(ω) [131]

predicts that η > 0.
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Applying (8.28), (8.29) and (8.30) in (8.26a) and (8.26b) when ∆m ≈ 0, we can

obtain (see appendix E.4),

E ≈ sα

R3

√
3h̄ηr3

m
4πε0

, (8.32a)

µm ≈ −iεb

√
12πε0ηr3

mh̄, (8.32b)

where −µm ≈ µ∗m and hence d+m ≈ µ∗m〈â〉.

8.4 The Nonlocal Correction

As suggested by our discussion so far, energy (or the frequency) of surface plas-

mon resonances in the MNP is determined by its polarizability using the Frölich

condition. In the classical LRA, the polarizability of the MNP at a given point was

modelled to be locally related to the electric field. In this section, we introduce

a correction to the earlier analytical results using the GNOR based polarizability

discussed in section 2.2, to account for the nonlocal effects of the MNP.

By substituting the nonlocal βNL introduced in section 2.2 in place of βLRA in

(8.26a) and (8.26b), we can obtain the exact versions of E and µm with the non-

local correction (let us call them ENL and µNL
m ). However, for the same reason

outlined in the section 8.2, −µNL
m ≈ (µNL

m )
∗ criteria must be met for the MNP-QD

molecule to be modelled within the cavity QED approach with a reasonable accu-

racy, where we have defined µNL
m as the MNP dipole moment operator element in

the nonlocal case. We then show that this criteria is met near resonance for good

plasmonic materials when Re(1 + δNL)� | Im(1 + δNL)|.

The modified nonlocal Frölich condition where αNL ∝ r3
mβNL undergoes a

resonant enhancement is given by [11],

Re [εm(ωm)] ≈ −2εb Re (1 + δNL) , (8.33)
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for Re(1 + δNL) � | Im(1 + δNL)|. When this resonant enhancement occurs,

Re [εm(ω)] can be approximated using its first order Taylor expansion near ωm

as,

Re [εm (ω)] ≈ Re [εm (ωm)] + (ω−ωm)
/

η. (8.34)

We can use this to approximate βNL introduced in (2.18) around the SP resonance

frequency ωm by a complex Lorentzian using (8.28), (8.30), (8.33) and (8.34) as

follows [2],

βNL ≈ 3iεbη Re(1 + δNL)
/
Dm. (8.35)

Substituting βNL
cm from (8.35) in (8.26a) and (8.26b) yields [2],

ENL ≈ sα

R3

√
3h̄ηr3

m Re(1 + δNL)

4πε0
, (8.36a)

µNL
m ≈ −iεb

√
12πε0ηr3

mh̄ Re(1 + δNL). (8.36b)

The equations (8.35), (8.36a) and (8.36b) capture the main results of this chapter.

It is evident that good plasmonic materials fulfill the −µNL
m ≈ (µNL

m )∗ criteria

required by the cavity QED model near resonance, given the condition Re(1 +

δNL)� | Im(1 + δNL)| is satisfied.

In summary, it should be highlighted that the approximated ENL and µNL
m hold

the following relationships with their approximated LRA counterparts E and µm.

ENL ≈ E
√

Re (1 + δNL), (8.37a)

µNL
m ≈ µm

√
Re (1 + δNL) (8.37b)
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8.5 Scattering of Light By the Hybrid Molecule

Let us now calculate the Rayleigh scattering of the hybrid molecule which is

prominent when the size of the scattering object is much smaller than the wave-

length of the incident light [25]. The output scattered light comprises coherent

and incoherent components. The coherent part is due to the elastic Rayleigh

scattering where the radiated electromagnetic energy has the same frequency as

the incoming field [133]. For low incident light intensities, elastic scattering is

dominant. We can use this claim to model the Rayleigh scattering by the hybrid

molecule, using the cavity QED solutions for the system in the weak field limit

given by (8.23a) and (8.23b). The coherent part of the scattered intensity is pro-

portional to [2, 97, 117],

I ≈
∣∣∣d+qd + d+m

∣∣∣2 =
∣∣µqd〈σ̂〉+ µ∗m〈â〉

∣∣2, (8.38)

under the LRA. Similarly, for the nonlocal case [2, 4],

INL ≈
∣∣∣µNL

qd 〈σ̂〉
NL + (µNL

m )∗〈â〉NL
∣∣∣2, (8.39)

where the superscript NL denotes the relevant quantities calculated using the

nonlocally corrected equations. These results will be amply used in the numerical

results chapter that follows.

8.6 The Tolerance Factor of the Nonlocal Model

With the aim of conducting a validity region analysis for the suggested nonlo-

cal cavity QED model in the numerical chapter that follows, a tolerance factor

is introduced in this section. As we have already discussed, the successful use

of the cavity QED model to analyse the MNP-QD hybrid molecule requires the



102 Cavity-QED based Characterization of Nanohybrid Scattering Spectra

fulfillment of the condition −µNL
m ≈ (µNL

m )∗. With this in mind, we can define [2],

T =

∣∣∣∣ |µNL
m u| − |µNL

m a|
|µNL

m u|

∣∣∣∣× 100%, (8.40)

where µNL
m u is the unapproximated version of µNL

m in the nonlocal model obtained

by substituting βNL from (2.18) in (8.26b) and µNL
m a is the approximated µNL

m in the

nonlocal model obtained using (8.36b). This in turn demands that both the con-

ditions Im(εm(ω)) � −Re(εm(ω)) and Re(1 + δNL) � | Im(1 + δNL)| are met.

The equation (8.40) can be used as a de-facto tolerance for the presented nonlocal

cavity-QED model. Note that the absolute values are used for the comparison (to

obtain a real percentage value) due to µm being a complex quantity.



Chapter 9

Nanohybrids Comprising Different
Plasmonic Materials

In this chapter, let us analyse the scattered intensity spectra of MNP-QD hybrid

molecules comprising noble, transition, post transition and alkali metal based

nano-resonators. The five metals Au, Ag, Cu, Al and Na are used as represen-

tative plasmonic materials, and the GNOR based cavity QED approach outlined

in the earlier chapter is utilized to obtain the nanohybrid scattering spectra. The

plasmonic material used in an MNP-QD hybrid molecule plays a vital role in

determining its spectrum. Thus, let us start with a brief overview of plasmonic

materials used for the nanohybrids, to get a glimpse of their suitability in differ-

ent applications.

9.1 Overview of Different Plasmonic Materials

9.1.1 Au and Ag

Due to their large plasma frequencies and high free electron density, metals are

often regarded the materials of choice for plasmonics [134]. The two noble metals,

silver (Ag) and gold (Au), are the two most commonly used plasmonic materials

among metals as they have relatively low losses in the visible and NIR ranges

[134] and relatively low resistivities (hence high conductivities) [135].

103
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Au is considered the material of choice at lower NIR frequencies due to its

mechanical properties, ease of implementation and very high resistance against

oxidation by the common surrounding medium [136]. Researchers are just be-

ginning to fully realize the vast range of medical diagnostic and therapeutic ca-

pabilities of Au nanoparticle (AuNP) based devices in applications such as can-

cer imaging and therapy [137]. Due to their potentially noncytotoxic and facile

immunotargeting capabilities and nonsusceptibility to photobleaching or chemi-

cal/thermal denaturation, colloidal gold nanoparticles have recently been given

a high research focus as alternatives for dyes and contrast agents used in in vivo

imaging procedures [4, 138].

Ag is more efficient than Au as a plasmonic material [136] as it possesses a

larger plasmonic field enhancement factor over the visible and NIR wavelength

range [119]. It has been amply studied and experimented with for various opto-

electronic nano devices such as spasers [8], real-time nano optical sensors [139],

nanoantennas [140] and solar cells [141]. Moreover, Ag nanoparticles (AgNPs)

are being extensively investigated for their therapeutic and diagnostic capabili-

ties [4, 142].

9.1.2 Cu, Al and Na

Let us recall that a metal needs to possess small Im [εm(ω)] with Re [εm(ω)] ∈ R−

for the existence of surface plasmon resonances [130, 131]. Although it is well es-

tablished that localized surface plasmon resonances that can be tuned throughout

the UV to NIR regions are spanned by noble metal nanoplarticles such as Ag and

Au [143, 144], a number of other metals (such as Cu, Al, Na) possess the abil-

ity to satisfy the above requirement at least partially [134]. Therefore, they can

span localized surface plasmon resonances for at least a part of the UV to NIR

region [145]. However, they have received much less attention compared to Ag
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and Au in plasmonic applications as some of them are unstable (highly reactive)

hence difficult to work with [146], or prone to surface oxidation that can signifi-

cantly affect the optical properties [134,145]. However, they could be better suited

for certain applications than Ag and Au due to their certain desirable properties

and lower cost. Thus various methods of protection against these challenges (e.g.

oxidation), such as embedding nanoparticles in different media [145, 147] are be-

ing investigated by researchers. These studies directly motivate the investigation

of such metals to learn and harness their plasmonic abilities [4].

Copper (Cu), which is a transition metal, is the most commonly used metal in

a plethora of electronic applications owing to its high conductivity and low cost.

It possesses the second-best conductivity among metals (next to Ag). The imag-

inary part of the dielectric function of Cu is comparable to that of Au from 600-

750 nm [134]. Different approaches of versatile protection against oxidation have

been successfully demonstrated using Cu nanoparticles (CuNPs). Thus, CuNPs

are being investigated as viable alternatives to the more expensive AgNPs and

AuNPs [4, 134, 145].

Aluminium (Al), which is a post transition metal, is a cheap and abundant

metal compared to noble metals such as Ag and Au. Al shows a reasonably strong

interband transition localized in a narrow range of energy around 1.5 eV (800 nm)

which causes a large imaginary dielectric function resulting in high losses in the

visible wavelength range [134, 148]. In the ultra-violet wavelength range, the

real part of the dielectric function of Al is negative and the imaginary part is

relatively low, even at wavelengths smaller than 200 nm. Therefore, Al behaves

as a better plasmonic material than both Au and Ag in the blue and UV ranges.

Therefore, Al nanoparticles (AlNPs) are expected to support localized surface

plasmon resonances with high optical cross sections tunable over a wide range of

energy, deep into the UV [4, 149].

The high reactivity of bulk alkali metals in atmospheric conditions has re-



106 Nanohybrids Comprising Different Plasmonic Materials

sulted in a very limited amount of experimental attention [147,150] towards them

despite the availability of some theoretical examinations of their localized surface

plasmon resonances [146,151]. However, some alkali metals such as sodium (Na)

have shown losses much smaller than those of Ag (which is the material of choice

for many plasmonic applications), giving rise to comparatively better plasmonic

properties [152]. Moreover, Na and K nanoshells have shown high absorption

efficiencies over both Ag and Au nanoshells (upto 86% increase over Au and

240% increase over Ag) [146], suggesting that further investigation of their abili-

ties as plasmonic materials may be worth the additional inconveniences of han-

dling these reactive metals. Therefore, alkali metal based nano devices, protected

using inactive environments, should be investigated for their potential to replace

the conventional metals in the context of plasmonic applications requiring higher

efficiencies [4].

9.2 Numerical Results and Discussion

Having obtained a general idea of the different plasmonic materials to be used in

place of the nano-resonator (MNP), let us now numerically analyse the Rayleigh

scattering spectra resulting from such different exciton-plasmon nanohybrids.

The parameters used to generate the numerical results are presented in Table

A1. These will be the default parameters used for all results in this chapter ex-

cept where specified otherwise. In this chapter and in the one that follows, we

obtain the diffusion constant of the MNP using the Halevi formalism [2, 11], as

D = 4γv2
F
/

15
(
ω2 + γ2), due to the unavailability of experimentally measured

diffusion constants for all metals under consideration. Using Ag based nanohy-

brids, it was verified that the use of Halevi D is justified, as we are interested in

the resonance shifts of the nanoparticles and normalized scattering spectra.
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Table A1: The default set of parameters

Variable Value Reference
Incident field amplitude 100 V m−1 -
Orientation parameter (sα) 2 -
MNP-QD detuning (∆ = ωm −ωqd) 20 meV -
MNP-QD distance (R) 15 nm -
MNP radius (rm) 8 nm -
Relative bath permittivity (εb) 5 -
QD decay rate (γqd) 50 meV [97]
QD dipole moment element (µqd) 33.62 Debye [97]
Bulk plasmon frequency (ωp)
Au 9.02 eV [11]
Ag 8.99 eV [11]
Cu 8.7 eV [134]
Al 15.8 eV [11]
Na 6.04 eV [11]

Bulk damping rate (γ)
Au 0.071 eV [11]
Ag 0.025 eV [11]
Cu 0.07 eV [134]
Al 0.6 eV [11]
Na 0.16 eV [11]

Fermi velocity (vF)
Au 1.39× 106 m s−1 [11]
Ag 1.39× 106 m s−1 [11]
Cu 1.57× 106 m s−1 [153]
Al 2.03× 106 m s−1 [11]
Na 1.07× 106 m s−1 [11]

Bulk (experimental) permittivity (εexp)
Au, Ag, Cu - [60]
Au - [154]
Au - [155]
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Figure 9.1: Variation of the coherent Rayleigh scattering spectra of nanohybrids
with varying rm, for different materials, obtained using the local (LRA) and non-
local (GNOR) models. The Y axis of each sub-figure shows the normalized scat-
tered intensity and the X axis shows frequency in eV. Curves are normalized
by the largest peak in the respective sub figure. The sub-figures (a), (c), (e), (g),
and (i) capture the spectra generated using the LRA based model whereas the
sub-figures (b), (d), (f), (h), and (j) capture the spectra generated using the GNOR
based model. For all sub-figures, εb = 5, ∆ = ωm−ωqd = 20 meV and R = 15 nm
are used.



9.2 Numerical Results and Discussion 109

9.2.1 Impact of Varying Metal Nanoparticle Radius

Fig. 9.1 depicts the variation of the normalized coherent Rayleigh scattering

curves of MNP-QD hybrid molecules comprising different metal based MNPs.

The results of both LRA based (8.38) and GNOR based (8.39) scattered intensity

formulae are perused for their response to varying MNP radius rm. The depicted

results consider a set of rm values in the vicinity of 10 nm where the effects of

nonlocal response are expected to be visible. The sub-figures (a), (c), (e), (g), and

(i) depict the conventional LRA based spectra whereas the sub-figures (b), (d), (f),

(h), and (j) depict GNOR based spectra.

For all five metals considered, both LRA and GNOR based models predict

an increase of the Rayleigh scattering intensity with increasing rm, as intuitively

expected. It is evident that the GNOR based model captures the blueshift of reso-

nance energy that occurs with the decreasing particle size, which tallies with the

studies done using isolated MNPs in [36,45]. This blueshift is not revealed by the

conventional LRA based model. In addition to the aforementioned MNP radius-

dependent blueshift, the GNOR based model predicts a generally blueshifted set

of spectra compared to the relevant LRA based counterparts for all metals un-

der study. Observation of the spectra reveals that different metal based nanohy-

brids are usable for applications operating in different frequency regimes. For

example, Al based nanohybrids are well suited for applications in the ultraviolet

frequency regime whereas other four metal based nanohybrids operate in the op-

tical frequency regime. It can also be seen that the spectral shape and operational

frequency regimes of Au and Cu based nanohybrids bear a close resemblance

to each other. Moreover, the spectral shapes of Ag and Na based nanohybrids

too bear a high level of resemblance. Given the ability to tune the resonance

frequencies using other parameters such as the submerging permittivity, these

observations suggest that the potential investigation of the usability of Cu and

Na as alternatives for Au and Ag could prove to be useful in the future [4].
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Figure 9.2: Variation of coherent Rayleigh scattering spectra of the nanohybrid
with varying εb, for different materials, obtained using both local (LRA) and non-
local (GNOR) models. The Y axis of each sub-figure shows the normalized scat-
tered intensity and the X axis shows frequency in eV. Curves are normalized by
the largest peak in the respective sub figure. The sub-figures in the top row cap-
ture the spectra generated using the LRA based model whereas the sub-figures in
the bottom row capture the spectra generated using the GNOR based model. For
all sub-figures, rm = 8 nm, ∆ = ωm −ωqd = 20 meV and R = 15 nm are used.
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9.2.2 Impact of Varying Submerging Permittivity

Fig. 9.2 shows how the intensity spectra of different metal based nanohybrids

vary with the permittivity of the surrounding medium. Fig. 9.2(a), (c), (e), (g),

and (i) depict the LRA based plots for Au, Ag, Cu, Al, and Na nanohybrids re-

spectively, whereas Fig. 9.2(b), (d), (f), (h) and (j) show the same set of plots

obtained using the GNOR based formalism.

Recall that the resonance frequency is decided by the Frölich condition given

by (8.29) and (8.33) in the local and nonlocal cases respectively. Increasing εb

moves the resonance frequency leftwards, along the Drude-like dielectric curve

(2.2) in the optical region for metals such as gold and silver. Observations of the

scattered intensity plots reveals that this frequency red-shift which occurs with

increasing εb is seen to be captured by both LRA and GNOR based models.

It is evident that all curves red-shift along the frequency axis and increase in

height, as the permittivity of the submerging bath increases. It is also observable

that both LRA and GNOR based models predict that the resonance frequency

and the peak scattered intensity show a high sensitivity to the permittivity of the

host medium, which can be exploited in applications such as bio-sensing [133].

As an example, the permittivity of cancer tissue are known to be much higher

than that of the surrounding normal tissue [156], which should result in a red-

shifted, amplified spectrum enabling tumour detection using optical techniques

at earliest stages.

The trend of increasing spectrum height with submerging medium permittiv-

ity also suggests that metals such as gold, copper and aluminium which gener-

ally exhibit lower plasmonic peaks compared to metals such as silver and Na [4]

are expected to behave as better plasmonic materials at high environmental per-

mittivities. It can also be seen that Au and Cu based nanohybrids exhibit a

higher amplitude sensitivity to εb compared to other metal based counterparts

and hence could emerge as better candidates for sensing applications.



112 Nanohybrids Comprising Different Plasmonic Materials

s  = -1

s  = 2

Local
NL

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

1.8 1.9 2 2.1 2.2 2.3

s  = 2

s  = -1

2.4 2.5 2.6

s  = -1

1.8 1.9 2 2.1 2.2

s  = 2

(a) Au

(b) Au

(c) Ag

(d) Ag

(e) Cu

(f) Cu

4 4.5 5 5.5

s  = 2

s  = -1

1.6 1.7 1.8 1.9

s  = 2

s  = -1

(g) Al

(h) Al

(i) Na

(j) Na

Local
NL

Local
NL

Local
NL

Local
NL

Local
NL

Local
NL

Local
NL

ω (eV)ω (eV)ω (eV)

ω (eV) ω (eV)

Local
NL

Local
NL

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Figure 9.3: LRA and GNOR based coherent Rayleigh scattering spectra for sα = 2
(parallel polarization conditions) and sα = −1 (perpendicular polarization con-
ditions) for different materials. The Y axis of each sub-figure shows the nor-
malized Rayleigh scattering intensity and the X axis shows the frequency in
eV. Other parameters used include εb = 5, rm = 8 nm, R = 15 nm and
∆ = ωm − ωqd = 20 meV. All curves are normalized by the peak intensity of
the associated sub-figure.
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9.2.3 Orientation Dependence of Scattering Spectra

The dependence of the normalized Rayleigh scattering intensities of different

MNP based nanohybrids on the orientation parameter sα is depicted in Fig. 9.3.

Note that the sub-figures (a), (c), (e), (g), and (i) depict the scattering spectra for

parallel polarization (sα = 2) for both LRA and GNOR based cases, for nanohy-

brids comprising Au, Ag, Cu, Al, and NA nanoresonators, respectively. The sub-

figures (b), (d), (f), (h), and (j) depict the same set of plots for perpendicular po-

larization conditions (sα = −1).

A scaling of the GNOR based nonlocal scattered intensity in comparison to

the respective LRA based counterparts can be observed for all metals, under both

polarization conditions. This can be identified as a consequence of the introduc-

tion of the Re(1 + δNL) component to the approximate expression of µm in the

GNOR based case. It can also be observed that the interference between the MNP

and QD spectra, and the resulting kink depends on the external driving field

orientation, sα, for all MNP-QD hybrid molecules based on different plasmonic

materials.

In all nanohybrid spectra studied so far, we could observe that a sharp en-

hancement and a suppression of the scattered intensity occur in a small region

near the resonance frequency of the QD, due to the respective constructive and

destructive interferences of the MNP and QD spectra. Both LRA and GNOR

based plots depicted in Fig. 9.3 show that this interference effect is highly de-

pendent on the external driving field orientation sα. For example, for AgMNP

based nanohybrids, a substantial hindering of constructive interference, which

results in drastically reduced kink height, is observed for perpendicular polariza-

tion (sα = −1), in comparison to the parallel polarization conditions (sα = 2).

Moreover, close observation reveals that a line broadening effect is present in

the GNOR based spectra in comparison to the respective LRA based counterparts,

as expected by plasmonic experiments [2, 31].
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Figure 9.4: Two dimensional plots for the coherent scattered intensity of the
hybrid molecule, normalized by the maximum intensity of each sub-figure for
εb = 5 and rm = 8 nm. The Y axis of each sub-figure depicts the detuning be-
tween the MNP and QD resonance frequencies (∆ = ωm − ωqd) in units meV
and the X axis reads the frequency in eV. The color indicates the normalized scat-
tered intensity. Both locally (LRA based) and non-locally (GNOR based) mod-
elled plots are depicted for each metal.
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Figure 9.5: Two dimensional plots for the coherent scattered intensity of the
hybrid molecule, normalized by the maximum intensity of each sub-figure for
εb = 5 and rm = 8 nm. The Y axis of each sub-figure depicts the MNP-QD cen-
tre separation R in units nm and the X axis reads the frequency in eV. The color
indicates the normalized scattered intensity. Both locally (LRA based) and non-
locally (GNOR based) modelled plots are depicted for each metal.
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Figure 9.6: Two dimensional plots for the coherent scattered intensity of the
hybrid molecule, normalized by the maximum intensity of each sub-figure for
εb = 5 and rm = 8 nm. The Y axis of each sub-figure depicts the dipole moment
element of the QD µqd in units e nm and the X axis reads the frequency in eV. The
color indicates the normalized scattered intensity. Both locally (LRA based) and
non-locally (GNOR based) modelled plots are depicted for each metal.
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9.2.4 Impact of MNP-QD Detuning, Centre Separation and QD
Dipole Moment

Fig. 9.4 shows two dimensional plots of the scattered intensity against the MNP-

QD detuning ∆ and the external driving field frequency ω, given by the local

and nonlocal models respectively. The slanted line across each spectrum shows

the movement of the steep enhancement-suppression pattern (seen earlier in the

line-plots) towards higher frequencies following the movement of the resonance

position of the QD along the frequency axis. It is evident that this pattern is

distinctly visible in Ag and Na based nanohybrids, compared to the other three

metal based nanohybrids under study.

Figures 9.5 and 9.6 show similar two dimensional plots for scattered intensity

in the R vs ω and µqd vs ω parameter spaces, respectively, in the usual constella-

tion of sub-figures. It is observable that decreasing the MNP-QD centre separa-

tion and increasing the QD dipole moment has similar impacts on the scattered

intensity of the nanohybrid, where both result in sharper kinks spread along a

wider area of the spectrum.

The strength of interference (and hence the kink sharpness and width) tends

to decrease with decreasing QD dipole moment and increasing MNP-QD cen-

tre separation as intuitively expected. Similar to our observations in Fig. 9.4,

Ag and Na based nanohybrids exhibit sharper interference patterns compared

to Au, Cu and Na. From all three figures 9.4, 9.5, and 9.6, it can be observed

that the GNOR based spectra are relatively blue-shifted along the frequency axis

compared to the respective LRA based counterparts. It can also be observed that

the spectra of Al based nanohybrids are much wider compared to all the other

metal based nanohybrids under study, and reside near the ultra-violet frequency

range. Moreover, all thee plots support our earlier observation of Cu and Na

based nanohybrids closely resembling the qualitative behaviour of Au and Ag

based nanohybrids.
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Figure 9.7: The variation of ωm against rm and εb, as predicted by the LRA (local)
and GNOR (nonlocal) based models. The Y axis of each plot reads εb and the
X axis reads the radius of the MNP rm in nm. The color shows the resonance
frequency of the MNP ωm at the respective (rm, εb) coordinate in eV.
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9.2.5 MNP Size Dependent Resonance Variation

Using Fig. 9.7, we can study the how the MNP resonance frequency varies with

the MNP radius rm and the submerging medium permittivity εb, as predicted by

both LRA and GNOR based models. The sub-figures are arranged in the usual

constellation where (a), (c), (e), (g), and (i) depict the LRA based ωm predictions

for Au, Ag, Cu, Al and Na MNPs, whereas (b), (d), (f), (h), and (j) depict the

same in the GNOR based formalism. It is evident that the LRA does not cap-

ture the radius dependence of the MNP resonance which is quite significant for

sub-wavelength nanoparticles. The GNOR plots readily capture this radius de-

pendence where it can be observed that the dependence of ωm on rm increases

with decreasing rm, for all five types of nanohybrids considered.

For the convenience of future research, the resonance frequencies for differ-

ent nanoparticles were calculated using the GNOR based Frölich condition (8.33)

taking the MNP radius dependence into account, and tabulated as follows.

Table A2: Surface plasmon resonance frequencies (ωm) for gold nanospheres
(AuMNPs) calculated using the presented GNOR based formalism and tabulated
against the submerging bath permittivity εb and the MNP radius rm.

εb 3 nm 5 nm 7 nm 9 nm 11 nm 13 nm 15 nm 17 nm 19 nm
3 2.34 2.3 2.29 2.28 2.27 2.27 2.27 2.26 2.26

3.5 2.29 2.25 2.23 2.22 2.22 2.21 2.21 2.21 2.2
4 2.24 2.2 2.18 2.17 2.16 2.16 2.15 2.15 2.15

4.5 2.2 2.15 2.13 2.12 2.11 2.11 2.11 2.1 2.1
5 2.16 2.11 2.09 2.08 2.07 2.06 2.06 2.06 2.06

5.5 2.12 2.07 2.05 2.03 2.03 2.02 2.02 2.02 2.01
6 2.09 2.03 2.01 1.99 1.99 1.98 1.98 1.97 1.97

6.5 2.05 1.99 1.97 1.95 1.95 1.94 1.94 1.93 1.93
7 2.02 1.96 1.93 1.92 1.91 1.9 1.9 1.89 1.89

7.5 1.99 1.92 1.89 1.88 1.87 1.86 1.86 1.85 1.85
8 1.96 1.89 1.86 1.84 1.83 1.83 1.82 1.82 1.81

8.5 1.93 1.86 1.83 1.81 1.8 1.79 1.79 1.78 1.78
9 1.91 1.83 1.8 1.78 1.77 1.76 1.75 1.75 1.75

9.5 1.88 1.8 1.77 1.75 1.74 1.73 1.72 1.72 1.72
10 1.85 1.77 1.74 1.72 1.71 1.7 1.69 1.69 1.69
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Table A3: Surface plasmon resonance frequencies (ωm) for silver nanospheres
(AgMNPs) calculated using the presented GNOR based formalism and tabulated
against the submerging bath permittivity εb and the MNP radius rm.

εb 3 nm 5 nm 7 nm 9 nm 11 nm 13 nm 15 nm 17 nm 19 nm
1 3.55 3.53 3.52 3.52 3.51 3.51 3.51 3.51 3.51

1.5 3.41 3.37 3.36 3.35 3.35 3.34 3.34 3.34 3.34
2 3.27 3.22 3.21 3.2 3.19 3.19 3.18 3.18 3.18

2.5 3.13 3.09 3.07 3.06 3.05 3.05 3.04 3.04 3.04
3 3.02 2.97 2.95 2.93 2.93 2.92 2.92 2.91 2.91

3.5 2.92 2.85 2.82 2.81 2.8 2.79 2.79 2.78 2.78
4 2.82 2.75 2.72 2.7 2.69 2.69 2.68 2.68 2.68

4.5 2.73 2.66 2.63 2.61 2.6 2.6 2.59 2.59 2.58
5 2.66 2.58 2.55 2.53 2.51 2.51 2.5 2.5 2.49

5.5 2.59 2.5 2.47 2.45 2.44 2.43 2.42 2.42 2.41
6 2.52 2.44 2.4 2.38 2.37 2.36 2.35 2.35 2.35

6.5 2.46 2.38 2.34 2.32 2.31 2.3 2.29 2.29 2.29

Table A4: Surface plasmon resonance frequencies (ωm) for copper nanospheres
(CuMNPs) calculated using the presented GNOR based formalism and tabulated
against the submerging bath permittivity εb and the MNP radius rm.

εb 3 nm 5 nm 7 nm 9 nm 11 nm 13 nm 15 nm 17 nm 19 nm
4 2.18 2.13 2.12 2.11 2.1 2.1 2.1 2.09 2.09

4.5 2.14 2.1 2.08 2.07 2.07 2.07 2.06 2.06 2.06
5 2.11 2.07 2.05 2.04 2.04 2.04 2.03 2.03 2.03

5.5 2.08 2.04 2.03 2.02 2.01 2.01 2 2 2
6 2.06 2.02 2 1.99 1.98 1.98 1.97 1.97 1.97

6.5 2.04 1.99 1.97 1.96 1.95 1.94 1.94 1.94 1.93
7 2.02 1.96 1.94 1.93 1.92 1.91 1.91 1.91 1.9

7.5 2 1.94 1.91 1.9 1.89 1.88 1.88 1.87 1.87
8 1.98 1.91 1.88 1.87 1.86 1.85 1.85 1.84 1.84

8.5 1.96 1.89 1.86 1.84 1.83 1.82 1.82 1.81 1.81
9 1.94 1.86 1.83 1.81 1.8 1.79 1.79 1.78 1.78

9.5 1.91 1.84 1.8 1.78 1.77 1.76 1.76 1.76 1.76
10 1.89 1.81 1.78 1.76 1.76 1.76 1.76 1.76 1.76
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Table A5: Surface plasmon resonance frequencies (ωm) for aluminum
nanospheres (AlMNPs) calculated using the presented GNOR based formalism
and tabulated against the submerging bath permittivity εb and the MNP radius
rm.

εb 3 nm 5 nm 7 nm 9 nm 11 nm 13 nm 15 nm 17 nm 19 nm
2 7.19 7.06 7 6.97 6.95 6.93 6.92 6.92 6.91

2.5 6.62 6.48 6.42 6.38 6.36 6.34 6.33 6.33 6.32
3 6.19 6.03 5.96 5.93 5.9 5.89 5.87 5.86 5.86

3.5 5.83 5.67 5.6 5.56 5.53 5.51 5.5 5.49 5.48
4 5.54 5.37 5.29 5.25 5.23 5.21 5.19 5.18 5.18

4.5 5.3 5.12 5.04 5 4.97 4.95 4.93 4.92 4.92
5 5.09 4.9 4.82 4.77 4.75 4.73 4.71 4.7 4.69

5.5 4.91 4.71 4.63 4.58 4.55 4.53 4.52 4.51 4.5
6 4.75 4.55 4.46 4.41 4.38 4.36 4.35 4.34 4.33

6.5 4.61 4.4 4.31 4.27 4.23 4.21 4.2 4.19 4.18
7 4.48 4.27 4.18 4.13 4.1 4.08 4.06 4.05 4.04

7.5 4.37 4.16 4.06 4.01 3.98 3.96 3.94 3.93 3.92
8 4.27 4.05 3.95 3.9 3.87 3.84 3.83 3.81 3.8

8.5 4.18 3.95 3.85 3.8 3.8 3.8 3.8 3.8 3.8
9 4.09 3.86 3.8 3.8 3.8 3.8 3.8 3.8 3.8

9.5 4.02 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
10 3.95 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

Table A6: Surface plasmon resonance frequencies (ωm) for sodium nanospheres
(NaMNPs) calculated using the presented GNOR based formalism and tabulated
against the submerging bath permittivity εb and the MNP radius rm.

εb 3 nm 5 nm 7 nm 9 nm 11 nm 13 nm 15 nm 17 nm 19 nm
1.5 2.93 2.87 2.84 2.82 2.81 2.8 2.8 2.8 2.79
2 2.64 2.57 2.55 2.54 2.53 2.52 2.52 2.51 2.51

2.5 2.45 2.38 2.36 2.34 2.33 2.33 2.32 2.32 2.32
3 2.31 2.24 2.21 2.19 2.18 2.17 2.16 2.16 2.16

3.5 2.19 2.1 2.06 2.05 2.03 2.03 2.02 2.02 2.01
4 2.07 1.99 1.95 1.93 1.92 1.91 1.91 1.9 1.9

4.5 1.98 1.9 1.86 1.84 1.83 1.82 1.82 1.81 1.81
5 1.91 1.82 1.78 1.76 1.75 1.74 1.73 1.73 1.72

5.5 1.84 1.75 1.71 1.69 1.68 1.67 1.67 1.66 1.66
6 1.78 1.69 1.66 1.64 1.63 1.62 1.61 1.61 1.61

6.5 1.73 1.64 1.61 1.59 1.58 1.57 1.56 1.56 1.55
7 1.68 1.6 1.56 1.54 1.52 1.51 1.51 1.5 1.5
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Figure 9.8: The factor T (which represents the de-facto tolerance level for the cav-
ity QED model presented in chapter 8) calculated using (8.40) for different mate-
rials at the respective resonance frequencies for different MNP radii and environ-
ment permittivities. The Y axis reads the environment permittivity εb and the X
axis reads the MNP radius rm in nm. The colorbar reads T as a percentage.
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9.3 Summary and Conclusion

In this chapter, we numerically analysed the metal nanoparticle-quantum dot

(MNP-QD) hybrid molecule in an external driving field using a cavity-QED ap-

proach and presented a comprehensive comparison between the behaviour sug-

gested by the local response approximation (LRA) and the generalized nonlocal

optical response (GNOR) based methods.

Optical signatures of the scattering spectra and their variation with the tun-

able system properties were observed and discussed in this numerical analysis for

nanohybrids based on five different metals. It was also evident that the LRA fails

to capture some features such as the size dependent resonance shifts, line-width

broadening and amplitude scaling where the GNOR model succeeds. The non-

local GNOR model captures the blueshift of resonance energy that occurs with

the decreasing particle size, which tallies with experimental studies done using

isolated and dimer MNPs.

This chapter also presented tables summarising the GNOR based resonance

energies of different metal based MNPs for varying MNP radius and submerging

permittivity. Finally in Fig. 9.8 the tolerance level T given by (8.40) was plotted

against the bath permittivity εb and the MNP radius rm for all five types of MNP-

QD hybrid systems under consideration.





Chapter 10

Optoelectronic Figure of Merit for
Nanohybrid Scattering Prowess

From the analyses so far, it is evident that the fano-like spectrum of a MNP-QD

hybrid molecule is highly tunable using properties such as the composition and

sizes of the constituents, MNP-QD distance, QD dipole moment, MNP and QD

damping rates and the permittivity of the surrounding medium. Due to this high

tunability, a given MNP-QD based sensing application possesses a large number

of eligible configurations. However, the lack of a simple way to compare one

MNP-QD configuration against another considering the fano-like spectra makes

it difficult to the rank viable options for an optimal selection. This chapter aims to

fill this void by proposing a metric that aids to rank nanohybrid configurations

in the order of their scattering prowess/suitability for a given scattered inten-

sity based sensing application. For the purpose of comparison of a given set of

nanohybrid spectra, this chapter introduces a simple but elegant relative figure

of merit (RFoM) which simultaneously takes into account, the scattered intensity

at the constructive interference point and the refractive index sensitivity of the

nanohybrid. To demonstrate the use of the proposed RFoM, the same five metal

based nanohybrids (modeled using the GNOR based formalism) studied in the

earlier chapter would be utilized. This chapter also aims to incite the interest

in using MNP-QD nanohybrids, which possess sensing capabilities superior to

those of the individual constituents, for sensing applications that rely on scat-

125
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tered light.

10.1 The Relative Figure of Merit (RFoM)

For the purpose of comparison of the scattered intensity spectra resulting from a

set of candidate MNP-QD nanohybrid configurations for a given sensing appli-

cation, let us now introduce a RFoM which focuses on maximizing the scattered

intensity (near MNP and QD resonances, when the MNP and QD have a small

detuning from each other) and the refractive index sensitivity, as follows.

Suppose a set of n fano-like MNP-QD scattered intensity spectra for n different

MNP-QD configurations that we aim to compare against each other are contained

in a set,

SI = {I1(ω), I2(ω), ..., Ik(ω), ...In(ω)}, (10.1)

where each scattered intensity curve Ik(ω) is a function of the angular frequency

of the incoming radiation, ω.

Similarly, let the corresponding isolated MNP scattered intensity spectra (in

the absence of the QD) be denoted by the set,

SM = {M1(ω), M2(ω), ..., Mk(ω), ...Mn(ω)}. (10.2)

Let us define a normalizer for this set as,

‖I‖ = max{[max(Ik(ω))]k=1,...,n}, (10.3)

which is the maximum out of the maximum intensity values of all spectra in the

set SI.
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Figure 10.1: Illustration of the parameters used in the proposed relative figure
of merit of the kth candidate MNP-QD configuration (RFoMk) given by equa-
tion (10.8). Here we illustrate the calculation of RFoM for a set comprising two
configurations for demonstration purposes. Plots are normalized by the maxi-
mum intensity in the set. For a given normalized configuration, FWHMk stands
for the full width at half maximum of the relevant (normalized) isolated MNP
curve MNk. Ak depicts the area of the isolated MNP curve falling within FWHM,
whereas hk depicts the maximum kink height of the normalized nanohybrid spec-
trum INk in the vicinity of the QD resonance frequency.

Using the defined normalizer, we obtain the two normalized sets,

{SI}N = {IN1(ω), IN2(ω), ..., INk(ω), ...INn(ω)}, (10.4a)

{SM}N = {MN1(ω), MN2(ω), ..., MNk(ω), ...MNn(ω)}, (10.4b)

where the kth normalized nanohybrid spectrum is denoted by

INk(ω) = Ik(ω)/‖I‖, (10.5)
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and the kth normalized isolated MNP spectrum is denoted by

MNk(ω) = Mk(ω)/‖I‖. (10.6)

Let the height of the kink in the normalized fano-like curve INk(ω) caused by

the quantum dot’s interference (in the vicinity of the QD resonance frequency) be

denoted by hNk.

For each MNk(ω), let the two angular frequency values corresponding to the

level where MNk(ω) = MNk(ωm)/2 (ωm is the MNP resonance frequency) be

denoted by ω1k and ω2k, with ω1k < ω2k. The full width at half maximum

(FWHMk) of the spectrum MNk(ω) is defined as,

FWHMk = ω2k −ω1k. (10.7)

Using the above definitions, the RFoM for the kth fano-like nanohybrid scat-

tering spectrum is defined as [4],

RFoMk = Ak/FWHMk + hk, (10.8)

where Ak =
∫ ω2k

ω1k
MNk(ω)dω. The components of RFoMk are graphically illus-

trated in Figure 10.1.

RFoMk is a measure of the scattered intensity within FWHMk, with Ak/FWHMk

being representative of the MNP’s scattered intensity and hk being representative

of the scattered intensity caused by the QD’s interference.

Using (10.8), one can form a set of RFoMs as,

SRFoM = {RFoM1, RFoM2, ..., RFoMk, ..., RFoMn} (10.9)

the elements of which correspond to, and can be used to compare the set of n

different MNP-QD configurations of our interest. A higher RFoMk value suggests
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a better suitability of one configuration over another, with respect to the scattered

intensity at the interference point and submerging medium sensitivity [4].

The mathematically defined RFoMk is intuitive, and the rationale behind it

is as follows. It considers the area under the FWHMk of the isolated MNP, as

many scattered intensity based applications are concerned of the near-resonant

behaviour of the nanohybrid, where the QD, MNP and the externally incident ra-

diation are in close resonance with each other. Division by FWHMk (of the MNP)

is carried out on the basis that a narrow MNP spectrum is preferred for higher

refractive index sensitivity [157]. Large Ak/FWHMk values therefore ensure easy

detection of submerging refractive index changes at high resolution, by tracking

the MNP resonance point. A tall kink (high hk value) shows a high level of en-

hancement of the nanohybrid scattering spectrum at the MNP-QD interference

point making the nanohybrid easily detectable at the QD resonance which would

be useful in applications such as tumour imaging, especially at parallel polariza-

tion conditions [4]. It considers only the single value, kink height, instead of the

area as the QD spectrum is much narrower than the MNP spectrum [158].

It was verified that the suggested metric gives meaningful results for a known

special case which compares the scattered intensities of isolated Au and Ag spheres

(when QDs are not turned on). It ranked the performance of the Ag sphere above

Au, agreeing with the widely accepted MNP figure of merit indicators [131].

In the next section, the defined RFoM is demonstrated using the same five

MNP-based nanohybrids we encountered in the earlier chapter.

10.2 Numerical Demonstration

Unless specified otherwise, the following parameters are used in the numerical

analysis: incident field amplitude of 100 V m−1, sα = 2 (parallel polarization),

MNP-QD detuning of 20 meV, R = 15 nm, rm = 8 nm, εb = 6.5, γqd = 50 meV
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Figure 10.2: Scattered intensity spectrum (red) of an Ag based nanohybrid repre-
senting the modification of the MNP spectrum (pink) due to the interference with
the QD spectrum (blue). The right insert depicts an enlarged version of the QD
spectrum for better visibility.

and µqd = 33.62 D. The metal specific parameters are the same as those men-

tioned in Table A1.

10.2.1 Superior Scattering Prowess of Nanohybrids

Let us first confirm the suitability of MNP-QD nanohybrids for scattered inten-

sity based sensing applications over their individual constituents using Fig. 10.2.

It can be clearly seen that, even when the scattering intensity of the isolated QD

is much smaller compared to the MNP, it is sufficient to dramatically modify

the scattering spectrum of the nanohybrid via constructive and destructive in-

terference resulting in a narrow fano-like kink. This modification produces an

enhanced scattered intensity near the frequency of the excitonic transition, ren-

dering MNP-QD nanohybrids (often) superior to the conventional QD-only or

MNP-only sensors. When the polarization of the incoming field aligns with the
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Figure 10.3: Normalized scattered intensity spectra for MNP-QD nanohybrids
based on different metals when sα = 2 (parallel polarization). Plots for Au, Cu
and Al are scaled by a factor of 6 for better visibility.

axis connecting the MNP and QD centres, the scattered intensity at the QD res-

onance was often observed to exceed both isolated MNP and isolated QD peak

intensities. Moreover, the plasmonic peak of the nanohybrid spectrum is highly

sensitive to the changes of the permittivity of the surrounding dielectric medium,

hence the detection of shifts of the plasmonic peak reveals information about the

composition of the submerging medium. Therefore it is evident that MNP-QD

nanohybrids hold promise for superior and more informative scattered inten-

sity based sensing applications compared to conventional isolated MNP and QD

based sensors [4].

10.2.2 Ranking Different Metal Based Nanohybrids

Fig. 10.3 depicts normalized scattered intensities for MNP-QD nanohybrids based

on different metals when sα = 2. If these five MNP-QD nanohybrid configu-

rations are potential candidates of a sensing application, they can be compared
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Figure 10.4: Normalized scattered intensity for MNP-QD nanohybrids based on
different metals under perpendicular polarization conditions (sα = −1). All plots
are normalized by the maximum intensity in the window. Plots for Au, Cu and
Al are scaled by a factor of 6 for better visibility.

Table A1: RFoM results for curves depicted in Figure 10.3 (sα = 2 case) and Figure
10.4 (sα = −1 case)

RFoM sα = 2 sα = −1
Au 0.106 0.105
Ag 0.981 0.856
Cu 0.064 0.064
Al 0.057 0.079
Na 1.643 1.31

using the proposed RFoM to pick the best option based on the intensity at kink

position and refractive index sensitivity. The RFoM values obtained for this sce-

nario are given in the second column of Table A1. They can be arranged in the

order of their scattering prowess as Na > Ag > Au > Cu > Al. The third

column gives the RFoM values calculated for the sα = −1 case, for the set of

spectra depicted in Fig. 10.4. For this case, the ranking remains the same, except

for the swap of Cu and Al. However, the RFoM values shown in Table A1 have
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Figure 10.5: Comparison of the scattering spectra of two MNP-QD configurations
based on Au. In the first configuration, MNP-QD separation R is 20 nm and the
QD dipole moment element (µqd) is 1 e nm. In the second configuration, R =
15 nm and µqd = 0.8 e nm.

been obtained by separately normalizing the two set of spectra for the sα = 2

and sα = −1 cases, hence cannot be directly compared. If we use a common

normalizer for all 10 curves, it can be observed that RFoMsα=2 > RFoMsα=−1 (for

each metal) due to the diminished kink height in the perpendicular polarization

(sα = −1) case [4]. This feature of prominent and diminished kink heights in

the respective sα = 2 and sα = −1 cases makes the MNP-QD nanohybrid usable

as an orientation sensor to determine the relative locations of the QD and MNP

or to observe polarization-dependent photon statistics of light scattered from the

nanohybrid [159].

10.2.3 Different QD based Nanohybrids

Fig. 10.5 depicts two MNP-QD nanohybrid configurations based on Au, first

with 20 nm interparticle distance and 1 e nm QD dipole moment, and the second



134 Optoelectronic Figure of Merit for Nanohybrid Scattering Prowess

with 15 nm interparticle distance and 0.8 e nm QD dipole moment, which could

be candidates for a tumour detection application. RFoM values calculated for

configurations 1 and 2 are RFoM1 = 1.30 and RFoM2 = 0.88, respectively, which

encourage the use of configuration 1 for the application. Although the choice

seems trivial for the example picked, this method is pivotal when comparing a

large set of potential configurations for a similar MNP-QD based sensing appli-

cation.

10.3 Summary and Conclusions

This chapter proposed a simple, elegant relative figure of merit (RFoM) metric

to compare a set of candidate MNP-QD nanohybrids for a given sensing appli-

cation, and to rank them in their order of scattering prowess to select the best

candidate. The effectiveness of the proposed RFoM was evaluated using the

scattering spectra calculated by the QED assisted generalized nonlocal optical re-

sponse (GNOR) method. The RFoM was used to compare various optical spectra

generated by noble, alkali, transition and post transition metal based MNP-QD

nanohybrids, using Au, Ag, Cu, Al and Na as the representative plasmonic mate-

rials. This chapter also highlighted the superiority and versatility of the scattered

intensity based sensing capabilities of MNP-QD nanohybrids compared to their

individual constituents.



Chapter 11

Prospects of Bio-Sensing

Figure 11.1: Behaviour of thermoresponsive polymer capped metal MNP-QD
nanohybrids under coherent optical illumination. (a) The state of the nanohy-
brid at temperatures below the lower critical solution temperature (LCST) of the
thermoresponsive polymer, where the polymer strands remain elongated. (b)
The state of the nanohybrid at temperatures above the LCST where the polymer
strands are collapsed such that the separation distance (R) between the MNP and
QD is reduced.

Multifunctional nanodevices possess an unprecedented potential to contribute

towards early cancer diagnosis, imaging and treatment. Such nanodevices can

act as agents for tumor targeting, classification, sensing pathophysiological de-

135
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fects in tumors, targeted delivery of therapeutic drugs, imaging, sensing of ex-

ternal triggers such as temperature and monitoring therapeutic response [4, 160].

These nanodevices can comprise constituents such as quantum dots (QDs) [161]

and metal nanoparticles (MNPs) [4]. MNPs and QDs, which are two classes of

powerful and versatile nanoparticles whose optical properties are highly tun-

able, have been amply investigated in literature for a wide array of bio-sensing

applications [162–164]. In the earlier chapters of this thesis, it was observed that

MNP-QD nanohybrids can be engineered to possess superior and versatile sens-

ing capabilities compared to their individual constituents. They can also be tuned

to behave as ultra-sensitive nanoswitches in the near-PMR regions. This chapter

presents an overview of the bio-sensing prospects of MNP-QD nanohybrids, in

light of the earlier observations.

11.1 Exploiting Plasmonic Metaresonances

The ability to fabricate nanohybrids where MNPs are coupled to QDs using bio-

linkers has already been experimentally demonstrated in the literature [165]. The

next section investigates the promising prospects of PMR-based nanoswitches,

formed by attaching QDs to MNPs via bio-linkers, in sensing applications.

11.1.1 Prospects of PMR-based In-vitro Cancer Screening

Aptamers are a class of synthetic ligands which possess a remarkable ability to

bind to specific targets with high specificity and affinity [166]. Such binding is

achieved by folding these short, single-strand nucleic acid-based ligands into

a target-specific three-dimensional conformation that enables precise molecular

recognition of the given target [167]. Due to their excellent properties compared

to conventional antibodies, aptamers have recently gained recognition as a new
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Figure 11.2: The artistic illustration of the prospective use of PMR related phase
change in an aptamer-conjugated MNP-QD nanohybrid (where the MNP and
QD are connected using a bio-linker) for the detection of cancer-markers in blood
serum. The solid black line represents the QD absorption rate curve obtained
using the GNOR formalism for µ ≈ 1.515 e nm in Fig. 7.2(g). Submerging blood
serum is assumed to be a water-like medium with relative permittivity εb ≈ 1.8.
The abbreviations BS and DS refer to the near-PMR bright and dark states.

class of agents for the delivery of therapeutic drugs to malignant cells by target-

ing specific cancer-associated bio-markers. Aptamers that can target bio-markers

such as the carcinoembryonic antigen (CEA) have already been developed [166].

Moreover, it has been shown that they can be structurally modified to be conju-

gated to other agents such as nanomaterials usable in cancer therapy [166]. Ap-

tamer conjugated metallic nanoparticles have recently been demonstrated to have

high potential for molecular targeting applications [168].

As early detection remains the most promising approach to improve the long-

term survival of patients, blood-based cancer markers usable for the early identi-

fication of different types of cancer have been readily investigated [169,170]. Such

bio-marker-specific aptamer-conjugated MNPs coupled to QDs using bio-linkers

have promising prospects for ultra sensitive PMR-based in-vitro cancer screen-

ing. The proposed configuration is artistically illustrated in Fig. 11.2. The solid

black line represents the QD absorption rate curve obtained using the GNOR
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based formalism for µ ≈ 1.515 e nm in Fig. 7.2(g).

The system is tuned such that it undergoes PMR when εb → 1.8. In a host

medium where aptamer-specific bio-markers (target molecules) are absent, or

before target-binding occurs, the effective host medium permittivity in the im-

mediate vicinity of the nanohybrid will be less. We assume that εb ≈ εw = 1.77

in such conditions [29] and the nanohybrid remains in the bright state (BS), as

indicated in Fig. 11.2.

When target molecules are bound to the conjugated aptamers, the effective

host medium permittivity in the immediate vicinity of the nanohybrid increases.

Considering a small hypothetical spherical volume in the immediate vicinity of

the nanohybrid, the effective host medium permittivity felt by the nanohybrid

can be crudely approximated using the Maxwell-Garnett effective medium the-

ory [171] as follows,

εb ≈ εw
2δi(εi − εw) + εi + 2εw

2εw + εi − δi(εi − εw)
, (11.1)

where εw is the permittivity of the submerging aqueous medium in the absence

of aptamer-bound bio-markers, εi denotes the permittivity of the dry bio-marker

inclusions and δi represents the volume fraction of the bio-marker inclusions in

the spherical volume considered around the nanohybrid. For an assumed volume

fraction as small as 0.1 and εi ≈ 2.5 for the biological insertions [172], we obtain

εb ≈ 1.835 from equation (11.1) which switches the nanohybrid system to the

dark state (DS) as depicted in Fig. 11.2.

It is evident that such ultra-sensitive switching capabilities could inspire in-

vitro early cancer screening procedures conductible on a droplet of blood ex-

tracted from a patient which possess the potential to become routine health checks

that could drastically reduce mortalities due to cancer.
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11.1.2 Prospects of PMR-based In-vivo Temperature Monitoring

Enhanced permeability and retention (EPR) effect [173] based plasmonic pho-

tothermal therapy (PPTT), which induces cellular hyperthermia using heating

agents such as plasmonic nanorods, is under extensive research to selectively tar-

get and destroy malignant tissue [174]. Hyperthermia refers to heating a tissue to

temperatures in the range 41− 47 ◦C for tens of minutes which causes cell death

by loosening the cell membranes and denaturing proteins [175]. PPTT is an at-

tractive alternative (with comparatively less morbidity) to procedures such as

surgical treatment or radiation therapy, as they preserve the anatomic functional

integrity of many organs. Metal nanoparticle assisted plasmonic photothermal

therapy is a minimally-invasive oncological treatment which aims to selectively

target malignant tissue where photon energy is converted into heat, which in-

duces cellular hyperthermia. It has been experimentally demonstrated that even

deep tissue malignancies in mice can be selectively destroyed via in vivo PPTT

treatment, employing plasmonic gold nanorods (GNRs) and a small, portable, in-

expensive, low power near-infrared (NIR) laser [174]. Monitoring and feedback

control of the tumor temperature during PPTT will further minimize the heat in-

duced damage to the surrounding healthy tissue in close vicinity to the targeted

tumor. For hyperthermia therapies to be successfully used for cancer therapeu-

tics with minimal damage to the surrounding healthy tissue, precise temperature

regulation is vital [176].

It has been shown in literature that the lower critical solution temperature

(LCST) of thermo-responsive polymers such as PNIPAM (upon exceeding which

the polymer strands undergo a phase change from elongated to collapsed state)

can be tuned to desired levels of temperature using the molecular structure and

composition. This has been demonstrated in literature by varying the molecu-

lar weight, end-groups, architecture and branching [177, 178]. PNIPAM-MNP

nanocomposites have already been experimentally synthesized and widely stud-
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Figure 11.3: Absorption properties of a QD with ω0 ≈ 2.28 eV, T0 ≈ 0.37 ns−1,
τ0 ≈ 0.8 ns−1, εs = 6 and µ = 2 e nm located in the near-field of a spherical
gold nanoparticle with a = 8 nm, under resonant external illumination with
E0 = 6.366× 103 V m−1. The solid curves are obtained using the generalized
nonlocal optical response (GNOR) method based approach whereas the dashed
curves with the corresponding colors represent the respective local response ap-
proximation (LRA) based curves.

ied in literature [179, 180]. We suggest using PMR-based MNP-QD nanoswitches

which are conjugated with thermoresponsive polymers as potential candidates

for versatile in-vivo thermometers that could provide highly precise and ultra-

sensitive feedback for EPR based hyperthermia therapy.

As a starting point to demonstrate the prospective in-vivo thermometer action,

we study the absorption properties of a QD with ω0 ≈ 2.28 eV, T0 ≈ 0.37 ns−1,

τ0 ≈ 0.8 ns−1, εs = 6 and µ = 2 e nm [5] connected to a spherical gold nanoparti-

cle with a = 8 nm using a thermoresponsive polymer strand. We study the sys-

tem under resonant external illumination with E0 = 6.366× 103 V m−1 at three

different submerging medium permittivities εb ≈ 5, 5.12 and 5.45. The variation

of Qqd of the above system is depicted in Fig. 11.3. The solid lines in the sub-

figure correspond to the GNOR based curves whereas the dashed lines represent
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the respective LRA based curves. It can be observed that the GNOR based curves

predict higher Qqd levels which non-linearly increase with decreasing MNP-QD

centre separation until the system enters the dark state, resulting in a steep de-

cline of Qqd. In contrast, the LRA based curves display a seemingly steady bright

state intensity. Extending the simulation towards R = 100 nm reveals that both

GNOR and LRA based predictions converge at higher values of MNP-QD centre

separation.

The Two-dimensional Skin Tumor Model

We then develop a two-dimensional skin tumor model using which we aim to

demonstrate the prospect of using plasmonic metaresonances in thermorespon-

sive polymer conjugated MNP-QD nanohybrids for tumor detection and hyper-

thermia temperature monitoring.

Fig. 11.4(a) depicts an artistic illustration of a skin tumor where we assume

that the gray-scale pixel intensities linearly (and positively) correlate to the tissue

water content, with the lightest areas representing a total water content of 65%

and the darkest areas indicating a water content of 81.6%.

It has been experimentally observed that the dielectric permittivity of a tissue

(measured at microwave frequencies) shows an approximately linear rise with

the volume fraction of water [181]. We safely assume that this observation holds

in the optical permittivity regime of our interest, as is also indicated by the optical

permittivity data presented in Table II of [172]. The optical permittivities of the

skin epidermis/dermis (E-D) tissue with a total water content of 65% is estimated

as εb ≈ 5, the same with a total water content of 70% is estimated as εb ≈ 5.12

and the permittivity of an embedded tumor is (which has a total water content of

81.6%) is estimated as εb ≈ 5.45 [172]. It has long been known that tumor-bearing

tissue often contain a significantly higher volume fraction of water compared to

the normal tissue from which they have been derived [182]. It has also been
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Figure 11.4: (a) An artistically illustrated skin tumor where the gray-scale pixel
intensities are linearly mapped to the volume fraction of tissue water content (b)
Tumor permittivity model (c) Qqd when the thermoresponsive polymers remain
in the elongated state (d) Qqd when the thermoresponsive polymers remain in
the collapsed state.



11.1 Exploiting Plasmonic Metaresonances 143

observed that “normal looking” cells adjacent to a hepatoma contain a higher

water content than the healthy liver cells [182]. Hence we assume that the tissue

volume fraction of water in our proposed skin tumor model is associated with

the likelihood of the particular tissue being cancerous.

In light of the aforementioned evidence, we build the tumor permittivity pro-

file depicted in Fig. 11.4(b) by linearly mapping the levels of hydration indicated

by the gray-scale pixel intensities of the tumor depicted in sub-figure (a) to per-

mittivities from εb = 5 to 5.45. The model is devised such that the tissue in the

vicinity of the tumor boundary possess lower volume fractions of water, hence

lower dielectric permittivities and vice versa. We also assume that the tumor is

two-dimensionally distributed along the E-D layer, for purposes of demonstra-

tion.

Our thermoresponsive polymer conjugated MNP-QD nanohybrids can pas-

sively target the tumor by exploiting the EPR effect. The defective leaky vascular

anatomy and poor lymphatic drainage at tumor sites cause intravenously injected

nanoparticles to home on the tumor [183, 184] as illustrated in Fig. 11.5, after

which the tumor permittivity profile indicated in Fig. 11.4(b) will be the same

as the submerging medium permittivity profile felt by the nanohybrids that are

assumed to be evenly distributed across the tumour.

Margin pattern reversing phenomenon

Having developed a two-dimensional tumor model which is passively targeted

by TRP-conjugated MNP-QD nanohybrids, we now assume its perpendicular il-

lumination by an external electric field with conditions similar to the sα = −1

scenario indicated in Fig. 11.3. The TRP strands mediating the MNPs and QDs

are assumed to be engineered to possess an LCST similar to the desired maximum

hyperthermia temperature as discussed in an earlier section. The impact of en-

vironmental temperature variations (in the hyperthermia regime) on the optical
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Figure 11.5: Schematic diagram illustrating the enhanced permeability and reten-
tion (EPR) effect based passive targeting of thermoresponsive nanohybrids

properties of MNPs and QDs are safely neglected due to their high temperature

stability [185–187].

Fig. 11.4(c) depicts the variation of Qqd when the temperature (T) of the tumor

is less than the LCST of the TRP strands. When T < LCST, TRP strands remain in

their elongated state, hence the MNP-QD centre separation R ≈ 20 nm. Juxtapo-

sition of Fig. 11.4(c) and the relevant sα = −1 lineplots in Fig. 11.3 reveals that all

nanohybrids homing the tumor, which experience submerging medium permit-

tivities ranging from εb = 5 to 5.45, remain in their bright state, resulting in high

levels of Qqd when T < LCST. It is interesting to note that the boundary areas

of the tumor, which map to lower permittivities in Fig. 11.4(b), display higher

levels of Qqd, which is explainable by the respective lineplot values in Fig. 11.3

at R = 20 nm. This results in sharply highlighting the tumor boundary when the

nanohybrids remain in their bright state, which would assist the accurate identi-

fication of the territory to be treated.

When the tumor temperature rises above the engineered LCST, the TRP strands
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would abruptly collapse, reducing the distance between the QD and the MNP. We

suggest selecting the TRP strand length such that nanohybrids submerged in all

permittivities from 5 to 5.45 reach the PMR dark state, as indicated at R ≈ 17 nm

in Fig. 11.3. The resulting Qqd profile of the tumor is illustrated in Fig. 11.4(d).

It can be observed that the Qqd levels observed throughout the tumor are signif-

icantly lower than the corresponding values in Fig. 11.4(c) due the nanohybrids

now residing in the dark state. More interestingly, we can observe that the tumor

absorption pattern which had the boundary highlighted in the bright state has

now reversed, with the tumor core exhibiting higher levels of Qqd compared to

the boundary. Let us name this phenomenon as the “margin pattern reversal”

caused by submerged nanohybrids entering the PMR dark state.

Post-theraputic clearance

The focus of the presented simulation-based study is to demonstrate the vivid

prospects of exploiting plasmonic metaresonances in carefully engineered TRP-

capped MNP-QD nanohybrids for in-vivo temperature monitoring on a purely

theoretical basis, aiming to incite applied research that would investigate the con-

cept further. Such research should take the following outlook and concerns into

account.

After the hyperthermia temperature monitoring procedure, clearance of the

nanoparticles or their degradation into biologically benign components is nec-

essary to avoid any potential amplification of toxicity caused by their retention

in the body [188]. It has been experimentally demonstrated that it is possible to

prepare degradable PNIPAM oligomers possessing molecular weights below the

renal cutoff that are nontoxic at biomedically relevant concentrations [189]. Effi-

cient renal clearance has also been demonstrated for quantum dots smaller than

5.5 nm [188]. However, as it has been shown that gold nanoparticles exceeding

a hydrodynamic diameter of 5.5 nm are eliminated from blood by the reticuloen-
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Figure 11.6: The artistic illustration of the proposed hyperthermia therapy and
temperature monitoring procedure. Gold nanorods and MNP-QD nanohybrids
are accumulated in the tumor tissue due to the enhanced permeability and reten-
tion effect of the tumors. The scattered intensity in the monitor field frequency
window is used as a feedback signal to control the amplitude of the heater field,
retaining the tumor tissue at the minimum temperature needed for cellular hy-
perthermia, such that the surrounding healthy tissue undergo minimal heat in-
duced damages.

dothelial system instead of the renal system, and thus could tend to accumulate

in the spleen and liver [190]. Due to reasons highlighted above, future research

aimed at achieving ultimate in-vivo operation of the proposed procedures should

not only focus on the successful experimental realization and PEGylation [191] of

the nanohybrids but also on their successful post-theraputic clearance.

11.2 Exploiting Scattered Intensity Variations

This section demonstrates the prospect of using the scattered intensity variations

of thermoresponsive polymer capped MNP-QD nanohybrids (an alternative to

PMR based switching) for minimally invasive detection of cancerous tissue and

for feedback control of tumor temperature in localized hyperthermia therapy con-

ducted using gold nanorods, to minimize heat induced damage to the surround-

ing healthy tissue. The generalized nonlocal optical response method based cav-
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Figure 11.7: The normalized Rayleigh scattering spectra of the MNP-QD nano-
hybrid and the isolated gold MNP (magnified 1000 times), calculated using the
cavity-QED formalism, in arbitrary units. The inset shows the zoomed versions
of the nanohybrid spectra in close vicinity of the QD resonance frequency, for
different values of MNP-QD centre separation R. It can be observed that the peak
intensity reduces and the constructive interference maxima undergo a frequency
blue-shift as R decreases. All curves are normalized by the maximum intensity
in the respective subplot.

ity quantum electrodynamical formalism introduced in chapter 8 is used to obtain

the Rayleigh scattering spectra of the nanohybrids.

Pertaining to our earlier discussions, let us assume a scenario where EPR as-

sisted PPTT is conducted using gold nanorods and thermoresponsive polymer

conjugated MNP-QD nanohybrids are used to monitor the tumour. Two non-

overlapping near-optical frequency windows are used for the purposes of heat-

ing and monitoring the tumour, which would be called the heater field and monitor

field from this point onwards. The proposed procedure is artistically illustrated

in Fig. 11.6.

We can estimate the GNR absorbance, in an NIR window that does not overlap

with the monitor field frequency window, using Gan’s theory as follows [179,
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192]:

A ∝
2πVε3/2

b
3λ ∑

j

(1/Pj)
2 Im{εm}(

Re{εm}+
1−Pj

Pj
εb

)2
+ Im{εm}2

, (11.2)

where V is the GNR volume and λ is the wavelength of the heater field. Pj are

the depolarization factors of the three GNR axes A, B, C defined as,

PA =
1− e2

e2

[
1
2e

ln
(

1 + e
1− e

)
− 1
]

, (11.3a)

PB = PC =
1− PA

2
, (11.3b)

where, e =
√

1− (B/A)2 and A/B denotes the aspect ratio. GNR semi-axes are

related such that A > B = C.

Fig. 11.1 (a) and (b) depict the two phases of a thermoresponsive polymer con-

jugated MNP-QD nanohybrid incident by coherent optical illumination, at tem-

peratures above and below the LCST of the linker, respectively. For the numerical

study that follows, the nanohybrid is submerged in a medium with optical per-

mittivity εb = 5.45 [172]. It is assumed that the polymer strand is engineerd to

achieve LCST at the maximum desired hyperthermia temperature, as discussed

in the earlier section. The simulated nanohybrids are assumed to be formed

of gold MNPs linked to CdTe QDs with excitonic energy 2.214 eV [193], transi-

tion dipole moment 50D [194] and excitonic decay rate 0.055 ns−1 [195]. Among

various QDs, protein capped cadmium telluride (CdTe) QDs are considered as

promising probes in the bio-imaging of living cells due to their tunable photolu-

minescence upon optical excitation, higher photostability, water solubility, more

controllable and narrower emission bands and higher quantum yields compared

to the conventional fluorescent dyes [193]. The radius of the MNP is kept at 5 nm.

Parallel polarization condition where the MNP-QD axis lies along the coherent

optical illumination is assumed for the presented results. It was verified that

similar results hold for perpendicular polarization conditions and hence for any
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Figure 11.8: (a) Percentage Rayleigh scattering enhancement (P) of the nanohy-
brid over the quasi-constant (in a narrow frequency window around the reso-
nance of the QD) scattered intensity of the isolated gold nanosphere (Imnp), at the
position where the nanohybrid scattering reaches its maximum (Imax), plotted
against the frequency at the scattering maximum of the nanohybrid (ωmax). Each
dot corresponds to the peak point of the same colored curve of the earlier sub-
plot. (b) shows P plotted against the the gold nanosphere-QD centre separation
(R), with the dot colors bearing the same meaning as earlier. The solid line de-
picts the fitted exponential model with a goodness of fit 0.9989, for the parameter
set considered for this study.
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Figure 11.9: The nanohybrid Rayleigh scattering spectrum for any given centre
separation distance considered earlier in Fig. 11.7, and the absorbance curve for
gold nanorods with aspect ratio 4 and any given constant volume, submerged in
the same dielectric medium as the nanohybrids obtained using Gan’s theory [3].
Both plots are normalized using the own maximum intensity. The areas high-
lighted in pink and purple represent the two non-overlapping frequency win-
dows used for heating and monitoring, respectively.

random orientation which is readily expressible using parallel and perpendicular

orientations.

The Rayliegh scattering spectra of the nanohybrid and the isolated MNP, de-

picted in Fig. 11.7 were calculated using GNOR assisted cavity QED formalism

discussed in chapter 8. Fig. 11.8 (a) depicts the Rayleigh scattering enhancement

(P) over the isolated MNP at the scattering maximum of the MNP-QD nanohy-

brid plotted against the angular frequencies at scattering maxima. Fig. 11.8 (b)

shows that P follows an exponential scaling with the MNP-QD centre separation

distance R. Moreover, it can be observed from Fig. 11.7, 11.8(a) and (b), that the

peaks exhibit a blue-shift with decreasing R, which could form the basis for a

multitude of MNP-QD nanohybrid based sensing applications.

Normalized GNR absorbance spectrum for gold nanorods with aspect ratio

4, obtained using Gan’s theory, is depicted in Fig. 11.9. From the same figure,

it is clearly evident that the monitoring (optical) and heating (NIR) frequency
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windows are non-overlapping and hence can be utilized simultaneously, with

minimal interference to each other.

These observations reveal the promising prospects of the minimally invasive

tumor detection, treatment and monitoring procedure depicted in Fig. 11.10. In

this procedure, intravenously injected gold nanorods and aforementioned gold

MNP-CdTe QD nanohybrids are allowed to home on the malignant tissue due to

the EPR effect as depicted in Fig. 11.6. Monitor field (in the optical frequency

window indicated in Fig. 11.9) is illuminated on the tumor-bearing area and the

Rayliegh scattering of homing nanohybrids are used to image the tumor. As this

is done at the body temperature (37 ◦C), below the LCST, PNIPAM strands reside

in their elongated state (large R), favorably resulting in a high scattered intensity.

Once the tumor is precisely located, a targeted heater field in the near infrared

(NIR) frequency regime around the longitudinal plasmon resonance of the GNRs,

as indicated in Fig. 11.6, is turned on to conduct PPTT. In this minimally-invasive

therapeutic procedure, photon energy is converted into heat by the accumulated

GNRs, selectively destroying the cancer tissue. GNRs are ideal candidates for

PPTT, as they strongly absorb photons in the NIR range and generate heat en-

ergy much faster than gold nanospheres [3]. When the tumor gradually reaches

the minimal hyperthermia temperature sufficient for denaturation of cells which

is same as the engineered LCST, the binding PNIPAM strands abruptly collapse,

reducing the MNP-QD centre separation R, followed by the scattered intensity.

This could be used as a feedback signal to regulate the heater field amplitude at

the minimum required level, minimizing heat-induced damage to the surround-

ing healthy tissue.
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Figure 11.10: (a) Patient with a tumor. (b) Intravenously injecting two types
of nanoparticles (MNP-QD nanohybrids and gold nanorods) (c) The injected
nanoparticles are expected to flow throughout the patient’s body with the blood-
stream. (d) The nanoparticles home on the tumor due to the enhanced perme-
ability and retention effect of the tumor tissue. (e) Monitor field is illuminated
on the suspected tumorous area to localize the tumor. (f) Once the tumor is pre-
cisely located, the heater field is turned on, and the monitor field sustained to
the obtain feedback using which the heater field amplitude is controlled at the
minimal level required to achieve hyperthermia at the tumor. (g) Tumor tissue is
selectively destroyed with minimal damage to the healthy tissue in the vicinity.
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11.3 Summary and Conclusions

This chapter presented the prospects of exploiting MNP-QD nanohybrids for bio-

sensing applications in the forms of PMR-based nanoswitches and scattered in-

tensity based sensors. The first section suggested two applications of PMR-based

nanoswitches, namely, aptamer based in-vitro cancer screening and thermore-

sponsive polymer based temperature sensing. To demonstrate the latter appli-

cation, a proof of concept (two dimensional) skin tumor model, homogeneously

populated by MNP-QD nanohybrids, was utilized. The simulations revealed a

novel near-PMR physical phenomenon observable under perpendicular illumi-

nation, which we named as the margin pattern reversal, where the spatial absorp-

tion pattern reverses as the near-PMR QDs switch from their bright to dark state.

The second section was dedicated to demonstrate the prospect of exploiting

the scattering spectra of MNP-QD nanohybrids for minimally invasive detection

of cancerous tissue and for feedback control of tumor temperature in localized

hyperthermia therapy conducted using gold nanorods, to minimize damage to

the surrounding healthy tissue. Here, we used the generalized nonlocal optical

response method based cavity quantum electrodynamical formalism and showed

that the enhancement of the Rayleigh scattering intensity of the nanohybrid over

that of the isolated gold nanosphere follows an exponential scaling with vary-

ing nanohybrid centre separation distance, in the close vicinity of the QD reso-

nance frequency. Such behaviour makes polymer mediated MNP-QD nanohy-

brids ideal candidates for a multitude of distance based sensing applications.





Chapter 12

Contributions and Future work

12.1 Summary of Contributions

Research objective 1 - Development of a GNOR assisted cavity QED model of
an MNP-QD hybrid molecule

In this stage, we analytically modelled an MNP-QD nanohybrid in an external

driving field, as an open quantum system, using a GNOR assisted cavity-QED

approach. In the process, we quantum mechanically modelled the dipole mo-

ment operator and the dipole response field of the metal nanoparticle, taking the

nonlocal effects into account. This model accounts for the nonlocal optical re-

sponse of the MNP plasmons and its impact on the behaviour of the nanohybrid

without needing to invoke computationally demanding ab initio approaches of ac-

counting for nonlocality. Moreover, it is computationally much less demanding

than the conventional local response approximation based numerical approaches

amply utilized in the literature.

This stage was successfully completed and the results were published in the jour-

nal Physical Review B
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Research objective 2 - Analysis and comparison of different resonator based
nanohybrids

In this stage, we presented a simple, elegant relative figure of merit (RFoM),

which focuses on maximizing the scattered intensity and the refractive index sen-

sitivity of MNP-QD nanohybrids, to rank them in the order of their scattering

prowess for sensing applications. The proposed RFoM was used to analyse the

optical spectra of noble, transition, post transition and alkali metal based MNP-

QD nanohybrids using the representative metals Au, Ag, Cu, Al and Na, adopt-

ing the generalized nonlocal optical response (GNOR) method based cavity QED

approach developed in the earlier stage. This stage also produced numerical evi-

dence to the superior and versatile sensing capabilities of the MNP-QD nanohy-

brids, in comparison to the individual constituents, proving that such nanohy-

brids possess better prospects in sensing applications.

This stage was successfully completed and the results were communicated in the

Journal of Physics: Condensed Matter.

Research objective 3 - Investigating the effects of nonlocal plasmonic response
on the coherent dynamics of vicinal excitons

This stage entailed analytically characterizing the influence of a neighboring metal

nanoparticle (MNP) on the behavioral trends of a quantum dot (QD) using a gen-

eralized nonlocal optical response (GNOR) method based approach, taking the

MNP distance dependent modifications to the QD population relaxation and de-

phasing rates into account. The proposed GNOR based model predicted strong

modifications to various QD properties such as the population difference, absorp-

tion, MNP induced shifts to excitonic energy and Förster enhanced broadening,

coherent plasmonic field enhancement, and quantum state purity, compared to

the conventional LRA based predictions. Such modifications were seen to be
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prominent with small MNP radii, high QD dipole moments, small detunings (of

the coherent external illumination from the bare excitonic resonance), and near

parameter regions exhibiting plasmonic meta resonance (PMR)-like behavior.

Upon successful completion of this stage, the findings were communicated in

the journal Physical Review B.

Research objective 4 - Improved modeling of plasmonic metaresonances

In this stage, we modeled the plasmonic metaresonances in an exciton-plasmon

nanohybrid using an approach based on the GNOR formalism and compared

the results to those obtained using the conventional local response approxima-

tion. The results indicated that, omission of the MNP nonlocal response and the

associated decay/dephasing rate modifications of the QD tend to raise implica-

tions such as significant over-estimation of the QD dipole moment required to

achieve PMR, under-estimation of the critical centre separation and prediction

of significantly lower near-PMR QD absorption rate, in comparison to the im-

proved GNOR based predictions. In light of the observations, we suggested two

prospective applications of PMR based nanoswitches, namely, aptamer based in-

vitro cancer screening and thermoresponsive polymer based temperature sens-

ing. To demonstrate the latter application, we developed and utilized a proof

of concept (two dimensional) skin tumor model homogeneously populated by

MNP-QD nanohybrids. The simulations revealed a novel near-PMR physical

phenomenon observable under perpendicular illumination, which was named

the margin pattern reversal, where the spatial absorption pattern reverses when

the near-PMR QDs switch from the bright to dark state.

This stage was successfully completed. The resulting (accepted) journal article

is currently in production in the Journal of Physics: Condensed Matter.
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Research objective 5 - Further investigation of the bio-sensing prospects of
exciton-plasmon nanohybrids

In this stage, we theoretically demonstrated the prospect of using thermorespon-

sive polymer capped MNP-QD nanohybrids for minimally invasive detection of

skin cancer tissue and for feedback control of tumor temperature in localized hy-

perthermia therapy conducted using gold nanorods, to minimize damage to the

surrounding healthy tissue. Here, we used the GNOR based cavity QED model

developed earlier and showed that the enhancement of the Rayleigh scattering in-

tensity of the nanohybrid over that of the isolated gold nanosphere could exhibit

an exponential-like scaling with varying nanohybrid centre separation distance,

in the close vicinity of the QD resonance frequency.

This stage was successfully completed and the resulting conference article was

published in the IEEEXplore Digital Library, proceedings of the 12th IEEE Confer-

ence on Nano/Molecular Medicine and Engineering.

12.2 Suggestions for Future Work

The work presented in this thesis can be extended in a number of theoretical and

experimental pathways. We have outlined a few suggested directions below.

Investigating the impact of nonlocal multipolar response on exciton-plasmon
interaction

This thesis focused on the interaction of a semiconductor quantum dot with a

small metal nanoparticle operating in the nonlocal dipole regime. It has been

shown that nonlocal effects on the dipole mode of a small metallic sphere domi-

nates for diameters in the order of 20 nm, in the quasi static regime [11]. However,

different sources of excitation such as the swift electron used in EELS (electron en-
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ergy loss microscopy) could produce significantly inhomogeneous electric-field

distributions which can excite higher-order multipoles even in metal spheres with

diameters below 20 nm [11,196,197]. Thus, we believe that future research consid-

ering the nonlocal resonance condition for all multipoles given in the nonretarded

limit [196] will certainly be useful in the context of device design.

Investigating the interaction of differently shaped nanoresonators with quan-
tum dots

Although several studies in the literature have concerned the interaction of semi-

conductor quantum dots with differently shaped metal nanoparticles such as

nanorods, nanodisks and ellipsoids [102,198,199], we did not encounter fully an-

alytical studies which quantum mechanically model the entire nanohybrid while

taking the non-classical effects of the resonator into account. We believe that such

studies will prove to be useful in many areas of application.

Modeling the interaction of three and multi-level quantum dots with metal
nanoparticles

Similar to the earlier scenario, the interaction of a three-level quantum dot with a

metal nanoparticle modeled using the local response approximation has been the

focus of several studies [199,200]. To the best of our knowledge, the development

of a fully quantum mechanical, analytical model that takes the resonator non-

classical effects into account is yet to be done.

Investigating the size effects of quantum dots in exciton-plasmon nanohybrids

Quantum dots are regarded as zero-dimensional material [201, 201] which has

resulted in almost all theoretical studies in literature [5,23,24,26,106,115,200], in-

cluding ours, neglecting their size effects. However, in a reality, quantum dots too
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are finite dimensional and accounting for their size effects in theoretical studies

would be useful in the context of practical applications.

Investigating exciton-plasmon interactions in all-carbon nanohybrids

The possibility of inducing localized surface plasmons in graphene nanoflakes

and excitons in carbon nanotubes have been recently investigated in the literature

[202, 203]. It has also been shown that nanohybrids where graphene nanoflakes

are optically coupled to carbon nanotubes could potentially possess enhanced

sensing capabilities compared to the individual constituents whilst inheriting

their high biocompatibility, favourable electrical, mechanical and spectroscopic

properties. All-carbon nanohybrids are also believed to be competitive candi-

dates for bio-sensing applications due to their potentially high biocompatibility

and tunability compared to metal-resonator based sensors [204].

Further investigations on all-carbon exciton-plasmon nanosuperstructures may

be extremely helpful for the future development of sensors and spasers with a

plethora of favorable physical properties.

Fully analytical characterization of nanohybrids comprising multiple quantum
dots and metal nanoparticles

During our extensive literature review, we encountered a handful of research

which model the interaction between multiple metal nanoparticles and quantum

dots [127, 205], none of which take non-classical effects such as the nonlocal re-

sponse or plasmon hybridization [206] into account.

Attempts to develop analytical models that overcome the aforementioned lim-

itations will be worth the mathematical complexities encountered, as they will

help realistic modeling with drastically reduced computational complexity com-

pared to ab initio methods such as density functional theory.
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Theoretical and experimental investigation of the prospects of exciton-plasmon
nanohybrids in practical applications

This thesis numerically demonstrated a few prospects of exciton-plasmon nanohy-

brids in bio-sensing applications. Endless future research can be carried out to

investigate the prospects of such nanohybrids in areas of light harvesting, quan-

tum computing, nanoelectronics and spasing.

These are only a few examples of the possible future advancements in the con-

text investigated in this thesis. As a final remark, we can assure that the readers

will only realize how wise the words of Richard Feynman were, once they start

investigating along the path.

“There is plenty of room at the bottom...”





Appendix A

Localized Surface Plasmons

A.1 Solving Laplace’s Equation for Azimuthal Sym-
metry

In the spherical coordinate system r, θ and φ, the Laplace’s equation reads [207],

1
r2

∂

∂r

(
r2 ∂

∂r
V
)
+

1
r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
V
)
+

1
r2 sin2(θ)

∂2

∂φ2V = 0. (A.1)

Due to the azimuthal symmetry of our configuration, V is independent of φ,

hence (A.1) reduces to,

1
r2

∂

∂r

(
r2 ∂

∂r
V
)
+

1
r2 sin(θ)

∂

∂θ

[
sin(θ)

∂

∂θ
V
]
= 0. (A.2)

We are interested in separable solutions of the form, V(r, θ) = R(r)Θ(θ). We

substitute the above equation in (A.2) and divide byRΘ to arrive at,

1
R

∂

∂r

(
r2 ∂

∂r
R
)
+

1
Θ sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ
Θ
)
= 0. (A.3)

The addends of (A.3) should be separately zero for the sum to be null, as they de-

pend on different independent variables. Hence we arrive at the Radial equation,

d
dr

(
r2 d

dr
R
)
= n(n + 1)R, (A.4)
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which has the general solution,

R = Arn +
B

rn+1 (A.5)

and the Angular equation,

d
dθ

(
sin(θ)

d
dθ

Θ
)
= −n(n + 1)Θ sin(θ) (A.6)

the solutions of which are Legendre polynomials of the variable cos(θ),

Θ(θ) = Pn(cos(θ)). (A.7)

Pn(x) in (A.7) is given by the Rodrigue’s formula,

Pn(x) =
1

2nn!

(
d

dx

)n
(x2 − 1)n. (A.8)

Rodrigue’s formula works only for non-negative integers n and the Angular equa-

tion possesses two independent solutions for every value of n. However, there

is only one physically acceptable solution as the other solutions tend to blow up

at θ = 0 and θ = φ. Thus, in the case of azimuthal symmetry, the most general,

physically acceptable separable solution is,

V(r, θ) =

(
Arn +

B
rn+1

)
Pn(cos(θ)). (A.9)

The general solution would a linear combination of the separable solutions,

V(r, θ) =
∞

∑
n=0

(
Anrn +

Bn

rn+1

)
Pn(cos(θ)). (A.10)
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A.2 Boundary Conditions of Electric Scalar Potential

We obtained the unsimplified expression for electric potential as (2.5),

V(r, θ) =

∑∞
n=0

[
An
( r

a
)n

+ Bn
( a

r
)n+1

]
Pn [cos(θ)] , for r < a

∑∞
n=0

[
A′n
( r

a
)n

+ B′n
( a

r
)n+1

]
Pn [cos(θ)] , for r ≥ a

It can be seen that nonzero values of Bn leads to unphysical infinite potentials

inside the MNP when r → 0. Hence ∀n, Bn = 0. Moreover, when r → ∞,

E → Edrive = E0ẑ. Therefore, as E = −∇V , using simple integration, we arrive

at V → −E0r cos(θ) when r → ∞. As Pn[cos(θ)] = cos(θ) only for n = 1,

A′1 = −aE0 and A′n = 0 ∀n 6= 1. Using these boundary conditions, we arrive

at [5],

V(r, θ) =

∑∞
n=0An

( r
a
)n Pn [cos(θ)] , for r < a

∑∞
n=0 B′n

( a
r
)n+1 Pn [cos(θ)]− E0r cos(θ), for r ≥ a

(A.11)

For the continuity of V at the particle boundary, the two conditional expressions

for r < a and r ≥ a should be equal when r = a. Thus,

∞

∑
n=0
AnPn cos(θ) =

∞

∑
n=0
B′nPn cos(θ)− E0a cos(θ). (A.12)

For the continuity of the radial displacement field D across the dielectric surface,

when r = a,

εb
∂

∂r
V
∣∣∣
outside

= εm
∂

∂r
V
∣∣∣
inside

(A.13)

Obtaining the partial derivative of r for both sides of (A.11) and setting r = a

gives,
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Pn [cos(θ)]− E0 cos(θ) (A.14)

where the n = 0 summation component has disappeared from both sides due

to the factor n on the L.H.S.

Legendre polynomials are orthogonal with respect to their L2 inner product

in the interval −1 ≤ x ≤ 1 such that [208],

∫ 1

−1
Pm(x)Pn(x)dx =

2
2n + 1

δmn (A.15)

where δmn denotes the Kronecker delta function. From (2.5), for continuity of V

at the dielectric interface (r = a),

∞

∑
n=0

(An + Bn)Pn [cos(θ)] =
∞

∑
n=0

(A′n + B′n)Pn [cos(θ)] , (A.16)

When we multiply both sides by P0 cos(θ),

∞

∑
n=0

(An + Bn)Pn [cos(θ)] P0 [cos(θ)] =
∞

∑
n=0

(A′n + B′n)Pn [cos(θ)] P0 [cos(θ)] ,

only the n = 0 terms survive due to the orthogonality of Legendre polynomials,

leading to (A0 + B0) = (A′0 + B′0). As we showed earlier, A′0 = B0 = 0. Hence

we arrive atA0 = B′0. Similarly, multiplying (A.16) by P1 cos(θ) and Pn cos(theta)

respectively, we can arrive at A1 = B′1 − aE0 and An = B′n ∀n > 1. Moreover, by

multiplying both sides of (A.14) by P1 cos(θ) and Pm cos(θ) respectively, and ex-

ploiting the orthogonality of Legendre polynomials, we can obtain the boundary

conditions εmA1/εb = −2B′1 − E0a and nεmAn/εb = −(n + 1)B′n. Simultane-
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ously solving these equations, the following can be obtained,

A1 =
−3εb

2εb + εm
E0a (A.17a)

B′1 =
εm − εb

2εb + εm
E0a (A.17b)

n + 1
n
An = −εm

εb
An, n > 1 (A.17c)

We can readily observe that the equation (A.17c) would not hold for the complex

dielectric permittivity εm and non-absorbing εb unless An = 0 for all n > 1.

Hence the final solution for the electric scalar potential becomes [5],

V(r, θ) =

−
3εb

(2εb+εm)
E0r cos(θ), for r < a

εm−εb
2εb+εm

a3E0
1
r2 cos(θ)− E0r cos(θ), for r ≥ a

(A.18)

A.3 Electric Field of an Illuminated Metal Nanopar-
ticle

By solving the Laplace’s equation for azimuthal symmetry and and applying the

appropriate boundary conditions, we arrived at the electric scalar potential cre-

ated due to an illuminated metal nanoparticle in (A.18). We now use the funda-

mental relation E = −∇V to obtain the relevant electric field in the quasi-static

limit [5, 9, 12].

The ∇ operator in spherical coordinates reads [12],

∇ f =
∂

∂r
f r̂ +

1
r

∂

∂θ
f θ̂ +

1
r sin(θ)

∂

∂φ
f φ̂ (A.19)

By applying (A.19) separately to the r < a and r ≥ a cases of (A.18) and simplify-
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ing, we arrive at,
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As ẑ = cos(θ)r̂ − sin(θ)θ̂ in spherical coordinates, the above equation can be

written in the form [5],
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It is observable that the field induced by the MNP in response to the incident field

outside the MNP is given by,
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as ẑ.r̂ = cos(θ) and Edrive = E0ẑ.



Appendix B

Quantum Dots as Artificial Atoms

B.1 Wavefunction and Energy of a Particle in a Box

As per our detailed discussion in section 3.1 the conduction band of a QD can

be modeled using the infinite square well or the particle in a box model. We will

start the derivation of equations for the relevant wave equation (3.1) and the cor-

responding eigen energy equation (3.2) by obtaining the equations for a one di-

mensional infinite square well potential. For this purpose, we will follow the

approach presented in [75]:

A particle, such as an electron, in a one-dimensional square well potential is

completely free to move along the selected dimension inside the well due to the

potential being zero (V(x) = 0) except beyond the two ends (x = 0 and x = lx)

where an infinite potential prevents it from escaping (V(x) → ∞), as depicted

in Fig. 3.1(b). Therefore, the probability of finding the particle outside the well

is zero, which results in Ψ(x) = 0 ∀x < 0 and x > lx. The time-dependent

Schrödinger equation inside the potential well reads [75],

−h̄2

2m
d2

dx2 Ψ = EΨ =⇒ d2

dx2 Ψ = −K2Ψ where K =

√
2mE
h̄

(B.1)

with the eigen energy E 6= 0. In the above equation, h̄ is the reduced Planck

constant and m is the electronic mass. We can readily observe that (B.1) takes the
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form of a classical simple harmonic oscillator which has the solution,

Ψ(x) = A sin(Kx) + B cos(Kx), (B.2)

where A and B are coefficients to be found using appropriate boundary condi-

tions.

Although the wavefunction Ψ and its derivative dΨ/dx are both usually con-

tinuous, only the first condition would apply when the potential V(x)→ ∞. This

would lead to,

Ψ(0) = Ψ(x) = 0 =⇒ B = 0 =⇒ Ψ(x) = A sin(x). (B.3)

Ruling out the trivial and non-normalizable solution where Ψ = 0 due to A = 0,

we arrive at sin(Klx) = 0, which means Klx = {±π,±2π,±3π...} It is evident

that K takes distinct values of the form, Kn = nπ/lx where n = {1, 2, 3...} where

the negative sign has been incorporated into the yet to be found coefficient A.

Thus, the permitted discrete eigen energies of the one-dimensional infinite po-

tential well would be,

En =
h̄2K2

2m
=

h̄2π2n2

2l2
xm

. (B.4)

In attempt to find the coefficient A, we use the normalization of the wavefunction

such that, ∫ lx

0
|A|2 sin2(Kx)dx = 1 =⇒ |A|2 = 2/lx, (B.5)

which only leaves us with the magnitude of the required coefficient. As the phase

of the coefficient has no physical significance, we pick the real positive root, hence

A =
√

2/lx. This leads to the infinite set of possible wavefunctions of a particle

(electron in this case) confined in a one-dimensional infinite potential well,

2
lx

sin
(

nπx
lx

)
, where n = 1, 2, 3... (B.6)
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The above one-dimensional solution can be straightforwardly extended for a

three dimensional particle in a box using the three dimensional time-independent

Schrödinger equation [75],

− h̄2

2m
∇2Ψ = EΨ. (B.7)

Assuming a separable solution of the form,

Ψ(x, y, z) = X (x)Y(y)Z(z) (B.8)

and plugging (B.8) back in (B.7) leads to,
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1
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dx2X +
1
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1
Z

d2

dz2Z
]
= E (B.9)

For constant energy E, the three addends of the above equations should sepa-

rately be constant as they depend on different independent variables. With the

influence from the one-dimensional case, we can write,
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dx2X = K2
xX =⇒ 1

X
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x (B.10a)

d2

dy2Y = K2
yY =⇒ 1

Y
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y (B.10b)

d2

dz2Z = K2
zZ =⇒ 1

Z
d2

dz2Z = −K2
z (B.10c)

By substituting the above in (B.9), we can obtain,
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x +K2
y +K2

z

]
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Using

Kx =
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ly
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nzπ

lz
(B.12)
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where, n = 1, 2, 3... we can arrive at,

E(nx, ny, nz) =
h̄2π2

2m

[(
nx
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)2

+

(
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ly

)2

+
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]

and

Ψx, y, z = X (x)Y(y)Z(z)

=

√
8

lxlylz
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nxπx
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)
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(

nyπy
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)
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)

which represent the possible discrete eigen energies and the corresponding wave-

functions of an electron trapped in a three-dimensional infinite potential well.
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Density Matrix Theory and Open
Quantum Systems

C.1 Interaction picture Liouville equation

Time evolution of the density operator in the Schrödinger picture is given by the

commutator relation,

∂

∂t
ρ̂(t) = − i

h̄
[
Ĥ0 + V̂(t), ρ̂(t)

]
by Substituting

ρ̂(t) = e−(i/h̄)Ĥ0tρ̂I(t)e(i/h̄)Ĥ0t

we can obtain,

∂

∂t

{
e−(i/h̄)Ĥ0tρ̂I(t)e(i/h̄)Ĥ0t

}
= − i

h̄
[
Ĥ0 + V̂(t), ρ̂(t)

]
.

Expansion of the product differential and simplification using the commutation

relation of Ĥ0 and e±(i/h̄)Ĥ0t walks us through the following major steps,

−i
h̄

e−(i/h̄)Ĥ0t {Ĥ0ρ̂I − ρ̂IĤ0
}

e(i/h̄)Ĥ0t + e−(i/h̄)Ĥ0t ∂

∂t
ρ̂I(t)e(i/h̄)Ĥ0t = − i

h̄
[
Ĥ, ρ̂(t)

]
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= − i
h̄

{
e(i/h̄)Ĥ0tV̂e−(i/h̄)Ĥ0te(i/h̄)Ĥ0tρ̂e−(i/h̄)Ĥ0t−

e(i/h̄)Ĥ0tρ̂e−(i/h̄)Ĥ0te(i/h̄)Ĥ0tV̂e−(i/h̄)Ĥ0t
}

which finally result in the interaction picture Liouville equation,

∂

∂t
ρ̂I(t) = −

i
h̄
{
V̂I(t)ρ̂I(t)− ρ̂I(t)V̂I(t)

}
= − i

h̄
[
V̂I(t), ρ̂I(t)

]



Appendix D

Analytical Characterization of Exciton
Behaviour in a Plasmonic Near Field

D.1 Matrix Form of the Atomic Master Equation

In the Hilbert space where |e〉 and |g〉 form an independent basis set, the ladder

operators (σ̂ and σ̂†) of the QD and σ̂†σ̂ can be expressed in their matrix form as,

σ̂ = |g〉 〈e| =

1

0

(0 1
)
=

0 1

0 0

 (D.1a)

σ̂† = |e〉 〈g| =

0

1

(1 0
)
=

0 0

1 0

 (D.1b)

σ̂†σ̂ = |e〉 〈e| =

0

1

(0 1
)
=

0 0

0 1

 (D.1c)

With the above description, we can recast the Hamiltonian of the QD interacting

with the plasmonic and external coherent fields given by (5.1) as,

Ĥqd = h̄ωqdσ̂†σ̂− Eqdµ
(

σ̂ + σ̂†
)
=

 0 −µEqd

−µEqd h̄ωqd

 (D.2a)

We can then use the matrix of (4.23),
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∂

∂t
ρ̂ = − i

h̄
[
Ĥqd, ρ̂

]
+ λ1

(
2σ̂ρ̂σ̂† − σ̂†σ̂ρ̂− ρ̂σ̂†σ̂

)
+

λ2

(
2σ̂†ρ̂σ̂− σ̂σ̂†ρ̂− ρ̂σ̂σ̂†

)
+ λ3

(
2σ̂†σ̂ρ̂σ̂†σ̂− σ̂†σ̂ρ̂− ρ̂σ̂†σ̂

)
to finally arrive at,

˙̂ρ =
i
h̄

 −µEqd(ρ12 − ρ21) −µEqd(ρ11 − ρ22) + h̄ωqdρ12

−µEqd(ρ22 − ρ11)− h̄ωqdρ21 −µEqd(ρ21 − ρ12)


−

 2λ2ρ11 − 2λ1ρ22 (λ1 + λ2 + λ3)ρ12

(λ1 + λ2 + λ3)ρ21 2λ1ρ22 − 2λ2ρ11

 ,

where ρij denotes the (i, j)th element of the QD density matrix ρ̂.

D.2 Derivation of QD Bloch Equations

Matrix form of the density matrix time evolution of the QD under the influence

of the MNP and the externally incident field is given by (5.15) as,

ρ̇11 ρ̇12

ρ̇21 ρ̇22

 =

{− i
h̄ µEqd(ρ12 − ρ21)− (ρ11−1)

τ

} {
− i

h̄ µEqd∆ + iωqdρ12 − ρ12
T
}

{ i
h̄ µEqd∆− iωqdρ21 − ρ21

T
} {

− i
h̄ µEqd(ρ21 − ρ12)− ρ22

τ

}


Equating the first elements of LHS and RHS, substituting for Eqd from (5.9) and

factoring out the high frequency time dependencies of ρ12 and ρ21,

ρ̇11 = − i
h̄

µ

(
h̄
µ

Ωr
12e−iωt +

h̄
µ

Ωr∗
12eiωt

)
(ρ̃12eiωt − ρ̃21e−iωt)− (ρ11 − 1)

τ
(D.3)

using the rotating wave approximation to eliminate the high frequency time de-

pendencies,

ρ̇11 ≈ −iΩr
12ρ̃12 + iΩr∗

12ρ̃21 +
ρ22

τ(ω)
(D.4)
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Using a similar steps, it can be shown that,

ρ̇22 ≈ iΩr
12ρ̃12 + iΩr∗

12ρ̃21. (D.5)

By comparing ρ21 on the LHS and RHS of (5.15), substituting for Eqd and factoring

the high frequency time dependence of off diagonal density matrix elements as

earlier,

∂

∂t

{
ρ̃21e−iωt

}
=

i
h̄

µ

(
h̄
µ

Ωr
12e−iωt +

h̄
µ

Ωr∗
12eiωt

)
∆− iωqdρ̃21e−iωt − ρ̃21e−iωt

T(ω)

˙̃ρ21e−iωt − iωρ̃21e−iωt = i
(

Ωr
12e−iωt + Ωr∗

12eiωt
)

∆− iωqdρ̃21e−iωt − ρ̃21e−iωt

T(ω)

˙̃ρ21 =

{
i∆Ωr

12e−iωt + i∆Ωr∗
12eiωt −

[
i(ωqd −ω) +

1
T(ω)

]
ρ̃21e−iωt

}
eiωt

Eliminating the term oscillating as e2iωt using the rotating wave approximation,

˙̃ρ21 ≈ i∆Ωr
12 −

[
i(ωqd −ω) +

1
T(ω)

]
ρ̃21.

D.3 Root selection for Population Difference

For q3 + r2 < 0, P1 and P2 from (5.27) will be complex conjugates such that,

P1 = r +
√

q3 + r2 = |P1| θ1,

P2 = r−
√

q3 + r2 = |P1| −θ1.

Equation (5.26) mandates p1 and p2 to be complex conjugates of each other for at

least one cubic root of (5.25) to be real. Using De Moivre’s nth root theorem [209]

and trignometric identities, it can be shown that for j = 0, 1, 2,

P
1
3
1 (j) = |P1|

1
3

[
cos
(

θ1

3
+

2jπ
3

)
+ i sin

(
θ1

3
+

2jπ
3

)]
,
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= |P2|
1
3

[
cos
(

θ1

3
+

2(−j)π
3

)
− i sin

(
θ1

3
+

2(−j)π
3

)]
,

=

[
P

1
3
2 (−j)

]∗
,

Comparison of all possibilities of the roots of (5.25) against its steady state nu-

merical solution over the large parameter space used in this work reveals that the

valid root for −1 ≤ ∆ ≤ 1 when q3 + r2 < 0 is given by,

∆ = p1 + p2 − w̃2/3, where,

p1 = P
1
3
1 (j = 0) = |P1|

1
3

[
cos
(

θ1

3

)
+ i sin

(
θ1

3

)]
,

p2 = p∗1 .

D.4 Normalized Exciton Energy and Dephasing

From (5.21c),

˙̃ρ21 ≈ −
[
i(ωqd −ω) + 1

/
T(ω)

]
ρ̃21 + iΩr

12∆. (D.10)

Substituting from (5.9) in (5.21c),

Ωr
12 = Ωeff

12 + ηρ̃21 = Ωeff
12 + (ηre + iηim)ρ̃21, (D.11)

and rearranging,

˙̃ρ21 ≈ −
[
i(ωqd − ηre∆−ω) +

{
1
/

T(ω) + ηim∆
}]

ρ̃21 + iΩeff
12 ∆ (D.12a)

˙̃ρ21 ≈ − [i(Π21 −ω) + Λ21] ρ̃21 + iΩeff
12 ∆. (D.12b)

where Π21 = ωqd − ηre∆ and Λ21 = 1
/

T(ω) + ηim∆ denote the normalized exci-

ton energy and dephasing in the presence of the MNP, respectively.
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D.5 Quantum State Purity Derivation

Using the matrix notation of the QD density operator, we can obtain ρ̂2 as,

ρ̂2 =

ρ11 ρ12

ρ∗12 ρ22

ρ11 ρ12

ρ∗12 ρ22

 =

 {ρ2
11 + |ρ12|2

}
{ρ11ρ12 + ρ12ρ22}

{ρ∗12(ρ11 + ρ22)}
{
|ρ12|2 + ρ2

22

}
 .

The trace of ρ̂2 can be obtained as the sum of diagonal elements,

Tr
(

ρ̂2
)
= ρ2

11 + ρ2
22 + 2|ρ12|2 (D.13)

Using ρ11 + ρ22 = 1 and ∆ = ρ11 − ρ22 we can obtain,

ρ11 =
1 + ∆

2
, (D.14a)

ρ22 =
1− ∆

2
(D.14b)

Substituting (D.14) and ρ12 = ρ̃12eiωt = (A+ iB)eiωt in (D.13) leads to,

Tr(ρ̂2) =
1 + ∆2

2
+ 2

(
A2 + B2

)
.





Appendix E

Cavity-QED based Characterization of
Nanohybrid Scattering Spectra

E.1 Time Evolution of Plasmon Annihilation Opera-
tor

Equation (8.17) reads,

∂

∂t
〈â〉 = Tr

[
â
(

i
h̄
[
ρ̂, ĤInt

sys
]
+ L̂qd + L̂m

)]
. (E.1)

Expanding the commutator such that the corresponding terms reside close

together for the ease of simplification,

∂

∂t
〈â〉 = i

h̄

{
h̄∆m Tr

[
âρ̂â† â− ââ† âρ

]
+ h̄∆qd Tr

[
âρ̂σ̂†σ̂− âσ̂†σ̂ρ̂

]
+ ih̄g Tr

[
âρ̂â†σ̂− ââ†σ̂ρ̂

]
− ih̄g Tr

[
âρ̂âσ̂† − ââσ̂†ρ̂

]
− E0µ∗m Tr [âρ̂â− ââρ̂]− E0µm Tr

[
âρ̂â† − ââ†ρ̂

]
− E0µqd Tr [âρ̂σ̂− âσ̂ρ̂]− E0µqd Tr

[
âρ̂σ̂† − âσ̂†ρ̂

] }
+

γqd

2
Tr
[
2âσ̂ρ̂σ̂† − âσ̂†σ̂ρ̂− âρ̂σ̂†σ̂

]
+

γm

2
Tr
[
2ââρ̂â† − ââ† âρ̂− âρ̂â† â

]
Using the cyclic property of trace and as the operators of QD and MNP commute
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(hence the order operation can be changed), the above can be rearranged as,

∂

∂t
〈â〉 = i

h̄

{
h̄∆m Tr

[(
â† â− ââ†

)
âρ
]
+ h̄∆qd Tr

[
σ̂†σ̂âρ̂− σ̂†σ̂âρ̂

]
+ ih̄g Tr

[(
â† â− ââ†

)
σ̂ρ̂
]
− ih̄g Tr

[
ââσ̂†ρ̂− ââσ̂†ρ̂

]
− E0µ∗m Tr [ââρ̂− ââρ̂]− E0µm Tr

[(
â† â− ââ†

)
ρ̂
]

− E0µqd Tr [âσ̂ρ̂− âσ̂ρ̂]− E0µqd Tr
[
σ̂† âρ̂− σ̂† âρ̂

] }
+

γqd

2
Tr
[
2âσ̂†σ̂ρ̂− âσ̂†σ̂ρ̂− âσ̂†σ̂ρ̂

]
+

γm

2
Tr
[(

â† â− ââ†
)

âρ̂
]

= −
(

i∆m +
γm

2

)
〈â〉+ g〈σ̂〉+ iµmE0

h̄
.

where we have utilized the bosonic commutator relation ââ† − â† â = 1.

E.2 Time Evolution of QD Lowering Operator

Equation (8.20) reads,

∂

∂t
〈σ̂〉 = Tr

[
σ̂

(
i
h̄
[
ρ̂, ĤInt

sys
]
+ L̂qd + L̂m

)]
.

Expanding the commutator as earlier,

∂

∂t
〈σ̂〉 = i

h̄

{
h̄∆m Tr

[
σ̂ρ̂â† â− σ̂â† âρ

]
+ h̄∆qd Tr

[
σ̂ρ̂σ̂†σ̂− σ̂σ̂†σ̂ρ̂

]
+ ih̄g Tr

[
σ̂ρ̂â†σ̂− σ̂â†σ̂ρ̂

]
− ih̄g Tr

[
σ̂ρ̂âσ̂† − σ̂âσ̂†ρ̂

]
− E0µ∗m Tr [σ̂ρ̂â− σ̂âρ̂]− E0µm Tr

[
σ̂ρ̂â† − σ̂â†ρ̂

]
− E0µqd Tr [σ̂ρ̂σ̂− σ̂σ̂ρ̂]− E0µqd Tr

[
σ̂ρ̂σ̂† − σ̂σ̂†ρ̂

] }
+

γqd

2
Tr
[
2σ̂σ̂ρ̂σ̂† − σ̂σ̂†σ̂ρ̂− σ̂ρ̂σ̂†σ̂

]
+

γm

2
Tr
[
2σ̂âρ̂â† − σ̂â† âρ̂− σ̂ρ̂â† â

]
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Using the cyclic property of trace and commutation of QD and MNP operators,

∂

∂t
〈σ̂〉 = i

h̄

{
h̄∆m Tr

[
â† âσ̂ρ̂− â† âσ̂ρ

]
+ h̄∆qd Tr

[
σ̂†σ̂σ̂ρ̂− σ̂σ̂†σ̂ρ̂

]
+ ih̄g Tr

[
â†σ̂σ̂ρ̂− â†σ̂σ̂ρ̂

]
− ih̄g Tr

[
âσ̂†σ̂ρ̂− σ̂σ̂† âρ̂

]
− E0µ∗m Tr [âσ̂ρ̂− âσ̂ρ̂]− E0µm Tr

[
â†σ̂ρ̂− â†σ̂ρ̂

]
− E0µqd Tr [σ̂ρ̂σ̂− σ̂ρ̂σ̂]− E0µqd Tr

[
σ̂†σ̂ρ̂− σ̂σ̂†ρ̂

] }
+

γqd

2
Tr
[
2σ̂†σ̂σ̂ρ̂− σ̂σ̂†σ̂ρ̂− σ̂†σ̂σ̂ρ̂

]
+

γm

2
Tr
[
2â†σ̂âρ̂− â†σ̂âρ̂− â†σ̂âρ̂

]

=
i
h̄

{
h̄∆qd Tr

[
σ̂†σ̂σ̂ρ̂− σ̂σ̂†σ̂ρ̂

]
− ih̄g Tr

[
âσ̂†σ̂ρ̂− σ̂σ̂† âρ̂

]
− E0µqd Tr

[
σ̂†σ̂ρ̂− σ̂σ̂†ρ̂

] }
+

γqd

2
Tr
[
2σ̂†σ̂σ̂ρ̂− σ̂σ̂†σ̂ρ̂− σ̂†σ̂σ̂ρ̂

]

=
i
h̄

{
h̄∆qd Tr

[
σ̂†σ̂σ̂ρ̂− σ̂σ̂†σ̂ρ̂

]
− ih̄g Tr

[
âσ̂†σ̂ρ̂ + âσ̂†σ̂ρ̂− âσ̂†σ̂ρ̂− âσ̂σ̂†ρ̂

]
− E0µqd Tr

[
σ̂†σ̂ρ̂ + σ̂†σ̂ρ̂− σ̂†σ̂ρ̂− σ̂σ̂†ρ̂

] }
+

γqd

2
Tr
[
2σ̂†σ̂σ̂ρ̂− σ̂σ̂†σ̂ρ̂− σ̂†σ̂σ̂ρ̂

]

Using the fermionic operator expansions σ̂ = |g〉 〈e| and σ̂† = |e〉 〈g|,

∂

∂t
〈σ̂〉 = i

h̄

{
h̄∆qd Tr [{|e〉 〈g|g〉 〈e|g〉 〈e| − |g〉 〈e|e〉 〈g|g〉 〈e|} ρ̂]

− ih̄g
(

2
〈

âσ̂†σ̂
〉
− Tr [â (|e〉 〈g|g〉 〈e|+ |g〉 〈e|e〉 〈g|) ρ̂]

)
− E0µqd

(
2
〈

σ̂†σ̂
〉
− Tr [|e〉 〈g|g〉 〈e| ρ̂ + |g〉 〈e|e〉 〈g| ρ̂]

) }
+

γqd

2
Tr
[
2 |e〉 〈g|g〉 〈e|g〉 〈e| ρ̂− |g〉 〈e|e〉 〈g|g〉 〈e| ρ̂− |e〉 〈g|g〉 〈e|g〉 〈e| ρ̂

]
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Using orthogonality relations 〈e|g〉 = 〈g|e〉 = 0 and 〈g|g〉 = 〈e|e〉 = 1,

∂

∂t
〈σ̂〉 = i

h̄

{
h̄∆qd Tr [− |g〉 〈e| ρ̂]

− ih̄g
(

2
〈

âσ̂†σ̂
〉
− Tr [â (|e〉 〈e|+ |g〉 〈g|) ρ̂]

)
− E0µqd

(
2
〈

σ̂†σ̂
〉
− Tr [|e〉 〈e| ρ̂ + |g〉 〈g| ρ̂]

) }
+

γqd

2
Tr
[
− |g〉 〈e| ρ̂

]

Utilizing the completeness relation of basis states, |e〉 〈e|+ |g〉 〈g| = 1, Tr [ρ̂] = 1,

and assuming the separability of operators [128], we can arrive at (8.21),

∂

∂t
〈σ̂〉 = −

[
i∆qd +

γqd

2

]
〈σ̂〉 −

(
1− 2〈σ̂†σ̂〉

)(
g〈â〉 −

iµqdE0

h̄

)
.

E.3 Classical Response Field of the MNP

Recall that in (2.9) of chapter 2, we obtained the classical dipole response field of

an MNP utilizing the LRA as,

~Eres(r ≥ rm) =
βLRAr3

m
r3

[
3(~Ein.r̂)r̂− ~Ein

]
.

where ~Ein denotes the sum of the externally incident and QD induced fields in

this context. In the quasi-static regime, the response field of the MNP takes the

form of the field radiated by a point dipole [210] located at the centre of the MNP

oriented along the incoming field [9]. Therefore, ~Eres can be approximated by,

~Eres(r ≥ rm) ≈ 1
4πε0εbr3

[(
3dm.r̂

)
r̂− dm

]
, (E.8)
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where ~dm is the classical dipole moment of the MNP, with the magnitude dm. Let

the magnitude of ~Eres be denoted by Eres. Moreover, let Eres imply Eres(r ≥ rm)

from here onwards.

When ~dm lies along r̂ (radial direction towards the QD), (E.8) leads to Eres ≈

2dm
/ (

4πε0εbr3). It can also be observed that when dm is perpendicular to r̂,

(E.8) simplifies to Eres ≈ −dm
/ (

4πε0εbr3). Using the orientation parameter sα

such that, sα = 2 when the external field is polarized along the axis of the hy-

brid molecule and sα = −1 when the field is polarized perpendicularly to the

molecular axis, the above results can be summarized as,

E+
res

∣∣∣
r=R
≈ sαd+m

4πε0εbR3 .

Following a similar procedure, the response field of the QD dipole felt by the

MNP can be obtained as E+
qd

∣∣
r=0
≈ sαd+qd

/ (
4πε0εbR3).

Comparing (2.9) with (E.8) and considering only the positive frequency coef-

ficients, we arrive at,

d+m ≈ 4πε0εbβLRAr3
mE+

in. (E.9)

Substituting for Ein in (E.9), we obtain the final classical expression for the MNP

dipole moment as,

d+m ≈ 4πε0εbβLRAr3
m

(
E0 +

sαd+qd

4πε0εbR3

)
. (E.10)

E.4 Approximate E and µm in the LRA

Equation (8.26a) reads,

E =
sα

R3

√
βLRAr3

mh̄Dm

4iπε0εb
.
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Expanding βLRA and Dm,

E =
sα

R3

√
(Re[εm(ω)] + i Im [εm(ω)]− εb) r3

mh̄ (i∆m + γm/2)
4iπε0εb (Re[εm(ω)] + i Im [εm(ω)] + 2εb)

.

For good plasmonic materials (Im [εm(ω)] � −Re [εm(ω)]) near SP resonance

(∆m ≈ 0, Re [εm(ωm)] ≈ −2εb), substituting for γm from (8.30),

E =
sα

R3

√
−3εbr3

mh̄η Im [εm(ω)]

−4πε0εb Im [εm(ω)]
≈ sα

R3

√
3r3

mh̄η

4πε0
.

Using a similar procedure, it can be shown that,

µm ≈ −iεb

√
12πε0ηr3

mh̄.
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