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Abstract

Communications in non-Gaussian noise channel and communication network

with memory are two important but difficult frontiers of information theory.

In this thesis, I studied these two areas. In the first part of this thesis, the

Gaussian mixture distribution is adopted to model the non-Gaussian noise

behaviour, typically found in powerline communications, man-made electro-

magnetic interferences, and underwater communications. Here, the capacity of

a Gaussian mixture noise channel and its capacity-achieving input distribution

are investigated. In the second part, I studied the capacity of a Markovian

constrained relay channel and the maxentropic state transition probabilities

for relay transmitter are derived. The derived results have been verified via a

number of simulations.
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Chapter 1

Introduction

IN information theory, communication in non-Gaussian noise channels and

communication networks with memory are among the most essential and in-

triguing research directions that attract generations of researchers. Comparing

against the idea of single user point-to-point discrete-time memoryless chan-

nels with additive white Gaussian noise, assumptions based on non-Gaussian

noise and relay communication network with memory indeed provide more

accurate models for practical communication systems, but these two frontiers

are difficult fields of study. With continuing effort of researchers, numerous

advances have been made in these fields of study. However, many questions

still remain unsolved.

This two-parted thesis aims at establishing their mathematical models and

information theoretical limits, i.e., the capacities. In the first part of this thesis,

the point-to-point channel with non-Gaussian noise is studied. In particular, the

Gaussian mixture model is used to model non-Gaussian noise. In the second

part of this thesis, a relay channel in which the relay is Markovian constrained

is considered. For both channels, we study their theoretical limits and thereby

reveal potential rate gains in today’s products.



2 Introduction

1.1 Motivation

Non-Gaussian Noise Channel

In recent years, a non-Gaussian noise channel that is widely used to model

real-world scenarios becomes an emerging topic and attracts much research

attention. This is due to two main factors. First, preliminary researches on

many newly developed communication systems, such as power line commu-

nication [39] and underwater communication [93], reveal that their noise

distributions are, in general, non-Gaussian and therefore conventional mod-

els are insufficient to model such complicated communication environments.

Second, knowledge of channel behaviour is an essential prerequisite before

introducing sophisticated communication schemes.

A typical example of a non-Gaussian noise channel is the powerline com-

munication channel which first been studied around World War II but never

become main stream of communication research until 1990s [39]. The revival

interest in powerline communication has mainly focused on low voltage power

distribution network which has geographically widest spread. The driving

force of utilising powerline communication systems includes load management,

meter reading, home automation and intelligent building, collecting power user

statistics and communication during disaster recovery (due to power down of

wireless communication system). Powerline systems are also considered as an

already implemented networks and thus there will be no additional infrastruc-

ture cost for communication. In addition, Low Voltage power line networks

cover large area and Medium/High Voltage networks cover long distances, both

of which make power line systems independent communication networks.

In general, powerline communication is a communication technology that

enables sending data over existing power cables [39]. It can be viewed as

powerline communication for AC lines and DC lines, respectively, with wide

applications as mentioned above. Different from traditional communications

engineering, the powerline communication systems deal with harsh channels,

since the power line network differs considerably from conventional media

such as twisted pair and coaxial, particularly in terms of topology, structure,

and physical properties. Further, the noise in the powerline communication

is typically modelled by a non-Gaussian noise model, rather than the additive



1.1 Motivation 3

white Gaussian noise (AWGN) model in many other communication systems.

The good understanding of channel characteristics and physical parameters lay

the foundation for deriving the the optimal transmission rate (channel capacity).

Deriving the optimal transmission rate encourages the research community to

search for optimal codes of it. These motivates my research in the first part of

this thesis.

Markovian Constrained Relay Channel

In the second part of the thesis, I focus on two-hop communication via a relay

node, which is a promising solution for hot-spot capacity enhancement, network

coverage extension, and gap filling in the next-generation cellular systems [74].

Driven by the increasing demand of high spectral efficiency, broad coverage,

and high quality of service (QoS) of wireless communications, a relay node can

be used to assist transmission by forwarding message from source to destination,

where several cooperative protocols are usually introduced, such as amplify-and-

forward (AF) [71], compress-and-forward [67] and decode-and-forward (DF)

schemes [69]. Most of the transmission schemes are based on the assumption

of half-duplex mode [71], and more recently, full-duplex mode has been also

considered [89].

Capacity of a two-hop relay channel (source-relay-destination) with a half-

duplex relay has been extensively studied in the literature (see e.g., [25]).

To achieve the capacity, various strategies that relay forwards information to

destination have been proposed [69, 115]. However, the following practical

situations in the relay, which may effect its capacity, have never been considered

in the previous study:

1. the effect of switching noise, i.e., intersymbol interference (ISI), due to

logic transition in relay hardware [92];

2. the joint energy and information requirements in low-power wireless

relay networks [40].

Switching noise is an induced ISI when switching a digital signal, caused by

the relay’s switching between reception mode and transition mode. It can be

avoided by better hardware design or introducing a short guard time after



4 Introduction

switching occurs [90]. In order to reduce the effect of switching noise and

fulfil the joint energy and information requirements, constrained codes such

as runlength limited codes [40], may be adopted. On the other hand, the

performance in terms of join energy and information transfer is measured by

the probabilities of overflow and underflow of the battery at the receiver and

information rates. Classical codes, which are designed with the purpose of

maximizing the information rate, are unstructured (i.e., random-like). Hence

they do not allow the controlling of the timing of the energy transfer, and hence

to optimize the probability of energy overflow and underflow. The constraint

sequences enable us to characterise relay’s reception or transmission mode in

the switching-noise case, as well as data transmission with or without energy

in the second case. By introducing constrained codes to the relay networks,

memory is also introduced to the relay system. The capacity of relay network

with memory still remains an open problem. To limit the scope of the study, we

consider the two-hop relay channel with a half-duplex relay, where the source

to the destination has no direct link, and the relay adopts constraint codes.

In addition to being an exciting theoretical challenge, understanding a two-

hop relay channel is the prerequisite of understanding larger relay networks

since the two-hop relay channel is the fundamental building block of a larger

communication network, these results may be instrumental in deriving capacity

when constrained sequences are introduced to a more complex relay network.

These motivates my research in the second part of this thesis.

1.2 Informaton Prelimimaries

Channelb b

Figure 1.1 A point-to-point channel.
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Discrete-Time Memoryless Channel

A scalar point-to-point discrete-time memoryless channel, as depicted in Figure

1.2, is characterised by

Y = X + N (1.1)

where X denotes the channel input random variable, N the additive noise

random variable, and Y the channel output random variable. The noise random

variable N is assumed to be independent of the capacity achieving input X. For

such channel, Shannon first develops the idea of reliable communication in his

landmarking paper [99], in which the channel capacity is defined by

C = max
X

I(X; Y ) (1.2)

where I(X; Y ) is the mutual information between the input random variable

X and the output random variable Y which is defined as

I(X; Y ) =
∫∫

p(x, y) log p(x, y)
p(x)p(y)dx dy . (1.3)

The maximisation on mutual information is taken over all possible input distri-

butions and was first tackled in [81]. A two-step iterative algorithm, known as

Blahut-Arimoto Algorithm for computing the capacity of arbitrary discrete-time

memoryless channels was proposed independently by Arimoto [3] and Blahut

[14].

The most common discrete-time memoryless channel is the Gaussian chan-

nel, in which the noise random variable N is assumed to be Gaussian distributed.

In Shannon’s landmarking paper [99], Shannon obtained the famous formula

for the capacity of average power constrained Gaussian noise channel

C = 1
2 log2

(
1 + SNR

)
bits/channel use (1.4)

where SNR is the average power signal-to-noise ratio. In [99], Shannon also

proved that for Gaussian channel, under average power constraint, the capacity-
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achieving input is also Gaussian. While assuming that the input is under

amplitude constraint other than average power constraint, Shannon provides

upper and lower bounds on the capacity and he further noticed that for low SNR,

the capacity is exactly given by (1.4). Smith [42, 101] studied the channel

capacity of additive white Gaussian noise channel under peak and average

power constraints in which he showed that the capacity can be achieved by

discrete inputs with finite number of mass points.

In the case that the noise is non-Gaussian, Shannon [99] also provides

an upper bound on the capacity. It is shown that the Gaussian noise is least

favourable since the Gaussian noise has the maximum entropy. Also, Das

showed in [28] that, for a scalar additive channel under average power con-

straint, if the noise distribution is “heavy-tailed” (i.e., has a tail which decays

at a rate slower than the Gaussian), the capacity-achieving input will have a

finite support. In addition, Tchamkerten extended this research to a class of

non-Gaussian noise distributions and showed that for noise in this class, the

input is discrete with finite number of mass points under average and peak

power constraints [102]. More recently, Fahs et. al showed that under solely av-

erage power constraint, the capacity-achieving input for a class of non-Gaussian

noise channels is also discrete [38]. Based on the above results, various works

analyzed specific channels with Guassian noises, such as the Rayleigh fading

channel [1], non-coherent additive white Gaussian noise channel [62], Rician

fading channel [45] and quadrature Gaussian channel [97]. In [112], Zhang

studied additive white Gaussian noise channel channel under duty-cycle con-

straints. Many of these results are built upon Smith’s original work and the

derived capacity-achieving distributions are of discrete nature. Readers may

refer to [22] for a list of channels whose capacity-achieving inputs are discrete

under either or both average power and peak power constraints.

Discrete-time Channel with Memory

The information rate between the input process X = (X1, X2, ..., XN) and the

output process Y = (Y1, Y2, ..., YN) of a discrete channel with memory m and
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some well-defined starting state S0 is given in the limit as

I(X; Y |S0 = s0) , lim
N→∞

1
N

I(X1, ..., XN ; Y1, ..., YN |S0 = s0) (1.5)

General speaking, this limitation is only well-defined in certain cases and/or

may depending on the starting state s0 [4]. In [41], Gallager defined finite-

state channel and the information rate for finite-state channel is well-defined.

Verdú and Han [105] showed that (1.5) may be adopted as the general form of

mutual information if input process and output process are jointly ergodic and

hence we have the general form of the capacity

C = lim
N→∞

sup
XN

1

1
N

I(X1, ..., XN ; Y1, ..., YN) . (1.6)

For such case, the choice of initial state does not affect mutual information and

is therefore ignored [98].

In this thesis, we assume that the input process X is a Markov process and

is processed through a noiseless or noisy channel. The output process Y is

therefore a Markov or a hidden Markov process. We further assume that the

input alphabet is finite, i.e., the set of possible values of Xn is finite.

Entropy of Markov process were first considered by Shannon in his land-

marking paper [99], in which Shannon computed the maximal entropy rate

of a discrete-time Markov source, or equivalently the noise-free capacity of

constrained sequences. In the presence of the noise, the computation of capac-

ity of Markovian inputs sending over a noisy channel has long been an open

problem[111, 94, 106]. Zehavi and Wolf [111], and independently, Shamai

and Kofman [98] considered the noisy channel with run-length limit sequences

and derived a set of analytical lower and upper bounds on the capacity. Arnold

et al. [5], Sharma and Singh [100], Pfister et al. [86] proposed a Monte Carlo

method for computing the exact mutual information of a finite-state machine

channel with Markovian inputs. In order to maximize mutual information of

Markovian inputs transmitted over a finite-state machine channel, a Blahut-

Arimoto Algorithm for Markovian inputs was proposed in [63]. Vontobel et
al. [106] extend this to a generalised Blahut-Arimoto Algorithm considering

local convergence properties. The global convergence of the generalised Blahut-
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Arimoto Algorithm requires the concavity of the mutual information between

input and output; and the concavity of certain conditional entropy. Han [46]

proposed a randomised algorithm to compute the capacity of a finite-state

channel which only requires the concavity of mutual information. Han also

showed in [47], that the concavity conjuncture of mutual information in finite-

state machine channel does not hold in some cases. Hence, despite the good

performance of these algorithms in many practical examples, the convergence

of these algorithms, in general, is not guaranteed.

1.3 Objective of the Thesis

The objective of this thesis is to find the channel capacity of a Gaussian mixture

noise channel and the capacity for a two-hop relay channel with a Markovian

constrained relay. Either the closed form or the tight bounds of channel capacity

will be derived. Of particular interest is which input distribution will maximise

the channel capacity of a certain statistic model. The key elements of research

is addressed below:

1. New statistic models that better describe the non-Gaussian noise

behaviour and relay constraints:

• As for non-Gaussian noise channel, these models should be simple

to implement such that ideas can be quickly tested and verified.

• As for a relay system, a simple finite-state machine should be intro-

duced that fully describes the behaviour of a constrained relay. Such

finite-state finite machine is fully specified by the state-transition

probabilities and parameterized conditional output distribution.

2. Parameters estimation of the proposed models: A common question

after a new model being proposed is how to estimate the parameters

given some observations. The proposed estimator should be a sufficient

statistic and a simple function of the observations.

3. Capacity results for Gaussian mixture noise channels and Markovian

constrained relay channel: Deriving the channel capacity encourages

the research community to search for optimal codes of non-Gaussian noise
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channels and two-hop half-duplex Markovian constrained relay channels.

For the Markovian constrained relay channel, the following property of

finite-state machine makes this possible:

• Stationary and ergodicity: The output process of a stationary and

ergodic Markovian process is also stationary and ergodic. Thus,

by Shannon-McMillan-Breiman theorem, the mutual information

between the input Markovian sequences and output sequences is

determined by the probability of a typical sequence and the noise

distribution.

4. Computation methods: Other than a theoretical result, what is more

important is the practical computation method. The purpose of computing

is insight and the numbers are often the best road to insight. The following

key properties makes this possible:

• Discreteness and finiteness: For a point-to-point non-Gaussian noise

channel, under mild assumptions, the capacity achieving input is

discrete and of finite number of mass points [102]. This allows to

maximize the mutual information by finding the optimal allocation

of weights and positions on probability mass points.

• Markov property: For a Markovian constrained relay channel, the

Markov structure of the finite-state machine allows to factor the prob-

ability measure of the states and the output process. This enables

efficient computation methods.

1.4 Overview of Thesis and Original Contributions

This thesis reports the theoretical studies in two areas. Each part of the thesis

has their individual acronym and symbols. Each chapter is self-contained

with detailed introduction, system model, and conclusion. In the first part of

this research, we consider a point-to-point memoryless channel with Gaussian

mixture noise. The main contributions are reported in Chapters 2 and 3.

• Chapter 2: This chapter provides an comprehensive overview and back-

ground of types of non-Gaussian noise and non-Gaussian noise models.
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Chapter 1: Summary

Part I: Communication in
Gaussian Mixture Noise

Channel

Part II: 
Two-Hop Relay Channel with

a Markovian Constrained
Relay 

Chapter 2: Envelope
Gaussian Mixutre Model and

its Parameters Estimation

Chapter 3: Capacity of
Gaussian Mixture Noise

Channel

Chapter 4:  Capacity
Theorems for a Two-Hop

Relay Channel with a
Markovian Constrained

Relay

Chapter 5: Computation of
Achievable rates and bounds 

Chapter 6:
Conclusion 

Figure 1.2 Thesis structure and relationship between chapters.

It then introduces a simple and exact closed form probability density

function, called the envelope Gaussian mixture model which describes

the non-Gaussian behaviour in powerline communications channels. A

natural question that arises after the model has been proposed is the prob-

lem of estimation of the envelope Gaussian mixture parameters. In this

chapter, the problem of parameters estimation is addressed and the pro-

posed estimator of weights and variances is based upon the Expectation-

Maximization (EM) algorithm. Finally, the simulation shows that the
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estimated envelope Gaussian mixture model using EM exhibits excellent

agreement with the histograms. This result is reported in [HHV14].

• Chapter 3: This chapter considers the capacity of the Gaussian mixture

noise channel and its capacity-achieving input. In particular, we con-

sider the symmetric (e.g. powerline) and asymmetric (e.g. NAND flash

memory) Gaussian mixture noise cases. It is shown that, under average

and peak power constraints, the capacity-achieving input is discrete with

finitely many mass points. Furthermore, some properties of the capacity-

achieving distribution are proved and demonstrated by simulations. This

result is reported in [HHV15].

In the second part of this research, we consider two-hop half-duplex relay chan-

nel with a Markovian constrained relay, The main contributions are reported in

Chapters 4 and 5.

• Chapter 4: This chapter provides introduction to two cornerstones on

which the second part of the thesis builds: the relay channels and finite-

state models. In this chapter, capacity theorems for a two-hop half-

duplex relay channel with a Markovian constrained relay are studied.

It first focuses on deriving the cut-set bound, i.e., an upper bound on

the capacity. The timing strategy is introduced which satisfies the half-

duplex constraint and it is shown to achieve this bound. This leads to the

general capacity formula for a two-hop half-duplex relay channel with a

Markovian constrained relay. This result is reported in [HH18].

• Chapter 5: This chapter first introduces a new type of constrained se-

quence, called the hold time constrained sequence, which captures the

switching noise behaviour in relay hardware. It then simplifies the ca-

pacity formula and introduced the relay adjacency matrix such that the

capacity can be easily computed in the case that relay-to-destination

link is noiseless. The relay adjacency matrix can be considered as an

extended version of adjacency matrix by Shannon for the two-hop relay

channel, which is commonly used to compute the largest eigenvalue

and corresponding largest eigenvector of non-negative primitive matri-

ces. Moreover, for the case that the relay-to-destination link is noisy,
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noisy-relay adjacency matrix is introduced. Algorithms are presented to

compute the noisy-relay adjacency matrix and compute the optimised

information rate which serves as a natural lower bound on the capacity.

The bounds are shown to be very tight while comparing against upper

bounds. This result is reported in [HH18].

Chapter 6: This chapter provides conclusions and discusses potential direc-

tions for future work.



Part I

Communication over Gaussian
mixture noise channels
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List of Acronyms and Symbols

List of Acronyms

EM . . . . . . Expectation Maximization

ML . . . . . . . Maximum Likelihood

i.i.d. . . . . . . independent and identically distributed

pdf . . . . . . probability density function

cdf . . . . . . . cumulative density function

PLC . . . . . . Powerline communication

AC . . . . . . . alternative current

CRTTV . . . . cathode ray tube television

PSD . . . . . . power spectrum density

MSE . . . . . . mean square error

KKT . . . . . . Kuhn-Tucker Conditions

AWGN . . . . additive white gaussian noise

SNR . . . . . . Signal-to-Noise Ratio

List of Symbols

σk . . . . . . . standard deviation of k-th Gaussian component

πk . . . . . . . mixing coefficient of k-th Gaussian component

π . . . . . . . . vector of mixing coefficients

a . . . . . . . . mixing coefficient of two-term Gaussian mixture model
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B . . . . . . . impulsive index

Γ . . . . . . . . mean power ratio between impulsive noise power and Gaus-

sian noise power

Pl . . . . . . . noise power for l-th noise component

TAC . . . . . . time period of AC mains

βl . . . . . . . phase shift of noise relative to AC mains

nl . . . . . . . indicator which indicates the occurrence of types of noise

I0(·) . . . . . . modified Bessel function of the first kind of zero-th order

I1(·) . . . . . . modified Bessel function of the first kind of first order

γ . . . . . . . . ratio of two variances

L(·|·) . . . . . log likelihood function

θ̂ . . . . . . . . estimation of parameters θ

ξ . . . . . . . . soft assignment

pN . . . . . . . distribution of noise

N (·; ·, ·) . . . . Gaussian distribution

P . . . . . . . average input power

A . . . . . . . peak amplitude

N . . . . . . . set of all natural numbers

R . . . . . . . set of all real numbers

C . . . . . . . set of all complex numbers

Ω . . . . . . . space of all possible probability distribution on R

I(X; Y ) . . . . mutual information

H(X) . . . . . entropy

C . . . . . . . capacity

DKL(p(·)||q(·)) divergence between distribution p(·) and q(·)

∇ log pN(w) . . score of the noise distribution pN



Chapter 2

Gaussian Mixture Noise and Its
Envelope Distribution

In many communication systems, the Gaussian mixture model is widely

used to characterize non-Gaussian man-made and natural interference. The

envelope distribution of such noise model is often expressed as a weighted sum

of Rayleigh if in-phase and quadrature components of the noise are dependent.

Instead, in this chapter, a simple and exact closed form probability density

function (pdf) of the envelope Gaussian mixture model (i.e. the envelope of

independent in-phase and quadrature components of complex non-Gaussian

noise) is obtained. Furthermore, the problem of estimating of the envelope

Gaussian mixture parameters is addressed. The proposed estimator of weights

and variances is based upon the Expectation-Maximization (EM) algorithm.

This chapter is organized as follows. In section 2.1, the models for noise in

non-Gaussian channels are discussed. In section 2.2, the envelope Gaussian

mixture density function is derived. In section 2.3, the maximum likelihood

(ML) estimator via the EM algorithm is presented. The performance of the

EM algorithm is compared to that of conventional ML estimator using the

quasi-Newton method in section 2.4. The conclusion is drawn in section 2.5.

2.1 Introduction

IN wireless communication systems, classical white Gaussian noise is often

assumed to be a very accurate model. However, in other cases, such as the
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underwater [93] and the powerline communications (PLC) [33], the noise may

exhibit non-Gaussian behaviour and thus it is important to consider different

versatile and robust noise/interference models. In 1977, Middleton [78] pro-

posed the Middleton’s Class A noise model, a Gaussian mixture density model

with Poisson selection, to describe the electromagnetic interference from a

variety of noise sources. Arzberger et al. [33] also suggested that the noise in

powerline channels can also be modelled by the Gaussian mixture model, a

parametric pdf expressed as summation of weighted Gaussian pdfs. The enve-

lope distribution of this mixture density is often represented as weighted sum of

Rayleigh under the assumption that the in-phase components and quadrature

components of the noise are dependent [39]. In our work, we assume that

both in-phase and quadrature components are independent and identically

distributed (i.i.d.) random variables as motivated by [93, 33]. Hence, the

envelope distribution of in-phase and quadrature noise components will not

result in the Rayleigh mixture model, but give rise to the envelope Gaussian

mixture model.

Parameters of the envelope Gaussian mixture model can be estimated by

ML estimation (MLE). When closed form expression cannot be found for MLE,

iterative methods, such as the Newton-based and the EM algorithm, are used.

These algorithms iteratively maximize the log likelihood function. In an earlier

work by Sari et al. [93], a conventional ML estimator using the quasi-Newton

method is used. In this chapter, we consider the ML estimator via the EM

algorithm, a widely used method popularized by Dempster, Laird and Rubin in

1977 [30]. The EM algorithm has been used in many parameters estimation

problems, especially in dealing with the curved exponential densities [108],

such as the Middleton’s Class A model [110], the Rayleigh mixture [95] and

the Gaussian mixture density [13]. This chapter is based on the research results

reported in [56] by the author.

2.1.1 Introduction to Non-Gaussian Noise

Non-Gaussian noise channels have become emerging topics and have attracted

much attention. This is due to two main factors. First, preliminary research on

many newly developed communication systems, such as PLC [33], NAND flash
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Figure 2.1 Noise amplitude distribution in time-frequency domain [52].

memories [66], channels with man-made electromagnetic interferences [78],

and underwater communications [93], reveals that their noise distributions are,

in general, non-Gaussian and therefore conventional models are insufficient to

model such complicated communication environments. Second, a knowledge of

channel behaviour is an essential prerequisite before introducing sophisticated

communication schemes. The good understanding of channel characteristics

and physical parameters lay the foundation for deriving the optimal transmis-

sion rate (channel capacity). Deriving the optimal transmission rate enables

the research community to search for optimal codes of it.

The non-Gaussian noise was first introduced in PLC in which the statistic

behaviour of the electronic appliances is indeed different from that of a con-

ventional radio communication system. In wireless systems, noise is usually

modelled as an additive white Gaussian. Due to the fact that the communica-

tion environment is complicated in PLC, it is vital to derive a statistic model

which matches with some features of the measurements. Basic research which

classifies PLC channel noise was conducted by O. Hooijen [53] and extended by

M. Zimmerman and K. Dostert [113, 114]. Later, H. Meng et al. [77] classified

current models into two main categories: frequency-domain and time-domain

approaches. In time domain, the noise is non-Gaussian since PLC contains both

periodic noise which synchronises with half cycle of AC power supply [113, 52]
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Figure 2.2 Snapshot of normalized overall noise waveform [61].

Figure 2.3 Noise waveform of fluorescent Lamp [61].

as well as non-periodic impulsive noise that are generated by electronic appli-

ances and switches [113, 52, 20]. Measurements also show that, in frequency

domain, background noise of PLC is coloured such that its amplitude varies

with frequency [77, 17, 73]. Fig. 2.1 shows noise amplitude distribution of PLC

noise in time-frequency domain.
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Figure 2.4 Noise waveform of Vacuum cleaner [61].

Figure 2.5 Noise waveform of CRTTV [61].

Figure 2.6 Measured noise in frequency domain [61].
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Classes of noise Description

Coloured Background
Noise

Noise with low power spectral density (PSD), in-

cluding the thermal noise by front-end amplifier

of the receiver.

Narrowband Noise Amplitude modulated signals generated by ra-

dio broadcast stations due to sharing bands with

broadcasting and wireless signals. This noise is

also known as tone jammer.

Time-Variant Continu-
ous Noise

Envelope of this noise changes synchronously to

the AC mains. Hence period of the noise is half

of the AC mains duration, TAC/2. This noise of-

ten appears when appliance which have oscillator

whose power supply is rectified but not smoothed

is connected to the line.

Periodic Impulsive
Noise Synchronous to
AC mains

Noise generated by the switching action of silicon

controlled rectifier diodes in electronic appliances.

Hence period of this noise is the period or half of

the period of AC mains.

Periodic Impulsive
Noise Asynchronous to
AC mains

Noise generated by switched-mode power supply

with a frequency higher than that of the AC mains.

Isolated (Aperiodic)
Impulsive Noise

Noise generated at random time with long inter-

vals (>1 second), mainly caused by switches in

the network.
Table 2.1 Classification of non-Gaussian noise in PLC [39].

These results give the insight of the fundamental properties of power line

noise in the frequency range upto 30 MHz [77]. Hence one can derive useful

statistical models based on these measurements and parameters characterised

from it. Classification of PLC noise is listed in Table 2.1 with explanations for

each type of noise. Similar classification can be found in [39, 77, 113, 43].

Fig. 2.3, 2.4 and 2.5 shows the waveform of the noise generated by three

electronic appliances including fluorescent lamp, vacuum cleaner and CRT TV.

On average, they have higher noise power spectrum density (PSD) than other
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appliances, hence the noise they generated may dominate the channel when

they are attached to the line. However, in general, PLC overall noise waveform

is the summation of noise generated by all noise sources as shown in Fig. 2.2.

Similarly, noise in frequency domain is the summation of colour background

noise PSD with other noise PSDs as shown in Fig. 2.6.

2.1.2 Non-Gaussian noise models

Non-Gaussian noise models are usually analyzed in two different categories:

frequency-domain approaches and time-domain approaches [77]. In 2006,

cyclo-stationary noise model [61] was proposed to describe the periodic be-

haviour of PLC noise. Another important model for PLC is the Middleton’s Class

A noise model [78–80]. However, Middleton’s Class A noise model does not

fall in either category since it only describes the randomness of the impulsive

noise without considering the noise behaviour in time domain and attenuation

in frequency domain. Such a model can also be approximated by a two-term

Gaussian mixture model which is described later in this section.

Due to the fact that, in PLC, higher frequency noise attenuates faster than

lower frequency noise and power of appliances are concentrated at lower

frequencies, background PLC noise is non-white as shown in Fig. 2.6. These

phenomenons exist in narrowband PLC channel which utilises kHz band as

well as wideband PLC channel. However, noise spectrum in wideband PLC

is more complicated than that of the narrowband due to the multipath effect

(which results in frequency selective spectrum) in PLC channels and due to the

presence of narrowband noise at certain frequency bands.

Frequency-domain approaches are therefore adopted to analyse coloured

noise. In [53], Hooijen adopted the spectrum fitting technique to model the

non-white noise PSD in PLC. Later, Benyoucef [10] studied the case in which

narrowband noise is present. The major flaw of spectrum fitting technique

is that it does not provide the information of randomness of noise at each

frequency band (or just assume it to be Gaussian distributed). Arzberger et al.
[33], therefore, used sum of two Rayleigh to model the PLC noise magnitude

at individual frequency band. Similar concept was utilized by H. Meng et
al. [77] who used the Nakagami-m pdf to model the PLC noise at different
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frequencies. Some researchers also used the log-normal distribution [17]. After

parameters estimation being performed for properly selected statistical models,

one can consequently describe the randomness of PLC noise in frequency

domain. However, a major drawback of these approaches is that they do not

describe any of the periodic behaviour of PLC noise in time domain.

Meanwhile, time-domain approaches are performed to analyze the time

behaviour, especially periodic behaviour, of the PLC noise. In time-domain

approaches, two general questions are answered [113]:

1. When do impulsive events occur?
2. How strong are these impulses?

Two parameters are characterised to answer the first question, i.e., impulse

width and inter-arrival time. The second question is answered by measuring the

impulse amplitudes. Distribution of these parameters are derived in [21, 29].

In [113], Markov model is used to model the randomness of isolated impulsive

noise. However, it does not describe the frequency behaviour of the non-

Gaussian noise.

In 2005, Katayama et al. [61] proposed the cyclo-stationary noise model

which models the PLC background noise and impulsive noise as a whole in time

domain. This approach can be integrated with spectrum fitting models such

that PLC noise can be described in both time and frequency domain. Its pdf is

non-Gaussian and therefore can be modelled by the Gaussian mixture model.

In 1979, Middleton proposed the Middleton’s Class A, Class B and Class

C noise models [78–80] that describe man-made inference communication

environment. Among these three models, Class A noise model is widely used

due to its great simplicity of implementation. Class B model considers the

case in which the spectrum of noise is boarder than the bandwidth of the

receiver. However, this pdf turns out to be too complicated to implement.

Class C model is the linear combination of Class A and Class B model which

is also ineffective to use. Middleton’s Class A model is expressed as infinite

summation of weighted Gaussian to be selected by Poisson distribution. Since

summation of infinite weighted Gaussian can be approximated by finite-term

Gaussian mixture model, Middleton’s Class A noise model can be consider

to be a special case of Gaussian mixture model. In the Gaussian mixture

model and the Middleton’s Class A model, the occurrence of impulsive event is
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considered to be a random variable whereas in cyclo-stationary noise model,

it is deterministic. Summary of existing models are listed in Table 2.2. Later

in this chapter, the Middleton’s Class A model, sum of two Rayleigh, the cyclo-

stationary noise model and the Gaussian mixture model are explained in detail

as they are widely used in modelling PLC and other non-Gaussian noises [11].

Our research is also based upon the Gaussian mixture model due to two main

reasons:

1. It is an appropriate approximation of many other models such as Middle-

ton’s Class A model.

2. It has great simplicity since it is a linear combination of finite number of

weighted Gaussian distribution.

PLC non-Gaussian noise modelling approaches

Frequency-domain Time-domain Other

• Spectrum Fitting [53,
10]

• Nakagami-m pdf [77]
• Gaussian pdf [10]
• Log-normal pdf [17]
• Sum of two Rayleigh

[33]

• Markov Chain [113]
• Pure Measurements and

experimental derivation
[21, 29]

• Middleton’s Class A [78–
80]

• Gaussian Mixture [33,
11]

• Cyclo-stationary Noise
[61]

Table 2.2 Summary of existing PLC noise modelling aprroaches

2.1.3 Gaussian Mixture Model

The Gaussian mixture model is a pdf expressed as summation of weighted

Gaussian pdfs. A simple two-term Gaussian mixture model is described as

follow [79, 11, 33]

pN(r; a, σ2
1, σ2

2) = a√
2πσ2

1

e
− r2

2σ2
1 + (1 − a)√

2πσ2
2

e
− r2

2σ2
2 (2.1)

where 0 ≤ a ≤ 1 is the mixing coefficient and σ2
1, σ2

2 are the variances of the

two Gaussian components. An example where the above model can be used is

when background noise is always present and impulsive noise events occur with

probability (1 − a). The first Gaussian component can be seen as the nominal



26 Gaussian Mixture Noise and Its Envelope Distribution

background noise with variance σ2
1. The second component represents the

combination of the background noise and the impulsive noise, when impulsive

noise events occur. The two-term Gaussian mixture model was also considered

as an approximation of Middleton’s Class A noise model [78–80] and has

been used extensively in both modelling the powerline noise [33, 11] and

the underwater communications noise [93]. In many practical cases, a small

number K of Gaussian components (e.g., 2 or 3) are sufficient to accurately

model the noise without overfitting. where π = {πk}K
k=1, are mixing coefficients

of each Gaussian density and
∑K

k=1 πk = 1. The variances of the Gaussian pdfs

are σ2 = {σ2
k}K

k=1 Fig. 2.7 shows that the Gaussian mixture is indeed different

from the conventional single Gaussian noise model given the same variance.
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Figure 2.7 Comparison between two-term Gaussian mixture model and Gaus-
sian model having the same variance.

Sum of two Rayleigh

By assuming that the in-phase and quadrature components follows equation

(2.1) and are dependent to each other, we get the sum of two Rayleigh model
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which is expressed as

pRM(r; a, σ2
1, σ2

2) = a · r

σ2
1
e

− r2
2σ2

1 + (1 − a) · r

σ2
2
e

− r2
2σ2

2 , (2.2)

where 0 ≤ a ≤ 1 is the mixing coefficient and σ1, σ2 are the scale parameters

of the two Rayleigh components. Fig. 2.8 shows that sum of two Rayleigh is

different from single Rayleigh model given the same variance. This model is

derived from the Gaussian mixture model and it models the statistic behaviour

of the noise magnitude.
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Figure 2.8 Comparison between two-term Rayleigh mixture model and Rayleigh
model having the same variance.

Middleton’s Class A Noise Model

One of the most important models of non-Gaussian noise is the Middleton’s

Class A noise model [78–80]. Among the three models Middleton proposed

(i.e. Class A, Class B and Class C), Class A noise model is widely used due to its

great simplicity of implementation. Middleton’s Class A model is expressed as
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infinite summation of weighted Gaussian to be selected by Poisson distribution

pN(r) =
∞∑

m=0
pm

1√
2πσ2

m

exp − r2

2σ2
m

, (2.3)

where

pm = e−BBm

m! , (2.4)

σ2
m = σ2 · m/B + Γ

1 + Γ = σ2
i

m

B
+ σ2

g , (2.5)

where B is called the impulsive index. σ2
i and σ2

g are the impulsive noise power

and Gaussian noise power respectively. For given m-th component, when B

becomes large, Gaussian noise power becomes dominant as shown in (2.5). The

noise becomes impulsive when B is small. Γ is the mean power ratio between

impulsive noise power and Gaussian noise power. σ2 = σ2
i + σ2

g is the overall

noise power. The weighted coefficients of Middleton’s Class A noise model is

expressed as Poisson distribution pm such that
∑

m∈N pm = 1. If we summarise

the remainder terms that have low weighted coefficients and approximate them

with single Gaussian, the Middleton’s Class A model becomes the finite-term

Gaussian mixture model.

Cyclo-stationary Noise Model

Cyclo-stationary noise model [61] was proposed to model noise waveform of

three types of noise including background (time-invariant) noise, time-variant

continuous noise and periodic impulsive noise. Power of cyclo-stationary noise

can be expressed as:

σ2(τ) =
L−1∑
l=0

Pl| sin(2πτ/TAC + βl)|nl (2.6)

where Pl is noise power for l-th noise component. βl is the phase shift of certain

type of noise relative to AC mains and nl is the indicator which indicates the

occurrence of different types of noise. When nl is 0, the l-th noise component
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always occurs and when nl goes to very large, the l-th noise only appears when

sin function equals 1. Typical values of parameters Pl, βl and nl are listed in

Table 2.3. Each l-th component corresponds to each type of noise. One can

modify this model by deleting or adding new components. Fig. 2.9 and 2.12

show simulated cyclo-stationary noise power and noise waveform in time and

time-frequency domain.

l Pl βl[deg] nl Types of noise

0 0.230 – 0 Background noise

1 1.38 -6 1.91 Time-variant continuous noise

2 7.17 -35 1.57 × 105 Periodic impulsive noise
Table 2.3 Parameters of cyclo-stationary noise model as depicted in Figure 2.9 –
2.12.
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Figure 2.9 Simulated cyclo-stationary noise power waveform in time domain.

2.2 Envelope Gaussian Mixture Distribution

We first discuss the widely used two-term Gaussian mixture model for the in-

phase and quadrature noise amplitudes R and Q. Both in-phase and quadrature

noise amplitudes are considered as independent random variables with the

following two-term Gaussian mixture density function in equation (2.1), in

which 0 ≤ a ≤ 1 is the mixing coefficient and σ2
1, σ2

2 are the variances of the
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Figure 2.10 Simulated cyclo-stationary noise waveform in time domain.
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Figure 2.11 Simulated cyclo-stationary noise power in time frequency domain.

two Gaussian components. An example where the above model can be used is

when background noise is always present and impulsive noise events occur with

probability (1 − a). The first Gaussian component can be seen as the nominal

background noise with variance σ2
1. The second component represents the

combination of the background noise and the impulsive noise, when impulsive

noise events occur. Since both background noise and impulsive noise are

assumed to be Gaussian random variables, the sum of the two will also be a

Gaussian random variable.

The two-term Gaussian mixture model was also considered as an approxima-

tion of Middleton’s Class A noise model [78, 79] and has been used extensively
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Figure 2.12 Simulated cyclo-stationary noise waveform in time frequency do-
main.

in both modelling the powerline noise [33] and the underwater communi-

cations noise [93]. In many practical cases, a small number K of Gaussian

components (e.g., 2 or 3) are sufficient to accurately model the noise without

overfitting. In general we have

pN(r; π, σ2) =
K∑

k=1
πk · 1√

2πσ2
k

e
− r2

2σ2
k (2.7)

where π = {πk}K
k=1, are mixing coefficients of each Gaussian density and∑K

k=1 πk = 1. The variances of the Gaussian pdf’s are σ2 = {σ2
k}K

k=1, and we

assume that σ2
k > σ2

k−1 > σ2
k−2 > ... > σ2

1.

Let us now consider the noise envelope random variable W as a function

of the in-phase and quadrature noise components R and Q. We start with the

case where fR(r) and fQ(q) are two-term Gaussian mixtures as in (2.1) and R

and Q are i.i.d. random variables. Then W can be expressed as:

W =
√

R2 + Q2 . (2.8)

Given the joint pdf fR,Q(r, q), the cumulative density function (cdf), FW (w), is

defined as:

FW (w) =
∫ ∫

√
r2+q2≤w

fR,Q(r, q)drdq . (2.9)
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We can then find fW (w) by differentiating FW (w) directly using differentiation

rule due to Leibnitz [85], we have:

fW (w) =
∫ w

−w

w√
w2 − q2

(
fR,Q(

√
w2 − q2, q)

+fR,Q(−
√

w2 − q2, q)
)

dq . (2.10)

Since R and Q are assumed to be independent, the two terms fR,Q(
√

w2 − q2, q)
and fR,Q(−

√
w2 − q2, q) will result in:

fR,Q(
√

w2 − q2, q) = fR,Q(−
√

w2 − q2, q)

= a2

2πσ2
1
e

− w2−q2+q2

2σ2
1 + a(1 − a)

2πσ1σ2
e

− w2−q2

2σ2
1

− q2

2σ2
2

+a(1 − a)
2πσ1σ2

e
− w2−q2

2σ2
2

− q2

2σ2
1 + (1 − a)2

2πσ2
2

e
− w2−q2+q2

2σ2
2 . (2.11)

Substituting (2.11) into (2.10), yields:

fW (w) =
∫ w

−w

2w√
w2 − q2

[
a2

2πσ2
1
e

− w2
2σ2

1 + (1 − a)2

2πσ2
2

e
− w2

2σ2
2

+a(1 − a)
2πσ1σ2

(
e

− w2−q2

2σ2
1

− q2

2σ2
2 + e

− w2−q2

2σ2
2

− q2

2σ2
1

)]
dr . (2.12)

The integral (2.12) can be computed in closed form by letting q = w sin (θ)
and dq = w cos (θ)dθ to yield:

fW (w) = a2w

σ2
1

e
− w2

2σ2
1 + (1 − a)2w

σ2
2

e
− w2

2σ2
2 (2.13)

+2a(1 − a)w
σ1σ2

e

(
− 1

4

(
1

σ2
1

+ 1
σ2

2

)
w2
)
I0

(
1
4

∣∣∣∣∣ 1
σ2

1
− 1

σ2
2

∣∣∣∣∣w2
)

.

where

I0(η) = 1
π

∫ π

0
eη cos (θ)dθ .

is the modified Bessel function of the first kind of zero-th order. In (2.13),

first two terms follow a Rayleigh distribution. The term with modified Bessel

function distinguished the envelope distribution of two-term Gaussian mixture
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Figure 2.13 Envelope of two-term Gaussian miwture pdf with mixing coefficient
0.1 ≤ a ≤ 0.9 and c = σ2

2/σ2
1 = 10.

from the two-term Rayleigh mixture. The envelope of two-term Gaussian

mixture is shown in Fig. 2.13 for different values of a and and the ratio of two

variances c = σ2
2/σ2

1 = 10. One can observe that when the value of mixing

coefficient a = 0.7, the tail of the pdf is approximately linearly decaying from

the peak value (dashed line in Fig. 2.13). When the ratio of the two variances

σ2
2/σ2

1 → 1, similar to the case of a two-term Rayleigh mixture model, the

envelope of two-term Gaussian mixture (2.13) turns into a single Rayleigh

distribution. The effect of varying the ratio of σ2
2/σ2

1 is illustrated in Fig. 2.14, in

which the dashed grey line is the Rayleigh pdf with variance σ2 = 1. However,

when σ2
2 � σ2

1, the envelope Gaussian mixture is significantly different from the

Rayleigh mixture as shown in Fig. 2.15. The two-term Rayleigh mixture model

often exhibits a more pronounced multi-modal behaviour than the envelope of

two-term Gaussian mixture.

Assuming that the in-phase and quadrature components are not identi-

cally distributed and follow different Gaussian mixture model with K and L
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components, i.e,

fR(r) =
K∑

i=1
[πr]i · 1√

2π[σ2
r ]i

e
− r2

2[σ2
r ]i (2.14)

fQ(q) =
L∑

k=1
[πq]k · 1√

2π[σ2
q ]k

e
− q2

2[σ2
q ]k . (2.15)

Then a more general envelope Gaussian mixture distribution fW (w) can be

written as:

fW (w) =
L∑

k=1

K∑
i=1

{
[πr]i · [πq]k · w

[σr]i[σq]k
· e

(
− 1

4

(
1

[σ2
q ]k

+ 1
[σ2

r ]i

)
w2
)

·I0

(
1
4

∣∣∣∣∣ 1
[σ2

q ]k
− 1

[σ2
r ]i

∣∣∣∣∣w2
)}

. (2.16)

However, in many practical cases, the in-phase and quadrature noise compo-

nents can be described by the same distribution with the same parameters, and

the envelope Gaussian mixture density simplifies to:

fW (w) =
K∑

k=1

K∑
i=1

{
πiπkw

σiσk

· e

(
− 1

4

(
1

σ2
k

+ 1
σ2

i

)
w2

)

·I0

(
1
4

∣∣∣∣∣ 1
σ2

k

− 1
σ2

i

∣∣∣∣∣w2
)}

. (2.17)

2.3 Parameters Estimation of the Envelope Gaus-

sian Mixture Model

In this section, we adopt the well-known two-step iterative method called the

EM Algorithm that finds the ML or maximum a posteriori estimates of parame-

ters in statistical models in which observations are treated as “incomplete data"

[13]. Parameters of mixture densities, such as the Rayleigh mixture model, the

Middleton’s Class A model and the Gaussian mixture can be estimated by using

the EM algorithm. Hence it is natural to predict that parameters of the envelope

Gaussian mixture density can be estimated by using the same algorithm.
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Given a data set W = {w1, ..., wN}, we assume that all data samples are

i.i.d.. Let p(w|θ) be the pdf that is governed by the set of parameters, θ, to be

estimated. We have:

p(W |θ) =
N∏

n=1
p(wn|θ) ,

L(θ|W ) = log p(W |θ) =
N∑

n=1
log p(wn|θ) (2.18)

where L(θ|W ) is the log likelihood function. Our purpose is to find the parame-

ters θ which maximize L(θ|W ) such that:

θ̂ML = arg max
θ

L(θ|W ) . (2.19)

Under the assumption that the envelope Gaussian mixture model is taken,

p(wn|θ) is replaced with (2.17) and the incomplete data log likelihood function

is given by:

L(θ|W ) =
N∑

n=1
log

K∑
k=1

K∑
i=1

{
πiπkwn

σiσk

· e

(
− 1

4

(
1

σ2
k

+ 1
σ2

i

)
w2

n

)

·I0

(
1
4

∣∣∣∣∣ 1
σ2

k

− 1
σ2

i

∣∣∣∣∣w2
n

)}
. (2.20)

In order to solve this equation, the EM algorithm is utilized by introducing the

latent variables. Here we employ two sets of latent variables U = {ui}K
i=1 and

V = {vk}K
k=1 as binary indicator variables (i.e. ui ∈ {0, 1}, vk ∈ {0, 1},

∑
i ui = 1

and
∑

k vk = 1). The value ui indicates which Gaussian component in (2.14)

generates the i-th in-phase noise sample and similarly vk for the quadrature

noise samples. It is important to note that since in-phase noise samples and

quadrature noise samples are assumed to be independently generated, ui and

vk are also independent. The product of these two latent variables, ui · vk, is

binary and forms a 2-dimensional indicator function (i.e. ui · vk ∈ {0, 1} and∑
i

∑
k ui · vk = 1).

We use the EM algorithm to estimate the parameters θ = {π, σ2}. The

expectation step and maximization step are defined as follows:

• E-step: Compute Q(θ|θ(p)) , E[L(θ|W )|U, V, θ(p)]
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• M-step: Determine θ = θ(p+1) maximizing Q(θ|θ(p))

where θ(p) is the estimation of θ at p-th iteration of the EM algorithm. We call

W the ‘incomplete data’ and we assume that the complete data S = (W, U, V )
includes the binary latent variables U and V . Then the joint density function

p(w, u, v) is:

p(w, u, v) = p(u, v)p(w|u, v) = p(u)p(v)p(w|u, v) (2.21)

since U and V are independent. The proportion of the noise samples that are

generated by k-th or i-th Gaussian component is πk or πi and therefore the

joint distributions over U and V are specified in terms of the mixing coefficient

πi and πk, such that p(ui = 1) = πi and p(vk = 1) = πk. Both ui and vk are

indicator variables, therefore we can write joint distribution in the following

form:

p(u, v) =
K∏

i=1

K∏
k=1

[πiπk]ui·vk . (2.22)

Similarly, the conditional distribution of W given particular values for U and V

is the envelope Gaussian mixture component that is:

p(w|u, v) =
K∏

i=1

K∏
k=1

[p(w|σ2
i , σ2

k)]ui·vk . (2.23)

Then we have:

p(w) =
∑

u

∑
v

p(u, v)p(w|u, v)

=
∑

u

∑
v

K∏
i=1

K∏
k=1

[πiπk · p(w|σ2
i , σ2

k)]ui·vk . (2.24)

This is an equivalent formulation of the mixture model involving two explicit

latent variables. By dealing with the complete observation W , U and V , we can

simplify the log likelihood function using (2.24). Replacing p(wn|θ) in (2.20)
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with the equivalent formulation found in (2.24), we have:

L(θ|W ) =
N∑

n=1

K∑
i=1

K∑
k=1

ui · vk{log πi + log πk

+ log p(wn|σ2
i , σ2

k)} . (2.25)

Using (2.25), the Q function, becomes:

Q(θ|θ(p−1)) , E[L(θ|W )|U, V, θ(p)]

=
N∑

n=1

K∑
i=1

K∑
k=1

E[u(n)
i · v

(n)
k ]{log πi + log πk

+ log p(wn|[σ(p−1)
i ]2, [σ(p−1)

k ]2)} (2.26)

where E[u(n)
i · v

(n)
k ] = ξn,i,k is the conditional probability of W given U and V ,

we also call it "soft" assignment (or responsibility) which can be found by using

Bayes’ theorem:

ξ
(p)
n,i,k = E[u(n)

i · v
(n)
k ] = p(ui = 1, vk = 1|wn)

= 0 × p(ui = 0, vk = 0|w) + 0 × p(ui = 1, vk = 0|w)

+0 × p(ui = 0, vk = 1|w) + 1 × p(ui = 1, vk = 1|w)

= p(ui = 1)p(vk = 1)p(w|ui = 1, vk = 1)
p(wn)

= π
(p−1)
i π

(p−1)
k p(wn|[σ(p−1)

i ]2, [σ(p−1)
k ]2)∑K

s=1
∑K

t=1 πsπtp(wn|[σ(p−1)
s ]2, [σ(p−1)

t ]2)
. (2.27)

The maximization step of the EM algorithm finds the expression for π
(p)
i

and π
(p)
k . We introduce the Lagrange multiplier λ with the constraint

∑
i πi =∑

k πk = 1 and solve the following set of equations:

∂

∂π
(p)
k

{
N∑

n=1

K∑
i=1

K∑
k=1

ξn,i,k log π
(p)
k + λ

(∑
k

π
(p)
k − 1

)}
= 0 (2.28)

for k = 1, . . . , K. Summing left side over n and i (or k) gives λ = −N which

results in:

π
(p)
k = 1

N

N∑
n=1

K∑
i=1

ξ
(p)
n,i,k . (2.29)
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The variances [σ(p)
k ]2 and [σ(p)

i ]2 can be found by solving the set of K equa-

tions:

∂

∂[σ(p)
k ]2

{
N∑

n=1

K∑
i=1

K∑
k=1

ξ
(p)
n,i,k

[
log wn

σ
(p)
k σ

(p)
k

− 1
4

(
1

[σ(p)
k ]2

+ 1
[σ(p)

i ]2

)
w2

n

+ log I0

(
1
4

∣∣∣∣∣ 1
[σ(p)

k ]2
− 1

[σ(p)
i ]2

∣∣∣∣∣w2
n

)]}
= 0 k = 1, . . . , K . (2.30)

We get:

[σ(p)
k ]2 =

∑N
n=1

∑K
i=1 ξn,i,k

wn

2 (1 − φ(1
4

∣∣∣ 1
[σ(p)

k
]2

− 1
[σ(p)

i ]2

∣∣∣w2
n))∑N

n=1
∑K

i=1 ξ
(p)
n,i,k

. (2.31)

where φ(·) = I1(·)
I0(·) and I1(·) is the modified Bessel function of first kind of

first order. Equations (2.31) are non-linear equations and therefore can only be

solved numerically.

In the following, we provide the EM algorithm for envelope Gaussian mix-

ture model.

Algorithm 1: EM ALGORITHM FOR THE ENVELOPE GAUSSIAN MIXTURE MODEL

Initialization: Initialize the mixing coefficients π
(0)
i and π

(0)
k , together with

variances [σ(0)
i ]2 and [σ(0)

k ]2 with random values. Repeat until convergence

Step 1: (E step) Given the data sample wn, evaluate the responsibility using the

current parameters π(p−1) and [σ(p−1)]2 for all i and k from 1 to K

ξ
(p)
n,i,k = E[u(n)

i · v
(n)
k ] = p(ui = 1, vk = 1|wn)

= 0 × p(ui = 0, vk = 0|w) + 0 × p(ui = 1, vk = 0|w)

+0 × p(ui = 0, vk = 1|w) + 1 × p(ui = 1, vk = 1|w)

= p(ui = 1)p(vk = 1)p(w|ui = 1, vk = 1)
p(wn)

= π
(p−1)
i π

(p−1)
k p(wn|[σ(p−1)

i ]2, [σ(p−1)
k ]2)∑K

s=1
∑K

t=1 πsπtp(wn|[σ(p−1)
s ]2, [σ(p−1)

t ]2)
. (2.32)
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Step 2: (M step) Update the parameters using the current responsibility

π
(p)
k = 1

N

N∑
n=1

K∑
i=1

ξn,i,k . (2.33)

[σ(p)
k ]2 =

∑N
n=1

∑K
i=1 ξ

(p)
n,i,k

wn

2 (1 − φ(1
4

∣∣∣ 1
[σ(p)

k
]2

− 1
[σ(p)

i ]2

∣∣∣w2
n))∑N

n=1
∑K

i=1 ξ
(p)
n,i,k

. (2.34)

for all k from 1 to K. φ(·) = I1(·)
I0(·) and I1(·) is the modified Bessel function

of first kind of first order due to the fact that the derivative of I0(·)′ =
−I1(·). . Equation (2.34) are non-linear equations and therefore can only

be solved numerically.

Step 3: Evaluate the likelihood function

L(θ(p)|W ) =
N∑

n=1
log

{
K∑

i=1

K∑
k=1

π
(p)
k π

(p)
i · p(wn|[σ(p)

k ]2, [σ(p)
i ]2)

}
(2.35)

and check the convergence of either the parameters or the likelihood

function. If the convergence criterion is not satisfied, return to Step 1 (E

step).

end

2.4 Simulation Results

A simulation of the proposed estimator via the EM algorithm is performed,

in which we consider an envelope Gaussian mixture model with unknown

variances and mixing coefficients, however we assume that the number of

components is known. Random data samples are randomly generated from

the distribution with known parameters. An alternative method in estimating

parameters of the envelope Gaussian mixture apart from the EM algorithm

is the quasi-Newton method (See [93] for detail). The performance of the

EM algorithm will be compared with the performance of the quasi-Newton
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method with the BGFS step update for the envelope Gaussian mixture model

[107]. The EM algorithm and the quasi-Newton method will terminate when

the change in log likelihood function is less than stopping criterion, ε. The EM

algorithm is more often used in parameter estimation of the curved exponential

families, since the quasi-Newton method is more complicated to implement.

On the other hand, the EM algorithm enjoys greater simplicity and stability but

has slower convergence speed. Here we focus on comparing their convergence

speed and accuracy in terms of iteration numbers and Mean Square Error (MSE)

between the estimated pdf and normalised data histograms.

Our first example takes 50000 data samples which are generated by the

envelope of a two-term Gaussian mixture distribution with parameters π1 = 0.3,

π2 = 0.7, σ2
1 = 1 and σ2

2 = 10. Fig. 4 illustrates the normalised data histogram

with N = 25 bins of generated data samples, together with the estimated

envelope Gaussian mixture pdf and true envelope Gaussian mixture pdf. The

MSE between the envelope Gaussian mixture pdf and the normalised data

histogram is defined as follows:

MSE = 1
N

N∑
i=1

(D̂i − Di)2 (2.36)

where Di is the frequency density of the i-th bin and D̂i is the estimated

probability density taken at the midpoint of i-th bin. The MSE between the

estimated pdf and histogram is 3.12779 × 10−4 and the parameters estimated

are π̂1 = 0.303502, π̂2 = 0.696498, σ̂2
1 = 1.04399 and σ̂2

2 = 9.946461, which show

that the ML estimator via the EM algorithm yields good performance. Example

2 shown in Fig. 5 also illustrates that parameters of the envelope Gaussian

mixture model have been correctly estimated by the EM algorithm. In fact, for

examples with distributions that are well separated (i.e. σ2
2 � σ2

1), both the EM

algorithm and the quasi-Newton method perform well in terms of reproducing

the true parameters. However, in some ill-conditioned cases (i.e. example 4, 5,

7 and 8) where too many components have been included in the model due

to overfitting or to similar values of variances, both the EM algorithm and the

quasi-Newton method perform poorly in terms of attaining the true values of

parameters as shown in Table 5.2. In addition, example 6 does not converge

to the true value due to small sample size. Fortunately, both methods may
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Figure 2.16 Comparison of normalised data histogram, true envelope Gaussian
mixture pdf and estimated envelope Gaussian mixture pdf.

achieve some local optima of the log likelihood functions in all cases, therefore

the estimated envelope Gaussian mixture pdf’s using both methods still exhibit

excellent agreement with the histograms.

Despite that the EM algorithm performs well in terms of maximizing the log

likelihood function, it has relatively slower convergence rate depending on the

models and data size [107]. If we only compare the numbers of iterations to

convergence, quasi-Newton would take fewer iterations, since the convergence

speed of the quasi-Newton algorithm is super linear, whereas the EM algorithm

converges linearly [107]. Table 5.2 shows that the computation iterations for

estimation of the parameters of the envelope of two-term Gaussian mixture

model with stopping criterion, ε = 10−6. It is clear in the Table 5.2 that the

quasi-Newton method converges much faster than the EM algorithm. The

quasi-Newton method, on average, took less than 1/8 in iteration numbers of

the EM algorithm. For example 4, 6 and 7, number of iteration for the EM

algorithm can go over 1000. Moreover, the computation time per iteration of

the EM algorithm is much longer than that of the quasi-Newton method, since

the variances, σ2
k and σ2

i in (2.31) have to be found numerically in each EM
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Figure 2.17 normalized data histogram generated with mixing coefficient π1 =
0.3, π2 = 0.4, π3 = 0.3, σ2

1 = 1, σ2
2 = 9 and σ2

3 = 25. Stopping criterion is set
to be 10−6. Number of iteration taken for the EM algorithm to converge is
1491. Parameters estimated are π̂1 = 0.301052, π̂2 = 0.406479, π̂3 = 0.292469,
σ̂2

1 = 1.109467, σ̂2
2 = 8.970086 and σ̂2

3 = 24.172147.
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iteration. For this reason, we conclude that, in terms of iteration numbers, the

quasi-Newton method should be preferred to the EM algorithm in estimation

parameters of the envelope Gaussian mixture density functions. However,

reader should take note that the EM algorithm is still an attractive method in

this estimation problem due to greater simplicity (i.e. automatic satisfaction of

probability constraints and monotonic convergence without the need to set a

step size). On the other hand, implementation of the quasi-Newton method

is indeed complicated. As Jamshidian and Jennrich [59] have pointed out, to

choose between the EM algorithm and the quasi-Newton method is more or

less a personal choice.

2.5 Conclusion

In this chapter, we have derived the general expression for the envelope Gaus-

sian mixture model. Such model is different from the Rayleigh mixture and

may be applied to describe the envelope of powerline noise and the envelope of

underwater communication noise. We proposed the EM algorithm to estimate

the parameters of the envelope Gaussian mixture. Finally, we discussed the

convergence speed and accuracy of the EM algorithm by simulations. This

was compared with the quasi-Newton algorithm. However, in ill-conditioned

cases, the parameters cannot be estimated correctly. Yet The EM algorithm

is still able to attain some local optimums which maximize the log likelihood

function. The performance of the EM algorithm is compared with conventional

quasi-Newton method in terms of iteration number. The results show that, for

the envelope Gaussian mixture model, quasi-Newton is generally preferred to

the EM algorithm due to a reduced iteration number and computation time.
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Chapter 3

Capacity over Gaussian mixture
noise channels

In many communications systems, the Gaussian mixture model is extensively

used to characterize non-Gaussian man-made and natural interference. We

study the capacity of the Gaussian mixture noise channel and its capacity-

achieving input. In particular, we consider the symmetric and asymmetric

Gaussian mixture noise cases. It is shown that, under average and peak power

constraints, the capacity-achieving input is discrete with finitely many mass

points. Furthermore, some properties of the capacity-achieving distribution

are proved and demonstrated by simulations.

This chapter is organised as follows. Introduction is provided in section

3.1 and we formulate our problems in section 3.2. We introduce the Kuhn-

Tucker conditions in section 3.3 that are of fundamental importance to our

optimisation problem. In Section 3.4, we present our main result together

with some properties of the capacity-achieving input distribution for both

symmetric and asymmetric Gaussian mixture noise channels. Section 3.5 is a

general consideration for the slope of capacity curve of non-Gaussian noise

channel and section 3.6 is the numerical evaluation. Finally, conclusions are

drawn in section 3.7.
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3.1 Introduction

IN wireless communications systems, classic white Gaussian noise is a popular

model that has been extensively studied since the origins of communication

theory. However, for many practical cases such as powerline communications

[33], NAND flash memories [66, 32, 18], man-made electromagnetic interfer-

ences [78], and underwater communications [93], the conventional Gaussian

model is not sufficient to characterise these environments. One of the most

common models for the non-Gaussian noise environments is the Gaussian mix-

ture model. Hence, it is of interest for us to study the theoretic limit of the

Gaussian mixture channels.

Many research papers in the literature have focused on the study of what is

the optimal signalling for non-Gaussian channels under different constraints.

The earliest work was conducted by Smith [42, 101], who studied the channel

capacity of AWGN channel under peak and average power constraints. Also,

Das showed in [28] that, for a scalar additive channel under average power

constraint, if the noise distribution is “heavy-tailed” (i.e., has a tail which

decays at a rate slower than the Gaussian), the capacity-achieving input will

have a finite support. In addition, Tchamkerten extended this research to a

class of non-Gaussian noise distributions and showed that for noise in this

class, the input is discrete with finite number of mass points under average and

peak power constraints [102]. More recently, Fahs et. al showed that under

solely average power constraint, the capacity-achieving input for a class of

non-Gaussian noise channels is also discrete [38].

Based on the above results, various works analysed specific channels with

non-Guassian noises, such as the Rayleigh fading channel [1], non-coherent

AWGN channel [62], Rician fading channel [45] and quadrature Gaussian chan-

nel [97]. In [112], Zhang studied AWGN channel under duty-cycle constraints.

Many of these results are built upon Smith’s original work and the derived

capacity-achieving distributions are of discrete nature. Readers may refer to

[22] for a list of channels which their capacity-achieving inputs are discrete

under either or both average power and peak power constraints. This chapter

is based on the research results reported in [57] by the author.
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3.2 System Model

We consider the following discrete-time, real, and memoryless additive non-

Gaussian channel model

Y = X + N (3.1)

where Y , X, and N are real random variables representing channel output,

input, and noise, respectively. The noise random variable, N , is independent

of the input and its probability density function pN(t; γ, a) follows a two-term

Gaussian mixture distribution

pN(t; γ, a) = aN (t; µ1, 1) + (1 − a)N (t; µ2, γ) (3.2)

where N (·) denotes a Gaussian distribution, that is

N (t; µ, γ) = 1√
2πγ

e− (t−µ)2
2γ .

The parameters µ1 and µ2 are the means of the first and the second Gaussian

components, respectively. The variance of the first Gaussian component is

normalised to be one and γ > 1 denotes the ratio of first and second noise

variances. In (3.2), 0 < a < 1 is the mixing coefficient. The mean µN and the

variance σ2
N of the random variable N are given by

µN = aµ1 + (1 − a)µ2, (3.3)

σ2
N = a(µ2

1 + 1) + (1 − a)(µ2
2 + γ) − µ2

N . (3.4)

The Gaussian mixture model is widely utilised in modelling non-Gaussian noise

in various areas, including powerline communications, underwater commu-

nications, and NAND flash memory channels. Among them, we specifically

investigate two types of noise distributions:

• Type I: the noise distribution is symmetric and its Gaussian components

have zero mean (e.g. the powerline communications channel [33]);

• Type II: the noise distribution is asymmetric (skewed) and has a non-zero

mean (e.g. NAND flash memory channel [66]).



Type I: Powerline communications channel

The signature of the powerline communications channel is that its noise is

impulsive. A widely utilised model to describe the powerline noise channel

is the Gaussian mixture, in which background noise with unit variance is

always present and the impulsive noise events occur with probability (1 − a).
The first Gaussian component can be seen as the nominal background noise

with normalised variance and the second Gaussian component represents the

combination of background noise and impulsive noise. Hence, the means of

both the Gaussian components in (3.2) are zero, µ1 = µ2 = 0, i.e.,

pN(t, γ, a) = aN (t; 0, 1) + (1 − a)N (t; 0, γ). (3.5)

Type II: NAND flash memory channel

Unlike many conventional channels where noise is assumed to be zero mean

Gaussian, NAND flash memory noise has non-zero mean and is skewed. There-

fore, we use the following Gaussian mixture model to approximate the NAND

flash memory noise,

pN(t, γ, a) = aN (t; 0, γ) + (1 − a)N (t; µ2, 1) (3.6)

by adjusting µ2 and γ.

Furthermore, we impose an average input power constraint E[X2] ≤ P and

a peak power constraint −A ≤ X ≤ A where P denotes the average input

power and A denotes the peak amplitude of X. The cumulative density function

(cdf) F of input random variable X is in the space of all possible probability

distribution function on R

Ω ,

{
F (x) :

∫ +A

−A
dF (x) = 1,

∫ +A

−A
x2dF (x) ≤ P

}
.

If we normalise the noise variance, then P is the normalised signal-to-noise

ratio (SNR).
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3.3 The Kuhn-Tucker Conditions

The Kuhn-Tucker (KKT) conditions proposed by [42, 101] are of fundamental

importance for this chapter and are used widely to verify the optimality of the

inputs for variety of channels. Denoting

i(x; F ) =
∫ ∞

−∞
pN(y − x) log pN(y − x)

pY (y; F ) dy (3.7)

yields the mutual information

IF (X; Y ) =
∫ A

−A
i(x; F )dF (x). (3.8)

where pY (y; F ) ,
∫+A

−A pN(y − x)dF (x) is the output pdf.. We note that IF (X; Y )
is a function of F . The channel capacity of this memoryless channel, C, is the

supremum of the mutual information over the set of all possible input cdfs Ω
under the average input power and peak power constraints.

C , sup
F ∈Ω

IF (X; Y )

= sup
F ∈Ω

∫
x

∫
R

pN(y − x) log pN(y − x)
pY (y; F ) dydF (x) (3.9)

The KKT conditions serve as necessary and sufficient conditions for an

average power and peak power constrained input cdf F ∗ ∈ Ω to achieve the

capacity.

Theorem 1 (KKT conditions [101]). F ∗ is a capacity-achieving input distribution
if and only if there exists a λ > 0 such that,

λ(x2 − a) + C − i(x; F ) ≥ 0 ∀x ∈ [−A, A] (3.10)

with equality if x is a point of increase of F ∗.1

1We say that a point, x, is a point of increase of F ∗ if for every ε > 0,

F ∗(x + ε) − F ∗(x − ε) > 0.
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In order to validate the usage of the KKT conditions, the following Lemmas

have to hold. Their proofs are given in the references.

Lemma 1 ([101]). Ω is a convex and compact space in the Levy metric.

Lemma 2 ([102]). The mutual information IF (X; Y ) is strictly concave, contin-
uous, and weakly differentiable2 on Ω.

3.4 The Capacity-achieving Distribution

In this section, we demonstrate the properties of the capacity-achieving input

distribution under average and peak power constraints. Let pX be the pdf of a

random variable X such that pX = dF (x). We have the following theorem.

Theorem 2. The capacity of the Gaussian mixture noise channel under average
power constraint P and peak power constraint |X| ≤ A is

C(P ) = max
F ∈Ω

IF (X; Y ).

Furthermore, the capacity-achieving distribution exhibits the following properties:

(i) C(P ) is achieved by a unique input distribution F ∗ ∈ Ω;

(ii) p∗
X = dF ∗ is discrete and has finite number of probability mass points; and

(iii) p∗
X is symmetric if pN is symmetric.

Sketch of the proof of (i). By Lemma 1 and Lemma 2, mutual information IF (X; Y )
is continuous and Ω is compact on Levy metric. Then IF (X; Y ) is a compact

subset of R which contains its maximum for some F . Since IF (X; Y ) is strictly

concave and Ω is convex, uniqueness of the capacity-achieving input is estab-

lished. Detailed proof of Property (i) can be found in [101].
2Let f be a function from Ω into R. Let θ ∈ [0, 1] and fix x0 ∈ Ω. If for all x ∈ Ω the limit

lim
θ↓0

f(x0 + θ(x − x0)) − f(x0)
θ

exists, f is said to be weakly differentiable in Ω at x0.
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Proof of property (ii). Property (ii) states that the capacity-achieving distribu-

tion p∗
X is of discrete nature and has finitely many probability mass point. To

prove the discrete nature of the input, we recall the condition stated in [102],

i.e., for noise pdf pN(·) that satisfies the following conditions, the capacity-

achieving distribution is discrete with finite number of mass points,

1. pN(t) > 0, ∀t ∈ R;

2. there exists α > 0 such that E[|N |α] < ∞;

3. there exists, a δ > 0 such that pN(·) admits an analytic extension on

Dδ = {z ∈ C : |=(z)| < δ}; 3

4. There exist, k ≥ 0 and two non-increasing functions ρL : [k, ∞) → R+

and ρU : [k, ∞) → R+ such that:

(a) for all z ∈ Dδ with |z| ≥ k,

0 < ρL(|<(z)|) ≤ |pN(z)| ≤ ρU(|<(z)|) ≤ 1; (3.11)

(b) H(ρU)|k < ∞;

(c)
∫

y≥k+x
(U(y−x))3

(L(y))2 dy < ∞ for all x ∈ R+,

where ρL(|<(z)|) and ρU(|<(z)|) are the lower and upper bounds of |pN(z)|.
H(ρU)|k is defined as

H(ρU)|k , −
∫

y≤k
ρU(y) log ρU(y)dy.

Properties 1 and 2 are straightforward for the Gaussian mixture distribution.

Also, the pN(z) is an entire function (i.e. analytic in the whole complex plane)

[2], hence Property 3 holds. In order to prove Property 4(a), for some positive

real constants c1 = max pN(t), c2, µ1, µ2 and, without loss of generality, assum-

ing µ1 ≤ 0 ≤ µ2, the tails of the Gaussian mixture have the following upper

3Let E be a complex open connected set including the real line. A mapping f : R → R is
said to have an analytic extension on E if there exists a mapping g : C → C which is analytic
on E and so that g(x) = f(x) for any x ∈ R.
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bound for <(z) < µ1,

|pN(z)| ≤ |c1e
− (z−µ1)2

c2 | = c1e
|=(z)|2

c2 e
− |<(z)−µ1|2

c2

< c1e
δ2
c2 e

− |<(z)−µ1|2
c2 = c1e

δ2
c2 e

− (|<(z)|+µ1)2
c2 . (3.12)

Similarly, for <(z) > µ2,

|pN(z)| < c1e
δ2
c2 e

− (|<(z)|−µ2)2
c2 . (3.13)

Hence for any z ∈ Dδ, |pN(z)| is upper bounded by

ρU(|<(z)|) =


c1e

δ2
c2 e

− (|<(z)|+µ1)2
c2 if <(z) < µ1

c1e
δ2
c2 if µ1 ≤ <(z) ≤ µ2

c1e
δ2
c2 e

− (|<(z)|−µ2)2
c2 if <(z) > µ2

. (3.14)

As for the lower bound, pN(z) can be lower bounded by one of the Gaussian

component. Hence we have, for some positive real constants c3, c4 and µ1 ≤
0 ≤ µ2,

|pN(z)| ≥ |c3 · e
− (z−µ1)2

c4 | ≥ c3 · e
− |z−µ1|2

c4

≥ c3 · e
− (|<(z)|−µ1+δ)2

c4 = ρL(|<(z)|). (3.15)

Properties 4(b) and 4(c) follow the proof in [102]. Hence the capacity-achieving

pdf p∗
X is of discrete nature and has finite number of mass points if its support

is bounded.

Note that under the average power constraint only, the capacity-achieving

input is also discrete by showing that pN satisfies the conditions listed in [38].

Property (iii) states that the capacity-achieving input distribution is symmetric

about zero if the noise is symmetric.

Sketch of the proof of (iii). This property is justified by the fact that, for symmet-

ric noise, the mirror reflection of the capacity-achieving input is also capacity-

achieving. However, by Property (i), the capacity-achieving input is unique

which implies that the capacity-achieving input must be symmetric. Hence for



Type I noise model, the capacity-achieving input is also symmetric. Detailed

proof of this property can be found in [101].

Remark: Property (iii) states that if the noise distribution is symmetric, then

the capacity-achieving input distribution is also symmetric. On the other hand,

if the noise is asymmetric (i.e. Type II), the symmetry of the input may not

hold. However, what will hold is that the capacity-achieving input distribution

will still have a zero mean. This is simply justified by the fact that the input

with a mean shift does not increase the capacity but consumes more input

power. This implies that if the capacity-achieving distribution is asymmetric,

the mean of the capacity-achieving input is always zero. Furthermore, the

second moment of the capacity-achieving input is P , which is complied with

the KKT conditions.

3.5 Concavity, monotonicity and the slope of non-

Gaussian capacity curve

By Property (ii), the optimal input has finitely many mass points. Hence, we

assume the number of mass points M to be finite and solve the following

optimisation problem,

maximize
pX

I(X; Y ) − λE[X2]

where pX(x) = ∑M
i=1 πiδ(x − xi), {xi}M

i=1 are the mass point locations with

probability πi ∈ [0, 1] and
∑M

i=1 πi = 1. Note that λ > 0 is the Lagrange

multiplier given the input power P , which can be interpreted as the slope of

capacity curve C(P ), λ(P ) = d
dP

C(P ). By concavity and monotonicity of the

mutual information, λ < λ(0) for any normalised SNR, where λ(0) is the slope

of capacity curve C(P ) at P = 0. Since there exists a unique C(P ) for given

λ(P ), by varying λ between 0 and λ(0) (equivalently varying P between high

SNR and low SNR), the capacity curve C(P ) can be plotted for different P . The

closed form of λ(0) is derived as follows.

Assuming X ′ is a normalized power input, i.e., P = E[X2] = PE[X ′2],
where E[X ′2] = 1. Without losing generality, the channel model becomes
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Y =
√

PX ′ + N . For this channel model, the derivative of mutual information

has the following asymptotic behaviour for P ↓ 0 [44]

lim
P ↓0

d

dP
I(X; Y ) = σ2

X′

2 E{[∇ log pN(w)]2} (3.16)

where σ2
X′ is the variance of scaled input random variable X ′. ∇ log pN(w) is

the score of the noise distribution pN which always has zero mean [26] and

E{[∇ log pN(w)]2} is known as the Fisher Information of the noise distribution

pN(w).
As stated in Section 3.4, the capacity-achieving input X∗ has a zero mean,

therefore X ′ also has zero mean and σ2
X′ = E[X ′2] = 1. The slope of the channel

capacity C(P ) when P ↓ 0 is then given by

lim
P ↓0

d

dP
I(X; Y ) = 1

2E{[∇ log pN(w)]2}. (3.17)

In fact, the above formula gives the rate of increase with respect to the input

power P for the non-Gaussian channel capacity around P = 0. This formula

also indicates that the slope of mutual information at zero input power only

depends on the noise distribution pN(w). For example, for type I noise model,

we have

∇ log pN(w) = −a · w − (1 − a)w

γ
,

E{[∇ log pN(w)]2} =
(

a + (1 − a)
γ

)2

(a + (1 − a)γ).

Hence, for Type I noise channel, the slope of the capacity curve at P = 0 is

exactly given by

λ(0) = (1 + ε) ·
(

a

2 + (1 − a)
2γ

)
(3.18)

where ε = (γ + 1
γ

− 2) · a(1 − a) > 0.

Furthermore, for the capacity C(P ) = maxpX
[H(Y ) − H(N)], since the

noise entropy H(N) is a constant, maximizaximizing mutual information is

the same as maximizing output entropy H(Y ). For a fixed output power Pout,



the Gaussian output maximizes the entropy and we have the following upper

bound

C(P ) <
1
2 log (2πePout) − H(N) (nats). (3.19)

It should be noted that, by Cramer’s Decomposition Theorem [27], a Gaussian

output is achieved only if both the input and noise are Gaussian. Hence for

a non-Guassian Channel, Gaussian entropy is always an upper bound of the

output entropy, which cannot be achieved.

We further show that the mutual information imposed by the Gaussian input

is a good approximation to the channel capacity by simulation.

3.6 Numerical Evaluation

In this section, we numerically compute the optimal input, i.e., the optimal

mass point locations and their probabilities, by using the interior point method

and we start from random initial mass point locations and probabilities. Note

that, although the original problem itself is convex, optimisation with respect

to the number of points, the mass point locations and the probabilities are in

general non-convex. Hence, the numerical solutions maybe sub-optimal.

3.6.1 Type I: Symmetric Gaussian Mixture Noise

For Type I noise model (3.5), we choose a = 0.7 and γ = 10 which are typical

values for noise in the powerline channel [33]. The program is terminated when

the improvement in mutual information is less than 10−6 for a fixed SNR. Figure

3.1(a) illustrates the Capacity with average and peak power constraints. Upper

bound is asymptotically close to capacity for large SNRs. The performance of

the Guassian input is also close to the performance of the optimal input as

shown in Figure 3.1(a).

Fig 3.2 illustrates the optimal mass point locations with their corresponding

probabilities under average power constraint P and amplitude constraint A ≤
2.5. At low SNRs (< −6dB), equiprobable binary input is optimal. An additional

point is required as SNR increases to −6dB as shown in Figure 3.2. At high
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Figure 3.1 (a): Capacity C(SNR) (bits per channel use) of symmetric Gaussian
mixture noise channel vs. normalised SNR (dB). (b): Capacity C(SNR) (bits
per channel use) of asymmetric Gaussian mixture noise channel vs. normalised
SNR (dB).

SNRs, where peak power constraint is solely active, more weights are allocated

to the points near the boundary.

3.6.2 Type II: Asymmetric Gaussian Mixture Noise

For type II Gaussian mixture model (3.6), we choose a = 0.5, γ = 2 and µ1 = 1
such that the unimodality still holds for the asymmetric Gaussian mixture

model. We set the peak amplitude constraint to be A = 3.5 so that the peak

and average power are both active at low SNRs. Figure 3.1(b) shows the

capacity under average and peak power constraints. The upper and Gaussian

approximation are asymptotically close to capacity for large SNRs.

In Figure 3.4, binary input is optimal at low SNRs, before −5dB, two mass

points are not enough to achieve optimal rate and more points are required. In
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Figure 3.2 Optimal mass points of symmetric Gaussian mixture channel vs.
normalised SNR(dB).

addition, the symmetry of the input in general does not hold for asymmetric

noise channel especially at low SNRs. As SNR increases, the input tends

symmetric as shown in Figure 3.4.

Figure 3.5 illustrates an interesting point that if the noise is negative-skewed,

the input will be positive-skewed. A reason for this is that since Gaussian

entropy is always an upper bound of the output entropy, maximizing the output

entropy is equivalent to minimising the Kullback-Leibler divergence between

some output pY (y; F ) and the Gaussian output (i.e. min DKL(pY ||N )) [28].

Therefore, the input tries to retain a symmetric Gaussian output (though not

achieved) by skewing itself towards the opposite direction as shown in Figure

3.5.
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Figure 3.3 Optimal mass points of asymmetric Gaussian mixture channel in 3
Dimensions for A = 20.

3.7 Conclusion

In this chapter, we considered the symmetric and asymmetric additive Gaussian

mixture noise channels under both average and peak power constraints. The

unique capacity-achieving input for the Gaussian mixture noise model is of

discrete nature with finite number of mass points. Furthermore, we showed that

the capacity-achieving input is symmetric for the symmetric noise distribution.
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List of Acronyms and Symbols

List of Acronyms

i.i.d. . . . . . . independent and identically distributed

pdf . . . . . . probability density function

cdf . . . . . . . cumulative density function

RLL . . . . . . runlength limited

GBAA . . . . . Generalised Blahut-Arimoto Algorithm

DF . . . . . . . decode-and-forward

CF . . . . . . . compress-and-forward

AF . . . . . . . amplify-and-forward

AEP . . . . . . Asymptotic Equipartition Property

BSC . . . . . . binary symmetric channel

AWGN . . . . additive white Gaussian noise

List of Symbols

Xn . . . . . . . symbol transmitted by source node at time n

xn . . . . . . . realisation of Xn

Vn . . . . . . . symbol received by relay node at time n

Un . . . . . . . symbol transmitted by relay node at time n

Yn . . . . . . . symbol received by destination node at time n

X . . . . . . . sequence transmitted by source node of length N
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V . . . . . . . sequence received by relay node of length N

U . . . . . . . sequence transmitted by relay node of length N

Y . . . . . . . sequence received by destination node of length N

SN
1 . . . . . . . state sequence of length N

S . . . . . . . state space of Sn

Wb . . . . . . . codeword sent in transmission block b

P . . . . . . . probability transition matrix

µ . . . . . . . stationary distribution on states

Pij . . . . . . . i, j-th entry of P

ŵ . . . . . . . estimation of w

R . . . . . . . rate

I(X; Y ) . . . . mutual information

H(X) . . . . . entropy

C . . . . . . . capacity

Cnf . . . . . . . capacity with noise-free relay-to-destination link

I(UN
1 ; Y N

1 ) . . mutual information rate between sequence UN
1 and Y N

1

Lθ . . . . . . . set of admissible runlengths of symbol θ

I . . . . . . . . relay mutual information matrix

G . . . . . . . noisy adjacency matrix

A(ζ) . . . . . . relay adjacency matrix

Ã(ζ) . . . . . . noisy-relay adjacency matrix

l(ζ) . . . . . . left eigenvector of A(ζ)

r(ζ) . . . . . . left eigenvector of A(ζ)

λmax(ζ) . . . . largest eigenvalue of A(ζ)

c(ζ) . . . . . . normalisation constant for l(ζ) and r(ζ)

T . . . . . . . a-posteriori state transition weight matrix

T . . . . . . . set of all valid transitions from state i to j
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Q . . . . . . . set of all valid transitions from state i to j that are labeled

with 0

A . . . . . . . set of jointly typical sequences

E . . . . . . . . error event





Chapter 4

Capacity over a Two-Hop
Half-Duplex Relay Channel with a
Markovian Constrained Relay

In this chapter, we consider a two-hop half-duplex relay channel (source-relay-

destination) with a Markovian constrained relay. Suppose the source and the

relay wish to transmit information to the destination under the condition

that the relay is half-duplex constrained. The capacity of such channel is

shown to be equal to the well-known cut-set upper bound.

This chapter is organised as follows. In section 4.1, we provide literature

review on the relay channels and finite-state models. In section 4.2, the system

model is introduced in which we give half-duplex constraint and Markovian

constraint in detail. Cut-set bound on the capacity is given in section 4.3 and

we show that timing scheme achieves the cut-set bound in 4.4.

4.1 Introduction

THE three cornerstones of this part of the thesis are relay channels, finite-

state model and information theory. Relay channels serve as the channel

model of the problem, in which the relay transmitters are modelled by finite-

state models. This introduces memories into the relay system. We wish to

compute the mutual information between the transmitter at the source and

receiver at the destination. The first difficulty of this problem comes from the
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fact that the capacities of relay channels are in general not known, the problem

becomes harder when memory is introduced into the system. The second

difficulty comes from the fact that the output of such relay channel is the noisy

version of a finite-state model (i.e., a hidden Markov chain), and computation

of the entropy of hidden Markov chain remains an open problem. To overcome

these obstacles, we relate them to information theory via stationarity and

ergodicity, i.e., the Shannon-McMillan-Breiman theorem. This allows us to

accurately estimate and maximise the information rates for such channel. This

chapter is based on the research results reported in [HH18] by the author.

4.1.1 Relay channel

The relay channel models a communication scenario, where a wireless link is

aided by relays to increase the spectral efficiency of a wireless communication

system. A relay channel consists of one sender, one receiver with a number of

intermediate relays which helps communicate from the sender to the receiver

in order to meet some of the demands in next generations of wireless system

[55, 74, 84, 109]. Particularly, in modern wireless networks, relay nodes may

be used to extend and improve the coverage, and hence the reliability of the

base stations. This can be achieved without suffering the high cost of adding

extra base station. Hence, relaying is one of the key features that has been

considered in several wireless standards [74, 109]. The simplest relay channel

has one sender, one receiver and one relay node as depicted in Figure 4.1

S

Source

R

Relay

D

Destination

Figure 4.1 The relay channel.

The general model for a relay channel that considers a source communicat-

ing with a destination via a relay was first studied by Van der Meulen [103]

and later by Sato [24]. Further advances in theoretical limits and coding of the

relay channel were made by Cover and El Gamal in [25]. Kramer et al. gave a

comprehensive survey on single/multiple-relay channels in [69].
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Relay

D

Destination

Two-Hop:

S R DNon-orthogonal:

S R DOrthogonal:

S R DTwo-way:

1st phase 2nd phase

Figure 4.2 Half-duplex relay protocols.

Half-duplex Relaying

In many modern wireless communication systems, the relay is not able to

operate in full-duplex mode, i.e. to transmit and receive signals simultaneously,

hence it is natural to consider half-duplex relay models [16, 49, 51, 50]. In

half-duplex protocols, information is sent from source node to destination node

via the relay in two phases as shown in Figure 4.2. In the first phase, the

source node communicate to the relay node and the relay node remains silent,

whereas in the second phase, the relay node talks to the destination node and

the source node remains silent.

The advantage of the half-duplex relaying protocol is that it can be easily

implemented in practice to extend coverage of the base station and improve

reliability. Half duplex assumption also makes the capacity problem much

simpler than the general relay counterpart as it decouples the problem into

source-relay cooperation and relay-destination cooperation [70]. However,

half-duplex protocols are not spectrally-efficient as the source node is only

allows to transmit every other phase.

When the direct source-to-destination link is available, cooperative relaying

protocols are introduced to achieve higher information rates comparing to its
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S R DTwo-Hop:

S R DCooperative:

self-interference

Source Relay Destination

Figure 4.3 Full-duplex relay protocols.

dual-hop counterpart [7, 70, 72, 82, 83, 96]. Pioneer works [36] on cooperative

relaying focuses on orthogonal schemes in which the destination node also

listens to the source node in the first phase as shown in Figure 4.2. To further

increase the information rate, non-orthogonal schemes are proposed in [7, 82].

For non-orthogonal schemes as depicted in Figure 4.2, the source is able to

communicate with destination in both phases, however computation of the

capacity and analysis of such scheme are much more challenging than dual-hop

and orthogonal schemes [7, 82, 31].

Analysis and optimisation of information rate in half-duplex dual-hop and

orthogonal schemes was conducted in past two decades. El Gamal [36] con-

sidered the general capacity expression for relay channels with orthogonal

components. Kramer [68] developed the half-duplex model and he showed

that higher information rates can be achieved when the relay random switching

between transmission mode and reception mode since the silent symbols may

also convey information to the destination. Capacity achieving input distribu-

tion for Gaussian channel with half-duplex/duty cycle constraint was proved to

be discrete by Lei et al. [112]. Zlatanov et al. [115] extended these results and

computed the capacity for two-hop half-duplex relay channel.

Full-duplex relaying

In order to counter the drawbacks of half-duplex relaying, full-duplex relaying

is proposed which provides higher spectral efficiency comparing against the

half-duplex counterpart. Full-duplex was believed to be impractical since the

relay transmitting power is usually orders of magnitude larger than the received
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signal power which results in heavy self-interference at the relay node. In the

past decades, self-interference mitigation techniques [6, 12, 15, 23, 35, 34, 37,

48, 58, 65, 87, 88, 91] are proposed which make full-duplex implementation

possible. These techniques are divided into two main categories: analog and

digital techniques. For example, basic analog cancellation techniques include

antenna separation [35, 34, 48, 88], orientation [88, 91] and directionality [37,

87]. These analog mitigation schemes can be combined with digital techniques

such as time domain subtraction for further mitigation [12, 35, 34, 37, 58].

However, the self-interference cannot be completely removed which results in

the residual self-interference. The residual self-interference shall always be

taken into account while modelling the full-duplex relaying as illustrated in

Figure 4.3. Zlatanov et. al. [116] consider the capacity of a two-hop full-duplex

relay channel using similar approaches used in [115, 112].

Protocols and Capacity-achieving Transmission Strategy

To this day, the capacity of relay channel with its respective optimal relay

function are only known in few cases. Common relay protocols include decode-
and-forward (DF), compress-and-forward (CF) and amplify-and-forward (AF)

[67, 69]. In DF relaying scheme, the relay decode the information sent by the

source, encodes it then forward it to the destination in the next time block. In

CF relaying scheme, the relay quantises the received symbols and then forward

them to the destination. Last but not least, AF scheme amplifies the the signal

and forward it the destination.

Motivated by DF protocols, the following papers studied how relay shall

forward information to destination in order to approach the capacity. In [68],

Kramer showed that if the relay switches among the three sleep-reception-or-

transmission modes, each occupying a certain fraction of the time, then higher

information rates can be achieved, when compared to that of a fixed mode

structure, i.e., all terminals know at all times which mode (receive or transmit)

every terminal is using. Timing strategy is also proved to be capacity achiev-

ing for deterministic half-duplex relay networks [75]. Furthermore, capacity

achieving input distribution for Gaussian channel with half-duplex/idealised

duty cycle constraint was proved to be discrete by Lei et al. [112]. Zlatanov et
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al. [115] extended these results to a two-hop half-duplex relay channel and

computed the capacity.

All the above results were obtained for memoryless relay channels. In

[76], Marina et al. carried out pioneering work on capacity theorems for

relay channels with finite length intersymbol interference (ISI), or equivalently

with memory. For such channels, the authors showed the capacity-achieving

transmission strategy of the relay and proved a special structure for the capacity

achieving distributions of the source and relay signals.

4.1.2 Finite-State Models

Markov sources were first considered by Shannon in his landmarking paper [99],

in which Shannon computed the maximal entropy rate of a discrete-time Markov

source, or equivalently the noise-free capacity of constrained sequences. In the

presence of the noise, the computation of capacity of Markovian inputs sending

over a noisy channel has long been an open problem[111, 94, 106]. Zehavi and

Wolf [111], and independently, Shamai and Kofman [98] considered the noisy

channel with run-length limited sequences and derived a set of analytical lower

and upper bounds on the capacity. Arnold et al. [5], Sharma and Singh [100],

Pfister et al. [86] proposed a Monte Carlo method for computing the exact

mutual information of a finite-state machine channel with Markovian inputs.

In order to maximize mutual information of Markovian inputs transmitted

over a finite-state machine channel, a Blahut-Arimoto Algorithm for Markovian

inputs was proposed in [63]. Vontobel et al. [106] extend this to a generalised

Blahut-Arimoto Algorithm (GBAA) considering local convergence properties.

The global convergence of the GBAA requires the concavity of the mutual

information between input and output; and the concavity of certain conditional

entropy. Han [46] proposed a randomised algorithm to compute the capacity of

a finite-state channel which only requires the concavity of mutual information.

Han also showed in [47], that the concavity conjuncture of mutual information

in finite-state machine channel does not hold in some cases. Hence, despite

the good performance of these algorithms in many practical examples, the

convergence of these algorithms, in general, is not guaranteed.
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Figure 4.4 A two-hop relay channel.

In this chapter, we consider a two-hop relay channel (see Figure 4.4), where

the relay is

• Markovian constrained, i.e., the symbols sent by the relay are generated

by a finite-state machine;

• half-duplex.

4.2 System Model

A two-hop half-duplex relay channel, as depicted in Figure 4.4, is denoted

by (X × U , p(v, y|x, u), V × Y). The channel is defined by four alphabet sets:

X , U , V , Y and a conditional probability function p(v, y|x, u) on V × Y for given

inputs Xn ∈ X and Un ∈ U . For the n-th transmission cycle, the source sends

a symbol Xn ∈ X to the relay and the relay sends a symbol Un ∈ U to the

destination over the channel p(v, y|x, u). The alphabets X , U , V , Y are assumed

to be finite and the relay channel is memoryless in the sense that (vn, yn)
depends on only current transmitted symbols (xn, un).

We emphasize that the difference between our setting and an ordinary

two-hop relay channel is that the relay is not free to choose every letter in

U during each transmission; instead, the relay is Markovian constrained i.e.,

sequences transmitted by relay are governed by a finite-state machine. We

further consider the relay to be half-duplex.

A (2NR, N) code for the two-way relay channel consists of:

• a set of messages {1, 2, ..., 2NR},

• an encoder that maps each message w into a codeword xN
1 (w) of length

N ,

• a relay with a Markovian encoder that generates a symbol un(vn−1
1 , un−1)

depending on the past sequence vn−1
1 and the previously emitted symbol
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un−1, except for u2(v1) which is solely dependent on the first received

symbol v1,

• a decoding function that maps each received sequence yN
1 into an estimate

ŵ(yN
1 ).

A rate R is achievable if there exists a sequence of (2NR, N) codes with P (N)
e =

Pr{Ŵ 6= W} → 0, as N → ∞. Channel capacity C is defined as the supremum

over the set of achievable rates.

4.2.1 Markovian Constraint

We consider a relay node that transmits constrained sequences UN
1 generated

by a finite-state machine to the destination. Denote Sn the machine’s state at

time n, with realization sn ∈ S , {1, ..., M}. We assume that the sequence of

states Sn forms a time-invariant Markov chain which is characterized by its

initial state S0 and a probability transition matrix P with the entries Pij being

the state transition probabilities of the Markov process denoted by

Pij = Pr(Sn+1 = j|Sn = i) ∀i ∈ S, j ∈ S. (4.1)

For each row, we have
∑M

j=1 Pij = 1. We define T to be the set of all valid
transition from state i to state j, i.e., if a Markov state sequence can be taken

from state i to state j with non-zero probability, then it is a valid transition

and (i, j) ∈ T . In addition, we assume that the Markov chain is finite-state,

irreducible, and aperiodic so that the chain has a unique stationary distribu-

tion µ = [µ1, µ2, ..., µM ], and any initial distribution tends to the stationary

distribution as n → ∞. This stationary distribution is called the steady-state

distribution satisfying the stationary condition

∑
i:(i,j)∈T

µiPij = µj , (4.2)

and
∑M

j=1 µj = 1.

The symbol Un transmitted by relay is produced by a valid transition from

state Sn−1 to Sn. Once the initial state S0 is determined, there is a one-to-one

correspondence between the input sequences UN
1 and the state sequences SN

1
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for the relay-to-destination channel; therefore, the mutual information rate

[41] for relay-to-destination channel may be expressed as

I(U ; Y ) = lim
N→∞

1
N

I(UN
1 ; Y N

1 ) = lim
N→∞

1
N

I(SN
1 ; Y N

1 |S0)
(a)= lim

N→∞

1
N

I(SN
1 ; Y N

1 ) = I(S; Y ) , (4.3)

where (a) follows from the fact that the choice of initial state does not affect

mutual information [98].

Remark: In this work, we focus on binary constrained sequences sent by a relay

node in which the inputs for relay-to-destination channel Un take values on

the alphabet U = {0, 1}, however our results also extend to the case of a larger

alphabet size.

4.2.2 Half-Duplex Constraint

We assume that the relay is half-duplex. In particular, the source is allowed to

transmit symbols Xn when the relay is sending symbol Un = 0, i.e., the relay

is in reception mode. Otherwise, when the relay is in transmission mode, i.e.,

Un 6= 0, the relay ignores what the source transmits and the source-to-relay

channel is idle. This can be modeled as

Vn =

V ′
n if Un = 0

idle if Un 6= 0
(4.4)

where V ′
n takes value on V. The probabilities of the relay in reception and

transmission modes are denoted by Pr(Un = 0) and Pr(Un 6= 0), respectively.

Let Q be the set of all transitions from state i to state j that are labeled with 0,

i.e., (i, j) ∈ Q. Under our assumption on the Markov chain, we have

Pr(Sn−1 = i) = µi ∀(i, j) ∈ Q (4.5)

Pr(Sn = j|Sn−1 = i) = Pij ∀(i, j) ∈ Q . (4.6)
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By law of total probability, the probability of the relay being in the reception

mode can be written as

Pr(Un = 0) =
∑

i,j:(i,j)∈Q
µiPij . (4.7)

4.3 Cut-set Bound

We study the capacity of a two-hop relay channel with a Markovian constrained

relay.

Lemma 3 (Cut-Set Bound). For a two-hop relay channel with a Markovian
constrained relay, the capacity C is upper bounded by

C ≤ lim
N→∞

sup
p(xN

1 ,uN
1 )

min


1
N

N∑
n=1

I(Xn; Vn|Un)

1
N

I(UN
1 ; Y N

1 )

 . (4.8)

Proof. Given any (2NR, N) code for the relay channel with a Markovian con-

strained relay, the p.m.f on the joint ensemble W, X, U , V , Y is given by

p(w, x, u, v, y) = p(w)p(x|w)p(u2|v1)

·
N∏

n=3
p(un|v1, ..., vn−1, un−1)

N∏
n=1

p(vn, yn|xn, un) , (4.9)

where the input for relay-to-destination channel Un is a function of Un−1 and

all past V n−1
1 . For a two-hop relay channel with a Markovian constraint relay,

we have

C = lim
N→∞

sup
p(xN

1 ,uN
1 )

I(W ; Y )

where

I(W ; Y ) ≤ min


I(UN

1 ; Y N
1 )

N∑
n=1

I(Xn; Vn|Un)

 . (4.10)
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The first inequality is straightforward, consider

I(W ; Y ) = H(Y N
1 ) − H(Y N

1 |W )
(a)
≤ H(Y N

1 ) − H(Y N
1 |W, UN

1 )

≤ H(Y N
1 ) − H(Y N

1 |UN
1 )

= I(UN
1 ; Y N

1 ) , (4.11)

where (a) follows from the fact that conditioning reduces entropy.

To establish the second inequality, consider

I(W ; Y ) ≤ I(W ; V , Y )

=
N∑

n=1
I(W ; Vn, Yn|V n−1

1 , Y n−1
1 )

(b)=
N∑

n=1
I(W ; Vn, Yn|V n−1

1 , Y n−1
1 , Un)

=
N∑

n=1
(H(Vn, Yn|V n−1

1 , Y n−1
1 , Un)

− H(Vn, Yn|W, V n−1
1 , Y n−1

1 , Un))

≤
N∑

n=1
(H(Vn, Yn|V n−1

1 , Y n−1, Un)

− H(Vn, Yn|W, V n−1
1 , Y n−1, Xn, Un))

(c)=
N∑

n=1
(H(Vn, Yn|Un) − H(Vn, Yn|Xn, Un))

=
N∑

n=1
(H(Vn|Un) − H(Vn|Xn, Un))

=
N∑

n=1
I(Xn; Vn|Un) , (4.12)

where (b) is valid since Un is a function of past relay outputs V n−1
1 and past

input Un−1. The past input Un−1 is again a function of V n−2
1 and Un−2 until U2

which is a function solely depending on V1. Knowing V n−1
1 , we can generate

the relay input Un without the knowledge of W . Equality (c) is valid due to the

discrete memorylessness of the relay channel, i.e., (Vn, Yn) and (W, V n−1
1 , Y n−1

1 )
are conditionally independent given (Xn, Un).
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Lemma 4. The upper bound in (4.8) can be further expanded to

C ≤ lim
N→∞

sup
p(x|u=0),Pij

min


∑

i,j:(i,j)∈Q
µiPijI(X; V |U = 0)

1
N

I(UN
1 ; Y N

1 )

 . (4.13)

Proof. Consider the first inequality in (4.8), where

1
N

N∑
n=1

I(Xn; Vn|Un)

= 1
N

N∑
n=1

(
Pr(Un = 0)I(Xn; Vn|Un = 0)

+ Pr(Un 6= 0)I(Xn; Vn|Un 6= 0)
)

(a)=
∑

i,j:(i,j)∈Q
µiPij · 1

N

N∑
n=1

I(Xn; Vn|Un = 0) (4.14)

where (a) follows (4.7) and I(Xn; Vn|Un 6= 0) = 0 when the relay is in transmis-

sion mode. We then follow the standard time sharing argument by introducing

a new random variable Z to be uniformly distributed over [1 : N ] and set

X , XZ , V , VZ , U , UZ and Y , YZ since Z → (X, U) → (V, Y ), (4.14)

becomes

∑
i,j:(i,j)∈Q

µiPij · I(X; V |U = 0, Z)

≤
∑

i,j:(i,j)∈Q
µiPij · I(X; V |U = 0) (4.15)

Substituting the above into (4.8) yields (4.13).
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0u 0 1 0 1 0 0 1

x1x x2 x4 x6 x7idle idle idle

Figure 4.5 Timing Scheme: the source node is able to send messages during
transmission of these zero symbols.

w1 w2 w3 wB−1 1

Block 1 B − 12 3 B

N

b b b

b b b

Figure 4.6 Block Markov coding: transmitting B − 1 blocks in B block transmis-
sion.

4.4 Capacity achieving scheme

Theorem 3. For a two-hop half-duplex relay channel with a Markovian con-
strained relay, the capacity is given by

C = lim
N→∞

max
p(x|u=0),Pij

min


∑

i,j:(i,j)∈Q
µiPijI(X; V |U = 0)

1
N

I(UN
1 ; Y N

1 )

 . (4.16)

The capacity is achieved, since

1. in the case of two-hop half-duplex relay channel, the zero symbols (Un =
0) from the relay are part of the codeword that conveys messages to the

destination; meanwhile, the source node is able to send messages during

transmission of these zero symbols as shown in Figure 4.5.

2. the block Markov coding scheme is conducted as shown in Figure 4.6.

Considering B blocks of transmission, each of N symbols, a sequence of

B − 1 messages wb ∈ [1, 2NR], b = 1, 2, ..., B − 1 was sent from the source

to the relay, and the relay then decodes the message at the end of each

block and sends it to the destination with one block delay. Hence, B − 1
messages will be transmitted over B N -transmission blocks. As B → ∞,

for fixed N , the rate R(B − 1)/B is arbitrarily close to R [25].
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By block Markov coding, the source knows what the relay transmits. This

guarantees that the positions of zero symbols (Un = 0) from the relay are

revealed to the source node and their proportion in each block b is given by

(4.7). In the following, we give the complete proof of Theorem 3.

Proof. Codebook generation. For each block b ∈ [1 : B], first generate 2NR

sequences uN
1 (wb−1) of length N according to p(u1)

∏N
n=2 p(un|un−1), wb ∈ [1 :

2NR]. Then generate 2NR sequences xN
1 (wb|wb−1) of length N according to∏N

n=1 p(xn|un(wb−1)), wb ∈ [1 : 2NR]. Note that since we are only allowed

to transmit symbols from the source to the relay while the relay is in recep-

tion mode, i.e., un = 0, it is then equivalent to generate xN
1 according to∏

n∈[1:N ]
un=0

p(xn|un = 0)∏n∈[1:N ]
un 6=0

p(xn|un 6= 0). The codeword xN
1 consists of two

parts, x′ and x′′. The first part x′ is generated according to
∏

n∈[1:N ]
un=0

p(xn|un = 0),

which contains N · Pr(Un = 0) symbols to be transmitted when the relay is in

reception mode. The rest N · Pr(Un 6= 0) symbols x′′ are generated according

to
∏

n∈[1:N ]
un 6=0

p(xn|un 6= 0) which are the idle symbols in codeword xN
1 known by

the relay. Hence xN
1 (wb|wb−1) is of length N but only contains N · Pr(Un = 0)

symbols where each symbol is independently generated according to p(x|u = 0).
This defines the random codebook

Cb =
{
(x′(wb|wb−1), u(wb−1))

}
, (4.17)

where wb−1, wb ∈ [1 : 2NR] for each b ∈ [1 : B]. The entire codebook is revealed

to the source, the relay and the destination prior to communication.

Encoding: To send the message index w ∈ [1 : 2NR], the source sends the

codeword x′(wb|wb−1) from Cb.

Relay encoding: Let A(|R|)
ε defined in [26] denote the set of jointly typical

sequences (x′, v′) ∈ X |R| × V |R| under the distribution p(x, v|u = 0), where

|R| = N · Pr(Un = 0). At the end of block b, the relay finds the unique w̃b such

that (x′, v′) ∈ A(|R|)
ε . If there are no such codeword or more than one codeword,

then an error is declared. In block b + 1, the relay transmits u(w̃b) from Cb+1.

Decoding: Let A(N)
ε denote the set of jointly typical sequence (u, y) ∈ UN ×

YN . At the end of block b + 1, the destination determines the unique ŵb such
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that (u(ŵb), y(b + 1)) ∈ A(N)
ε . If there are no such codeword or more than one

codeword, then an error is declared.

Analysis of probability of error: We analyse the probability of error averaged

over codes. Assume without loss of generality that Wb = 1. Let W̃b be the relay

message estimate at the end of block b. The decoder makes an error only if one

of the following events occur:

Ẽ(b) =
{
W̃b 6= 1

}
,

E1(b) =
{
(U (W̃b), Y (b + 1) /∈ A(N)

ε

}
,

E2(b) =
{
(U (w′

b), Y (b + 1)) ∈ A(N)
ε for some w′

b 6= W̃b

}
,

Thus the probability of error is upper bounded by

Pr(E(b)) = Pr{Ŵb 6= 1}

≤ Pr(Ẽ(b) ∪ E1(b) ∪ E2(b))

≤ Pr(Ẽ(b)) + Pr(E1(b)) + Pr(E2(b)) ,

By the law of large numbers, Pr(E1(b)) tends to zero as N → ∞. The Shannon-

McMillan-Breiman theorem extends the Asymptotic Equipartition Property

(AEP) to stationary ergodic inputs over memoryless channel, then the joint

typicality decoding can be adopted for jointly ergodic processes (U , Y ) [26].

Therefore, Pr(E2(b)) tends to zero as N → ∞ if R < 1
N

I(U ; Y ). To upper

bound the first term Pr(Ẽ(b)), define

Ẽ1(b) =
{
(X ′(1|W̃b−1), V ′(b)) /∈ A(|R|)

ε

}
,

Ẽ2(b) =
{
(X ′(w′

b|W̃b−1), V ′(b)) ∈ A(|R|)
ε for some w′

b 6= 1
}

,

Then

Pr(Ẽ(b)) ≤ Pr(Ẽ(b − 1) ∪ Ẽ1(b) ∪ Ẽ2(b))

≤ Pr(Ẽ(b − 1)) + Pr(Ẽ1(b) ∩ Ẽc(b − 1)) + Pr(Ẽ2(b)) .
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By the law of large numbers, Pr(Ẽ1(b) ∩ Ẽc(b − 1)) tends to zero as N →
∞. By joint typicality decoding, Pr(Ẽ2(b)) tends to zero as N → ∞ if R <∑

i,j:(i,j)∈Q µiPij · I(X; V |U = 0). Note that W̃0 = 1 by definition. Hence by

induction Pr(Ẽ(b)) tends to zero as N → ∞ for every b ∈ [1 : B − 1]. By Lemma

4, we have the converse. This completes the proof of achievability.

4.5 Conclusion

In this chapter, we provide introduction to two cornerstones on which the

second part of the thesis builds: the relay channels and finite-state models. The

capacity theorems for a two-hop half-duplex relay channel with a Markovian

constrained relay are studied. It first focuses on deriving the cut-set bound,

i.e., an upper bound on the capacity. Then this chapter presents the timing

strategy which satisfies the half-duplex constraint and it is shown to achieve

this bound. This leads to the general capacity formula for a two-hop half-duplex

relay channel with a Markovian constrained relay.



Chapter 5

Achievable Rates and Capacity
Bounds

In this chapter, we consider the case where the relay-to-destination link is

noise-free, the optimal state transition probabilities that give rise to the

capacity is determined. This result links the relay channel to Shannon’s

entropy maximisation by introducing a relay adjacency matrix. For the

case where both source-to-relay and relay-to-destination links are noisy,

lower bounds on the achievable information rates for various constrained

sequences are computed. We conjecture that our numerical bounds are tight.

The numerical computed capacities and optimised information rates are

significantly higher than the rate achieved by the traditional predetermined

time-sharing scheme.

In this chapter, a special type of Runlength limited (RLL) constraint, namely,

the hold time constraint, is introduced in section 5.1. In section 5.2, we

derived the capacity achieving input for the case that the relay-to-destination

link is noiseless. We further computed a tight lower bound on the capacity

via GBAA in section 5.3. Numerical results are discussed in section 5.4.

5.1 Introdcution

MARKOVIAN source based information theoretic models have been exten-

sively studied in the literature for point-to-point communications over
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1 2 3
0 0 0

d+ 1
0

d+ 2
0

k
0

k + 1

1 1 1 1

Figure 5.1 State transition diagram for a binary RLL([d, k], L1) constrained
sequence.

noisy and noiseless channels (see references [99, 98, 94, 111, 5, 100, 86, 63,

106, 47]).

We aim at finding capacity of a two-hop half-duplex relay channel, where

the relay uses constrained sequences, e.g., RLL sequences, due to

• joint energy and information transmission requirements [40], and/or

• existence of switching noise [92] [19].

We further consider binary RLL sequences and adopt the definition in [9] as

shown below.

Definition 1 (RLL(L0, L1) sequences [9]). A binary runlength limited con-
strained sequence RLL (L0, L1) has L0 and L1 as the sets of admissible runlengths
of binary symbol 0 and 1, respectively.

Note that the conventional runlength limitation in [94] can be included in

this RLL definition as a special case as introduced below.

Definition 2 (RLL([d, k], L1) sequences [94]). A binary runlength limited con-
strained sequence RLL([d, k], L1) with its state transition diagram in Fig. 5.1
satisfies the following conditions simultaneously:

1. [d, k]-constraint – the runs of 0’s between successive 1’s have length at least
d and at most k,

2. L1-constraint – the runs of 1’s are dependent on L0 = [d, k], and can be:

(a) For d = 0, k = 1, L1 = [1, ∞);

(b) For d = 0, k > 1, L1 = [0, ∞);

(c) For d > 0, L1 = [0, 1].
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Figure 5.2 State transition diagram for a binary RLL({0} ∪ [1 + g, ∞), {0} ∪ [1 +
h, ∞)) constrained sequence.

As mentioned above, the first motivation of considering a relay with con-

strained sequences is due to the use of joint energy and information transfer in

a low-power wireless relay network [40], where the relay uses RLL([d, k], L1)
sequences with symbol 1 indicating one unit energy transfer and 0 no energy

transfer.

The other motivation is due to the existence of switching noise, an induced

ISI when switching a digital signal, caused by the relay’s switching between

reception mode and transition mode [19]. Switching noise can be avoided

by better hardware design or introducing a short guard time after switching

occurs [90]. Introducing a short guard time after a transition from reception-

to-transition mode and transition-to-reception mode results in RLL({0} ∪ [1 +
g, ∞), {0} ∪ [1 + h, ∞)) constrained sequences, defined as:

Definition 3 (RLL{0} ∪ [1 + g, ∞), {0} ∪ [1 + h, ∞)) constrained sequences). A
binary runlength limited constrained sequence RLL({0}∪[1+g, ∞), {0}∪[1+h, ∞))
constrained sequence with its state transition diagram in Figure 5.2 must satisfy
the following two conditions simultaneously:

1. {0}∪ [1+g, ∞)-constraint – if no switching then the runlength of 0’s between
successive 1’s is 0, otherwise the runlength of 0’s after a 10 must be at least
g,

2. {0}∪[1+h, ∞)-constraint – if no switching then the runlength of 1’s between
successive 0’s is 0, otherwise the runlength of 1’s after a 01 must be at least
h.

This can be easily applied to our two-hop half-duplex relay channel, where

symbol 0 represents relay’s reception mode, and 1 its transmission mode. Mo-
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tivated by the above applications, we provide the general capacity analysis

on a two-hop relay channel with constrained sequences and give examples

when the relay has runlength limited constraints. When the relay-to-destination

link is noise-free, we derive the capacity achieving Markovian input. When

both source-to-relay and relay-to-destination links are noisy, tight lower bounds

on information rates can be computed and optimised using the generalised

Blahut-Arimoto algorithm (GBAA) [106] modified for this channel. Our nu-

merical results show that significant information rate gains are possible, when

compared to that of a predetermined time-sharing strategy.

This chapter is based on the research results reported in [HH18] by the

author.

5.2 Capacity with noise-free second link

Corollary 1. Consider a two-hop relay channel, where the relay-to-destination
link is noise-free and the relay is Markovian constraint. Then (4.16) in Theorem 3
becomes

Cnf = max
Pij

min


max

p(x|u=0)

∑
i,j:(i,j)∈Q

µiPij · I(X; V |U = 0)

∑
i,j:(i,j)∈T

µiPij log 1
Pij

 . (5.1)

Proof. For noise-free relay-to-destination link, given the stationary Markovian

constraint in (4.2), the second term in (4.16) becomes

lim
N→∞

1
N

I(UN
1 ; Y N

1 )= H(S2|S1)=
∑

i,j:(i,j)∈T
µiPij log 1

Pij

,

which can be optimised over Pij for (i, j) ∈ T .

In (4.16), we observe that, for all (i, j) ∈ Q, the source is allowed to transmit

information with a constant I(X; V |U = 0) when U = 0, where I(X; V |U = 0)
is solely associated with p(x|u = 0). Hence, we conclude the first term in (5.1),

which is maximized over p(x|u = 0) as well as Pij for (i, j) ∈ Q.

Below we provide the generalised maximum mutual information between

source and relay.
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Definition 4 (Relay Mutual Information Matrix I). The relay mutual information
matrix I has entries

Iij , max
p(x|i,j)

I(X; V |Sn−1 = i, Sn = j) (5.2)

for (i, j) ∈ T . In the special case of half-duplex relaying, (i, j) ∈ T and (i, j) 6∈ Q
then Iij , 0. For invalid transitions (i, j) /∈ T , we define Iij , −∞.

Corollary 2. Using the above definition, (5.1) in Corollary 1 becomes

Cnf = max
Pij

min



∑
i,j:(i,j)∈T

µiPij · Iij

∑
i,j:(i,j)∈T

µiPij log 1
Pij

 . (5.3)

For a noise-free point-to-point channel, the computation of the maximum

entropy of Markov source can be related to the adjacency matrix associated

with the corresponding finite-state machine (see [99]). Motivated by this

method, for a relay channel, we define relay adjacency matrix, which leads to

the maxentropic state transition probabilities.

Definition 5 (Relay Adjacency Matrix A(ζ)). The relay adjacency matrix A(ζ)
is given by its entry Aij(ζ) defined as follows

Aij(ζ) =

2
1−ζ

ζ
·Iij if (i, j) ∈ T

0 otherwise
(5.4)

for some ζ ∈ [0, +∞).

Remark: When ζ = 1, the relay adjacency matrix A(1) is the standard adjacency

matrix in [99].

Next we state the maxentropic state transition probabilities for the Marko-

vian constrained relay in a two-hop half-duplex relay channel. Consider A(ζ) in

Definition 5 and let l(ζ) = [l1(ζ), l2(ζ), ..., lM(ζ)] and rT(ζ) = [r1(ζ), r2(ζ), ..., rM(ζ)]T

be the left and right eigenvectors, respectively, corresponding to a real eigen-

value λ(ζ) of the relay adjacency matrix A(ζ). Let c(ζ) = 1∑M

i=1 li(ζ)·ri(ζ)
be a

normalisation constant for l(ζ) and r(ζ).
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Theorem 4 (Maxentropic State Transition Probabilities). For a two-hop half-
duplex relay channel with a Markovian constrained relay, the optimal (maxen-
tropic) state transition probabilities P∗

ij and stationary distributions µ∗
i are of the

following forms

P∗
ij = rj(ζ)

ri(ζ) · Aij(ζ)
λ(ζ) ∀i, j : (i, j) ∈ T , (5.5)

µ∗
i = c(ζ) · li(ζ) · ri(ζ) ∀i : (i, j) ∈ T , (5.6)

for some ζ ∈ [0, +∞).

Proof. Let Qij = µiPij which satisfies
∑

i,j:(i,j)∈T Qij = 1 and (5.3) becomes

Cnf = max
Qij

min



∑
i,j:(i,j)∈T

Qij · Iij

∑
i,j:(i,j)∈T

Qij log
(∑

j′:(j′,i)∈T Qj′i

Qij

)


. (5.7)

The rest of the proof follows directly from solving (5.7) with respect to Qij.

Notice that the first term in (5.7) is a linear function in Qij and the second term

is concave in Qij which can be proved using log-sum inequality [26]. Since the

concave function is always bounded by 0 and log λmax(1), there are two cases

to be considered.

Case 1: The capacity is limited by that of relay-to-destination link, i.e.,

the linear function is above the concave function while the concave function

reaches its maximum. Hence, we have

∑
i,j:(i,j)∈T

Qij

[
Iij − log

(∑
j′:(j′,i)∈T Qj′i

Qij

)]
> 0 . (5.8)

In this case, we only need to consider the capacity of the second link. The

unique optimal probability assignment P∗
ij that gives rise to the capacity is given

by [99]

P∗
ij = rj(1)

ri(1) · Aij(1)
λmax(1) (5.9)
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where ζ = 1 and λmax(1) is the maximum eigenvalue of the standard adjacency

matrix A(1) and the noise-free capacity is log λmax(1).
Case 2: The capacity of source-to-relay link is less than or equal to the

capacity of relay-to-destination link, i.e.,

∑
i,j:(i,j)∈T

Qij

[
Iij − log

(∑
j′:(j′,i)∈T Qj′i

Qij

)]
≤ 0 . (5.10)

Since in (5.7), the first term is a linear function in Qij and the second term is a

concave function in Qij, hence the maximum is achieved when they are equal.

This leads to the following optimization problem with linear cost function and

convex inequality constraint:

maximize
∑

i,j:(i,j)∈T
Qij · Iij (5.11)

subject to Qij ≥ 0 , (C.1)∑
i,j:(i,j)∈T

Qij − 1 = 0 , (C.2)

∑
j′′:(j′′,i)∈T

Qj′′i −
∑

j:(i,j)∈T
Qij = 0 ∀ i, (C.3)

∑
i,j:(i,j)∈T

Qij

[
Iij − log

(∑
j′:(j′i)∈T Qj′i

Qij

)
− Tij

]
≤ 0 (C.4)

where Tij = 0, for noise-free link in all valid transition (i, j) ∈ T (while,
for noisy case, Tij is defined in Definition 6, which can be any real number
associated with the valid transition (i, j) ∈ T ). The rest of this proof is a
straightforward routine by introducing Lagrange multipliers (η, γi, ζ) to the
constraints (C.2), (C.3), and (C.4) correspondingly. We now consider the
following Lagrangian

L =
∑

i,j:(i,j)∈T
Qij Iij − η

( ∑
i,j:(i,j)∈T

Qij − 1
)

−
∑

i:(i,j)∈T
γi

( ∑
j′′:(j′′,i)∈T

Qj′′i −
∑

j:(i,j)∈T
Qij

)

− ζ

( ∑
i,j:(i,j)∈T

Qij

[
Iij − log

(∑
j′:(j′,i)∈T Qj′i

Qij

)
− Tij

])
. (5.12)
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We have to solve the following equations

∂L
∂Qij

= 0 (5.13)

and yields

∂L
∂Qij

= Iij − η − γj + γi − ζ

[
Iij + log Pij − Tij

]
= 0 . (5.14)

We get

log Pij = Tij + 1 − ζ

ζ
Iij − η

ζ
− γj

ζ
+ γi

ζ
. (5.15)

Notice that Pij = 2{Tij+ 1−ζ
ζ

Iij− η
ζ

−
γj
ζ

+ γi
ζ

} ≥ 0, hence the constraint (C.1) is always

satisfied. Let Aij be the entries for the relay adjacency matrix A

Aij(ζ) =

2Tij · 2
1−ζ

ζ
·Iij ∀(i, j) ∈ T

0 otherwise
. (5.16)

Further, let rT(ζ) = [r1(ζ), r2(ζ), ..., rM(ζ)]T be the vector with entries ri(ζ) =
2− γi

ζ and λ(ζ) = 2
η
ζ , (5.15) yields

Pij = rj(ζ)
ri(ζ) · Aij(ζ)

λ(ζ) . (5.17)

From constraint (C.2), we have

∑
j:(i,j)∈T

rj(ζ)
ri(ζ) · Aij

λ(ζ) = 1

∑
j:(i,j)∈T

Aij(ζ) · rj(ζ) = λ(ζ) · ri(ζ)

A(ζ) · r(ζ) = λ(ζ) · r(ζ) . (5.18)
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where r(ζ) is the eigenvector of the matrix A(ζ) with eigenvalue λ. Similarly,

for constraint (C.3), we obtain

∑
i:(i,j)∈T

µi
rj(ζ)
ri(ζ) · Aij(ζ)

λ(ζ) = µj

∑
i:(i,j)∈T

µi

ri(ζ) · Aij(ζ) = µj

rj(ζ) · λ(ζ) . (5.19)

Let l(ζ) = [l1(ζ), l2(ζ), ..., lM(ζ)] be the left eigenvector of A(ζ) with entries

li(ζ) = µi/(c(ζ) · ri(ζ)) such that

l(ζ) · A(ζ) = l(ζ) · λ(ζ) . (5.20)

Since the summation of µi has to be 1, we have

µi = c(ζ) · li(ζ) · ri(ζ) (5.21)

where c = 1/(∑i:(i,j)∈T li(ζ) · ri(ζ)) is the normalization constant. Finally, sub-

stituting (5.17) and (5.21) into constraint (C.4), yields

∑
i:(i,j)∈T

c(ζ) · li(ζ) · ri(ζ)
∑

j:(i,j)∈T

(
rj(ζ)
ri(ζ) · Aij(ζ)

λ(ζ)

·
[

log
(

rj(ζ)
ri(ζ) · Aij(ζ)

λ(ζ)

)
− Tij + Iij

])
= 0 , (5.22)

and we have

c(ζ)
λ(ζ)

∑
i,j:(i,j)∈T

li(ζ) · rj(ζ)·Aij(ζ) · Iij = ζ · log λ(ζ) . (5.23)

By the Perron-Forbenius theorem [54], we have λ(ζ) = λmax(ζ). This completes

the proof of Theorem 4.

It turns out that constraint (C.1) is always satisfied and hence it is not

included in the optimisation problem. The solution to this optimisation problem

is

P∗
ij = rj(ζ)

ri(ζ) · Aij(ζ)
λmax(ζ) (5.24)
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{Qij}

∑
i,j:(i,j)∈T Qij · log

[∑
j′ :(i,j′)∈T Qij′

Qij

]

∑
i,j:(i,j)∈T Qij · Iij

Case 2: C = ζ · logλmax(ζ)b

b

Case 1: C = log λmax(1)

Figure 5.3 Graphical representation of optimization problem (5.11).

where ζ is the Lagrange multiplier for the constraint (C.4) and lies in [0, +∞).
Substituting the solutions µ∗

i and P∗
ij into (C.4) yields

c(ζ)
λmax(ζ)

∑
i,j:(i,j)∈T

li(ζ) · rj(ζ) · Aij(ζ) · Iij = ζ · log λmax(ζ) (5.25)

and ζ can be found by solving the above equation that gives rise to the largest

value of ζ · log λmax(ζ).
Remarks:

i) Constraint (5.10) implies that an average information rate requirement

is imposed on the relay channel, i.e.,
∑

i,j:(i,j)∈T QijIij ≤ H(S2|S1), which

effectively controls the frequency of which sequence to occur.

ii) A closely related topic would be the problem of a Markov source over a

costly channel [60, 64], in which, a cost wij is assigned to every valid tran-

sition (i, j) ∈ T and the average cost is at most ρ, i.e.,
∑

i,j(i,j)∈T Qijwij ≤
ρ.

Corollary 3 (Maximal-Eigenvalue Characterization of the noise-free Capacity).

For a two-hop half-duplex relay channel with a Markovian constrained relay and
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a noise-free relay-to-destination link, the capacity is given by

Cnf = ζ · log λmax(ζ) (5.26)

where λmax(ζ) is the largest eigenvalue of A(ζ) for some fixed ζ ∈ [0, +∞).

Proof. Corollary 3 follows directly from Theorem 4. We have

H(S2|S1) =
∑

i:(i,j)∈T
µ∗

i

∑
j:(i,j)∈T

P∗
ij log 1

P∗
ij

= −
∑

i:(i,j)∈T
c(ζ) · li(ζ) · ri(ζ)

∑
j:(i,j)∈T

(
rj(ζ)
ri(ζ) · Aij(ζ)

λ(ζ)

×
[

log
(

rj(ζ)
ri(ζ) · Aij(ζ)

λ(ζ)

)
− Tij

])

= − c(ζ)
λ(ζ)

∑
i,j:(i,j)∈T

li(ζ) · rj(ζ) · Aij(ζ) · log rj(ζ)
︸ ︷︷ ︸∑

j:(i,j)∈T µj log rj(ζ)

+ c(ζ)
λ(ζ)

∑
i,j:(i,j)∈T

li(ζ) · rj(ζ) · Aij(ζ) · log ri(ζ)
︸ ︷︷ ︸∑

i:(i,j)∈T µi·log ri(ζ)

− c(ζ)
λ(ζ)

∑
i,j:(i,j)∈T

li(ζ) · rj(ζ) · Aij(ζ) · 1 − ζ

ζ
Iij

︸ ︷︷ ︸
1−ζ

ζ

∑
i,j:(i,j)∈T µiPij Iij

+ c(ζ)
λ(ζ)

∑
i,j:(i,j)∈T

li(ζ) · rj(ζ) · Aij(ζ) · log λ(ζ)
︸ ︷︷ ︸

log λ(ζ)

= −1 − ζ

ζ
H(S2|S1) + log λ(ζ)

= ζ · log λ(ζ) . (5.27)

Thus, for a fixed ζ, the entropy rate is maximized for λ(ζ) being the largest

eigenvalue of the relay adjacency matrix A(ζ). For an irreducible and non-

negative matrix A(ζ), the Perron-Forbenius theorem guarantees that there exists

an unique real, positive eigenvalue λmax [54]. The right and left eigenvectors

rT(ζ), l(ζ) corresponding to the eigenvalue λmax(ζ) have positive and non-
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1 2

3

P11/0

P12/1

P22/1

P23/0P31/0

Figure 5.4 State transition diagram with transition probabilities for a RLL({0} ∪
[2, ∞), [0, ∞)) constrained sequence.

1 2

3

0 [ I11 ]

1 [ 0 ]

1 [ 0 ]

0 [ I23 ]0 [ I31 ]

Figure 5.5 State transition diagram labeled with its mutual information in each
transition for half-duplex RLL({0} ∪ [2, ∞), [0, ∞)) constraint.

negative entries, respectively. Hence, the maxentropic stationary distributions

µ∗
i and state transition probabilities P∗

ij will have positive probabilities.

Remark: The logarithm of the maximal eigenvalue of a noise-free adjacency

matrix A(1), i.e., log λmax(1), is the maximum achievable noise-free entropy

rate of a Markov process according to [99]. Assuming that both links are

noiseless, the maximum achievable noise-free entropy rate with conventional

time sharing approach is given by Rconv = 1
2 log λmax(1) bits/use.

In the following, we will consider an example of a two-hop half-duplex relay,

where the relay adopts RLL({0} ∪ [2, ∞), [0, ∞)) constraint with its finite-state

machine shown in FIGURE 5.4. We also show the same state transition diagram

but labeled with mutual information in each transition in Figure 5.5.

Example 1. Consider a two-hop half-duplex relay, where the relay has RLL({0} ∪
[2, ∞), [0, ∞)) constraint. Assuming that the first link is a binary symmetric
channel (BSC) with cross-over probability p1 = 0.1 and the second link is noise-
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free, we obtain ζ = 0.1609 and Cnf = 0.4743. We also find

A =


2.4458 1 0

0 1 2.4458
2.4458 0 0

 ,

λmax = 7.7157 , log λmax = 2.9478 ,

l = [0.8225 0.4631 0.3304] ,

rT = [0.6833 0.5436 0.4875] .

The resulting Markov chain has

P =


0.7134 0.2866 0

0 0.3602 0.6398
1 0 0

 ,

µ = [0.5765 0.2582 0.1652] .

5.3 Noisy Capacity with both noisy links and its

lower bound obtained via GBAA

Now we investigate the noisy capacity by means of GBAA [106] to a two-hop

half-duplex relay channel with a Markovian constrained relay. It was shown

in [47] that the global convergence of GBAA is in general not theoretically

guaranteed. Nevertheless, we may still find a good set of state transition

probabilities that give rise to a very tight lower bound on capacity via GBAA.

Consider a two-hop half-duplex relay channel, where the relay-to-destination

link is noisy. We are interested in computing its capacity

C = lim
N→∞

max
Pij

min


∑

i,j:(i,j)∈T
µiPij · Iij

1
N

I(UN
1 ; Y N

1 )

 (5.28)

Following Kavčić’s approach [63], by applying chain rule to the second term in

(5.28) yields
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1
N

I(UN
1 ; Y N

1 ) = I(SN
1 ; Y N

1 |S0)

= 1
N

N∑
n=1

I(Sn; Y N
1 |Sn−1)

= 1
N

N∑
n=1

H(Sn|Sn−1)︸ ︷︷ ︸
−
∑

i,j:(i,j)∈T µiPij log Pij

− 1
N

N∑
n=1

H(Sn|Sn−1, Y N
1 ) (5.29)

as N → ∞ and the entropy in the second term of (5.29) can be further written

as

− 1
N

N∑
n=1

H(Sn|Sn−1, Y N
1 ) = 1

N

N∑
n=1

E[log Pr(Sn|Sn−1, Y N
1 )]

= 1
N

N∑
n=1

∑
i,j:(i,j)∈T

µiPijEY N
1 |i,j[log Pr(Sn = j|Sn−1 = i, Y N

1 )]

where EY N
1 |i,j denotes the conditional expectation taken over the observation

Y N
1 when (Sn = j, Sn−1 = j). We define pn(i, j|Y N

1 ) and pn−1(i, Y N
1 ) be the

a-posteriori probabilities

pn(i, j|Y N
1 ) , Pr(Sn−1 = i, Sn = j|Y N

1 ) , (5.30)

pn−1(i|Y N
1 ) , Pr(Sn−1 = i|Y N

1 ) , (5.31)

and by using Bayes rules, (5.30) yields

− 1
N

N∑
n=1

H(Sn|Sn−1, Y N
1 )

=
∑

i,j:(i,j)∈T
µiPij

(
1
N

N∑
n=1

EY N
1 |i,j

[
log pn(i, j|Y N

1 )
pn−1(i|Y N

1 )

])
. (5.32)

To simplify this expression, we define the a-posteriori state transition weight

matrix T.
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Definition 6 (A-posteriori State Transition Weight Matrix T [4]). The a-posteriori
state transition weight matrix T is given by its entry

Tij = lim
N→∞

1
N

N∑
n=1

E
[

log pn(i, j|Y N
1 )

pn(i,j|Y N
1 )

µiPij

pn−1(i|Y N
1 )

pn−1(i|Y N
1 )

µi

]
(5.33)

For invalid transitions (i, j) /∈ T , we define Tij , −∞.

This allows us to simplify the general capacity (5.28) into the following

compact form

C = max
Pij

min



∑
i,j:(i,j)∈T

µiPij · Iij

∑
i,j:(i,j)∈T

µiPij

[
log 1

Pij

+ Tij

]


. (5.34)

If we assume that the a-posteriori state transition weight Tij can be computed,

then, similar to the noise-free case, in which we define the relay adjacency

matrix A(ζ), we may also link the noisy capacity to the adjacency matrix with

the corresponding finite-state machine by defining the noisy adjacency matrix

G and the noisy-relay adjacency matrix Ã(ζ). Here again, the noisy version of

the relay adjacency matrix Ã(ζ) leads to the solution to (5.34).

Definition 7 (Noisy Adjacency Matrix G [63]). The noisy adjacency matrix G
is given by its entry

Gij =

2Tij if (i, j) ∈ T

0 otherwise
. (5.35)

Definition 8 (Noisy-Relay Adjacency Matrix Ã(ζ)). The noisy-relay adjacency
matrix Ã(ζ) is given by its entry

Ãij(ζ) = Gij · Aij(ζ) =

2Tij · 2
1−ζ

ζ
·Iij if (i, j) ∈ T

0 otherwise
. (5.36)

for some ζ ∈ [0, +∞).



100 Achievable Rates and Capacity Bounds

Then the capacity is C = ζ log λ̃max(ζ) which can be achieved by

P∗
ij = r̃j(ζ)

r̃i(ζ) · Ãij(ζ)
λ̃max(ζ)

∀i, j : (i, j) ∈ T (5.37)

where λ̃max(ζ) is the maximum eigenvalue of the noisy-relay adjacency matrix

Ã(ζ) and r̃T(ζ) = [r̃1(ζ), r̃2(ζ), ..., r̃M(ζ)]T is the corresponding right eigenvec-

tor.

Remarks:

i) When ζ = 1, the noisy-relay adjacency matrix Ã(1) reduces to a noisy

adjacency matrix G.

ii) When the relay-to-destination channel is noise-free, the a-posteriori prob-

abilities pn(i, j|Y N
1 ) and pn−1(i|Y N

1 ) are either 0 or 1, we have Tij = 0
for all valid transitions (i, j) ∈ T . The noisy-relay adjacency matrix Ã(ζ)
reduces to a relay adjacency matrix A(ζ).

iii) The derivation of the maxentropic state transition probabilities (5.37) is

omitted since the proof of Theorem 4 already includes Tij.

Note that, although the exact value of Tij is not computable, an estimate of

the value Tij can be computed using the sum-product (BCJR, Baum-Welch)

algorithm [8] since the a-posteriori probabilities pn(i, j|Y N
1 ) and pn−1(i|Y N

1 ) are

the outputs of the sum-product algorithm, i.e., [63]

T̂ij = 1
N

N∑
n=1

log
[

pn(i, j|Y N
1 )

pn(i,j|Y N
1 )

µiPij

pn−1(i|Y N
1 )

pn(i|Y N
1 )

µi

]
. (5.38)

For N large, we have (with probability 1) limN→∞ T̂ij = Tij and let Ĝij = 2T̂ij ,

Âij = Ĝij · Aij. We are now ready to formulate the GBAA described in [106, 63]

to a two-hop relay channel with a Markovian relay node.

Case 1: First consider the case that the capacity is limited by the capacity

of relay-to-destination link in (5.34), i.e., the linear function is above the

concave function. While the concave function reaches its maximum, we have
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the following condition

∑
i,j:(i,j)∈T

Qij

[
Iij − log

(∑
j′:(i,j′)∈T Qij′

Qij

)
− Tij

]
> 0 . (5.39)

In this case, we only need to compute the noisy capacity of relay-to-destination

link. This then becomes the problem of finding the optimal Markovian input

over a point-to-point noisy channel considered in [63], in which GBAA was first

introduced to solve this problem.

Algorithm 2: GENERALISED BLAHUT-ARIMOTO ALGORITHM FOR CASE 1 [63]

Initialisation: Choose an arbitrary distribution Pij that satisfies the following

two conditions:

1. If (i, j) ∈ T then 0 < Pij < 1, otherwise Pij = 0; and

2. For each i, require that
∑

j:(i,j)∈T Pij = 1.

Repeat until convergence

Step 1: For N large, generate uN
1 according to Pij and pass them through the

noisy channel according to p(y|u) to get yN
1 .

Step 2: While keeping all Pij fixed, for each (i, j) ∈ T , run the sum product

algorithm and compute the estimate T̂ij.

Step 3: Compute the standard noisy adjacency matrix Â(1) as

Âij(1) =

2T̂ij if (i, j) ∈ T

0 otherwise

and find its maximal eigenvalue λ̂max(1) and its corresponding right and

left eigenvectors r̂T(1) and l̂(1), respectively.
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Step 4: For all (i, j) ∈ T , compute the transition probability matrix Pij and the

corresponding state distribution µi as

Pij = r̂j(1)
r̂i(1) · Âij(1)

λ̂max(1)
∀i, j : (i, j) ∈ T ,

µi = ĉ(1) · r̂(1) · l̂(1) ∀i : (i, j) ∈ T .

end

At the end of the execution of Algorithm 2, if condition (5.39) is not satisfied,

Case 2 is considered.

Case 2: The capacity of source-to-relay link is less than or equal to the

capacity of relay-to-destination link, i.e.,

∑
i,j:(i,j)∈T

Qij

[
Iij − log

(∑
j′:(i,j′)∈T Qij′

Qij

)
− Tij

]
≤ 0 (5.40)

Algorithm 3: GENERALISED BLAHUT-ARIMOTO ALGORITHM FOR CASE 2

Initialisation: Choose an arbitrary distribution Pij that satisfies the following

two conditions:

1. If (i, j) ∈ T then 0 < Pij < 1, otherwise Pij = 0; and

2. For each i, require that
∑

j:(i,j)∈T Pij = 1.

Repeat until convergence

Step 1: For N large, generate uN
1 according to Pij and pass them through the

noisy channel according to p(y|u) to get yN
1 .

Step 2: While keeping all Pij fixed, for each (i, j) ∈ T , run the sum product

algorithm and compute the estimate T̂ij.

Step 3: Compute the noisy-relay adjacency matrix Â(ζ) as

Âij(ζ) =

2T̂ij · 2
1−ζ

ζ
Iij if (i, j) ∈ T

0 otherwise
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where ζ is the solution to the following equation

ĉ(ζ)
λ̂max(ζ)

∑
i,j:(i,j)∈T

l̂i · r̂j · Âij(ζ) · Iij = ζ log λ̂max(ζ) .

Find its maximal eigenvalue λ̂max(ζ) and its corresponding right and left

eigenvectors r̂T(ζ) and l̂(ζ), respectively.

Step 4: For all (i, j) ∈ T , compute the transition probability matrix Pij and the

corresponding state distribution µi as

Pij = r̂j(ζ)
r̂i(ζ) · Âij(ζ)

λ̂max(ζ)
∀i, j : (i, j) ∈ T ,

µi = ĉ(ζ) · r̂(ζ) · l̂(ζ) ∀i : (i, j) ∈ T .

end

5.3.1 Zehavi-Wolf Lower Bound

We further provide a lower bound on the capacity, namely, the Zahavi-wolf

lower bound.

Lemma 5 (Zehavi-Wolf Lower Bound [111]). The capacity of a memoryless
channel under the constraint that the source is stationary and Markovian is lower
bounded by

C ≥ sup
Pij

I(S2; Y2|S1) (5.41)

where the supremum is taken over all possible probability assignments Pij.

Here, we consider binary inputs for both BSC and AWGN channel. The

input probability assignment Pij is chosen to be the optimal assignment for

noise-free relay-to-destination capacity.
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Thus, for the two-hop half-duplex relay channel with stationary Markovian

input at the relay, the capacity is lower bounded by

C ≥ Clb = max
p(x|u=0)

min


∑

i,j:(i,j)∈Q
µiPij · Iij

I(S2; Y2|S1)

 . (5.42)

For both source-to-relay and relay-to-destination links are both Binary symmet-

ric channel (BSC), the lower bound yields

Clb1 = max
p(x|u=0)

min



∑
i,j:(i,j)∈T

µiPij · Iij

M∑
j=0

µjH(ε · pj) − H(ε)


(5.43)

and both links are additive white Gaussian noise channels, the lower bound

yields

Clb2 = max
p(x|u=0)

min



∑
i,j:(i,j)∈T

µiPij · Iij

2
M∑

j=0
µjH(p(y|1) · pj + p(y|0) · (1 − pj)) − 1

2 log(2πeσ2)


(5.44)

where pj is the conditional probability of producing a 1 being in state j.

5.4 Numerical Results

In this section, we present numerical results on capacity of a two-hop half-

duplex relay channel under different source-to-relay and relay-to-destination

links. We assume that the relay has RLL([d, k], L1) and RLL({0}∪[1+g, ∞), {0}∪
[1 + h, ∞)) constraint, respectively.

5.4.1 Noise-free both links

Let us first consider the case that both source-to-relay and relay-to-destination

links are noise-free. Hence, we have the a-posteriori state transition weight
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Table 5.1 Noise-free capacity versus RLL([d, k], L1) constraint parameters d and
k

k\d 0 1 2 3 4 5 6
1 .4360
2 .5839 .4057
3 .6557 .5515 .2878
4 .6962 .6174 .4057 .2232
5 .7209 .6509 .4650 .3218 .1823
6 .7369 .6690 .4979 .3746 .2669 .1542
7 .7475 .6793 .5174 .4057 .3142 .2281 .1335
8 .7547 .6853 . 5293 .4251 .3432 .2709 .1993
9 .7597 .6888 . 5369 .4376 .3620 .2979 .2382

10 .7633 .6909 .5418 .4460 .3746 .3158 .2633
11 .7658 .6922 .5450 .4516 .3833 .3282 .2804
12 .7676 .6930 .5471 .4555 .3894 .3369 .2924
13 .7690 .6935 .5485 .4583 .3937 .3432 .3011
14 .7700 .6938 .5495 .4602 .3968 .3478 .3074
15 .7707 .6939 .5501 .4615 .3991 .3513 .3122
∞ .7729 .6942 .5515 .4650 .4057 .3620 .3282

matrix T with its entries

Tij =

 0 if (i, j) ∈ T

−∞ otherwise
(5.45)

and the relay mutual information matrix I with its entries

Iij =


1 if (i, j) ∈ Q

0 if (i, j) ∈ Qc ∩ T

−∞ otherwise

. (5.46)

Under such setting, we compute and list the capacities based on Theorem 4

and Corollary 3, when the relay adopts different RLL([d, k], L1) sequences in

TABLE 5.1 and RLL({0} ∪ [1 + g, ∞), {0} ∪ [1 + h, ∞)) sequences in TABLE 5.2.

Remark: In the case of unconstrained cases, we have ζ = 0.3614 and λmax =
4.4035, yielding the capacity C = 0.7729 bits/use. The capacity value 0.7729
coincides with the unconstrained capacity over a noiseless two-hop half-duplex

relay channel in [115, 104, 75], i.e., the largest root of the equation H(x) = x.
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Table 5.2 Noise-free capacity versus RLL({0} ∪ [1 + g, ∞), {0} ∪ [1 + h, ∞)) with
different g, h

h\g 0 1 2 3 4 5 6 7 8
0 .7729 .7418 .6881 .6125 .5515 .5037 .4650 .4329 .4057
1 .6667 .6436 .6067 .5515 .5037 .4650 .4329 .4057 .3823
2 .5946 .5755 .5467 .5037 .4650 .4329 .4057 .3823 .3620
3 .5405 .5240 .5000 .4650 .4329 .4057 .3823 .3620 .3441
4 .4976 .4830 .4623 .4329 .4057 .3823 .3620 .3441 .3282
5 .4624 .4492 .4309 .4057 .3823 .3612 .3441 .3282 .3139
6 .4328 .4207 .4044 .3823 .3611 .3441 .3282 .3139 .3011
7 .4074 .3963 .3814 .3612 .3441 .3282 .3139 .3011 .2894
8 .3853 .3750 .3614 .3441 .3282 .3139 .3011 .2894 .2788
9 .3659 .3563 .3438 .3282 .3139 .3011 .2894 .2788 .2690

10 .3486 .3397 .3280 .3139 .3011 .2894 .2788 .2690 .2600

5.4.2 Noisy Links: Two BSCs with the same cross-over prob-

ability p

In this subsection, we consider a two-hop half-duplex relay channel with a

Markovian constraint relay and two BSCs links of the same cross-over proba-

bility p. We have the a-posteriori state transition weight matrix T defined in

Definition 6 and

Iij =


1 − H(p) if (i, j) ∈ Q

0 if (i, j) ∈ Qc ∩ T

−∞ otherwise

. (5.47)

Under this setting, we compute tight lower bounds on the constrained capacities

via Algorithm 2 and Algorithm 3 sequentially, i.e., at the end of the execution

of Algorithm 2, if condition (5.39) is not satisfied, then perform Algorithm 3.

We compare our results with

• the upper bounds on the noisy capacity, i.e., the capacity Cnf of the two-

hop relay channel with a noise-free relay-to-destination link, and a BSC

source-to-relay link with cross-over probability p,
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Figure 5.6 Information rates of a BSC two-hop half-duplex relay channel with a
relay under RLL([0, 1], [1, ∞)) and ([0, 3], [0, ∞)) constraints.

• the maximal achievable rate by time-sharing scheme [65] is then given by

Rts = 1
2 log λ̃max(1) , (5.48)

which can be computed via Algorithm 2.

In Figure 5.6, we illustrates such comparisons when the relay adopts the

RLL([0, 1], [1, ∞)) and ([0, 3], [0, ∞)) constrained sequences, respectively. We ob-

serve that our results are very close to the upper bounds and perform better than

the conventional time-sharing schemes. In particular, when both links have p =
0, our scheme achieves 0.4360 bits/use and 0.6557 bits/use for RLL([0, 1], [1, ∞))
and ([0, 3], [0, ∞)) constraints, respectively, while the conventional schemes

achieves 0.3471 bits/use and 0.4734 bits/use, respectively. Similar results are

obtained for RLL({0}∪ [2, ∞), [0, ∞)) and ({0}∪ [3, ∞), {0}∪ [2, ∞)) constraint,

as illustrated in FIGURE 5.7.
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Figure 5.7 Information rates of a BSC two-hop half-duplex relay channel with a
relay under RLL({0} ∪ [2, ∞), [0, ∞)) and {0} ∪ [3, ∞), {0} ∪ [2, ∞)) constraints.

We conduct the same comparison as that in Figure 5.6, except that the

relay uses a RLL([1, 3], [0, 1]) sequence, instead. We report our comparisons

in Figure 5.8. we computed the optimized information rate for the case that

the relay node is RLL([1, 3], [0, 1]) constrained. The vertical black dash-dot line

at p = 0.045 indicates that for cross-over probability p ≤ 0.045, the optimized

information rate is computed via Algorithm 2, i.e., there is always enough

information fed into the relay and the relay may transmit information at its

full rate. For the case that p > 0.045, since condition (5.39) is not satisfied, i.e.,

the relay may not transmit at its full rate, Algorithm 3 is performed to find an

equilibrium point such that the source is feeding information to the relay at the

same rate that the relay is transmitting.

In Figure 5.9, we compare our optimized information rate for various

RLL([d, k], L1) constraint against the unconstrained optimized information rate
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Figure 5.8 Information rates of a BSC two-hop half-duplex relay channel with a
relay under RLL([1, 3], [0, 1]) constraint.

in [115]. For RLL([0, k], L1) constraint, where k ∈ 1, 3, 7, we observe that the

larger values of k lead to higher optimised information rate. In particular, when

k = 7, our scheme approach to the unconstrained optimised information rate.

This agrees with our intuition that as the relay becomes less constrained (i.e.,

as k → ∞), the problem transforms into optimising mutual information rate

for a BSC two-hop half-duplex relay channel with an unconstrained relay.

5.5 Conclusion

In this chapter, we studied the capacity of a two-hop half-duplex channel

(source-relay-destination) with a Markovian constrained relay. For this channel,

we show that when the zero symbol transmitted by the relay also conveys

information; during its transmission, the source is able to transmit information
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Figure 5.9 Unconstrained optimized information rate [115] vs. optimized
information rates of a BSC two-hop half-duplex relay channel with a relay
under RLL([d, k], L1) constraint.

to the relay, significant rate gains are possible. For the case with a noise-

free relay-to-destination link, capacity achieving input is derived. When both

source-to-relay and relay-to-destination links are noisy, the constrained mutual

information rate are optimised using the GBAA algorithm modified for two-hop

relay channels. These results may be instrumental in deriving capacity when

constrained sequences are introduced to a more complex network.



Chapter 6

Conclusion and Future Work

6.1 Conlusions

This research focuses on information theoretical studies on non-Gaussian noise

channels and Markovian constrained relay channels. In the first part of this

thesis, the capacities over non-Gaussian noise channels have been studied, in

which the non-Gaussian noise is modelled as Gaussian mixture model. We

introduced the envelope Gaussian mixture noise model which models the

amplitude distribution of complex Gaussian mixture noise. Its parameters

estimation is performed via EM algorithm and Quasi-Newtion method. The

capacity achieving-input for a Gaussian mixture noise channel is shown to be

of discrete nature. In the second part of this thesis, the capacity of a two-

hop Markovian constrained relay channel has been studied where the relay

is subject to half-duplex and Markovian constraint. The maxentropic state

transition probabilities for relay transmitters are studied for the case that the

relay-to-destination link is noiseless. For the case that both source-to-relay and

relay-to-destination links are noisy, generalised Blahut-Arimoto Algorithm is

performed to compute a tight lower bound on the capacity.
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6.2 Summary of Contributions

The following subsections summarise the detail contributions of the research.

Objective 1: New statistic models that better describe the non-Gaussian

noise behaviour and relay constraints

A new, simple and exact closed form probability density function of the envelope

of the Gaussian mixture distributions (i.e. the envelope of independent in-

phase and quadrature components of complex non-Gaussian noise) is obtained,

namely, the envelope Gaussian mixture model. The proposed model has less

pronounced multi-modal behaviour than the envelope of two-term Rayleigh

mixture model and it has a linearly decaying tail which is observed in the his-

togram of power line communication noises. Moreover, the envelope Gaussian

mixture model turns into a single Rayleigh distribution when the variances of

each Gaussian component has the same variance. Hence, the envelope Gaussian

mixture fits naturally into the distribution family.

We further proposed the hold time constraint model for a Markovian con-

strained relay due to the existence of switching noise, an induced ISI when

switching a digital signal, caused by the relay’s switching between reception

mode and transition mode.

Objective 2: Parameters estimation of the proposed models

A common question after a new model being proposed is how to estimate

the parameters given some observations. We adopt the well-known two-step

iterative method called the EM Algorithm that finds the maximum likelihood or

maximum a posteriori estimates of parameters in statistical models in which

observations are treated as “incomplete data”. A simulation of the proposed

the estimator via the EM Algorithm is performed. The performance of the EM

Algorithm is compared against the performance of the Quasi-Newton method.

Our simulation shows that both EM Algorithm and Quasi-Newton performs well

in terms of maximising the log likelihood function, however the EM Algorithm

has relatively slower convergence rate depending on the models and data
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size. Quasi-Newton, on the other hand, takes fewer iterations but is more

complicated to implement.

Objective 4: Obtain capacity results

In the first part of this thesis, the capacity of the Gaussian mixture noise channel

and its capacity-achieving input have been studied. In particular, the symmetric

and asymmetric Gaussian mixture noise cases are considered. It is shown that,

under average and peak power constraints, the capacity-achieving input is

discrete with finitely many mass points. Furthermore, some properties of the

capacity-achieving distribution are proved and demonstrated by simulations.

In the second part of this thesis, the capacity theorems for a two-hop half-

duplex relay channel with a Markovian constrained relay are studied. It first

focuses on deriving the cut-set bound, i.e., an upper bound on the capacity.

Then this chapter presents the timing strategy which satisfies the half-duplex

constraint and it is shown to achieve this bound. This leads to the general

capacity formula for a two-hop half-duplex relay channel with a Markovian

constrained relay.

Objective 5: Explore computation methods

In the first part of this thesis, the optimal input for the Gaussian mixture noise

channel is numerically computed, i.e., the optimal mass point locations and

their probabilities, by using the interior point method by starting from random

initial mass point locations and probabilities.

In the second part of this thesis, the relay adjacency matrix is introduced

such that the capacity can be easily computed in the case that relay-to-destination

link is noiseless. The relay adjacency matrix can be considered as an extend

version of adjacency matrix by Shannon for the two-hop relay channel, which

is commonly used to compute the largest eigenvalue and corresponding largest

eigenvector of non-negative primitive matrices. Moreover, for the case that the

relay-to-destination link is noisy, noisy-relay adjacency matrix is introduced.

Algorithms are presented to compute the noisy-relay adjacency matrix and

compute the optimised information rate which serves as a natural lower bound
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on the capacity. The bounds are shown to be very tight while comparing against

upper bounds.

6.3 Future Work

We regret if – after having worked for quite a while on these topics – we have

to leave the reader with more questions remaining than there were originally.

The good thing though is that the following future research projects may be

conducted:

Capacity of full-duplex Markovian constrained relay with self-interference

While deriving the capacity of the two-hop half-duplex relay channel with

a Markovian constrained relay, we introduced the relay mutual information

matrix and the relay adjacency matrix in Chapter 5. Both of them can be

naturally extended to the full-duplex case, however it requires taking into

account the self-interference power and also it is worth noting that the self-

interference is caused by the transmission event of the relay node itself.

Capacity of half-duplex/full-duplex Markovian constrained relay with more

than one source node

Since a two-hop Markovian constrained relay channel is the most simple net-

work, it is a natural idea to consider constrained sequences in a more complex

network, for example, when more than one source node are introduced, the

timing scheme introduced in Chapter 4 maybe used to achieve the capacity. If

not, new coding scheme shall be investigated.

Capacity of half-duplex/full-duplex Markovian constrained relay in a line

network

Another option to further extend our study is to consider relay in a line network

in which there is one source node, one destination node and more than one

relay nodes. Assuming that one of the relay node is default and hence the
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broken relay is subject to a Markovian constraint. This may requires a new

information-theoretical analysis.
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