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Conventions and notation

The following notation and conventions are used throughout the thesis. All limits are consid-

ered as the sample size n→ ∞, unless specified otherwise.

Important conventions

H (.) refers to a function

H (x) refers to the value of the function H (.) at x

H(k) kth derivative of H (.)

{ht} refers to a series of values indexed by the integer t

Theorem 4.2 refers to Theorem 2 of Chapter 4

Abbreviations

AR autoregressive

ARMA autoregressive moving average

ARIMA autoregressive integrated moving average

ARFIMA fractionally integrated autoregressive moving average

BLUE best linear unbiased estimator

CLT central limit theorem

CSS conditional sum of squares

DFT discrete Fourier transform

DGP data generating process

DWH discrete Whittle

EWH exact Whittle

FML frequency domain maximum likelihood

i.i.d independent and identically distributed

LPR log-periodogram regression
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Conventions and notation

LS least squares

LSE least squares estimator

MA moving average

MisM mis-specified model

MSE mean squared error

OLS ordinary least squares

OLSE ordinary least squares estimator

RMSE root mean squared error

TDGP true data generating process

TML time domain maximum likelihood

Mathematical notation

∼ the ratio of the left- and right-hand sides tends to one in the limit
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∈ contained in

1 column vector of ones of size n

a.s almost surely
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|A| determinant of matrix A

‖A‖ norm of matrix A

A> transpose of matrix A

ı complex number such that ı2 = −1
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Statistical notation

a.s almost surely

→D convergence in distribution

→P convergence in probability

θ1, . . . , θq MA coefficients of the ARMA/ARIMA/ARFIMA model

φ1, . . . , φp AR coefficients of the ARMA/ARIMA/ARFIMA model

d fractional differencing parameter/long memory parameter

β vector of AR and MA coefficients

η vector of dynamics parameters such that η =
(

d, β>
)>

ϑ0 true value of the vector parameter ϑ

ϑ1 pseudo-true value of the vector parameter ϑ

Var (.) variance operator

Cov (., .) covariance operator

Corr (., .) correlation operator

E (.) expectation operator

f (λ) spectral density of the stochastic process {Xt}
fXY (λ) cross spectral density of the stochastic processes {Xt} and {Yt}
I (λ) periodogram

MX1,...,Xk (t1, . . . , tk) moment generating function of the multivariate random variables X1, . . . , Xk

µ process mean

σ2 error variance

N
(
µ, σ2) normal distribution with zero mean and variance σ2

op (1) a sequence of random variables that is converging to zero, in probability

Op (1) a sequence of random variables that is bounded, in probability

γ (k) autocovariance at lag k

Ση autocovariance matrix

χ2
(k) chi-square distribution with k degrees of freedom

Z standard normal [N (0, 1)] random variable, unless stated otherwise
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Abstract

Data in the economic and financial spheres often exhibit dynamic patterns characterized by a

long lasting response to past shocks. The correct modelling of such long range dependence

is of paramount importance, both in the production of accurate forecasts over long term hori-

zons and in the isolation of long run equilibrium relationships. While the convention in the

area has been to adopt complete parametric specifications for the dynamics in the time se-

ries, semi-parametric approaches have also featured. This thesis contributes to both of these

lines of research. In Chapter 3 we develop the asymptotic theory for quantifying the impact

of mis-specification of short memory dynamics in the context of parametric estimation of the

parameter controlling the long range dependence. The methodology is developed within the

framework of fractionally integrated processes, as introduced by Granger and Joyeux (1980)

and Hosking (1981). We provide a comprehensive set of new results on the impact of mis-

specifying the short run dynamics in such processes. We show that four alternative parametric

estimators – frequency domain maximum likelihood, Whittle, time domain maximum likeli-

hood and conditional sum of squares – converge to the same pseudo-true value under com-

mon mis-specification, and that they possess a common asymptotic distribution. The results

are derived assuming a completely general parametric specification for the short run dynam-

ics of the estimated (mis-specified) fractional model, and with long memory, short memory

and antipersistence in both the model and the true data generating process accommodated.
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Abstract

As well as providing new theoretical insights, we undertake an extensive set of numerical ex-

plorations, beginning with the numerical evaluation, and implementation, of the (common)

asymptotic distribution that holds under the most extreme form of mis-specification. Simula-

tion experiments are then conducted to assess the relative finite sample performance of all four

mis-specified estimators, initially under the assumption of a known mean, as accords with the

theoretical derivations in this chapter. The importance of the known mean assumption is il-

lustrated via the production of an alternative set of bias and mean squared error results, in

which the estimators are applied to demeaned data. The chapter concludes with a discussion

of open problems.

In Chapter 4, we then establish the limiting behaviour of parametric estimators (time do-

main maximum likelihood, conditional sum of squares and exact Whittle) under mis-specification

of short memory dynamics, while allowing the process mean to be unknown. We also show

that the limiting distributions of the three parametric estimators are identical to those of

the frequency domain maximum likelihood and discrete Whittle estimators, regardless of

whether the process mean is known or unknown. In order to estimate the mean, we con-

sider two estimators, namely, the sample mean estimator and the best linear unbiased esti-

mator [BLUE]. Our results show that the sample mean estimator is unaffected by model mis-

specification. However, the limiting behaviour of BLUE is sensitive to mis-specification of

the short memory dynamics. We establish the consistency of both estimators of the unknown

mean under correct specification as well as under mis-specification. Monte Carlo simulations

are used to quantify the finite sample behaviour of the estimators of the long memory para-

meter when the mean is also estimated.

In Chapter 5 we then focus on semi-parametric estimation. Specifically, we use the jack-
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knife to bias correct the log-periodogram regression [LPR] estimator of the fractional para-

meter, d, in a stationary fractionally integrated model. The weights used to construct the

jackknife estimator are chosen such that bias reduction occurs to an order of n−α (where n is

the sample size) for some 0 < α < 1, while the increase in variance is minimized - with the

weights viewed as ‘optimal’ in this sense. We show that under regularity, the bias-corrected

estimator is consistent and asymptotically normal with the same asymptotic variance and

nα/2 rate of convergence as the original LPR estimator. In other words, the use of optimal

weights enables bias reduction to be achieved without the usual increase in asymptotic vari-

ance being incurred. These theoretical results are valid under both the non-overlapping and

moving-block sub-sampling schemes that can be used in the jackknife technique, and do not

require the assumption of Gaussianity for the data generating process. A Monte Carlo study

explores the finite sample performance of different versions of the optimal jackknife estimator

under a variety of data generating processes, including alternative specifications for the short

memory dynamics. The comparators in the simulation exercise are the raw (unadjusted) LPR

estimator and two alternative bias-adjusted estimators, namely the weighted average estima-

tor of Guggenberger and Sun (2006) and the pre-filtered sieve bootstrap-based estimator of

Poskitt et al. (2016). The chapter concludes with some discussion of open issues and possible

extensions to the work.

Chapter 1 and 2 provide background material for the research contributions contained in

Chapter 3 to 5. Chapter 6 concludes the thesis with an overview of what has been achieved

herein, plus details of the future research agenda.
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Chapter 1

Introduction

1.1 Background

Stochastic processes relating to the phenomenon of a long lasting response to past shocks have

been recognized in many different fields, after the initial investigation of yearly Nile river flow

minima by Hurst (1951). Notable empirical evidence of those processes has occurred in vari-

ous fields including hydrology (Lawrance and Kottegoda, 1977 and Ooms and Franses, 2001),

meteorology (Gil-Alana, 2012), computer science (Leland et al., 1993, Karagiannis et al., 2004

and Scherrer et al., 2007), human science (Wagenmakers et al., 2004), image texture recognition

(Lundahl et al., 1986), economics (Diebold and Rudebusch, 1989 and Baillie, 1996) and finance

(Hassler and Wolters, 1995, Bollerslev and Mikkelsen, 1996, Andersen et al., 2003, Cheung,

2016 and Varneskov and Perron, 2018). The important characterization of such ‘long memory

(or long range dependent) processes’ is the hyperbolic rate of decay in autocorrelations or

autocovariances, a rate that is too slow produce summability; in contrast to the usual expo-

nential, and summable, decay associated with a short memory process. For more details on

such processes and their applications refer to Beran (1994), Doukhan et al. (2003), Giraitis et al.

(2011) or Pipiras and Taqqu (2017), and the review article by Baillie (1996).

In the literature, several definitions of long memory have been extensively discussed (see,

Beran, 1994 and Palma, 2010), while the articles by Cox (1984) and Heyde and Yang (1997) give
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Chapter 1: Introduction

an overview of different definitions of long memory processes. Most of the definitions of long

range dependence appearing in literature are based on the second-order properties of a time

series, such as, the autocovariances, the spectral density, and the variances of partial sums. In

this thesis, we define a long memory stationary time series as follows. The idea behind the

definition is that long range dependence occurs when the autocovariances tend to zero in the

form of a power function of lags as the lags tend to infinity, and decline slowly enough for the

sum of autocovariances to diverge.

Definition 1.1 A stationary series {yt}, t ∈ Z, with finite variance, has (potential) long memory if

the autocovariance at lag k,

γ (k) = Cov (yt, yt+k) ∼ cγk2d−1, 0 < cγ < ∞, as k→ ∞,

where −0.5 < d < 0.5. The symbol ∼ means that the ratio of the left- and right-hand sides tends to

one in the limit.

Definition 1.1 allows the process {yt} to be classified as a short memory, long memory

or intermediate memory process depending on the value of the parameter d. When d = 0,

then the process {yt} is said to have short memory and the autocovariances are absolutely

summable. The sum of the autocovariances converges to a positive real number and the au-

tocovariances decay at an exponential rate. The process {yt} is identified as a long memory

process if d > 0, and, the autocovariances are non-summable and decay hyperbolically. Note

that the autocovariances are mostly positive. If d < 0, then the process is said to have interme-

diate memory and the autocovariances are mostly negative. In this case the autocovariances

decay at a hyperbolic rate, but fast enough to be summable.
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A class of statistical models that plays a central role in modelling such long memory

processes and which was introduced by Granger and Joyeux (1980) and Hosking (1981), de-

scribes a time series {yt} in the form of

φ(L)(1− L)d{yt − µ} = θ(L)εt, (1.1)

where µ = E (yt) , L is the lag operator such that, Lkxt = xt−k for k > 0 and φ(z) = 1 +

φ1z + ... + φpzp and θ(z) = 1 + θ1z + ... + θqzq are the autoregressive and moving average

operators respectively, where it is assumed that φ(z) and θ(z) have no common roots and that

the roots lie outside the unit circle. The errors {εt} define a white noise sequence with finite

variance σ2 > 0. Further, d is the fractional differencing parameter assumed to lie within the

range mentioned in Definition 1.1. If d > −1, the characteristic polynomial of the lag operator,

(1− z)d, can be represented by the binomial expansion with |z| < 1 as follows,

(1− z)d = 1− dz+ d(d− 1)
z2

2!
− d(d− 1)(d− 2)

z3

3!
+ ... .

Therefore,

(1− z)d =
∞

∑
j=0

Γ(j− d)
Γ(j+ 1)Γ(−d)

zj,

where Γ(.) is the gamma function. The class of models in (1.1) is known as fractionally in-

tegrated autoregressive moving average [ARFIMA] class, and is closely related to the class of

autoregressive moving average [ARMA] models. In summary notation, the above model is

denoted by ARFIMA(p, d, q), where p and q are the numbers of AR and MA coefficients in the

model. The parameters in (1.1) can be described as dynamic and static parameters. For exam-

ple, the differencing parameter as well as the ARMA coefficients are referred to as dynamic

parameters. Examples of static parameters are the location and scale parameters.

3
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The literature deals with the methods and theory associated with parametric and semi-

parametric estimation of the parameters of the model in (1.1). A short review of this literature

is provided in Chapter 2, with further review material appearing in each of the introductory

sections in Chapters 3 to 5.

The common practice adopted in the parametric literature is to assume that the model is

correctly specified for the data generating process [DGP]. Conditional on this assumption, the

convergence and distributional properties of various parametric estimators are developed –

including their asymptotic equivalence in some cases; for example, see Fox and Taqqu (1986),

Dahlhaus (1989), Giraitis and Surgailis (1990), Sowell (1992), Beran (1995), Robinson (2006)

and Hualde and Robinson (2011), among others. In practice, the true values of p or q - the

number of AR and MA components - are not known. Whilst there are several diagnostic tests

available for the fit of a model; for example, goodness-of-fit tests (see Beran, 1994, Chapter 10)

such as the Akaike information criterion [AIC], the Bayes information criterion [BIC] and the

final prediction error [FPE], these methods have a low success rate in identifying the correct

order of the short memory dynamics (see Crato and Ray, 1996). Incorrect specification of p or

q can, in turn, lead to serious consequences for the characteristics of the parametric estimators

(see Yajima, 1993). As is described in Chapter 2, some attempts have been made to address

the issue of mis-specification of the short memory dynamics in certain fractionally integrated

models (see Chen and Deo, 2006).

An alternative to undertaking (potentially mis-specified) parametric estimation is to use

a semi-parametric method, which provides an estimate of the fractional differencing para-

meter without requiring the specification of the short memory component; for example, the

log-periodogram regression estimator of Geweke and Porter-Hudak (1983), Gaussian semi-
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parametric estimator of Robinson (1995a) and the exact local Whittle estimator of Shimotsu

and Phillips (2005), among others. The price paid for such an approach, however, is the occur-

rence of large finite sample bias, and several bias-correction procedures have been proposed

in the literature as a consequence (see, Andrews and Guggenberger, 2003, Andrews and Sun,

2004, and Poskitt et al., 2016).

The objective of this thesis is to develop new methodological and theoretical results in the

fields of both parametric and semi-parametric estimation of long memory processes. First, we

explore the consequences for parametric estimation of mis-specification of the short memory

dynamics, allowing the process mean to be, respectively, known and unknown. Secondly, we

develop an optimally bias-corrected semi-parametric estimator of the long memory parame-

ter.

1.2 Outline of the thesis

In Chapter 2 we first briefly review the literature on parametric estimation methods for frac-

tionally integrated models. A short review of the existing theory for parametric estimation

in mis-specified long memory models is also provided. Secondly, semi-parametric estimation

methods are described. This includes a brief review of existing bias-reduction methods for

semi-parametric estimators.

In Chapter 3 we then proceed to provide a comprehensive new set of results on para-

metric estimation under mis-specification in the fractional setting. The starting point here

has been the work of Chen and Deo (2006), who first investigated the consequences of mis-

specification of short memory dynamics on the asymptotic properties of the approximate fre-

quency domain maximum likelihood [FML] estimator. Under mis-specification, the standard
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asymptotic properties are shown not to hold for this estimator. In particular, when certain reg-

ularity conditions hold, the FML estimator of the dynamic parameters is shown to converge

to a well-defined limit called the pseudo-true value that is different from the true value. The

rate of convergence is sometimes slower than
√

n and only under certain conditions is the
√

n

rate still achieved. Under certain forms of mis-specification, the limiting distribution is also

non-Gaussian, with asymptotic normality shown to hold only in some instances. All of the

asymptotic results of Chen and Deo are established for a Gaussian DGP.

In this chapter we extend the results of Chen and Deo (2006) to three different paramet-

ric estimators, namely, the discretized version of the Whittle [DWH] estimator, and the time

domain maximum likelihood [TML] and conditional sum of squares [CSS] estimators, under

the assumption that the process mean is known. We show that all three parametric estima-

tors converge to the same pseudo-true value under common mis-specification. Closed-form

expressions for the first-order conditions that define the pseudo-true values of the parameters

are provided. Further, the limiting distributions of DWH, TML and CSS are identical to those

of FML; that is, all four parametric estimators (FML, DWH, TML and CSS) are asymptotically

equivalent. Furthermore, it is shown that our results are valid for any stationary ARFIMA

process, including a non-Gaussian process. In a simulation study, we investigate the finite

sample performance of the four parametric estimators of the long memory parameter (specif-

ically), in terms of bias, RMSE and the form of the sampling distribution. This work is under

first-round revision at Journal of Econometrics (Martin et al., 2018) and is reproduced in Chapter

3 in its complete form.

From a theoretical perspective, it is restrictive to impose the requirement of the known

process mean. However, relaxing this assumption may have consequences for the estimation
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of the dynamic parameters, as the mean estimators that are commonly used in the context

of fractionally integrated models, such as the sample mean or the best linear unbiased esti-

mator [BLUE], have a slower rate of convergence than the usual
√

n (see Adenstedt, 1974 and

Hosking, 1996). Therefore, the questions that arise are; (i) How does the limiting behaviour

of the parametric estimators of the dynamic parameters under mis-specification differ in the

two cases of known and unknown mean? and, (ii) Does the nature of the mean estimation

influence the finite sample ranking of the parametric estimators of the dynamic parameters

under mis-specification?

The FML and DWH estimation methods are invariant to the mean. Therefore, in Chapter

4 we consider only the TML and CSS estimation methods, in addition to the exact version of

the Whittle estimator [EWH], when examining the impact of estimating a mis-specified frac-

tionally integrated model with an unknown mean. We prove that all three of these parametric

estimators converge to the same pseudo-true value as do the invariant FML and DWH es-

timators, and that all five estimators share the same limiting distribution, regardless of the

form of mean estimation. A simulation study is provided to illustrate the finite sample per-

formance of the EWH, TML and CSS estimators of the long memory parameter (specifically),

when the mean is estimated by either the sample mean or the BLUE. The study reveals that

the choice of mean estimator does not influence the finite sample performance. However, the

ranking of the estimators does alter due to mean estimation per se. Whilst in Chapter 3 a small

Monte-Carlo study for the unknown mean case is included, with the sample mean used, in

this chapter we not only provide the theoretical results relevant to mean estimation, but also a

more extensive numerical study based on both the sample mean and the BLUE. Furthermore,

a detailed technical discussion is provided on BLUE under both the correct and incorrect spec-
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ification of the model. This chapter has been written as a draft for a self-contained article for

journal submission.

Chapter 5 switches focus to semi-parametric estimation of the long memory parameter in

a fractional model. Semi-parametric methods have the advantage that they do not require

specification the short memory dynamics and, hence, are not subject to the problem of mis-

specification thereof (see Robinson, 2014). Moreover, these methods are generally easy to

implement and computationally attractive compared to certain parametric techniques. How-

ever, the most commonly used semi-parametric methods, for example, the log-periodogram

regression [LPR] estimator of Geweke and Porter-Hudak (1983) and the local Whittle [LW]

estimator of Robinson (1995a), exhibit large finite sample bias in the presence of true, and un-

modelled, short memory dynamics. As a consequence, several bias-reduced semi-parametric

methods have been proposed, as referenced earlier.

This bias reduction, however, comes at a cost of increased sampling variance. In the con-

text of a unit root process, Chen and Yu (2015) propose a methodology using a non-parametric

technique called the jackknife to optimally correct the bias while minimizing the associated

increase in variance. By adopting their approach in the fractionally integrated context, we

develop an optimally bias-corrected LPR estimator of the long memory parameter. We show

that the proposed estimator is consistent for the true value of the fractional differencing pa-

rameter, and that a limiting normal distribution is achieved along with no loss in asymptotic

efficiency. One requirement of the proposed method is that the true values of the short mem-

ory parameters of the underlying model are known. We thus also propose a feasible version

of the estimator, based on an iterative procedure. A simulation study is used to illustrate

the finite sample performance of both proposed estimators, in comparison with relevant al-
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ternatives, including the method of Guggenberger and Sun (2006), which also produces bias

reduction with reduced variance inflation. This chapter has also been written as a draft for a

self-contained article for journal submission.

Chapter 6 provides an outline of the thesis, restating the overall objectives and the main

issues investigated. We also discuss possible avenues for future research that have emerged

from the research conducted in the thesis.
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Chapter 2

Parametric and semi-parametric
estimation of fractionally integrated
models

In this chapter, we briefly review existing parametric and semi-parametric estimation meth-

ods for the class of ARFIMA models introduced in Chapter 1. We first provide a brief review of

the literature on the parametric modelling of long memory processes using ARFIMA models

in Section 2.1. A short discussion of the literature on the estimation of the location parameter

is provided in Section 2.2. The properties of parametric estimators of the dynamic parameters,

under both correct and incorrect specification of the model, are outlined in Section 2.3. Sec-

tion 2.4 describes the semi-parametric estimation methods, including available bias-correction

procedures. Section 2.5 concludes the chapter.

2.1 Underpinnings of ARFIMA models

We consider the ARFIMA(p, d, q) model for long memory processes as specified in (1.1), with

−0.5 < d < 0.5. An alternative form of this model (see, for example, Poskitt, 2008) is charac-

terized with an infinite order moving average [MA] process as

yt = µ+
∞

∑
j=−∞

bj (η) εt−j, (2.1)
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where ∑∞
j=−∞ c2

j < ∞ with

bj (η) =
j

∑
s=0

ςj−s (β) Γ (s+ d)
Γ (s+ 1) Γ (d)

, j = 1, 2, . . . , (2.2)

and ς (.) is the transfer function of a stable and invertible autoregressive moving average

process. Here, we denote by η the vector of dynamic parameters as η =
(

d, β>
)>
∈ E where

β> =
(

φ1, φ2, ..., φp, θ1, θ2, ..., θq

)
∈ B is the vector of coefficients of the short memory com-

ponents of the model such that E = D×B, with D = (−0.5, 0.5) and B is an l-dimensional

compact convex set in Rl with l = p+ q. The only requirement for the above representation

is that the innovations have a finite mean and finite variance. Thus, Gaussian innovations are

not necessary.

An alternate representation is as an infinite order autoregressive [AR] process,

yt −
∞

∑
j=−∞

τ j (β) yt−j = εt, (2.3)

where

τ j (η) =
j

∑
s=0

αj−s (β) Γ(j− d)
Γ(j+ 1)Γ(−d)

, j = 1, 2, . . . . (2.4)

The spectral density of the ARFIMA(p, d, q) process in (1.1) is given by (refer, Theorem

13.2.2 of Brockwell and Davis, 1991, and Nielsen and Frederiksen, 2005)

f (η, λ) =
σ2

2π
[sin (λ/2)]−2d g (β, λ) , − π ≤ λ ≤ π, (2.5)

where g (β, λ) is the spectral density of the autoregressive moving average [ARMA] compo-

nent taking the form,

g (β, λ) =
|θ (exp (ıλ))|2

|φ (exp (ıλ))|2
. (2.6)

Here g (β, λ) is bounded above and bounded away from zero with continuous second deriv-

atives. This implies that as λ→ 0, the limit of λ2d f (η, λ) exists and is finite. Refer .

12
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The autocovariance at lag k, γ (k) is defined as follows (see Sowell, 1992, pages. 171− 174),

γ (k) = σ2
q

∑
l=−q

p

∑
j=1

ν(l)ςjC(d, p+ l − k, ρj), (2.7)

where,

ν(l) =
min(q,q−l)

∑
k=max(0,l)

θkθk−l ,

ςj =

[
$j

p

∏
i=1
(1− $i$j) ∏

m 6=j
($j − $m)

]−1

,

with the $j’s defined by, φ(z) = ∏k
j=1(1− ρjz), and,

C(d, p+ l − k, ρj) =
Γ(1− 2d)Γ(d+ p+ l − k)

Γ(1− d+ p+ l − k)Γ(1− d)Γ(d)

× [ρj2F1(d+ p+ l − k, 1; 1− d+ p+ l − k; ρj)

+2F1(d− p− l + k, 1; 1− d− p− l + k; ρj)− 1].

Here, 2F1(a, b; c; x) is the hypergeometric function, which is a special representation of the

hypergeometric series given below,

l Fm(a1, a2, ...al ; b1, b2, ...bm; x) =
∞

∑
j=0

(a1)j(a2)j...(al)j

(b1)j(b2)j...(bm)j
xj,

where, for some parameter c, (c)j is defined as (c)0 = 1, and,

(c)j = c (c+ 1) (c+ 2) ... (c+ j− 1) , j = 1, 2, ....

The autocorrelation is defined by ρ (k) = γ (k)
/

γ (0), for k = 0,±1,±2, . . ..

Figure 2.1 displays the spectral density and the correlogram of an ARFIMA(1, d, 0) process

with an AR coefficient of φ = −0.9. The spectral density diverges at zero frequency for 0 <

d < 0.5 and declines as the frequency increases. For d ≤ 0, the spectral density is continuous

on [−π, π] and bounded above. The correlogram shows the slow decay of the autocorrelations

13
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Figure 2.1: Spectral density (displayed in the top panel) and autocorrelation function (displayed in
the bottom panel) of ARFIMA(1, d, 0) with the AR coefficient φ = −0.9.
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for 0 < d < 0.5 and the slow decay is clearly visible for values of d closer to 0.5, at small

lags. However, the slow decay becomes less obvious when the values of d move towards

zero. For −0.5 < d < 0, the decay is slightly faster than that of long memory dependence,

but not as fast as the exponential rate that occurs for d = 0. At higher lags, although the

autocorrelations are closer to zero, they are significantly different from zero. The oscillation

of the autocorrelations is observed due to the negative AR coefficient (i.e. positive correlation

between the observations).

Figure 2.2 shows the spectral density and the correlogram of an ARFIMA(0, d, 1) process

with an MA coefficient of θ = −0.9. The spectral density behaves in a similar manner in

the neighbourhood of zero frequency to that of the ARFIMA(1, d, 0) process, for 0 < d <

0.5. When d ≤ 0, the spectral density has an inverted bell shape showing the continuity

on [−π, π], being bounded above and is zero at zero frequency. Moreover, as the frequency

increases to ±π, the density curve increases to some point. The correlogram shows similar

features as mentioned previously for the ARFIMA(1, d, 0) process, except for the fact that there

is no pattern of oscillation observed. A sharp downward peak is observed at lag 1 for the short

memory process (d = 0) as this simplifies to an MA(1) process.

2.2 Estimation of the location parameter

The first step in the statistical analysis of the class of ARFIMA models defined in (1.1) is esti-

mation of the process mean, µ, together with the scale parameter, σ2. In this section, we focus

on estimation of the mean and the relevant theoretical results established in the literature.

Let y> = (y1, y2, ..., yn) be a random sample of n observations, with a spectral density as

given in (2.5). The simplest estimator of the mean is the sample mean, µ̂SM = y = ∑n
t=1 yt

/
n.
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Hosking (1996) established theory for the sample mean in the fractional model. It is shown

that the sample mean is consistent for µ, but with a rate of convergence, n1/2−d0 , that de-

pends on the true value of the fractional differencing parameter, d0 ∈ (−0.5, 0.5). Further,

n1/2−d0 (µ̂SM − µ0) is asymptotically normal with zero mean and asymptotic variance,

ν2
0 =

σ2
0g (β0, 0) Γ (1− 2d0)

(1+ 2d0) Γ (1+ d0) Γ (1− d0)
, (2.8)

where B (.) is the beta function and g (β0, 0) is the spectral density of the ARMA component

evaluated at zero frequency and at the true values of the parameters. Hosking shows that

these results are valid under weaker conditions than Gaussianity of the time series.

An alternative unbiased estimator for the mean is the BLUE introduced by Adenstedt

(1974). The form of the BLUE is simply the weighted average of the sample observations and

is defined by

µ̂BLU,0 =
1>Σ−1

0 y
1>Σ−1

0 1
, (2.9)

where 1 is the column vector of n ones and σ2
0Σ0 is the true variance–covariance matrix of

the time series such that σ2
0Σ0 := [γ0 (i− j)] , i, j = 1, . . . , n, with γ0 (.) representing the auto-

covariance of the true data generating process [TDGP] following the form defined (2.7). The

variance of BLUE is given by σ2
0

(
1>Σ−1

0 1
)−1

. Samarov and Taqqu (1988) show that for large

n, there is no asymptotic efficiency loss incurred by the sample mean over the BLUE for short

range processes, and that this loss remains small for stationary long memory processes. How-

ever, it is shown to be much greater for antipersistent processes, such that BLUE is preferred

over the sample mean in this case. This may be due to the elements of
(
σ2

0Σ0
)−1 which are

dominated by the inversion of the spectral density1. Particularly, when d0 < 0, the contribu-

1The inversion of the spectral density of an ARFIMA(p, d, q) process is the spectral density of an
ARFIMA(q,−d, p).
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tion of the inversion of the spectral density leads to significant loss in asymptotic efficiency.

Provided the process is Gaussian, BLUE is simply the maximum likelihood estimator

[MLE] of the mean, and is the most efficient estimator in the linear unbiased class. Among

the class of linear unbiased estimators, BLUE is the best estimator by the Gauss Markov theo-

rem, even without the assumption of Gaussianity. However, the BLUE as given in (2.9) has a

limitation: it is infeasible, as σ2
0Σ0 is unknown in practice.

A large class of estimators for the mean is the M–estimator, introduced by Beran (1991),

and defined as the solution of
n

∑
t=1

ψ (yt − µ̂) = 0,

where ψ (.) is a deterministic function. Special cases of M–estimators are the sample mean and

the median. The M–estimators are shown to have the same asymptotic variance as the sample

mean, in particular for Gaussian long memory processes. In the case of independent and short

range dependent processes, M–estimators have a different asymptotic variance from (2.8).

2.3 Parametric estimation of the dynamic parameters

Parametric estimation of the dynamic parameters is performed either in the time domain or

in the frequency domain. Time domain estimation is perhaps the more conventional method.

It includes methods such as TML estimation and the CSS estimation method. Time domain

estimation involves the direct use of the observed data in the specification of the criterion

function, whereas frequency domain estimation (involving spectral analysis) is a two-step

procedure. In the first step, one applies the Fourier transformation to the data and then, in
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the second step, the parameters are estimated by using the transformed data. This includes

methods such as FML and EWH.

Several parametric estimators have been established in the literature. We shall define these

estimators and discuss their limiting properties under both the correct and incorrect specifi-

cation of the model, in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 Correct specification of the model

Assume that {yt} is generated from an ARFIMA(p0, d0, q0) process with spectral density given

by

f0 (λ) =
σ2

0
2π
[sin (λ/2)]−2d0 |θ0 (exp (ıλ))|2

|φ0 (exp (ıλ))|2
, − π ≤ λ ≤ π, (2.10)

where θ0 (z) = 1 + θ10z + ... + θq00zq0 and φ(z) = 1 + φ10z + ... + φp00zp0 . Under correct

specification, the model to be estimated is the ARFIMA(p, d, q) model, where p = p0 and

q = q0. Denote by ϑ the (p0 + q0 + 1)× 1 vector of dynamic parameters in the model.

The TML estimator of ϑ is defined by maximizing the exact Gaussian log-likelihood func-

tion

`
(
ϑ, µ, σ2) = − 1

2n
log
(
2πσ2)− 1

2n
log |Σϑ | −

1
2nσ2 (y− µl)> Σ−1

ϑ (y− µl) , (2.11)

over the parameter space E as defined in Section 2.1. Here, Σϑ is the autocovariance of the

fitted model. This form of Gaussian log-likelihood function is directly analyzed in Dahlhaus

(1989) and Lieberman et al. (2012). One can replace µ by the true mean, if it is known. If it is

unknown, one can simply replace it by the sample mean or the BLUE defined in the previous

section, where the BLUE is itself a function of ϑ.
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An alternative to TML is the CSS method proposed by Chung and Baillie (1993), Beran

(1995) and Robinson (2006). The CSS estimator is defined by minimizing the function

S (ϑ) =
1
n

n

∑
t=1

e2
t , (2.12)

where et is the approximation of εt in (2.3) for t = 1, . . . , n, given by

et =
t−1

∑
i=0

τi (ϑ) (yt−i − µ) ,

where τi (ϑ) is as defined in (2.4). Here too µ can be treated as mentioned for the TML proce-

dure.2

Under certain regularity conditions, Grenander and Szego (1958) showed that

1
n

log |Σϑ | →
1

2π

∫ π

−π
log f (λ) dλ, as n→ ∞. (2.13)

Beran (1994, Lemma 5.3) states that the matrix Σ−1
ϑ can be approximated by the matrix A =

[α (i− k)] , i, j = 1, . . . , n, where

α (i− k) =
∫ π

−π

1
f (λ)

exp [ı (i− k) λ] dλ. (2.14)

Therefore, the approximation in (2.14) immediately gives,

1
n
(y− µl)> Σ−1

ϑ (y− µl) ≈ 1
n
(y− µl)> A (y− µl)

=
1
n

n

∑
i=1

n

∑
k=1

a (i− k) (yi − µ) (yk − µ)

=
1
n

n

∑
i=1

n

∑
k=1

∫ π

−π

1
f (λ)

exp [ı (i− k) λ] dλ (yi − µ) (yk − µ)

=
1
n

∫ π

−π

1
f (λ)

n

∑
i=1

n

∑
k=1

exp [ı (i− k) λ] (yi − µ) (yk − µ) dλ

2Another estimation procedure that involves estimating the coefficients of the AR representation, is the Yule-
Walker method, which yields closed-form solutions for the coefficients of AR models (see Box and Jenkins, 1970,
pages 58-59). However, this method is not feasible for fractional process as the AR representation has infinite
number of coefficients and truncation of the infinite series may not be appropriate due to the slow convergence of
τi (η).
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=
1

2π

∫ π

−π

I (λ, µ)

f (λ)
dλ, (2.15)

where I (λ, µ) is the periodogram defined as

I (λ, µ) = |D (λ, µ) |2; D (λ, µ) =
1√
2πn

n

∑
t=1
(yt − µ) exp (−ıλt) . (2.16)

The approximations in (2.13) and (2.15) lead to the approximation of the log-likelihood in the

frequency domain (leaving the constant term in (2.11) out) as

− 1
4π

∫ π

−π
log f (λ) dλ− 1

4π

∫ π

−π

I (λ, µ)

f (λ)
dλ, (2.17)

where ı =
√
−1 is the imaginary unit. The function in (2.17) is the exact Whittle log-likelihood

that is introduced by Whittle (1952) for the class of short memory models. Later, Dahlhaus

(1989) adopted the technique for long memory models3. In this thesis we refer to the objective

function in (2.17) as it is the representation of the exact Gaussian log-likelihood function in the

frequency domain. Thus, the resultant estimator that maximizes (2.17) is defined as the EWH

estimator of ϑ.

Replacing the integral in (2.17) by discrete frequencies measured at λj = 2π j/n, for j =

1, . . . , bn/2c, gives the discrete version of the exact Whittle log-likelihood as,

− 1
n

bn/2c

∑
j=1

log f
(
λj
)
− 1

n

bn/2c

∑
j=1

I
(
λj, µ

)
f
(
λj
) . (2.18)

The maximizer of (2.18) is denoted as the DWH estimator of ϑ. Alternatively, Cheung and

Diebold (1994) exploit the fact that the first component in the above expression is negligible

for large n – as its integral form is exactly zero – and introduce another approximation to (2.11)

in the form of

− 1
n

bn/2c

∑
j=1

I
(
λj, µ

)
f
(
λj
) . (2.19)

3Fox and Taqqu (1986) analyzed the limiting properties of the exact Whittle log-likelihood objective function
without the first component in (2.17).
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Denote by the FML estimator of ϑ, the maximizer of the above function.

Remark 2.1 The FML and DWH objective functions are not functions of µ, as the component, ∑n
t=1 µ exp

(
−ıλjt

)
of the DFT given in (4.13) produces zero for λj = 2π j/n, j = 1, . . . , bn/2c. Thus, it is obvious that

the properties of the FML and DWH estimators of ϑ do not alter due to the mean being known or

estimated. However, the EWH log-likelihood function is a function of ϑ and µ.

Remark 2.2 Various other versions of Whittle estimators have also been analyzed in the time series

analysis literature. For example, refer to Whittle (1957) and Whittle (1962). However, in this thesis

we use the three forms given in (2.17), (2.18) and (2.19) that are commonly used particularly in the

context of fractionally integrated models.

Given the correct specification of the model, with either choice of mean estimators (that is,

the sample mean or the BLUE), the asymptotic properties of the TML, CSS, EWH and DWH

estimators will be the same as in the known zero mean case. From the theory established in

the literature, it follows that in all cases the estimator, ϑ̂, is a consistent estimator of ϑ0, the true

value of ϑ, and that
√

n
(

ϑ̂ − ϑ0

)
is asymptotically normal with mean zero. The exact form of

the limiting covariance matrix is given by V−1 (ϑ0), where, V (ϑ0) =
[
vij (ϑ0)

]
, i, j = 1, . . . , n,

with

vij (ϑ0) =
1

4π

∫ π

−π

∂

∂ϑi
log f (λ)

∂

∂ϑj
log f (λ)

∣∣∣∣
ϑ=ϑ0

dλ.

Further, the above mentioned standard asymptotic theory has been shown to hold for non-

Gaussian fractional time series under appropriate moment restrictions on the innovation process

(see, Hualde and Robinson, 2011 and Cavaliere et al., 2017).

Although these methods are asymptotically equivalent, they show significant difference

in their finite sample performance. The comprehensive simulation exercise of Nielsen and

22



Chapter 2: Estimation of fractionally integrated models: A review

Frederiksen (2005) for Gaussian fractional time series, illustrates that when estimating the

fractional differencing parameter, the TML estimator outperforms the others, in terms of bias

and RMSE, provided that the process mean is known. When the mean is estimated by BLUE,

then DWH performs better than the others.

Among the five objective functions, the frequency domain methods in (2.17), (2.18) and

(2.19) are preferred on grounds of computational ease, as the evaluation of the quantities Σ−1
ϑ

and τi (ϑ) in (2.11) and (2.12) is time consuming, especially when d > 0. Doornik and Ooms

(2003) proposed an algorithm to calculate the elements of Σ−1
ϑ . Although their method reduces

the computational time to some extent, the frequency domain methods remain the simplest

from a computational point of view.

2.3.2 Mis-specification of the model

A fundamental assumption underlying the classical results on the statistical properties of the

above estimators is that the model is correctly specified for the process. If one does not assume

the correct specification of the model, the next important question is: Does the parametric esti-

mator still converge to some limit? If the estimator does converge to some limit: (1) Does this

limit have any meaning?, (2) Does the estimator achieve the usual
√

n rate of convergence?

and, (3) Is the limiting distribution still normal? Specific answers to each of these questions

are provided by White (1982) for short range processes. See also Berk (1966, 1970) and Huber,

1967 for earlier work on mis-specification, particularly aimed at addressing the question of

consistency.

Under mis-specification, the TDGP and the fitted (mis-specified) model are different. Es-

timating the parameters of the incorrect model proceeds as described for the correct speci-
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fication, in Section 2.3.1, except that form of the relevant objective functions will depict the

incorrectly specified model, not the TDGP. More details on the objective functions under mis-

specification will be provided in Chapter 3.

Only two published papers address the above questions in the context of fractional mod-

els. Yajima (1993) analyzes the consequences of fitting an ARMA(p, q) model to a stationary

ARFIMA(p0, d0, q0) TDGP where {p 6= p0 ∪ q 6= q0} \ {p0 ≤ p ∩ q0 ≤ q}. Yajima shows that

under mis-specification, the EWH estimator of β – notation we use here to denote the vector

of ARMA coefficients – and the error variance, converges to the pseudo-true value
(

β>1 , σ2
1

)>
.

Further, when the true value of d, d0, lies in the range d0 ∈ (0.25, 0.5) , the rate of convergence

is slower than
√

n and it depends on d0. The limiting distribution is of the form of a Rosen-

blatt process. When d0 = 0.25, asymptotic normality is achieved with a rate of convergence

different from
√

n. Whenever d0 ∈ (0, 0.25), both asymptotic normality and the
√

n rate of

convergence are achieved.

As was mentioned in Section 1, Chen and Deo (2006) developed the asymptotic theory

for fitting an ARFIMA(p, d, q) model given in (2.5) to a stationary ARFIMA(p0, d0, q0) TDGP.

Denote by η =
(

d, β>
)>

the (p+ q+ 1)× 1 vector of dynamic parameters in the fitted model

such that {p 6= p0 ∪ q 6= q0} \ {p0 ≤ p ∩ q0 ≤ q}. It is shown that the FML estimator of η con-

verges to the pseudo-true value η1. The rate of convergence and the form limiting distribution

are case-specific depending on the degree of mis-specification, d∗, measured by the difference

between the true and the pseudo-true values of d (that is, d∗ = d0 − d1). If d∗ > 0.25, the

asymptotic distribution is not normal. In this case, the rate of convergence is slower than
√

n

and the rate declines as the degree of mis-specification increases. If d∗ = 0.25, the limiting

distribution is normal with a rate of convergence different from
√

n. If d∗ < 0.25,
√

n− con-
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sistency and asymptotic normality are achieved. The exact forms of the rate of convergence

and the limiting distributions will be provided in Chapter 3. Chen and Deo focus only on

the limiting behaviour of the FML estimator of η, and they do not consider the properties of

the estimator of the error variance, as did Yajima (1993). Neither Yajima nor Chen and Deo

evaluate the finite sampling properties of any estimators under mis-specification.

The other closely related article addressing issues related to mis-specification in a long

memory setting is Crato and Taylor (1996). They discuss the consequences of mis-specification

in three different cases in terms of forecasting errors: (1) fitting an autoregressive integrated

moving average [ARIMA] model to a non-stationary ARFIMA process, (2) fitting a non-

stationary ARFIMA model to a stationary ARFIMA process, and, (3) mis-specifying a frac-

tional noise process with an ARIMA model. In all three cases, the error variance of the k−

step ahead forecast is large under mis-specification. Further, the error variance is much larger

when d0 > 1. The error variance also increases as k (the number of steps ahead for forecasting)

increases.

2.4 Semi-parametric estimation of d: Local methods

As mentioned in Chapter 1, with the semi-parametric approach, a full parametric model is

not specified for the spectral density of the process. The literature on semi-parametric esti-

mation can be viewed in terms of global methods and local methods. The so-called global

(or broadband) method yields an estimator of d by constructing an estimator of the spectral

density over the whole range [−π, π]. Examples of such global estimators are the broadband

log-periodogram regression estimator of Moulines and Soulier (1999), Hurvich and Brodsky

(2001), the fractional exponential estimator of Robinson (2004) and the fractional autoregres-
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sive estimator of Bhansali et al. (2006). Besides estimating d, these articles provide a non-

parametric estimator of the spectral density f . For more details on global methods, see,

Doukhan et al. (2003, pages 251-301).

In the local (or narrowband) methods, an estimator of d is obtained without prior knowl-

edge about the spectral density outside an arbitrarily small neighbourhood of the origin, and

therefore with no strong assumptions on g (β, λ) in (2.6) (hereinafter referred to as g (λ) in this

chapter for notational simplicity). Local estimators use only periodogram ordinates belonging

to this small neighbourhood around zero. This class of estimator was initiated by Geweke and

Porter-Hudak (1983) and Robinson (1995a). The local semi-parametric estimators developed

thereinafter, such as those of Robinson (1995b), Shimotsu and Phillips (2002), Andrews and

Guggenberger (2003) and Andrews and Sun (2004), are extensions of, or improvements on,

these two initial methods.

2.4.1 LPR estimator of Geweke and Porter-Hudak (1983)

The approach of Geweke and Porter-Hudak (1983) is motivated by the simple linear regres-

sion model,

log I
(
λj
)
= (log g(0)− C)− 2d log(2 sin(λj/2)) + ξ j, (2.20)

where C is the Euler constant, I (λ) is the periodogram of the vector of realizations, y, mea-

sured at Fourier frequencies, λj = 2π j/n; (j = 1, 2..., Nn). Here the error term

ξ j = log
(

I
(
λj
)

/ f (λj)
)
+ C+Vj,

where

Vj = log
(

g
(
λj
)

/g (0)
)

, (2.21)
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and the error terms are assumed to be asymptotically independently and identically distrib-

uted (i.i.d.). The LPR estimator of d is simply the ordinary least squares [OLS] estimator of the

slope parameter in (2.20) and is given by

d̂n =
−0.5 ∑Nn

j=1

(
xj − x

)
zj

∑Nn
j=1(xj − x)2

, (2.22)

where zj = log I
(
λj
)

, xj = log
(
2 sin

(
λj/2

))
, and x = 1

Nn
∑Nn

j=1 xj. The bandwidth Nn is

chosen such that it tends to zero as n→ ∞, but at a slower rate than n.

For stationary Gaussian fractional processes (with this assumption of Gaussianity later re-

laxed by Velasco, 2000), the limiting properties of the LPR estimator have been derived by

Geweke and Porter-Hudak (1983) for the case d0 < 0. Later, Robinson (1995b) established the

LPR properties for −0.5 < d0 < 0.5. It is shown that the LPR estimator is
√

Nn – consistent

for d0, at slower rate than the
√

n rate that is achieved by parametric estimators under cor-

rect specification of the model. Further,
√

Nn

(
d̂n − d0

)
is asymptotically normal with zero

mean and asymptotic variance π2/ 24. Velasco (1999b) and Kim and Phillips (2006) show that

consistency holds for the range of d0 ∈ (−0.5, 1] and the asymptotic normality is valid for

d0 ∈ (−0.5, 0.75]. Hurvich et al. (1998) provide asymptotic expressions for the bias, variance

and mean squared error [MSE]. Hurvich et al. suggest choosing the bandwidth,

NOpt
n =

(
27

128π2

)1/5 ( g (0)
g′′ (0)

)2/5

n4/5,

for the LPR estimator to achieve minimum MSE. We will revisit the LPR estimator in Chapter

5 where we provide both the regularity conditions under which the above mentioned asymp-

totic properties hold, and the bias and variance expressions. Hence, we omit those details

here.
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Simulation exercises of Agiakloglou et al. (1993) and Nielsen and Frederiksen (2005) illus-

trate that the LPR estimators exhibit large finite sample bias, for example in the presence of

strong autoregressive noise. A detailed finite sample performance of the estimator is docu-

mented in Chapter 5. In the next section, we shall review the bias-corrected LPR estimators

that have been proposed in the literature.

2.4.2 Bias correction for the LPR estimator: Analytical methods

Andrews and Guggenberger (2003) suggest a bias-reduction method by replacing Vj in (2.21)

with the first 2r number of terms in the Taylor’s expansion of Vj around zero, and considering

these 2r terms as additional regressors in the regression model in (2.20). The idea behind this

approach is to use some approximation of the short memory dynamics of the process rather

than ignoring the information completely. Thus, their approach uses a multivariate regression

model defined as

log I
(
λj
)
= (log g(0)− C)− 2d log(2 sin(λj/2)) +

r

∑
k=1

b2k

(2k)!
λ2k

j + ζ j,

where ζ j = ξ j −∑r
k=1

b2k
(2k)! λ

2k
j and bk =

dk log g(0)
dλk . The term Vj is a function of log g

(
λj
)
, which

is an even continuous function of sine components. Hence, all continuous odd derivatives are

equal to zero at zero, and the expansion of Vj is expressed as an even-order polynomial in the

frequency. Note that if r = 0 then the estimator is simply the LPR estimator.

The bias-reduced LPR estimator of Andrews and Guggenberger (2003) (which we denote

by d̂AG
r ) is the least squares [LS] estimator of the coefficient on−2 log(2 sin(λj/2)). Given that

g is smooth of order s ≥ 2+ 2r at λ = 0 for some non-negative integer r,

E
(

d̂AG
r

)
= d0 + τrb2+2r

N2+2r
n

n2+2r (1+ o (1)) +O
(

Nq
n

nq

)
+O

(
ln3 Nn

Nn

)
, (2.23)
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Var
(

d̂AG
r

)
=

π2

24Nn
cr + o

(
1

Nn

)
, (2.24)

where q = min (s, 4+ 2r). Let νr be a vector with kth element νr,k and Υr = [κi,k] , i, k = 1, . . . , r

such that

νr,k =
2k

(2k+ 1)2
and κi,k =

4ik
(2i+ 2k+ 1) (2i+ 1) (2k+ 1)

.

The values of cr in (2.24) are defined as

cr =
[
1− ν>r Υ−1

r νr

]−1
.

Suppose ςr is a vector with kth element ςr,k defined as

ςr,k =
2k (3+ 2r)

(2r+ 2k+ 3) (2k+ 1)
.

The values of τr in (2.23) are given by

τr = −
(2π)2+2r (2+ 2r) cr

2 (3+ 2r)! (3+ 2r)

[
1− ν>r Υ−1

r ςr

]
.

The asymptotic bias of the estimator is of order N2+2r
n

/
n2+2r, that is of smaller order than that

of the LPR estimator. Under certain assumptions, the authors show that d̂AG
r is consistent for

d0 and that

√
Nn

(
d̂AG

r − d0 − τrb2+2r
N2+2r

n
n2+2r

)
→D N

(
0,

π2

24
cr

)
,

where cr > 1 for r ≥ 1 and cr = 1 for r = 0. The asymptotic variance of d̂AG
r is thus increased

by a multiplicative constant, relative to that of the LPR estimator. The increase in asymptotic

variance is due to the reduction in the asymptotic order of magnitude of the bias. However,

the asymptotic variance is of order N−1
n , the same as that of the LPR estimator. Andrews and

Guggenberger recommend using small values of r, such as r = 1 or r = 2, in practice, for bet-

ter finite sample performance, in terms of bias-reduction and MSE, although the asymptotic

results hold for any value of r.
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Guggenberger and Sun (2006) subsequently introduced a methodology to retain the bias

reduction of the estimator of Andrews and Guggenberger (2003), for any given value of r,

but with less variance inflation. They propose a weighted average of LPR estimators based

on a different sets of discrete Fourier frequencies. We provide an extensive review of their

estimator in Chapter 5. Thus, we omit details here.

Another variant of the LPR estimator is the pooled log-periodogram regression [PLPR]

estimator of Shimotsu and Phillips (2002). The estimator is given by

d̂SP
n =

∑L
j=0 ∑{j:λs∈Bj} zsj

(
xsj − x.j

)
∑L

j=0 ∑{j:λs∈Bj}
(
xsj − x.j

)2 ,

where zsj = log I (λs), xsj = 2 log (2 sin (λs/2)) for λs ∈ Bj, x.j =
1

Nn
∑{j:λs∈Bj} xsj, and the Bj’s

are the frequency bands of width π /M such that

Bj =


{

λs|ω j − π
2Nn

< λs ≤ ω j +
π

2Nn

}
ω j =

(2j+1)π
2Nn

, j = 1, . . . , M− 1{
λs|0 < λs ≤ π

Nn

}
ω j = 0, j = 0,

,

with M = n/ (2Nn). The PLPR estimator is consistent for d0, and
√

Nn

(
d̂SP

n − d0

)
is asymp-

totically normal with zero mean and variance π2/ 24 (1+ Ξ) where Ξ is a positive constant.

The asymptotic variance of the estimator is smaller than that of the LPR estimator, but at the

cost of larger asymptotic bias. In a Monte-Carlo experiment based on ARFIMA(1, d, 0) and

ARFIMA(0, d, 1) processes, Nielsen and Frederiksen (2005) show that PLPR estimator exhibits

a slightly greater finite sample bias than the LPR estimator, with a smaller root mean squared

error [RMSE]. A larger bandwidth leads to even larger bias and smaller RMSE.

Reisen (1994) suggests replacing the periodogram ordinates in (2.20) by a smoothed peri-

odogram of the form

f̂s (λ) =
1

2π

Nn

∑
s=−Nn

k
(

s
Nn

)
γ̂ (s) cos (sλ) , (2.25)
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where γ̂ (s) is the sample auto-covariance at lag s, defined as

γ̂ (s) =
1
n ∑ (yt − y) (yt+s − y) ,

and k (u) is the lag window generator, a fixed continuous even function in the range −1 <

u < 1, with k (0) = 1 and k (−u) = k (u). The author also suggests choosing the Parzen

lag window generator. The resultant estimator d̂Re
n , is of the form of the LPR estimator af-

ter replacing log I
(
λj
)

in (2.22) by the logarithmic transformation of f̂s (λ) in (2.25). Al-

though the author discusses the consistency and asymptotic normality of the estimator, for

antipersistent ARFIMA processes, no rigorous proofs are provided. In the simulation exper-

iment for ARFIMA(1, d, 0) and ARFIMA(0, d, 1) processes, the author shows that the estima-

tor uniformly performs better than the LPR estimator in terms of bias and MSE. Alternative

smoothed periodogram-based LPR estimators are discussed by Hassler (1993) and Chen et al.

(1994), where the smoothed periodograms are defined as an empirical counterpart to the spec-

trum and as a lag-window estimator of the spectrum similar to (2.25), respectively. Their re-

sultant LPR estimators show smaller bias and mean squared error [MSE] compared to the

original LPR estimator. The simulation experiments of Chen et al. suggest that the Bartlett-

Priestley lag window is a better choice than the Parzen lag window in terms of MSE.

2.4.3 Bias correction for the LPR estimator: Non-parametric methods

A prefiltered sieve bootstrap-based bias-corrected LPR estimator [PFSB] is introduced by

Poskitt et al. (2016) for long memory processes. The algorithm to obtain the estimator is sum-

marized as follows.

Step 1: Generate the prefiltered series, {wt}n
t=1 , from the observed data using a pre-determined
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value of d, d f = d̂n :

wt =
t−1

∑
j=0

Γ
(

j− d f )
Γ
(
−d f

)
Γ (j+ 1)

yt−j.

Step 2: Fit a pth order autoregressive model to {w1, w2, ..., wn} . Denote by â (p) =
[
âj (p)

]
, j =

1, . . . , p, the Yule-Walker autoregressive parameters, that is, â (p) = Γ̂ (p)−1 γ̂p, where

γ̂ (h) =
1
n

n−|h|

∑
t=1

(wt − w)
(
wt+|h| − w

)
, for 0 ≤ h ≤ p,

w = 1
n ∑n

t=1 wt, Γ̂ (p) = [γ̂ (i− j)] ; i, j = 1, . . . , p and γ̂p = [γ̂ (1) , . . . , γ̂ (p)]
′
.

Step 3: Evaluate the residuals ε̃t (p) = ∑
p
j=0 âj (p)wt−j, t = 1, 2, . . . , n, using w1−j = wn−j+1.

Calculate σ2
ε̃ = n−1 ∑n

t=1 (̃εt (p)− ε)2 where ε = n−1 ∑n
t=1 ε̃t (p) . Then, set ε∗t (p) = σε̃et,

t = 1, . . . , n, where {et}n
t=1 is a simple random sample of i.i.d standard normal random

variables.

Step 4: Generate sieve bootstrap sample {w∗1 , w∗2 , ..., w∗n} , where w∗t = ∑
p
j=0 âj (p)w∗t−j = ε∗t ,

initiating at w∗1−j = wτ−j+1, j = 1, . . . , p, where τ ∼ discrete uni f orm [p, n] .

Step 5: Generate pre-filtered sieve bootstrap sample, {y∗t }
n
t=1 where y∗t = ∑t−1

j=0
Γ(j+d f )

Γ(d f )Γ(j+1)
w∗t−j,

and evaluate the LPR estimate of d̂∗n,b, using bootstrap sample
{

y∗t,b
}n

t=1
.

Step 6: Repeat Steps 1− 6 for B = 1000 times and estimate the bias-corrected estimator, d̂SBS =

d̂n − b∗n,B, where b∗n,B =
1
B ∑B

b=1 d̂∗n,b − d f .

In addition to establishing the error rates for bootstrap–based estimation of the bias of the

LPR estimator, and proving the theoretical validity of highest probability density confidence

intervals constructed from the prefiltered bootstrap replications, the authors demonstrate nu-

merically a significant reduction in bias via the prefiltering approach. More details on the
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finite sample performance of the resultant bias-corrected estimator will be provided in Chap-

ter 5.

An alternative non-parametric approach to the bootstrap is the jackknife. The fundamental

nature of jackknifing is to perform bias correction by combining the full sample and one or

more sub-samples with some appropriate weights. There are two techniques available for

drawing sub-samples; one is non-overlapping and the other is moving-block. For dependent

data, the sub-samples are drawn in blocks to preserve the dependence structure of the full

sample within the sub-samples too.

Let yi denote the ith sub-sample of the full sample y. Denote by l the common sub-sample

length and m the number of sub-samples such that n = m× l. If the sub-samples are drawn

using the ‘non-overlapping’ method, y>i =
(

y(i−1)l+1, . . . , yil

)
for i = 1, . . . , m; alternatively if

the sub-sampling scheme is ‘moving-block’ then y>i = (yi, . . . , yi+l−1) for all i. See Figure 2.3

for a graphical illustration of both types of jackknife method. Suppose one is interested in bias-

correcting the LPR estimator. Then the bias-corrected jackknife-based estimator is defined as

follows,

d̂J,m = wnd̂n −
m

∑
i=1

wid̂i,

where d̂n and d̂i are the full and sub-sample LPR estimators evaluated using y and yi respec-

tively. The weights are determined depending on the order of bias correction sought.

In Chapter 5 we make brief mention of earlier work in which the jackknife has been used

to bias correct estimators in other time series settings. Ekonomi and Butka (2011) are the only

authors, as far as we are aware, to use the technique in a long memory context, adopting

the methodology of Chambers to bias-adjust the LPR estimator. A simulation exercise using
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Figure 2.3: Graphical illustration of the jackknife method

an ARFIMA(0, d, 0) process reveals that jackknife estimator helps to reduce the bias of the

LPR estimator, relative to an alternative bias reduction method based on the block bootstrap.

Their study does not, however, provide any theoretical results for their bias-corrected LPR

estimator.

2.4.4 Other local semi-parametric estimators

The local Whittle (Gaussian semi-parametric or LW) estimator (abbreviated by d̂LW
n ) analyzed

by Robinson (1995a), motivated by the local Whittle approach of Künsch (1987), is defined as

the minimizer of the local Whittle likelihood function,

Q (G, d) =
1

Nn

Nn

∑
j=1

{
log
(

Gλ−2d
j

)
+

λ−2d
j

G
I
(
λj
)}

,

where G is some positive quantity that is also estimated simultaneously with d. Robinson

(1995a) showed that the estimator is consistent for d0 and
√

Nn

(
d̂LW

n − d0

)
→D N (0, 1/4).

These asymptotic results have subsequently been extended to non-stationary fractional processes

by Velasco (1999a) and Phillips and Shimotsu (2004).
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Andrews and Sun (2004) proposed a generalized version of the LW estimator that mini-

mizes the local polynomial Whittle (LPW) log-likelihood function,

Q (G, d, a1, . . . , ar) =
1

Nn

Nn

∑
j=1

{
log
(

Gλ−2d
j exp

(
−

r

∑
k=1

akλ2k
j

))

+
λ−2d

j

G exp
(
−∑r

k=1 akλ2k
j

) I
(
λj
) }

.

The LPW estimator (abbreviated by d̂AS
n ) is consistent for true d0 and

√
Nn

(
d̂AS

n − d0

)
→D

N (0, 1/4cr). The values of cr are provided in the paper. Although the LPW estimator does

give bias improvement, this comes at the cost of an increase in the asymptotic variance by a

multiplicative constant cr. To this end, Guggenberger and Sun (2006) proposed a weighted

average of different LPW estimators with different bandwidths that achieves the same degree

of bias reduction as the LPW estimator for any given r, but with less variance inflation.

Poskitt et al. (2016) adopted the prefiltered sieve bootstrap approach to bias correct the LW

estimator. Their simulation experiments show notable bias reductions, particularly when the

methodology is applied to the analytically bias-adjusted version of LW, LPW.

An exact local Whittle estimator was introduced by Shimotsu and Phillips (2005) and is

defined by the minimizer of the function

Q (G, d) =
1

Nn

Nn

∑
j=1

{
log
(

Gλ−2d
j

)
+

λ−2d
j

G
I∆dy

(
λj
)}

,

where I∆dy
(
λj
)

is the periodogram of ∆dy – the d difference series of {yt}n
t=1. The limiting

properties of this estimator are the same as those of the LW estimator.

We finish this section with a series of remarks.
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Remark 2.3 The semi-parametric estimators are biased in the presence of the short run dynamics as

the low frequencies are contaminated by the higher frequencies of the spectral density, particularly in

the case of positive AR noise. Hence, the bias of the estimators increases as the AR noise becomes more

persistent. However, MA noise contaminates the long run part less than AR noise does. as MA noise

affects the short run part of the spectral density at the higher frequencies. This produces smaller bias

regardless of the size of the MA parameter.

Remark 2.4 Semi-parametric estimators (in general) are governed by the bandwidth, Nn. It is a com-

mon practice to choose the bandwidth such that Nn = bnαc where α = 0.5, 0.65 or 0.7. Here bxc

denotes the integer part of x. Nielsen and Frederiksen (2005) state that when no short run dynamics

are present in the data, it is preferable to use the larger bandwidth, and the opposite is typically the case

in the presence of short run dynamics.

Remark 2.5 The following drawbacks of the semi-parametric estimators. i.e. that they: (i) have slower

rates of convergence than the usual
√

n, (ii) exhibit large finite sample bias, and, (iii) produce estimates

of only the fractional differencing parameter, with the short memory parameters not estimated explicitly,

motivate us to investigate the convergence and distribution properties of parametric estimators under

mis-specification of short memory dynamics; as these estimators achieve a
√

n rate of convergence under

certain conditions and do allow us to estimate the short run parameters.

2.5 Conclusion

In this chapter, we have briefly discussed existing parametric techniques for estimating the

mean, fractional differencing parameter and short memory dynamics of the ARFIMA model.

In particular, we have reviewed the asymptotic properties of the parametric estimators in the

case of both correct and incorrect specification of the model for a given DGP.
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Semi-parametric estimation methods also play an important role in estimating the frac-

tional differencing parameter. We have provided a brief review of the existing methods. Fur-

ther, we reviewed bias-correction procedures for semi-parametric estimators. We also identi-

fied certain topics in the area of ARFIMA models that deserve further study. As was indicated

in Chapter 1, the objective of the thesis is to make advances in the estimation of fractionally

integrated models in some of these areas related to parametric estimation of dynamic para-

meters using mis-specified model and bias correction of a semi-parametric estimator.
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Chapter 3

Issues in the estimation of
mis-specified models of fractionally
integrated processes

3.1 Introduction

Let {yt}, t ∈ Z, be a (strictly) stationary process with mean µ0 and spectral density f0(λ),

λ ∈ [−π, π], that is such that

f0(λ) ∼ |λ|−2d0 L0(λ) as λ→ 0 ,

where 0 ≤ |d0| < 0.5 and L0(λ) is a positive function that is slowly varying at 0. Proto-

typical examples of processes of this type are fractional noise, obtained as the increments of

self-similar processes, and fractional autoregressive moving average processes. The process

{yt} is said to exhibit long memory (or long range dependence) when 0 < d0 < 0.5, short

memory (or short range dependence) when d0 = 0, and antipersistence when −0.5 < d0 < 0,

and in this chapter we undertake an extensive examination of the consequences for estima-

tion of such processes of mis-specifying the short run dynamics.1 In so doing we provide

a significant extension of earlier work on this particular form of mis-specification in Yajima

(1993) and Chen and Deo (2006), as well as complementing work that focuses on other types

1This chapter is virtually identical to a paper submitted to Journal of Econometrics, which is now under first-
round revision for that journal. The paper is jointly authored by Gael M Martin, Kanchana Nadarajah and Donald
S Poskitt. Some repetition of material appearing other chapters has been retained, so as to minimize the extent to
which the paper has been modified.
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of mis-specification in fractional settings, as in Hassler (1994) and Crato and Taylor (1996).

Our work also complements that of Robinson (2014), where mis-specification of the local-to

zero characterization of long memory is examined, and that in Cavaliere et al. (2017), where a

comprehensive treatment of inference in fractional models under very general forms of het-

eroscedasticity is provided. Whilst mis-specification per se is not the focus of the latter paper,

the proof of convergence to a pseudo-true parameter of the conditional sum of squares [CSS]

estimator under the imposition of incorrect linear restrictions bears some relationship with

our more general results on mis-specified estimators in the fractional setting. Our results also

generalize the existing literature on the properties of various parametric estimators - including

their asymptotic equivalence - in correctly specified long memory models; see Fox and Taqqu

(1986), Dahlhaus (1989), Giraitis and Surgailis (1990), Sowell (1992), Beran (1995), Robinson

(2006) and Hualde and Robinson (2011), among others.

We begin by showing that four alternative parametric techniques – frequency domain

maximum likelihood [FML], Whittle, time domain maximum likelihood [TML] and CSS –

converge to a common pseudo-true parameter value when the short memory component is

mis-specified.2 Convergence is established for all three forms of dependence in the true data

generating process [TDGP] - long memory, short memory and antipersistence. We establish

convergence by demonstrating that when the mis-specified model is evaluated at points in the

parameter space where the fractional index d exceeds d0 − 0.5 the FML criterion function has

a deterministic limit, but that the FML criterion function is divergent otherwise. The difference

in the behaviour of the FML criterion function on subsets of the parameter space implies that

the objective function does not behave uniformly. (See Robinson, 1995a; Hualde and Robin-
2Given that each of these estimators can be derived from a Gaussian likelihood, but we do not presuppose

Gaussianity, each could be designated as a ‘quasi’ maximum likelihood estimator in the usual way; however for
the sake of notational simplicity we avoid this qualifying term.
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son, 2011; Cavaliere et al., 2017, for related discussion.) This lack of uniformity makes proofs

of convergence across the whole parameter space more complex than usual, but solutions pre-

sented in the previously cited references can be tailored to the current situation. We then show

that under common mis-specification the criterion functions that define all three alternative

estimators behave in a manner similar to that of the FML criterion. All four estimators are,

accordingly, shown to converge to the same pseudo-true parameter value – by definition the

common value that optimizes all four limiting objective functions.

Secondly, we derive closed-form representations for the first-order conditions that de-

fine the pseudo-true parameters for completely general autoregressive fractionally integrated

moving average [ARFIMA] model structures – both true and mis-specified. This represents

a substantial extension of the analysis in Chen and Deo (2006), in which the FML estimator

under mis-specification was first investigated, but with expressions for the relevant first-order

conditions provided for certain special specifications only, and with convergence established

solely for long memory Gaussian processes.

Thirdly, we extend the asymptotic theory established by Chen and Deo (2006) for the FML

estimator in the long memory Gaussian process case to the other three estimators, under long

memory, short memory and antipersistence for both the TDGP and the estimated model, and

without the imposition of Gaussianity. We show that all four methods are asymptotically

equivalent in that they converge in distribution under common mis-specification. The con-

vergence rate and nature of the asymptotic distribution is determined by the deviation of the

pseudo-true value of the fractional index, d1 say, from the true value, d0, with three critical

ranges for d∗ = d0 − d1 < 0.5 given by d∗ > 0.25, d∗ = 0.25 and d∗ < 0.25. This nonstan-

dard distributional behaviour for all four parametric estimators introduces a further degree of
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complexity into the analysis, and contrasts sharply with earlier results established in correctly

specified models, where separate modeling of the short run and fractional dynamics results in

the asymptotic distribution of the parameter estimates being normal and free of the fractional

indices.

A fourth contribution of this chapter is the provision of a closed-form representation

of the (common) asymptotic distribution that obtains under the most extreme type of mis-

specification – whereby both a
√

n rate of convergence and limiting Gaussianity is lost – to-

gether with a demonstration of how to implement the distribution numerically using appro-

priate truncation of the series expansion that characterizes the distribution. This then enables

us to illustrate graphically the differences in the rates at which the finite sample distributions

of the four different estimators approach the (common) asymptotic distribution. Notably, for

d∗ ≥ 0.25, there is a distinct grouping into frequency domain and time domain techniques;

with the latter tending to replicate the asymptotic distribution more closely than the former

in small samples.

Finally, we perform an extensive set of simulation experiments in which the relative fi-

nite sample performance of all four mis-specified estimators is assessed. The experiments are

first conducted assuming a known (zero) mean, in line with the theoretical derivations in the

chapter, and then re-run with the mean estimated. The ranking of the estimators, in terms of

bias and MSE, is shown to depend heavily on whether the mean is specified or estimated, a

conclusion that parallels results documented previously for correctly specified ARFIMA mod-

els (see, for example, Sowell, 1992; Cheung and Diebold, 1994 and Nielsen and Frederiksen,

2005).
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We note that in defining the Whittle estimator we focus on a particular approximation to

the frequency domain Gaussian (negative) log likelihood, in which sums over Fourier frequen-

cies are used to approximate the relevant integrals. Despite the analytical equivalence of this

estimator with the FML estimator for large n, the small sample performances of the two pro-

cedures will be seen to differ systematically. In common with the FML approach, this form of

Whittle estimator is invariant to the mean of the process. For interest, we also present selected

numerical results pertaining to the integral-based form of the Whittle estimator (referred to

hereafter as ‘exact Whittle’), both for the known mean case and when the mean is unknown,

the lack of invariance of this estimator to the mean rendering this latter exercise of particular

interest.

The chapter is organized as follows. In Section 3.2 we define the estimation problem,

namely producing an estimate of the parameters of a fractionally integrated model when the

component of the model that characterizes the short term dynamics is mis-specified. The cri-

terion functions that define the Whittle, TML and CSS estimators, as well as the FML estima-

tor, are specified, and we demonstrate that all four estimators possess a common probability

limit under mis-specification. The limiting form of the criterion function for a mis-specified

ARFIMA model is presented in Section 3.3, under complete generality for the short mem-

ory dynamics in the true process and estimated model, and closed-form expressions for the

first-order conditions that define the pseudo-true values of the parameters are then given. The

asymptotic equivalence of all four estimation methods is proved in Section 3.4. The finite sam-

ple performance of the alternative estimators of d in the mis-specified model – with reference

to estimating the pseudo-true value of d – is documented in Section 3.5. The form of the sam-

pling distribution is recorded, as is the bias and mean squared error [MSE], under different
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degrees of mis-specification, for all four estimators. Bias and MSE results are also documented

for the exact Whittle estimator. The experiments are first conducted assuming a known (zero)

mean, in line with the theoretical derivations in the chapter. In this case, the CSS estimator

exhibits superior performance, in terms of bias and mean squared error, across a range of mis-

specification settings, whilst the performance of the FML estimator is notably inferior. We

then re-run the simulations using demeaned data. Only the time domain estimators, plus the

exact Whittle estimator, are affected by this change, and with the rate of convergence of the

sample mean being slow under long memory we find that the superiority of the time domain

estimators is diminished - the (sums-based) Whittle estimator now being the best performer

overall. The chapter concludes in Section 3.6 with a brief summary and some discussion of

several issues that arise from the work. The proofs of the results presented in the chapter are

assembled in Appendix 3.A. Appendix 3.B contains certain technical derivations referenced

in the text.

3.2 Estimation under mis-specification of the short run dynamics

Assume that {yt} is generated from a TDGP that is a purely-nondeterministic stationary and

ergodic process with spectral density given by

σ2
0

2π
f0(λ) =

σ2
0

2π
g0 (λ) (2 sin(λ/2))−2d0 , (3.1)

where σ2
0 is the innovation variance, g0 (λ) is a real valued symmetric function of λ defined

on [−π, π] that is bounded above and bounded away from zero, and −0.5 < d0 < 0.5. Then

there exists a zero mean process {εt} of uncorrelated random variables with variance σ2
0 such

that {yt} has the moving average representation

yt = µ0 +
∞

∑
j=0

b0jεt−j , t ∈ Z = 0,±1, . . ., (3.2)
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where {b0j} is a sequence of constants satisfying b00 = 1 and ∑∞
j=0 b2

0j < ∞, and f0(λ) =

|b0(exp(ıλ))|2, λ ∈ [−π, π], with (1− z)d0 b0(z) = c0(z) = ∑∞
j=0 c0jzj and 0 < |c0(z)|, |z| ≤ 1.

We will suppose that c(exp(ıλ)) is differentiable in λ for all λ 6= 0 with a derivative that is of

order O(|λ|−1) as λ→ 0,and that

(A.1) For all t ∈ Z we have E0[εt|Ft−1] = 0 and E0[ε2
t |Ft−1] = σ2

0, a.s. where Ft−1 in the

conditional expectations is the sigma-field of events generated by εs, s ≤ t− 1. Here, and

in what follows, the zero subscript denotes that the moments are defined with respect

to the TDGP.

The conditions imposed on c0(z) imply that g0(λ) corresponds to the spectrum of an in-

vertible short memory process that is bounded and bounded away from zero for all λ ∈

[−π, π] and the TDGP satisfies Conditions A of Hannan (1973, page 131). Assumption (A.1)

was introduced into time series analysis by Hannan (1973) and has been employed by sev-

eral authors in investigations of both short memory and fractional linear processes since. The

assumption that {εt} is a conditionally homoscedastic martingale difference process circum-

vents the need to assume independence or identical distributions for the innovations, but

rules out heteroscedasticity (see Cavaliere et al., 2017, pages 5-6).

The model to be estimated is a parametric specification for the spectral density of {yt} of

the form

σ2

2π
f1(η, λ) =

σ2

2π
g1 (β,λ) (2 sin(λ/2))−2d , (3.3)

where g1 (β,λ) is a real valued symmetric function of λ defined on [−π, π]. The parameter

of interest will be taken as η =
(

d, β>
)>

, where d ∈ (−0.5, 0.5) and β ∈ B, where B is an

l-dimensional compact convex set in Rl . The variance σ2 will be viewed as a supplementary
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or nuisance parameter. The model is to be estimated from a realization yt, t = 1, . . . , n, of {yt}

and, in order that the structure of the model should parallel the assumed properties of the

TDGP, it will be assumed that the model is specified in such a way that:

(A.2) For all β ∈ B,
π∫
−π

log g1(β, λ)dλ = 0, and β 6= β′ implies that g1(β, λ) 6= g1(β
′, λ) on a

set of positive Lebesgue measure.

(A.3) The function g1(β, λ) is differentiable with respect to λ, with derivative ∂g1(β, λ)/∂λ

continuous at all (β, λ), λ 6= 0, and |∂g1(β, λ)/∂λ| = O(|λ|−1) as λ → 0. Furthermore,

inf
β

inf
λ

g1(β, λ) > 0 and sup
β

sup
λ

g1(β, λ) < ∞.

If there exists a subset of [−π, π] with non-zero Lebesgue measure in which g1 (β,λ) 6=

g0 (λ) for all β ∈ B then the model will be referred to as a mis-specified model (MisM).

The above TDGP and modelling assumptions encompass the standard parametric mod-

els, such as fractional noise, and fractional exponential and ARFIMA processes. (A detailed

outline of the properties of such processes is provided in Beran, 1994.) We will return to a

discussion of these regularity conditions later, where a strengthening of these conditions –

detailed below – will be required in order to derive our asymptotic distribution theory. Mean-

while we note (for future reference) that an ARFIMA model for a time series {yt} may be

defined as follows,

φ(L)(1− L)d{yt − µ} = θ(L)εt, (3.4)

where µ = E (yt) , L is the lag operator such that Lkyt = yt−k, and φ(z) = 1+ φ1z+ ...+ φpzp

and θ(z) = 1+ θ1z+ ...+ θqzq are the autoregressive and moving average operators respec-

tively, where it is assumed that φ(z) and θ(z) have no common roots and that the roots lie out-
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side the unit circle. The errors {εt} are assumed to be a white noise sequence with finite vari-

ance σ2 > 0. For |d| < 0.5, {yt} can be represented as an infinite-order moving average of {εt}

with square-summable coefficients and, hence, on the assumption that the specification in 3.4

is correct, {yt} is defined as the limit in mean square of a covariance-stationary process. When

0 < d < 0.5 neither the moving average coefficients nor the autocovariances of the process are

absolutely summable, declining at a hyperbolic rate rather than the exponential rate typical of

an ARMA process, with the term ‘long memory’ invoked accordingly. Thus, for an ARFIMA

model we have g1 (β, λ) = |θ(eiλ)|2/|φ(eiλ)|2 where β = (φ1, φ2, ..., φp, θ1, θ2, ..., θq)> and an

ARFIMA(p, d, q) model will be mis-specified if the realizations are generated from a true

ARFIMA(p0, d0, q0) process and any of {p 6= p0 ∪ q 6= q0} \ {p0 ≤ p ∩ q0 ≤ q} obtain.

We consider estimators of the parameter of interest, η =
(

d, β>
)>

, that are obtained by

minimizing a criterion function Qn(η) over a user-assigned compact subset of the parameter

space (−0.5, 0.5)×B,

Eδ = Dδ ×B where Dδ = {d : |d| ≤ 0.5− δ} , for some 0 < δ� 0.5 . (3.5)

The bound on |d| must be set by the practitioner via some criterion that reflects numerical

precision. Under mis-specification the generic estimator, denoted by η̂1 for the time being,

is obtained by minimizing Qn(η) assuming that {yt} follows the MisM.3 In Section 3.2.1 we

specify the form of Qn(η) associated with the FML estimator considered in Chen and Deo

(2006) and outline its relationship with the criterion functions underlying two alternative ver-

sions of the frequency domain estimator introduced by Whittle, making it clear which form

of Whittle estimator is the focus of our theoretical investigations. In Section 3.2.2 we define

3We follow the usual convention by denoting the estimator obtained under mis-specification as η̂1 rather than
simply by η̂, say. This is to make it explicit that the estimator is obtained under mis-specification and does not
correspond to the estimator produced under the correct specification of the model, which could be denoted by η̂0.
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the two time domain estimators that we consider here, TML and CSS, and their associated

criterion functions.

Anticipating the convergence results that follow later in this section, for any given Qn(η) a

law of large numbers can be combined with standard arguments to establish that on compact

subsets of {Dδ ∩ {d : (d0 − d) < 0.5}} × B, i.e. subsets of Eδ where Dδ intersects with

{d : (d0− d) < 0.5}, the criterion Qn(η)will converge uniformly to the non-stochastic limiting

objective function

Q(η) = lim
n→∞

E0 [Qn(η)] =
σ2

0
2π

π∫
0

f0(λ)

f1(η,λ)
dλ . (3.6)

If, on the other hand, Qn(η) is evaluated on a subset of Eδ where Dδ intersects with {d :

(d0 − d) ≥ 0.5}, then the criterion function is divergent. The latter corresponds to the integral

on the right hand side in (3.6) being assigned the value ∞ if (d0 − d) ≥ 0.5 (see the comment

by Hannan on his Lemma 2 in Hannan, 1973, page 134). This difference in behaviour of

the criterion function about the point d0 − d = 0.5 implies that Qn(η) does not converge

uniformly on subsets of the parameter space that include this point. Nevertheless, as will be

demonstrated below, provided that η1 ∈ Eδ, where η1 is the minimizer of Q(η), Qn(η̂1) will

converge to Q(η1) and η̂1 will converge to η1 as a consequence.

In Section 3.2.3 we derive our asymptotic results pertaining to the convergence of Qn(η)

and demonstrate the relationships between the limiting criterion functions of the Whittle,

TML and CSS estimators to the limiting criterion function of the FML estimator. The value

that minimizes the limiting criterion function of all four estimators is shown to be identical,

and the asymptotic convergence of all four estimators to the common pseudo-true parameter,

η1, is thereby established. In the theoretical derivations we adopt the assumption of a known
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mean for both the true and estimated models, with a zero value specified without loss of

generality.

3.2.1 Frequency domain estimators

In their paper Chen and Deo (2006) focus on the estimator of η =
(

d, β>
)>

defined as the

value of η that minimizes the objective function

Q(1)
n (η) =

2π

n

bn/2c

∑
j=1

I(λj)

f1(η,λj)
, (3.7)

where I(λj) is the periodogram, defined as I(λ) = 1
2πn |∑

n
t=1 yt exp(−iλt)|2 evaluated at the

Fourier frequencies λj = 2π j/n; (j = 1, ..., bn/2c), bxc is the largest integer not greater than

x. We have labeled this the FML estimator. The objective function in (3.7) is an approximation

to the frequency domain Gaussian (negative) log-likelihood introduced initially by Whittle

(1952) for short range dependent processes, namely

Wn(σ
2, η) =

∫ π

−π

{
log

σ2

2π
f1(η, λ) +

2π I(λ)
σ2 f1(η, λ)

}
dλ , (3.8)

and it coincides with the frequency domain objective function considered in Hannan (1973).

Concentrating out σ2 in 3.8 and minimizing the associated profile function with respect to η

produces what we refer to as the exact Whittle estimator.

An alternative approximation to the Whittle criterion function in (3.8), considered for ex-

ample in Beran (1994), is

Q(2)
n (σ2, η) =

2π

n

bn/2c

∑
j=1

log
[

σ2

2π
f1(η,λj)

]
+
(2π)2

σ2n

bn/2c

∑
j=1

I(λj)

f1(η,λj)
. (3.9)

Taking η as the parameter of interest and concentrating Q(2)
n (σ2, η)with respect to σ2 indicates

that the value of σ2 that minimizes 3.9 is given by σ̂2(η) = 2Q(1)
n (η). Substituting back in to
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3.9 yields the (negative) profile likelihood,

Q(2)
n (η) =

2π

2
log

(
σ̂2(η)

2π

)
+

2π

n

bn/2c

∑
j=1

log f1(η, λj) + π.

Minimization of Q(2)
n (η) with respect to η yields what we call (simply) the Whittle estimator,

and which is the form of Whittle procedure that features in our theoretical derivations. Since

limn→∞
2π
n

bn/2c

∑
j=1

log f1(η, λj) = 0 (see Appendix 3.A) it follows that this estimator is equivalent

to the FML estimator for large n. However, as indicated in Boes et al. (1989), and as will

be seen in the simulation results documented in Section 3.5, the finite sample performance

of these two estimators differs. For interest (and as prompted by a referee) we also report

selected numerical results on the finite sample performance of the exact Whittle estimator

described above.

3.2.2 Time domain estimators

The criterion functions of the two alternative time domain estimators are defined as follows:

• Let Y> = (y1, y2, ..., yn) and denote the variance covariance matrix of Y derived from the

mis-specified model by σ2Ση = [γ1 (i− j)], i, j = 1, 2, ..., n, where

γ1(τ) = γ1(−τ) =
σ2

2π

∫ π

−π
f1(η, λ)eiλτdλ .

The Gaussian log-likelihood function for the TML estimator is

−1
2

(
n log(2πσ2) + log

∣∣Ση

∣∣+ 1
σ2 (Y− µl)> Σ−1

η (Y− µl)
)

, (3.10)

where l> = (1, 1, ..., 1), and maximizing (3.10) is equivalent to minimizing the criterion

function

Q(3)
n (σ2, η) = log σ2 +

1
n

log
∣∣Ση

∣∣+ 1
nσ2 (Y− µl)> Σ−1

η (Y− µl) . (3.11)
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• To construct the CSS estimator note that we can expand (1− z)d in a binomial expansion

as

(1− z)d =
∞

∑
j=0

Γ(j− d)
Γ(j+ 1)Γ(−d)

zj , (3.12)

where Γ(·) is the gamma function. Furthermore, since g1 (β, λ) is bounded, by Assump-

tion (A.3), we can employ the method of Whittle Whittle (1984, Section 2.8) to construct

an autoregressive operator α(β, z) = ∑∞
i=0 αi(β)zi such that g1 (β, λ) = |α(β, eiλ)|−2. The

objective function of the CSS estimation method then becomes

Q(4)
n (η) =

1
n

n

∑
t=1

e2
t , (3.13)

where

et =
t−1

∑
i=0

τi(η) (yt−i − µ) (3.14)

and the coefficients τ j(η), j = 0, 1, 2, . . ., are given by τ0(η) = 1 and

τ j(η) =
j

∑
s=0

αj−s(β)Γ(j− d)
Γ(j+ 1)Γ(−d)

, j = 1, 2, . . . . (3.15)

As with the FML estimator, the CSS estimate of σ2 is given implicitly by the minimum

value of the criterion function.

We can think of the CSS estimator as providing an approximation to the TML estimator

that parallels the approximation of the FML and (sums-based) Whittle estimators to the exact

Whittle estimator.

3.2.3 Convergence properties

In Chen and Deo (2006) it is shown that if {yt} is a long range dependent Gaussian process,

then on subsets of the parameter space of the form (δ, 0.5− δ)×Φ, where 0 < δ < 0.25 and Φ

51



Chapter 3: Estimation of mis-specified fractional models: known mean

is a compact convex set, we have (for Q(1)
n (η) defined in (3.7)) plimn→∞

∣∣∣Q(1)
n (η)−Q(η)

∣∣∣ = 0

(Chen and Deo, 2006, Lemma 2). The minimum of the limiting objective function Q(η) then

defines a pseudo-true parameter value to which the FML estimator will converge, since with

the addition of the assumption that there exists a unique vector η1 =
(

d1, β>1

)>
∈ (δ, 0.5−

δ)×Φ that minimizes Q(η), it follows that the FML estimator will converge to η1.

Because Chen and Deo assumed that the TDGP was a long memory process and that in

the MisM the fractional index was similarly confined to the long memory region, they did

not explicitly consider the case where (d0 − d) ≥ 0.5. In contrast, as noted with reference

to the TDGP in (3.1), our work allows for 0 ≤ |d0| < 0.5, and involves the specification of

the appropriate user-assigned compact subset for η =
(

d, β>
)>

in 3.5. This implies a wider

range of values for (d0 − d) and, hence, the need for our analysis to deal with the differing

behaviour of Q(1)
n (η) about the point d0− d = 0.5 alluded to above. To achieve this, we divide

the parameter space Eδ into three disjoint sub-sets:

1. E0
δ = D0

δ ×B where D0
δ = Dδ ∩ {d : −(1− 2δ) ≤ (d0 − d) ≤ 0.5− δ},

2. E
0
δ1 = D

0
δ1 ×B where D

0
δ1 = Dδ ∩ {d : 0.5− δ < (d0 − d) < 0.5}, and,

3. E
0
δ2 = D

0
δ2 ×B where D

0
δ2 = Dδ ∩ {d : 0.5 ≤ (d0 − d) ≤ 1− 2δ} .

The superscript ‘0’ is used to indicate that the relevant subspaces relate to the deviation

(d0 − d) assuming that d0 ∈ Dδ. The notation in 2. and 3. is used to denote the breakdown of

the complement of the set in 1, E0
δ, into two disjoint subsets, E

0
δ1 and E

0
δ2. This division of the

parameter space of (d0 − d) is depicted graphically in Figure 3.1.

We will establish that on the subset E0
δ we have limn→∞ Q(1)

n (η) = Q(η) almost surely and
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Figure 3.1: Graphical illustration of the division of the parameter space of (d0−d)

uniformly in η, where Q(η) is defined as in 3.6, whereas Q(1)
n (η) is of order O(δ−1) on E

0
δ1

and is divergent as n → ∞ on E
0
δ2. This is the content of Lemmas 3.1, 3.2, 3.3 and 3.4 below.

Proposition 3.1 then establishes that the FML estimator converges to η1 = arg minη Q(η). We

will also establish that the convergence/divergence properties of each of the three alternative

estimators, Whittle, TML and CSS, is the same as that of the FML estimator. The upshot of

this is summarized in Theorem 3.1.

Lemma 3.1 Suppose that the TDGP of {yt} is as prescribed in equations (3.1) and (3.2) and that the

MisM is specified as in (3.3). Assume also that Assumptions (A.1)− (A.3) are satisfied. Then for any

constant ν f > 0, ∣∣∣∣∣2π

n

bn/2c

∑
j=1

I(λj)

f1(η,λj) + ν f
− σ2

0
2π

∫ π

0

f0(λ)

f1(η, λ) + ν f
dλ

∣∣∣∣∣
converges to zero almost surely and uniformly in η on E0

δ.

Since, obviously, f1(η, λ) < f1(η, λ) + ν f it follows from Lemma 3.1 that,

lim inf
n→∞

Q(1)
n (η) ≥ lim

n→∞

2π

n

bn/2c

∑
j=1

I(λj)

f1(η, λj) + ν f

=
σ2

0
2π

∫ π

0

f0(λ)

f1(η, λ) + ν f
a.s.
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uniformly in η on E0
δ. Letting δ f → 0 and applying Lebegue’s monotone convergence theorem

gives

lim inf
n→∞

Q(1)
n (η) ≥ Q(η) =

σ2
0

2π

∫ π

0

f0(λ)

f1(η, λ)
dλ a.s.

To establish that Q(η) also provides a limit superior for Q(1)
n (η) when η ∈ E0

δ we will use the

following lemma.

Lemma 3.2 Suppose that the conditions of Lemma 3.1 hold. Set

h1(η, λ) =

{
f1(η, λ), f1(η, λ) ≥ ν f
ν f , f1(η, λ) < ν f ,

where ν f > 0. Then for all ν f > 0,∣∣∣∣∣2π

n

bn/2c

∑
j=1

I(λj)

h1(η,λj)
− σ2

0
2π

∫ π

0

f0(λ)

h1(η, λ)
dλ

∣∣∣∣∣
converges to zero almost surely uniformly in η on E0

δ.

The following lemma shows that the limiting form of the FML criterion function presented

by Chen and Deo (2006), for Gaussian processes (specifically) and only in the case where both

d and d0 lie in the interval (0, 0.5), holds more generally, and can incorporate all three forms

of memory - long memory, short memory and antipersistence - in both the true and estimated

models.

Lemma 3.3 Suppose that the conditions of Lemmas 3.1 and 3.2 hold. Then,

lim
n→∞

sup
η∈E0

δ

|Q(1)
n (η)−Q(η)| = 0 .

Lemma 3.4 then indicates that for points in Eδ where (d0 − d) > 0.5− δ, 0 < δ < 0.5,

uniform convergence of the criterion function Q(1)
n (η) fails.
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Lemma 3.4 Suppose that the TDGP of {yt} is as prescribed in equations (3.1) and (3.2) and that the

MisM is specified as in (3.3). Assume also that Assumptions (A.1)− (A.3) are satisfied. Then for all

η ∈ E
0
δ1 we have lim infn→∞ Q(1)

n (η) = O(δ−1) and for η ∈ E
0
δ2

lim inf
n→∞

Q(1)
n (η) ≥ C > 0

almost surely for all C, no matter how large.

Note that Lemma 3.4 implies that as n increases, and for all δ sufficiently small, η̂
(1)
1 =

arg minη Q(1)
n (η) cannot lie in E

0
δ1 ∪E

0
δ2. Proposition 3.1 now follows as an almost immediate

corollary of the previous developments if we suppose that the following additional assump-

tion holds:

(A.4) There exists a unique pseudo-true parameter vector η1 =
(

d1, β>1

)>
belonging to the

subset E0
δ that satisfies η1 = arg minη Q(η).

Proposition 3.1 establishes the convergence of the FML estimator to η1 under the same gen-

erality for both the TDGP and MisM as highlighted above (cf. Chen and Deo, 2006, Corollary

1).

Proposition 3.1 Suppose that the TDGP of {yt} is as prescribed in equations (3.1) and (3.2) and that

the MisM is specified as in (3.3). Assume also that Assumptions (A.1) − (A.4) are satisfied. Let

η̂
(1)
1 denote the FML estimator obtained by minimizing the criterion function Q(1)

n (η) over Eδ. Then

limn→∞ Q(1)
n (η̂

(1)
1 ) = Q(η1) and η̂

(1)
1 → η1 almost surely.

Index now by i = 2, 3 and 4 the estimators associated with the Whittle, TML and CSS

criterion functions respectively; that is η̂
(i)
1 minimizes Q(i)

n (·), i = 2, 3, 4, with each viewed as
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a function of η. Given the relationships between Q(1)
n (·) and Q(i)

n (·), i = 2, 3, 4, as outlined in

the appendix, it follows that η̂
(i)
1 , i = 1, 2, 3, 4, must share the same convergence properties.

Thus we can state the following theorem:

Theorem 3.1 Suppose that the TDGP of {yt} is as prescribed in equations (3.1) and (3.2) and that

the MisM is specified as in (3.3). Assume also that Assumptions (A.1)− (A.4) are satisfied. Let η̂
(i)
1 ,

i = 1, 2, 3, 4, denote, respectively, the FML, Whittle, TML and CSS estimators of the parameter vector

η =
(

d, β>
)>

of the MisM. Then limn→∞ ‖η̂(i)1 − η̂
(j)
1 ‖ = 0 almost surely for all i, j = 1, 2, 3, 4,

where the common limiting value of η̂
(i)
1 , i = 1, 2, 3, 4, is η1 = arg minη Q(η) .

Having established that the four parametric estimators converge towards a common η1,

we can as a consequence now broaden the applicability of the asymptotic distributional re-

sults derived by Chen and Deo (2006) for the FML estimator. This we do in Section 3.4 by es-

tablishing that all four alternative parametric estimators converge in distribution for all three

forms of memory - long memory, short memory and antipersistence.

Prior to doing this, however, we note that Cavaliere et al. (2017) have shown that if g0(λ)

has a parametric form that is known, but the parameter values that characterize it are not, then

the CSS estimator will convergence to a pseudo-true value if it is evaluated whilst imposing

incorrect linear parameter constraints (Cavaliere et al., 2017, Theorem 5(ii)). Theorem 3.1 pro-

vides a generalization of this result by extending it to the FML, Whittle and TML estimators,

and by also allowing for the possibility that the parametric form of the model, g1(λ), may

itself be mis-specified. In what follows we indicate the precise form of the limiting objective

function Q(η), and the associated first-order conditions that define the pseudo-true value η1

of the four estimation procedures, in the ARFIMA case.
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3.3 Pseudo-true parameters under ARFIMA mis-specification

Under Assumptions A.1 − A.4, the value of η1 = arg minη Q(η) can be determined as the

solution of the first-order condition ∂Q(η)/∂η = 0, and Chen and Deo (2006) illustrate the

relationship between ∂ log Q(η)/∂d and the deviation d∗ = d0 − d1 for the simple special case

in which the TDGP is an ARFIMA(0, d0, 1) and the MisM is an ARFIMA(0, d, 0). They then

cite (without providing detailed derivations) certain results that obtain when the MisM is an

ARFIMA(1, d, 0). Here we provide a significant generalization, by deriving expressions for

both Q(η) and the first-order conditions that define the pseudo-true parameters, under the

full ARFIMA(p0, d0, q0) /ARFIMA(p, d, q) dichotomy for the true process and the estimated

model. Representations of the associated expressions via polynomial and power series ex-

pansions suitable for the analytical investigation of Q(η) are presented. It is normally not

possible to solve the first order conditions ∂Q(η)/∂η = 0 exactly as they are both nonlinear

and (in general) defined as infinite sums. Instead one would determine the estimate numeri-

cally, via a Newton iteration for example, with the series expansions replaced by finite sums.

An evaluation of the magnitude of the approximation error produced by any power series

truncation that might arise from such a numerical implementation is given. The results are

then illustrated in the special case where p0 = q = 0, in which case true MA short memory

dynamics of an arbitrary order are mis-specified as AR dynamics of an arbitrary order. In this

particular case, as will be seen, no truncation error arises in the computations.

To begin, denote the spectral density of the TDGP, a general ARFIMA(p0, d0, q0) process,

by

σ2
0

2π
f0(λ) =

σ2
0

2π

∣∣1+ θ10eiλ + ...+ θq00eiq0λ
∣∣2∣∣∣1+ φ10eiλ + ...+ φp00eip0λ
∣∣∣2 |2 sin(λ/2)|−2d0 ,
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and that of the MisM, an ARFIMA(p, d, q) model, by

σ2

2π
f1(η, λ) =

σ2

2π

∣∣1+ θ1eiλ + ...+ θqeiqλ
∣∣2∣∣∣1+ φ1eiλ + ...+ φpeipλ
∣∣∣2 |2 sin(λ/2)|−2d.

Substituting these expressions into the limiting objective function we obtain the representa-

tion

Q (η) =
σ2

0
2π

π∫
0

f0(λ)

f1(η, λ)
dλ =

σ2
0

2π

π∫
0

|Aβ(eiλ)|2
|Bβ(eiλ)|2 |2 sin(λ/2)|−2(d0−d)dλ , (3.16)

where

Aβ(z) =
q

∑
j=0

ajzj = θ0(z)φ(z) =
(
1+ θ10z+ ...+ θq00zq0

)
(1+ φ1z+ ...+ φpzp), (3.17)

with q = q0 + p and

Bβ(z) =
p

∑
j=0

bjzj = φ0(z)θ(z) = (1+ φ10z+ ...+ φp00zp0)
(
1+ θ1z+ ...+ θqzq) , (3.18)

with p = p0+ q. The expression for Q(η) in (3.16) takes the form of the variance of an ARFIMA

process with MA operator Aβ(z), AR operator Bβ(z) and fractional index d0 − d. It follows

that Q(η) could be evaluated using the procedures presented in Sowell (1992). Sowell’s algo-

rithms are based upon series expansions in gamma and hypergeometric functions however,

and although they are suitable for numerical calculations, they do not readily lend themselves

to the analytical investigation of Q(ψ). We therefore seek an alternative formulation.

Let C(z) = ∑∞
j=0 cjzj = Aβ(z)/Bβ(z) where Aβ(z) and Bβ(z) are as defined in (3.17) and

(3.18) respectively. Then (3.16) can be expanded to give

Q (η) = 21−2(d0−d) σ2
0

2π

[
∞

∑
j=0

∞

∑
k=0

cjck

∫ π/2

0
cos (2 (j− k) λ) sin(λ)−2(d0−d)dλ

]
.

Using standard results for the integral
π∫

0

(sin x)υ−1 cos(ax)dx from Gradshtein and Ryzhik
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(2007, page 397) yields, after some algebraic manipulation,

Q (η) =
σ2

0
2(1− 2(d0 − d))

[
∞

∑
j=0

∞

∑
k=0

cjck cos ((j− k)π)

B (1− (d0 − d) + (j− k) , 1− (d0 − d)− (j− k))

]
,

where B(a, b) denotes the Beta function. This expression can in turn be simplified to

Q (η) =
σ2

0Γ(1− 2(d0 − d))
2Γ2(1− (d0 − d))

}K(η) , (3.19)

where

K(η) =
∞

∑
j=0

c2
j + 2

∞

∑
k=0

∞

∑
j=k+1

cjckρ(j− k)

and

ρ(h) =
h

∏
i=1

(
(d0 − d) + i− 1

i− (d0 − d)

)
, h = 1, 2, . . . .

Using (3.19) we now derive the form of the first-order conditions that define η1, namely

∂Q(η)/∂η = 0. Differentiating Q (η) first with respect to βr, r = 1, . . . , l, and then d gives:

∂Q (η)
∂βr

= {σ2
0Γ(1− 2(d0 − d))

2Γ2(1− (d0 − d))
}∂K (η)

∂βr
, r = 1, 2, ..., l,

where

∂K (η)
∂βr

=
∞

∑
j=1

2cj
∂cj

∂βr
+ 2

∞

∑
k=0

∞

∑
j=k+1

(ck
∂cj

∂βr
+

∂ck

∂βr
cj)ρ(j− k) ,

and

∂Q (η)
∂d

= {σ2
0Γ(1− 2(d0 − d))

2Γ2(1− (d0 − d))
}
{

2 (Ψ[1− 2(d0 − d)]−Ψ[1− (d0 − d)])K(η) +
∂K (η)

∂d

}
,

where Ψ(·) denotes the digamma function and

∂K (η)
∂d

=2
∞

∑
k=0

∞

∑
j=k+1

cjckρ(j− k) {2Ψ[1− (d0 − d)]

−Ψ[1− (d0 − d) + (j− k)]−Ψ[1− (d0 − d)− (j− k)]} .
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Eliminating the common (non-zero) factor {π σ2
0

σ2
Γ(1−2(d0−d))
Γ2(1−(d0−d))} from both ∂Q (η) /∂β and

∂Q (η) /∂d, it follows that the pseudo-true parameter values of the ARFIMA(p, d, q) MisM

can be obtained by solving

∂K (η)
∂βr

= 0 , r = 1, 2, ..., l, (3.20)

and

2(Ψ[1− 2(d0 − d)]−Ψ[1− (d0 − d)])K(η) +
∂K (η)

∂d
= 0 (3.21)

for βr1, r = 1, . . . , l, and d1 using appropriate algebraic and numerical procedures. A corol-

lary of the following theorem is that η1 can be calculated to any desired degree of numeri-

cal accuracy by truncating the series expansions in the expressions for K (η) , ∂K (η) /∂β and

∂K (η) /∂d after a suitable number of N terms before substituting into (3.20) and (3.21) and

solving (numerically) for φi1, i = 1, 2, ..., p, θ j1, j = 1, 2, ..., q, and d1.

Theorem 3.2 Set CN(z) = ∑N
j=0 cjzj and let QN (η) =

(
σ2

0/σ2) IN where the integral IN =∫ π
0 |CN(exp (−iλ))|2|2 sin(λ/2)|−2(d0−d)dλ. Then,

Q (η) = QN (η) + RN =

{
σ2

0Γ(1− 2(d0 − d))
2Γ2(1− (d0 − d))

}
KN(η) + RN

where

KN(η) =
N

∑
j=0

c2
j + 2

N−1

∑
k=0

N

∑
j=k+1

cjckρ(j− k)

and there exists a ζ, 0 < ζ < 1, such that RN = O(ζ(N+1)) = o(N−1). Furthermore, ∂QN(η)/∂η =

∂Q(η)/∂η+ o(N−1).

By way of illustration, consider the case of mis-specifying a true ARFIMA(0, d0, q0) process

by an ARFIMA(p, d, 0) model. When p0 = q = 0 we have Bβ(z) ≡ 1 and C(z) is polynomial,
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C(z) = 1+∑
q
j=1 cjzj where cj = ∑

min{j,p}
r=max{0,j−p} θ(j−r)0φr. Abbreviating the latter to ∑r θ(j−r)0φr,

this then gives us:

K(d, φ1, . . . , φp) =

q

∑
j=0
(∑

r
θ(j−r)0φr)

2+

2
q−1

∑
k=0

q

∑
j=k+1

(∑
r

θ(j−r)0φr)(∑
r

θ(k−r)0φr)ρ(j− k) ;

and setting θs0 ≡ 0, s 3 [0, 1, . . . , q0],

∂K
(

d, φ1, . . . , φp

)
∂φr

=

q

∑
j=1

2(∑
r

θ(j−r)0φr)θ(j−r)0+

2
q−1

∑
k=0

q

∑
j=k+1

{
(∑

r
θ(j−r)0φr)θ(k−r)0 + θ(j−r)0(∑

r
θ(k−r)0φr)

}
ρ(j− k) ,

r = 1, . . . , p, and

∂K
(

d, φ1, . . . , φp

)
∂d

= 2
q−1

∑
k=0

q

∑
j=k+1

(∑
r

θ(j−r)0φr)(∑
r

θ(k−r)0φr)ρ(j− k)

× (2Ψ[1− (d0 − d)]−Ψ[1− (d0 − d) + (j− k)]

−Ψ[1− (d0 − d)− (j− k)])

for the required derivatives. The pseudo-true values φr1, r = 1, . . . , p, and d1 can now be ob-

tained by solving (3.20) and (3.21) having inserted these exact expressions for K
(

d, φ1, . . . , φp

)
,

∂K
(

d, φ1, . . . , φp

)
/∂φr, r = 1, . . . , p, and ∂K

(
d, φ1, . . . , φp

)
/∂d into the equations.

Let us further highlight some features of this special case by focussing on the example

where the TDGP is an ARFIMA(0, d0, 1) and the MisM an ARFIMA(1, d, 0). In this example

q = 2 and C(z) = 1 + c1z + c2z2 where, neglecting the first order MA and AR coefficient

subscripts, c1 = (θ0 + φ) and c2 = θ0φ. The second factor of the criterion function in (3.19) is

now

K(d, φ) =1+ (θ0 + φ)2 + (θ0φ)2
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+
2 [θ0φ(d0 − d+ 1)− (1+ θ0φ)(θ0 + φ)(d0 − d− 2)] (d0 − d)

(d0 − d− 1)(d0 − d− 2)
. (3.22)

The derivatives ∂K(d, φ)/∂φ and ∂K(d, φ)/∂d can be readily determined from (3.22) and hence

the pseudo-true values d1 and φ1 evaluated.
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Figure 3.2: Contour plot of Q(d, φ) against d̃= d0−d and φ for the mis-specification of an
ARFIMA(0, d0, 1) TDGP by an ARFIMA(1, d, 0) MisM; d̃∈ (−0.5, 0.5), φ ∈ (−1, 1). Pseudo-true
coordinates (d0−d1, φ1) are (a) (0.2915, 0.3473), (b) (0.25, 0.33) and (c) (0.0148, 0.2721).

It is clear from (3.22) that for given values of |θ0| < 1 we can treat K(d, φ) as a function of

d̃ = (d0 − d) and φ, and hence treat Q (d, φ) = Q (η) similarly. Figure 3.2 depicts the contours

of Q (d, φ) graphed as a function of d̃ and φ for the values of θ0 = {−0.7,−0.637014,−0.3}

when σ2 = σ2
0. Pre-empting the discussion to come in the following section, the values of θ0

are deliberately chosen to coincide with d∗ = d0 − d1 being respectively greater than, equal to

and less than 0.25.

The three graphs in Figure 3.2 clearly demonstrate the divergence in the asymptotic cri-

terion function that occurs as d̃ = (d0 − d) approaches 0.5 and they illustrate that although
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the location of (d1, φ1) may be unambiguous, the sensitivity of Q (d, φ) to perturbations in

(d, φ) can be very different depending on the value of d∗ = d0 − d1.4 In Figure 2(a) the con-

tours indicate that when d∗ > 0.25 the limiting criterion function has hyperbolic profiles in a

small neighbourhood of the pseudo-true parameter point (d1, φ1), with similar but more lo-

cally quadratic behaviour exhibited in Figure 2(b) when d∗ = 0.25. The contours of Q(d, φ) in

Figure 2(c), corresponding to d∗ < 0.25, are more elliptical and suggest that in this case the

limiting criterion function is far closer to being globally quadratic around (d1, φ1). It turns out

that these three different forms of Q (d, φ) , reflecting the most, intermediate, and the least mis-

specified cases, correspond to the three different forms of asymptotic distribution presented

in the following section.

3.4 Asymptotic distributions

In this section we show that the asymptotic distribution of the FML estimator derived in Chen

and Deo (2006) in the context of long range dependence is also applicable to the Whittle, TML

and CSS estimators, and that all four estimators are, hence, asymptotically equivalent under

mis-specification. As was highlighted by Chen and Deo, the rate of convergence and the na-

ture of the asymptotic distribution of the FML estimator is determined by the deviation of the

pseudo-true value d1 from the true value d0.5. Theorem 3.3 shows that in the event that any

one of the FML, Whittle, TML or CSS estimators possesses one of the asymptotic distributions

as described in the theorem, then all four estimators will share the same asymptotic distri-

bution, and this will hold for all three forms of memory in the TDGP and the mis-specified

4All the numerical results presented in this chapter have been produced using MATLAB 2011b, version
7.13.0.564 (R2011b).

5As already noted, the results in Chen and Deo presupposed that the parameter space of the estimated model
coincided with the long memory region assumed for the TDGP. Since d1 is only defined for (d0 − d1) < 0.5
it follows that the distributional results they presented for the FML estimator were only valid for this region,
something that was not explicitly mentioned in their original derivation.
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model. We comment further on this matter below.

For each of the estimators the asymptotic distributions are obtained via the usual Taylor

series expansion of the score function, having first established convergence, and consequently

stronger smoothness conditions are required to establish the asymptotic distribution theory

and to ensure that the asymptotic variance-covariance matrix of the estimators is well defined.

We will therefore suppose:

(A.5) The function g1(β,λ) of the MisM is thrice differentiable with continuous third deriva-

tives. Furthermore, the derivatives satisfy;

(A.5.1) sup
λ

sup
β

∣∣∣ ∂g1(β,λ)
∂βi

∣∣∣ < ∞, 1 6 i 6 l,

(A.5.2) sup
λ

sup
β

∣∣∣ ∂2g1(β,λ)
∂βi∂βj

∣∣∣ < ∞, sup
λ

sup
β

∣∣∣ ∂2g1(β,λ)
∂βi∂λ

∣∣∣ < ∞, 1 6 i, j 6 l, and

(A.5.3) sup
λ

sup
β

∣∣∣ ∂3g1(β,λ)
∂βi∂βj∂βk

∣∣∣ < ∞, 1 6 i, j, k 6 l.

Assumptions (A.2) − (A.5) are similar to the assumptions adopted by Fox and Taqqu

(1986) and Dahlhaus (1989) in the context of correct specification, and they are in essence

equivalent to the conditions used in the work of Chen and Deo (2006) on the mis-specified

case. In order to derive the asymptotic distribution we will assume that {εt} is a strictly sta-

tionary, regular process that satisfies the following weak dependence and moment conditions.

(A.1′) The innovation {εt} satisfies Assumption (A.1). Moreover, E0[|εt|4+p] < ∞ for some

p ∈ (0, ∞) and there exist finite constants µ3 and µ4 such that E0[ε3
t |Ft−1] = µ3 and

E0[ε4
t |Ft−1] = µ4 a.s. for all t ∈ Z.

Assumption (A.1′) states that {εt} is a martingale difference sequence, a not unreasonable

assumption that has almost become standard in the asymptotic analysis of time series, and
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it is typical to assume finite bounds on the first four moments of the innovation process (see

Cavaliere et al., 2017, for a detailed explanation of the importance of such bounds). Assump-

tion (A.1′) implies that {εt} is completely regular, and that {εp
t } is a uniformly integrable

sequence for any p ≤ 4.6

Theorem 3.3 Suppose that the TDGP of {yt} is as prescribed in equations (3.1) and (3.2) and that

the MisM is specified as in (3.3), and assume that Assumptions (A.1′) and (A.2)− (A.5) hold. Let

B = −σ2
0

π

π∫
−π

f0(λ)

f 3
1 (η1,λ)

∂ f1(η1,λ)
∂η

∂ f1(η1,λ)
∂ηT dλ+

σ2
0

2π

π∫
−π

f0(λ)

f 2
1 (η1,λ)

∂2 f1(η1,λ)
∂η∂ηT dλ , (3.23)

and set µn = B−1E0

(
∂Qn(η1)

∂η

)
where Qn(·) denotes the objective function that defines η̂1.7 Let η̂1

denote the estimator obtained by minimizing Qn(η) over the compact set Eδ where η1 ∈ Eδ and

assume that η1 3 ∂Eδ where ∂Eδ is the boundary of the set Eδ. Then the FML, Whittle, TML or CSS

estimators are asymptotically equivalent with a common limiting distribution as delineated in Cases

3.1, 3.2 and 3.3:

Case 3.1 When d∗ = d0 − d1 > 0.25,

n1−2d∗

log n
(η̂1 − η1 − µn)→D B−1

[
∞

∑
j=1

Wj, 0, ..., 0

]>
, (3.24)

where
∞

∑
j=1

Wj is the mean square limit of the random sequence
s

∑
j=1

Wj as s→ ∞ wherein

Wj =
(2π)1−2d∗ g0(η0, 0)

j2d∗g1(η1, 0)

[
U2

j +V2
j − E0

(
U2

j +V2
j

)]
,

6This assumption is closely related to Assumption (A.1) of Lahiri (2003), which specifies a set of weak depen-
dence and moment conditions on {εt} based on α−mixing.

7Heuristically, µn measures the bias associated with the estimator η̂1. That is, µn ≈ E0 (η̂1) − η1. Note that
the expression for µn given in Chen and Deo (2006, page 263) contains a typographical error; the proofs in that
paper use the correct expression. The derivation of µn for all four estimation methods considered in this chapter
is provided in Appendix 3.B.
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where,
{

Uj, Vk
}

are a sequence of random normal variables with zero mean and the covariance structure

of
{

Uj, Vk
}

denoted by Cov0(.) is as follows,

Cov0
(
Uj, Vk

)
=

∫∫
[0,1]2

{sin(2π jx) sin(2πky) + sin(2πkx) sin(2π jy)} |x− y|2d0−1 dxdy,

Cov0
(
Uj, Uk

)
= Cov0

(
Uj, Vk

)
= Cov0

(
Vj, Vk

)
, ∀j, k ∈N. (3.25)

Case 3.2 When d∗ = d0 − d1 = 0.25,

n1/2Λ
−1/2

(η̂1 − η1)→D B−1 (Z, 0, ..., 0)> , (3.26)

where

Λ =
1
n

n/2

∑
j=1

(
f0(λj)

f1(η1,λj)

∂ log f1(η1,λj)

∂d

)2

, (3.27)

and Z is a standard normal random variable.

Case 3.3 When d∗ = d0 − d1 < 0.25,

√
n (η̂1 − η1)→D N(0, Ξ), (3.28)

where Ξ = B−1ΛB−1, and

Λ = 2π
∫ π

0

(
f0(λ)

f1(η1,λ)

)2 (∂ log f1(η1,λ)
∂η

)(
∂ log f1(η1,λ)

∂η

)>
dλ. (3.29)

A key point to note from the three cases delineated in Theorem 3.3 is that when the devia-

tion between the true and pseudo-true values of d is sufficiently large (d∗ ≥ 0.25) – something

that is related directly to the degree of mis-specification of g0(λ) by g1(β, λ) – the
√

n rate of

convergence is lost, with the rate being arbitrarily close to zero depending on the value of d∗.

For d∗ strictly greater than 0.25, asymptotic Gaussianity is also lost, with the limiting distrib-

ution being a function of an infinite sum of non-Gaussian variables. For the d∗ ≥ 0.25 case,
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the limiting distribution – whether Gaussian or otherwise – is degenerate in the sense that the

limiting distribution for each element of η̂1 is a different multiple of the same random variable

(∑∞
j=1 Wj in the case of d∗ > 0.25 and Z in the case of d∗ = 0.25).

For the form of limiting distribution that obtains in Cases 1, 2 and 3 we refer to Theorems

1, 3 and 2 of Chen and Deo (2006), wherein these distributions were produced specifically

for the FML estimator in the context of long range dependence. Their proofs depend on the

Fourier sine and cosine transformations of the observed series being normally distributed

with a given covariance structure. In Chen and Deo (2006) the latter properties are derived by

assuming that {x(t)} is a Gaussian process. Here we achieve the same outcome by employing

Assumption A.1′ and appealing to results of Lahiri (2003) which imply that the Fourier sine

and cosine transformations are asymptotically normal and hence that lemmas of Moulines

and Soulier (1999) used by Chen and Deo can be applied in a more general setting.

To prove that these same limiting distributions hold for the Whittle, TML and CSS estima-

tors we establish that Rn(η̂
(i)
1 − η̂

(1)
1 ) →D 0 for i = 2, 3 and 4, where Rn denotes the conver-

gence rate applicable in the three different cases outlined in the theorem. We use a first-order

Taylor expansion of ∂Q(·)
n (η1)/∂η about ∂Q(·)

n (η̂
(·)
1 )/∂η = 0. This gives

∂Q(·)
n (η1)

∂η
=

∂2Q(·)
n (ὴ

(·)
1 )

∂η∂η>

(
η1 − η̂

(·)
1

)

and

Rn(η̂
(i)
1 − η̂

(j)
1 ) =

[
∂2Q(j)

n (ὴ
(j)
1 )

∂η∂η>

]−1

Rn
∂Q(j)

n (η1)

∂η
−
[

∂2Q(i)
n (ὴ

(i)
1 )

∂η∂η>

]−1

Rn
∂Q(i)

n (η1)

∂η
,

where ‖η1− ὴ
(·)
1 ‖ ≤ ‖η1− η̂

(·)
1 ‖. Since plim η̂

(·)
1 = η1 it is therefore sufficient to show that there
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exists a scalar, possibly constant, function Cn(η) such that∥∥∥∥∥∂2{Cn(η1) ·Q
(i)
n (η1)−Q(j)

n (η1)}
∂η∂η>

∥∥∥∥∥ = op(1) (3.30)

and

plim
n→∞

Rn

∥∥∥∥∥Cn(η1) ·
∂Q(i)

n (η1)

∂η
− ∂Q(j)

n (η1)

∂η

∥∥∥∥∥ = 0 . (3.31)

The condition in (3.30) is established by showing that ∂2{Q(1)
n (η1)}/∂η∂η> converges in prob-

ability to B, as defined in (3.23), and that for each i = 2, 3 and 4 the corresponding Hessian is

proportional to ∂2{Q(1)
n (η1)}/∂η∂η> with probability approaching one. The proof of (3.30) is

fairly conventional, whereas the proof of (3.31) – which implicitly invokes the Cramér-Wold

device since the moments (cumulants) of the asymptotically normal gradient vector are con-

vergence determining for the limiting distributions in Theorem 3.3 – is more involved because

of the presence of the scaling factor Rn. In Appendix 3.A we present the steps necessary to

prove (3.30) and (3.31) for each estimator, and for TDGPs with fractional indices in the range

−0.5 < d0 < 0.5.

Finally, we highlight the fact that the FML and Whittle estimators are mean invariant by

virtue of being defined on the non-zero fundamental Fourier frequencies. As a consequence,

all convergence results presented in both this and the previous section for the FML and Whit-

tle estimators also hold for a process that has an arbitrary (non-zero) mean, which may be

unknown, thereby broadening the applicability of the theoretical results as they pertain to

these particular estimators. The same is not true, however, either for the two time domain

based methods or for the exact (integral-based) Whittle estimator, as will be demonstrated in

Section 3.5.4 below.
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3.5 Finite sample performance of the mis-specified parametric esti-
mators of the pseudo-true parameter

3.5.1 Experimental design

In this section we explore the finite sample performance of the alternative methods, as it per-

tains to estimation of the pseudo-true value of the long memory parameter, d1, under specific

types of mis-specification. We give particular focus to the four estimators: d̂(1)1 (FML), d̂(2)1

(Whittle), d̂(3)1 (TML) and d̂(4)1 (CSS), for which the proceeding theoretical results have been

produced. We first document the form of the finite sample distributions for each estimator

by plotting the distribution of the standardized versions of the estimators, for which the as-

ymptotic distributions are given in Cases 1, 2 and 3 respectively in Theorem 3.3. As part of

this exercise we develop a method for obtaining the limiting distribution for d∗ > 0.25, as the

distribution does not have a closed form in this case, as well as a method for estimating the

bias-adjustment term, µn, which is relevant for this distribution. In the figures that follow the

‘Limit’ curve depicts the limiting distribution of the relevant statistic. Supplementing these

graphical results, we then tabulate the bias and MSE of the four different techniques, as esti-

mators of the pseudo-true parameter d1, again under specific types of mis-specification and,

hence, for different values of d∗. These results are supplemented by bias and MSE values for

the exact Whittle estimator, which we refer to as d̂(5)1 .

Data are simulated from a zero-mean Gaussian ARFIMA(p0, d0, q0) process, with the

method of Sowell (1992), as modified by Doornik and Ooms (2003), used to compute the exact

autocovariance function for the TDGP for any given values of p0, d0 and q0. We have produced

results for n = 100, 200, 500 and 1000 and for two versions of mis-specification nested in the

general case for which the analytical results are derived in Section 3.3. However, we report
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selected results (only) from the full set due to space constraints. The bias and MSE results,

plus certain computations needed for the numerical specification for the limiting distribution

in the d∗ > 0.25 case, are produced from R = 1000 replications of samples of size n from the

relevant TDGP. The two forms of mis-specification considered are:

Example 3.1 : An ARFIMA(0, d0, 1) TDGP, with parameter values d0 = {−0.2, 0.2, 0.4} and θ0 =

{−0.7,−0.444978,−0.3}; and an ARFIMA(0, d, 0) MisM. The value θ0 = −0.7 corresponds to the

case where d∗ > 0.25 and d̂(i)1 , i = 1, 2, 3, 4, have the slowest rate of convergence, n1−2d∗/ log n, and to

a non-Gaussian distribution. The value θ0 = −0.444978 corresponds to the case where d∗ = 0.25, in

which case asymptotic Gaussianity is preserved but the rate of convergence is of order (n/ log3 n)1/2.

The value θ0 = −0.3 corresponds to the case where d∗ < 0.25, with
√

n-convergence to Gaussianity

obtaining.

Example 3.2 : An ARFIMA(0, d0, 1) TDGP, with parameter values d0 = {−0.2, 0.2, 0.4} and θ0 =

{−0.7,−0.637014,−0.3}; and an ARFIMA(1, d, 0) MisM. In this example the value θ0 = −0.7

corresponds to the case where d∗ > 0.25, the value θ0 = −0.637014 corresponds to the case where

d∗ = 0.25, and the value θ0 = −0.3 corresponds to the case where d∗ < 0.25.

In Section 3.5.2 we document graphically the form of the finite sampling distributions of all

four estimators of d under the first type of mis-specification described above, and for d0 = 0.2

only. The corresponding graphs under the different values of d0 (and for all three cases) are

qualitatively equivalent to those reported here and, hence, are not included.8 In Section 3.5.3

we then report the bias and MSE of all four estimators (in terms of estimating the pseudo-true

value d1) under both forms of mis-specification and for all three values of d0. To supplement

8These additional graphical results are presented in Appendix 3.C.

70



Chapter 3: Estimation of mis-specified fractional models: known mean

these results, all of which are based on the assumption that the mean is known, in Section

3.5.4 we reproduce corresponding bias and MSE results for the two time domain estimators,

plus the exact Whittle estimator, using data in which the unknown mean is estimated along

with the other parameters.

3.5.2 Finite sample distributions

In this section we consider in turn the three cases listed under Theorem 3.3. For notational

ease and clarity we use d̂1 to denote the (generic) estimator obtained under mis-specification,

remembering that this estimator may be produced by any one of the four estimation methods:

d̂(1)1 to d̂(4)1 . Similarly, we use Qn(·) to denote the criterion associated with a generic estimator.

Only when contrasting the (finite sample) performances of the alternative estimators do we

re-introduce the superscript notation.

Case 1: d∗ > 0.25

The limiting distribution for d̂1 in this case is

n1−2d∗

log n

(
d̂1 − d1 − µn

)
D→ b−1

∞

∑
j=1

Wj , (3.32)

where µn = b−1E0

(
∂Qn(η1)

∂d

)
,

b = −2
σ2

0
2π

π∫
−π

f0(λ)

f 3
1 (η1,λ)

(
∂ f1(η1,λ)

∂d

)2

dλ+
σ2

0
2π

π∫
−π

f0(λ)

f 2
1 (η1,λ)

∂2 f1(η1,λ)
∂d2 dλ

= −2
π∫

0

(1+ θ2
0 + 2θ0 cos(λ))(2 sin(λ/2))−2d∗(2 log(2 sin(λ/2)))2dλ , (3.33)

and Wj =
(2π)1−2d∗ (1+θ2

0)

j2d∗

[
U2

j +V2
j − E0(U2

j +V2
j )
]

, with {Uj} and {Vk} as defined in Theorem

3.3. (With reference to Theorem 3.3, both B and µn in 3.24 are here scalars since in Example 1

there is only one parameter to estimate under the MisM, namely d. Hence the obvious changes

made to notation. All other notation is as defined in the theorem.)

71



Chapter 3: Estimation of mis-specified fractional models: known mean

Given that the distribution in (3.32) is non-standard and does not have a closed form rep-

resentation, consideration must be given to its numerical evaluation. In finite samples the

bias-adjustment term µn (which approaches zero as n → ∞) also needs to be calculated. We

tackle each of these issues in turn, beginning with the computation of µn.

(1) From Theorem 3.3 it is apparent that in general the formula for B is independent of the

estimation method, but the calculation of µn requires separate evaluation of E0(∂Qn(η1)/∂η)

for each estimator. In Appendix 3.B we provide expressions for E0(∂Qn(η1)/∂η) for

each of the four estimation methods. These formulae are used to evaluate the scalar

µn here. Each value is then used in the specification of the standardized estimator

n1−2d∗

log n

(
d̂1 − d1 − µn

)
in the simulation experiments.

(2) Quantification of the distribution of ∑∞
j=1 Wj requires the approximation of the infinite

sum of the Wj, plus the use of simulation to represent the (appropriately truncated) sum.

We truncate the series ∑∞
j=1 Wj after s terms where the truncation point s is chosen such

that 1 6 s < bn/2c with s → ∞ as n → ∞ (cf. Lemma 6 of Chen and Deo, 2006). The

value of s is determined using the following criterion function. Let

Sn = V̂ar0

[
n1−2d∗

log n

(
d̂1 − d1 − µn

)]
(3.34)

denote the empirical finite sample variation observed across the R replications and for

each m, 1 6 m < bn/2c, let

Tm = Sn − b−2Ωm,

where Ωm = Var0

(
m

∑
j=1

Wj

)
. Now set

s = arg min
16m<bn/2c

Tm. (3.35)
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Given s, we generate random draws of ∑s
j=1 Wj via the underlying Gaussian random

variables from which the Wj are constructed, and produce an estimate of the limiting

distribution using kernel methods.

To determine s we need to evaluate

Var0

(
m

∑
j=1

Wj

)
=

m

∑
j=1

Var0
(
Wj
)
+ 2

m

∑
j=1

m

∑
k=1
j 6=k

Cov0
(
Wj, Wk

)
. (3.36)

The variance of Wj in this case is

Var0

{
(2π)1−2d∗ (1+ θ2

0)

j2d∗

[
U2

j +V2
j − E0

(
U2

j +V2
j

)]}

=
(2π)2−4d∗ (1+ θ2

0)
2

j4d∗

{
E0

(
U2

j +V2
j

)2
−
[

E0

(
U2

j +V2
j

)]2
}

.

As {Uj} and {Vk} are normal random variables with a covariance structure as specified in

Theorem 3.3, standard formulae for the moments of Gaussian random variables yield the

result that

E0

(
U2

j +V2
j

)2
= E0

(
U4

j

)
+ 2E0

(
U2

j V2
j

)
+ E0

(
V4

j

)
= 3

[
Var0

(
Uj
)]2
+ 2

[
Var0

(
Uj
)

Var0
(
Vj
)
+ 2Cov0(Uj, Vj)

]
+3
[
Var0

(
Vj
)]2

= 12
[
Var0

(
Uj
)]2

and

[
E0

(
U2

j +V2
j

)]2
=

[
E0

(
U2

j

)
+ E0

(
V2

j

)]2

=
[
Var0

(
Uj
)
+Var0

(
Vj
)]2

= 4
[
Var0

(
Uj
)]2 .
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Thus,

Var0(Wj) =
8 (2π)2−4d∗ (1+ θ2

0)
2

j4d∗
[
Var0

(
Uj
)]2 .

Similarly, the covariance between Wj and Wk when j 6= k can be shown to be equal to

(2π)2−4d∗ (1+ θ2
0)

2

(jk)2d∗ Cov0

(
U2

j +V2
j , U2

k +V2
k

)
=

4 (2π)2−4d∗ (1+ θ2
0)

2

(jk)2d∗
[
Var0

(
Uj
)

Var0 (Vk) + 2Cov0(Uj, Vk)
]

.

The expression in (3.36) can therefore be evaluated numerically using the formula for Cov0(Uj, Vk)

to calculate the necessary moments required to determine s from (3.35).

The idea behind the use of Tm is simply to minimize the difference between the second-

order sample and population moments. The value of Sn in (3.34) will vary with the estimation

method of course; however, we choose s based on Sn calculated from the FML estimates and

maintain this choice of s for all other methods. The terms in (3.36) are also dependent on

the form of both the TDGP and the MisM and hence Tm needs to be determined for any

specific case. The values of s for the sample sizes used in the particular simulation experiment

underlying the results in this section are provided in Table 3.1.

Table 3.1: Truncation values s corresponding to the case d∗= 0.3723 for the Example 1: ARFIMA
(0, d0, 1) TDGP with d0= 0.2 and θ0= −0.7 vis-à-vis MisM: ARFIMA (0, d, 0).

n 100 200 500 1000
s 36 75 162 230

Each panel in Figure 3.3 provides the kernel density estimate of n1−2d∗

log n (d̂1− d1− µn) under

the four estimation methods, for a specific n as labeled above each plot, plus the limiting

distribution for the given s. The particular parameter values employed in the specification

of the TGDP are d0 = 0.2 and θ0 = −0.7, with d∗ = 0.3723 in this case, and the values
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Figure 3.3: Kernel density of n1−2d∗

log n

(
d̂1−d1−µn

)
for an ARFIMA(0, d0, 1) TDGP with d0= 0.2 and

θ0= −0.7, and an ARFIMA(0, d, 1)MisM; d∗> 0.25.

of s used are those given in Table 3.1. From Figure 3.3 we see that n1−2d∗

log n (d̂1 − d1 − µn) is

centered away from zero for all sample sizes, for all estimation methods. However, as the

sample size increases the point of central location of n1−2d∗

log n (d̂1 − d1 − µn) approaches zero and

all distributions of the standardized statistics go close to matching the asymptotic (’limit’)

distributions. The salient feature to be noted is the clustering that occurs, in particular for

n 6 500; that is, TML and CSS form one cluster and FML and Whittle form the other, with

the time domain estimators being closer to the asymptotic distribution for all three (smaller)
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sample sizes.

Case 2: d∗ = 0.25

The limiting distribution for d̂1 in the case of d∗ = 0.25 is

n1/2[Λdd]
−1/2

(
d̂1 − d1

)
D→ N(0, b−2) , (3.37)

where

Λdd =
1
n

n/2

∑
j=1
(1+ θ2

0 + 2θ0 cos(λj))
2(2 sin(λj/2))−1(2 log(2 sin(λj/2)))2 (3.38)

and b is as in (3.33). In both (3.38) and (3.33) θ0 = −0.444978, as d∗ = 0.25 occurs at this

particular value. Once again, d0 = 0.2 in the TDGP.

Each panel of Figure 3.4 provides the densities of n1/2[Λdd]
−1/2

(
d̂1 − d1

)
under the four

estimation methods, for a specific n as labeled above each plot, plus the limiting distribution

given in (3.37). Once again we observe a disparity between the time domain and frequency

domain kernel estimates, with the pair of time domain methods yielding finite sample dis-

tributions that are closer to the limiting distribution, for all sample sizes considered. The

discrepancy between the two types of methods declines as the sample size increases, with the

distributions of all methods being reasonably close both to one another, and to the limiting

distribution, when n = 1000.

Case 3: d∗ < 0.25

In this case we have

√
n
(

d̂1 − d1

)
D→ N(0, υ2) , (3.39)

where

υ2 = Λ11/b−2 , (3.40)
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Figure 3.4: Kernel density of n1/2[Λdd]
−1/2

(
d̂1 − d1

)
for an ARFIMA(0, d0, 1) TDGP with

d0= 0.2 and θ0= −0.444978, and an ARFIMA(0, d, 1)MisM; d∗= 0.25.

with

Λ11 = 2π
σ2

0
2π

π∫
0

(
f0(λ)

f1(d1,λ)

)2 (∂ log f1(d1,λ)
∂d

)2

dλ

= 2π

π∫
0

(1+ θ2
0 + 2θ0 cos(λ))2(2 sin(λ/2))−4d∗(2 log(2 sin(λ/2)))2dλ ,

and b as given in (3.33) evaluated at θ0 = −0.3 and d∗ = 0.1736. Each panel in Figure 3.5

provides the kernel density estimate of the standardized statistic
√

n(d̂1 − d1), under the four

estimation methods, for a specific n as labeled above each plot, plus the limiting distribution
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Figure 3.5: Kernel density of
√

n
(

d̂1−d1

)
for an ARFIMA(0, d0, 1) TDGP with d0= 0.2 and

θ0= −0.3, and an ARFIMA(0, d, 1)MisM; d∗< 0.25.

given in (3.39). In this case there is no clear visual differentiation between the time domain

and frequency domain methods, for any sample size, and perhaps not surprisingly given the

faster convergence rate in this case, all the methods produce finite sample distributions that

match the limiting distribution reasonably well by the time n = 1000.

The characteristics observed with the finite sampling distributions of the four parametric

estimators for the case with d0 = 0.2 in the TDGP are very similar to the cases with the other
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two values of d0 = −0.2 (refer Figures 3.6 – 3.8) and 0.4 (refer Figures 3.9 – 3.11).

3.5.3 Finite sample bias and MSE of estimators of the pseudo-true parameter d1 :
known mean case

We supplement the graphical results in the previous section by documenting the finite sample

bias and MSE of the four alternative estimators discussed in the previous section, in addition

to the exact Whittle estimator, as estimators of the pseudo-true parameter d1. The following

standard formulae,

B̂ias0

(
d̂(i)1

)
=

1
R

R

∑
r=1

d̂(i)r − d1 (3.41)

V̂ar0

(
d̂(i)1

)
=

1
R

R

∑
r=1

(
d̂(i)1,r

)2
−
(

1
R

R

∑
r=1

d̂(i)1,r

)2

(3.42)

M̂SE0

(
d̂(i)1

)
= B̂ias

2
0 + V̂ar0

(
d̂(i)1

)
(3.43)

r̂.e f f 0

(
d̂(i)1 , d̂(j)1

)
=

M̂SE0

(
d̂(i)1

)
M̂SE0

(
d̂(j)1

) , (3.44)

are applied to all five estimators i, j = 1, ..., 5. Since all empirical expectations and variances are

evaluated under the TDGP, we make this explicit with appropriate subscript notation. Results

for known mean are produced for Example 1 and Example 2 in Table 3.2 and 3.3 respectively,

with selected additional results relevant to both examples recorded in Table 3.4. Values of

d∗ = d0− d1 are documented across the key ranges, d∗ Q 0.25, along with associated values for

the MA coefficient in the TDGP, θ0. The minimum values of bias and MSE for each parameter

setting are highlighted in bold face in all tables for each sample size, n.9 Corresponding results

for the case in which the mean is estimated are recorded in Section 3.5.4.

Consider first the bias and MSE results for Example 1 with d0 = 0.2, as displayed in the

middle panel of Table 3.2. As is consistent with the theoretical results (and the graphical
9Only that number which is smallest at the precision of 8 decimal places is bolded. Values highlighted with a

‘∗’ are equally small to 4 decimal places.
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Chapter 3: Estimation of mis-specified fractional models: known mean

illustration in the previous section) the bias and MSE of the four parametric estimators FML,

Whittle, TML and CSS, show a clear tendency to decline as the sample size increases, for

a fixed value of θ0. In addition, as θ0 declines in magnitude, and the MisM becomes closer

to the TDGP, there is a tendency for the MSE values and the absolute values of the bias to

decline. Importantly, the bias is negative for all four estimators, with the (absolute) bias of

the two frequency domain estimators (FML and Whittle) being larger than that of the two

time domain estimators. These results are consistent with the tendency of the standardized

sampling distributions illustrated above to cluster, and for the frequency domain estimators to

sit further to the left of zero than those of the time domain estimators, at least for the d∗ ≥ 0.25

cases. Again, as is consistent with the theoretical results, the rate of decline in the (absolute)

bias and MSE of all estimators, as n increases, is slower for d∗ ≥ 0.25 than for d∗ < 0.25. The

performance of the exact Whittle estimator (as we term it) is (almost) uniformly better than

that of the Whittle estimator, but remains inferior to that of the two time domain estimators,

with the CSS being clearly the superior estimator overall. The exact Whittle procedure mimics

the other four methods in terms of the decline in both (absolute) bias and MSE as n increases,

providing numerical evidence that this frequency domain estimator is also consistent for d1.10

As indicated by the results in the bottom panel of Table 3.2 for d0 = 0.4, the impact of an

increase in d0 (for any given value of d∗ and n) is to often (but not uniformly) increase the bias

and MSE of all (five) estimator of d1. That is, the ability of the estimators to accurately esti-

mate the pseudo-true parameter tends to decline (overall) as the long memory in the TDGP

increases. In contrast, and with reference to the results in the top panel of the table for the

10The tendency for the exact Whittle estimator to have (in particular) smaller finite sample bias than its inexact
counterpart would seem to confirm the speculation in Chen and Deo (2006, §2.8) that the bias term (µn in Theorem
3) may converge to zero more quickly for the first estimator than for the second.
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Chapter 3: Estimation of mis-specified fractional models: known mean

antipersistent case, estimation accuracy tends to increase (as a general rule) as the memory

in the TDGP declines. Nevertheless, the results in Table 3.2 show that the relativities between

the estimators remain essentially the same for the different values of d0, with the CSS estima-

tor remaining preferable overall to all other estimators under mis-specification, and the FML

estimator performing the worst of all.11

The results recorded in Table 3.3 for Example 2 illustrate that the presence of an AR term

in the MisM means that more severe mis-specification can be tolerated. More specifically, in

all (comparable) cases and for all estimators, the finite sample bias and MSE recorded in Table

3.3 tend to be smaller in (absolute) value than the corresponding values in Table 3.2. Results

not presented here suggest, however, that when the value of θ0 is near zero, estimation under

the MisM with an extraneous AR parameter causes an increase in (absolute) bias and MSE,

relative to the case where the MisM is fractional noise (see also the following remark). With

due consideration taken of the limited nature of the experimental design, these results suggest

that the inclusion of some form of short memory dynamics in the estimated model – even if

those dynamics are not of the correct form – acts as an insurance against more extreme mis-

specification, but at the possible cost of a decline in performance when the consequences of

mis-specification are not severe.

Remark 3.1 When the parameter θ0 of the ARFIMA(0, d0, 1) TDGP equals zero the TDGP coincides

with the ARFIMA(0, d, 0) model and is nested within the ARFIMA(1, d, 0) model. Thus the value

θ0 = 0 is associated with a match between the TDGP and the model, at which point d∗ = 0 and there

is no mis-specification. That is, neither the ARFIMA(0, d, 0) model estimated in Example 1, nor the
11A slight caveat to this statement is that the superiority of the TML estimator over the exact Whittle is slightly

less uniform when either d = −0.2 or d = 0.4. The overall similarity of the performance of these two estimators
across the whole parameter space is, however, not surprising.
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Chapter 3: Estimation of mis-specified fractional models: known mean

Table 3.4: Estimates of the bias and MSE of d̂1 for the FML, Whittle, Exact Whittle, TML and CSS
estimators corresponding to TDGP: ARFIMA (0, d0, 0) with d0= 0.2, d∗= 0.0 with the known process
mean, µ = 0.

FML Whittle Exact Whittle TML CSS
n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Correct ARFIMA(0, d, 0)model

100 -0.0502 0.0113 -0.0173 0.0102 -0.0089 0.0099 0.0066 0.0087 0.0094 0.0096
500 -0.0089 0.0015 -0.0062 0.0014 -0.0033 0.0014 0.0026 0.0013 0.0031 0.0014
1000 -0.0045 0.0006∗ -0.0037 0.0006∗ -0.0028 0.0009 0.0016 0.0006 0.0025 0.0006∗

Over-Parameterized ARFIMA(1, d, 0)model

100 -0.0455 0.0177 0.0371 0.0121 -0.0364 0.0122 0.0255 0.0107 0.0158 0.0087
500 -0.0120 0.0065 0.0091 0.0049 0.0083 0.0039 0.0078 0.0043 0.0055 0.0037
1000 -0.0074 0.0027 0.0055 0.0021 0.0040 0.0020 0.0034 0.0019 0.0028 0.0016

ARFIMA(1, d, 0) model estimated in Example 2, is mis-specified (according to our definition) when

applied to an ARFIMA (0, d0, 0) TDGP, although the ARFIMA(1, d, 0)model is incorrect in the sense

of being over-parameterized. Table 3.4 presents the bias and MSE observed when there is such a lack of

mis-specification. Under the correct specification of the ARFIMA(0, d, 0) model the TML estimator is

now superior, in terms of both bias and MSE. The relative accuracy of the TML estimator seen here is

consistent with certain results recorded in Sowell (1992) and Cheung and Diebold (1994), in which the

performance of the TML method (under a known mean, as is the case considered here) is assessed

against that of various comparators under correct model specification. For the over-parameterized

ARFIMA(1, d, 0) model, however, the CSS estimator dominates once more.

The results in Tables 3.2, 3.3 and 3.4 highlight that, in all but one case, the CSS estimator

has the smallest MSE of all five estimators under mis-specification, and when there is no mis-

specification but the model is over-parameterized, and that this result holds for all sample

sizes considered. Indeed, the MSE results indicate that the CSS estimator is between about two
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Chapter 3: Estimation of mis-specified fractional models: known mean

and three times as efficient as the FML estimator (in particular) in the region of the parameter

space (d∗ ≥ 0.25) in which both (absolute) bias and MSE are at their highest for all estimators.

The absolute value of the bias of CSS is also the smallest in the vast majority of such cases,

for all values of d∗. This almost universal superiority of the CSS method presumably reflects

a certain in-built robustness of least squares methods.

3.5.4 Finite sample bias and MSE of estimators of the pseudo-true parameter d1 :
unknown mean case

Since the FML and Whittle estimators are both mean invariant the results recorded in the

previous two sections for these two estimators are applicable to the unknown (zero) mean case

without change. What will potentially alter, however, will be the performance of these two

frequency domain estimators relative to that of the exact Whittle and time domain estimators

when the unknown mean is also estimated, and it is that possibility that we explore in this

section.

In Table 3.5 we record the bias and MSE obtained for the exact Whittle, TML and CSS es-

timators when the true mean of the process, µ, is estimated using the sample mean; for both

mis-specified examples, all three values of d0, and all three sample sizes. Properties observed

in the previous section, such as the decline in bias and MSE with an increase in sample size, for

a given θ0, and the overall decline in MSE and (absolute) bias as the estimated model becomes

less mis-specified, continue to obtain in Table 3.5. However, the magnitudes of the bias and

MSE figures for all three estimators are now virtually always higher than the corresponding

figures in Tables 3.2 and 3.3. As a consequence of this, the time domain estimators lose their

relative superiority and no longer uniformly dominate the frequency domain techniques. In-

stead, the Whittle estimator outperforms all four of the other estimators overall (including its
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Table 3.6: Estimates of the bias and MSE of d̂1 for the FML, Whittle, Exact Whittle, TML and CSS
estimators corresponding to TDGP: ARFIMA (0, d0, 0) d0 = 0.2, d∗ = 0.0. The unknown mean is
estimated using the sample mean.

Exact Whittle TML CSS
n Bias MSE Bias MSE Bias MSE

Correct ARFIMA(0, d, 0) model

100 -0.0639 0.0184 -0.0542 0.0149 -0.0585 0.0158
500 -0.0163 0.0036 -0.0111 0.0027 -0.0156 0.0032
1000 -0.0052 0.0018 -0.0047 0.0006 -0.0048 0.0006

Over-Parameterized ARFIMA(1, d, 0) model

100 -0.0825 0.0282 -0.0758 0.0224 -0.0701 0.0022
500 -0.0267 0.0081 -0.0195 0.0077 -0.0188 0.0075
1000 -0.0102 0.0031 -0.0087 0.0029 -0.0085 0.0029

exact counterpart), and almost uniformly in the (true) long memory cases (d0 = 0.2, 0.4). Table

3.6 records the outcomes obtained for the exact Whittle, TML and CSS estimators under the

correct and over-parameterized specifications when the mean is estimated. Comparing Table

3.6 with Table 3.4 we find (once again) that the Whittle estimator now dominates all other

estimators. As the sample size increases the differences between all comparable results for the

known and estimated mean cases become less marked, in accordance with the consistency of

the estimated mean for the true (zero) mean.12

3.6 Discussion

This chapter presents theoretical and simulation-based results relating to the estimation of

mis-specified models for fractionally integrated processes. We show that under mis-specification

four classical parametric estimation methods, frequency domain maximum likelihood [FML],

12The results recorded here regarding the performance of the different estimators in the unknown mean case
parallel the qualitative conclusions drawn by Nielsen and Frederiksen (2005) for correctly specified models. Note
also that very similar results are obtained if the sample mean is replaced by a feasible (plug in) version of the
(asymptotically) best linear unbiased estimator (BLUE) of µ.
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Whittle, time domain maximum likelihood [TML] and conditional sum of squares [CSS] con-

verge to the same pseudo-true parameter value. Consistency of the four estimators for the

pseudo-true value is proved for fractional exponents of both the true and estimated models

in the long memory, short memory and antipersistent ranges. A general closed-form solu-

tion for the limiting criterion function for the four alternative estimators is derived in the

case of ARFIMA models. This enables us to demonstrate the link between any form of mis-

specification of the short memory dynamics and the difference between the true and pseudo-

true values of the fractional index, d, and, hence, to the resulting (asymptotic) distributional

properties of the estimators, having proved that the estimators are asymptotically equivalent.

The finite sample performance of all four estimators is then documented. The extent to

which the finite sample distributions mimic the (numerically specified) asymptotic distribu-

tions is displayed. In the case of more extreme mis-specification, and conditional on the mean

of the process being known, the pairs of time domain and frequency domain estimators tend

to cluster together for smaller sample sizes, with the former pair mimicking the asymptotic

distributions more closely. Further, bias and mean squared error [MSE] calculations demon-

strate the superiority overall of the CSS estimator, under mis-specification, and the distinct

inferiority of the FML estimator – as estimators of the pseudo-true parameter for which they

are both consistent. Numerical results for the time domain estimators in the case where the

unknown mean is estimated tell a different story, however, with the Whittle estimator being

the superior finite sample performer overall. Numerical results presented for an exact version

of the Whittle estimator show a slight superiority over the (approximate) version of the Whit-

tle procedure, in the case where the mean is known; however, the overall ranking of the two

methods is reversed when the mean is estimated, with the exact Whittle method not sharing
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the mean-invariance property of its inexact counterpart.

There are several interesting issues that arise from the results that we have established,

including the following: First, although the known (zero) mean assumption is inconsequen-

tial for the FML and Whittle estimators, this is not the case for the exact Whittle and time

domain estimators, as our bias and mean squared error experimental results obtained us-

ing demeaned data show. The deterioration in the overall performance of the exact Whittle

and time domain estimators once the estimation of µ plays a role in their computation might

have been anticipated since the rate of convergence of the sample average to µ is n1/2−d0

(Hosking, 1981, Theorem 8), and thus slower the larger the value of d0. Similarly, estima-

tion of µ will impact on the limiting distribution of the time domain estimators – because

the rate of convergence of the estimators when the true mean is known is n1−2d∗/ log n when

d∗ = d0 − d1 > 0.25, (n/ log log log n)1/2 when d∗ = 0.25, and
√

n otherwise – something

that we have not pursued for the current chapter, but is the subject of other ongoing research.

Second, the extension of our results to non-stationary cases will facilitate the consideration of

a broader range of circumstances. To some extent non-stationary values of d might be cov-

ered by means of appropriate pre-filtering, for example, the use of first-differencing when

d0 ∈ [0.5, 1.5), but this would require prior knowledge of the structure of the process and

opens up the possibility of a different type of mis-specification from the one we have consid-

ered here. Explicit consideration of the interval d ∈ [0, 1.5), say, allowing for both stationary

and non-stationary cases perhaps offers a better approach as prior knowledge of the charac-

teristics of the process would then be unnecessary. The latter also seems particularly relevant

given that estimates near the boundaries d = 0.5 and d = 1 are not uncommon in practice.

Previous developments in the analysis of non-stationary fractional processes (see, inter alios,
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Beran, 1995; Tanaka, 1999; Velasco, 1999a; Velasco and Robinson, 2000) might offer a sensible

starting point for such an investigation. Third, our limiting distribution results can be used

in practice to conduct inference on the long memory and other parameters after constructing

obvious smoothed periodogram consistent estimates of B, µn, Λdd and Λ. But which situa-

tion should be assumed in any particular instance, d∗ > 0.25, d∗ = 0.25 or d∗ < 0.25, may

be a moot point. Fourth, the relationships between the bias and MSE of the parametric esti-

mators of d1 (denoted respectively below by Bias_d1 and MSE_d1), and the bias and MSE as

estimators of the true value d0, (Bias_d0 and MSE_d0 respectively) can be expressed simply as

follows:

Bias_d0 = E0(d̂1)− d0

=
[

E0(d̂1)− d1

]
+ (d1 − d0)

= Bias_d1 − d∗ ,

where we recall, d∗ = d0 − d1, and

MSE_d0 = E0

(
d̂1 − d0

)2

= E0

(
d̂1 − E0(d̂1)

)2
+
[

E0(d̂1)− d0

]2

= E0

(
d̂1 − E0(d̂1)

)2
+
[
[E0(d̂1)− d1]− d∗

]2

= E0

(
d̂1 − E0(d̂1)

)2
+
[

E0(d̂1)− d1

]2
+ d∗2 − 2d∗

[
E0(d̂1)− d1

]
= MSE_d1 + d∗2 − 2d∗Bias_d1.

Hence, if Bias_d1 is the same sign as d∗ at any particular point in the parameter space, then

the bias of a mis-specified parametric estimator as an estimator of d0, may be less (in absolute

value) than its bias as an estimator of d1, depending on the magnitude of the two quantities.

Similarly, MSE_d0 may be less than MSE_d1 if Bias_d1 and d∗ have the same sign, with the

90



Chapter 3: Estimation of mis-specified fractional models: known mean

final result again depending on the magnitude of the two quantities. These results imply

that it is possible for the ranking of mis-specified parametric estimators to be altered, once the

reference point changes from d1 to d0. This raises the following questions: Does the dominance

of the CSS estimator (within the parametric set of estimators) – and in the known mean case

– still obtain when the true value of d is the reference value? And more critically from a

practical perspective; Are there circumstances where a mis-specified parametric estimator out-

performs semi-parametric alternatives in finite samples, the lack of consistency (for d0) of the

former notwithstanding? Such topics remain the focus of current and ongoing research.

3.A Appendix: Proofs

Proof of Lemma 3.1.

The proof of the lemma uses a method that parallels that employed by Fox and Taqqu in the

proof of their Lemma 1 (see Fox and Taqqu, 1986, pages 523− 524), which in turn employs an

argument first developed by Hannan in the proof of his Lemma 1 (see Hannan, 1973, pages

133− 134). To describe the approach, set

cn(τ) = cn(−τ) =
1
n

n−τ

∑
t=1

ytyt+τ , τ ≥ 0 ,

and let

kM(η, λ) =
M

∑
r=−M

κ(r)
(

1− |r|
M

)
exp(iλr),

denote the Cesaro sum of the first M terms of the Fourier series of ( f1(η, λ) + ν f )
−1 where M

is chosen such that |( f1(η, λ) + ν f )
−1 − kM(η, λ))| < ε uniformly in η ∈ E0

δ. Then following

the same steps as in the derivation presented in Hannan (1973, pages 133-134) we have∣∣∣∣∣4π

n

[n/2]

∑
j=1

I(λj)
{
( f1(η, λj) + ν f )

−1 − kM(η, λj)
}∣∣∣∣∣ < εcn(0) ,
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and

lim
n→∞

∣∣∣∣∣4π

n

[n/2]

∑
j=1

I(λj)kM(η, λj)−
M

∑
r=−M

κ(r)
(

1− |r|
M

)
γ0(r)

∣∣∣∣∣ = 0,

almost surely, the latter result since I(λ) = (2π)−1 ∑n−1
r=1−n cn(r) exp(−iλr) and cn(r) con-

verges to γ0(r) almost surely by ergodicity. Moreover,

M

∑
r=−M

κ(r)
(

1− |r|
M

)
γ0(r) =

σ2
0

2π

∫ π

−π
f0(λ)kM(η, λ)dλ,

differs from the required limiting value by a quantity bounded by εγ0(0), from which the

desired result follows because ε is arbitrary.

An alternative proof of this lemma can be obtained by extending the arguments adopted

by Brockwell and Davis (1991, §10.8.2, pages 378-379), in the proof of their Proposition 10.8.2,

to the stationary fractional case, as suggested in Brockwell and Davis (1991, page 528).

Proof of Lemma 3.2. The proof parallels the proof of Lemma 3.1, only now we use the Cesaro

sum of M terms of the Fourier series of h1(η, λ)−1. Denote this sum by cM(η, λ) > 0. Since

by construction h1(η, λ) > 0, M can be chosen so that |h1(η, λ)−1 − cM(η, λ)| < ε uniformly

on E0
δ since the Cesaro sum converges uniformly in (η, λ) for η ∈ E0

δ. Once again the detailed

steps follow Hannan (1973, pages 133-134), as above, or Brockwell and Davis (1991, §10.8.2,

pages 378-379).

Proof of Lemma 3.3.

Observe that f1(η, λ) > 0 when d ≥ 0 and hence for δ sufficiently small we have h1(η, λ) =

f1(η, λ) for all λ ∈ [−π, π]. It follows immediately from Lemma 3.2 that limn→∞ |Q(1)
n (η)−

Q(η)| = 0 almost surely and uniformly in η on E0
δ when d ≥ 0. We have thus established

Lemma 3.3 in the case where d ≥ 0, (cf. Chen and Deo, 2006, Lemma 2). To establish that

Lemma 3.3 also holds on E0
δ when d < 0, observe that Lemma 3.1 implies that Q(η) provides
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a limit inferior for Q(1)
n (η) and it therefore only remains for us to establish that Q(η) also

provides a limit superior for Q(1)
n (η) on η ∈ E0

δ when d < 0.

In the latter case f1(η, λ) = |λ|2|d|L(λ) where L(λ) is slowly varying and bounded as

λ→ 0 and there exists an ε ∈ (0, 2|d|) and a K > 0, that may depend on ε, such that f1(η, λ) =

|λ|2|d|K|λ|−ε. We therefore have that f1(η, λ) > K|λ|2|d| when |λ| < 1 and h1(η, λ) 6= f1(η, λ)

whenever λ < (K−1δ)1/(2|d|−ε), from which it follows that

Q(1)
n (η) ≤ 2π

n

bn/2c

∑
j=kδ+1

I(λj)

h1(η, λj)
+

1
K

(
2π

n

)1−2|d| kδ

∑
j=1

I(λj), (3.45)

where kδ = b(K−1δ)1/(2|d|−ε)(2π/n)c + 1. The inequality in (3.45) follows because for all

λj < (K−1δ)1/(2|d|−ε) < 2πkδ/n we have

(
h1(η, λj)

f1(η, λj)
− 1
)
≤
(

δ

K

( n
2π

)2|d|
− 1
)

,

and

Q(1)
n (η) =

2π

n

bn/2c

∑
j=1

I(λj)

h1(η, λj)
+

2π

n

kδ

∑
j=1

I(λj)

(
1

f1(η, λj)
− 1

h1(η, λj)

)

≤ 2π

n

bn/2c

∑
j=1

I(λj)

h1(η1, λj)
+

2π

n

kδ

∑
j=1

I(λj)

h1(η, λj)

(
δ

K

( n
2π

)2|d|
− 1
)

=
2π

n

bn/2c

∑
j=kδ+1

I(λj)

h1(η, λj)
+

1
K

(
2π

n

)1−2|d| kδ

∑
j=1

I(λj) .

Applying Lemma 3.2 to the first term on the right hand side in (3.45) gives a limit of

σ2
0

2π

∫ π

(K−1δ)1/(2|d|−ε)

f0(λ)

f1(η1, λ)
dλ .

Similarly

lim
n→∞

2π

n

kδ

∑
j=1

I(λj) =
σ2

0
2π

∫ (K−1δ)1/(2|d|−ε)

0
f0(λ)dλ =

σ2
0

2π
f0(λ

′)(K−1δ)1/(2|d|−ε),
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for some λ′ ∈ [0, (K−1δ)1/(2|d|−ε)] by the first mean value theorem for integrals. Setting δ =

(2π)2|d|−ε/np where p > 2|d| − ε, we find that

1
K

(
2π

n

)1−2|d| kδ

∑
j=1

I(λj) ∼
1
K

( n
2π

)2|d| σ2
0

2π
f0(λ

′)
2πkδ

n

∼ 1
K

(
2π

n

)1−2|d| σ2
0

2π
f0(λ

′)

(
1
n

) p−2|d|+ε
(2|d|−ε)

,

and hence we can conclude that

lim sup
n→∞

Q(1)
n (η) ≤ Q(η),

uniformly in η ∈ E0
δ, as required.

Proof of Lemma 3.4. Let L1(η, λ) = λ2d f1(η, λ) and suppose that η ∈ E
0
δ1 ∪E

0
δ2 6= ∅. Then

lim inf
n→∞

Q(1)
n (η) = lim inf

n→∞

2π

n

bn/2c

∑
j=1

I(λj)

f1(η, λj)

= lim inf
n→∞

2π

n

bn/2c

∑
j=1

I(λj)λ
2d
j

L1(η, λj)

≥ lim inf
n→∞

(2π)−2δ

n

bn/2c

∑
j=1

I(λj)

L1(η, λj)λ
1−2(d0+δ)
j

, (3.46)

where the inequality in (3.46) arises because for all η ∈ E
0
δ1 ∪E

0
δ2 we have (d0 − d) > 0.5− δ

and it follows that λ
−2(d0−d)
j ≥ (2π)−(2δ+1)λ2δ−1

j for all λj = 2π j/n, j = 1, . . . , bn/2c.

Applying Lemma 3.1 and Lemma 3.2 to (3.46) by replacing f1(η, λj) by L1(η, λ)λ1−2(d0+δ),

and then letting the constant ν f > 0in the lemmas approach zero, it follows from Fatou’s

theorem that

lim
n→∞

∣∣∣∣∣∣ (2π)−2δ

n

bn/2c

∑
j=1

I(λj)

L1(η, λj)λ
1−2(d0+δ)
j

− 1
(2π)2δ+1

π∫
0

(σ2
0/2π) f0(λ)λ

2d0

L1(η, λ)λ1−2δ
dλ

∣∣∣∣∣∣ = 0 ,

wherein we recognize that 0 ≤ 1− 2(d0 + δ) ≤ 2(1− 2δ) and that

L1(η, λ) = (σ2
1/2π)g1(β, λ) sinc(λ/2)−2d,
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and

(σ2
0/2π) f0(λ)λ

2d0 = (σ2
0/2π)g0(λ) sinc(λ/2)−2d0 ,

where sinc(x) = sin(x)/x, the cardinal sine function. Since 2/π ≤ sinc(λ/2) ≤ 1 for 0 ≤

λ ≤ π, it follows from Assumption (A.3) and Conditions A that there exists a finite positive

constant R such that

1
(2π)2δ+1

π∫
0

(σ2
0/2π) f0(λ)λ

2d0

L1(η, λ)λ1−2δ
dλ ≥ R

(2π)2δ+1 .
π∫

0

λ2δ−1dλ

=
R

(2π)2δ+1 .
π2δ

2δ

≥ R
8π

.
1
δ

. (3.47)

The statements in Lemma 3.4 now follow from (3.47), directly in the case of η ∈ E
0
δ1, and

for η ∈ E
0
δ2 on setting δ < R/(8πC) and letting δ→ 0 as C → ∞.

Proof of Proposition 3.1.

Let ηn denote a sequence in E0
δ that converges to η. For any ν f > 0 we have

∣∣∣∣ 1
f1(ηn, λ) + ν f

− 1
f1(η, λ) + ν f

∣∣∣∣ =

∣∣∣∣ | f1(ηn, λ)− f1(η, λ)|
( f1(ηn, λ) + ν f )( f1(η, λ) + ν f )

∣∣∣∣
≤ | f1(ηn, λ)− f1(η, λ)|

ν2
f

.

Moreover, by assumption f1(η, λ) is continuous for all λ 6= 0 and hence uniformly continuous

for λ in any closed interval of the form [ε, π], ε > 0. Consequently we can determine a value

n′ such that for n ≥ n′ there exists an ε sufficiently small that | f1(ηn, λ)− f1(η, λ)| < ν3
f and∣∣∣∣∣2π

n

bn/2c

∑
j=1

I(λj)

f1(ηn, λj) + ν f
− 2π

n

bn/2c

∑
j=1

I(λj)

f1(η, λj) + ν f

∣∣∣∣∣ ≤ 2ν f π

n

bn/2c

∑
j=1

I(λj) . (3.48)

Using Lemma 3.1 in conjunction with (3.48), it follows that

lim inf
n→∞

Q(1)
n (ηn) ≥ lim inf

n→∞

2π

n

bn/2c

∑
j=1

I(λj)

f1(ηn, λj) + ν f
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≥ lim
n→∞

{
2π

n

bn/2c

∑
j=1

I(λj)

f1(η, λj) + ν f
−

2ν f π

n

bn/2c

∑
j=1

I(λj)

}

=
σ2

0
2π

∫ π

0

f0(λ)

f1(η, λ) + ν f
dλ− ν f πγ0(0) ,

where γ0(0) is the variance of the TDGP. Letting ν f → 0 and applying Lebegue’s monotone

convergence theorem gives

lim inf
n→∞

Q(1)
n (ηn) ≥

σ2
0

2π

∫ π

0

f0(λ)

f1(η, λ)
dλ = Q(η) .

Since by definition η1 minimizes Q(η) it follows that Q(η1) provides a lower bound to the

limit inferior of Q(1)
n (ηn) for any sequence in E0

δ.

Now let ηn denote a sequence in E
0
δ1 ∪E

0
δ2 that converges to η. Setting

δ� min
{

σ2
0

4(2π)2
Cl

Cu

1
(Q(η1) + q)

, 0.25− 0.5(d0 − d1)

}
where q� 0 ,

and applying Lemma 3.4 in conjunction with (3.48) implies that

lim inf
n→∞

Q(1)
n (ηn)� Q(η1) + q .

Hence we can conclude that for any sequence ηn ∈ E
0
δ1 ∪E

0
δ2 the criterion value Q(1)

n (ηn)will,

for all n sufficiently large, exceed Q(η1), which equals limn→∞ Q(1)
n (η1) by Lemma 3.3.

By definition of η̂
(1)
1 , however, Q(1)

n (η̂
(1)
1 ) ≤ Q(1)

n (η1) and it follows from Lemma 3.3 that

lim sup
n→∞

Q(1)
n (η̂

(1)
1 ) ≤ lim sup

n→∞
Q(1)

n (η1) = Q(η1) .

We can therefore conclude that |Q(1)
n (η̂

(1)
1 )− Q(η1)| → 0 almost surely and an argument by

contradiction then shows that η̂
(1)
1 → η1 with probability one.

Proof of Theorem 3.1. In what follows we assume that the mean is known, and without loss

of generality set µ = 0 and suppose that the data is mean corrected.
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The Whittle estimator:

Concentrating Q(2)
n (σ2, η) with respect to σ2 and setting n · bn/2c = 0.5 yields the profile

(negative) log-likelihood

Q(2)
n (η) =

2π

2
log

(
σ̂2(η)

2π

)
+

2π

n

bn/2c

∑
j=1

log f1(η, λj) + π,

where σ̂2(η) = 2Q(1)
n (η) and Q(1)

n (η) is as given in (3.7). Now, following Beran (1994, page 116),

we have

2π

n

bn/2c

∑
j=1

log f1(η, λj) =
1
2

∞

∑
r=−∞

ρ1(η, rn)→ 1
2

π∫
−π

log f1(η, λ)dλ ,

where the Fourier coefficients ρ1(η, r) =
π∫
−π

log f1(η, λ) exp(ıλr)dλ form a convergent series

and

π∫
−π

log f1(η, λ)dλ =

π∫
−π

log
(

g1(β,λ)|2 sin(λ/2)|−2d
)

dλ

=

π∫
−π

log g1(β,λ)dλ− 2d
π∫
−π

log |2 sin(λ/2)|dλ .

By Assumption (A.2)
π∫
−π

log g1(β,λ)dλ = 0, and from standard results for trigonometric inte-

grals Gradshtein and Ryzhik (2007, page 583)

π∫
−π

log |2 sin(λ/2)|dλ = 2
π∫

0

log |2 sin(λ/2)|dλ = 0 .

Furthermore, since log f1(η, λ) is integrable, and continuously differentiable for all λ 6= 0 by

Assumption A.3, ρ1(η, n) = o(1/n), which implies that

2π

n

bn/2c

∑
j=1

log f1(η, λj) =
∞

∑
r=1

ρ1(η, rn) = O(n−1 log n) .

Hence it follows that

∣∣∣Q(2)
n (η)− π log Q(1)

n (η)− π(log π + 1)
∣∣∣ = O(n−1 log n) , (3.49)

97



Chapter 3: Estimation of mis-specified fractional models: known mean

almost surely and uniformly in η. From this we can deduce that

lim
n→∞

∣∣∣Q(2)
n (η̂

(2)
1 )− π log Q(1)

n (η̂
(1)
1 )− π(log π + 1)

∣∣∣ = 0 a.s. ,

where η̂
(1)
1 is the value of η that minimizes the profile log-likelihood, having first deleted the

term 2π
bn/2c

∑
j=1

log f1(η, λj)/n, namely η̂
(1)
1 = arg minη Q(1)

n (η). We are thereby lead directly to

the conclusion that η̂
(2)
1 and η̂

(1)
1 converge, i.e. limn→∞ ‖η̂(2)1 − η̂

(1)
1 ‖ = 0.

The TML estimator:

Using the argument employed by Hannan (1973, pages 134-135) in the proof of his Lemma

4, following the detailed steps given by Brockwell and Davis (1991, §10.8.2, pages 380-382) in

their proof of their Proposition 10.8.3, shows that

lim
n→∞

∣∣∣∣∣ 1n Y>Σ−1
η Y− 4π

n

bn/2c

∑
j=1

I(λj)

f1(η,λj)

∣∣∣∣∣ = 0 a.s. , (3.50)

and the convergence is uniform in η on E0
δ. From a theorem due to Grenander and Szego

(1958, Chapter 5) we know that

1
n

log
∣∣Ση

∣∣ = 1
2π

π∫
−π

log f1(η, λ)dλ+O(n−1), (3.51)

for the second term in (3.11). That the convergence in (3.51) is uniform in η is not stated in

Grenander and Szego, although it follows from the uniformity of the order relations used in

their proof. Their proof depends on approximating f1(η, λ) by trigonometric polynomials,

and since f1(η, λ) is a continuous function of η and λ for all λ 6= 0 by Assumption A.3 the

Stone-Weierstrass Theorem implies that f1(η, λ) can be so approximated uniformly. It follows

that

lim
n→→∞

∣∣∣∣∣Q(3)
n (σ2, η)− log σ2 − 2Q(1)

n (η)

σ2

∣∣∣∣∣ = 0

almost surely, and the convergence is uniform in η on E0
δ.
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The almost sure limit of the criterion function Q(3)
n (σ2, η) is therefore

Q(3)(σ2, Q(η)) = log σ2 +
2Q(η)

σ2 ,

uniformly in η on E0
δ by Lemma 3.3, whereas Q(3)

n (σ2, η) is either arbitrarily large for δ suf-

ficiently small or divergent on E
0
δ1 ∪ E

0
δ2 by Lemma 3.4. Concentrating Q(3)(σ2, Q(η)) with

respect to σ2 we find that the minimum of the asymptotic criterion function is given by

log (2Q(η1)) + 1. Once again η1 = arg minη Q(η) is the pseudo-true parameter for the estima-

tor under mis-specification and we can conclude that limn→∞ η̂
(3)
1 = η1 and limn→∞ ‖η̂(3)1 −

η̂
(1)
1 ‖ = 0.

The CSS estimator:

Let Tη and Hη denote the n × n upper triangular Toeplitz matrix with non-zero elements

τ|i−j|(η), i, j = 1, . . . , n, and the n×∞ reverse Hankel matrix with typical element τn−i+j(η),

i = 1, . . . , n, j = 1, . . . , ∞, respectively. Let Aη = [as−r(η)] where

as−r(η) =

π∫
−π

1
f1(η,λ)

exp(i(s− l)λ)dλ , r, s = 1, . . . , n . (3.52)

Then from (3.52) we can deduce that Aη = TηT>η +HηH>η and from (3.13) and (3.14) it follows

that Q(4)
n (η) = 1

n Y>TηT>η Y. Replacing Σ−1
η by Aη in (3.50) and adapting the argument used to

establish (3.50) accordingly, in a manner similar to the proof of Lemma 3.1, shows that

lim
n→∞

∣∣∣∣∣ 1n Y>AηY− 4π

n

bn/2c

∑
j=1

I(λj)

f1(η,λj)

∣∣∣∣∣ = 0, a.s. , (3.53)

and that the convergence is uniform in η on E0
δ. It is also shown below that 1

n Y>HηH>η Y =

o(1) when |d| < 0.5, |d0| < 0.5 and d0 − d < 0.5.

We can therefore conclude that
∣∣∣Q(4)

n (η)− 2Q(1)
n (η)

∣∣∣ converges to zero almost surely when

η ∈ E0
δ, and hence that the limiting value of the criterion function Q(4)

n (η) is 2Q(η) by Lemma
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3.3. When η ∈ E
0
δ1∪E

0
δ2, expression (3.53) and Lemma 3.4, together with the equality Q(4)

n (η) =

1
n Y>AηY− 1

n Y>HηH>η Y, imply that lim infn→∞ Q(4)
n (η) ≥ limn→∞

1
n Y>AηY and the CSS crite-

rion function is either arbitrarily large for δ sufficiently small or divergent. That the pseudo-

true parameter for the CSS estimator under mis-specification is η1 = arg minη Q(η) and

lim η̂
(4)
1 = η1 and limn→∞ ‖η̂(4)1 − η̂

(1)
1 ‖ = 0 follows directly.

It remains for us to establish that 1
n Y>HηH>η Y = o(1) in regions of the parameter space

where d0− d < 0.5. Suppressing the dependence on the parameter η for notational simplicity,

set M = HH>. Then M = [mij]i,j=1,...,n where mij = ∑∞
u=0 τu+n−iτu+n−j, and

E0[Y>MY] = tr (MΣ0) =
n

∑
i=1

n

∑
j=1

mijγ0(j− i),

where γ0(τ), τ = 0,±1,±2, . . ., denotes the autocovariance function of the TDGP. Since

|τk| ∼ k−(1+d)Cτ, Cτ < ∞, the series ∑∞
k=0 |τk|2 ∼ C2

τζ(2(d + 1)) for all d > −0.5, where

ζ(·) denotes the Riemann zeta function, from which we can deduce that |mij| ∼ {(n − i +

1)(n− j+ 1)}−(1+d)C ′m for some C ′m < ∞. Hence on setting r = n− i+ 1 and s = n− j+ 1 we

have that

0 ≤
n

∑
i=1

n

∑
j=1

mijγ0(j− i) ∼ Cmn−2(d+1)
n

∑
r=1

n

∑
s=1
|γ0(r− s)| , (3.54)

where Cm < ∞. But |γ0(τ)| ≤ C$γ0(0)|τ|2d0−1, C$ < ∞, for all τ 6= 0, and

n−2(d+1)
n

∑
r=1

n

∑
s=1
|γ0(r− s)| ≤ n−2(d+1)γ0(0)(n+ 2C$

n−1

∑
k=1
(n− k)k2d0−1)

≤ n−(2d+1)γ0(0)(1+ 2C$

n−1

∑
k=1

k2d0−1)

∼ γ0(0)
n(2d+1)

×

 1+ 2C$ζ(1− 2d0) , d0 < 0;
1+ 2C$ log n , d0 = 0;
1+ 2C$n2d0 /2d0 , d0 > 0.

It follows that for all d where |d| < 0.5

E0[Y>MY] ≤ Cmγ0(0)
n1−2(d0−d)

×

 1+ 2C$ζ(1− 2d0)/n2d0 , d0 < 0;
1+ 2C$ log n , d0 = 0;
1+ C$/d0 , d0 > 0;
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We can therefore conclude that

Pr
(

n−1Y>MY > ε
)
=

 O(n−2(d+1)) , 0.5 < d0 < 0;
O(log n/n2(d+1)) , d0 = 0;
O(n2(d0−d)−2) , 0 < d0 < 0.5;

(3.55)

for all ε > 0 by Markov’s inequality. Since ε is arbitrary it follows that when |d| < 0.5 and

|d0| < 0.5 the almost sure limit of n−1Y>MY is zero whenever d0 − d < 0.5, by the Borell-

Cantelli lemma, giving the desired result.

Proof of Theorem 3.2.

First note that

QN(η) =

{
σ2

0Γ(1− 2(d0 − d))
2Γ2(1− (d0 − d))

}
KN(η), (3.56)

by the same argument that gives (3.19). Now let ∆CN(z) = ∑∞
j=N+1 cjzj = C(z)−CN(z). Then

|C(eiλ)|2 = |CN(eiλ)|2 + CN(eiλ)∆CN(e−iλ)

+∆CN(eiλ)CN(e−iλ) + |∆CN(eiλ)|2,

and the remainder term can be decomposed as RN = R1N + R2N where

R1N =

(
σ2

0
2π

) ∫ π

0
|∆CN(eiλ)|2|2 sin(λ/2)|−2(d0−d)dλ, (3.57)

and

R2N =

(
σ2

0
2π

) ∫ π

−π
∆CN(eiλ)CN(e−iλ)|2 sin(λ/2)|−2(d0−d)dλ . (3.58)

The first integral in (3.57) equals

{
σ2

0Γ(1− 2(d0 − d))
2Γ2(1− (d0 − d))

}( ∞

∑
j=N+1

c2
j + 2

∞

∑
k=N+1

∞

∑
j=k+1

cjckρ(j− k)

)
.

Because B(z) 6= 0, |z| ≤ 1, it follows that |cj| < Cζ j, j = 1, 2, . . ., for some C < ∞ and ζ ∈ (0, 1),

and hence that
∞

∑
j=N+1

c2
j < ζ2(N+1) C2

(1− ζ2)
.
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Furthermore, since |d0 − d| < 0.5 Sterling’s approximation can be used to show that |ρ(h)| <

C ′2(d0−d)−1, h = 1, 2, . . . , for some C ′ < ∞. This implies that∣∣∣∣∣ ∞

∑
k=N+1

∞

∑
j=k+1

cjckρ(j− k)

∣∣∣∣∣ <
∞

∑
r=0

∞

∑
s=r+1

C2C ′2(N+1)ζrζs(s− r)2(d0−d)−1

< ζ2(N+1) C2C ′
(1− ζ)2

.

Thus we can conclude that R1N < const. ζ2(N+1) where 0 < ζ < 1. Applying the Cauchy-

Schwarz inequality to the second integral in (3.58) enables us to bound |R2N | by 2(σ0/σ)
√

IN · R1N .

It therefore follows from the preceding analysis that |R2N | < const. ζ(N+1). Since |RN | ≤

R1N + |R2N | and (N + 1)/ exp(−(N + 1) log ζ) → 0 as N → ∞ it follows that RN = o(N−1),

as stated. The gradient vector of Q(η) with respect to η is

∂Q(η)
∂η

=

(
σ2

0
2π

) ∫ π

−π

C(eiλ)

|2 sin(λ/2)|(d0−d)

∂

∂η
{ C(e−iλ)

|2 sin(λ/2)|(d0−d)
}dλ,

and substituting C(z) = CN(z) + ∆CN(z) gives ∂Q(ψ)/∂η j = ∂QN(η)/∂η j + R3N + R4N for

the typical j’th element where

R3N =

(
σ2

0
2π

) ∫ π

−π

CN(eiλ)

|2 sin(λ/2)|(d0−d)

∂

∂η j
{ ∆CN(e−iλ)

|2 sin(λ/2)|(d0−d)
}dλ,

and

R4N =

(
σ2

0
2π

) ∫ π

−π

∆CN(eiλ)

|2 sin(λ/2)|(d0−d)

∂

∂η j
{ C(e−iλ)

|2 sin(λ/2)|(d0−d)
}dλ .

The Cauchy-Schwarz inequality now yields the inequalities

|R3N |2 ≤ R1N

(
σ2

0
2π

) ∫ π

−π

|CN(eiλ)|2
|2 sin(λ/2)|2(d0−d)

∣∣∣∣∣ ∂

∂η j
{log

∆CN(e−iλ)

|2 sin(λ/2)|(d0−d)
}
∣∣∣∣∣
2

dλ,

and

|R4N |2 ≤ R1N

(
σ2

0
2π

) ∫ π

−π

∣∣∣∣∣ ∂

∂η j
{ C(e−iλ)

|2 sin(λ/2)|(d0−d)
}
∣∣∣∣∣
2

dλ ,
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from which we can infer that |R3N + R4N | ≤ const. ζ(N+1) = o(N−1), thus completing the

proof.

Proof of Theorem 3.3.

The distributions exhibited in the three cases presented in Theorem 3.3 correspond to those

given in Theorems 1, 3 and 2 of Chen and Deo (2006), and in the following lemmas we state

the properties necessary to generalize the applicability of these distributions and establish

their validity under the current scenario and assumptions. Although the distributions are

non-standard, the proof proceeds standardly via the use of the mean value theorem and con-

vergence in probability of a Hessian in a neighbourhood of η1, plus the application to the

criterion differential function of an appropriate central limit theorem.

Lemma 3.5 Let

1√
2πn

n

∑
t=1

yt exp(−iλt) = ξ(λ) = ξc(λ)− ıξs(λ),

and set X> = (ξc(λ1), ξs(λ1), . . . , ξc(λbn/2c), ξs(λbn/2c)F
−1/2
0 where

F0 = diag( f0(λ1), f0(λ1), . . . , f0(λbn/2c), f0(λbn/2c)) .

Assume that Conditions A hold. Then under Assumption A.1′ the vector X> converges in distribution

to a Gaussian random variable with zero mean and variance-covariance matrix Ω = 1
2 (I+ ∆), X> D→

ξ ∼ N(0, Ω), where ∆ = [4rc],4rc = O(j−d0 kd0−1 log k) for r = 2j− 1 or r = 2j, and c = 2k− 1

or 2k, 1 ≤ j ≤ k ≤ bn/2c.

Proof of Lemma 3.5.

Assumption (A.1′) implies that Assumption (A.1) of Lahiri (2003) holds. Since Conditions A

imply that Assumption (A.3) of Lahiri (2003) also holds, the asymptotic normality of XT fol-

lows from Theorem 2.1 of Lahiri (2003). The stated covariance structure follows from Lemmas
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1 and 4 of Moulines and Soulier (1999) in which the moment properties of ξc(λj) and ξs(λj)

are derived supposing that exact Gaussianity holds for the sine and cosine transforms for all

n, with bounds that are uniform with respect to n for each j = 1, . . . , bn/2c. See also Corollary

5.2 of Lahiri (2003) and the discussion in Lahiri (2003, page 624).

Since the limiting joint distribution of the sine and cosine transforms is Gaussian, and the

sine and cosine transforms are uniformly integrable, the form of the asymptotic distribution

and covariance properties of the corresponding periodogram ordinates are determined by the

limit law of ξc(λj) and ξs(λj), j = 1, . . . , bn/2c.

Corollary 3.1 Assume that the conditions of Lemma 3.5 hold, and for each j = 1, . . . bn/2c set Zj =

I(λj)/ f0(λj) = |ξ(λj)|2/ f0(λj) and let ρj = Cov0[ξc(λj)ξs(λj)]/ f0(λj). Then Zj− ρjξc(λj)ξs(λj)/ f0(λj)

converges in distribution to 1
2 χ2(2)(1 + 42j2j)(1 − ρ2

j ) where χ2(2) denotes a Chi-squared ran-

dom variable with two degrees of freedom. Furthermore, E0[Zj] = 1 + O(log j/j), Var0[Zj] =

1+O(log j/j) and Cov0[ZjZk] = O(j−2|d0|k2|d0|−2log2k) for 1 ≤ j < k ≤ bn/2c.

Proof of Corollary 3.1.

For j = 1, . . . bn/2c set

Uj =
ξc(λj)− ξs(λj)]√

f0(λj)(1+42j2j)(1− ρj)
and Vj =

ξc(λj) + ξs(λj)]√
f0(λj)(1+42j2j)(1+ ρj)

.

Then the Continuous Mapping Theorem implies that

Zj − ρjξc(λj)ξs(λj)/ f0(λj)

(1+42j2j)(1− ρ2
j )

= U2
j +V2

j
D→ 1

2 χ2(2),

since by Lemma 3.5 XT D→ ξ ∼ N(0, Ω). Let A and B be any bn/2c × bn/2c symmetric

selection matrices. Then E[ξ>Aξ] = trΩA and E[(ξ>Aξ)(ξ>Bξ)] = trΩAtrΩB+ trΩAΩB,

from which the stated moments can be derived via appropriate choice of A and B. Note, in
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particular, that ρj = Cov0[ξc(λj)ξs(λj)]/ f0(λj) =
1
24(2j−1)2j = O(log j/j) and Cov[ξ2

j ξ2
k ] =

(E[ξ jξk])
2 = 1

442
2j2k = O(j−2|d0|k2|d0|−2log2k) for 1 ≤ j < k ≤ bn/2c.

The remaining steps in the proof of Theorem 3.3 are based on Taylor expansions of the

gradient vector (or score function) of the criterion functions. For the FML estimator we have

0 =
∂Q(1)

n (η1)

∂η
+

∂2Q(1)
n (η1)

∂η∂η′
(η̂1 − η1)

where

∂Q(1)
n (η1)

∂η
= −2π

n

bn/2c

∑
j=1

I(λj)

f1(η, λj)2
∂ f1(η, λj)

∂η
= −2π

n

bn/2c

∑
j=1

I(λj)

f0(λj)
w(η, λj)

w(η, λj) =
f0(λj)

f1(η, λj)

∂ log f1(η, λj)

∂η
,

and

∂2Q(1)
n (η)

∂η∂η′
=

2π

n

bn/2c

∑
j=1

I(λj)

f1(η, λj)
H(η, λj) ,

H(η, λj) = 2
∂ log( f1(η, λj))

∂η

∂ log( f1(η, λj))

∂η′
− 1

f1(η, λj)

∂2 f1(η, λj)

∂η∂η′
,

and the components of η1 lie on the line segment between η̂1 and η1. Existence of the Taylor

expansion is justified by convexity and Assumptions (A.3) and (A.5).

Lemma 3.6 Let dQ(1)
n (η; t), where t = (t1, . . . , tl+1)

>, denote the differential of Q(1)
n (η). Then

under the assumptions of Theorem 3.3

n
2π

(bn/2c

∑
j=1

(
t>w(η1, λj)

)2
)− 1

2 (
dQ(1)

n (η1; t)− E[dQ(1)
n (η1; t)]

)
D→ Z ∼ N(0, 1),

for all t ∈ Rl+1, 0 < ‖t‖ < ∞.

Proof. By Assumption A.3 the differential of Q(1)
n (η) exists and is given by ∂Q(1)

n (η1) /∂η>t,

from which it follows that

dQ(1)
n (η1; t)− E[dQ(1)

n (η1; t)] = −2π

n

bn/2c

∑
j=1

(Zj − E[Zj])w(η1, λj)
>t .
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Theorem 2 of Moulines and Soulier (1999) provides a generalization of central limit theorems

for triangular arrays of martingale differences and weakly dependent sequences to similarly

weighted sums of correlated variables. Replacing Moulines and Soulier’s ηnj by Zj − E[Zj]

and their bn,j by w(η, λj)
>t, recognizing from Corollary 3.1 that Zj − E[Zj], j = 1, . . . , bn/2c,

share the same moment structure and order of correlation as Moulines and Soulier’s ηnj, the

proof of the lemma follows Moulines and Soulier’s proof of their Theorem 2 presented in

Moulines and Soulier (1999, Appendix B). Conditions (i) and (ii) of Theorem 2 of Moulines

and Soulier (1999) are satisfied because C1λ−2d∗
j log λj ≤ ‖w(η, λj)‖ ≤ C2λ−2d∗

j log λj for some

constants C1 and C2 (see Chen and Deo, 2006, expression (21) page. 276) and

lim
n→∞

sup
j=1,...,bn/2c

(bn/2c

∑
j=1

(
t>w(η1, λj)

)2
)−1

(w(η1, λj)
>t)2 = 0 .

The following lemma parallels Lemma 3 of Chen and Deo (2006) and is derived in a similar

fashion. The lemma and its proof are presented here for completeness.

Lemma 3.7 Let Ec denote a compact convex subset of E0
δ and denote the second order differential of

the FML criterion function by d2Q(1)
n (η; t) = t>

(
∂2Q(1)

n (η) /∂η∂η>
)

t. Then for all t, ‖t‖ < ∞,

plimn→∞ sup
η∈Ec

∣∣∣d2Q(1)
n (η; t)− d2Q (η; t)

∣∣∣ = 0 .

under Assumptions (A.1′) and (A.2)− (A.5).

Proof of Lemma 3.7. By definition of the second order differential we have

E0

[
d2Q(1)

n (η; t)
]
= E0

[
2π

n

bn/2c

∑
j=1

I(λj)

f1(η, λj)
t>H(η, λj)t

]

=
2π

n

bn/2c

∑
j=1

f0(λj)

f1(η, λj)
t>H(η, λj)t

+

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)
t>H(η, λj)t ,
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where E0[I(λj)]/ f0(λj)− 1 = O(log j/j), by Corollary 3.1, and t>H(η, λj)t = O(log2 λj) since

supη ∂ log f1(η, λj)/∂η is of order O(log λj) by Assumptions (A.2) and (A.3) and ‖t‖ < ∞.

Thus we can conclude that

2π

n

bn/2c

∑
j=1

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)
t>H(η, λj)t = O

(
2π

n

bn/2c

∑
j=1

log j
j

λ−2d∗
j log2 λj

)

= O

(
n2d∗−1

bn/2c

∑
j=1

log j
j

j−2d∗ log2(j/n)

)

=

{
O(n2d∗−1 log2 n), 0 < d∗ < 0.5 ;
O(n−1 log4 n), −1.0 < d∗ ≤ 0 ,

and hence that E0

[
d2Q(1)

n (η; t)
]
→ t> ∂2Q(η)

∂η∂η′ t = d2Q (η; t). Similarly, setting h(η; t, λj, λk) =

t>H(η, λj)t · t>H(η, λk)t and invoking Corollary 3.1 once again we have

Var0

[
d2Q(1)

n (η; t)
]
=

(
2π

n

)2 bn/2c

∑
j=1

bn/2c

∑
k=1

f0(λj)

f1(η, λj)

f0(λk)

f1(η, λk)
h(η; t, λj, λk)Cov0

[
I(λj)

f0(λj)

I(λk)

f0(λk)

]

= O

(
1
n2

bn/2c

∑
j=1

bn/2c

∑
k≥j

λ−2d∗
j λ−2d∗

k log2 λj log2 λk j−2|d0|k2|d0|−2 log2 k

)

= O

(
1
n2

bn/2c

∑
j=1

bn/2c

∑
k≥j

λ−2d∗
j λ−2d∗

k log2 λj log2 λk j−2|d0|k2|d0|−2 log2 k

)

=

 O(n4d∗−2 log4 n), d∗ + |d0| > 0.5 0 < d∗ < 0.5 ;
O(n−(1+2(|d0|−d∗)) log5 n), d∗ + |d0| ≤ 0.5 0 < d∗ < 0.5 ;
O(n−(1+2|d0|) log5 n), d∗ + |d0| ≤ 0.5 − 1 < d∗ ≤ 0 .

It therefore follows from Markov’s inequality that d2Q(1)
n (η; t) converges in probability to

d2Q (η; t).

Now, by the Mean Value Theorem, for any η1 and η2 in Ec

∣∣∣d2Q(1)
n (η1; t)− d2Q(1)

n (η2; t)
∣∣∣ ≤

∥∥∥∥∥∥
∂
{

d2Q(1)
n (η; t)

}
∂η

∥∥∥∥∥∥ · ‖η1 − η2‖,

for some η between η1 and η2. Moreover,

E0

∂
{

d2Q(1)
n (η; t)

}
∂η

 =
2π

n

bn/2c

∑
j=1

{
f0(λj)

f1(η, λj)
+

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)

}
· k(η; t, λj)
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=
2π

n

bn/2c

∑
j=1

f0(λj)

f1(η, λj)
k(η; t, λj) + rn, (3.59)

where

k(η; t, λj) =
∂t>H(η, λj)t

∂η
− t>H(η, λj)t

∂ log f1(η, λj)

∂η
= O(log3 λj),

and the remainder

rn =
2π

n

bn/2c

∑
j=1

(
E0[I(λj)]

f0(λj)
− 1
)

f0(λj)

f1(η, λj)
k(η; t, λj)

= O

(
2π

n

bn/2c

∑
j=1

log j
j

λ−2d∗
j log3 λj

)

=

{
O(n2d∗−1 log3 n), 0 < d∗ < 0.5 ;
O(n−1 log5 n), −1 < d∗ ≤ 0 ,

From Assumption (A.3) and (A.5) it follows that the components of the first term on the right

hand side of (3.59) converge to finite constants, and hence that

∣∣∣d2Q(1)
n (η1; t)− d2Q(1)

n (η2; t)
∣∣∣ ≤ Cn‖η1 − η2‖,

where

Cn = sup
η∈Ec

∥∥∥∥∥∥
∂
{

d2Q(1)
n (η; t)

}
∂η

∥∥∥∥∥∥ = Op(1),

since supn E0

[
∂
{

d2Q(1)
n (η; t)

}
/∂η

]
< ∞ for all η ∈ Ec. We can therefore conclude that

d2Q(1)
n (η1; t) is stochastically equicontinuous, and hence that

plim
n→∞

sup
η∈Ec

∣∣∣d2Q(1)
n (η; t)− d2Q (η; t)

∣∣∣ = 0 ,

for all t, ‖t‖ < ∞, as required.

That the FML estimator possesses the asymptotic distributions as specified in Theorem

3.3 now follows by replacing Lemma 5 of Chen and Deo (2006) by Lemma and Corollary

3.5, Lemmas 8 and 9 by Lemma 3.6, and Lemma 3 of Chen and Deo (2006) by Lemma 3.7.
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Having made these replacements we then find that the convergence rates and asymptotic

approximations given in Chen and Deo’s Lemma 4 and for their Cases 1, 2 and 3 in their

lemmas 6, 7, 10, 11 and 12 remain valid, thus establishing Theorem 3.3 for the FML estimator.

For the Whittle estimator we have, via definition of the differential and application of the

chain rule, that∣∣∣∣∣dQ(2)
n (η; t)− dQ(1)

n (η; t)

Q(1)
n (η)

∣∣∣∣∣ ≤ ∣∣∣∇Q(2)
n (η; t)− dQ(2)

n (η; t)
∣∣∣

+
∣∣∣∇Q(2)

n (η; t)−∇ log Q(1)
n (η; t)

∣∣∣
+

∣∣∣∣∣∇ log Q(1)
n (η; t)− dQ(1)

n (η; t)

Q(1)
n (η)

∣∣∣∣∣
≤ 2ε‖t‖+ |∇Q(2)

n (η; t)−∇ log Q(1)
n (η; t) |,

where

∇ log Q(1)
n (η; t) = log Q(1)

n (η+ t)− log Q(1)
n (η) and ∇Q(2)

n (η; t) = Q(2)
n (η+ t)−Q(2)

n (η)

and ε→ 0 as ‖t‖ → 0. Setting ‖t‖ = O(n−1 log n), noting that (3.49) implies that the difference

in differences |∇Q(2)
n (η; t)−∇ log Q(1)

n (η; t) | = O(n−1 log n), we find that∣∣∣∣∣dQ(2)
n (η; t)− dQ(1)

n (η; t)

Q(1)
n (η)

∣∣∣∣∣ ≤ O(n−1 log n) . (3.60)

Equation (3.60) leads, in turn, to the conclusion that∣∣∣∣∣d2Q(2)
n (η; t)− d2Q(1)

n (η; t)

Q(1)
n (η)

∣∣∣∣∣ ≤
{

dQ(1)
n (η; t)

Q(1)
n (η)

}2

+O(n−1 log n). (3.61)

But by Lemma 4 of Chen and Deo (2006)

E
[
dQ(1)

n (η1; t)
]
= −2π

n

bn/2c

∑
j=1

E
[

I(λj)

f0(λj)

]
w(η1, λj)

>t

=

{
O(n2d∗−1 log n), 0 < d∗ < 0.5 ;
O(n−1 log3 n), −1.0 < d∗ ≤ 0 .

. (3.62)
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In addition,

Var0

[
dQ(1)

n (η; t)
]
= O

(
1
n2

bn/2c

∑
j=1

bn/2c

∑
k≥j

λ−2d∗
j λ−2d∗

k log λj log λk j−2|d0|k2|d0|−2 log2 k

)

= O

(
n4d∗−2

bn/2c

∑
j=1

j−2(d∗+|d0|) log(j/n)
bn/2c

∑
k=1

k−2(d∗−|d0|)−2 log2 k log(k/n)

)

=

 O(n4d∗−2 log2 n), d∗ + |d0| > 0.5 0 < d∗ < 0.5 ;
O(n−(1−2(d∗−|d0|)) log3 n), d∗ + |d0| ≤ 0.5 0 < d∗ < 0.5 ;
O(n−(1+2|d0|) log3 n), d∗ + |d0| ≤ 0.5 − 1.0 < d∗ ≤ 0 .

(3.63)

The asymptotic equivalence of the FML and Whittle estimators now follows since: by

Lemma 3.3 Q(1)
n (η1) converges almost surely to Q (η1) ≥ σ2

0 > 0; equations (3.61), (3.62) and

(3.63) imply that |d2Q(2)
n (η1; t)− d2Q(1)

n (η1; t) /Q(1)
n (η1) | = op(1); and equation (3.60) implies

that

n
2π

(bn/2c

∑
j=1

(
t>w(η1, λj)

)2
)− 1

2
∣∣∣∣∣dQ(2)

n (η1; t)− dQ(1)
n (η1; t)

Q(1)
n (η1)

∣∣∣∣∣
=

{
O(n−2(d0−d1)), 0.25 < d0 − d1 < 0.5 ;
O((n log n)−

1
2 ), −1.0 < d0 − d1 ≤ 0.25 ,

since

bn/2c

∑
j=1

{
t>w(η, λj)

}2
= O

(bn/2c

∑
j=1

λ−4d∗
j log2 λj

)

=

{
O(n4d∗ log2 n), 0.25 < d∗ < 0.5 ;
O(n log3 n), −1.0 < d∗ ≤ 0.25 .

This establishes that Lemma 3.6 also holds with dQ(1)
n (η1; t) replaced by Q(η1)dQ(2)

n (η1; t).

For the TML estimator we begin by noting that∣∣∣∣∣2π

n

bn/2c

∑
j=1

log f1(η, λj)−
π

n
log
∣∣Ση

∣∣∣∣∣∣∣ = O(n−1 log n) ,

and concentrating Q(2)
n (σ2, η) and Q(3)

n (σ2, η) with respect to σ2 yields the inequality

∣∣∣Q(2)
n (η)− πQ(3)

n (η)
∣∣∣ ≤ O(n−1 log n) +

∣∣∣log 2Q(1)
n (η)− log(2π/n)Y>Σ−1

η Y
∣∣∣ . (3.64)
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If we let U denote the n× n unitary matrix with entries n−
1
2 exp(ı2π(r− 1)(c− 1)/n) in row r

and column c, r, c = 1, . . . , n, then the off diagonal entries in UΣηU∗ are of order O(n−1), and

the diagonal entries are

n−1

∑
s=−(n−1)

(
1− |s|

n

)
γ1 (s)

σ2 exp(ı2π(j− 1)s/n) j = 1, . . . , n .

Since f1(η, λ) is absolutely integrable on [−π, π], and by Assumptions 3 and 5 f1(η, λ) is

continuously differentiable for all λ 6= 0, from Fejer’s Theorem it follows that UΣηU∗ − F1 =

O(n−1) where F1 equals

{
diag(Cs f1, f1(η, λ1) . . . , f1(η, λbn/2c), f1(η, λbn/2c), . . . , f1(η, λ1)), for n odd;
diag(Cs f1, f1(η, λ1) . . . , f1(η, λ(n−2)/2), f1(η, λbn/2c), f1(η, λ(n−2)/2), . . . , f1(η, λ1)), for n even,

and the Cèsaro sum

Cs f1 =
n−1

∑
s=−(n−1)

(
1− |s|

n

)
γ1 (s)

σ2 =

{
O(n2d log n), 0 < d < 0.5
O(1), −0.5 < d ≤ 0 .

Conditions A and Assumption A.3 imply that Ση and F1 are positive definite and it therefore

follows, upon application of the Rayleigh-Ritz theorem, that

2π

n

∣∣∣Y>Σ−1
η Y− Y>UF−1

1 U∗Y
∣∣∣ =

∣∣∣∣2π

n
Y>Σ−1

η Y− 2Q(1)
n (η)

∣∣∣∣
=

1
n
|Y>RηY|

≤ 1
n

max
i=1,...,n

{|µi(Rη)|} ‖Y‖2 ,

where µi(Rη), i = 1, . . . , n, are the eigenvalues of the residual Rη = Σ−1
η −UF−1

1 U∗ = O(n−1).

Evaluating the characteristic polynomial of Rη via the leading principle minors, or using the

Faddeev-Leverrier method, then indicates that |µi(Rη)|n ≤ |µi(Rη)|n−1O(n−1) and the spec-

tral radius of Rη is O(n−1).

We can therefore use the method leading to (3.60) and (3.61) to deduce from the inequality
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in (3.64) that the first and second differentials satisfy

|dQ(2)
n (η1; t)− πdQ(3)

n (η1; t) | = O(n−1 log n),

and

|d2Q(2)
n (η1; t)− πd2Q(3)

n (η1; t) | = op(1).

It therefore follows that the Whittle estimator and the TML estimator converge in distribution

as

n
2π

(bn/2c

∑
j=1

(
t>w(η1, λj)

)2
)− 1

2 ∣∣∣dQ(2)
n (η1; t)− πdQ(3)

n (η1; t)
∣∣∣

=

{
O(n−2(d0−d1)), 0.25 < d0 − d1 < 0.5 ;
O((n log n)−

1
2 ), −1.0 < d0 − d1 ≤ 0.25 .

.

For the CSS estimator we have Q(4)
n (η1) =

{
Y>AηY− Y>MηY

}/
n. Replacing Ση by Aη

and adapting the argument used previously shows that UAηU∗ = 2πF−1
1 +O(n−1) and hence,

using (3.55), that ∣∣∣Q(4)
n (η1)− 2Q(1)

n (η1)
∣∣∣ ≤ O(n−1) + op(n−

1
2 ) .

Apart from notational changes, the remaining steps in showing that the CSS and FML estima-

tors converge in distribution are the same as those used in establishing the equivalence of the

FML, Whittle and TML estimators, and are therefore omitted.

The preceding derivations imply that Lemma 3.6 also holds with dQ(1)
n (η1; t) replaced by

Q(η1)dQ(2)
n (η1; t), πQ(η1)dQ(3)

n (η1; t) and (1/2)dQ(4)
n (η1; t). As with the FML estimator, we

then find that the convergence rates and asymptotic approximations given in lemmas 4, 6,

7, 10, 11 and 12 of Chen and Deo (2006) remain valid, thus establishing Theorem 3.3 for the

Whittle, TML and CSS estimators, and hence confirming that the four estimators η̂
(1)
1 , η̂

(2)
1 , η̂

(3)
1

and η̂
(4)
1 are asymptotically equivalent.

112



Chapter 3: Estimation of mis-specified fractional models: known mean

3.B Appendix: Evaluation of bias-correction term

For the FML estimator we have

E0

(
∂Q(1)

n (η)

∂η

)
=

2π

n

bn/2c

∑
j=1

E0(I(λj))
∂ f1(η, λj)

−1

∂η

=
2π

n

bn/2c

∑
j=1

(
∑
|k|<n

(
1− |k|

n

)
γ0(k) exp(ikλj)

)
∂ f1(η, λj)

−1

∂η
,

where γ0(k) denotes the autocovariance at lag k of the TDGP (see, for example, Brockwell and

Davis, 1991, Proposition 10.3.1). Similarly, for the Whittle estimator we have

E0

(
∂Q(2)

n (σ2, η)

∂η

)
=

4
n

bn/2c

∑
j=1

∂ log f1(η1,λj)

∂η

+
8π

σ2n

bn/2c

∑
j=1

(
∑
|k|<n

(
1− |k|

n

)
γ0(k) exp(ikλj)

)
∂ f1(η, λj)

−1

∂η
.

Differentiating the TML criterion function with respect to η gives

∂Q(3)
n (σ2, η)

∂η
=

1
n

trΣ−1
η

∂Ση

∂η
+

1
nσ2 YT ∂Σ−1

η

∂η
Y ,

which has expectation

E0

(
∂Q(3)

n (σ2, η)

∂η

)
=

1
n

trΣ−1
η

∂Ση

∂η
− 1

nσ2 trΣ−1
η

∂Ση

∂η
Σ−1

η Σ0 ,

where Σ0 = [γ0 (|i− j|)] and σ2Ση = [γ1 (|i− j|)] , i, j = 1, 2, ..., n. The criterion function for

the CSS estimator in (3.13) can be re-written as

Q(4)
n (η) =

1
n

n

∑
t=1

(
t−1

∑
i=0

τiyt−i

)2

=
1
n

n

∑
t=1

t−1

∑
i=0

t−1

∑
j=0

τiτ jyt−iyt−j ,

where τi is as defined in (3.15). The gradient of Q(4)
n (η), recalling that τi = τi(η), is thus given

by

∂Q(4)
n (η)

∂η
=

1
n

n

∑
t=1

t−1

∑
i=0

t−1

∑
j=0

(
τi

∂τ j

∂η
+ τ j

∂τi

∂η

)
yt−iyt−j ,
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and the expected value of the gradient is

E0

(
∂Q(4)

n (η)

∂η

)
=

1
n

n

∑
t=1

t−1

∑
i=0

t−1

∑
j=0

(
τi

∂τ j

∂η
+ τ j

∂τi

∂η

)
γ0(i− j) .

3.C Appendix: Additional Graphical results
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Figure 3.6: Kernel density of n1−2d∗

log n

(
d̂1−d1−µn

)
for an ARFIMA(0, d0, 1) TDGP with d0= −0.2

and θ0= −0.7, and an ARFIMA(0, d, 1)MisM; d∗> 0.25.
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Figure 3.7: Kernel density of n1/2[Λdd]
−1/2

(
d̂1 − d1

)
for an ARFIMA(0, d0, 1) TDGP with

d0= −0.2 and θ0= −0.444978, and an ARFIMA(0, d, 1)MisM; d∗= 0.25.
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Figure 3.8: Kernel density of
√

n
(

d̂1−d1

)
for an ARFIMA(0, d0, 1) TDGP with d0= −0.2 and

θ0= −0.3, and an ARFIMA(0, d, 1)MisM; d∗< 0.25.

116



Chapter 3: Estimation of mis-specified fractional models: known mean

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

n = 100

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

n = 200

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

n = 500

Kernel density of the misspecified estimator of the long memory parameter

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

n = 1000

FML Whittle TML CSS Limit

Figure 3.9: Kernel density of n1−2d∗

log n

(
d̂1−d1−µn

)
for an ARFIMA(0, d0, 1) TDGP with d0= 0.4 and

θ0= −0.7, and an ARFIMA(0, d, 1)MisM; d∗> 0.25.
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Figure 3.10: Kernel density of n1/2[Λdd]
−1/2

(
d̂1 − d1

)
for an ARFIMA(0, d0, 1) TDGP with

d0= 0.4 and θ0= −0.444978, and an ARFIMA(0, d, 1)MisM; d∗= 0.25.
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Figure 3.11: Kernel density of
√

n
(

d̂1−d1

)
for an ARFIMA(0, d0, 1) TDGP with d0= 0.4 and

θ0= −0.3, and an ARFIMA(0, d, 1)MisM; d∗< 0.25.
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Chapter 4

Mean correction in mis-specified
fractionally integrated models

4.1 Introduction

The class of fractionally integrated autoregressive moving average [ARFIMA] models, as intro-

duced by Granger and Joyeux (1980) and Hosking (1981) have been extremely useful for mod-

elling long memory processes, particularly due to their tractable likelihoods and the ease of

forecasting. However, the likelihoods presuppose that the structure of the true data generat-

ing process [TDGP] is correctly specified, apart from the values of a finite number of parame-

ters that are to be estimated (see Giraitis and Surgailis, 1990, Beran, 1995 and Lieberman et al.,

2012, among others). Significant contributions to the issue of mis-specification in the context

of long memory models have been made by Yajima (1993), Chen and Deo (2006) and Martin

et al. (2018) (hereinafter referred to as Chapter 3 of this thesis). We contribute to this literature

by producing a suite of theoretical developments on consequences of mis-specifying the short

memory dynamics in ARFIMA models, under the assumption of an unknown mean, with

attention given to five parametric estimation techniques: (i) Frequency domain maximum

likelihood [FML], (ii) discrete Whittle [DWH], (iii) Exact Whittle [EWH], (iv) time domain

maximum likelihood [TML], and (v) conditional sum of squares [CSS].

The aforementioned studies demonstrate that under mis-specification of the short memory
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dynamics, when the mean is known, the above parametric estimators converge to the same

pseudo-true value. They are also shown to share the same limiting distribution whose form

depends on the deviation between the true value of the fractional differencing parameter, d0,

and its pseudo-true value, d1, d∗ = (d0 − d1). Further, the Monte-Carlo experiments presented

in Chapter 3 shows that, in finite samples, the CSS estimator performs the best overall, when

the mean is known. When the mean estimated by the sample mean, the DWH estimator is

shown to outperform the others.

This chapter is interested in addressing two main questions: (i) How does the limiting

behaviour of the parametric estimators of the dynamic parameters differ in the two cases of

known and unknown process mean?, and, (ii) Can the effect of mean parameter estimation be

significant enough to change the ranking of the parametric estimators, in terms of their finite

sample performance, in comparison to the case of the known mean? From a practical point of

view, it is restrictive to impose the requirement that the process mean is known. Hence, these

questions are not only of theoretical interest but also of practical importance. For example, if

the sample mean is used, then the limiting behaviour of any estimator of the dynamic para-

meters may be influenced by the slower rate of convergence (than the usual
√

n) that depends

on d0 (see Hosking, 1996), given that the estimator of d0 itself has a slower rate of convergence

under certain forms of mis-specification. The indications are that the limiting properties of

the estimators of the dynamic parameters established in Chapter 3 can be extended to the

case where the mean is unknown. However, the technical details are challenging. Since FML

and DWH are invariant to mean, in this chapter we establish new asymptotic results only for

the EWH, TML and CSS estimators, in the case of an estimated mean.

The two methods that are most commonly used for estimating the process mean in long
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memory models are the sample mean and the best linear unbiased estimator [BLUE]. Al-

though the sample mean estimator is invariant to the specification of the model, the BLUE is

influenced by the specifications of the model. Hence, we begin by deriving the asymptotic

properties of the BLUE under incorrect specification of the model. We show that BLUE is

consistent for the true mean even under mis-specification. We also derive the limiting distrib-

utions under the correct specification. In this case, our results coincide with the classical limit

theory for estimating the mean, for example Adenstedt (1974).

We establish that the parametric estimators (FML, DWH, EWH, TML and CSS) of the para-

meters in the fitted model converge to the same pseudo-true value under mis-specification of

the short memory dynamics, regardless of whether the process mean is known or unknown.

We also show that the limiting distributions of the above five parametric estimators are iden-

tical. Thereby, we establish that the parametric estimators are asymptotically equivalent even

when the process mean is unknown. Our simulation results show that the finite sample rank-

ing of the five parametric estimators of the fractional differencing parameter – in terms of bias

and root mean squared error [RMSE] – differs in the two cases of known and unknown mean.

However, when it comes to estimation of the fractional differencing parameter, the choice of

mean estimator does not have a significant influence on the ranking. Amongst the five para-

metric estimators, the DWH estimator displays the best overall finite sample performance,

with the same qualitative results holding under both Gaussian and standardized Chi-squared

errors.

The remainder of this chapter is organized as follows. In Section 4.2 we provide the as-

sumptions and notation required to build the theoretical results. Section 4.3 contains several

important results on mean estimators. The asymptotic properties of the three estimators – time
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domain maximum likelihood, conditional sum of squares and exact Whittle – are provided

in Section 4.4. Section 4.5 establishes the asymptotic results corresponding to the unknown

mean case. Section 4.6 contains the results of a Monte-Carlo study to evaluate finite sample

performance. The proofs of all the results stated in the chapter are provided in the Appendix.

Throughout the chapter, we use the notation “→P” to denote convergence in probability, and

“→D” stands for convergence in distribution.1

4.2 Preliminaries: Assumptions and notation

Suppose that {yt} is generated from a stationary TDGP that is mean reverting with spectral

density given by

σ2
0

2π
f0 (λ) =

σ2
0

2π
|1− exp (−ıλ)|−2d0 g0 (λ) , − π < λ < π, (4.1)

where d0 ∈ (−0.5, 0.5), σ2
0 > 0, and g0 (.) is a spectral density continuous on the interval

[−π, π], bounded above and bounded away from zero with continuous second derivatives.

Associated with (4.1) is an MA representation of {yt} expressed as follows,

yt = µ0 +∑∞
j=0 b0,jεt−j, t ∈ Z, (4.2)

where µ0 is the true process mean, {εt} is a zero-mean white noise sequence with finite vari-

ance σ2
0 > 0. Further,

{
b0,j
}

is a sequence of constants satisfying b0,0 = 1 and ∑∞
j=0 b2

0,j < ∞

such that (1− z)d0 b0 (z) = c0 (z) = ∑∞
j=0 c0,jzj, and |c0 (z)| > 0, |z| ≤ 1. Hence (4.1) can be

expressed as f0 (λ) = |b0 (exp (ıλ))|2 , where λ ∈ [−λ, λ]. We suppose that c0 (exp (ıλ)) is

differentiable in λ for λ 6= 0 and ∂c0 (exp (ıλ))
/

∂λ = O
(∣∣∣λ−1

∣∣∣) as λ→ 0. For the innovation

process {εt}, t ∈ Z, in (4.2), we assume that:

1As noted in Chapter 1, this chapter has been written as a draft for a self-contained article for journal submis-
sion. Hence, there is a certain amount of repetition of material presented in other chapters, and re-definition of
notation.
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(A.1) For all t ∈ Z, E0 (εt|Ft−1) = 0 and E0
(
ε2

t |Ft−1
)
= σ2

0, a.s. where Ft−1 is the sigma-

field of events generated by εs, s < t. Hereinafter, the zero subscript denotes that the

moments are defined with respect to the TDGP.

The estimated model has a spectral density given by

σ2

2π
f1 (η, λ) =

σ2

2π
|1− exp (−ıλ)|−2d g1 (β, λ) , − π < λ < π, (4.3)

where η =
(

d, β>
)>

, with d as mentioned earlier and β ∈ B, with B an l-dimensional compact

convex set in Rl . Further, g1 (β, λ) is a real valued symmetric function such that g1 (β, λ) 6=

g0 (λ) for all β ∈ B. We assume that g1 (β, λ) is continuous on the interval [−π, π], bounded

above and bounded away from zero with continuous second derivatives. We will also impose

the following assumptions to prove the asymptotic results:

(A.1a) E0

(
|εt|4+τ

)
< ∞ for some p ∈ (0, ∞) with E0

(
ε3

t |Ft−1
)
< ∞ and E0

(
ε4

t |Ft−1
)
< ∞, for

all t ∈ Z.

(A.2) For all β ∈ B,
∫ π
−π log g1 (β, λ) dλ = 0, and β 6= β′ implies that g1 (β, λ) 6= g1

(
β′, λ

)
on

a set of positive Lebesgue measure.

(A.3) The function g1(β, λ) is differentiable with respect to λ, with derivative ∂g1(β, λ)/∂λ

continuous at all (β, λ), λ 6= 0, and |∂g1(β, λ)/∂λ| = O(|λ|−1) as λ→ 0. Furthermore,

inf
β

inf
λ

g1 (β, λ) > 0 and sup
β

sup
λ

g1 (β, λ) < ∞.

(A.4) The function g1 (β, λ) is thrice differentiable with continuous third derivatives, such

that,

sup
λ

sup
β

∣∣∣∣∂g1 (β, λ)

∂βi

∣∣∣∣ < ∞, 1 ≤ i ≤ l,
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sup
λ

sup
β

∣∣∣∣∣∂2g1 (β, λ)

∂βi∂βj

∣∣∣∣∣ < ∞, sup
λ

sup
β

∣∣∣∣∂2g1 (β, λ)

∂βi∂λ

∣∣∣∣ < ∞, 1 ≤ i ≤ l, 1 ≤ i, j ≤ l,

sup
λ

sup
β

∣∣∣∣∣∂3g1 (β, λ)

∂βi∂βj∂βk

∣∣∣∣∣ < ∞, 1 ≤ i, j, k ≤ l.

Consider a user-assigned compact subset of the parameter space (0, 0.5)×B, where

Eδ = Dδ ×B where Dδ = {d : |d| ≤ 0.5− δ} , for some 0 < δ� 0.5 . (4.4)

(A.5) There exists a unique pseudo-true parameter vector η1 =
(

d1, β>1

)>
belonging to the

subset E0
δ that satisfies η1 = arg minη Q (η) , where

Q (η) =
σ2

0
2π

∫ π

0

f0 (λ)

f1 (η, λ)
dλ, (4.5)

and E0
δ is as defined in Chapter 3, page 50, that is, E0

δ = D0
δ ×B where D0

δ = Dδ ∩ {d :

−(1− 2δ) ≤ (d0 − d) ≤ 0.5− δ}.

The assumptions (A.1)− (A.5) and (A.1a) are as stated in Chapter 3. Assumption (A.1)

is a weaker assumption compared to the classical requirement of Gaussianity. The differen-

tiability conditions given in (A.4) allow one to derive limit of the Fisher information matrix

and to obtain the limiting distribution of the estimator under the incorrectly specified model.

Assumption (A.5) ensures that the pseudo-true parameters are well defined in Eδ, on which

the convergence and distributional results are established. For more details on nature of all

assumptions, see Chapter 3.

We shall now define an ARFIMA(p, d, q) model:

φ(L)(1− L)d{yt − µ} = θ(L)εt, (4.6)

126



Chapter 4: Mean correction in mis-specified fractionally integrated models

where, d ∈ (−0.5, 0.5) , µ = E (yt) , L is the lag operator such that, Lkxt = xt−k for k > 0 and

φ(L) = 1+ φ1L+ ...+ φpLp and θ(L) = 1+ θ1L+ ...+ θqLq are the autoregressive and moving

average operators respectively. Therefore, η =
(

d, β>
)>

and β =
(

φ1, φ2, ..., φp, θ1, θ2, ..., θq

)>
.

The realizations are generated from an ARFIMA(p0, d0, q0) model, with the true spec-

tral density, defined in (4.1), denoted by setting g0 (λ) = |θ0(exp (ıλ))|2
/
|φ0(exp (ıλ))|2.

The realizations are modelled by an ARFIMA(p, d, q) model for any of the p and q such

that {p 6= p0 ∪ q 6= q0} \ {p0 ≤ p ∩ q0 ≤ q}, with the spectral density defined in (4.3), setting

g1 (β, λ) = |θ(exp (ıλ))|2
/
|φ(exp (ıλ))|2. This model is referred to as the mis-specified model

(abbreviated by ‘MisM’). To comply with the assumptions stated above, the roots of the char-

acteristic equations, θ0(z), φ0(z), θ(z) and φ(z) lie outside the unit circle so that the TDGP is a

stationary process and the estimated model is also restricted to the stationary region.

4.3 Mean estimation and some useful results

In this section we introduce the two main estimators of the mean available in the class of

fractionally integrated models; namely, the sample mean and the BLUE. A brief review of

their statistical properties is provided when the model is correctly specified. As mentioned

in Section 4.1, BLUE is influenced by the specification of the model. We then establish some

interesting asymptotic properties of the BLUE, assuming that the model is mis-specified.

4.3.1 Sample mean

Let y = (y1, y2, ..., yn)
> be a random sample of n observations, with a spectral density as given

in (4.1). The sample mean is given by µ̂SM = ∑n
i=1 yi

/
n. From (4.2), the sample mean is an

unbiased estimator for µ. Hosking (1996) states that the sample mean is consistent for µ0,
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but with a slower rate of convergence than
√

n, when d0 ∈ (−0.5, 0.5) . Further, the limit

distribution of µ̂SM is given by

n1/2−d0 (µ̂SM − µ0)→D N
(
0, ν2) , with ν2 =

σ2
0g0 (0) Γ (1− 2d0)

(1+ 2d0) Γ (1+ d0) Γ (1− d0)
. (4.7)

The asymptotic variance of the sample mean is thus seen to depend only on the behaviour of

the spectrum at the origin. As described in Hosking (1996), the above theoretical results are

valid under weaker conditions than Gaussianity of the time series.

4.3.2 BLUE for mean

An alternative unbiased estimator for mean is the BLUE introduced by Adenstedt (1974). The

BLUE for mean is simply the weighted average of the sample observations. The weights are

determined by the autocovariance matrix associated the fitted model for the DGP. Hence, the

fitted model plays a key role here. In this section, we analyze the properties of BLUE under

the following cases; (1) the fitted model and the model corresponding to the data generating

process are the same, and, (2) the fitted model is incorrectly specified in terms of the short

memory dynamics.

Case 1: Correct specification of the model

Denote by µ̂BLU,0 the BLUE and define the estimator by,

µ̂BLU,0 =
1>Σ−1

0 y
1>Σ−1

0 1
, (4.8)

where σ2
0Σ0 :=

[
γ0,i−j (η)

]
, i, j = 1, . . . , n, with γ0,k (η) being the autocovariance at lag k of the

series, {yt : t = 1, . . . , n}, and 1 is the column vector of n ones. The variance of BLUE is given

by σ2
0

(
1>Σ−1

0 1
)−1

and for large n,

Var
(

µ̂BLU,0

)
≈ n2d0−1 σ2

0g0 (0) Γ (1− 2d0)

B (1− d0, 1− d0)
,
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from Theorem 5.2 of Adenstedt. Here B (.) is the beta function. Here too, the asymptotic

variance of the estimator depends only on the behaviour of the spectrum at the origin.

Provided that the data generating process is Gaussian, Samarov and Taqqu (1988) showed

that in the ARFIMA setting BLUE is often better than the sample mean and that the asymptotic

efficiency of µ̂SM relative to µ̂BLU,0 is given by,

K̆ = lim
n→∞

Var
(

µ̂BLU,0

)
Var (µ̂SM)

=
πd0 (1+ 2d0)

B (1− d0, 1− d0) sin (πd0)
. (4.9)

The interesting fact is that the ratio depends only on d0 and the asymptotic efficiency is de-

termined only by the behaviour of the spectral density at the origin, not its complete infor-

mation. Figure 4.1 is the plot of asymptotic efficiency of the sample mean against the BLUE.2

According to the plot, the asymptotic efficiency is less than one. This implies that the BLUE

is uniformly (asymptotically) more efficient than the sample mean throughout the range of

stationary values for the fractional differencing parameter. In particular, when−0.5 < d0 < 0,

BLUE is strictly preferred over the sample mean as the efficiency (of µ̂SM) is decreasing at

an exponential rate as d0 → −0.5. If d0 = 0, the limit of the asymptotic efficiency is one,

and this implies that no loss in efficiency is incurred by the sample mean in large samples (see

Grenander, 1954 for this result for the short memory case). When 0 < d0 < 0.5, the asymptotic

efficiency tends to decrease as the differencing parameter moves away from zero and after 0.3

the efficiency increases and moves towards one.

The BLUE is obviously a feasible estimator only when the autocovariances of the TDGP

is known. Hence, BLUE is not feasible in practice. One immediate remedy is to plug in

the empirical counterpart of the autocovariances, the sample autocovariances. In this case,

2The plot given here is reproduction of Figure 2(a) of Samarov and Taqqu (1988). We reproduce the plot only
in the stationary region.
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Figure 4.1: The plot displays the asymptotic efficiency of the sample mean against the best linear
unbiased estimator, for different values of the fractional differencing parameter in a correctly specified
Gaussian ARFIMA(p0, d0, q0) model.

the efficiency of BLUE over the sample mean may not be achieved. Moreover, deriving the

asymptotic results of this feasible BLUE is complicated. We do not aim to establish the large

sample properties of the feasible estimator under the correct specification of the model.

Theorem 4.1 Suppose that the TDGP of {yt} is as prescribed in equations (4.1) and (4.2).

(i) If −0.5 < d0 < 0.5, then n1/2−d0

(
µ̂BLU,0 − µ0

)
→D N

(
0, K̆ν2) , where K̆ is as defined in

(4.9) and ν2 is as defined in (4.7).

(ii) If d0 = −0.5, then n (log n)−1/2
(

µ̂BLU,0 − µ0

)
→D N

(
0, 2π−1σ2

0g0 (0) K̆
)
.

Theorem 4.1 provides the asymptotic distribution of the BLUE under the assumption that

the correct model is identified for the given data generating process. The asymptotic distribu-

tion result is similar to that of the sample mean except that a multiplicative constant appears
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in the asymptotic variance of the BLUE. If d0 = 0, then K̆ = 1 and in that case, the result

coincides with the standard result for a short memory process (cf. Brockwell and Davis, 1991,

Theorem 7.1.2).

Case 2: Mis-specification of the short memory dynamics in the model

Now define the BLUE under incorrect specification of the short memory dynamics associated

with the TDGP as follows:

µ̂BLU =
1>Σ−1

η y

1>Σ−1
η 1

, (4.10)

where

σ2Ση :=
[
γi−j (η)

]
, i, j = 1, . . . , n, (4.11)

with γk (η) being the autocovariance at lag k associated with the incorrectly specified model

such that σ2Σ 6= σ2
0Σ0.

Theorem 4.2 Suppose that the TDGP of {yt} is as prescribed in equations (4.1) and (4.2), and that

the MisM is specified as in (4.3). Assume that Assumptions (A.1)− (A.4) are satisfied. Then µ̂BLU =

µ0 + op
(
n1−2d0

)
.

Theorem 4.2 states that even when a wrong model is chosen, the linear unbiased estimator

is still consistent for the true mean. However, despite the impact of the estimator due to the

choice of incorrect model being asymptotically negligible, it will be reflected in finite sample

performance of both the BLUE and any estimator of η that depends on it.
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4.4 Estimation of the dynamic parameters under mis-specification
of the short memory dynamics

In this section, we define five estimation methods namely, FML, DWH, EWH, TML and CSS,

for estimating the dynamic parameters under incorrect specification of the short memory dy-

namics in the model. In Section 4.4.1, we define the frequency domain estimation methods

(FML, DWH and EWH), and then in Section 4.4.2 the time domain estimation methods (TML

and CSS) are introduced.

Index by i = 1, 2, 3, 4 and 5 respectively, the FML, DWH, EWH, TML and CSS estimation

method. Let η̂
(i)
1 denote, respectively, the FML, DWH, EWH, TML and CSS estimator of the

parameter vector η =
(

d, β>
)>

of the MisM. Denote by Q(i)
n (η) the objective function of the

ith estimation method.

4.4.1 Frequency domain estimation

The three frequency domain estimators – FML, DWH and EWH – are defined in the following

sections.

Approximate frequency domain maximum likelihood estimation

The FML objective function Q(1)
n (η) is defined by Chen and Deo (2006) as follows:

Q(1)
n (η) =

2π

n

bn/2c

∑
j=1

I
(
λj, µ

)
f1
(
η, λj

) , (4.12)

where I (λ, µ) is the periodogram defined as

I (λ, µ) = |D (λ, µ) |2; D (λ, µ) =
1√
2πn

n

∑
t=1
(yt − µ) exp (−ıλt) , (4.13)

and D (λ, µ) is the discrete Fourier transform (DFT) of the realizations, y, being measured at

Fourier frequencies, λj = 2π j/n; (j = 1, ..., bn/2c), where bxc is the largest integer not greater
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than x. Here ı =
√
−1 is the imaginary unit. The minimizer of Q(1)

n (η) is labelled as the FML

estimator.

Suppose that Assumptions (A.1)− (A.3) and (A.5) hold, Proposition 1 of Chapter 3 states

that limn→∞ Q(1)
n (η̂

(1)
1 ) = Q (η) and η̂

(1)
1 → η1 almost surely, where Q (η) is as defined in (4.5).

Assumption (A.5) is the most important assumption for the convergence either in prob-

ability or distribution of an estimator of η to hold under mis-specification when the mean is

unknown. The minimum value of the limiting criterion function, Q(η), defines the pseudo-

true parameter value. For the class of stationary ARFIMA (mis-specified) models Q (η) exists

(see, Lemma 3.1 of Chapter 3).

Discrete version of the exact Whittle

An approximation to the EWH is the DWH estimation method and this method has been used

in Beran (1994). The DWH log-likelihood function is given by,

Q(2)
n
(
η, σ2) = 2π

n

bn/2c

∑
j=1

log
σ2

2π
f1
(
η, λj

)
+
(2π)2

σ2n

bn/2c

∑
j=1

I
(
λj, µ

)
f1
(
η, λj

) . (4.14)

Remark 4.1 The FML and DWH objective functions are invariant to mean (cf. Remark 2.1) and there-

fore both Q(1)
n (η) and Q(2)

n
(
η, σ2) are not expressed as functions of µ, even though the periodogram is

defined as a function of µ (and λj).

Unlike the FML estimator, DWH involves estimating
(
σ2, η

)
. By concentrating out σ2 in

(4.14), the DWH estimator is obtained. The optimizer of σ2 is evaluated as follows:

∂

∂σ2 Q(2)
n
(
η, σ2) = π

1
σ2 −

(2π)2

(σ2)2 n

bn/2c

∑
j=1

I
(
λj, µ

)
f1
(
η, λj

) ,
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and this gives that

σ̂2 =
4π

n

bn/2c

∑
j=1

I
(
λj, µ

)
f1
(
η, λj

) = 2Q(1)
n (η, µ0) .

Concentrating out σ2 in (4.14) gives the associated profile function given by,

Q(2)
n (η) = π log σ̂2 +

2π

n

bn/2c

∑
j=1

log f1
(
η, λj

)
− π log π +

(2π)2

σ̂2n

bn/2c

∑
j=1

I
(
λj, µ

)
f1
(
η, λj

)
= π log σ̂2 +

2π

n

bn/2c

∑
j=1

log f1
(
η, λj

)
− π log π +

(2π)2

σ̂2n
nσ̂2

4π

= π log
[

4
n

]
+ π + π log

[bn/2c

∑
j=1

I
(
λj, µ

)
f1
(
η, λj

)]+ 2π

n

bn/2c

∑
j=1

log f1
(
η, λj

)
.

(4.15)

Minimizing the (4.15) with respect to η produces the DWH estimator, η̂
(2)
1 . Chapter 3 shows

that η̂
(2)
1 →a.s η1.

For the EWH, TML and CSS estimation methods, the mean is also jointly estimated with

the dynamic parameters. Hence, we impose the following additional assumption on the

choice of the mean estimator:

(A.6) For δ > 0, µ̂n = µ0 + op
(
n−1/2+d0+δ

)
.

This assumption has been adopted by Dahlhaus (1989) and Lieberman et al. (2012). The

sample mean and the BLUE defined in (4.10) satisfy this assumption whenever d0 ∈ (−0.5, 0.5).

Exact Whittle estimation

This is an approximation to the time domain Gaussian maximum likelihood estimation pro-

cedure and has been exploited by Fox and Taqqu (1986) and Dahlhaus (1989) among others,

by adopting the technique of Whittle (1952). The Exact Whittle estimation objective function
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is given by,

Q(3)
n
(
η,µ, σ2) = ∫ π

−π

{
log
(

σ2

2π
f1 (η, λ)

)
+

2π I (λ, µ)

σ2 f1 (η, λ)

}
dλ. (4.16)

The EWH estimator of η is simply the minimizer of (4.16). The above objective function under

exact Whittle estimation can be further simplified under Assumption (A.2) as follows.

Consider the first component of the integral in (4.16):

π∫
−π

log
(

σ2

2π
f1 (η, λ)

)
dλ =

π∫
−π

log
(

σ2

2π
g1(β,λ) |1− exp (−ıλ)|−2d

)
dλ

= 2π log
(

σ2

2π

)
+

π∫
−π

log g1(β,λ)dλ

−2d
π∫
−π

log |1− exp (−ıλ)| dλ. (4.17)

In the above expression, the second component on the right hand side is exactly zero by As-

sumption (A.2). The third component of (4.17) is deduced as follows using the standard result

for
π∫

0

log(sin bx) dx
1−2a cos x+a2 from Gradshtein and Ryzhik (2007, page 583):

2d
π∫
−π

log |1− exp (−ıλ)| dλ = 2d
π∫

0

log
(
4 sin2 (λ/2)

)
dλ

= 2d
π∫

0

log 4dλ+ 4d
π∫

0

log (sin (λ/2)) dλ

= 4πd log 2+ 4dπ log (1/2)

= 0.

Therefore
π∫
−π

log
(

σ2

2π
f1 (η, λ)

)
dλ = 2π log

(
σ2

2π

)
. (4.18)

This leads (4.16) to become

Q(3)
n
(
η, µ, σ2) = 2π log

(
σ2

2π

)
+
∫ π

−π

2π I (λ, µ)

σ2 f1 (η, λ)
dλ. (4.19)
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Unlike the FML and DWH objective functions, that of EWH is not invariant to the mean.

Hence, we need to estimate both µ and σ2 prior to estimating η. Let us firstly find the estimator

of σ2 is as follows.

∂

∂σ2 Q(3)
n
(
η, µ, σ2) = 2π

1
σ2 −

2π

(σ2)2

∫ π

−π

I (λ, µ)

f1 (η, λ)
dλ.

σ̂2 =
∫ π

−π

I (λ)
f1 (η, λ)

dλ. (4.20)

Concentrating out σ2 with (4.20) the EWH objective function is given by,

Q(3)
n (η, µ) = 2π log

(
1

2π

∫ π

−π

I (λ, µ)

f1 (η, λ)
dλ

)
+ 2π. (4.21)

Then, the EWH estimator of η, denoted by, η̂
(3)
1 , is obtained by minimizing the following func-

tion after replacing µ in (4.21) with some consistent estimate of µ0 that satisfies Assumption

(A.6):

Q(3)
n (η, µ̂) = 2π log

(
1

2π

∫ π

−π

Ĩ (λ, µ̂)

f1 (η, λ)
dλ

)
+ 2π, (4.22)

where,

Ĩ (λ, µ̂) =

∣∣∣∣∣ 1√
2πn

n

∑
t=1
(yt − µ̂) exp (−ıλt)

∣∣∣∣∣
2

. (4.23)

Lemma 4.1 Let the TDGP be as prescribed in equations (4.1) and (4.2) and that the MisM is specified

as in (4.3). Suppose Assumptions (A.1)− (A.3) and (A.6) hold. Then with probability 1,

lim
n→∞

∫ π

−π

Ĩ (λ, µ̂)

f1 (η, λ)
=

σ2
0

2π

∫ π

−π

f0 (λ)

f1 (η, λ)
dλ,

uniformly in η on E0
δ.

4.4.2 Time domain estimation

In this section, the two time domain estimators – TML and CSS – are defined.
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Maximum likelihood estimation

The Gaussian log-likelihood function for the TML estimator is

L
(
η, µ, σ2|y

)
= −n

2
log (2πσ2)− 1

2
log |Ση| −

1
2σ2 (y− µ1)> Σ−1

η (y− µ1) , (4.24)

where σ2Ση is the variance covariance matrix of y derived from the mis-specified model as

defined in (4.11). Maximizing (4.24) is equivalent to minimizing the criterion function

Q(4)
n (η, µ, σ2) =

n
2

log
(
σ2)+ 1

2
log |Ση|+

1
2σ2 (y− µ1)> Σ−1

η (y− µ1) . (4.25)

Here, the parameters, µ, σ2 and η are estimated by minimizing (4.25). Since the objective

function involves estimating location, scale and dynamic parameters, we estimate η by con-

centrating out the location and scale parameters.

The first derivatives of Q(4)
n (µ, σ2, η) with respect to µ and σ2 are

∂

∂µ
Q(4)

n (η, µ, σ2) =
∂

∂µ
(y− µ1)> Σ−1

η (y− µ1)

=
∂

∂µ

[
y>Σ−1

η y− 2µ1>Σ−1
η y+µ21>Σ−1

η 1
]

= −2
(

1>Σ−1
η y

)
+ 2µ1>Σ−1

η 1,

∂

∂σ2 Q(4)
n (η, µ, σ2) =

∂

∂σ2

[
−n

2
log
(
σ2)+ 1

2
log |Σ−1

η |+
σ2

2
(y− µ1)> Σ−1

η (y− µ1)
]

= −n
2

1
σ2 +

1
2
(y− µ1)> Σ−1

η (y− µ1) .

Solving the FOCs with respect to µ and σ2 gives,

µ̃ =
(

1>Σ−1
η 1
)−1

1>Σ−1
η y = µ̂BLU and σ̃2 =

1
n
(y− µ̃1)> Σ−1

η (y− µ̃1) . (4.26)

Under the assumption of a Gaussian process, the MLE of µ is µ̂BLU , and the finite sample

properties of µ̂BLU depend on whether the assumed model is correctly specified or not. In
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particular, if the model is correctly specified, then µ̃ will be efficient relative to (say) the sample

mean estimator of µ. However, it is appropriate to substitute into the modified profile log-

likelihood (MPL) function, any estimator for µ, µ̂, that satisfies assumption (A.6), including

the sample mean, yielding:

Q(4)
n (η,µ̂) = −n

2
log n+

n
2

log
(
(y− µ̂1)> Σ−1

η (y− µ̂1)
)
+

1
2

log |Ση|+
n
2

. (4.27)

Then η can be estimated by maximizing (4.27). Denote the TML estimator here by η̂
(4)
1 .

Conditional sum of squares estimation

CSS estimation does not provide an estimator for σ2 explicitly, as we do in maximum like-

lihood estimation. Instead, we estimate η by minimizing the sum of squares of residuals

conditioning on yt−s = 0, ∀t 6 s. Denote the CSS estimator by η̂
(5)
1 , with the CSS objective

function given by

Q(5)
n (η,µ̂) =

1
n

n

∑
t=1

e2
t , (4.28)

where

et =
t−1

∑
i=0

τi (η) {yt−i − µ̂}, (4.29)

with µ̂ being replaced by a consistent estimator of the mean satisfying Assumption (A.6).

Here, τ j(η) is such that τ0(η) = 1 and

τi(η) =
i

∑
s=0

k(i− s)Γ(i− d)
Γ(i+ 1)Γ(−d)

; ∀i > 0, (4.30)

where k(i− s) are the coefficients of the lag operators of the stationary and invertible ARMA

process such that,

φ(z)
θ(z)

=
∞

∑
i=0

k(i)zi, (4.31)
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implying
∞

∑
j=0
|k(j)| < ∞. Using Sterling’s approximation we can say that,

τi(η) =
κ(1)

Γ(−d)
i−d−1 as i→ ∞ for |d| < 0.5. (4.32)

Hence the CSS estimator is obtained as follows.

η̂
(5)
1 = arg min

η
Q(5)

n (η).

Remark 4.2 When the process mean is unknown and is estimated by an estimator that is independent

of η (for example, sample mean), the estimation of η is a two step procedure. In the first step, we

demean the data using the estimator of mean and then in the second step, we estimate η as usual with

the demeaned data. Suppose the estimator of mean is itself a function of η (for example, BLUE), then η

is estimated in one step without explicitly estimating mean.

4.5 Convergence properties of the parametric estimators under mis-
specification

Suppose that {yt} is a long range dependent process with known mean. In Chapter 3 it is es-

tablished that on subsets Eδ, Q (η) exists and limn→∞ Q(1)
n (η) = Q (η) , where Q (η) is defined

as in Assumption (A.5). Further, Theorem 3.1 in that chapter states that the convergence prop-

erties of FML, DWH, TML and CSS are the same and they converge to a common pseudo-true

value. In Theorem 3.3, it is shown that all these four estimators are asymptotically equivalent.

Here we establish the limiting properties of the EWH, TML and CSS estimators in the case

of an unknown mean. Then we relate the convergence properties of these three estimators to

those of FML and DWH, in order to investigate whether all five estimators are asymptotically

equivalent even when the mean is unknown.
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Theorem 4.3 Suppose that the TDGP of {yt} is as prescribed in equations (4.1) and (4.2), and that

the MisM is specified as in (4.3). Assume that Assumptions (A.1) − (A.3) and (A.5) − (A.6) are

satisfied. Then, limn→∞

∥∥∥η̂
(i)
1 − η̂

(j)
1

∥∥∥ = 0 almost surely for all i, j = 1, 2, 3, 4, 5, where the common

limiting value of η̂
(i)
1 , i = 1, 2, 3, 4, 5, is η1 = arg min Q (η) .

Theorem 4.3 is an extension of Theorem 3.1 of Chapter 3 to the case where the process

mean is unknown. The above theorem states that when the process mean is unknown, all five

parametric estimators converge to a common pseudo-true parameter value under common

mis-specification. This result holds when either the sample mean or the BLUE is used to

estimate µ. Intuitively, this means that mean being estimated by either the sample mean or

the BLUE does not alter the pseudo-true parameter value.

Theorem 4.4 Suppose that the TDGP of {yt} is as prescribed in equations (4.1) and (4.2), and that

the MisM is specified as in (4.3), and assume that Assumptions (A.1)− (A.6) and (A.1a) hold. Let

B = −σ2
0

π

π∫
−π

f0(λ)

f 3
1 (η1,λ)

∂ f1(η1,λ)
∂η

∂ f1(η1,λ)
∂ηT dλ+

σ2
0

2π

π∫
−π

f0(λ)

f 2
1 (η1,λ)

∂2 f1(η1,λ)
∂η∂ηT dλ , (4.33)

and set µn = B−1E0

(
∂Qn(η1)

∂η

)
where Qn(·) denotes the objective function that defines η̂1. Let η̂1

denote the estimator obtained by minimizing Qn(η) over the compact set Eδ where η1 ∈ Eδ and

assume that η1 3 ∂Eδ where ∂Eδ is the boundary of the set Eδ. Then the limiting distribution of any

one of the FML, DWH, EWH, TML or CSS estimators is as delineated in Cases 4.1, 4.2 and 4.3:

Case 4.1 When d∗ = d0 − d1 > 0.25,

n1−2d∗

log n
(η̂1 − η1 − µn)→D B−1

[
∞

∑
j=1

Wj, 0, ..., 0

]>
, (4.34)
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where
∞

∑
j=1

Wj is the mean square limit of the random sequence
s

∑
j=1

Wj as s→ ∞ wherein

Wj =
(2π)1−2d∗ g0(η0, 0)

j2d∗g1(η1, 0)

[
U2

j +V2
j − E0

(
U2

j +V2
j

)]
,

where,
{

Uj, Vk
}

are a sequence of random normal variables with zero mean and the covariance structure

of
{

Uj, Vk
}

denoted by Cov0(.) is as follows,

Cov0
(
Uj, Vk

)
=

∫∫
[0,1]2

{sin(2π jx) sin(2πky) + sin(2πkx) sin(2π jy)} |x− y|2d0−1 dxdy,

Cov0
(
Uj, Uk

)
= Cov0

(
Uj, Vk

)
= Cov0

(
Vj, Vk

)
, ∀j, k ∈N. (4.35)

Case 4.2 When d∗ = d0 − d1 = 0.25,

n1/2Λ
−1/2

(η̂1 − η1)→D B−1 (Z, 0, ..., 0)> , (4.36)

where Z is a standard normal random variable and

Λ =
1
n

n/2

∑
j=1

(
f0(λj)

f1(η1,λj)

∂ log f1(η1,λj)

∂d

)2

. (4.37)

Case 4.3 When d∗ = d0 − d1 < 0.25,

√
n (η̂1 − η1)→D N(0, Ξ), (4.38)

where Ξ = B−1ΛB−1, and

Λ = 2π
∫ π

0

(
f0(λ)

f1(η1,λ)

)2 (∂ log f1(η1,λ)
∂η

)(
∂ log f1(η1,λ)

∂η

)>
dλ. (4.39)

Theorem 4.4 is an extension of Theorem 3.3 of Chapter 3 showing that all five parametric

estimators share the same limiting distribution even when the process mean is unknown.

This implies that estimating the mean does not change the form of limiting distribution of the

parametric estimators of the dynamic parameters. Again, this result holds when either the
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sample mean or the BLUE is used to estimate µ. When the difference between the true and

the pseudo-true value of d, d∗ (= d0 − d1) > 0.25, the parametric estimator still converges to

a non-Gaussian distribution which is a function of an infinite sum of non-Gaussian random

variables. Further, the slower rate of convergence n1−2d∗/ log n, under the known mean case,

is not affected by the slower rate of convergence of the mean estimator. Although asymptotic

normality is preserved when d∗ = 0.25, the rate of convergence is of order
(

n/ log3 n
)1/2

,

as is the case in the known mean case. When d∗ < 0.25, we continue to achieve asymptotic

normality with the usual
√

n− rate of convergence.

To establish that the limiting distribution is the same for all five parametric estimators, we

investigate the first-order Taylor expansion of ∂Q(i)
n (η1, µ0)

/
∂η about∂Q(i)

n (η̂1, µ̂)
/

∂η = 0,

(only) for i = 3, 4 and 5, as the limiting distribution of the FML and DWH estimators are

invariant to mean. This leads to

Rn

(
η̂
(i)
1 − η1

)
= −

([
∂2Q(i)

n (η, µ̂)
]−1
−
[
∂2Q(i)

n (η, µ0)
]−1
)
×
[

Rn × ∂Q(i)
n (η1, µ0)

]
−
[
∂2Q(i)

n (η, µ0)
]−1
×
[

Rn × ∂Q(i)
n (η1, µ0)

]
, (4.40)

where Rn is the rate of convergence applicable in the three different cases outlined in the

theorem. In the above expansion, the second component has the limiting distribution that

is defined in theorem. If the first component in (4.40) converges to zero in probability, then

it follows that the limiting distribution of the estimator (EWH or TML or CSS) under the

unknown mean case is the same as that under the known mean case. Indeed we show that

plim
n→∞

([
∂2Q(i)

n (η, µ̂)
]−1
−
[
∂2Q(i)

n (η, µ0)
]−1
)
×
[

Rn × ∂Q(i)
n (η1, µ0)

]
= 0. (4.41)

The idea behind condition (4.41) is to explore the limiting behaviour of the distance of between

the second order derivative of the objective function evaluated at a given point measured
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with mean estimator, (η, µ̂) and another the point measured at the true mean, (η, µ0). This

implicitly verifies whether the fact that the mean being treated as another parameter to be

estimated makes any change in the asymptotic behaviour of ∂Q(i)
n (.).

4.6 Simulation results

In this section, a Monte-Carlo study has been carried out to explore the finite sample perfor-

mance of the five parametric estimators of the pseudo-true value of the long memory para-

meter, d1, under specific types of mis-specification. The five parametric estimators focused

on here are: d̂(1)1 (FML), d̂(2)1 (DWH), d̂(3)1 (EWH), d̂(4)1 (TML) and d̂(5)1 (CSS), as are defined in

Sections 4.4.1 and 4.4.2. For each of the estimators, Monte-Carlo results are obtained for one

specific value corresponding to the cases, d∗ > 0.25, d∗ = 0.25, and d∗ < 0.25, as given in

Theorem 4.4. We firstly document the form of the finite sample distributions for each of the

standardized versions of these estimators and compare with corresponding asymptotic distri-

bution associated with each of the three cases based on d∗. We then tabulate the performance

based on bias and RMSE. For our Monte-Carlo study, MATLAB 2015b, version 8.6.0.267246 is

used.

Here we consider a particular form of mis-specification, which will be defined later. For

each form of mis-specification, we generate 100, 000 artificial time series from a zero mean

ARFIMA(p0, d0, q0) process with sample size, n = 100, 200, 500 and 1000 as follows. For a

given sample size, we generate a vector of i.i.d. random variables, denoted by e, obtained

from two distributions, (i) standard normal, and, (ii) standardized Chi-square with 4 degrees

of freedom. We then compute the analytic autocovariance matrix associated with the DGP,

Σ0, together with its Cholesky decomposition, C, Σ0 = CC>. The simulated series is then
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constructed as: y = µ01+ Ce, where µ0 is the true mean of the process. It has been suggested

in the literature (see, Granger and Joyeux, 1980) that, in order for the long memory ARFIMA

series {yt} not to be affected by “the initial values”, it is advisable to simulate a longer series

and drop the first subset of values. We find that such a practice is unnecessary if {yt} is

simulated using our method. The type of mis-specification considered in our simulation study

is as follows:

Example 4.1 An ARFIMA(0, d0, 1) TDGP, with parameter values d0 = {−0.25, 0.2, 0.45} and θ0 =

{−0.7,−0.444978,−0.3} ; and the MisM is ARFIMA(0, d, 0). The values of θ0 considered here corre-

spond to the cases, d∗ > 0.25, d∗ = 0.25, and d∗ < 0.25, respectively.

In Subsection 4.6.1 we explore the forms of the finite sample distributions of the standard-

ized versions of the five estimators under the first type of mis-specification described above,

and for d0 = 0.2 only. Both time domain estimators are obtained under the assumption of

an unknown mean and estimated with both the sample mean and the BLUE. We omit the

graphical results of the estimators for the values of d0 = −0.25 and 0.45 as the finite sample

distributions are qualitatively the same as those reported here.

We then proceed to report the bias and RMSE of the five estimators (in terms of estimating

the pseudo-true value d1) for all three values of d0. We report the bias and RMSE estimates

for the sample sizes n = 100, 500 and 1000 only due to space limitation. The results corre-

sponding to the n = 200 case do support the entire interpretation of the simulation study. The

FML and DWH estimators are invariant to the process mean and hence are obtained by al-

lowing the mean to be known. However, TML, CSS and EWH are not so. The bias and RMSE

results for the latter estimators are obtained under the following scenarios; (i) process mean
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is known, and, (ii) process mean is unknown and estimated with both the sample mean and

the BLUE. The results for the known mean case are presented in Section 4.6.2, and those for

the unknown mean case in Section 4.6.3. The following standard formulae of bias and RMSE

are applied to all five estimators. In the formulae, we use d̂1 to denote the generic estimator.

When the necessity of denoting a particular parametric estimator arises, we do re-introduce

the superscript notation. These formulae of bias and variances are evaluated under the TDGP

and hence we make this explicit with appropriate subscript notation ‘0’. The estimate of the

expectation of d̂1 is given by,

Ê0

(
d̂1

)
=

1
R

R

∑
r=1

d̂1,r.

Thus, the estimators of bias, sampling variance, and RMSE are as follows,

B̂ias0

(
d̂1

)
= Ê0

(
d̂1

)
− d1 =

1
R

R

∑
r=1

d̂r − d1,

V̂ar0

(
d̂1

)
= Ê0

(
d̂1

)2
−
(

Ê0

(
d̂1

))2
=

1
R

R

∑
r=1

(
d̂1,r

)2
−
(

1
R

R

∑
r=1

d̂1,r

)2

,

M̂SE0

(
d̂1

)
= B̂ias

2
0 + V̂ar0

(
d̂1

)
,

and the RMSE is the square root of the MSE value.

4.6.1 Finite sample distributional results

We consider the three cases of Theorem 4.4. Again, for notational simplicity, denote by d̂1 any

of the parametric estimators obtained under mis-specification and denote by Qn (.) the rele-

vant objective function. The form of mis-specification we discuss here has only one parameter

to be estimated. Therefore, the matrices and vectors associated with Theorem 4.4 reduce to

scalars.

In the figures, the ‘Limit’ curve denotes the limiting distribution of the relevant statistic.
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The ‘FML’, ‘DWH’, ‘EWH’, ‘TML’ and ‘CSS’ curves corresponds to the sampling distributions

of the standardized statistics obtained under respective estimation methods with the known

mean of zero. We use ‘EWHSM’ and ‘EWHBL’ to denote the sampling distribution of the statis-

tic obtained under EWH estimation method with the process mean being estimated by sample

mean and BLUE, respectively. Similar notation is used for the TML and CSS estimators when

the mean is estimated. The first column of the figures represents the kernel densities of the

FML, DWH, EWH, TML and CSS estimators obtained under the known mean case. The sec-

ond column displays the kernel densities corresponding to the EWH, TML and CSS estimators

obtained by estimating the mean with both the sample mean and the BLUE, plus the FML and

DWH densities.

Case 1: d∗ > 0.25

The limiting distribution of d̂1 in this case is as follows,

n1−2d∗

log n

(
d̂1 − d1 − µn

)
→D b−1

∞

∑
j=1

Wj, (4.42)

where, µn is as mentioned earlier and can be evaluated for each estimation method in finite

samples using the formula provided in Appendix 3.B of Chapter 3. Also, b is the first element

in the matrix of B which is evaluated as follows,

b = −2
π∫
−π

f0(λ)

f 3
1 (d1,λ)

(
∂ f1(d1,λ)

∂d

)2

dλ+

π∫
−π

f0(λ)

f 2
1 (d1,λ)

(
∂2 f1(d1,λ)

∂d2

)
dλ

= −2
π∫

0

(1+ θ2
0 + 2θ0 cos(λ))(2 sin(λ/2))−2d∗(log(2 sin(λ/2)))2dλ,

(4.43)

and Wj =
(2π)1−2d∗ (1+θ2

0)

j2d∗

[
U2

j +V2
j − E0(U2

j +V2
j )
]

, with Uj and Vj as mentioned in Theorem

4.4. The limiting distribution associated with the case d∗ > 0.25 has a non-standard distri-
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bution that is a series of non-Gaussian random variables. Further, the distribution does not

possess a closed-form representation. To this end, we shall obtain the limiting distribution by

numerically truncating the series of the random variable Wj at some value s, as suggested in

Section 3.5.2 in Chapter 3. The basic idea behind the methodology is to find the appropriate

choice of the truncation point of the series, (say,
s

∑
j=1

Wj, 1 ≤ s ≤ bn/2c) such that the difference

between the variance of ∑s
j=1 Wj and the estimated variance of the FML estimator (this stands

as a benchmark) is minimized. Then, the ‘Limit’ curve is obtained using this value of s.
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Figure 4.2: Kernel density of n1−2d∗

log n (d̂1−d1−µn) for an ARFIMA(0, d0, 1) TDGP with d0= 0.2 and
θ0= −0.7 and an ARFIMA(0, d, 0) MisM, d∗> 0.25.
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Figure 4.2 provides the kernel density estimate of n1−2d∗

log n (d̂1 − d1 − µn) under the five es-

timation methods considering both mean being known (presented in the first column of the

figure) and unknown (presented in the second column of the figure), for a specification as

labeled above each plot, plus the limiting distribution given in (4.42) for the given s. The par-

ticular parameter values employed in the specification of the TGDP are d0 = 0.2 and θ0 = −0.7

with d∗ = 0.3723 in this case. Each panel of Figure 4.2 indicates that n1−2d∗

log n (d̂1 − d1 − µn) is

centered to the left of zero for all sample sizes, for all estimation methods, with the CSS esti-

mation method under the known mean case being the closest to the limiting distribution in the

known mean case and DWH being the closest in the unknown mean case. When the process

mean is known, we observe that two distinct clustering occur amongst the five estimation

methods for all the sample sizes. One cluster is formed with the EWH, TML and CSS estima-

tion methods.3 The other is formed with the FML and DWH methods. However, we do not

observe such a clustering when the mean is unknown and estimated with either the sample

mean or the BLUE. Moreover, the distance between the distributions of the different types of

estimators is less substantial in the estimated mean case, at least visually. Nevertheless, as the

sample size increases the point of central location of n1−2d∗

log n (d̂1 − d1 − µn) approaches zero and

all distributions of the standardized statistics go close to matching the limiting distribution,

regardless of whether the mean is known or not.

Case 2: d0 − d1 = 0.25

The simplified version of the form of the limiting distribution is as follows:

n1/2 [Λdd
]−1/2

(
d̂1 − d1

)
→D N(0, b−2), (4.44)

3This feature is observed in Chapter 3 for the known mean case, for four parametric estimation methods, FML,
DWH, TML and CSS. Here, we have considered an additional estimation method, exact Whittle.

148



Chapter 4: Mean correction in mis-specified fractionally integrated models

where Λdd is the reduced form of the component defined in (3.27) for Example 4.1 given by

Λdd =
1
n

n/2

∑
j=1
(1+ θ2

0 + 2θ0 cos(λj))
2(2 sin(λj/2))−4d∗ (2 log(2 sin(λj/2))

)2 ,

and b is as in (4.43) with θ0 = −0.444978. Once again the value of d0 = 0.2 is adopted for the

TDGP.
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Figure 4.3: Kernel density of n1/2[Λdd]
−1/2(d̂1−d1) for an ARFIMA(0, d0, 1) TDGP with d0= 0.2

and θ0= −0.444978 and an ARFIMA(0, d, 0) MisM, d∗= 0.25.

Each panel of Figure 4.3 provides the kernel densities of n1/2 [Λd
]−1/2

(d̂1 − d1) under

the all five estimation methods, under the assumption of known and unknown mean, for

a specification as labeled above each plot, plus the limiting distribution given in (4.44). The
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kernel densities corresponding to all five estimation methods are again positioned to the left of

zero, for n ≤ 500. We also observe once again a clear differentiation between the EWH, TML

and CSS estimation methods, and the FML and DWH methods when the mean is known,

with CSS being the closest to the limiting distribution for all sample sizes. This discrepancy

declines as the sample sizes increases across the estimation methods. Such a differentiation no

longer exists when the mean is estimated with sample mean or the BLUE, for any sample size.

When the mean is estimated, DWH sits closest to the ‘Limit’ curve. Again, all finite sample

distributions approach the limiting distribution, as the sample size increases.

Case 3: d0 − d1 < 0.25

The form of the limiting distribution here is as follows.

√
n
(

d̂1 − d1

)
→D N(0, υ2), (4.45)

where, υ2 = Λ11/b2, with

Λ11 = 2π
∫ π

0

(
f0(λ)

f1(η1,λ)

)2 (∂ log f1(d1,λ)
∂d

)2

dλ

= 2π

π∫
0

(1+ θ2
0 + 2θ0 cos(λ))2(2 sin(λ/2))−4d∗(log(2 sin(λ/2)))2dλ,

and b as given in (4.43) evaluated at θ0 = −0.3 and d∗ = 0.1736.

Each panel in Figure 4.4 provides the kernel density estimate of the standardized statis-

tic
√

n(d̂1 − d1) under the five estimation methods, in both the known and unknown mean

cases. All curves correspond to the specifications labeled above in each plot, plus the limiting

distribution given in (4.45). Once again, the same distinction across the estimation methods

is in evidence (at least for n < 500) as was observed in the cases, d∗ > 0.25 and d∗ = 0.25,

for the known mean case. However, such a distinction does not seem to exist for any sample
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Figure 4.4: Kernel density of
√

n(d̂1−d1) for an ARFIMA(0, d0, 1) TDGP with d0= 0.2 and θ0= −0.3
and an ARFIMA(0, d, 0) MisM, d∗< 0.25.

size, for the unknown mean case. Nevertheless, the visual distance between the five estima-

tion methods, in both the known and unknown mean cases declines faster compared to when

d∗ ≥ 0.25, due to the
√

n rate of convergence that obtains when d∗ < 0.25. Also, all five

estimation methods in the known mean case continue to show quicker convergence than in

the unknown mean case. Nevertheless, the finite sample distributions under all estimation

methods, regardless of the mean being known or unknown, match the limiting distribution

very well by the time n = 1000. CSS again sits closer to the ‘limit’ curve for any sample size
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when the mean is known, whilst DWH is much closer when the mean is unknown, for any

sample size.

4.6.2 Finite sample bias and RMSE for estimation of the pseudo-true parameter
d1: mean is known

We document the finite sample bias and RMSE of the five parametric estimators of the pseudo-

true parameter d1 assuming that the process mean is known and its value is zero. Results of

bias and RMSE are produced for Example 4.1 in Table 4.1, with selected additional results

relevant to the example recorded in Table 4.3. Values of d∗ = d0 − d1 are documented across

the key ranges, d∗ Q 0.25, along with associated values for the MA coefficient in the TDGP,

θ0. The minimum values of bias and RMSE for each parameter setting are highlighted in bold

face in all tables for each sample size, n.

Consider first the bias and RMSE results for Example 4.1 with d0 = −0.25, as displayed

in the top panel of Table 4.1. As is consistent with the theoretical results, the bias and RMSE

of the five parametric estimators, FML, DWH, EWH, TML and CSS, show a clear tendency to

decline as the sample size increases, for a fixed value of θ0, thereby providing evidence that

all the estimators are consistent for d1. Further, as θ0 declines in magnitude, and the MisM

becomes closer to the TDGP, there is a tendency for the absolute values of the bias values and

the RMSE to decline. The bias is negative for all the estimators across the parameter space of

θ0 considered here, with the (absolute) bias of the three frequency domain estimators (FML,

DWH and EWH) being larger than that of the two time domain estimators. The ranking of

these five estimators in finite sample performance is as follow, CSS> TML> EWH>DWH>

FML, with CSS being the uniformly superior estimator of d1 and FML being the worst, having

the largest bias and RMSE. These findings are consistent with the graphical results presented
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in the previous section, with respect to the following features; (i) clustering of the sampling

distributions of the time domain and frequency domain estimators, and, (ii) the standardized

parametric estimators being to the left of zero while the frequency domain estimators tend

to be further to the left of zero than those of the time domain estimators. Besides, the rate of

decline in the (absolute) bias and RMSE of all estimators, as n increases, is slower for d∗ ≥ 0.25

than for d∗ < 0.25. This is also consistent with the results given in Theorem 4.4.

Now, consider the bias and RMSE results for Example 4.1 with d0 = 0.2 and 0.45, as

displayed in the middle and bottom panels of Table 4.1. The performance of all five estimators

under Example 4.1 with d0 = 0.2 and 0.45 remains the same as that for d0 = −0.25 as discussed

above. As the value of d0 associated with the TDGP increases, the bias and RMSE of all

the estimators of d1 increases, despite the estimators still being consistent for d1. Again the

CSS estimator is preferred over the other estimators under mis-specification, and the FML

estimator is the worst of all.

Under Example 4.1, when the parameter θ0 of the TDGP is zero, then the estimated model

is the correctly specified (that is, in this case d∗ = 0 and hence there is no mis-specification).

The values of bias and RMSE recorded in Table 4.3 reveal that under the correct specification

of the ARFIMA(0, d, 0) model, the TML estimator is now superior under the known mean

assumption. This result is consistent with Sowell (1992) and Nielsen and Frederiksen (2005).

Finally, we conclude that under this type of mis-specification, the CSS estimator outper-

forms the other four parametric estimators in estimating d1, provided that the process mean

is known. The reason for CSS being superior, rather than TML as noted under correct specifi-

cation, is that when a wrong model is chosen to estimate the set of parameters involved in the
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model, all the four parametric estimators except the CSS utilize the complete information of

mis-specified model. That is, CSS estimation is performed by minimizing the weighted infi-

nite sum of squares of the observations, conditioning on zero values for observations beyond

a particular point in time. The weights assigned to each observation reflect the estimated

model. For a long run dependent model, the contribution of the weights is still significant for

large n. However, since we truncate the weights for each realization (refer equations (4.29)

- (4.31)) at some point, we naturally fail to incorporate the whole structure of the incorrectly

specified model. Therefore less impact of mis-specification on CSS is observed.

4.6.3 Finite sample bias and RMSE for estimation of the pseudo-true parameter
d1: mean is unknown

In this Section, we document the finite sample performance of the estimators of d1 when the

process mean is unknown. Amongst the five parametric estimators, the FML and DWH es-

timators are mean invariant as mentioned in Remark 2.1. However, the finite sample perfor-

mance of the exact Whittle and time domain estimators do alter not only because the mean

is unknown, but also with the choice of estimator of the mean. We consider two possible

estimators namely, the sample mean and the BLUE as defined in (4.10). The bias and RMSE

results for the unknown mean case under the same settings for d∗, θ0, d0, and n, are produced

for Example 4.1 in Table 4.4 with selected additional results relevant to Example 1 recorded in

Table 4.6.

Consider first the bias and RMSE results for any type of mis-specification when the mean

is estimated with sample mean. We summarize the key numerical results as follows. For

the three estimators (EWH, TML and CSS) of d1, the decline in (absolute) bias and RMSE as

sample size increases, for a given θ0, indicates that the EWH, TML and CSS estimators are con-
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Table 4.1: Estimates of the bias and RMSE for the FML, Whittle, EWH, TML and CSS estimators of
d1 Example 1 - TDGP: ARFIMA(0, d0, 1) vis-a-vis Mis-M: ARFIMA(0, d, 0). Process mean µ = 0, is
known. The estimates are obtained under Gaussian disturbances.

FML DWH EWH TML CSS
d∗ θ0 n Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

d0 = −0.25
0.3723 -0.7 100 -0.2680 0.2736 -0.2275 0.2432 -0.1866 0.2083 -0.1508 0.1829 -0.1013 0.1413

200 -0.2157 0.2461 -0.1837 0.2084 -0.1451 0.1519 -0.1269 0.1300 -0.0845 0.1010
500 -0.1425 0.1556 -0.1125 0.1334 -0.0865 0.1065 -0.1170 0.0991 -0.0773 0.0867
1000 -0.1065 0.1160 -0.0865 0.1073 -0.0792 0.0887 -0.0706 0.0801 -0.0475 0.0698

0.2500 -0.44 100 -0.1535 0.1698 -0.1328 0.1592 -0.1182 0.1317 -0.0913 0.1142 -0.0582 0.1030
200 -0.0994 0.1176 -0.0792 0.1019 -0.0686 0.0798 -0.0535 0.0662 -0.0257 0.0464
500 -0.0530 0.0695 -0.0442 0.0540 -0.0420 0.0508 -0.0303 0.0497 -0.0176 0.0301
1000 -0.0365 0.0488 -0.0305 0.0428 -0.0339 0.0469 -0.0281 0.0329 -0.0119 0.0171

0.1736 -0.3 100 -0.0957 0.1385 -0.0650 0.1099 -0.0541 0.0847 -0.0520 0.0766 -0.0212 0.0616
200 -0.0605 0.0947 -0.0462 0.0784 -0.0394 0.0699 -0.0224 0.0564 -0.0112 0.0474
500 -0.0417 0.0519 -0.0326 0.0567 -0.0250 0.0414 -0.0103 0.0348 -0.0075 0.0215
1000 -0.0299 0.0351 -0.0199 0.0284 -0.0108 0.0215 -0.0131 0.0214 -0.0043 0.0198

d0 = 0.2
0.3723 -0.7 100 -0.2771 0.2973 -0.2365 0.2566 -0.1774 0.2072 -0.1473 0.1822 -0.1207 0.1707

200 -0.2020 0.2358 -0.1640 0.2031 -0.1451 0.1722 -0.1287 0.1435 -0.1010 0.1207
500 -0.1416 0.1508 -0.1267 0.1438 -0.0980 0.1112 -0.0900 0.1015 -0.0739 0.0861
1000 -0.1085 0.1155 -0.0859 0.1032 -0.0639 0.0853 -0.0618 0.0789 -0.0575 0.0654

0.2500 -0.44 100 -0.1489 0.1808 -0.1283 0.1661 -0.1139 0.1307 -0.0789 0.1096 -0.0473 0.0967
200 -0.1010 0.1348 -0.0852 0.1117 -0.0637 0.0994 -0.0434 0.0072 -0.0400 0.0052
500 -0.0578 0.0725 -0.0443 0.0531 -0.0394 0.0500 -0.0202 0.0413 -0.0191 0.0408
1000 -0.0395 0.0506 -0.0296 0.0394 -0.0217 0.0404 -0.0134 0.0376 -0.0133 0.0273

0.1736 -0.3 100 -0.1042 0.1439 -0.0735 0.1014 -0.0547 0.0901 -0.0342 0.0826 -0.0240 0.0625
200 -0.0663 0.0885 -0.0491 0.0664 -0.0309 0.0585 -0.0213 0.0447 -0.0128 0.0345
500 -0.0342 0.0530 -0.0242 0.0475 -0.0216 0.0414 -0.0181 0.0317 -0.0083 0.0216
1000 -0.0214 0.0357 -0.0114 0.0266 -0.0136 0.0232 -0.0065 0.0198 -0.0046 0.0158

d0 = 0.45
0.3723 -0.7 100 -0.2841 0.3055 -0.2435 0.2947 -0.1979 0.2199 -0.1447 0.1620 -0.1244 0.1491

200 -0.2096 0.2501 -0.1942 0.2340 -0.1562 0.1928 -0.1278 0.1457 -0.1148 0.1340
500 -0.1566 0.1671 -0.1340 0.1466 -0.1197 0.1223 -0.0989 0.1135 -0.0894 0.0931
1000 -0.1141 0.1319 -0.1088 0.1292 -0.0732 0.0955 -0.0628 0.0879 -0.0532 0.0679

0.2500 -0.44 100 -0.1519 0.1863 -0.1413 0.1758 -0.1273 0.1395 -0.0813 0.1079 -0.0572 0.0963
200 -0.1162 0.1337 -0.0927 0.1195 -0.0739 0.0996 -0.0534 0.0703 -0.0421 0.0589
500 -0.0628 0.0894 -0.0594 0.0696 -0.0409 0.0570 -0.0378 0.0516 -0.0209 0.0460
1000 -0.0554 0.0683 -0.0439 0.0574 -0.0281 0.0352 -0.0227 0.0390 -0.0182 0.0324

0.1736 -0.3 100 -0.0966 0.1500 -0.0806 0.1295 -0.0429 0.1045 -0.0353 0.0835 -0.0311 0.0700
200 -0.0773 0.0929 -0.0505 0.0871 -0.0314 0.0542 -0.0244 0.0357 -0.0199 0.0148
500 -0.0494 0.0569 -0.0237 0.0406 -0.0269 0.0422 -0.0178 0.0312 -0.0153 0.0295
1000 -0.0278 0.0344 -0.0215 0.0272 -0.0297 0.0381 -0.0146 0.0291 -0.0062 0.0154
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Table 4.2: Estimates of the bias and RMSE for the FML, Whittle, EWH, TML and CSS estimators of
d1 Example 1 - TDGP: ARFIMA(0, d0, 1) vis-a-vis Mis-M: ARFIMA(0, d, 0). Process mean µ = 0, is
known. The estimates are obtained under standardized chi-squared disturbances with 4 degrees of
freedom.

FML DWH EWH TML CSS
d∗ θ0 n Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

d0 = −0.25
0.3723 -0.7 100 -0.2722 0.2978 -0.2218 0.2474 -0.1943 0.2281 -0.1608 0.1932 -0.1255 0.1561

200 -0.2253 0.2677 -0.2063 0.2218 -0.1800 0.1989 -0.1441 0.1503 -0.1219 0.1386
500 -0.1531 0.1762 -0.1231 0.1362 -0.1069 0.1242 -0.0864 0.0986 -0.0572 0.0870
1000 -0.1069 0.1264 -0.0969 0.1064 -0.0772 0.0815 -0.0607 0.0700 -0.0473 0.0602

0.2500 -0.44 100 -0.1571 0.1831 -0.1365 0.1726 -0.1267 0.1529 -0.0920 0.1351 -0.0602 0.1051
200 -0.1042 0.1256 -0.0994 0.1115 -0.0776 0.1010 -0.0583 0.0842 -0.0434 0.0709
500 -0.0639 0.0846 -0.0528 0.0693 -0.0454 0.0538 -0.0398 0.0493 -0.0271 0.0415
1000 -0.0464 0.0551 -0.0364 0.0488 -0.0215 0.0362 -0.0180 0.0226 -0.0117 0.0189

0.1736 -0.3 100 -0.1090 0.1511 -0.0983 0.1406 -0.0627 0.0954 -0.0529 0.0872 -0.0229 0.0628
200 -0.0798 0.0972 -0.0662 0.0851 -0.0522 0.0733 -0.0421 0.0594 -0.0126 0.0335
500 -0.0414 0.0615 -0.0314 0.0515 -0.0274 0.0459 -0.0199 0.0344 -0.0071 0.0214
1000 -0.0247 0.0376 -0.0199 0.0350 -0.0115 0.0220 -0.0130 0.0211 -0.0040 0.0108

d0 = 0.2
0.3723 -0.7 100 -0.2898 0.3098 -0.2791 0.2992 -0.1986 0.2277 -0.1687 0.1987 -0.1324 0.1724

200 -0.2364 0.2675 -0.2153 0.2453 -0.1833 0.2002 -0.1436 0.1551 -0.1119 0.1366
500 -0.1511 0.1620 -0.1411 0.1502 -0.1163 0.1345 -0.0991 0.1106 -0.0730 0.0953
1000 -0.1186 0.1231 -0.1086 0.1155 -0.0744 0.1054 -0.0614 0.0787 -0.0571 0.0753

0.2500 -0.44 100 -0.1512 0.1924 -0.1505 0.1818 -0.1254 0.1417 -0.0904 0.1101 -0.0788 0.1079
200 -0.1180 0.1462 -0.1010 0.1219 -0.0994 0.1158 -0.0716 0.0972 -0.0521 0.0734
500 -0.0575 0.0720 -0.0575 0.0720 -0.0489 0.0596 -0.0297 0.0510 -0.0195 0.0504
1000 -0.0442 0.0643 -0.0394 0.0504 -0.0224 0.0415 -0.0211 0.0375 -0.0164 0.0372

0.1736 -0.3 100 -0.1163 0.1551 -0.1056 0.1446 -0.0562 0.0910 -0.0358 0.0933 -0.0255 0.0933
200 -0.0821 0.1082 -0.0629 0.0836 -0.0449 0.0681 -0.0225 0.0526 -0.0123 0.0426
500 -0.0439 0.0625 -0.0338 0.0525 -0.0281 0.0411 -0.0175 0.0430 -0.0077 0.0414
1000 -0.0244 0.0387 -0.0214 0.0355 -0.0116 0.0240 -0.0082 0.0201 -0.0044 0.0298

d0 = 0.45
0.3723 -0.7 100 -0.2953 0.3161 -0.2746 0.2955 -0.1959 0.2259 -0.1675 0.1942 -0.1371 0.1713

200 -0.2462 0.2700 -0.2305 0.2561 -0.1862 0.2021 -0.1406 0.1673 -0.1162 0.1358
500 -0.1662 0.1861 -0.1362 0.1461 -0.1275 0.1389 -0.1089 0.1237 -0.0893 0.0952
1000 -0.1142 0.1428 -0.1042 0.1119 -0.0880 0.1054 -0.0720 0.0985 -0.0524 0.0684

0.2500 -0.44 100 -0.1530 0.1868 -0.1424 0.1763 -0.1227 0.1411 -0.1065 0.1298 -0.0826 0.1181
200 -0.1272 0.1354 -0.1150 0.1269 -0.0964 0.1105 -0.0793 0.0996 -0.0586 0.0707
500 -0.0731 0.0907 -0.0525 0.0690 -0.0416 0.0606 -0.0373 0.0520 -0.0204 0.0464
1000 -0.0567 0.0815 -0.0354 0.0481 -0.0290 0.0354 -0.0258 0.0316 -0.0184 0.0232

0.1736 -0.3 100 -0.1078 0.1404 -0.0973 0.1398 -0.0377 0.1146 -0.0324 0.0945 -0.0261 0.0712
200 -0.0804 0.1066 -0.0625 0.0813 -0.0271 0.0656 -0.0203 0.0541 -0.0163 0.0400
500 -0.0505 0.0716 -0.0291 0.0506 -0.0263 0.0625 -0.0173 0.0515 -0.0148 0.0399
1000 -0.0223 0.0419 -0.0178 0.0342 -0.0105 0.0223 -0.0084 0.0196 -0.0058 0.0161
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Table 4.3: Estimates of the bias and MSE for the FML, Whittle, EWH, TML and CSS estimators of d̂1
Correct model. Process mean µ = 0, is known.

FML DWH EWH TML CSS
d0 n Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Gaussian
-0.25 100 -0.0559 0.1053 -0.0451 0.0950 -0.0337 0.0778 -0.0093 0.0867 -0.0251 0.1050

200 -0.0326 0.0775 -0.0253 0.0706 -0.0206 0.0624 -0.0082 0.0552 -0.0105 0.0684
500 -0.0157 0.0588 -0.0100 0.0447 -0.0036 0.0412 -0.0028 0.0342 -0.0100 0.0388
1000 -0.0049 0.0286 -0.0049 0.0261 -0.0016 0.0274 -0.0014 0.0251 -0.0049 0.0261

0.2 100 -0.0486 0.1069 -0.0378 0.1065 -0.0247 0.0836 -0.0125 0.0771 -0.0478 0.1065
200 -0.0351 0.0759 -0.0226 0.0681 -0.0195 0.0562 -0.0094 0.0482 -0.0186 0.0795
500 -0.0106 0.0437 -0.0105 0.0336 -0.0096 0.0357 -0.0031 0.0348 -0.0105 0.0388
1000 -0.0054 0.0262 -0.0032 0.0212 0.0027 0.0249 -0.0016 0.0245 -0.0054 0.0268

0.45 100 -0.0513 0.1078 -0.0407 0.0926 -0.0274 0.0665 -0.0140 0.0576 -0.0207 0.0673
200 -0.0345 0.0683 -0.0282 0.0558 -0.0216 0.0501 -0.0112 0.0225 -0.0349 0.0553
500 -0.0085 0.0560 -0.0085 0.0409 -0.0135 0.0333 -0.0068 0.0287 -0.0085 0.0359
1000 -0.0051 0.0252 -0.0031 0.0252 -0.0140 0.0297 -0.0033 0.0215 -0.0031 0.0246

Standardized Chi-square
-0.25 100 -0.0581 0.1065 -0.0478 0.1061 -0.0123 0.0778 -0.0106 0.0867 -0.0047 0.0834

200 -0.0325 0.0628 -0.0238 0.0579 -0.0208 0.0486 -0.0152 0.0457 -0.0054 0.0451
500 -0.0197 0.0585 -0.0097 0.0484 -0.0075 0.0442 -0.0025 0.0360 -0.0002 0.0356
1000 -0.0049 0.0262 -0.0049 0.0262 -0.0022 0.0280 -0.0013 0.0251 0.0002 0.0127

0.2 100 -0.0506 0.1073 -0.0497 0.1069 -0.0338 0.0838 -0.0144 0.0774 -0.0036 0.0833
200 -0.0389 0.0680 -0.0269 0.0592 -0.0192 0.0512 -0.0109 0.0479 -0.0022 0.0378
500 -0.0203 0.0486 -0.0103 0.0385 -0.0086 0.0326 -0.0028 0.0317 0.0000 0.0356
1000 -0.0052 0.0262 -0.0052 0.0231 -0.0022 0.0181 -0.0014 0.0176 0.0003 0.0149

0.45 100 -0.0662 0.1176 -0.0519 0.0971 -0.0471 0.0564 -0.0275 0.0598 -0.0044 0.0553
200 -0.0479 0.0784 -0.0406 0.0668 -0.0376 0.0607 -0.0229 0.0534 -0.0037 0.0441
500 -0.0183 0.0556 -0.0083 0.0456 -0.0143 0.0342 -0.0089 0.0310 -0.0010 0.0278
1000 -0.0080 0.0330 -0.0030 0.0252 -0.0034 0.0225 -0.0024 0.0218 -0.0005 0.0153

sistent for d1 as stated in Theorem 4.3. As the sample size increases the differences between

the bias and RMSE results for the known and estimated mean cases tend to zero – evidence

for the consistency of the sample mean for the true (zero) mean (refer (4.7)). However, the rate

of decline of all estimators to d1 is slower when the mean is unknown than when it is known,

given the slow rate of convergence of the sample mean to the true mean (see, Hosking, 1996);

and, for any given sample size, the bias and RMSE are larger compared to the known mean

case (see, Table 4.4). Further, the bias tends to be more negative for all the estimators. This
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effect on bias and RMSE causes the EWH, TML and CSS estimators to lose their superiority

over the FML and DWH estimators. When the process mean is unknown, the DWH estima-

tor outperforms uniformly all four of the other estimators for the values of d0 ∈ (0.2, 0.45).

On the other hand, when the TDGP has antipersistent memory, the CSS uniformly performs

better than the other estimators in the unknown mean case. With reference to Table 4.6, the

DWH estimator still performs better than the other estimators under the correct and over-

parameterized cases even when the mean is estimated by sample mean. The dominant nature

of the DWH estimator observed here over the other four estimators under correct specification

of the model is consistent with the findings of Chapter 3 and Nielsen and Frederiksen (2005).

With reference to the BLUE of µ, again we observe similar characteristics for the EWH,

TML and CSS estimators, with these methods delivering slightly larger bias and RMSE than

the estimators of d1 based on the sample mean estimate of µ. The reason is that BLUE incor-

porates the information of the mis-specified model. Here too, DWH is superior to the other

estimators in many cases. However, as sample size increases the difference between the fi-

nite sample performance of all estimators declines. This is numerical evidence of the theory

established in Theorems 4.3 and 4.4.

4.7 Conclusion

Consequences of mis-specification of the short memory dynamics in the class of fractionally

integrated autoregressive moving average models have been explored both on a theoretical

and simulation basis in Chapter 3, under the assumption that the process mean of the true

data generating process is known. In this chapter, we develop new asymptotic results re-
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Table 4.4: Estimates of the bias and MSE for the EWH, TML and CSS estimators of d1 Example 1
- TDGP: ARFIMA(0, d0, 1) vis-a-vis Mis-M: ARFIMA(0, d, 0). Process mean µ = 0, is unknown. The
estimates are obtained under Gaussian disturbances.

Sample mean BLUE
EWH TML CSS EWH TML CSS

θ0 n Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
d0 = −0.25

-0.7 100 -0.2247 0.2559 -0.1957 0.2211 -0.1174 0.1551 -0.2315 0.2872 -0.2088 0.2410 -0.1721 0.2122
200 -0.1819 0.2154 -0.1672 0.1833 -0.1056 0.1694 -0.1926 0.2354 -0.1762 0.2255 -0.1617 0.1965
500 -0.1525 0.1802 -0.1221 0.1335 -0.0844 0.1009 -0.1736 0.1943 -0.1535 0.1626 -0.1394 0.1450
1000 -0.1087 0.1240 -0.0978 0.1061 -0.0709 0.0831 -0.1248 0.1454 -0.1026 0.1229 -0.0845 0.1068

-0.44 100 -0.1377 0.1678 -0.1145 0.1592 -0.0845 0.1435 -0.1664 0.1909 -0.1527 0.1850 -0.0901 0.1336
200 -0.0986 0.1128 -0.0883 0.1010 -0.0779 0.0954 -0.1015 0.1357 -0.0975 0.1193 -0.0822 0.1068
500 -0.0776 0.0875 -0.0529 0.0781 -0.0408 0.0692 -0.0858 0.1027 -0.0615 0.0757 -0.0375 0.0696
1000 -0.0480 0.0542 -0.0375 0.0488 -0.0291 0.0429 -0.0576 0.0674 -0.0339 0.0495 -0.0143 0.0348

-0.3 100 -0.0766 0.1268 -0.0790 0.1216 -0.0645 0.1092 -0.1293 0.1544 -0.1016 0.1428 -0.0695 0.1159
200 -0.0597 0.0775 -0.0500 0.0641 -0.0446 0.0525 -0.0678 0.0823 -0.0516 0.0769 -0.0486 0.0594
500 -0.0422 0.0655 -0.0313 0.0506 -0.0254 0.0469 -0.0553 0.0780 -0.0360 0.0542 -0.0241 0.0471
1000 -0.0259 0.0363 -0.0206 0.0308 -0.0164 0.0225 -0.0224 0.0416 -0.0113 0.0311 0.0198 0.0272

d0 = 0.2
-0.7 100 -0.2739 0.2942 -0.2609 0.2808 -0.2521 0.2715 -0.2847 0.3054 -0.2739 0.2955 -0.2563 0.2765

200 -0.2257 0.2599 -0.2056 0.0580 -0.1981 0.0551 -0.2394 0.2699 -0.2237 0.2525 -0.2152 0.2440
500 -0.1573 0.1734 -0.1388 0.1684 -0.1358 0.1555 -0.1675 0.1802 -0.1405 0.1602 -0.1361 0.1557
1000 -0.1109 0.1377 -0.1063 0.1242 -0.0950 0.1024 -0.1266 0.1453 -0.1053 0.1123 -0.0921 0.1092

-0.44 100 -0.1429 0.1751 -0.1364 0.1692 -0.1296 0.1693 -0.1548 0.1851 -0.1487 0.1724 -0.1378 0.1610
200 -0.1313 0.1469 -0.1105 0.1379 -0.1009 0.1158 -0.1330 0.1516 -0.1254 0.1376 -0.1166 0.1275
500 -0.0750 0.0901 -0.0555 0.0879 -0.0454 0.0706 -0.0774 0.0994 -0.0557 0.0884 -0.0455 0.0707
1000 -0.0434 0.0543 -0.0382 0.0497 -0.0302 0.0396 -0.0579 0.0620 -0.0467 0.0572 -0.0382 0.0497

-0.3 100 -0.0935 0.1435 -0.0843 0.1374 -0.0742 0.1157 -0.1088 0.1677 -0.0949 0.1458 -0.0846 0.1362
200 -0.0789 0.0964 -0.0603 0.0878 -0.0591 0.0775 -0.0894 0.1002 -0.0705 0.0995 -0.0612 0.0771
500 -0.0526 0.0717 -0.0342 0.0665 -0.0255 0.0518 -0.0530 0.0769 -0.0430 0.0616 -0.0329 0.0520
1000 -0.0348 0.0592 -0.0207 0.0352 -0.0117 0.0296 -0.0245 0.0394 -0.0219 0.0325 -0.0120 0.0248

d0 = 0.45
-0.7 100 -0.2833 0.3141 -0.2796 0.3012 -0.2683 0.2895 -0.2951 0.3284 -0.2833 0.3158 -0.2701 0.2917

200 -0.2331 0.2542 -0.2010 0.2469 -0.1969 0.2451 -0.2455 0.2691 -0.2364 0.2506 -0.2230 0.2469
500 -0.1729 0.2130 -0.1635 0.1939 -0.1432 0.1735 -0.1849 0.2268 -0.1737 0.2041 -0.1534 0.1836
1000 -0.1320 0.1587 -0.1224 0.1404 -0.1123 0.1302 -0.1463 0.1600 -0.1325 0.1504 -0.1124 0.1303

-0.44 100 -0.1735 0.2071 -0.1637 0.1875 -0.1424 0.1776 -0.1836 0.2195 -0.1641 0.1979 -0.1528 0.1777
200 -0.1453 0.1588 -0.1372 0.1435 -0.1257 0.1303 -0.1583 0.1781 -0.1425 0.1686 -0.1352 0.1443
500 -0.0924 0.1086 -0.0724 0.0984 -0.0620 0.0882 -0.1070 0.1242 -0.0971 0.1156 -0.0868 0.1060
1000 -0.0621 0.0736 -0.0556 0.0679 -0.0454 0.0579 -0.0725 0.0998 -0.0633 0.0827 -0.0531 0.0731

-0.3 100 -0.1119 0.1341 -0.1045 0.1239 -0.0887 0.1129 -0.1110 0.1364 -0.0960 0.1337 -0.0821 0.1224
200 -0.0774 0.0948 -0.0575 0.0780 -0.0548 0.0679 -0.0849 0.1052 -0.0756 0.0920 -0.0662 0.0854
500 -0.0597 0.0684 -0.0410 0.0606 -0.0394 0.0500 -0.0554 0.0702 -0.0462 0.0666 -0.0345 0.0582
1000 -0.0330 0.0423 -0.0294 0.0344 -0.0284 0.0321 -0.0340 0.0411 -0.0272 0.0391 -0.0221 0.0288
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Table 4.5: Estimates of the bias and MSE for the EWH, TML and CSS estimators of d1 Example 1
- TDGP: ARFIMA(0, d0, 1) vis-a-vis Mis-M: ARFIMA(0, d, 0). Process mean µ = 0, is unknown. The
estimates are obtained under standardized chi-squared disturbances with four degrees of freedom.

Sample mean BLUE
EWH TML CSS EWH TML CSS

θ0 n Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
d0 = −0.25

-0.7 100 -0.2348 0.2674 -0.1994 0.2247 -0.1549 0.1829 -0.2440 0.2855 -0.2813 0.2933 -0.1675 0.1974
200 -0.2006 0.2232 -0.1672 0.1890 -0.1415 0.1621 -0.2128 0.2359 -0.2037 0.2157 -0.1501 0.1682
500 -0.1622 0.1842 -0.1224 0.1338 -0.0857 0.1029 -0.1738 0.1994 -0.1529 0.1618 -0.0901 0.1159
1000 -0.1153 0.1360 -0.0981 0.1063 -0.0718 0.0844 -0.1289 0.1486 -0.1030 0.1122 -0.0736 0.0963

-0.44 100 -0.1405 -0.1613 -0.1175 0.1517 -0.0886 0.1276 -0.1705 0.1964 -0.1553 0.1869 -0.0937 0.1372
200 -0.1124 0.1385 -0.1053 0.1283 -0.0643 0.1034 -0.1267 0.1458 -0.1173 0.1394 -0.0781 0.0942
500 -0.0800 0.0922 -0.0526 0.0677 -0.0405 0.0591 -0.0936 0.1157 -0.0610 0.0749 -0.0473 0.0694
1000 -0.0428 0.0561 -0.0374 0.0486 -0.0289 0.0429 -0.0628 0.0742 -0.0539 0.0693 -0.0446 0.0546

-0.3 100 -0.0785 0.1314 -0.0815 0.1234 -0.0678 0.1119 -0.0997 0.1445 -0.1041 0.1223 -0.0727 0.1185
200 -0.0604 0.0812 -0.0557 0.0752 -0.0496 0.0558 -0.0696 0.0859 -0.0600 0.0781 -0.0514 0.0669
500 -0.0349 0.0506 -0.0309 0.0500 -0.0249 0.0465 -0.0408 0.0762 -0.0356 0.0536 -0.0270 0.0488
1000 -0.0270 0.0388 -0.0204 0.0346 -0.0163 0.0325 -0.0263 0.0456 0.0112 0.0310 -0.0199 0.0371

d0 = 0.2
-0.7 100 -0.2765 0.3030 -0.2629 0.2825 -0.2539 0.2730 -0.2875 0.3132 -0.2759 0.2971 -0.2684 0.2983

200 -0.2031 0.2243 -0.1864 0.2076 -0.1532 0.1859 -0.2143 0.2358 -0.2054 0.2290 -0.1692 0.1995
500 -0.1644 0.1881 -0.1385 0.1479 -0.1355 0.1451 -0.1713 0.1990 -0.1502 0.1797 -0.1459 0.1654
1000 -0.1253 0.1390 -0.1069 0.1142 -0.0901 0.1043 -0.1324 0.1584 -0.1153 0.1323 -0.1022 0.1292

-0.44 100 -0.1546 0.1822 -0.1383 0.1703 -0.1224 0.1604 -0.1640 0.1972 -0.1405 0.1735 -0.1397 0.1642
200 -0.1117 0.1354 -0.0953 0.1268 -0.0782 0.0972 -0.1269 0.1426 -0.1057 0.1399 -0.0684 0.0895
500 -0.0688 0.0994 -0.0552 0.0703 -0.0427 0.0617 -0.0816 0.1015 -0.0754 0.0945 -0.0515 0.0703
1000 -0.0449 0.0600 -0.0381 0.0495 -0.0322 0.0399 -0.0551 0.0682 -0.0492 0.0595 -0.0381 0.0494

-0.3 100 -0.1137 0.1476 -0.0961 0.1355 -0.0813 0.1284 -0.1214 0.1563 -0.1067 0.1365 -0.0909 0.1372
200 -0.0872 0.1054 -0.0656 0.0889 -0.0547 0.0697 -0.0939 0.1122 -0.0861 0.0956 -0.0662 0.0873
500 -0.0645 0.0784 -0.0323 0.0513 -0.0222 0.0401 -0.0737 0.0892 -0.0327 0.0541 -0.0326 0.0511
1000 -0.0324 0.0455 -0.0206 0.0350 -0.0187 0.0309 -0.0346 0.0412 -0.0218 0.0346 -0.0218 0.0346

d0 = 0.45
-0.7 100 -0.2974 0.3131 -0.2603 0.2815 -0.2590 0.2801 -0.3030 0.3315 -0.2639 0.2862 -0.2609 0.2824

200 -0.2138 0.2487 -0.1920 0.2386 -0.1495 0.1752 -0.2258 0.2567 -0.2053 0.02483 -0.1520 0.1894
500 -0.1712 0.1989 -0.1532 0.1535 -0.1329 0.1431 -0.1942 0.2234 -0.1334 0.1437 -0.1431 0.1633
1000 -0.1157 0.1352 -0.1025 0.1103 -0.0902 0.1031 -0.1595 0.1682 -0.1026 0.1104 -0.1025 0.1102

-0.44 100 -0.1846 0.2024 -0.1548 0.1779 -0.1334 0.1680 -0.1972 0.2213 -0.1351 0.1682 -0.1428 0.1741
200 -0.1182 0.1305 -0.1069 0.1273 -0.0952 0.1186 -0.1267 0.1452 -0.1183 0.1374 -0.1079 0.1289
500 -0.0774 0.0957 -0.0624 0.0780 -0.0517 0.0639 -0.0825 0.1026 -0.0568 0.0754 -0.0565 0.0758
1000 -0.0429 0.0514 -0.0377 0.0438 -0.0354 0.0476 -0.0468 0.0643 -0.0330 0.0525 -0.0428 0.0527

-0.3 100 -0.1210 0.1378 -0.1059 0.1345 -0.0899 0.1332 -0.1157 0.1296 -0.0973 0.1341 -0.0930 0.1408
200 -0.0639 0.0887 -0.0508 0.0795 -0.0405 0.0618 -0.0775 0.0982 -0.0669 0.0814 -0.0517 0.0719
500 -0.0448 0.0695 -0.0408 0.0503 -0.0291 0.0497 -0.0576 0.0734 -0.0258 0.0564 -0.0342 0.0581
1000 -0.0235 0.0402 -0.0214 0.0372 -0.0183 0.0339 -0.0348 0.0420 -0.0169 0.0389 -0.0259 0.0398
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Table 4.6: Estimates of the bias and MSE for the EWH, TML and CSS estimators of d̂1 Correct model.
Unknown mean case

Sample mean BLUE

EWH TML CSS EWH TML CSS

d0 n Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Gaussian

-0.25 100 -0.0563 0.1120 -0.0422 0.0949 -0.0430 0.1057 -0.0562 0.1123 -0.0357 0.0973 -0.0387 0.1017

200 -0.0357 0.0759 -0.0246 0.0628 -0.0385 0.0748 -0.0424 0.0775 -0.0332 0.0651 -0.0481 0.0884

500 -0.0164 0.0572 -0.0127 0.0487 -0.0184 0.0510 -0.0150 0.0567 -0.0097 0.0429 -0.0128 0.0486

1000 -0.0064 0.0383 -0.0056 0.0358 -0.0090 0.0379 -0.0063 0.0386 -0.0049 0.0270 -0.0060 0.0294

0.2 100 -0.0639 0.1325 -0.0404 0.1121 -0.0501 0.1209 -0.0646 0.1334 -0.0443 0.0997 -0.0516 0.1002

200 -0.0364 0.0628 -0.0296 0.0566 -0.0320 0.0675 -0.0454 0.0658 -0.0368 0.0595 -0.0486 0.0618

500 -0.0200 0.0584 -0.0096 0.0351 -0.0119 0.0436 -0.0241 0.0546 -0.0066 0.0398 -0.0087 0.0457

1000 -0.0089 0.0292 -0.0049 0.0180 -0.0063 0.0280 -0.0097 0.0343 -0.0035 0.0283 -0.0047 0.0223

0.45 100 -0.0697 0.1252 -0.0455 0.1022 -0.0557 0.1136 -0.0700 0.1269 -0.0445 0.1108 -0.0552 0.1109

200 -0.0445 0.0628 -0.0406 0.0519 -0.0359 0.0696 -0.0526 0.0746 -0.0436 0.0662 -0.0637 0.0885

500 -0.0287 0.0658 -0.0090 0.0456 -0.0208 0.0523 -0.0264 0.0621 -0.0120 0.0450 -0.0152 0.0561

1000 -0.0155 0.0328 -0.0039 0.0223 -0.0111 0.0272 -0.0185 0.0304 -0.0141 0.0234 -0.0098 0.0285

Standardized Chi-square

-0.25 100 -0.0512 0.1134 -0.0344 0.0962 -0.0326 0.0859 -0.0686 0.1173 -0.0410 0.1022 -0.0384 0.0985

200 -0.0313 0.0685 -0.0255 0.0438 -0.0336 0.0597 -0.0492 0.0688 -0.0358 0.0509 -0.0454 0.0648

500 -0.0153 0.0475 -0.0083 0.0377 -0.0080 0.0345 -0.0172 0.0480 -0.0095 0.0382 -0.0083 0.0316

1000 -0.0089 0.0312 -0.0045 0.0259 -0.0042 0.0274 -0.0103 0.0355 -0.0055 0.0304 -0.0027 0.0250

0.2 100 -0.0645 0.1172 -0.0522 0.0913 -0.0437 0.1023 -0.0731 0.1249 -0.0535 0.1006 -0.0461 0.1000

200 -0.0354 0.0615 -0.0229 0.0453 -0.0449 0.0628 -0.0427 0.0634 -0.0325 0.0442 -0.0428 0.0579

500 -0.0216 0.0568 -0.0116 0.0381 -0.0092 0.0329 -0.0334 0.0590 -0.0286 0.0454 -0.0145 0.0375

1000 -0.0093 0.0100 -0.0062 0.0260 -0.0048 0.0215 -0.0118 0.0353 -0.0046 0.0322 -0.0074 0.0272

0.45 100 -0.0837 0.1156 -0.0775 0.1041 -0.0468 0.0919 -0.0905 0.1235 -0.0867 0.1113 -0.0839 0.1084

200 -0.0442 0.0628 -0.0357 0.0530 -0.0437 0.0509 -0.0418 0.0693 -0.0338 0.0445 -0.0456 0.0658

500 -0.0304 0.0686 -0.0207 0.0370 -0.0087 0.0352 -0.0448 0.0517 -0.0249 0.0410 -0.0115 0.0346

1000 -0.0167 0.0335 -0.0111 0.0252 -0.0038 0.0250 -0.0187 0.0412 -0.0105 0.0354 -0.0142 0.0271
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lated to estimation of incorrectly specified models, extending the results of Chapter 3 to the

case where the mean is also estimated. We begin by providing some useful results on the

best linear unbiased estimator [BLUE] of the mean that allows us to establish the asymptotic

properties of the parametric estimators of the dynamic parameters in the incorrectly specified

model. The BLUE depends on the specification of the model. If the model is correctly spec-

ified, then BLUE holds the same asymptotic properties as the sample mean with a slightly

different asymptotic variance. Suppose the fitted model is incorrectly specified in terms of the

short memory dynamics, we show that the BLUE is still consistent for true mean. We then

show that when the process mean is jointly estimated with the dynamic parameters, all five

parametric estimators – the frequency domain maximum likelihood [FML] of Chen and Deo

(2006), discrete version of Whittle [DWH], the exact Whittle likelihood [EWH], time domain

maximum likelihood [TML], and conditional sum of squares [CSS] – converge to the same

pseudo-true value under common mis-specification. Thereby, we establish the asymptotic

equivalence of all five parametric estimators under common mis-specification. The theoreti-

cal results proven in the chapter are valid for short memory, long memory and antipersistent

regions of the differencing parameter corresponding to the TDGP and the estimated model.

The finite sample performance of the aforementioned five parametric estimators are as-

sessed in terms of bias, root mean squared error [RMSE] and sampling distribution, for the

case where the mean is known and the case where it is unknown. The finite sampling distrib-

ution results reveal that under extreme mis-specification, and when the mean is known, two

clusters are formed for smaller sample sizes; one with FML and DWH, and, the other formed

by EWH, TML and CSS. This clustering is not in evidence when the mean is estimated. When

the process mean is known, the finite sample distribution of CSS is closer to the limiting dis-

162



Chapter 4: Mean correction in mis-specified fractionally integrated models

tribution and when the mean is estimated, that of DWH is the closest. However, as sample

size increases, all finite sample distributions move closer together and towards the limiting

distribution, whether the mean is estimated or not. Further, the bias and the RMSE estimates

demonstrate that if the process mean is known then the CSS estimator is superior to the other

four parametric estimators under the same mis-specification. When the mean is estimated

with either the sample mean or BLUE, DWH is preferred over the others. Further, Monte-

Carlo results enable us to recommend the sample mean as the estimate of the mean of the

process for the following reasons: (i) it is very easy to implement, (ii) it is computationally

not much more expensive than other estimators, (iii) in finite samples, the bias and RMSE

estimates of the estimator of the fractional differencing parameter are quite similar, and, (iv)

it is not affected by the distributional assumption of the error terms.

4.A Appendix: Proofs

Proof of Theorem 4.1.

Recalling µ̂BLU,0 = 1>Σ−1y
/

1>Σ−11 = ∑n
i=1 aiyi, where ai is the ith element of

[
1>Σ−1/ 1>Σ−11

]
,

such that ∑n
i=1 ai = 1 and 0 ≤ sup |ai| ≤ 1.

Denote by Wj = ajyj = µ0 + ∑∞
k=−∞ ckεj−k, where ck = akb0,k such that ak = 0 if j < k

otherwise, ak takes the value as expressed above.

(i) Since {yt} is a stationary time series, ∑∞
k=−∞ b2

0,k < ∞ and ∑∞
k=−∞ a2

k < ∞, the proof

follows following the corrected proof of Theorem 18.6.5 of Ibragimov and Linnik (1971)

given in Hosking (1984).

(ii) This result is proven similarly using the above arguments and following the steps of the

proof of Theorem 7 in Hosking (1984). Hence we omit the details.
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Proof of Theorem 4.2. The expected value and variance of BLUE under mis-specification are

as follows:

E (µ̂BLU) =
1>Σ−1

η

1>Σ−1
η 1

E (y) =
1>Σ−1

η

1>Σ−1
η 1

µ01 = µ0,

and,

Var (µ̂BLU) = E
[(

1>Σ−1
η 1
)−1

1>Σ−1
η (y−µ01)

]2

=
(

1>Σ−1
η 1
)−2 ∣∣∣1>Σ−1

η Σ0Σ−1
η 1
∣∣∣

=
(

1>Σ−1
η 1
)−1 ∥∥∥Σ−1/2

η Σ0Σ−1/2
η

∥∥∥
=

(
1>Σ−1

η 1
)−1 ∥∥∥Σ−1/2

η Σ1/2
0

∥∥∥2

≤ Kn−1+2d+2d0−2d+δ ≤ Kn−1+2d0+δ, (4.46)

following Theorem 5.2 of Adenstedt (1974) and Lemma 2 of Lieberman et al. (2010). Here K is

a constant independent of η and n.

Proof of Lemma 4.1. The proof of the lemma is developed by following the arguments of

Lemma 1 of Fox and Taqqu (1986) while extending them to the periodogram defined in (4.23)

and to the entire region stationary of the fractional differencing parameter.

Note that Ĩ (λ, µ̂) has Fourier coefficients

∫ π

−π
exp (ıλk) Ĩ (λ, µ̂) dλ =

{
W (k, n) , |k| < n
0, |k| > n ,

where

W (k, n) =
1
n

n−k

∑
t=1
(yt − µ̂) (yt+k − µ̂)

=
1
n

n−k

∑
t=1
((yt − µ0)− (µ̂− µ0)) ((yt+k − µ0)− (µ̂− µ0))
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=
1
n

n−k

∑
t=1
(yt − µ0) (yt+k − µ0) +

n− k
n

(µ̂− µ0)
2

− (µ̂− µ0)

n

n−k

∑
t=1
(yt − µ0)−

(µ̂− µ0)

n

n

∑
t=k+1

(yt − µ0) . (4.47)

The sequence {yt} is a stationary process with σ2
0

2π f0 (λ). Following Assumption (A.6), we

have that (µ̂− µ)→P 0, and hence the last three terms of (4.47) converge to zero in probability.

Therefore,

lim
n→∞

W (k, n) =
1
n

n−k

∑
t=1
(yt − µ0) (yt+k − µ0) = σ2

0γ0,k (η) .

Following the arguments of Hannan (1973) in Lemma 1, the proof can be completed.

Proof of Theorem 4.3. In this proof, we use the concentrated objective functions under each

estimation method, with respect to σ2.

The Exact Whittle estimator: Let us firstly consider the known mean case. Since

lim
n→∞

∣∣∣Q(2)
n (η)−Q(3)

n (η,µ0)
∣∣∣ = 0,

and, ∣∣∣Q(3)
n (η,µ0)−Q (η)

∣∣∣ ≤ ∣∣∣Q(3)
n (η,µ0)−Q(2)

n (η)
∣∣∣+ ∣∣∣Q(2)

n (η)−Q (η)
∣∣∣ ,

following the arguments in the proof of Theorem 3.1 in Chapter 3 corresponding to the Whittle

estimator, we have that

lim
n→∞

∣∣∣Q(3)
n (η,µ0)−Q (η)

∣∣∣ = 0,

and hence limn→∞

∥∥∥η̂
(3)
1 − η1

∥∥∥ = 0.

Now, let us consider the unknown mean case. Lemma 4.1 immediately gives that

∣∣∣Q(3)
n (η,µ0)−Q (η)

∣∣∣→P 0.

and therefore, limn→∞

∥∥∥η̂
(3)
1 − η1

∥∥∥ = 0.
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The TML estimator: Recall that the likelihood functions for the two cases when the process

mean is known and unknown are denoted by Q(4)
n (η,µ0) and Q(4)

n (η,µ̂) respectively. We will

now show that
∣∣∣Q(4)

n (η,µ̂)−Q(4)
n (η,µ0)

∣∣∣ →P 0. This distance is equivalent to considering the

distance
∣∣∣Sn − S̃n

∣∣∣, where

Sn =
1
n
(y− µ01)> Σ−1

η (y− µ01)

=
1
n

[
y>Σ−1

η y− 2µ01>Σ−1
η y+ µ2

01>Σ−1
η 1
]

,

and

S̃n =
1
n
(y− µ̂1)> Σ−1

η (y− µ̂1)

=
1
n

[
y>Σ−1

η y− 2µ̂1>Σ−1
η y+ µ̂21>Σ−1

η 1
]

.

Therefore,

S̃n − Sn =
2
n
(µ̂− µ0) 1>Σ−1

η y− 2
n

(
µ̂2 − µ2

0

)
1>Σ−1

η 1 (4.48)

and hence,

∣∣∣S̃n − Sn

∣∣∣ ≤ 2
n
|µ̂− µ0|

∣∣∣1>Σ−1
η y

∣∣∣+ 2
n

∣∣∣µ̂2 − µ2
0

∣∣∣ ∣∣∣1>Σ−1
η 1
∣∣∣

≤ 2
n
|µ̂− µ0|

∣∣∣1>Σ−1
η y

∣∣∣+ 2
n
|µ̂− µ0|

2
∣∣∣1>Σ−1

η 1
∣∣∣ . (4.49)

This leads to, ∣∣∣S̃n − Sn

∣∣∣ ∣∣∣1>Σ−1
η 1
∣∣∣−1
≤ 2

n
|µ̂− µ0|

∣∣µ̂BLU

∣∣+ 2
n
|µ̂− µ0|

2 .

Assumption (A.6) confirms that 1
n |µ̂− µ0| = op

(
n−3/2+d0

)
. Together with Theorem 5.2 of

Adenstedt (1974), that is,

sup
η∈Eδ

1>Σ−1
η 1 ≤ Kn1−2d, (4.50)

and Theorem 4.2, we have that

∣∣∣S̃n − Sn

∣∣∣ ∣∣∣1>Σ−1
η 1
∣∣∣−1

= op

(
n−2+2d0

)
,
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and hence the left hand side component converges in probability to 1 uniformly in η. There-

fore, ∣∣∣S̃n − Sn

∣∣∣ = op

(
n−3+2(d0−d1)

)
. (4.51)

Hence, limn→∞

∣∣∣S̃n − Sn

∣∣∣ = 0, uniformly in η. Therefore, the limit of the criterion function

Q(4)
n (η,µ̂) on subset E0

δ is

Q(4)(η, σ2) = log σ2 +
2Q (η)

σ2 ,

uniformly in η, by Proposition 3.1 of Chapter 3. Hence directly following the arguments in

the proof of Theorem 3.1 in Chapter 3 corresponding to the TML estimator, we can conclude

that limn→∞ η̂
(4)
1 = η1 and

lim
n→∞

∥∥∥η̂
(4)
1 − η̂

(1)
1

∥∥∥ = 0.

The CSS estimator: The CSS objective function in (4.28) can be expressed as follows.

Q(5)
n (η,µ̂) =

1
n
(y− µ̂1)> TηT>η (y− µ̂1) ,

where, Tη is an n× n is an upper triangular Toeplitz matrix with non-zero elements γi−j (η),

i, j = 1, . . . , n, such that Σ−1
η = TηT>η +HηH>η with Hη being the n×∞ reverse Hankel matrix

with typical element γn−i+j (η), i, j = 1, . . . , ∞.

Let Q(5)
n (η,µ0) be the CSS objective function when the process mean is known defined as

Q(5)
n (η,µ̂) =

1
n
(y− µ01)> TηT>η (y− µ01) . (4.52)

Denote by the objective function when the process mean is known

Q(5)
n (η,µ0) =

1
n
(y− µ01)> TηT>η (y− µ01) . (4.53)

Now, we establish that
∣∣∣Q(5)

n (η,µ̂)−Q(5)
n (η,µ0)

∣∣∣→P 0.

∣∣∣Q(5)
n (η,µ̂)−Q(5)

n (η,µ0)
∣∣∣ =

1
n

∣∣∣(y− µ̂1)> TηT>η (y− µ̂1)− (y− µ01)> TηT>η (y− µ01)
∣∣∣

167



Chapter 4: Mean correction in mis-specified fractionally integrated models

≤ 2
n
|µ̂− µ0|

∣∣∣1>TηT>η y
∣∣∣+ 1

n
|µ̂− µ0|

2
∣∣∣1>TηT>η 1

∣∣∣
≤ 2

n
|µ̂− µ0|

∣∣∣1>Σ−1
η y

∣∣∣+ 1
n
|µ̂− µ0|

2
∣∣∣1>Σ−1

η 1
∣∣∣ . (4.54)

Using a similar approach to that used for the TML estimator, we can conclude that

lim
n→∞

∣∣∣Q(5)
n (η,µ̂)−Q(5)

n (η,µ0)
∣∣∣ = 0,

uniformly in η. Therefore the limit of the criterion function Q(5)
n (η,µ̂) on subsets E0

δ is Q(5)(η) =

2Q (η). Hence directly following the arguments in the proof of Theorem 3.1 in Chapter 3 cor-

responding to the CSS estimator, we can conclude that limn→∞ η̂
(5)
1 = η1 and

lim
n→∞

∥∥∥η̂
(5)
1 − η̂

(1)
1

∥∥∥ = 0.

Prior to proving Theorem 4.4, let us prove some important results that will be used to

prove the theorem. Let us recalling the definition of Ση as given in (4.11). We define the

following matrices associated with Ση.

A(1)
η = Σ−1

η Σ∂ηΣ−1
η Σ∂ηΣ−1

η , (4.55)

A(2)
η = Σ−1

η Σ∂2ηΣ−1
η , and, (4.56)

A(3)
η = Σ−1

η Σ∂ηΣ−1
η , (4.57)

where

Σ∂η :=
∫ π

−π

∂ f1 (η, λ)

∂η
eıλτdλ.

Lemma 4.2 Suppose Assumptions (A.2)− (A.4) hold. For every δ > 0 and the constant K indepen-

dent of η and n, ∣∣∣1>A(3)
η Σ0A(3)

η 1
∣∣∣ ≤ Kn1−2d0+δ,
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where A(3)
η is as defined in (4.57).

Proof. Expanding
∣∣∣1>A(3)

η Σ0A(3)
η 1
∣∣∣ using the form of A(3)

η as given in (4.57), we have that

∣∣∣1>A(3)
η Σ0A(3)

η 1
∣∣∣ =

∣∣∣1>Σ−1
η Σ∂ηΣ−1

η Σ0Σ−1
η Σ∂ηΣ−1

η 1
∣∣∣

≤
∣∣∣1>Σ−1

0 1
∣∣∣ ∥∥∥Σ−1/2

η Σ∂ηΣ−1/2
η

∥∥∥2

≤ Kn1−2d0+δ,

using (4.50) and Lemma 5.3 of Dahlhaus (1989).

Proof of Theorem 4.4. Here we show that the asymptotic distribution of η̂
(.)
1 correspond-

ing to the TML and CSS estimation methods is the same even when the mean is estimated.

Let ∂Q(i)
n (η, µ̂) = (∂/∂η)Q(i)

n (η, µ̂) and ∂2Q(i)
n (η, µ̂) =

(
∂2/∂η∂η>

)
Q(i)

n (η, µ̂) for i = 3, 4, 5.

Application of the mean value theorem yields,

∂Q(i)
n (η̂

(i)
1 , µ̂)− ∂Q(i)

n (η1, µ̂) = ∂2Q(i)
n (η, µ̂)

(
η̂
(i)
1 − η1

)
, (4.58)

with |η− η1| ≤ |η̂
(i)
1 − η1|. Since η̂

(i)
1 is the minimizer of Q(i)

n (η, µ̂),

−∂Q(i)
n (η1, µ̂) = ∂2Q(i)

n (η, µ̂)
(

η̂
(i)
1 − η1

)
.

Henceforth writing A =
[
∂2Q(i)

n (η, µ̂)
]
, we have that

Rn

(
η̂
(i)
1 − η1

)
= −

[
∂2Q(i)

n (η, µ̂)
]−1 [

Rn × ∂Q(i)
n (η1, µ̂)

]
, (4.59)

where Rn is the rate of convergence that takes different forms depending on (d0 − d1) as given

in Theorem 4.4.

The expression given in (4.59) can be re-arranged as follows.

Rn

(
η̂
(i)
1 − η1

)
= −

{([
∂2Q(i)

n (η, µ̂)
]−1
−
[
∂2Q(i)

n (η, µ0)
]−1
)
+
[
∂2Q(i)

n (η, µ0)
]−1
}
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×
[

Rn × ∂Q(i)
n (η1, µ0)

]
= −

([
∂2Q(i)

n (η, µ̂)
]−1
−
[
∂2Q(i)

n (η, µ0)
]−1
)
×
[

Rn × ∂Q(i)
n (η1, µ0)

]
−
[
∂2Q(i)

n (η, µ0)
]−1
×
[

Rn × ∂Q(i)
n (η1, µ0)

]
. (4.60)

We shall show that the first component disappears for large n, by proving prove the following.

(i) Rn

[
∂Q(i)

n (η1, µ̂)− ∂Q(i)
n (η1, µ0)

]
→P 0,

(ii) supη∈Eδ

∣∣∣(∂2Q(i)
n (η, µ̂)− ∂2Q(i)

n (η, µ0)
)∣∣∣→P 0,

(iii)
∣∣∣∂2Q(i)

n (η, µ0)− ∂2Q(i)
n (η1, µ0)

∣∣∣→P 0,

The second component on the right-hand side of (4.60) has the asymptotic distribution

given in Theorem 3.3 of Chapter 3 as the process mean is known. Thereby, we can show that

the limiting distribution of the TML and CSS estimators of η, when the mean is estimated, is

the same limiting distribution under the known mean case. We shall prove the above three

points for the TML and CSS estimation methods.

The TML estimator:

(i) As mentioned in the proof of convergence of the TML estimator, investigating the likeli-

hood function Q(4)
n (.) is similar to investigating Sn. Hence we explore the behaviour of the

first derivative of
(

S̃n − Sn

)
given in (4.48):

∂S̃n − ∂Sn =
2
n

[
1>Σ−1

η y× ∂ (µ̂− µ0) + (µ̂− µ0)× ∂
(

1>Σ−1
η y

)
− ∂

(
µ̂2 − µ2

0

)
×
(

1>Σ−1
η 1
)
−
(

µ̂2 − µ2
0

)
× ∂

(
1>Σ−1

η 1
)]

=
2
n

[
1>Σ−1

η y× ∂ (µ̂− µ0) + (µ̂− µ0)× 1>A(3)
η y

− ∂
(

µ̂2 − µ2
0

)
×
(

1>Σ−1
η 1
)
−
(

µ̂2 − µ2
0

)
× 1>A(3)

η 1
]

,
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where ∂µ̂ = 0 if the mean estimator is sample mean. If it is estimated by BLUE,

∂µ̂ =

(
1>Σ−1

η 1
)
×
(

1>A(3)
η y

)
−
(

1>A(3)
η 1
)
×
(

1>Σ−1
η y

)
(

1>Σ−1
η 1
)2

=
1(

1>Σ−1
η 1
) (1>A(3)

η y
)
−

(
1>A(3)

η 1
)

(
1>Σ−1

η 1
)2

(
1>Σ−1

η y
)

, and,

E [∂µ̂] =
1(

1>Σ−1
η 1
)E
(

1>A(3)
η y

)
−

(
1>A(3)

η 1
)

(
1>Σ−1

η 1
)2 E

(
1>Σ−1

η y
)

=
1>A(3)

η 1(
1>Σ−1

η 1
)µ0 −

(
1>A(3)

η 1
)

(
1>Σ−1

η 1
) µ0 = 0. (4.61)

This leads to,

Rn

∣∣∣∂S̃n − ∂Sn

∣∣∣ ≤ 2Rn

n
|µ̂− µ0|

∣∣∣1>A(3)
η y

∣∣∣+ 2Rn

n
(µ̂− µ0)

2
∣∣∣1>A(3)

η 1
∣∣∣ . (4.62)

Lemma 5.4(d) of Dahlhaus (1989) and Jensen’s inequality imply

sup
η∈E0

δ

∣∣∣1>A(3)
η 1
∣∣∣ ≤ Kn1−2d1+δ, (4.63)

and

E
∣∣∣1>A(3)

η y
∣∣∣ ≤ E

∣∣∣1>A(3)
η (y− µ01)

∣∣∣+ µ0

∣∣∣1>A(3)
η 1
∣∣∣1/2

≤
∣∣∣1>A(3)

η Σ0A(3)
η 1
∣∣∣1/2

+ µ0

∣∣∣1>A(3)
η 1
∣∣∣1/2

≤ K
∣∣∣a>a

∣∣∣1/2−d0
nδ + µ0Kn1/2−d1+δ for some δ > 0

≤ Kn1/2−max(d0,d1)+δ, (4.64)

following Lemma 5.4(c and d) of Dahlhaus. Therefore, the first and second components in the

right-hand side of (4.62) reduce to,

Rn

n
|µ̂− µ0|

∣∣∣1>A(3)
η y

∣∣∣ ≤ Rn

n
|µ̂− µ0|

∣∣∣1>A(3)
η y

∣∣∣
≤ KRnn−1+d0−max(d0,d1)+δ,
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and

Rn

n
(µ̂− µ0)

2
∣∣∣1>A(3)

η 1
∣∣∣ ≤ KRnn−1+2(d0−d1)+δ,

using Assumption (A.6), (4.63) and (4.64). This simplifies (4.62) as,

Rn

∣∣∣∂S̃n − ∂Sn

∣∣∣ ≤ KRnn−1+2(d0−d1)+δ.

Since Rn is the rate of convergence that is slower than
√

n, we therefore obtain (i).

(ii) The second derivative of
(

S̃n − Sn

)
is

∂2S̃n − ∂2Sn =
2
n

[
1>Σ−1

η y× ∂2 (µ̂− µ0) + 1>A(3)
η y× ∂ (µ̂− µ0)

+ (µ̂− µ0)× 1>A(1)
η y+ ∂ (µ̂− µ0)× 1>A(3)

η y

−∂
(

µ̂2 − µ2
0

)
×
(

1>A(3)
η 1
)
− ∂2

(
µ̂2 − µ2

0

)
×
(

1>Σ−1
η 1
)

−
(

µ̂2 − µ2
0

)
× 1>A(1)

η 1− ∂
(

µ̂2 − µ2
0

)
× 1>A(3)

η 1
]

=
2
n

[
1>Σ−1

η y× ∂2 (µ̂− µ0) + 21>A(3)
η y× ∂ (µ̂− µ0)

+ (µ̂− µ0)× 1>A(1)
η y− 2∂

(
µ̂2 − µ2

0

)
×
(

1>A(3)
η 1
)

− ∂2
(

µ̂2 − µ2
0

)
×
(

1>Σ−1
η 1
)
−
(

µ̂2 − µ2
0

)
× 1>A(1)

η 1
]

.

Henceforth writing supE0
δ
= supη :

sup
η

∣∣∣∂2S̃n − ∂2Sn

∣∣∣ ≤ 2
n

sup
η
|µ̂− µ0| sup

η

∣∣∣1>A(1)
η y

∣∣∣
+

4
n

sup
η

∣∣∣1>A(3)
η y

∣∣∣ sup
η
|∂ (µ̂− µ0)|

+ f our other terms. (4.65)

Suppose the mean is estimated by the sample mean, ∂2µ̂ = 0, and if it is estimated by

BLUE,

∂2µ̂ =

(
1>A(1)

η y
)

(
1>Σ−1

η 1
) −

(
1>A(3)

η y
)2

(
1>Σ−1

η 1
)2 −

(
1>A(3)

η 1
)

(
1>Σ−1

η 1
)2

(
1>A(3)

η y
)
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−

(
1>A(1)

η 1
)

(
1>Σ−1

η 1
)2

(
1>Σ−1

η y
)
+ 2

(
1>A(3)

η 1
)2

(
1>Σ−1

η 1
)3

(
1>Σ−1

η y
)

,

with

E
∣∣∂2µ̂

∣∣ ≤
∣∣∣1>A(1)

η y
∣∣∣∣∣∣1>Σ−1

η 1
∣∣∣ +

E
(

1>A(3)
η y

)2

(
1>Σ−1

η 1
)2 +

∣∣∣1>A(3)
η 1
∣∣∣(

1>Σ−1
η 1
)2 E

∣∣∣1>A(3)
η y

∣∣∣
+

∣∣∣1>A(1)
η 1
∣∣∣(

1>Σ−1
η 1
)2 E

∣∣∣1>Σ−1
η y

∣∣∣+ 2

(
1>A(3)

η 1
)2

(
1>Σ−1

η 1
)3 E

∣∣∣1>Σ−1
η y

∣∣∣ . (4.66)

Application of Lemma 5.4 of Dahlhaus (1989) gives

∣∣∣1>A(1)
η (y− µ01)

∣∣∣ ≤ (
p+q+1

∑
j,k=1

∣∣∣∣(1>A(1)
η 1
)

jj

∣∣∣∣ ∣∣∣(y− µ01)> A(1)
η (y− µ01)kk

∣∣∣)1/2

≤ Kn1/2−(d0−d1)

(
n

∑
t=1
(yt − µ0)

2

)1/2

≤ Kn1−(d0−d1) (γ0 (η))
1/2 .

The other terms in (4.66) can be treated similarly.

Then considering the first term of supη

∣∣∣∂2S̃n − ∂2Sn

∣∣∣ given in (4.65).

2
n

sup
η
|µ̂− µ0| sup

η

∣∣∣1>A(1)
η y

∣∣∣ ≤ n−1/2+d1+δ,

and the other five terms can be deduced in a similar way. Hence we prove (ii).

(iii) Immediately from Theorem 4.3, we have that η̂
(i)
1 →a.s η1 and that when the mean is

replaced by its true mean it is established that for i = 3, 4 and 5,

∣∣∣∂2Q(i)
n (η, µ0)− ∂2Q(i)

n (η1, µ0)
∣∣∣→P 0,

following Theorem 3.3 of Chapter 3.

Hence, we have that the limiting distribution of the TML estimator when the mean is also

estimated along with the dynamic parameters under mis-specification, is the same as that is
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obtained for the known mean case. Following similar steps to those given in the proof of The-

orem 3.3 of Chapter 3 immediately gives that the TML and DWH methods are asymptotically

equivalent.

The CSS estimator: Using the steps used for TML estimator, the limiting distribution of

the CSS estimation method when the mean is estimated is the same as that under the known

mean case. Hence we omit the details here. Further,

∣∣∣Q(5)
n (η1,µ̂)−Q(1)

n (η1)
∣∣∣ ≤ ∣∣∣Q(5)

n (η1,µ̂)−Q(5)
n (η1,µ0)

∣∣∣+ ∣∣∣Q(5)
n (η1,µ0)−Q(1)

n (η1)
∣∣∣

≤ O
(

n−1
)
+ op

(
n−1/2

)
,

following the expression in (4.54). Therefore, the FML and CSS estimation methods are as-

ymptotically equivalent.

The Exact Whittle estimator: Since
∣∣∣Q(2)

n (η)−Q(3)
n
(
σ2, η

)∣∣∣ converges to zero almost surely

when η ∈ Eδ, the proof of Theorem 3.3 of Chapter 3 immediately gives the asymptotic equiv-

alence of the DWH and EWH estimators.
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Chapter 5

Optimal bias correction of the
log-periodogram regression estimator:
A jackknife approach

5.1 Introduction

Data on many climate, hydrological, economic and financial variables exhibit dynamic pat-

terns characterized by a long lasting response to past shocks. Notable examples include, wa-

ter levels in rivers (Hurst, 1951), rainfall (Gil-Alana, 2012), aggregate output (Diebold and

Rudebusch, 1989), inflation (Hassler and Wolters, 1995), interest rates (Baillie, 1996), exchange

rates (Cheung, 2016) and stock market volatility (Bollerslev and Mikkelsen, 1996; Andersen

et al., 2003). Such ‘long memory processes’ are characterized by non-summable autocovari-

ances that decline at a (slow) hyperbolic rate, in contrast to the usual exponential, and sum-

mable, decay associated with a short memory process; the fractionally integrated autoregres-

sive moving average [ARFIMA] model of Adenstedt (1974), Granger and Joyeux (1980) and

Hosking (1981) being a popular representation. Equivalently, a stationary (potentially) long

memory process, {Yt} , t ∈ Z := {0,±1,±2, . . .} can be represented by the spectral density,

fYY (λ) = (2 sin (λ/2))−2d gYY (λ) , − π < λ < π, (5.1)

where the fractional differencing parameter d satisfies d ∈ (−0.5, 0.5), and gYY (·) is an even

function that is continuous on (−π, π), is bounded above and bounded away from zero, and
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satisfies
∫ π
−π log gYY (λ) dλ = 0. The process is said to have long memory when d ∈ (0, 0.5),

intermediate memory when d ∈ (−0.5, 0) and short memory when d = 0. The factor gYY (·)

controls the (remaining) short memory behaviour associated with the process. For detailed

expositions of processes described by (5.1), including applications, see, Beran (1994), Doukhan

et al. (2003) and Robinson (2004).

In estimating the parameter d, the semi-parametric log-periodogram regression [LPR] es-

timator of Geweke and Porter-Hudak (1983) and (Robinson, 1995a,b) has been widely used,

due to the simplicity of its construction as an ordinary least squares [OLS] estimator, and its

avoidance of a potentially incorrect specification for the short memory component. Consis-

tency is only achieved, however, at the cost of both a slower rate of convergence than the

usual parametric rate and substantial finite sample bias in the presence of ignored short run

dynamics (see, for example, Agiakloglou et al., 1993 and Nielsen and Frederiksen, 2005).

Given this well-documented bias, bias reduction of the LPR estimator has been a focus of

the literature. Andrews and Guggenberger (2003), for example, include additional frequen-

cies, to degree 2r for r ≥ 0, in the log-periodogram regression that defines the LPR estimator,

producing an estimator (denoted hereafter by d̂AG
r ) whose bias goes to zero at a faster rate than

that of the unadjusted procedure (recovered by setting r = 0), when r > 1. Alternative an-

alytical procedures appear in Moulines and Soulier (1999), Hurvich and Brodsky (2001) and

Robinson and Henry (2003), whilst a method based on the pre-filtered sieve bootstrap has

been introduced by Poskitt et al. (2016). Critically, all such bias-correction methods come at a

cost: namely, an increase in asymptotic variance. Notably, Guggenberger and Sun (2006) pro-

duce a weighted average of LPR estimators over different bandwidths that achieves the same

degree of bias reduction as d̂AG
r for any given r, but with less variance inflation. This estima-
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tor, along with that of Poskitt et al. (2016), serve as important comparators for the alternative

bias-corrected estimator that we develop herein.

The approach to bias adjustment adopted in this chapter applies the jackknife principle,

with the bias-corrected estimator constructed as a weighted average of LPR estimators com-

puted, in turn, from the full sample and m sub-samples of a given length. The sub-samples

may be created by using either the non-overlapping or the moving-block method. Motivated

by the jackknife technique proposed by Chen and Yu (2015) in a unit root setting, weights are

chosen to remove bias up to a given order and, at the same time, to minimize the increase

in asymptotic variance. The weights are ‘optimal’ in this sense and the associated jackknife

estimator referred to as ‘optimal’ accordingly. In the fractional setting, with the LPR estimator

being the method to be adjusted, these optimal weights involve two types of covariance terms:

(i) covariances between the full-sample and sub-sample log-periodogram ordinates (to be de-

fined in (5.15)), and, (ii) covariances between distinct sub-sample log-periodogram values (to

be defined in (5.16)). These covariance terms may, in turn, be represented by cumulants of

the discrete Fourier transform [DFT] of the time series. Building on results in Brillinger (1981,

Chapters 2 and 4), we firstly derive closed-form expressions for the association between the

corresponding discrete Fourier transforms [DFTs] in terms of cumulants. Under mild condi-

tions on the regularity of gYY (.) in (5.1), we prove that the periodograms (at a given ordinate

or at different ordinates) associated with the full sample and the sub-samples are asymptot-

ically independent χ2
(2) random variables. We then obtain closed-form expressions for the

covariances in (5.15) and (5.16), that are required to evaluate the optimal weights.

Under regularity, we prove the consistency and asymptotic normality of the optimal jack-

knife estimator. Most notably, we establish that the convergence rate and asymptotic variance
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are equivalent to those of the unadjusted LPR estimator. That is, there is no inflation in asymp-

totic efficiency compared to the unadjusted LPR estimator of d, despite the bias reduction that

is achieved. This compares with Guggenberger and Sun (2006), in which the goal is to pro-

duce an estimator (for a given value of r) with an asymptotic variance that is smaller than that

of the corresponding bias-adjusted estimator of Andrews and Guggenberger (2003), as based

on the same value of r, d̂AG
r . In particular, in the case where r = 0, and no bias adjustment is

achieved (with d̂AG
r equivalent to the raw LPR estimator), the estimator of Guggenberger and

Sun is still biased, but with a (possibly) reduced asymptotic variance. In addition, in contrast

with Guggenberger and Sun, and the other analytical bias adjustment methods cited above,

our theoretical results do not rely on the assumption of Gaussianity. Specifically, expressions

for the dominant bias term and variance of the LPR estimator - needed in the construction of

the jackknife estimator and as originally derived by Hurvich et al. (1998) for fractional Gaussian

processes - are shown to hold under non-Gaussian assumptions. Hence, all theoretical results

for the bias-adjusted estimator hold under similar generality.1

The remainder of the chapter is organized as follows. In Section 5.2, we introduce two

log-periodogram regression estimators; namely, the LPR estimator originally proposed by

Geweke and Porter-Hudak (1983) and the particular bias-reduced estimator of Guggenberger

and Sun (2006). In Section 5.3, we develop the new jackknife estimator that accommodates

both bias correction and variance minimization via the appropriate choice of weights. All the-

oretical results pertaining to the construction of the afore-mentioned covariance terms, and

1We refer the reader to Hahn and Newey (2013), Chen and Yu (2015), Robinson and Kaufmann (2015) and
Chambers (2013) for other applications of the jackknife in time series settings. To our knowledge the technique
has been used only once in a long memory setting per se, namely in the numerical work of Ekonomi and Butka
(2011), where the method of Chambers (2013) is adopted for the purpose of reducing the bias of the LPR estimator
to the first order. However, no rigorous proofs of the properties of the estimator are provided, and no attempt at
yielding an optimal estimator in the sense given in the current chapter, is made.
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the resultant asymptotic properties of the optimal estimator, are given in Section 5.4. Section

5.5 documents the finite sample performance of the estimator by means of a Monte Carlo

study. The simulation results show that versions of the optimally bias-corrected jackknife

estimator outperform the alternative bias-adjusted estimators of Guggenberger and Sun and

Poskitt et al. (2016), in terms of bias-reduction and root mean squared error [RMSE], with the

RMSE being somewhat close to, or even smaller than, that of the LPR in some cases. This qual-

itative result holds under both Gaussian and Student t errors and for both autoregressive and

moving average structures for the short run dynamics. In the empirically realistic case where

the true values of the parameters - required in order to evaluate all relevant covariances - are

unknown, we implement the jackknife estimator using an iterative procedure. This feasible

version of the estimator does not consistently outperform either the bootstrap-based estima-

tor of Poskitt et al. or (a feasible version of) the method of Guggenberger and Sun, but is not

substantially inferior, in terms of either bias or RMSE, and is sometimes still the least biased

estimator of all.

The proofs of all results are contained in Appendix 5.A, while Appendix 5.B provides vari-

ous technical results, including the evaluation of the covariances required for the construction

of the weights for the optimal jackknife estimator. The following notation is used through-

out: “→P” denotes convergence in probability, “→D” denotes convergence in distribution,

and “→” is used to indicate the limit as n → ∞, (unless otherwise stated). The kth-order

spectral density function of the time series {Xt} is denoted by fX...X (λ1, λ2, . . . , , λk−1), where

λ1, λ2, . . . , , λk−1 are fundamental frequencies. For instance, the density function given in (5.1)

is the second-order spectral density of {Yt} .2

2As noted in Chapter 1, this chapter has been written as a draft for a self-contained article for journal submis-
sion. Hence, there is a certain amount of repetition of material presented in other chapters. There are also some
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5.2 Log-periodogram regression estimation methods

In this section we briefly review two log-periodogram regression estimators; namely, the raw

(unadjusted) LPR estimator and the bias-reduced weighted-average estimator of Guggen-

berger and Sun (2006) [GS]. These estimators are used as benchmarks for later comparisons,

and the raw LPR estimator, of course, underpins the jackknife method developed in Section

5.3. We summarize the asymptotic properties of these estimators and the assumptions under-

lying those properties. In contrast to earlier proofs related to the LPR estimator (e.g. Hurvich

et al., 1998) we do not assume that the data generating process [DGP] is Gaussian. This ex-

tension to non-Gaussian processes means that the properties subsequently derived for the

optimal jackknife estimator are also applicable for this general case.

5.2.1 The log-periodogram regression estimator

Let y> = (y1, y2, ..., yn) be a sample of n observations from a process with a spectral density as

given in (5.1). The LPR estimator, d̂n, is motivated by the following simple linear regression

model that is formed directly from the spectral density given in (5.1),

log I(n)Y

(
λj
)
= (log gYY(0)− C)− 2d log(2 sin(λj/2)) + ξ j, (5.2)

where

I(n)Y (λ) = |D(n)
Y (λ) |2; D(n)

Y (λ) =
1√
2πn

n

∑
t=1

yt exp (−ıλt) , (5.3)

and D(n)
Y

(
λj
)

is the DFT of the vector of realizations, y, measured at Fourier frequencies,

λj = 2π j/n; (j = 1, 2..., Nn), Nn = bnαc, for 0 < α < 1, and ı =
√
−1 is the imaginary unit.

Here, the error terms ξ j = log
(

I(n)Y

(
λj
)

/ fYY(λj)
)
+ C+Vj, j = 1, 2, ..., Nn, where

Vj = log
(

gYY(λj)/gYY(0)
)

, (5.4)

small differences in notation from the other chapters, due to the notational requirements of the material in this
chapter.
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are assumed to be asymptotically independently and identically distributed (i.i.d.) and C is

the Euler constant. The LPR estimator of d is simply the OLS estimator of the slope parameter

in (5.2) and is given by

d̂n =
−0.5 ∑Nn

j=1

(
xj − x

)
zj

∑Nn
j=1(xj − x)2

, (5.5)

where zj = log I(n)Y (λj), xj = log(2 sin(λj/2)), and x = 1
Nn

∑Nn
j=1 xj. The subscript n is intro-

duced here in order to distinguish this full-sample version of the estimator from that com-

puted subsequently from sub-samples, in the process of applying the jackknife.

Certain statistical properties of the LPR estimator such as its bias, variance, mean-squared-

error [MSE] and asymptotic distribution have been derived by Hurvich et al. (1998) under

given regularity conditions, and with certain approximations invoked. Alternative expres-

sions for the bias and variance of the LPR estimator are provided in Theorem 1 of Andrews

and Guggenberger (2003), plus in Theorem 3.1 of Guggenberger and Sun (2006), by setting

r = 0. Lieberman (2001) also provides a formula for the expectation of the LPR estimator

under the same conditions as Hurvich et al.; however, his expression is an infinite sum of a

quantity that depends on the true values of d and the short memory parameters, which ren-

ders a feasible version of the jackknife technique using his expression more cumbersome.

With all results cited above derived under the assumption of Gaussianity, we now extend

the results stated in Theorems 1 and 2 of Hurvich et al. (1998) to the general (potentially non-

Gaussian) case. In particular, the resultant expression for the expectation of the LPR estimator

is used in the specification of the optimal jackknife estimator, and in the proof of its properties.

We begin with the following assumptions on the DGP:
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(A.1) There exists G > 0, such that

fYY(λ) = Gλ−2d +O(λ2−2d) as λ→ 0+,

where ‘→ 0+’ denotes an approach from above.

(A.2) In a neighbourhood (0, ε) of the origin, fYY(λ) is differentiable and

∣∣∣∣ d
dλ

log fYY(λ)

∣∣∣∣ = O(λ−1), as λ→ 0+ .

In addition, g′YY(0) = 0, |g′′YY(λ)| < B̃2 < ∞ and |g′′′YY(λ)| < B̃3 < ∞, where g′YY (λ) ,

g′′YY (λ) and g′′′YY (λ) denote, respectively, the first-, second- and third-order derivatives

of gYY with respect to λ.

(A.3) {Yt} , t ∈ Z := {0,±1,±2, · · · } satisfies

Yt − µY =
∞

∑
j=0

bjεt−j,
∞

∑
j=0

b2
j < ∞,

∣∣∣∣ d
dλ

b(λ)
∣∣∣∣ = O(λ−1), as λ→ 0+,

where b(λ) = ∑∞
j=0 bj exp (ıjλ) and {εt} is a strictly stationary i.i.d. process with E (εt) =

0 and E
(
ε2

t
)
= 1.

(A.4) The innovation process {εt} satisfies the conditions in (A.3). In addition, E (εt)
3 < ∞

and E (εt)
4 < ∞ are assumed.

Assumptions (A.1)− (A.3) are standard in the long memory literature and are satisfied by

the class of ARFIMA models. The boundedness of the first three derivatives of gYY in Assump-

tion (A.2) is required to control the fourth-order moment of the sine and cosine components

of the standardized DFTs that are used to derive the bias term of the LPR. Assumption (A.4)

specifies the third and fourth moments of {εt} to be finite, as we do not invoke Gaussianity.
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The boundedness imposed on the higher-order moments of {εt} ensures the asymptotic nor-

mality of the DFTs associated with the process {Yt}. The asymptotic normality of the DFTs is,

in turn, used in proving Theorems 5.1 – 5.5.

We now state Theorem 5.1, which gives the mean, variance and asymptotic distribution

of the LPR estimator. We subsequently exploit these results to construct the optimal jackknife

estimator, and to prove its properties, in Section 5.3.

Theorem 5.1 Let Assumptions (A.1)− (A.3) hold. Given Nn → ∞, n→ ∞, with Nn log Nn
n → 0,

E
(
d̂n
)
= d0 −

2π2

9
g′′YY (0)
gYY (0)

N2
n

n2 + o
(N2

n
n2

)
+O

( log3 Nn

Nn

)
, (5.6)

Var
(
d̂n
)
=

π2

24Nn
+ o
( 1

Nn

)
(5.7)

and d̂n →P d0, where d0 is the true value of d. Given that (A.4) also holds and if Nn = o
(
n4/5) and

log2 n = o (Nn) , then,

√
Nn(d̂n − d0)→D N

(
0, π2

24

)
. (5.8)

5.2.2 The weighted-average log-periodogram regression estimator

The motivation for the estimator of Guggenberger and Sun (2006) stems from the work of

Andrews and Guggenberger (2003). With (5.4) being the term that causes the dominant bias

in the LPR estimator, Andrews and Guggenberger use a Taylor series expansion around j = 0

to approximate (5.4) as an even polynomial in the frequencies of order r.3 Including the first

2r terms (with r ≥ 1 ) in the log-periodogram regression in (5.2) as additional regressors leads

to

ln I(n)Y

(
λj
)
= (log gYY(0)− C)− 2d log(2 sin(λj/2)) +

r

∑
k=1

b2k

(2k)!
λ2k

j + ζ j, (5.9)

3The odd-order terms of the Taylor’s expansion around zero are exactly zero. This leads to the expansion with
only even-order terms.
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where ζ j = ξ j − ∑r
k=1

b2k
(2k)! λ

2k
j . Application of OLS to (5.9) then yields an estimator of d, d̂AG

r ,

with reduced bias relative to the raw LPR estimator, d̂n. The bias-adjusted estimator is shown

to be
√

Nn- consistent, with an asymptotic variance equal to π2

24 cr, with cr > 1 for r ≥ 1 and

cr = 1 for r = 0.

Guggenberger and Sun (2006) proceed to show that an appropriate weighted average of

raw LPR estimators, as based on different bandwidths, Nn,i = bqiNnc ; i = 1, . . . , K, for fixed

numbers qi chosen suitably, has the same asymptotic bias as d̂AG
r (constructed using Nn), but

with a reduced asymptotic variance. That is, bias reduction is achieved at a smaller cost than

is the original method of Andrews and Guggenberger (2003). Further, for the case of r = 0,

the bias of the raw LPR estimator is retained but with reduced asymptotic variance. The

authors also demonstrate that the weighted-average estimator, denoted by d̂GS
r hereafter, can

be implemented via a simple two-step procedure. In the first step, a series of K LPR estimates

are obtained using the regression model in (5.2) and for bandwidths, Nn,i, i = 1, . . . , K. Then, in

the second step, the following pseudo-regression is estimated, using the K estimates produced

in the first step as observations of the dependent variable in the regression,

d̂Nn,i = d+
r

∑
j=1

β2jq
2j
i + β2+2r

(
q2+2r

i − δ
K

∑
p=1

q2+2r
p

)
+ ui, i = 1, . . . , K, (5.10)

where ui is the error term, and u> = (u1, u2, ..., uK) has a zero (vector) mean and asymptotic

variance-covariance matrix,

Ω =
(
Ωi,j
)
∈ RK×K, with Ωi,j =

1
max

(
qi, qj

) .

The tuning parameter δ on the right-hand-side of (5.10) is a fixed non-zero constant that is

used to control the multiplicative constant of the dominant bias term and render that term

equivalent to the dominant bias term of d̂AG
r . The estimator, d̂GS

r , is then defined as the first
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component of the GLS estimator of
(

d, β>
)>

, where β> =
(

β2, β4, . . . , β2+2r
)

, that is,

(
d̂GS

r , β̂
>)>

=
(

Z>Ω−1Z
)−1

Z>Ω−1d̂, (5.11)

where d̂ is the (K× 1) dimensional vector with ith element d̂Nn,i , and

Z> =
(
z1, . . . , zK

)
∈ R(2+r)×K, with z>i =

(
1, q2

i , . . . , q2r
i ,
(

q2+2r
i − δ

K

∑
p=1

q2+2r
p

))
.

Both the raw LPR estimator, d̂n, and the weighted-average estimator, d̂GS
r , with r = 1,

are used as comparators of our proposed jackknife procedure in the Monte Carlo simulation

exercises in Section 5.5.

5.3 The optimal jackknife log-periodogram regression estimator

5.3.1 Definition of the jackknife estimator

The idea behind jackknifing is to generate a set of sub-samples, by deleting one or more obser-

vations of the original sample, while preserving the structure of dependence within the sub-

samples; the aim being to use (weighted) sub-sample estimates to produce a bias-corrected

estimator of the parameter of interest. Let yi (i = 1, 2, ..., m) denote a set of m sub-samples of

y, each of which has equal length, l, such that n = l × m. If sub-samples are chosen using

the ‘non-overlapping’ method, then y>i =
(

y(i−1)l+1, . . . , yil

)
for i = 1, . . . , m; alternatively if

the sub-sampling scheme is ‘moving-block’ then y>i = (yi, . . . , yi+l−1) for all i. In the current

context we use the jackknife technique to bias correct the LPR estimator. Hence, we need to

produce the full-sample estimator, d̂n, and the LPR estimators produced by applying OLS to

the model in (5.2), using the relevant sub-sample. We denote these m sub-sample estimators

(based on either the non-overlapping or moving-block method) by d̂i, i = 1, 2, ..., m. We sum-

marize notation corresponding to the full-sample estimation and both forms of sub-sample

estimation in Table 5.1, for ease of subsequent referencing.
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Table 5.1: Quantities related to the full sample and the sub-samples used in the construction of the
jackknife estimator

Full sample ith sub-sample

(i) Frequency λj = 2π j/n µj = 2π j/l = 2π jm/n = mλj

(ii) Frequency range j = 1, ..., Nn j = 1, ..., Nl

(iii) Spectral density fYY (λ) = (2 sin (λ/2))−2d gYY (λ) fYiYi (µ) = (2 sin (µ/2))−2d gYiYi (µ)

(iv) DFT D(n)
Y (λ) = 1√

2πn ∑n
t=1 yt exp (−ıλt) D(l)

Yi
(µ) = 1√

2πl ∑l
t=1 yt+i′ exp (−ıµt)

(v) Periodogram I(n)Y (λ) = |D(n)
Y (λ) |2 I(l)Yi

(µ) = |D(l)
Yi
(µ) |2

(vi) Error term ξ j = log
(

I(n)Y

(
λj
)

/ fYY
(
λj
))

ξ
(i)
j = log

(
I(l)Yi

(
µj

)
/ fYiYi

(
µj

))
Other notation:

(vii) xj = ln(2 sin
(
λj/2

)
) x

′
j = ln(2 sin

(
µj/2

)
)

(viii) x = ∑Nn
t=1 xj

/
Nn x′ = ∑Nl

t=1 x
′
j

/
Nl

(ix) aj = xj − x a
′
j = x

′
j − x′

(x) Sxx = ∑Nn
j=1 a2

j S
′
xx = ∑Nl

j=1 a
′2
j

Note, regarding the sub-sample notation in point (iv), if the sub-samples are drawn with the non-
overlapping scheme then, i′= (i− 1)l. If the moving-block scheme is used then, i′= i− 1.

Define the jackknife estimator, d̂J,m, as

d̂J,m = wnd̂n −
m

∑
i=1

wid̂i, (5.12)

where wn and {wi}m
i=1 are the weights assigned to the full-sample estimator and the sub-

sample estimators, respectively. Re-iterating, d̂n is the LPR estimator obtained from the full

sample (as defined directly in (5.5)) and d̂i (i = 1, 2, ..., m) denotes the ith sub-sample LPR

estimator. Under the conditions of Theorem 5.1, it is straightforward to show that

E
(
d̂J,m

)
=

(
wn −

m

∑
i=1

wi
)
d0 −

(2π2

9
g′′YY (0)
gYY (0)

N2
n

n2 wn −
2π2

9
g′′YiYi

(0)
gYiYi (0)

N2
l

l2

m

∑
i=1

wi

)
+o
(N2

n
n2

)
+O

( log3 Nn

Nn

)
, (5.13)

and

Var
(
d̂J,m

)
=

π2

24Nn
w2

n +
π2

24Nl

m

∑
i=1

w2
i + 2

m−1

∑
i=1

m

∑
j=i+1

wiwjCov
(
d̂i, d̂j

)
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−2wn

m

∑
i=1

wiCov
(
d̂n, d̂i

)
+ o
( 1

Nn

)
. (5.14)

The covariance between the full-sample LPR estimator and each sub-sample LPR estimator,

Cov
(

d̂n, d̂i

)
, and the covariances between the different sub-sample LPR estimators, Cov

(
d̂i, d̂j

)
,

for i 6= j, i, j = 1, 2, ..., m, are given respectively by,

Cov
(
d̂n, d̂i

)
=

1
4Sxx

1
S′xx

Nn

∑
j=1

Nl

∑
k=1

aja
(i)
k Cov

(
log I(n)Y

(
λj
)

, log I(l)Yi
(µk)

)
, (5.15)

Cov
(
d̂i, d̂i′

)
=

1
4

1

(S′xx)
2

Nl

∑
j=1

Nl

∑
k=1

a′ja
′
kCov

(
log I(l)Yi

(
µj

)
, log I(l)Yi′

(µk)
)
, (5.16)

with all notation as defined in Table 5.1.

Our aim is to obtain the set of weights, {wn, w1, . . . , wm} , such that d̂J,m has the following

properties:

(P.1) d̂J,m is an asymptotically unbiased estimator of d0, with bias reduced to an order of

o(N2
n
/

n2), and,

(P.2) d̂J,m achieves minimum variance among all such bias-reduced estimators.

The ‘optimal’ jackknife estimator so defined is derived via the Lagrangian method in the fol-

lowing section. In Section 4, the asymptotic properties of the covariances in (5.15) and (5.16)

that determine the asymptotic behaviour of the estimator are derived, and the asymptotic

efficiency of the estimator then proven.

5.3.2 Derivation of the optimal estimator

The minimization problem is formulated as follows. Produce weights, {wn, w1, . . . , wm}, that

satisfy:

min
wn,{wi}m

i=1

Var
(
d̂J,m

)
, (5.17)
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subject to two constraints

g1(wn, w1, . . . , wm) = wn −
m

∑
i=1

wi − 1 = 0, (5.18)

g2 (wn, w1, ..., wm) =
N2

n
n2 wn −m2 N2

l
l2

m

∑
i=1

wi = 0. (5.19)

We refer to the optimal estimator so produced as d̂Opt
J,m hereinafter.

Constraints (5.18) and (5.19) ensure that Property (P.1) holds for the resultant estimator.

Specifically, (5.18) ensures that d̂Opt
J,m is asymptotically unbiased for d0, as can be seen by in-

spection of (5.13). The dominant bias term of d̂Opt
J,m will be eliminated if and only if the second

component appearing in (5.13) is set to zero; that is, if and only if

2π2

9
g′′YY (0)
gYY (0)

N2
n

n2 wn −
2π2

9
g′′YiYi

(0)
gYiYi (0)

N2
l

l2

m

∑
i=1

wi = 0. (5.20)

Using Point (iii) of Table 5.1, we have that gYiYi (0) = gYY (0) and g′′YiYi
(0) = m2g′′YY (0). Hence,

the condition in (5.20) collapses to constraint (5.19). Given (5.17), Property (P.2) is satisfied by

construction.

Henceforth writing, Cov
(
d̂n, d̂i

)
= c∗n,i and Cov

(
d̂i, d̂i′

)
= c†

i,j, such that c†
i,j = c†

j,i, the La-

grangian function is given by,

L̃ (wn, w1, . . . , wm, δ1, δ2) =
π2

24Nn
w2

n +
π2

24Nl

m

∑
i=1

w2
i + 2

m−1

∑
i=1

m

∑
j=i+1

wiwjc†
i,j

−2wn

m

∑
i=1

wic∗n,i + δ1
(
wn −

m

∑
i=1

wi − 1
)

+δ2

(N2
n

n2 wn −m2 N2
l

l2

m

∑
i=1

wi

)
. (5.21)

The first-order conditions [FOCs] are thus given by,

∂L̃
∂δ1

= 0⇒ wn −
m

∑
i=1

wi = 1,
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∂L̃
∂δ2

= 0⇒ N2
n

n2 wn −m2 N2
l

l2

m

∑
i=1

wi = 0,

∂L̃
∂wn

= 0⇒ 2π2

24Nn
wn − 2

m

∑
i=1

wic∗n,i + δ1 +
N2

n
n2 δ2 = 0,

∂L̃
∂wi,m

= 0⇒ −2wnc∗n,i +
2π2

24Nl
wi + 2

m

∑
j=1,j 6=i

wjc†
i,j − δ1 −m2 N2

l
l2 δ2 = 0; i = 1, . . . , m.

Defining

A =



1 −1 . . . −1 0 0
N2

n
n2 −m2 N2

l
l2 . . . −m2 N2

l
l2 0 0

π2

12Nn
−2c∗n,1 . . . −2c∗n,m 1 N2

n
n2

−2c∗n,1
π2

12Nl
. . . 2c†

1,m −1 −m2 N2
l

l2

...
...

. . .
...

...
...

−2c∗n,m 2c†
1,m . . . π2

12Nl
−1 −m2 N2

l
l2


, w =


wnw1
...wm

δ1
δ2

 and b =


1
0
0
...
0
0

 ,

(5.22)

the optimal solution, w∗ = [ w∗n w∗1 . . . w∗m δ∗1 δ∗2 ]
> , is given by

w∗ = A−1b. (5.23)

Given the structure of b this means that the solutions for the weights are given by the elements

of the first column of A−1, and the optimal jackknife estimator is accordingly given as:

d̂Opt
J,m = w∗nd̂n −

m

∑
i=1

w∗i d̂i, (5.24)

where w∗n =
[
1−

(
Nnl
/
(Nlmn)

)2
]−1

, given immediately by solving the first two FOCs.

To complete the result we need to show that (5.23) is a local minimizer of L̃ (·) . To do so,

we need to show that: (i) the constraint qualification – that the rank of the matrix formed by

the first-order derivatives at the solution of the constraints with respect to parameters, except

the Lagrangian parameters, is equal to the number of conditions – is met, (ii) the solution

of the Lagrangian function satisfies the FOCs, and, (iii) the leading principal minors of the

bordered Hessian matrix, HB
(m+3)×(m+3), all take the same sign of (−1)k , where k is the number

of constraints (see, Chapter 12 of Chiang and Wainwright, 2005, for more details).
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In our problem, the number of constraints equals 2 and

Rank


∂g1

∂wn

∂g2

∂wn
∂g1

∂w1

∂g2

∂w1
...

...
∂g1

∂wm

∂g2

∂wm

 = Rank


1 1

N2
n

n2 m2 N2
l

l2

...
...

N2
n

n2 m2 N2
l

l2

 = 2.

Hence, the rank condition is met. The second condition is met by default. The important con-

dition is the third one, where we need to show that the leading principal minors of HB
(m+3)×(m+3),

exceed zero for every m = 2, 3, . . . . The bordered Hessian matrix for our case is given by

HB
(m+3)×(m+3) =



0 0 1 −1 · · · −1
0 0 N2

n
n2 −m2 N2

l
l2 . . . −m2 N2

l
l2

1 N2
n

n2
π2

12Nn
−2c∗n,1 . . . −2c∗n,m

−1 −m2 N2
l

l2 −2c∗n,1
π2

12Nl
. . . 2c†

1,m
...

...
...

...
. . .

...
−1 −m2 N2

l
l2 −2c∗n,m 2c†

1,m . . . π2

12Nl


.

The proof of positivity of the principal minors of the above matrix is given in Appendix 5.B.

Hence, the solution in (5.23) is a local minimizer of L̃ (·).

We complete this section with three remarks:

Remark 5.1 If we consider only bias reduction to the order N2
n
/

n2, without concurrent variance

reduction; that is, we produce an estimator that satisfies only (P.1), and not (P.2), then the formulae for

the weights are

w∗n =
[
1−

(Nn

Nl

l
nm

)2]−1
and w∗i =

1
m
(w∗n − 1) , for i = 1, . . . , m. (5.25)

These weights mimic those of Chambers (2013) in the short memory setting (under a non-overlapping

sub-sampling scheme), in which variance minimization was not a consideration.

Remark 5.2 When Chambers (2013) considers the moving-block sub-sampling scheme (again, in the

short memory setting), he chooses the sub-sample length to be l = n − m + 1. In this case, when n
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is large and m is small, the sub-sample length is l ≈ n, and the impact of bias correction is reduced

as a consequence; something that is in evidence in the Monte Carlo simulation results reported by that

author. As a result of this observation, in our investigations we use the common sub-sample length of

l = n/m, under both the non-overlapping and moving-block schemes.

Remark 5.3 Condition 3.3 of Guggenberger and Sun (2006) has a similar purpose to our (5.19). The

difference is that we eliminate the O
(

N2
n
/

n2
)

term from the bias of the LPR estimator, whereas they

eliminate bias up to an order of N2r
n
/

n2r, for some r ≥ 1. The role played by (5.17) is somewhat differ-

ent from that played by Condition 3.4 of Guggenberger and Sun (2006). The latter condition is imposed

mainly to link the bias and variance of d̂GS
r to that of d̂AG

r , for any given r; this link occurring via the

introduction of the tuning parameter, δ (see (5.10) above), on which the finite sample performance of

their estimator depends. In our method, (5.17) is used to control the increase in variance that occurs

due to the reduction in bias, with the optimal weights determined by (5.17)-(5.19) not depending on

any arbitrary quantities.

5.4 Asymptotic results

The asymptotic properties of the optimal jackknife estimator depend on the optimal weights

which, in turn, are functions of the covariance terms between the log-periodograms associated

with the full sample and the sub-samples, as seen in (5.15) and (5.16). Provided that the DGP

satisfies assumptions (A.1)− (A.3), Lahiri (2003) has shown that periodogram ordinates are

asymptotically independent when the frequencies are at a sufficient distance apart, provided

that the set of observations remain the same. However, in our case, we are dealing with

periodograms calculated both for the full set of observations, and for subsets of the full set.
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Thus, two questions that arise here are: (i) Are the periodograms of the full sample and

the sub-samples at different frequency ordinates asymptotically independent? and, (ii)When

d 6= 0, do the periodograms still converge to a Chi-squared distribution as they do when

d = 0 (see Theorem 5.2.6 of Brillinger, 1981)? We address both questions in Section 5.4.1 and

provide formulae for calculating the relevant covariance terms algebraically, adopting the

procedure used in Brillinger (1981). In Section 5.4.2 we then use these results to derive the

asymptotic properties of the optimal jackknife estimator.

5.4.1 Stochastic properties of periodograms in the full sample and in sub-samples

We begin by defining {X1, X2, . . . , Xh} as an arbitrary set of h stationary time series. We link

these series to the full sample and the m sub-samples of observations below. Our use of nota-

tion in this section mimics, in large part, that of Brillinger (1981, §. 2.6).

Definition 5.1 Suppose {X1, X2, . . . , Xh} is a set of h stationary time series. The kth-order cumulant

κXa1 ,...,Xak
(u1, ..., uk−1) , for k = 1, 2, . . . , h, and uj = 0,±1,±2... for j = 1, 2, ..., k− 1, is defined as

follows,

κXa1 ,...,Xak
(u1, ..., uk−1) =

∫ π

−π
. . .
∫ π

−π
exp

(
− ı

k−1

∑
j=1

λjuj

)
fXa1 ,...,Xak

(λ1, . . . , λk−1) dλ1 . . . dλk−1,

(5.26)

where fXa1 ,...,Xak
(λ1, . . . , λk−1) is the kth-order joint spectral density of {Xa1 , . . . , Xak}, for −π <

λj < π, j = 1, 2, ..., k− 1, with a1, . . . , ak = 1, 2, . . . , h, and k = 1, 2, . . ..

For ∑∞
u1=−∞ · · ·∑∞

uk−1=−∞

∣∣∣κXa1 ,...,Xak
(u1, ..., uk−1)

∣∣∣ < ∞, then the inverse form of (5.26) is given by,

fXa1 ,...,Xak
(λ1, . . . , λk−1) = (2π)−k+1

∞

∑
u1=−∞

· · ·
∞

∑
uk−1=−∞

κXa1 ,...,Xak
(u1, ..., uk−1) exp

(
− ı

k−1

∑
j=1

λjuj

)
.

(5.27)
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Now let X1 = y denote the full sample of n observations on the random variable following

the model in (5.1); whilst X1+i = yi denotes the vector of observations for the sub-sample

i = 1, 2, . . . , m, with length l. Set h = m + 1 in Definition 5.1. Let D(n)
X1
(.) and D(l)

X1+i
(.)

respectively be the DFT of the full sample and ith sub-sample at some frequency. Set

Li =
{

n i f i = 1
l otherwise . (5.28)

In Proposition 5.1 we give the expression for the kth-order joint cumulant of the DFTs of

the h = m+ 1 series associated with the full sample and the m sub-samples.

Proposition 5.1 Suppose Assumptions (A.1)− (A.3) hold. The kth-order cumulant of
{

D(L1)
Xa1

(λ1) ,

D(L2)
Xa2

(λ2) , ..., D(Lk)
Xak

(λk)
}

, for k = 1, 2, . . ., is given by,

κDXa1
,...,DXak

(λ1, ..., λk−1) = L−
k
2 (2π)

k
2−1 ∆(L)

( k

∑
j=1

λj

)
fXa1 ,...,Xak

(λ1, ..., λk−1) + o
(

L1−2d− k
2

)
,

(5.29)

where, L = min {L1, . . . , Lk}.4

From Proposition 5.1 we can derive the relationship between the DFTs corresponding to

full sample and the m sub-samples as the sample size increases. The result is given in the

following theorem:

Theorem 5.2 Suppose Assumptions (A.1)− (A.4) hold, and suppose λ = 2πr/Li and ω = 2πs/Lj

for integers r and s. Then for a fixed value of Li and Lj, D(Li)
Xai
(λ) and D(

Lj)
Xaj

(µ) are asymptotically

independent, whenever max
{

Liλ, Ljµ
}
→ ∞, for i 6= j.

4The kth-order cumulant of associated with the DFTs should, for completeness, be denoted by
κ

D(L1)
Xa1

,...,D
(Lk )
Xak

(., . . . , .). For notational ease, however, we express the cumulant without making explicit the rele-

vant sample sizes.

193



Chapter 5: Optimal bias-correction

Theorem 5.2 immediately implies the asymptotic independence of the periodograms of the

full sample and all sub-samples. However, in finite samples, the dependence structure across

these periodograms may play an important role in determining the variance of the jackknife

estimator in (5.14), through the form of the covariances in (5.15) and (5.16). Expressions for

the covariances between the periodograms corresponding to the full sample and the sub-

samples are provided in the following theorem, from which further insights on this point can

be gleaned.

Theorem 5.3 Let I(Li)
Xai
(λ) and I(

Lj)
Xaj

(λ) be the periodograms associated with DFTs D(Li)
Xai
(λ) and

D(
Lj)

Xaj
(µ) respectively. Suppose Assumptions (A.1)− (A.3) hold. Then,

Cov
(

I(Li)
Xai
(λ) , I(

Lj)
Xaj

(µ)
)
=

2π

L
fXai ,Xai ,Xaj ,Xaj

(λ,−λ, µ) +
2π

L
[η (λ− µ) + η (λ+ µ)]

×
{

fXai Xaj
(λ)
}2
+ 2π [η (λ− µ) + η (λ+ µ)] ,

× fXai Xaj
(λ) o

(
L
−2d)

+ o
(

L
−1−2d)

, (5.30)

where η (ω) = limT→∞
1

2π
∑T

t=−T exp {−ıωt}, and L is as defined in Proposition 5.1. When As-

sumption (A.4) also holds, the periodogram ordinates I(Li)
Xai
(µ) and I(

Lj)
Xaj

(ω) with i 6= j, are asymp-

totically fX1X1 (·) χ2
(2)

/
2 random variables.

Theorem 5.3 is a generalization of the result of Theorem 5.2.6 of Brillinger (1981) to the

context of jackknifing. Equation (5.30) provides the first few dominant terms of the covari-

ance between the periodograms associated with the full sample and a particular sub-sample,

or between distinct sub-samples, at various frequency ordinates. Further, (5.30) reflects the

fact that, for finite n, the relevant periodograms are positively correlated. This result is to

be anticipated given that the sub-samples are subsets of the full sample and, hence, retain
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the same dependence structure as the full sample. Furthermore, the theorem states that the

periodogram ordinates (for either the full sample and a given sub-sample, or between sub-

samples) have a limiting joint distribution of the form, fX1X1(λ) χ2
(2)

/
2, where fX1X1(.) is the

spectral density of the time series from which the full sample is generated.

Using the covariance terms and the distribution of the periodograms provided in the

above theorem, we can find the joint distribution of the log-periodograms associated with

the full sample and any sub-sample (or for two distinct sub-samples). Using the joint distri-

bution of the log-periodograms, we can derive the moment generating function of the joint

distribution. This leads to the derivation of the covariance terms for the log-periodogram.

This result is provided in Appendix 5.B. The covariances between log-periodograms allow us

to obtain the covariances between the full-sample and sub-sample LPR estimators given in

(5.15) and (5.16). Exploiting the relationship between the different LPR estimators, we then

establish the consistency and asymptotic normality of the optimal jackknife estimator in the

following section.

5.4.2 Asymptotic properties of the optimal jackknife estimator

Using the results established in the previous section, we state the relationship between the

full-sample and sub-sample LPR estimators in Theorem 5.4. The asymptotic properties of the

optimal jackknife estimator are then established in Theorem 5.5.

Theorem 5.4 Let d̂n and d̂i be the LPR estimators for the full-sample and the ith sub-sample with

sub-sample length, l. Suppose Assumptions (A.1)− (A.4) hold. Then, for a fixed value of m,

(i) d̂n and d̂i are asymptotically independent.
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(ii) d̂i and d̂j for i 6= j, i, j = 1, . . . , m, are asymptotically independent.

From Theorem 5.1, the LPR estimator constructed from the full sample is consistent and

satisfies (5.8). Similarly, allowing the number of sub-samples, m, to be fixed (hence l changes

as n changes such that n = m× l), as l → ∞, d̂i →P d0, and
√

Nl
(
d̂i − d0

)
→D N

(
0, π2

24

)
. This

implies the sub-sample LPR estimators have the same limiting distribution as the full-sample

estimator. The asymptotic properties of d̂Opt
J,m are given in the following theorem.

Theorem 5.5 Under the same assumptions and conditions given in Theorem 5.1, for a fixed value of

m,

d̂Opt
J,m →P d0, and

√
Nn
(
d̂Opt

J,m − d0
)
→D N

(
0, π2

24

)
,

where d0 is the true value of d and d̂Opt
J,m is as given in (5.24).

Thus, it follows from Theorem 5.5 that d̂Opt
J,m is consistent for d0 and achieves a limiting

normal distribution with the same variance as the base LPR estimator itself. Further, the rate

of convergence of the optimal jackknife estimator,
√

Nn, is also the same as that of the LPR

estimator. That is, there is no loss of asymptotic efficiency compared to d̂n. Importantly, these

asymptotic properties of the jackknife estimator do not depend on the number of sub-samples

or the sub-sample length, as long as the former is fixed and the latter increases with n such

that n = m× l.

5.5 Simulation exercise

In this section, Monte Carlo simulation is used to compare the finite sample performance of

the proposed jackknife estimator with: (i) the weighted-average estimator of Guggenberger
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and Sun (2006), d̂GS
r , with r = 1, (ii) the bias-corrected prefiltered sieve bootstrap-based esti-

mator of Poskitt et al. (2016), d̂PFSB, and, (iii) the unadjusted LPR estimator, d̂n. Performance

is assessed in terms of bias and RMSE, and under a variety of DGPs. All numerical results are

produced using MATLAB 2015b, version 8.6.0.267246.

5.5.1 Monte Carlo design

Data are generated from two stationary fractional processes where, without loss of gener-

ality, it is assumed that the process mean is zero. The two processes considered are the

ARFIMA(1, d0, 0) and ARFIMA(0, d0, 1) models, given respectively by

(1+ φ0B) (1− B)d0 Yt = εt, and (1− B)d0 Yt = (1+ θ0B) εt, (5.31)

where B is the backward shift operator, Bkxt = xt−k, for k = 1, 2, . . . , and εt ∼ i.i.d (0, 1).

We consider two alternative distributions for εt, namely, (i) Gaussian, and, (ii) Student t

with 5 degrees of freedom. For the parameter of interest, d, we consider true values, d0 =

{−0.25, 0, 0.25, 0.45}. Values from the set {−0.9,−0.4, 0.4} are adopted for both φ0 and θ0.

Sample sizes n ∈ {96, 576} are considered. These values are chosen to reflect the size

of samples used in real world examples (see, for example, Diebold et al., 1991, Delgado and

Robinson, 1994, Gil-Alana and Robinson, 1997, and Reisen and Lopes, 1999). However, one

should note that, in general, the size of data sets from finance, in particular those recorded

at high frequency (for example, Granger and Hyung, 2004), or from biology (for example,

the tree-ring data set of Contreras-reyes and Palma, 2013), or in certain other of the exam-

ples mentioned in the Introduction, are much larger than the sample sizes considered here.

On the other hand, these sample sizes are large enough to enable a range of values for the

number of sub-samples, m, to be explored, with the chosen range of m being {2, 3, 4, 6, 8}. We
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also consider only sub-samples that have equal length, l = n/m, under both sub-sampling

approaches.

We adopt the following procedure in implementing the jackknife bias-adjustment tech-

nique:

Step 1: Generate the full sample of size n, y, from the relevant stationary ARFIMA(p, d0, q)

model.

Step 2: Compute the LPR estimator of d0, d̂n using (5.5).

Step 3: Draw the sub-samples, yi (i = 1, 2, ..., m) , from the full sample based on the relevant

sub-sampling technique (non-overlapping or moving-block) and compute the LPR esti-

mator of d0, d̂i, for each sub-sample.

Step 4: Depending on the sub-sample selection method chosen in Step 3, obtain the optimal

weights for the corresponding method and compute the optimal jackknife estimator,

d̂Opt
J,m .

Step 5: Repeat Steps 1− 4 100, 000 times and compute estimates of the bias and RMSE of the

optimal jackknife estimator.

In Steps 2 and 3, the number of frequencies used to calculate the relevant LPR estimator

is set to NL = bLαc, with α = 0.65, where L is as defined in (5.28). The optimal jackknife

estimators calculated using the non-overlapping (abbreviated to Opt-NO), and moving-block

(abbreviated to Opt-MB) schemes, are denoted by d̂Opt−NO
J,m and d̂Opt−MB

J,m , respectively.

The weighted-average estimator of Guggenberger and Sun (2006) is computed as de-

scribed in Section 5.2.2, with the following additional details. For a given Nn, the set of
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bandwidths used to calculate the constituent estimators in (5.10) are Nn,i = bqiNnc, where

q> = (q1, q2, . . . , qK) = (1, 1.05, . . . , 2). We produce the GS estimator (based on r = 1) using

two different choices of Nn: (i) Nn = bnαc, with α = 0.65 (denoting this estimator by d̂GS
1 ),

and (ii) the optimal choice of Nn as suggested in Guggenberger and Sun (2006, page 876)

(denoting this version by d̂Opt−GS
1 ). Importantly, this optimal choice of bandwidth depends

on knowledge of the true values of the short memory parameters. The parameter δ, required

for both versions of the GS estimator, is evaluated using the formula δ = τr/(τ∗r ∑K
i=1 q2+2r

k ),

where τ∗r−1 = − (2π)2r r
/
[(2r)! (2r+ 1)2] and the number τr is as defined in Andrews and

Guggenberger (2003). Details regarding the construction of the pre-filtered sieve bootstrap

estimator (d̂PFSB) can be found in Poskitt et al. (2016). In implementing this method, we set the

number of bootstrap samples to B = 1000.5

5.5.2 Finite sample bias and RMSE

In this section, we document the relative performance of the jackknife method in two scenar-

ios: (i) when the true parameters are assumed to be known and are used in the construction

of the optimal jackknife weights, and, (ii)when they are unknown. The relevant finite sample

results are presented in Section 5.5.2.1 and Section 5.5.2.2 respectively. In case (i) we compare

the jackknife estimator with the GS estimator obtained with the optimal choice of Nn (d̂Opt−GS
1 )

- which, of course, relies on the known values of the short memory parameters - and with the

sub-optimal estimator, d̂GS
1 . In case (ii) results for only d̂GS

1 are included, as d̂Opt−GS
1 is infea-

sible.6 An iterative method is used to produce a feasible version of the jackknife estimator in

5Certain simulation results based on α = 0.5 have also been produced but are not presented in the main text.
These results are presented in Appendix 5.C.

6Note that in the case where the short-memory dynamics are unknown Guggenberger and Sun (2006) sug-
gest that an adaptive procedure for the local Whittle-based estimator that they propose could be extended to the
weighted-average estimator based on LPR. Since the adaptive method is not provided in detail in their paper, we
do not pursue this option here.
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this case. Note that the finite sample results for the (raw) LPR and PFSB estimators remain the

same in both scenarios, as the construction of neither estimator relies on knowledge of any of

the true parameters. To save on space, results for d̂Opt−NO
J,m are recorded for the full range of

values for m, whilst results for d̂Opt−MB
J,m based on only m = 2 are documented. We do note

that the patterns exhibited (in terms of both bias and RMSE) for d̂Opt−MB
J,m , across m, are similar

to those exhibited for d̂Opt−NO
J,m .

5.5.2.1 Case 1: True parameters are known

Tables 5.2 and 5.3 record the bias and RMSE of the various optimal jackknife estimators, the

two different GS estimators, and the LPR and PFSB estimators, for case where the DGP is

ARFIMA(1, d0, 0) and the short memory parameter φ0 is known and the bandwidth corre-

sponding to α = 0.65. The corresponding results for the ARFIMA(0, d0, 1) DGP are presented

in Tables 5.4 and 5.5. The top panel of each table displays the results based on Gaussian er-

rors and the bottom panel of each, the results based on Student t errors with 5 degrees of

freedom (denoted by Student t5 hereafter). The lowest biases and RMSEs for each design are

marked in boldface. Similarly, the results for α = 0.5 are presented in Tables 5.10 – 5.13 for

ARFIMA(1, d0, 0) and ARFIMA(0, d0, 1) DGPs.

We shall begin the discussion on the bias and RMSE results based on α = 0.65. With

reference to Tables 5.2 and 5.3: as is consistent with existing results (see, for example, Agiak-

loglou et al., 1993, Nielsen and Frederiksen, 2005 and Poskitt et al., 2016) when short memory

dynamics are present, the raw, unadjusted, LPR estimator is biased, as the low frequencies

are contaminated by the spectral density of the short run dynamics, particularly for negative

values of φ (which corresponds to positive autocorrelation). As is evident from the recorded
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results, the bias is particularly large when there is a large negative value for φ0 in (5.31), and it

decreases as this value increases. Further, both bias and RMSE decline as the sample size in-

creases, illustrating the consistency of the estimator. These characteristics of the LPR estimator

are in evidence for both error processes: Gaussian and Student t5.

We shall now comment on the performance of all nine bias-corrected estimators under

the ARFIMA (1, d0, 0) process. With reference to Table 5.2, for the great majority of designs,

d̂Opt−NO
J,m with m = 2, has the smallest bias of all, and uniformly for φ0 = −0.9. For φ0 = −0.9

and n = 96, the bias reduction of d̂Opt−NO
J,m (m = 2), relative to the raw LPR estimator is up to

3.6%, and when n = 576, this rises to 5.7%.7 For the larger values of φ0, when n = 96, the bias

reduction ranges from 27% to 82%, and from 67% to 97% when n = 576. Only occasionally

is this particular version of the jackknife estimator inferior to an alternative bias-adjusted

estimator. Importantly, however, an increase in m leads to an increase in bias for d̂Opt−NO
J,m and,

hence, a reduction in its superiority over all alternatives, including the raw LPR method. The

reason is that the increase in m leads to a smaller sub-sample length and, hence, increases

the finite sample impact of the dominant bias term on the sub-sample estimators used in the

construction of the jackknife estimator.

Now referencing the results in Table 5.3, we see that despite the lack of variance inflation in

the asymptotic distribution of the optimal jackknife estimator, the reduction in bias does cause

some finite sample increase in variance, leading to RMSEs for d̂Opt−NO
J,m that are occasionally

slightly larger than the RMSE of the raw LPR estimator. That said, in the vast majority of cases

d̂Opt−NO
J,m with m = 8, has the smallest RMSE of all estimators (including the raw LPR) and,

in many cases, the RMSE of the jackknife estimator with the smallest bias (d̂Opt−NO
J,m , m = 2)

7We remind the reader that when φ0 = −0.9 all estimators remain very biased.
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has a RMSE which remains less than that of the raw estimator. In addition, all versions of

the jackknife estimator (including the moving-block version) tend to have smaller RMSEs

than the three alternative bias-corrected methods (d̂GS
1 , d̂Opt−GS

1 and d̂PFSB), most notably for

the smaller sample size (n = 96 ). As befits the optimality of the estimator, in almost all

cases, d̂Opt−GS
1 out-performs d̂GS

1 , in terms of both bias and RMSE, although both estimators,

as already noted, are virtually always out-performed by a version of the jackknife procedure.

The bias and RMSE features of the LPR estimator and all nine bias-corrected estimators do

hold even for the bandwidth associated with α = 0.5, (see Tables 5.10 and 5.11). Importantly,

when α = 0.5 all the estimators exhibit smaller bias and larger RMSE compared to case that of

α = 0.65 for all φ0 and d0. Due to the very large RMSE that comes with the choice of smaller

bandwidth, we recommend using larger bandwidth.

The broad conclusions drawn above obtain under both specifications for the innovations,

and also under the ARFIMA(0, d0, 1) DGP, as seen from the results recorded in Tables 5.4 and

5.5.

5.5.2.2 Case 2: True parameters are unknown

Evaluation of the optimal weights in (5.23), required for the construction of the optimal jack-

knife estimator, depends on the covariances between both the different sub-sample LPR esti-

mators and between the full-sample and sub-sample estimators, as given in (5.15) and (5.16).

These covariances depend, in turn, on covariances between the various log-periodograms

and, hence, on the values of the parameters that underpin the true DGP, as is made explicit

in (5.30) and Appendix 5.B. Hence, implementation of the optimal bias-correction procedure

via the jackknife is not feasible in practice, without modification. To this end, we propose the
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Table 5.2: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(1, d0, 0). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

φ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFSB

Gaussian
-0.9 -0.25 96 0.8145 0.7852 0.7903 0.7995 0.8072 0.8120 0.8156 0.8002 0.7902 0.7908

576 0.5945 0.5614 0.5682 0.5726 0.5804 0.5946 0.5841 0.5724 0.5657 0.5898
0 96 0.8053 0.7865 0.7945 0.7988 0.8042 0.8169 0.7927 0.8015 0.7957 0.7955

576 0.5912 0.5581 0.5627 0.5699 0.5773 0.5843 0.5608 0.5761 0.5630 0.5888
0.25 96 0.7752 0.7477 0.7515 0.7694 0.7747 0.7804 0.7799 0.7673 0.7517 0.7685

576 0.5883 0.5553 0.5622 0.5687 0.5731 0.5816 0.5673 0.5716 0.5628 0.5638
0.45 96 0.7006 0.6783 0.6842 0.6905 0.7046 0.7172 0.6945 0.6946 0.6846 0.6705

576 0.5748 0.5423 0.5487 0.5535 0.5586 0.5629 0.5567 0.5659 0.5580 0.5451
-0.4 -0.25 96 0.1756 0.1223 0.1344 0.1459 0.1563 0.1660 0.1560 0.1367 0.1286 0.1435

576 0.0607 0.0043 0.0429 0.0534 0.0585 0.0599 0.0599 0.0304 0.0245 0.0286
0 96 0.1653 0.1203 0.1216 0.1395 0.1596 0.1674 0.1674 0.1304 0.1276 0.1353

576 0.0560 0.0127 0.0253 0.0307 0.0479 0.0569 0.0369 0.0264 0.0152 0.0249
0.25 96 0.1629 0.1190 0.1274 0.1314 0.1508 0.1665 0.0731 0.1329 0.1276 0.1294

576 0.0571 0.0179 0.0243 0.0341 0.0431 0.0599 0.0599 0.0289 0.0181 0.0251
0.45 96 0.1653 0.1154 0.1226 0.1353 0.1560 0.1702 0.1702 0.1400 0.1245 0.1277

576 0.0625 0.0203 0.0325 0.0495 0.0518 0.0667 0.0667 0.0359 0.0217 0.0261
0.4 -0.25 96 -0.0363 -0.0194 -0.0136 -0.0259 -0.0323 -0.0493 -0.0393 -0.0047 -0.0068 -0.0147

576 -0.0056 -0.0004 -0.0037 -0.0046 -0.0057 -0.0076 -0.0076 0.0056 -0.0027 -0.0004
0 96 -0.0534 -0.0114 -0.0145 -0.0298 -0.0360 -0.0449 -0.0549 -0.0089 -0.0092 -0.0175

576 -0.0125 -0.0007 -0.0049 -0.0038 -0.0031 -0.0028 -0.0128 -0.0008 -0.0007 -0.0040
0.25 96 -0.0559 -0.0121 -0.0188 -0.0281 -0.0350 -0.0458 -0.0558 -0.0068 -0.0050 -0.0153

576 -0.0115 -0.0003 -0.0014 -0.0024 -0.0079 -0.0100 -0.0100 0.0017 -0.0008 -0.0027
0.45 96 -0.0501 -0.0091 -0.0092 -0.0302 -0.0460 -0.0486 -0.0486 0.0032 0.0090 -0.0111

576 -0.0058 -0.0003 -0.0037 -0.0054 -0.0062 -0.0078 -0.0028 0.0089 -0.0061 0.0004
Student t5

-0.9 -0.25 96 0.8123 0.7739 0.7895 0.7921 0.7993 0.8042 0.7913 0.7914 0.7856 0.7847
576 0.5952 0.5621 0.5693 0.5740 0.5805 0.5873 0.5746 0.5863 0.5775 0.5770

0 96 0.8034 0.7749 0.7816 0.7895 0.7927 0.7988 0.7822 0.7843 0.7763 0.7830
576 0.5915 0.5516 0.5644 0.5716 0.5780 0.5853 0.5769 0.5642 0.5640 0.5539

0.25 96 0.7726 0.7457 0.7564 0.7622 0.7693 0.7749 0.7626 0.7633 0.7536 0.7572
576 0.5883 0.5453 0.5631 0.5684 0.5733 0.5798 0.5657 0.5633 0.5532 0.5472

0.45 96 0.7002 0.6714 0.6719 0.6781 0.6829 0.6941 0.6870 0.6849 0.6780 0.6731
576 0.5758 0.5434 0.5511 0.5584 0.5612 0.5679 0.5548 0.5602 0.5587 0.5514

-0.4 -0.25 96 0.1764 0.1326 0.1341 0.1457 0.1566 0.1467 0.1632 0.1371 0.1263 0.1422
576 0.0611 0.0140 0.0233 0.0238 0.0281 0.0302 0.0244 0.0305 0.0246 0.0289

0 96 0.1662 0.1205 0.1215 0.1295 0.1301 0.1384 0.1269 0.1307 0.1259 0.1340
576 0.0565 0.0230 0.0258 0.0312 0.0374 0.0472 0.0347 0.0266 0.0175 0.0252

0.25 96 0.1640 0.1196 0.1279 0.1319 0.1374 0.1381 0.1276 0.1334 -0.1237 0.1282
576 0.0575 0.0184 0.0149 0.0128 0.0176 0.0201 0.0128 0.0292 -0.0163 0.0254

0.45 96 0.1666 0.1033 0.1060 0.1100 0.1163 0.1214 0.1228 0.1405 -0.1374 0.1270
576 0.0627 0.0206 0.0229 0.0300 0.0414 0.0466 0.0402 0.0359 -0.0142 0.0627

0.4 -0.25 96 -0.0357 -0.0116 -0.0180 -0.0232 -0.0016 -0.0014 -0.0035 -0.0054 -0.0089 -0.0132
576 -0.0052 -0.0023 -0.0045 -0.0081 -0.0106 -0.0075 -0.0081 -0.0054 -0.0024 0.0003

0 96 -0.0525 -0.0148 -0.0192 -0.0179 -0.0158 -0.0141 -0.0144 -0.0081 -0.0077 -0.0164
576 -0.0121 -0.0036 -0.0045 -0.0082 -0.0095 -0.0116 -0.0093 -0.0006 -0.0038 -0.0033

0.25 96 -0.0641 -0.0034 -0.0076 -0.0178 -0.0143 -0.0244 -0.0175 -0.0062 -0.0056 -0.0165
576 -0.0182 0.0016 0.0014 0.0002 -0.0083 -0.0098 -0.0027 -0.0019 -0.0039 -0.0045

0.45 96 -0.0489 -0.0198 -0.0085 -0.0197 -0.0258 -0.0274 -0.0166 -0.0040 -0.0100 -0.0097
576 -0.0055 -0.0008 -0.0031 -0.0060 -0.0025 -0.0029 -0.0016 -0.0087 -0.0027 0.0008*
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Table 5.3: RMSE estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(1, d0, 0). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

φ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFSB

Gaussian
-0.9 -0.25 96 1.0359 1.0627 1.0532 1.0596 1.0358 1.0286 1.1837 1.3386 1.1864 1.2885

576 0.7398 0.7490 0.7403 0.7372 0.7325 0.7299 0.7382 0.7371 0.7200 0.7359
0 96 1.1148 1.1398 1.1275 1.1158 1.1080 1.0966 1.1576 1.1819 1.1120 1.2167

576 0.8288 0.8370 0.8311 0.8294 0.8216 0.8157 0.8215 0.8173 0.8173 0.8053
0.25 96 1.1618 1.1857 1.1066 1.0971 1.0944 1.0913 1.1162 1.1484 1.1285 1.2299

576 0.9175 0.9250 0.9203 0.9186 0.9128 0.9076 0.9115 1.1171 1.0172 1.1130
0.45 96 1.1286 1.1552 1.1325 1.1294 1.1200 1.1168 1.1132 1.4331 1.3331 1.5385

576 0.9708 0.9781 0.9732 0.9650 0.9558 0.9546 0.9687 1.1124 1.0524 1.1647
-0.4 -0.25 96 0.2568 0.2292 0.2568 0.2422 0.2384 0.2376 0.2576 0.2594 0.2441 0.3028

576 0.1098 0.0978 0.0974 0.0884 0.0873 0.0896 0.1096 0.1118 0.0995 0.1272
0 96 0.2498 0.2395 0.2284 0.2146 0.2138 0.2117 0.2517 0.2560 0.2416 0.2930

576 0.1069 0.0837 0.0879 0.0819 0.0787 0.0778 0.1078 0.1104 0.0967 0.1247
0.25 96 0.2490 0.2678 0.2574 0.2435 0.2354 0.2254 0.3254 0.2580 0.2404 0.2879

576 0.1079 0.1036 0.0965 0.0901 0.0819 0.0797 0.1097 0.1115 0.1029 0.1239
0.45 96 0.2506 0.2615 0.2563 0.2434 0.2390 0.2243 0.2544 0.2616 0.2511 0.2506

576 0.1115 0.0963 0.0878 0.0808 0.0777 0.0742 0.1142 0.1143 0.1005 0.1230
0.4 -0.25 96 0.1917 0.1721 0.1654 0.1629 0.1544 0.1529 0.1929 0.2212 0.2157 0.2717

576 0.0919 0.0762 0.0747 0.0665 0.0632 0.0624 0.0924 0.1081 0.0695 0.1198
0 96 0.1946 0.1726 0.1717 0.1631 0.1569 0.1557 0.1957 0.2203 0.2162 0.2546

576 0.0920 0.0890 0.0793 0.0751 0.0730 0.0724 0.0924 0.1073 0.0684 0.1166
0.25 96 0.1960 0.2107 0.2063 0.2008 0.1913 0.1966 0.1966 0.2209 0.2091 0.2482

576 0.0922 0.0705 0.0696 0.0644 0.0627 0.0624 0.0924 0.1076 0.0688 0.1158
0.45 96 0.1955 0.2178 0.2140 0.2085 0.2061 0.2058 0.1958 0.2218 0.2143 0.2453

576 0.0926 0.0710 0.0684 0.0667 0.0634 0.0569 0.0929 0.1089 0.0701 0.1149
Student t5

-0.9 -0.25 96 1.0321 1.0600 0.9961 0.9820 0.9723 0.9641 0.9862 1.1741 1.0708 1.0570
576 0.7408 0.7501 0.7415 0.7386 0.7159 0.7004 0.7439 0.7406 0.7215 0.7309

0 96 1.1120 1.1373 1.1120 1.1085 1.0958 1.0767 1.0946 1.2792 1.1728 1.2542
576 0.8291 0.8376 0.8216 0.8173 0.8066 0.7914 0.8264 0.8484 0.8181 0.8367

0.25 96 1.1577 1.1822 1.1648 1.1432 1.1257 1.1169 1.1384 1.2620 1.1624 1.2967
576 0.9173 0.9248 0.9155 0.9048 0.8937 0.8845 0.8762 0.9174 0.9076 0.9133

0.45 96 1.1272 1.1533 1.1762 1.1520 1.1344 1.1159 1.1254 1.2314 1.2058 1.2848
576 0.9720 0.9793 0.9640 0.9536 0.9428 0.9342 0.9595 0.9643 0.9532 0.9755

-0.4 -0.25 96 0.2562 0.2901 0.2659 0.2613 0.2579 0.2553 0.3156 0.2587 0.2415 0.3008
576 0.1096 0.1078 0.1075 0.1083 0.1090 0.1093 0.0961 0.1109 0.1064 0.1264

0 96 0.2492 0.2403 0.2376 0.2337 0.2330 0.2315 0.2643 0.2552 0.2476 0.2912
576 0.1069 0.0939 0.0982 0.0920 0.0884 0.0875 0.0919 0.1095 0.0900 0.1241

0.25 96 0.2487 0.2384 0.2367 0.2327 0.2246 0.2216 0.2550 0.2567 0.2418 0.2865
576 0.1078 0.1040 0.1367 0.1201 0.1116 0.1023 0.1040 0.1106 0.1095 0.1233

0.45 96 0.2509 0.2475 0.2464 0.2335 0.2293 0.2247 0.2346 0.2610 0.2549 0.2881
576 0.1115 0.1067 0.1032 0.1009 0.0974 0.0941 0.0965 0.1137 0.1010 0.1228

0.4 -0.25 96 0.1907 0.2142 0.2075 0.2038 0.1958 0.1956 0.2001 0.2202 0.2112 0.2698
576 0.0915 0.0955 0.0944 0.0860 0.0832 0.0820 0.1178 0.1076 0.0943 0.1190

0 96 0.1930 0.1853 0.1756 0.1625 0.1550 0.1543 0.1915 0.2181 0.2004 0.2532
576 0.0915 0.0955 0.0944 0.0860 0.0832 0.0820 0.1178 0.1076 0.0997 0.1190

0.25 96 0.1977 0.1889 0.1844 0.1792 0.1758 0.1750 0.2016 0.2193 0.2019 0.2361
576 0.0927 0.0998 0.0953 0.0940 0.0925 0.0918 0.1116 0.1072 0.0981 0.1216

0.45 96 0.1942 0.1864 0.1724 0.1671 0.1655 0.1546 0.2147 0.2201 0.2048 0.2440
576 0.0924 0.0887 0.0804 0.0764 0.0733 0.0728 0.1009 0.1082 0.0942 0.1142
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Table 5.4: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(0, d0, 1). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

θ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFSB

Gaussian
-0.9 -0.25 96 -0.5671 -0.5276 -0.5348 -0.5429 -0.5574 -0.5653 -0.5536 -0.5450 -0.5329 -0.5466

576 -0.4527 -0.4149 -0.4266 -0.4357 -0.4404 -0.4595 -0.4375 -0.4385 -0.4248 -0.4285
0 96 -0.7042 -0.6416 -0.6502 -0.6642 -0.6743 -0.6869 -0.6724 -0.6575 -0.6476 -0.6664

576 -0.5594 -0.5112 -0.5259 -0.5384 -0.5469 -0.5572 -0.5346 -0.5256 -0.5156 -0.5375
0.25 96 -0.7763 -0.7299 -0.7345 -0.7466 -0.7547 -0.7681 -0.7367 -0.7524 -0.7425 -0.7661

576 -0.5880 -0.5299 -0.5374 -0.5450 -0.5581 -0.5623 -0.5348 -0.5473 -0.5373 -0.5621
0.45 96 -0.8004 -0.7414 -0.7588 -0.7615 -0.7741 -0.7878 -0.7649 -0.7600 -0.7501 -0.7854

576 -0.5880 -0.5061 -0.5127 -0.5349 -0.5457 -0.5537 -0.5224 -0.5351 -0.5151 -0.5527
-0.4 -0.25 96 -0.1437 -0.1013 -0.1152 -0.1105 -0.1211 -0.1371 -0.1271 -0.1120 -0.1057 -0.1240

576 -0.0476 -0.0342 -0.0234 -0.0139 -0.0234 -0.0303 -0.0303 -0.0187 -0.0123 -0.0271
0 96 -0.1653 -0.1199 -0.1213 -0.1293 -0.1394 -0.1472 -0.1472 -0.1305 -0.1209 -0.1248

576 -0.0560 -0.0226 -0.0353 -0.0407 -0.0579 -0.0570 -0.0370 -0.0265 -0.0274 -0.0307
0.25 96 -0.1692 -0.1136 -0.1273 -0.1292 -0.1398 -0.1496 -0.1496 -0.1297 -0.1170 -0.1200

576 -0.0552 -0.0122 -0.0366 -0.0475 -0.0529 -0.0543 -0.0443 -0.0243 -0.0160 -0.0287
0.45 96 -0.1630 -0.0712 -0.1374 -0.1510 -0.1605 -0.1620 -0.1420 -0.1190 -0.1036 -0.1118

576 -0.0493 -0.0155 -0.0177 -0.0314 -0.0436 -0.0436 -0.0268 -0.0169 -0.0126 -0.0244
0.4 -0.25 96 0.0637 0.0036 0.0475 0.0563 0.0628 0.0637 0.0437 0.0154 0.0092 0.0651

576 0.0175 0.0037 0.0092 0.0068 0.0141 0.0161 0.0061 0.0049 0.0040 0.0132
0 96 0.0525 0.0202 0.0234 0.0288 0.0351 0.0340 0.0340 0.0081 0.0077 0.0603

576 0.0125 0.0088 0.0148 0.0137 0.0130 0.0128 0.0088 0.0006 0.0007 0.0100
0.25 96 0.0504 0.0164 0.0397 0.0511 0.0566 0.0535 0.0335 0.0110 0.0095 0.0574

576 0.0136 0.0028 0.0048 0.0072 0.0083 0.0157 0.0057 0.0031 0.0030 0.0108
0.45 96 0.0549 0.0192 0.0375 0.0474 0.0641 0.0592 0.0393 0.0204 0.0112 0.0570

576 0.0192 0.0049 0.0072 0.0069 0.0073 0.0129 0.0119 0.0103 0.0050 0.0132
Student t5

-0.9 -0.25 96 -0.5754 -0.5194 -0.5249 -0.5357 -0.5486 -0.5549 -0.5375 -0.5479 -0.5373 -0.5553
576 -0.4589 -0.3941 -0.4043 -0.4129 -0.4261 -0.4384 -0.4158 -0.4275 -0.4196 -0.4103

0 96 -0.7073 -0.6270 -0.6368 -0.6425 -0.6574 -0.6682 -0.6466 -0.6427 -0.6379 -0.6638
576 -0.5613 -0.5139 -0.5259 -0.5340 -0.5473 -0.5583 -0.5242 -0.5366 -0.5291 -0.5570

0.25 96 -0.7814 -0.7172 -0.7272 -0.7364 -0.7468 -0.7514 -0.7344 -0.7373 -0.7216 -0.7477
576 -0.5876 -0.5294 -0.5341 -0.5448 -0.5527 -0.5643 -0.5409 -0.5478 -0.5378 -0.5532

0.45 96 -0.8032 -0.7449 -0.7562 -0.7662 -0.7749 -0.7828 -0.7641 -0.6661 -0.7654 -0.7880
576 -0.5875 -0.5151 -0.5247 -0.5384 -0.5466 -0.5571 -0.5349 -0.5364 -0.5159 -0.5438

-0.4 -0.25 96 -0.1442 -0.1119 -0.1264 -0.1342 -0.1465 -0.1551 -0.1482 -0.1117 -0.0985 -0.1224
576 -0.0477 -0.0103 -0.0264 -0.0342 -0.0463 -0.0582 -0.0462 -0.0187 -0.0106 -0.0208

0 96 -0.1646 -0.1101 -0.1183 -0.1242 -0.1375 -0.1462 -0.1558 -0.1299 -0.1140 -0.1259
576 -0.0559 -0.0127 -0.0326 -0.0257 -0.0365 -0.0486 -0.0462 -0.0265 -0.0157 -0.0264

0.25 96 -0.1686 -0.1122 -0.1264 -0.1358 -0.1467 -0.1582 -0.1432 -0.1290 -0.1154 -0.1211
576 -0.0548 -0.0123 -0.0257 -0.0299 -0.0306 -0.0397 -0.0267 -0.0242 -0.0179 -0.0248

0.45 96 -0.1621 -0.0698 -0.0712 -0.0793 -0.0862 -0.0944 -0.0885 -0.1183 -0.1043 -0.1071
576 -0.0492 -0.0157 -0.0254 -0.0332 -0.0397 -0.0453 -0.0262 -0.0169 -0.0178 -0.0209

0.4 -0.25 96 0.0648 0.0037 0.0099 0.0176 0.0224 0.0346 0.0448 0.0159 0.0103 0.0187
576 0.0179 0.0025 0.0158 0.0193 0.0247 0.0331 0.0134 0.0051 0.0030 0.0074

0 96 0.0529 0.0193 0.0415 0.0481 0.0516 0.0564 0.0442 0.0084 0.0060 0.0145
576 0.0122 0.0059 0.0086 0.0056 0.0095 0.0103 0.0186 0.0008 0.0006 0.0038

0.25 96 0.0505 0.0111 0.0168 0.0193 0.0215 0.0397 0.0375 0.0116 0.0082 0.0151
576 0.0140 0.0024 0.0064 0.0095 0.0119 0.0168 0.0081 0.0033 0.0030 0.0053

0.45 96 0.0561 0.0097 0.0276 0.0334 0.0415 0.0483 0.0382 0.0209 0.0100 0.0187
576 0.0194 0.0043 0.0096 0.0126 0.0143 0.0177 0.0122 0.0103 0.0051 0.0076
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Table 5.5: RMSE estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(0, d0, 1). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

θ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFSB

Gaussian
-0.9 -0.25 96 0.6233 0.6345 0.6275 0.6177 0.6112 0.6020 0.6284 0.6385 0.6086 0.8247

576 0.4794 0.4812 0.4723 0.4662 0.4553 0.4492 0.4671 0.4885 0.4686 0.4977
0 96 0.7361 0.8081 0.7972 0.7875 0.7726 0.7642 0.7815 0.8413 0.7214 0.8510

576 0.5687 0.5919 0.5822 0.5719 0.5641 0.5527 0.5637 0.5838 0.5639 0.5942
0.25 96 0.7996 0.8096 0.7918 0.7872 0.7716 0.7615 0.7715 0.8268 0.7869 0.8430

576 0.5951 0.6193 0.6022 0.5976 0.5843 0.5693 0.5826 0.6219 0.6019 0.6590
0.45 96 0.8219 0.8410 0.8325 0.8224 0.8135 0.8064 0.8231 0.8590 0.8190 0.8327

576 0.5950 0.6066 5953 0.5871 0.5763 0.5642 0.5783 0.6298 0.6198 0.6487
-0.4 -0.25 96 0.2376 0.2253 0.2218 0.2198 0.2133 0.2102 0.2401 0.2488 0.2255 0.3103

576 0.1037 0.0923 0.0895 0.0745 0.0672 0.0652 0.1052 0.1098 0.1004 0.1254
0 96 0.2497 0.2385 0.2278 0.2142 0.2136 0.2015 0.2514 0.2559 0.2512 0.2883

576 0.1070 0.0936 0.0979 0.0819 0.0887 0.0778 0.1078 0.1105 0.0845 0.1215
0.25 96 0.2527 0.2451 0.2425 0.2379 0.2343 0.2335 0.2535 0.2560 0.2495 0.2782

576 0.1068 0.0987 0.1052 0.1057 0.0964 0.0867 0.1067 0.1103 0.0934 0.1199
0.45 96 0.2496 0.2524 0.2459 0.2476 0.2493 0.2495 0.2495 0.2518 0.2441 0.2725

576 0.1047 0.0928 0.0900 0.0855 0.0830 0.0740 0.1040 0.1098 0.0991 0.1188
0.4 -0.25 96 0.1982 0.1894 0.1875 0.1825 0.1793 0.1687 0.1987 0.2212 0.2153 0.2809

576 0.0932 0.0858 0.0988 0.0947 0.0935 0.0933 0.0933 0.1078 0.0812 0.1268
0 96 0.1944 0.1826 0.1815 0.1729 0.1666 0.1654 0.1955 0.2203 0.2146 0.2701

576 0.0919 0.0890 0.0893 0.0850 0.0829 0.0824 0.0924 0.1072 0.0930 0.1243
0.25 96 0.1947 0.1945 0.1918 0.1878 0.1780 0.1762 0.1962 0.2213 0.2048 0.2663

576 0.0925 0.0942 0.1079 0.0983 0.0942 0.0832 0.0932 0.1077 0.0924 0.1238
0.45 96 0.1964 0.1769 0.1649 0.1544 0.1407 0.1483 0.1984 0.2223 0.2175 0.2643

576 0.0943 0.0902 0.0831 0.0846 0.0772 0.0756 0.0955 0.1090 0.0939 0.1229
Student t5

-0.9 -0.25 96 0.6316 0.6469 0.6328 0.6284 0.6117 0.6045 0.6286 0.6421 0.6236 0.6643
576 0.4858 0.4911 0.4872 0.4769 0.4681 0.4573 0.4822 0.5262 0.5192 0.5985

0 96 0.7387 0.7513 0.7404 0.7318 0.7264 0.7128 0.7391 0.7614 0.7162 0.7848
576 0.5709 0.5950 0.5802 0.5741 0.5662 0.5586 0.5940 0.6045 0.5873 0.5838

0.25 96 0.8053 0.8175 0.8026 0.7925 0.7816 0.7726 0.7921 0.8387 0.8297 0.8414
576 0.5948 0.6390 0.6204 0.6349 0.6482 0.6598 0.6415 0.5124 0.5122 0.5694

0.45 96 0.8249 0.8345 0.8237 0.8182 0.8034 0.7925 0.8164 0.8646 0.8040 0.8333
576 0.5948 0.6060 0.5913 0.5872 0.5713 0.5652 0.5873 0.6112 0.5907 0.5639

-0.4 -0.25 96 0.2377 0.2447 0.2353 0.2216 0.2153 0.2064 0.2347 0.2484 0.2318 0.3067
576 0.1036 0.1024 0.0982 0.0913 0.0826 0.0762 0.0856 0.1091 0.0992 0.1205

0 96 0.2483 0.2371 0.2264 0.2145 0.2264 0.2375 0.2536 0.2549 0.2464 0.2892
576 0.1064 0.1433 0.1375 0.1246 0.1162 0.1123 0.1348 0.1095 0.0933 0.1171

0.25 96 0.2510 0.2529 0.2457 0.2364 0.2254 0.2176 0.2620 0.2543 0.2486 0.2779
576 0.1063 0.1180 0.1103 0.1096 0.1002 0.0927 0.1126 0.1093 0.0945 0.1169

0.45 96 0.2477 0.2511 0.2486 0.2401 0.2365 0.2274 0.2495 0.2499 0.2344 0.2652
576 0.1047 0.1126 0.1082 0.1010 0.0985 0.0919 0.1123 0.1092 0.0920 0.1169

0.4 -0.25 96 0.1970 0.2275 0.2033 0.1972 0.1861 0.1804 0.2166 0.2202 0.2127 0.2208
576 0.0927 0.1054 0.1002 0.0982 0.0935 0.0876 0.1011 0.1069 0.0922 0.1041

0 96 0.1936 0.2096 0.2024 0.1975 0.1912 0.1876 0.2153 0.2193 0.2058 0.2110
576 0.0918 0.1188 0.1113 0.1054 0.1069 0.0984 0.1068 0.1062 0.0915 0.1134

0.25 96 0.1935 0.2235 0.2175 0.2141 0.2097 0.1822 0.1972 0.2196 0.1905 0.2126
576 0.0920 0.1040 0.0973 0.0902 0.0846 0.0824 0.1066 0.1067 0.0913 1056

0.45 96 0.1962 0.2168 0.2101 0.2046 0.1972 0.1903 0.1847 0.2211 0.1906 0.2176
576 0.0943 0.1165 0.1112 0.1055 0.0946 0.0812 0.755 0.1084 0.0908 0.1154

206



Chapter 5: Optimal bias-correction

following iterative method for obtaining a feasible version of the jackknife-based estimator.

An iterative version of the optimal jackknife estimator

1. Prerequisite: Estimate the short memory parameter, in either the ARFIMA(1, d0, 0) or

ARFIMA(0, d0, 1) model, by estimating an AR(1) or MA(1) model (respectively) using

pre-filtered data based on d f = d̂n.

2. Initialization: Set k = 1 and tolerance level τ = τ(0).

3. Recursive step: For the kth recursion, perform the optimal jackknife bias-correction pro-

cedure of Section 5.3.2 with the estimates of the short memory parameters from step 1,

and d f = d̂n, inserted into the formulae for the covariance terms in (5.15) and (5.16).

Denote the resulting estimator by d̂Opt(k)
J,m .

4. Stopping rule: If
∣∣∣d̂Opt,(k+1)

J,m − d̂Opt,(k)
J,m

∣∣∣ > τ set k = k+ 1 and τ = τ(k), and repeat steps 1

and 3 after updating d f = d̂Opt,(k)
J,m .

The basic idea behind the algorithm is as follows: estimation of the short memory parame-

ter requires pre-filtering via some preliminary estimate of d0. An obvious initial (consistent)

choice is d f = d̂n; however d̂n is known to be biased in finite samples. Hence, iteration of the

above algorithm, which involves replacing the initial pre-filtering value with successively less

biased values, d f = d̂opt,(k)
J,m , is expected to yield a final feasible version of the jackknife estima-

tor, d̂Opt,(k+1)
J,m , based on accurate estimates of all unknown parameters. (See also Poskitt et al.,

2016 for a related application of this form of iterative procedure). The feasible version of the

jackknife statistic is denoted hereafter by d̂NO
J,m if the sub-sampling method is non-overlapping

and d̂MB
J,m if the sub-sampling method is moving-block.
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Tables 5.6 and 5.7 display the bias and RMSE results of the feasible jackknife estimator,

the feasible GS estimator, d̂GS
1 , and the PFSB estimator, for the ARFIMA(1, d0, 0) process. The

corresponding results for the ARFIMA(0, d0, 1) process are presented in Table 5.8 and 5.9. Once

again, the two panels in each table record the results for the two different error processes, and

the minimum bias and RMSE is shown in bold font.

Consider the results for the ARFIMA(1, d0, 0) process. The (various versions of the) feasible

jackknife estimators show similar characteristics to the corresponding optimal estimators, ex-

cept for exhibiting larger bias and RMSE. This is to be expected given that the optimal weights

are now functions of estimates of both d and the autoregressive coefficient. The increase in bias

(relative to the known parameter case) is particularly marked when φ0 = −0.9, with the feasi-

ble jackknife estimators seen to be more biased overall than the raw LPR estimator itself, even

for the larger sample size. However, for φ0 = −0.4 and 0.4, the feasible jackknife estimators

still often show reduction in bias compared to the LPR estimator, especially for the smaller

values of m. For example, when φ0 = −0.4 and n = 96, the bias reduction of d̂NO
J,m with m = 2

compared to the raw LPR estimator is up to 26% and when n = 576, the bias reduction rises

to 62%. Overall, however, the estimators with the least bias are the feasible GS estimator and

the PFBS estimator, where, as noted earlier, the latter does not depend on knowledge of the

true DGP.

The RMSE results in Table 5.7 confirm the consistency of the feasible jackknife estimators.

However, neither the feasible jackknife estimators, nor the alternative bias-adjusted methods,

now out-perform the raw LPR estimator in terms of RMSE. The feasible d̂NO
J,m with m = 8

and d̂GS
1 compete for second place in terms of RMSE, with the feasible jackknife estimator

preferable overall, in particular when one considers the results in the lower panel of Table 5.7.
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The results in Tables 5.8 and 5.9, for the ARFIMA(0, d0, 1) process, tell a very similar story to

those for the ARFIMA(1, d0, 0) case.

5.6 Conclusion

With the fractionally integrated autoregressive moving-average model being one of the key

model classes for describing long memory processes, much effort has been expended on

producing accurate estimates of the fractional differencing parameter, d, in particular. This

quest has been hampered by certain problems, for both parametric and semi-parametric ap-

proaches. Specifically, the need to fully specify the model for parametric estimation means

that any incorrect specification of the short memory dynamics has serious consequences, in

terms of both finite sample and asymptotic properties (see, for example, Chen and Deo, 2006

and Chapters 3 and 4 of this thesis). On the other hand, the semi-parametric estimators, whilst

not requiring explicit modelling of the short memory component, can suffer substantial finite

sample bias in the presence of unaccounted for short memory dynamics. It is bias correction

of this latter class of estimator that has been the focus of this chapter.

A natural way of producing a bias-corrected version of the commonly used the log-periodogram

regression [LPR] estimator is suggested in this chapter, based on the jackknife technique. Op-

timality is achieved by allocating weights within the jackknife that are adjusted for the bias to

a particular order, and that minimize the increase in variance caused by the reduction in bias.

The construction of the optimally bias-corrected estimator requires expressions for the dom-

inant bias term and variance of the unadjusted LPR estimator. We show that the statistical

properties of the LPR estimator, as originally established by Hurvich et al. (1998), are valid for

a more general class of fractional process that is not necessarily Gaussian. Hence, the jackknife
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Table 5.6: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(1, d0, 0). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

φ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB

Gaussian
-0.9 -0.25 96 0.8145 0.8456 0.8514 0.8612 0.8523 0.8669 0.8351 0.8002 0.7908

576 0.5945 0.6076 0.5982 0.5816 0.5943 0.6166 0.6057 0.5724 0.5898
0 96 0.8053 0.8532 0.8421 0.8337 0.8214 0.8377 0.8269 0.8015 0.7955

576 0.5912 0.6634 0.6517 0.6428 0.6363 0.6278 0.6379 0.5761 0.5888
0.25 96 0.7752 0.7982 0.7843 0.7716 0.7886 0.8130 0.7975 0.7673 0.7685

576 0.5883 0.6062 0.5996 0.5904 0.5855 0.5963 0.5846 0.5716 0.5638
0.45 96 0.7006 0.7236 0.7173 0.7003 0.7394 0.7226 0.7139 0.6946 0.6705

576 0.5748 0.5994 0.5912 0.5845 0.5748 0.5830 0.5759 0.5659 0.5451
-0.4 -0.25 96 0.1756 0.1687 0.1699 0.1700 0.1791 0.1866 0.1630 0.1367 0.1435

576 0.0607 0.0226 0.0389 0.0497 0.0886 0.0664 0.0442 0.0304 0.0286
0 96 0.1653 0.1367 0.1388 0.1442 0.1641 0.1776 0.1542 0.1304 0.1353

576 0.0560 0.0355 0.0462 0.0586 0.0641 0.0663 0.0432 0.0264 0.0249
0.25 96 0.1629 0.1223 0.1374 0.1442 0.1594 0.1777 0.1302 0.1329 0.1294

576 0.0571 0.0370 0.0446 0.0581 0.0665 0.0718 0.0660 0.0289 0.0251
0.45 96 0.1653 0.1233 0.1395 0.1468 0.1699 0.1881 0.1730 0.1400 0.1277

576 0.0625 0.0421 0.0562 0.0664 0.0782 0.0882 0.0728 0.0359 0.0261
0.4 -0.25 96 -0.0363 -0.0221 -0.0348 -0.0461 -0.0594 -0.0667 -0.0416 -0.0047 -0.0147

576 -0.0056 -0.0106 -0.0064 -0.0073 -0.0097 -0.0102 -0.0060 0.0056 -0.0004
0 96 -0.0534 -0.0316 -0.0215 -0.0113 -0.0297 -0.0419 -0.0435 -0.0089 -0.0175

576 -0.0125 -0.0030 -0.0052 -0.0065 -0.0078 -0.0086 -0.0076 -0.0008 -0.0040
0.25 96 -0.0559 -0.0201 -0.0220 -0.0292 -0.0340 -0.0414 -0.0420 -0.0068 -0.0153

576 -0.0115 -0.0024 -0.0043 -0.0052 -0.0084 -0.0121 -0.0070 0.0017 -0.0027
0.45 96 -0.0501 -0.0111 -0.0129 -0.0210 -0.0337 -0.0549 -0.0185 0.0032 -0.0111

576 -0.0058 -0.0018 -0.0026 -0.0045 -0.0069 -0.0095 -0.0056 0.0089 0.0004
Student t5

-0.9 -0.25 96 0.8123 0.8045 0.8164 0.8203 0.8272 0.8300 0.8135 0.7914 0.7847
576 0.5952 0.5861 0.5912 0.5985 0.6015 0.6098 0.5861 0.5863 0.5770

0 96 0.8034 0.8026 0.8176 0.8219 0.8283 0.8311 0.8042 0.7843 0.7830
576 0.5915 0.6135 0.6294 0.6347 0.6428 0.6483 0.6254 0.5642 0.5539

0.25 96 0.7726 0.7992 0.8034 0.8088 0.8126 0.8195 0.7938 0.7633 0.7572
576 0.5883 0.6172 0.6221 0.6279 0.6334 0.6386 0.6154 0.5633 0.5472

0.45 96 0.7002 0.6997 0.7042 0.7088 0.7126 0.7184 0.6955 0.6849 0.6731
576 0.5758 0.5724 0.5846 0.5875 0.5901 0.5978 0.5849 0.5602 0.5514

-0.4 -0.25 96 0.1764 0.1454 0.1590 0.1627 0.1796 0.1879 0.1662 0.1371 0.1422
576 0.0611 0.0168 0.0315 0.0432 0.0469 0.0620 0.0524 0.0305 0.0289

0 96 0.1662 0.1379 0.1408 0.1485 0.1532 0.1658 0.1423 0.1307 0.1340
576 0.0565 0.0365 0.0493 0.0522 0.0598 0.0673 0.0474 0.0266 0.0252

0.25 96 0.1640 0.1255 0.1397 0.1462 0.1613 0.1731 0.1416 0.1334 0.1282
576 0.0575 0.0246 0.0366 0.0429 0.0557 0.0634 0.0329 0.0292 0.0254

0.45 96 0.1666 0.1261 0.1430 0.1532 0.1638 0.1721 0.1562 0.1405 0.1270
576 0.0627 0.0385 0.0468 0.0554 0.0622 0.0594 0.0667 0.0359 0.0627

0.4 -0.25 96 -0.0357 -0.0246 -0.0365 -0.0413 -0.0522 -0.0567 -0.0345 -0.0054 -0.0132
576 -0.0052 -0.0066 -0.0054 -0.0062 -0.0076 -0.0092 -0.0076 -0.0054 0.0003

0 96 -0.0525 -0.0223 -0.0268 -0.0315 -0.0386 -0.0412 -0.0336 -0.0081 -0.0164
576 -0.0121 -0.0040 -0.0055 -0.0078 -0.0081 -0.0089 -0.0062 -0.0006 -0.0033

0.25 96 -0.0641 -0.0112 -0.0167 -0.0253 -0.0342 -0.0410 -0.0391 -0.0062 -0.0165
576 -0.0182 -0.0026 -0.0049 -0.0058 -0.0076 -0.0083 -0.0070 -0.0019 -0.0045

0.45 96 -0.0489 -0.0210 -0.0130 -0.0222 -0.0312 -0.0423 -0.0193 -0.0040 -0.0097
576 -0.0055 -0.0016 -0.0022 -0.0044 -0.0062 -0.0082 -0.0044 -0.0087 0.0008
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Table 5.7: RMSE estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(1, d0, 0). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

φ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB

Gaussian
-0.9 -0.25 96 1.0359 1.2543 1.2498 1.2350 1.2201 1.2101 1.2345 1.3386 1.2885

576 0.7398 0.7892 0.7804 0.7762 0.7683 0.7616 0.7761 0.7371 0.7359
0 96 1.1148 1.1620 1.1542 1.1522 1.1436 1.1344 1.1543 1.1819 1.2167

576 0.8288 0.8642 0.8849 0.8724 0.8613 0.8541 0.8595 0.8173 0.8053
0.25 96 1.1618 1.2041 1.1933 1.1866 1.1727 1.1649 1.1867 1.1484 1.2299

576 0.9175 0.9668 0.9537 0.9489 0.9422 0.9338 0.9518 1.1171 1.1130
0.45 96 1.1286 1.2301 1.2286 1.2234 1.2154 1.2034 1.2351 1.4331 1.5385

576 0.9708 1.0049 0.9972 0.9936 0.9861 0.9805 0.9952 1.1124 1.1647
-0.4 -0.25 96 0.2568 0.2928 0.2845 0.2777 0.2622 0.2581 0.2749 0.2594 0.3028

576 0.1098 0.1368 0.1213 0.1195 0.1269 0.1371 0.1262 0.1118 0.1272
0 96 0.2498 0.2836 0.2792 0.2713 0.2648 0.2589 0.2711 0.2560 0.2930

576 0.1069 0.1353 0.1276 0.1194 0.1118 0.1182 0.1212 0.1104 0.1247
0.25 96 0.2490 0.2926 0.2881 0.2764 0.2621 0.2515 0.3467 0.2580 0.2879

576 0.1079 0.1442 0.1367 0.1210 0.1175 0.1116 0.1226 0.1115 0.1239
0.45 96 0.2506 0.2992 0.2842 0.2761 0.2682 0.2605 0.2835 0.2616 0.2506

576 0.1115 0.1511 0.1475 0.1389 0.1203 0.1147 0.1385 0.1143 0.1230
0.4 -0.25 96 0.1917 0.2454 0.2420 0.2346 0.2237 0.2276 0.2374 0.2212 0.2717

576 0.0919 0.1296 0.1216 0.1191 0.1122 0.1055 0.1167 0.1081 0.1198
0 96 0.1946 0.2369 0.2318 0.2216 0.2134 0.2083 0.2266 0.2203 0.2546

576 0.0920 0.1327 0.1256 0.1227 0.1188 0.1112 0.1283 0.1073 0.1166
0.25 96 0.1960 0.2338 0.2267 0.2395 0.2469 0.2302 0.2347 0.2209 0.2482

576 0.0922 0.1219 0.1193 0.1104 0.1086 0.1025 0.1134 0.1076 0.1158
0.45 96 0.1955 0.2441 0.2367 0.2248 0.2334 0.2240 0.2267 0.2218 0.2453

576 0.0926 0.1357 0.1302 0.1213 0.1185 0.1065 0.1126 0.1089 0.1149
Student t5

-0.9 -0.25 96 1.0321 1.2154 1.2036 1.1942 1.1833 1.1795 1.1836 1.1741 1.0570
576 0.7408 0.7882 0.7815 0.7764 0.7703 0.7681 0.7792 0.7406 0.7309

0 96 1.1120 1.1953 1.1842 1.1765 1.1681 1.1586 1.1688 1.2792 1.2542
576 0.8291 0.8642 0.8571 0.8516 0.8486 0.8421 0.8436 0.8484 0.8367

0.25 96 1.1577 1.1985 1.1876 1.1772 1.1626 1.1566 1.1833 1.2620 1.2967
576 0.9173 0.9848 0.9758 0.9705 0.9671 0.9611 0.9637 0.9174 0.9133

0.45 96 1.1272 1.1973 1.1862 1.1767 1.1706 1.1682 1.1791 1.2314 1.2848
576 0.9720 1.0682 1.0197 0.9982 0.9844 0.9752 0.9869 0.9643 0.9755

-0.4 -0.25 96 0.2562 0.2997 0.2902 0.2883 0.2791 0.2656 0.2884 0.2587 0.3008
576 0.1096 0.1385 0.1275 0.1243 0.1193 0.1150 0.1205 0.1109 0.1264

0 96 0.2492 0.2879 0.2800 0.2795 0.2712 0.2631 0.2788 0.2552 0.2912
576 0.1069 0.1370 0.1313 0.1295 0.1203 0.1151 0.1213 0.1095 0.1241

0.25 96 0.2487 0.2823 0.2779 0.2723 0.2667 0.2545 0.2864 0.2567 0.2865
576 0.1078 0.1388 0.1299 0.1215 0.1196 0.1117 0.1387 0.1106 0.1233

0.45 96 0.2509 0.2901 0.2811 0.2729 0.2645 0.2574 0.2665 0.2610 0.2881
576 0.1115 0.1391 0.1300 0.1226 0.1163 0.1125 0.1222 0.1137 0.1228

0.4 -0.25 96 0.1907 0.2326 0.2295 0.2206 0.2157 0.2078 0.2276 0.2202 0.2698
576 0.0915 0.1151 0.1108 0.1097 0.1021 0.0982 0.1204 0.1076 0.1190

0 96 0.1930 0.2289 0.2195 0.2142 0.2064 0.2000 0.2224 0.2181 0.2532
576 0.0915 0.1274 0.1205 0.1134 0.1092 0.1001 0.1296 0.1076 0.1190

0.25 96 0.1977 0.2316 0.2288 0.2234 0.2128 0.2071 0.2264 0.2193 0.2361
576 0.0927 0.1210 0.1186 0.1138 0.1088 0.1029 0.1223 0.1072 0.1216

0.45 96 0.1942 0.2224 0.2241 0.2363 0.2104 0.2032 0.2345 0.2201 0.2440
576 0.0924 0.1284 0.1205 0.1154 0.1062 0.0990 0.1086 0.1082 0.1142
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Table 5.8: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(0, d0, 1). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB

Gaussian
-0.9 -0.25 96 -0.5671 -0.5761 -0.5622 -0.5690 -0.5781 -0.5833 -0.5862 -0.5450 -0.5466

576 -0.4527 -0.4582 -0.4682 -0.4700 -0.4765 -0.4839 -0.4728 -0.4385 -0.4285
0 96 -0.7042 -0.6892 -0.6921 -0.7070 -0.7158 -0.7249 -0.7037 -0.6575 -0.6664

576 -0.5594 -0.5568 -0.5612 -0.5789 -0.5815 -0.5887 -0.5716 -0.5256 -0.5375
0.25 96 -0.7763 -0.7624 -0.7716 -0.7789 -0.7826 -0.7899 -0.7724 -0.7524 -0.7661

576 -0.5880 -0.5641 -0.5760 -0.5827 -0.5873 -0.5915 -0.5832 -0.5473 -0.5621
0.45 96 -0.8004 -0.7862 -0.7924 -0.8005 -0.8062 -0.8142 -0.8136 -0.7600 -0.7854

576 -0.5880 -0.5536 -0.5676 -0.5788 -0.5801 -0.5875 -0.5543 -0.5351 -0.5527
-0.4 -0.25 96 -0.1437 -0.1340 -0.1448 -0.1308 -0.1472 -0.1581 -0.1471 -0.1120 -0.1240

576 -0.0476 -0.0430 -0.0367 -0.0226 -0.0399 -0.0446 -0.0517 -0.0187 -0.0271
0 96 -0.1653 -0.1375 -0.1464 -0.1571 -0.1528 -0.1670 -0.1523 -0.1305 -0.1248

576 -0.0560 -0.0315 -0.0416 -0.0552 -0.0681 -0.0681 -0.0403 -0.0265 -0.0307
0.25 96 -0.1692 -0.1342 -0.1516 -0.1615 -0.1500 -0.1672 -0.1620 -0.1297 -0.1200

576 -0.0552 -0.0221 -0.0436 -0.0566 -0.0622 -0.0685 -0.0558 -0.0243 -0.0287
0.45 96 -0.1630 -0.0924 -0.1448 -0.1755 -0.1836 -0.1977 -0.1536 -0.1190 -0.1118

576 -0.0493 -0.0234 -0.0341 -0.0456 -0.0516 -0.0578 -0.0427 -0.0169 -0.0244
0.4 -0.25 96 0.0637 0.0105 0.0564 0.0692 0.0778 0.0783 0.0546 0.0154 0.0651

576 0.0175 0.0162 0.0186 0.0201 0.0246 0.0183 0.0154 0.0049 0.0132
0 96 0.0525 0.0468 0.0487 0.0515 0.0432 0.0469 0.0441 0.0081 0.0603

576 0.0125 0.0220 0.0325 0.0392 0.0387 0.0326 0.0156 0.0006 0.0100
0.25 96 0.0504 0.0421 0.0516 0.0674 0.0692 0.0726 0.0432 0.0110 0.0574

576 0.0136 0.0082 0.0096 0.0166 0.0189 0.0260 0.0086 0.0031 0.0108
0.45 96 0.0549 0.0416 0.0497 0.0553 0.0762 0.0617 0.0497 0.0204 0.0570

576 0.0192 0.0098 0.0100 0.0085 0.0101 0.0168 0.0176 0.0103 0.0132
Student t5

-0.7 -0.25 96 -0.5754 -0.5513 -0.5624 -0.5682 -0.5705 -0.5782 -0.5681 -0.5479 -0.5553
576 -0.4589 -0.4262 -0.4351 -0.4482 -0.4506 -0.4570 -0.4432 -0.4275 -0.4103

0 96 -0.7073 -0.6612 -0.6748 -0.6792 -0.6814 -0.6865 -0.6791 -0.6427 -0.6638
576 -0.5613 -0.5523 -0.5681 -0.5703 -0.5783 -0.5816 -0.5671 -0.5366 -0.5570

0.25 96 -0.7814 -0.7542 -0.7695 -0.7715 -0.7762 -0.7855 -0.7642 -0.7373 -0.7477
576 -0.5876 -0.5641 -0.5706 -0.5738 -0.5869 -0.5901 -0.5712 -0.5478 -0.5532

0.45 96 -0.8032 -0.7878 -0.7927 -0.7994 -0.8025 -0.8080 -0.7923 -0.6661 -0.7880
576 -0.5875 -0.5439 -0.5483 -0.5529 -0.5587 -0.5613 -0.5624 -0.5364 -0.5438

-0.4 -0.25 96 -0.1442 -0.1302 -0.1398 -0.1482 -0.1546 -0.1673 -0.1585 -0.1117 -0.1224
576 -0.0477 -0.0515 -0.0382 -0.0475 -0.0538 -0.0661 -0.0500 -0.0187 -0.0208

0 96 -0.1646 -0.1483 -0.1390 -0.1441 -0.1538 -0.1639 -0.1666 -0.1299 -0.1259
576 -0.0559 -0.0574 -0.0490 -0.0391 -0.0420 -0.0502 -0.0592 -0.0265 -0.0264

0.25 96 -0.1686 -0.1378 -0.1492 -0.1538 -0.1635 -0.1740 -0.1632 -0.1290 -0.1211
576 -0.0548 -0.0274 -0.0394 -0.0437 -0.0583 -0.0503 -0.0434 -0.0242 -0.0248

0.45 96 -0.1621 -0.0782 -0.0845 -0.0957 -0.0975 -0.1016 -0.0982 -0.1183 -0.1071
576 -0.0492 -0.0229 -0.0384 -0.0493 -0.0528 -0.0663 -0.0376 -0.0169 -0.0209

0.4 -0.25 96 0.0648 0.0090 0.0128 0.0213 0.0346 0.0427 0.0428 0.0159 0.0187
576 0.0179 0.0118 0.0194 0.0249 0.0358 0.0442 0.0250 0.0051 0.0074

0 96 0.0529 0.0429 0.0556 0.0694 0.0624 0.0619 0.0582 0.0084 0.0145
576 0.0122 0.0218 0.0104 0.0059 0.0138 0.0195 0.0258 0.0008 0.0038

0.25 96 0.0505 0.0347 0.0247 0.0285 0.0342 0.0445 0.0476 0.0116 0.0151
576 0.0140 0.0065 0.0100 0.0148 0.0196 0.0204 0.0114 0.0033 0.0053

0.45 96 0.0561 0.0313 0.0378 0.0435 0.0527 0.0515 0.0420 0.0209 0.0187
576 0.0194 0.0099 0.0120 0.0148 0.0179 0.0192 0.0146 0.0103 0.0076
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Table 5.9: RMSE estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(0, d0, 1). The estimates are obtained under Gaussian and Student t5 innovations,
with α = 0.65.

θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB

Gaussian
-0.9 -0.25 96 0.6233 0.6678 0.6607 0.6582 0.6523 0.6492 0.6725 0.6385 0.8247

576 0.4794 0.5124 0.5052 0.5009 0.4942 0.4872 0.4832 0.4885 0.4977
0 96 0.7361 0.8599 0.8537 0.8462 0.8429 0.8369 0.8261 0.8413 0.8510

576 0.5687 0.6421 0.6318 0.6288 0.6281 0.6215 0.6342 0.5838 0.5942
0.25 96 0.7996 0.8516 0.8439 0.8384 0.8342 0.8268 0.8314 0.8268 0.8430

576 0.5951 0.6482 0.6382 0.6315 0.6294 0.6240 0.6344 0.6219 0.6590
0.45 96 0.8219 0.8729 0.8647 0.8605 0.8542 0.8348 0.8426 0.8590 0.8327

576 0.5950 0.6384 0.6279 0.6211 0.6184 0.6124 0.6589 0.6298 0.6487
-0.4 -0.25 96 0.2376 0.2775 0.2658 0.2589 0.2532 0.2487 0.2799 0.2488 0.3103

576 0.1037 0.1412 0.1357 0.1324 0.1245 0.1175 0.1345 0.1098 0.1254
0 96 0.2497 0.2826 0.2748 0.2687 0.2550 0.2563 0.2659 0.2559 0.2883

576 0.1070 0.1474 0.1394 0.1264 0.1235 0.1183 0.1264 0.1105 0.1215
0.25 96 0.2527 0.2815 0.2727 0.2649 0.2580 0.2626 0.2793 0.2560 0.2782

576 0.1068 0.1473 0.1385 0.1264 0.1148 0.1262 0.1374 0.1103 0.1199
0.45 96 0.2496 0.2873 0.2838 0.2758 0.2699 0.2538 0.2638 0.2518 0.2725

576 0.1047 0.1492 0.1409 0.1394 0.1336 0.1294 0.1365 0.1098 0.1188
0.4 -0.25 96 0.1982 0.2568 0.2484 0.2369 0.2237 0.2125 0.2398 0.2212 0.2809

576 0.0932 0.1104 0.1227 0.1356 0.1256 0.1135 0.1036 0.1078 0.1268
0 96 0.1944 0.2479 0.2385 0.2353 0.2236 0.2173 0.2264 0.2203 0.2701

576 0.0919 0.1290 0.1184 0.1135 0.1048 0.1026 0.1175 0.1072 0.1243
0.25 96 0.1947 0.2363 0.2205 0.2137 0.2039 0.2058 0.2374 0.2213 0.2663

576 0.0925 0.1135 0.1175 0.1210 0.1186 0.1074 0.1283 0.1077 0.1238
0.45 96 0.1964 0.2336 0.2288 0.2176 0.2038 0.2001 0.2375 0.2223 0.2643

576 0.0943 0.1235 0.1163 0.1135 0.1073 0.1056 0.1248 0.1090 0.1229
Student t5

-0.9 -0.25 96 0.6316 0.6813 0.6806 0.6764 0.6662 0.6512 0.6641 0.6421 0.6643
576 0.4858 0.5364 0.5284 0.5243 0.5190 0.5103 0.5638 0.5262 0.5985

0 96 0.7387 0.7924 0.7869 0.7812 0.7729 0.7648 0.7826 0.7614 0.7848
576 0.5709 0.6363 0.6345 0.6284 0.6207 0.6183 0.6381 0.6045 0.5838

0.25 96 0.8053 0.8469 0.8438 0.8376 0.8264 0.8175 0.8515 0.8387 0.8414
576 0.5948 0.6684 0.6574 0.6543 0.6428 0.6348 0.6719 0.5124 0.5694

0.45 96 0.8249 0.8694 0.8649 0.8573 0.8516 0.8448 0.8910 0.8646 0.8333
576 0.5948 0.6435 0.6523 0.6428 0.6347 0.6255 0.6452 0.6112 0.5639

-0.4 -0.25 96 0.2377 0.2816 0.2737 0.2684 0.2541 0.2453 0.2664 0.2484 0.3067
576 0.1036 0.1478 0.1396 0.1336 0.1293 0.1136 0.1242 0.1091 0.1205

0 96 0.2483 0.2855 0.2739 0.2649 0.2563 0.2543 0.2536 0.2549 0.2892
576 0.1064 0.1544 0.1456 0.1384 0.1325 0.1204 0.1383 0.1095 0.1171

0.25 96 0.2510 0.2835 0.2739 0.2690 0.2655 0.2603 0.2532 0.2543 0.2779
576 0.1063 0.1474 0.1424 0.1400 0.1365 0.1249 0.1250 0.1093 0.1169

0.45 96 0.2477 0.2863 0.2748 0.2651 0.2677 0.2546 0.2503 0.2499 0.2652
576 0.1047 0.1468 0.1385 0.1305 0.1235 0.1138 0.1247 0.1092 0.1169

0.4 -0.25 96 0.1970 0.2338 0.2304 0.2246 0.2144 0.2083 0.2162 0.2202 0.2208
576 0.0927 0.1146 0.1112 0.1030 0.1073 0.1058 0.1025 0.1069 0.1041

0 96 0.1936 0.2275 0.2195 0.2004 0.1945 0.2006 0.2144 0.2193 0.2110
576 0.0918 0.1192 0.1136 0.1094 0.1013 0.0963 0.1040 0.1062 0.1134

0.25 96 0.1935 0.2228 0.2169 0.2127 0.2004 0.1947 0.2020 0.2196 0.2126
576 0.0920 0.1214 0.1185 0.1146 0.1090 0.0993 0.1053 0.1067 1056

0.45 96 0.1962 0.2266 0.2174 0.2038 0.2095 0.2012 0.2120 0.2211 0.2176
576 0.0943 0.1246 0.1213 0.1146 0.1053 0.1095 0.1183 0.1084 0.1154

213



Chapter 5: Optimal bias-correction

estimator that we construct from the optimally weighted average of LPR estimators also has

proven optimality under this general form of process. In addition to proving the consistency

of the optimal jackknife estimator, we have the important result that the asymptotic variance

of the estimator is equivalent to that of the unadjusted LPR estimator. That is, bias-adjustment

is effected without any associated increase in asymptotic variance.

Our Monte Carlo study shows that, overall, the optimal jackknife estimator based on a

small number of non-overlapping sub-samples, outperforms both the pre-filtered sieve boot-

strap estimator of Poskitt et al. (2016) and the weighted-average estimator of Guggenberger

and Sun (2006), albeit in the somewhat artificial case in which the parameters of the DGP are

correctly identified and known, for the purpose of computing optimal weights. In the realistic

case in which these parameters are not known, we suggest an iterative procedure in which the

weights are constructed using consistent estimates. In this case the method is not dominant

overall, compared to alternative bias-corrected methods, but is still the least biased in some

cases, in particular when the true short memory dynamics are not too severe.

Throughout the chapter we assume that the number of sub-samples is fixed. One may

wish to allow the number of sub-samples to vary and explore the characteristics of the resul-

tant bias-adjusted estimators in this case. Importantly, alternative methods of estimating the

weights are to be investigated, including the possible use of a non-parametric estimate of the

spectral density (see, Moulines and Soulier, 1999), rather than replacing the true values with

their consistent estimates, or the use of an adaptive method in the spirit of that suggested by

Guggenberger and Sun. We also intend to explore the impact of model mis-specification on

the computation of the optional weights.
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Finally, although we focus on the LPR estimator, the jackknife procedure can easily be

applied to other estimators such as the local Whittle estimator of Künsch (1987), the local

polynomial Whittle estimator of Andrews and Sun (2004) or even to the (already analytically)

bias-reduced estimators of Andrews and Guggenberger (2003) and Guggenberger and Sun

(2006). Another possible extension is to relax the assumption of stationarity of the process

using the results Velasco (1999b), and to derive the properties the optimal jackknife estimators

in the non-stationary setting.

5.A Appendix: Proofs of Theorems and Lemmas

Proof of Theorem 5.1. Under Assumptions (A.1)− (A.4), the proof of the theorem follows

immediately after applying the results of Corollary 3.1 of Chapter 3 to Lemmas, 2, 5, 6 and 7

of Hurvich et al. (1998). Hence we omit the proof.

Prior to providing the proofs of the other theorems and lemmas, we will introduce the

following definition, and its properties, to be used hereinafter.

Define ∆(T) (λ) = ∑T
t=1 exp (−ıλt) . Then,

∆(T) (λ) = exp
(
−ı

λ

2
(T + 1)

)
sin
(

λT
2

)
sin
(

λ
2

)

=

{
0 i f λ 6≡ 0 (mod π)
T i f λ ≡ 0 (mod 2π)
0 or T i f λ = ±π,±3π, . . .

, (5.32)

where, a ≡ b (mod α)means that the difference (a− b) is an integral multiple of α for α, x, y ∈

R.

Consider

T

∑
t=−T

exp {−ıλt} = 1+
T

∑
t=1

exp {−ıλt}+
T

∑
t=1

exp {−ı (−λ) t} = 1+ 2∆(T) (λ) , using (5.32).
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This immediately gives that

lim
T→∞

1
2π

T

∑
t=−T

exp {−ıλt} = η (λ) . (5.33)

We will derive the following two properties of ∆(T) (λ).

1. Sum:

lim
T→∞

[
∆(T) (λ) + ∆(T) (−λ)

]
= lim

T→∞

( T

∑
t=−T

exp {ıλt} − 1
)

= 2πη (λ)− 1, by (5.33). (5.34)

2. Product:

T−2∆(T) (−λ)∆(T) (λ) = T−2
T

∑
t=1

T

∑
s=1

exp {−ıλ (t− s)}

= T−2
T−1

∑
t=−(T−1)

(T − |t|) exp {−ıλt}

= T−1
T−1

∑
t=−(T−1)

exp {−ıλt} −
T−1

∑
t=−(T−1)

|t|
T2 exp {−ıλt} .

(5.35)

Consider the second term in the above expression,

∣∣∣ T−1

∑
t=−(T−1)

|t|
T2 exp {−ıλt}

∣∣∣ ≤ ∣∣∣ T−1

∑
t=−(T−1)

|t|
T2

∣∣∣→ 0 as T → ∞.

Hence the expression in (5.35) is given by,

T−2∆(T) (−λ)∆(T) (λ) = T−12πη (λ) + o(1). (5.36)

Lemma 5.1 Let Wt be a stationary h vector-valued time series with n observations satisfying the

spectral density given in (5.1). Suppose Assumptions (A.1)− (A.3) hold. The kth-order cumulant of
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the multivariate series, κ
{

D(n)
Wa1
(λ1) , ..., D(n)

Wak
(λk)

}
is given by,

n−
k
2 (2π)

k
2−1 ∆(n)

(
k

∑
j=1

λj

)
fWa1 ...Wak

(λ1, ..., λk−1) + o
(
n1−2d− k

2
)
, (5.37)

where fWa1 ...Wak
(λ1, ..., λk−1) is the kth-order spectrum of the series Wt, and a1, . . . , ak = 1, 2, . . . , h,

and k = 1, 2, . . ..

Proof. As Lemma P4.2 of Brillinger (1981), the cumulant, κ
{

D(n)
Wa1
(λ1) , ..., D(n)

Wak
(λk)

}
has the

form
∞

∑
t1=−∞

...
∞

∑
tk=−∞

exp

(
− ı

k

∑
j=1

λjtj

)
κWa1 ...Wak

(t1 − tk, ..., tk−1 − tk)

Using the substitution, uj = tj − t where t = tk, and −S ≤ uj ≤ S, for j = 1, . . . , k − 1 and

denoting S = 2 (n− 1) we have that

κ
{

D(n)
Wa1
(λ1) , D(n)

Wa2
(λ2) , ..., D(n)

Wak
(λk)

}
= (2πn)−

k
2

∞

∑
t=−∞

S

∑
u1=−S

· · ·
S

∑
uk=−S

exp

(
− ı

k

∑
j=1

λj
(
uj + t

) )
κWa1 ...Wak

(u1, ..., uk−1)

= (2πn)−
k
2

S

∑
u1=−S

· · ·
S

∑
uk=−S

exp

(
− ı

k−1

∑
j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1)
∞

∑
t=−∞

exp

(
− ı

k

∑
j=1

λjt

)

= (2π)−
k
2+1 n−

k
2 ∆(n)

(
∑k

j=1 λj

) S

∑
u1=−S

· · ·
S

∑
uk=−S

exp

(
− ı

k−1

∑
j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1) .

Now, let us measure the rapidity of ∑S
u1=−S · · ·∑S

uk=−S exp
(
−ı ∑k−1

j=1 λjuj

)
κWa1 ...Wak

(u1, ..., uk−1)

to fWa1 ...Wak
(λ1, . . . , λk−1) as n→ ∞.∣∣∣∣∣ S

∑
u1=−S

· · ·
S

∑
uk=−S

exp

(
− ı

k−1

∑
j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1)− fWa1 ...Wak
(λ1, . . . , λk−1)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
|u1|>S

· · · ∑
|uk |>S

exp

(
− ı

k−1

∑
j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1)

∣∣∣∣∣
≤ ∑

|u1|>S
· · · ∑
|uk |>S

∣∣∣κWa1 ...Wak
(u1, ..., uk−1)

∣∣∣
≤ n−1+2d ∑

|u1|>S
· · · ∑
|uk |>S

(∣∣∣u1

n

∣∣∣1−2d
+ · · ·+

∣∣∣uk−1

n

∣∣∣1−2d
) ∣∣∣κWa1 ...Wak

(u1, ..., uk−1)
∣∣∣ .
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Hence the proof is completed since Assumption (A.1) holds and n−1+2d (|u1|+ · · ·+ |uk−1|)→

0 as n→ ∞.

The above Lemma shows that when the DFTs correspond to multivariate time series with

the same number of observations in their sample, the kth-order cumulant of the multivariate

series can be approximated with the expression given in (5.37). The only difference between

this Lemma and Proposition 5.1 is that, the proposition deals with different sample sizes for

the time series in the multivariate set-up.

Proof of Proposition 5.1. The proof of the proposition can be established in a similar fashion

to the above proof. Hence, we omit the proof here.

Proof of Theorem 5.2. The expectation of the DFT of the full sample or the sub-sample is

E
(

D(Li)
Xai
(λ)
)
= E

(
1√

2πLi

Li

∑
t=1

yt exp (−ıλt)

)
=

µY√
2πLi

∆(Li) (λ)

=


0 i f λ 6≡ 0 (mod 2π)√

Li

2π
µY i f λ ≡ π (mod 2π)

0 or
√

Li

2π
µY i f λ = ±π,±3π, . . .

,

where E (yt) = µY. Therefore, D(Li)
Xai
(λ) behaves in the manner required by the theorem as the

first-order cumulant provides the mean of the random variable of interest.

The covariance between D(Li)
Xai
(λ) and D(

Lj)
Xaj

(µ) is measured by the second-order cumulant

and Proposition 5.1 gives that

Cov
(

D(Li)
Xai
(λ) , D(

Lj)
Xaj

(µ)

)
= 1

L ∆(L) (λ+ µ) fXai ,Xaj
(λ) + o

(
L
−2d
)

,

where L = min
(

Li, Lj
)
. Thus, the covariance between the DFTs of the full sample and the

sub-sample tends to 0 as n→ ∞.
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Proof of Theorem 5.3. The covariance between I(Li)
Xai
(λ) and I(

Lj)
Xaj

(µ) is given by,

Cov
(

I(Li)
Xai
(λ) , I(

Lj)
Xaj

(µ)

)
= E

(
I(Li)
Xai
(λ) I(

Lj)
Xaj

(µ)

)
− E

(
I(Li)
Xai
(λ)
)

E
(

I(
Lj)

Xaj
(µ)

)
= E

(
D(Li)

Xai
(λ)D(Li)

Xai
(−λ)D(

Lj)
Xaj

(µ)D(
Lj)

Xaj
(−µ)

)
−E

(
D(Li)

Xai
(λ)D(Li)

Xai
(−λ)

)
E
(

D(
Lj)

Xaj
(µ)D(

Lj)
Xaj

(−µ)

)
.

Since the expectations can be expressed in terms of cumulants (see Appendix 5.B for more

details), we may express the covariance term as follows,

Cov
(

I(Li)
Xai
(λ) , I(

Lj)
Xaj

(µ)

)
= κ

(
D(Li)

Xai
(λ) , D(Li)

Xai
(−λ) , D(

Lj)
Xaj

(µ) , D(
Lj)

Xaj
(−µ)

)
+κ

(
D(Li)

Xai
(−λ) , D(

Lj)
Xaj

(µ)

)
κ

(
D(Li)

Xai
(λ) , D(

Lj)
Xaj

(−µ)

)
+κ

(
D(Li)

Xai
(λ) , D(

Lj)
Xaj

(µ)

)
κ

(
D(Li)

Xai
(−λ) , D(

Lj)
Xaj

(−µ)

)
.

Then Proposition 5.1 gives us that,

Cov
(

I(Li)
Xai
(λ) , I(

Lj)
Xaj

(µ)

)
= L−2 (2π)∆(L) (λ+ µ− λ− µ) fXai Xai Xaj Xaj

(λ,−λ, µ) + o
(

L−1−2d
)

+
(

L−1∆(L) (−λ+ µ) fXai Xaj
(−λ) + o

(
L−2d

))
×
(

L−1∆(L) (λ− µ) fXai Xaj
(λ) + o

(
L−2d

))
+
(

L−1∆
(L)
(λ+ µ) fXai Xaj

(λ) + o
(

L−2d
))

×
(

L−1∆(L) (−λ− µ) fXai Xaj
(−λ) + o

(
L−2d

))
= L−2 (2π)∆(L) (0) fXai Xai Xaj Xaj

(λ,−λ, µ) + o
(

L−1−2d
)

+L−2∆(L) (−λ+ µ)∆(L) (λ− µ)
(

fXai Xaj
(λ)
)2

+L−1
(

∆(L) (−λ+ µ) + ∆(L) (λ− µ)
)

fXai Xaj
(λ) o

(
L−2d

)
+L−2∆(L) (λ+ µ)∆(L) (−λ− µ)

(
fXai Xaj

(λ)
)2

+L−1∆(L) (λ+ µ) fXai Xaj
(−λ) + ∆(L) (−λ− µ) fXai Xaj

(−λ) o
(

L−2d
)
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= L−1 (2π) fXai Xai Xaj Xaj
(λ,−λ, µ) + L−2

[
∆(L) (−λ+ µ)∆(L) (λ− µ)

+ ∆(L) (λ+ µ)∆(L) (−λ− µ)
] (

fXai Xaj
(λ)
)2
+
[
∆(L) (−λ+ µ)

+ ∆(L) (λ− µ) + ∆(L) (λ+ µ) + ∆(L) (−λ− µ)
]

fXai Xaj
(λ) o

(
L−2d

)
+o
(

L−1−2d
)
+ o

(
L−4d

)
. (5.38)

Using the two properties in (5.34) and (5.36), the covariance in (5.38) is simplified further as

follows,

Cov
(

I(Li)
Xai
(λ) , I(

Lj)
Xaj

(µ)

)
=

2π

L
[η (λ− µ) + η (λ+ µ)]

{
fXai Xaj

(λ)
}2
+

2π

l† fXai Xai Xaj Xaj
(λ,−λ, µ)

+2π [η (λ− µ) + η (λ+ µ)] fXai Xaj
(λ) o

(
l†−2d

)
+ o

(
L−1−2d

)
.

Now let us consider the asymptotic distribution of I(Li)
Xai
(λ) . We may re-write the peri-

odogram as follows,

I(Li)
Xai
(λ) =

[
Re D(Li)

Xai
(λ)
]2
+
[
Im D(Li)

Xai
(λ)
]2

,

where

Re D(Li)
Xai
(λ) = 1√

2πLi

Li

∑
t=1

yt cos (λt) , and, Im D(Li)
Xai
(λ) = 1√

2πLi

Li

∑
t=1

yt sin (λt) .

Following Theorem 2.1 of Lahiri (2003), we have that

Re D(Li)
Xai
(λ)− E

(
Re D(Li)

Xai
(λ)
)

√
Li fXai Xai

(λ)

Im D(Li)
Xai
(λ)− E

(
Im D(Li)

Xai
(λ)
)

√
Li fXai Xai

(λ)


→D N (0, I2) .

Hence the result.

Proof of Theorem 5.4. Recall that xj = ln(2 sin
(
λj/2

)
), aj = xj − x and Sxx =

Nn

∑
j=1

(
Xj − X

)2 .

From Hurvich et al. (1998) we have that Sxx = Nn (1+ o (1)) and aj = log j − log Nn + 1+
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o (1) + o
(

N2
n

n2

)
, j = 1, . . . , Nn. Thus, supj

∣∣aj
∣∣ = 1+ o (1) +O

(
N2

n
n2

)
. Using Appendix 5.B we

have that

Cov
(

log I(Li)
Xai

(
λj
)

, log I(
Lj)

Xaj
(µk)

)
=

(
1− ρ2) 1

2
∞

∑
k=1

(
Ψ
(

1
2
+ k
)
+Ψ

(
1
2

))2 Γ
( 1

2 + k
)

Γ
( 1

2

) (
ρ2)k

k!

−
(
1− ρ2) ( ∞

∑
k=1

(
Ψ
(

1
2
+ k
)
+Ψ

(
1
2

))
Γ
( 1

2 + k
)

Γ
( 1

2

) (
ρ2)k

k!

)2

≤
(
1− ρ2) 1

2
∞

∑
k=1

(
Ψ
(

1
2
+ k
)
+Ψ

(
1
2

))2 Γ
( 1

2 + k
)

Γ
( 1

2

) (
ρ2)k

k!
,

where ρ = Corr
(

I(Li)
Xai

(
λj
)

, I(
Lj)

Xaj
(µk)

)
= o

(
n−1) by Theorem 5.3. Thus,

Cov
(

log I(Li)
Xai

(
λj
)

, log I(
Lj)

Xaj
(µk)

)
= o

(
n−1

)
.

This leads to

Cov
(

d̂n, d̂i

)
=

1
4Sxx

1
S′xx

Nn

∑
j=1

Nl

∑
k=1

aja
(i)
k Cov

(
log I(Li)

Xai

(
λj
)

, log I(
Lj)

Xaj
(µk)

)
≤ sup

j,k

1
4Sxx

1
S′xx

NnNl

∣∣∣∣aja
(i)
k Cov

(
log I(Li)

Xai

(
λj
)

, log I(
Lj)

Xaj
(µk)

)∣∣∣∣
=

(1+ o (1))−2

4
sup

j,k

∣∣aj
∣∣ ∣∣∣a(i)k

∣∣∣ ∣∣∣∣Cov
(

log I(Li)
Xai

(
λj
)

, log I(
Lj)

Xaj
(µk)

)∣∣∣∣
=

(1+ o (1))−2

4

(
1+ o (1) +O

(
N2

n
n2

))2

sup
j,k

∣∣∣∣Cov
(

log I(Li)
Xai

(
λj
)

, log I(
Lj)

Xaj
(µk)

)∣∣∣∣
= o

(
n−1

)
.

Similarly, we can prove that Cov
(

d̂i, d̂j

)
= o

(
n−1) . Hence the result.

Proof of Theorem 5.5. Consider,

(
d̂Opt

J,m − d0

)
= w∗n

(
d̂n − d0

)
−

m

∑
i=1

w∗i
(

d̂i,m − d0

)
. (5.39)

Recall that w∗n =
[

1−
(

1
m

Nn
n

l
Nl

)2
]−1

and ∑m
i=1 w∗i = w∗n − 1; for i = 1, . . . , m. Let us firstly

consider w∗n. For fixed m and for the choice of Nn such that Nn log Nn/n→ 0,

w∗n =
1

1− (n−1ln−1+αl1−α)
2 = 1+ o (1) , (5.40)
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and hence
m

∑
i=1

w∗i = o (1) , (5.41)

with w∗i → 0 as n→ ∞ (see the proof of Theorem 5.4).

By virtue of the consistency of d̂n, we have that w∗n
(

d̂n − d
)
= op (1) using (5.40).

Now, we show that the second term in (5.39) is op (1) .

lim
n→∞

Pr

[∣∣∣∣∣ m

∑
i=1

w∗i
(

d̂i − d0

)∣∣∣∣∣ ≥ ε

]
≤ lim

n→∞

E
(

∑m
i=1 w∗i

(
d̂i − d0

))2

ε2

= lim
n→∞

Var
(

d̂i

)
ε2

m

∑
i=1
(w∗i )

2

+
2
ε2 lim

n→∞

m

∑
i=1

m

∑
j=i+1

w∗i w∗j Cov
(

d̂i, d̂j

)
= 0,

since limn→∞ Var
(

d̂i

)
= 0 from (5.7), limn→∞ Cov

(
d̂i, d̂j

)
= 0 directly from Theorem 5.2 and

the limit of ∑m
i=1 w∗i given in (5.41). This completes the proof of consistency.

The proof of asymptotic normality of the optimal jackknife statistic depends on the joint

convergence of d̂n and d̂i,m. Firstly, let us consider the following standardized optimal jack-

knife estimator,

√
Nn

(
d̂Opt

J,m − d0

)
= w∗n

√
Nn

(
d̂n − d0

)
−

m

∑
i=1

w∗i
√

Nn

(
d̂i − d0

)
. (5.42)

Using Theorem 5.1 we have that
√

Nn

(
d̂n − d0

)
→D N

(
0, π2

24

)
. Therefore, regarding the first

component in (5.42), it immediately follows that

w∗n
√

Nn

(
d̂n − d0

)
→D N

(
0,

π2

24

)
, using (5.40).

Now, let us consider the second term in (5.42):

lim
n→∞

Pr

[∣∣∣∣∣ m

∑
i=1

w∗i
√

Nn

(
d̂i − d0

)∣∣∣∣∣ ≥ ε

]
≤ lim

n→∞

E
(

∑m
i=1 w∗i

(
d̂i − d0

))2

ε2 Nn
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= lim
n→∞

Var
(

d̂i

)
ε2 Nn

m

∑
i=1
(w∗i )

2

+ lim
n→∞

2Nn

ε2

m

∑
i=1

m

∑
j=i+1

w∗i w∗j Cov
(

d̂i, d̂j

)
. (5.43)

By considering the first term in (5.43), for fixed m we have that

lim
n→∞

Var
(

d̂i

)
ε2 Nn

m

∑
i=1
(w∗i )

2 = lim
n→∞

∑m
i=1 (w

∗
i )

2

ε2

[
π2

24
+ o (1)

]
= 0,

using (5.7) and (5.40). The second term in (5.43) would give us that,

lim
n→∞

2Nn

ε2

m

∑
i=1

m

∑
j=i+1

w∗i w∗j Cov
(

d̂i, d̂j

)
= 0,

straightforwardly from (5.40). Therefore, Pr
[∣∣∣∑m

i=1 w∗i
√

Nl

(
d̂i − d0

)∣∣∣ ≥ ε
]
→ 0 as n → ∞.

Hence the result.

5.B Appendix: Additional technical results

5.B.1 Evaluation of the covariance terms in (5.15) and (5.16)

The main purpose of this exercise is to calculate the covariances between the full-sample and

sub-sample LPR estimators (refer to (5.15)) and the covariance between two distinct sub-

sample LPR estimators (refer to (5.16))). These covariance terms depend on the covariance

between the log-periodograms associated with either the full sample and a given sub-sample

or two different sub-samples.

To obtain the covariance between the log-periodograms associated with the full sample

and a given sub-sample, or between sub-samples, we follow the method stated below.

Step 1: Write down the joint distribution of the periodograms (I(Li)
Xai
(λ) , I(

Lj)
Xaj

(µ)).
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Step 2: Write down the joint distribution of the log transformed periodograms (log I(Li)
Xai
(λ) ,

log I(
Lj)

Xaj
(µ)) using the expression of the covariance between the two different peri-

odograms,

Step 3: Find the expression for the covariance between the above mentioned log-periodograms,

Cov(log I(Li)
Xai
(λ) , log I(

Lj)
Xaj

(µ)), using the moment generating function.

In relation to Step 1: Using the results of Theorem 5.3, we can say that the periodograms

associated with the full sample and the sub-sample have a limiting distribution of the form

fX1X1(λ) χ2
(2)

/
2. For notational convenience, let us denote by (U, V) the bivariate χ2

k random

variables, (I(Li)
Xai
(λ) , I(

Lj)
Xaj

(µ)). Although k = 2, we use the generic notation for the degrees

of freedom, k. Note that we ignore the constant term fX1X1(λ)
/

2 for convenience, as these

terms will disappear in the calculation of the covariance between two different LPR estimators

(either the full- and sub-sample LPR estimators or two distinct sub-sample LPR estimators).

The joint probability density function (pdf), fU,V (u, v) , is defined by (see, Krishnaiah et al.,

1963),

fU,V (u, v) =
(
1− ρ2) k−1

2
∞

∑
i=0

Γ
(

k−1
2 + i

)
ρ2i (uv)

k−3+2i
2 exp

[
− u+v

2(1−ρ2)

]
Γ
(

k−1
2

)
i!
[
2

k−1
2 +iΓ

(
k−1

2 + i
)
(1− ρ2)

k−1
2 +i

]2 ,

where ρ =
σuv

σuσv
. Here, σuv = cov (U, V) . Then, the marginal densities of U and V, fU (u) and

fV (v), are respectively given by,

fU (u) =
1

2
k
2 Γ
(

k
2

)u
k
2 exp

{
−u

2

}
, and, fV (v) =

1

2
k
2 Γ
(

k
2

)v
k
2 exp

{
−v

2

}
.

In relation to Step 2: Let W = log U = log I(Li)
Xai
(λ) and Z = log V = log I(

Lj)
Xaj

(µ) . Then,
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the joint pdf of W and Z is given by,

fW,Z (w, z) = fU,V (exp w, exp z)

∣∣∣∣∣ ∂ exp w
∂w

∂ exp w
∂z

∂ exp z
∂w

∂ exp z
∂z

∣∣∣∣∣
=

(
1− ρ2) k−1

2
∞

∑
i=0

Γ
(

k−1
2 + i

)
ρ2i (exp w exp z)

k−3+2i
2 exp

[
− exp w+exp z

2(1−ρ2)

]
Γ
(

k−1
2

)
i!
[
2

k−1
2 +iΓ

(
k−1

2 + i
)
(1− ρ2)

k−1
2 +i

]2 exp w exp z

=
(
1− ρ2) k−1

2
∞

∑
i=0

Γ
(

k−1
2 + i

)
ρ2i exp

(
k−1

2 + i
)
(w+ z) exp

[
− exp w+exp z

2(1−ρ2)

]
Γ
(

k−1
2

)
i!
[
2

k−1
2 +iΓ

(
k−1

2 + i
)
(1− ρ2)

k−1
2 +i

]2 .

In relation to Step 3: The moment generating function (MGF) of (W, Z) is given by,

MW,Z (t1, t2) = E (exp (t1W + t2Z)) =
∫ ∞

0

∫ ∞

0
exp (t1w+ t2z) fW,Z (w, z) dwdz

=
(
1− ρ2) k−1

2
∞

∑
i=0

Γ
(

k−1
2 + i

)
ρ2i

Γ
(

k−1
2

)
i!
[
2

k−1
2 +iΓ

(
k−1

2 + i
)
(1− ρ2)

k−1
2 +i

]2

×
∫ ∞

0

∫ ∞

0
exp (t1w+ t2z) exp

(
k− 1

2
+ i
)
(w+ z) exp

[
−exp w+ exp z

2 (1− ρ2)

]
dwdz

=
(
1− ρ2) k−1

2
∞

∑
i=0

Γ
(

k−1
2 + i

)
ρ2i

Γ
(

k−1
2

)
i!
[
2

k−1
2 +iΓ

(
k−1

2 + i
)
(1− ρ2)

k−1
2 +i

]2

×
∫ ∞

0
exp

(
k− 1

2
+ t1 + i

)
w exp

[
− exp w

2 (1− ρ2)

]
dw

×
∫ ∞

0
exp

(
k− 1

2
+ t2 + i

)
z exp

[
− exp z

2 (1− ρ2)

]
dz. (5.44)

Now let us consider the form of the last expression in (5.44). Let α1 =
k− 1

2
+ t2 + i and

α2 =
1

2 (1− ρ2)
. Then, substituting x = exp z would give us that

∫ ∞

0
exp α1z exp [−α2 exp z] dz =

∫ ∞

0
xα1−1 exp [−α2x] dx =

Γ (α1)

αα1
2

. (5.45)

Therefore, using (5.45), the MGF given in (5.44) may be re-arranged as follows,

MW,Z (t1, t2) =
[
2
(
1− ρ2)]t1+t2 (1− ρ2) k−1

2
∞

∑
i=0

Γ
(

k−1
2 + i

)
ρ2iΓ

(
k−1

2 + t2 + i
)

Γ
(

k−1
2 + t1 + i

)
i!Γ
(

k−1
2

) [
Γ
(

k−1
2 + i

)]2
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=
[
2
(
1− ρ2)]t1+t2 (1− ρ2) k−1

2
Γ
(

k−1
2 + t1

)
Γ
(

k−1
2 + t2

)
[
Γ
(

k−1
2

)]2

×
∞

∑
i=0

Γ
(

k−1
2 + t1 + i

)
Γ
(

k−1
2 + t2 + i

)
Γ
(

k−1
2

)
Γ
(

k−1
2 + t1

)
Γ
(

k−1
2 + t2

)
Γ
(

k−1
2 + i

) (
ρ2)i

i!

=
[
2
(
1− ρ2)]t1+t2 (1− ρ2) k−1

2
Γ
(

k−1
2 + t1

)
Γ
(

k−1
2 + t2

)
[
Γ
(

k−1
2

)]2

×2F1

(
k− 1

2
+ t1,

k− 1
2

+ t2;
k− 1

2
; ρ2
)

.

Setting k = 2 gives,

MW,Z (t1, t2) =
[
2
(
1− ρ2)]t1+t2 (1− ρ2) 1

2
Γ
( 1

2 + t1
)

Γ
( 1

2 + t2
)[

Γ
( 1

2

)]2 2F1

(
1
2
+ t1,

1
2
+ t2;

1
2

; ρ2
)

.

Therefore the cumulant generating function is given by,

K (t1, t2) = log MW,Z (t1, t2)

= (t1 + t2) log
[
2
(
1− ρ2)]+ 1

2
log
(
1− ρ2)+ log Γ

(
1
2
+ t1

)
+ log Γ

(
1
2
+ t2

)
− 2 log

[
Γ
(

1
2

)]
+ log2 F1

(
1
2
+ t1,

1
2
+ t2;

1
2

; ρ2
)

.

The covariance between W and Z when k = 2, is given by, cov (W, Z) = ∂2K(t1,t2)
∂t1∂t2

∣∣∣
t1=0,t2=0

.

Therefore, let us firstly evaluate ∂K (t1, t2)
/

∂t1, as

∂K (t1, t2)

∂t1
= log

[
2
(
1− ρ2)]+Ψ

(
1
2
+ t1

)
+

(
2F1

(
1
2
+ t1,

1
2
+ t2;

1
2

; ρ2
))−1 ∂2F1

( 1
2 + t1, 1

2 + t2; 1
2 ; ρ2)

∂t1
, (5.46)

where Ψ (.) is the digamma function and where ∂2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2)/ ∂t1 is given by,

∞

∑
i=1

∂ Γ
( 1

2 + t1 + i
)/

Γ
( 1

2 + t1
)

∂t1

Γ
( 1

2 + t2 + i
)

Γ
( 1

2

)
Γ
( 1

2 + t2
)

Γ
( 1

2 + i
) (ρ2)i

i!

=
∞

∑
i=1

(
Γ
( 1

2 + t1
)

Γ
( 1

2 + t1 + i
)

Ψ
( 1

2 + t1 + i
)(

Γ
( 1

2 + t1
))2 +

Γ
( 1

2 + t1 + i
)

Ψ
( 1

2 + t1
)

Γ
( 1

2 + t1
)(

Γ
( 1

2 + t1
))2

)
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×
Γ
( 1

2 + t2 + i
)

Γ
( 1

2

)
Γ
( 1

2 + t2
)

Γ
( 1

2 + i
) (ρ2)i

i!

=
∞

∑
i=1

(
Γ
( 1

2 + t1 + i
)

Ψ
( 1

2 + t1 + i
)
+ Γ

( 1
2 + t1 + i

)
Ψ
( 1

2 + t1
)

Γ
( 1

2 + t1
) )

Γ
( 1

2 + t2 + i
)

Γ
( 1

2

)
Γ
( 1

2 + t2
)

Γ
( 1

2 + i
) (ρ2)i

i!
.

This leads to,

∂2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2)
∂t1

∣∣∣∣∣
t1=0,t2=0

=
∞

∑
i=1

(
Ψ
(

1
2
+ i
)
+Ψ

(
1
2

))
Γ
( 1

2 + i
)

Γ
( 1

2

) (
ρ2)i

i!
.

Now let us evaluate the second order derivative of K (t1, t2) ,

∂2K (t1, t2)

∂t1∂t2
=

∂
(

2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2))−1 ∂2F1( 1
2+t1, 1

2+t2; 1
2 ;ρ2)

∂t1

∂t2

=

(
2F1

(
1
2
+ t1,

1
2
+ t2;

1
2

; ρ2
))−1 ∂2

2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2)
∂t1∂t2

−
(

2F1

(
1
2
+ t1,

1
2
+ t2;

1
2

; ρ2
))−2 ∂2F1

( 1
2 + t1, 1

2 + t2; 1
2 ; ρ2)

∂t2

×
∂2F1

( 1
2 + t1, 1

2 + t2; 1
2 ; ρ2)

∂t1
,

where ∂2
2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2)/ ∂t1∂t2 is given by,

∞

∑
i=1

(
Γ
( 1

2 + t1 + i
)

Ψ
( 1

2 + t1 + i
)

Γ
( 1

2 + t1
) +

Γ
( 1

2 + t1 + i
)

Ψ
( 1

2 + t1
)

Γ
( 1

2 + t1
) )

Γ
( 1

2

)
Γ
( 1

2 + i
) (ρ2)i

i!

×
(

Γ
( 1

2 + t2 + i
)

Ψ
( 1

2 + t2 + i
)

Γ
( 1

2 + t2
) +

Γ
( 1

2 + t2 + i
)

Ψ
( 1

2 + t2
)

Γ
( 1

2 + t2
) )

.

Thus,

∂2
2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2)
∂t1∂t2

∣∣∣∣∣
t1=0,t2=0

=
∞

∑
i=1

(
Ψ
(

1
2
+ i
)
+Ψ

(
1
2

))2 Γ
( 1

2 + i
)

Γ
( 1

2

) (
ρ2)i

i!
.

Hence cov (W, Z) =
∂2K (t1, t2)

∂t1∂t2

∣∣∣∣
t1=0,t2=0

is given by,

(
1− ρ2) 1

2
∂2

2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2)
∂t1∂t2

∣∣∣∣∣
t1=0,t2=0

−
(
1− ρ2) ∂2F1

( 1
2 + t1, 1

2 + t2; 1
2 ; ρ2)

∂t2

∂2F1
( 1

2 + t1, 1
2 + t2; 1

2 ; ρ2)
∂t1

∣∣∣∣∣
t1=0,t2=0
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=
(
1− ρ2) 1

2
∞

∑
i=1

(
Ψ
(

1
2
+ i
)
+Ψ

(
1
2

))2 Γ
( 1

2 + i
)

Γ
( 1

2

) (
ρ2)i

i!

−
(
1− ρ2) ( ∞

∑
i=1

(
Ψ
(

1
2
+ i
)
+Ψ

(
1
2

))
Γ
( 1

2 + i
)

Γ
( 1

2

) (
ρ2)i

i!

)2

, (5.47)

using the fact 1F0 (a; ; z) = (1− z)−a .

Let us now provide the expression for ρ in (5.47). For example, consider calculating the

correlation between the full- and sub-sample periodograms. Using the similar arguments, the

correlation between two sub-samples periodograms can be derived,

ρ = corr
(

I(n)Y (λ) , I(l)Yi
(µ)
)
=

Cov
(

I(n)Y (λ) , I(l)Yi
(µ)
)

√
Var

(
I(n)Y (λ)

)√
Var

(
I(l)Yi
(µ)
) , (5.48)

where,

Cov
(

I(n)Y (λ) , I(l)Yi
(µ)
)
≈ 2π

l
fYYYiYi (λ,−λ, µ) + l−2

[
∆(l) (−λ+ µ)∆(l) (λ− µ)

+ ∆(l) (λ+ µ)∆(l) (−λ− µ)
]
| fYYi (λ)|

2 , (5.49)

and Var
(

I(n)Y (λ)
)

and Var
(

I(l)Yi
(µ)
)

can be calculated from the above given covariance for-

mula. The covariance and variance terms rely upon certain joint spectral densities. Those

spectral densities can be expressed in closed form as follows. Let us firstly consider the cross

spectrum corresponding to the full sample and jth sub-sample, fYYj (λ) . Suppose we consider

the jackknife approach using non-overlapping subsamples. Then, the general definition of

spectral density gives that

fYYj (λ) =
1

2π

∞

∑
k=−∞

exp (−ikλ) κ
(

Yt+k, Yt+(j−1)l

)
=

1
2π

∞

∑
k=−∞

exp (−ikλ) γ (k− (j− 1) l)

=
exp (−i (j− 1) lλ)

2π

∞

∑
k=−∞

exp (−i (k− (j− 1) l) λ) γ (k− (j− 1) l)
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= exp (−i (j− 1) lλ) fYY (λ) .

Similarly, for moving-block subsamples we have the relationship fYYj (λ) = exp (−i (j+ l − 1) λ) fYY (λ)

and fYjYk (λ) = exp (−i (j− k) lλ) fYY (λ) .

Lemma 2 of Yajima (1989) immediately gives that,

fYYYY (λ,−λ, µ) =
1

(2π)3
b (λ) b (−λ) b (µ) b (−µ) fεεεε (λ,−λ, µ) , (5.50)

where b (λ) = ∑∞
j=0 bj exp (ıjω) with

bj =
j

∑
r=0

k (j− r) Γ (r+ d)
Γ (r+ 1) Γ (d)

, (5.51)

and k (z) is the transfer function of a stable and invertible autoregressive moving average

(ARMA) process such that ∑∞
j=0 |k (j)| < ∞. Here,

fεεεε (λ,−λ, µ) =
∞

∑
u1=−∞

∞

∑
u2=−∞

∞

∑
u3=−∞

exp (−i (λu1 − λu2 + µu3)) κεεεε (u1, u2, u3) ,

where

κεεεε (u1, u2, u3) = κ (εt+u1 , εt+u2 , εt+u3 , εt)

= E (εt+u1 εt+u2 εt+u3 εt)− E (εt+u1 εt+u2) E (εt+u3 εt)

−E (εt+u2 εt+u3) E (εt+u1 εt)− E (εt+u1 εt+u3) E (εt+u2 εt) .

Suppose the errors are i.i.d normal random variables with zero mean and a constant variance

σ2,

κεεεε (u1, u2, u3) =

{
E
(
ε4

t
)
− 3

(
E
(
ε2

t
))2 i f u1 = u2 = u3 = 0

0 otherwise

=
{

3σ4 i f u1 = u2 = u3 = 0
0 otherwise

.
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Then fYYYY (λ,−λ, µ) simplified as follows.

fYYYY (λ,−λ, µ) =
3σ4

(2π)3
b (−λ) b (λ) b (µ) b (−µ) =

3
2π

fYY (λ) fYY (µ) , (5.52)

since fYY (λ) =
σ2

2π
b (λ) b (−λ) .

Now let us consider fYYYjYj (λ,−λ, µ) ,

fYYYjYj (λ,−λ, µ) =
1

(2π)3

∞

∑
u1=−∞

∞

∑
u2=−∞

∞

∑
u3=−∞

exp (−ı (λu1 − λu2 + µu3))

×κ
(

Yt+u1 , Yt+u2 , Yt+(j−1)l+u3
, Yt+(j−1)l

)
=

1

(2π)3

∞

∑
u1=−∞

∞

∑
u2=−∞

∞

∑
u3=−∞

exp (−ı (λ (u1 − (j− 1) l)− λ (u2 − (j− 1) l) + µu3))

×κ
(

Yt−(j−1)l+u1
, Yt−(j−1)l+u2

, Yt+u3 , Yt

)
= fYYYY (λ,−λ, µ) .

The covariance and variance terms in (5.49) can thus be simplified as follows.

Cov
(

I(n)Y (λ) , I(l)Yi
(µ)
)
≈ 3

l
fYY (λ) fYY (µ) +

1
l2

[
∆(l) (−λ+ µ)∆(l) (λ− µ)

+ ∆(l) (λ+ µ)∆(l) (−λ− µ)
]
( fYY (λ))

2 ,

Var
(

I(n)Y (λ)
)
≈

[
1+

3
l
+

1
l2 ∆(l) (2λ)∆(l) (−2λ)

]
( fYY (λ))

2 .

Hence, the correlation given in (5.48) can be simplified as,

ρ ≈
3
l +

1
l2

[
∆(l) (−λ+ µ)∆(l) (λ− µ) + ∆(l) (λ+ µ)∆(l) (−λ− µ)

]
fYY(λ)
fYY(µ)√(

1+ 3
l +

1
l2 ∆(l) (2λ)∆(l) (−2λ)

)√(
1+ 3

l +
1
l2 ∆(l) (2µ)∆(l) (−2µ)

) .

5.B.2 Positiveness of the principle minors of the bordered Hessian matrix

Here we show that for every m ∈ N,
∣∣∣HB

(m+3)×(m+3)

∣∣∣ > 0 using mathematical induction. For

our convenience, we assume that

ϕmin

(
HB
(m+3)×(m+3)

)
> (m+ 3)2

12Nl

π2 , (5.53)
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where ϕmin (A) is the minimum eigenvalue corresponding to the matrix A.

Let us start with m = 1. Then the determinant of the first minor of the bordered Hessian

matrix, HB
4×4, is,

∣∣∣HB
4×4

∣∣∣ =

∣∣∣∣∣∣∣∣
0 0 −m2 N2

l
l2

1 N2
n

n2 −2c∗n,1

−1 −m2 N2
l

l2
π2

12Nl

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

0 0 N2
n

n2

1 N2
n

n2
π2

12Nn

−1 −m2 N2
l

l2 −2c∗n,1

∣∣∣∣∣∣∣∣
= −m2 N2

l
l2

(
−m2 N2

l
l2 +

N2
n

n2

)
+

N2
n

n2

(
−m2 N2

l
l2 +

N2
n

n2

)

=

(
N2

n
n2 −m2 N2

l
l2

)2

> 0.

That is,
∣∣∣HB

(m+3)×(m+3)

∣∣∣ > 0 for m = 1.

Suppose that
∣∣∣HB

(m+3)×(m+3)

∣∣∣ > 0 is true for m = k, then we need to show that it is true for

m = k+ 1. To do so, we consider the partition of HB
(k+4)×(k+4) is as follows;

HB
(k+4)×(k+4) =

(
HB
(k+3)×(k+3) U

UT π2

12Nl

)
,

where U =
[
−1 − (k+ 1)2 N2

l
l2 −2c∗n,k+1 2c†

1,k+1 . . . 2c†
k,k+1

]>
. The determinant of HB

(k+4)×(k+4)

is, ∣∣∣HB
(k+4)×(k+4)

∣∣∣ = ∣∣∣HB
(k+3)×(k+3)

∣∣∣ ( π2

12Nl
−U>

(
HB
(k+3)×(k+3)

)−1
U
)

(5.54)

Since
∣∣∣HB

(k+3)×(k+3)

∣∣∣ > 0, we have that U>
(

HB
(k+3)×(k+3)

)−1
U > 0. Therefore,

U>
(

HB
(k+3)×(k+3)

)−1
U ≤ 1

ϕmin

(
HB
(k+3)×(k+3)

) max
U∈Rk+3\{0}

U>U <
π2

12Nl
.

as maxU∈Rk+3\{0} U>U = 1. Hence this completes the proof.

5.C Appendix: Additional simulation results
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Table 5.10: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(1, d0, 0). The estimates are obtained under Gaussian innovations, with α = 0.5.

φ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFBS

-0.9 -0.25 96 0.5870 0.5019 0.5103 0.5246 0.5489 0.5681 0.5222 0.5322 0.5154 0.5256
576 0.2746 0.2216 0.2636 0.2715 0.2738 0.2744 0.2254 0.2394 0.2267 0.2225

0 96 0.5701 0.4944 0.5035 0.5174 0.5238 0.5422 0.5823 0.5261 0.5129 0.5181
576 0.2692 0.2101 0.2196 0.2239 0.2311 0.2401 0.2701 0.2335 0.2248 0.2182

0.25 96 0.5805 0.4760 0.4744 0.4776 0.4861 0.4937 0.4837 0.5288 0.5173 0.5167
576 0.2725 0.2168 0.2252 0.2352 0.2472 0.2545 0.2745 0.2374 0.2264 0.2181

0.45 96 0.5813 0.5206 0.5309 0.5459 0.5583 0.5653 0.5853 0.5336 0.5218 0.5302
576 0.2808 0.2127 0.2217 0.2301 0.2478 0.2537 0.2837 0.2468 0.2236 0.2194

-0.4 -0.25 96 0.2768 0.0295 0.0673 0.0730 0.0765 0.0767 0.0297 0.0468 0.0314 0.0359
576 0.0183 0.0009 0.0010 0.0116 0.0161 0.0175 0.0175 0.0104 0.0025 0.0018

0 96 0.0673 0.0284 0.0377 0.0431 0.0688 0.0782 0.0682 0.0016 0.0008 0.0360
576 0.0117 0.0008 0.0037 0.0087 0.0121 0.0119 0.0119 0.0002 0.0001 -0.0012

0.25 96 0.0699 0.0334 0.0411 0.0557 0.0633 0.0719 0.0719 0.0420 0.0354 0.0378
576 0.0150 0.0005 0.0013 0.0024 0.0062 0.0083 0.0163 0.0035 0.0011 0.0008

0.45 96 0.0782 0.0395 0.0265 0.0322 0.0532 0.0611 0.0811 0.0540 0.0421 0.0440
576 0.0241 0.0018 0.0068 0.0039 0.0016 0.0026 0.0263 -0.0135 0.0095 0.0024

0.4 -0.25 96 -0.0037 -0.0013 -0.0071 -0.0051 0.0089 0.0023 -0.0023 -0.0433 -0.0121 -0.0095
576 -0.0078 -0.0007 -0.0013 -0.0021 0.0051 -0.0067 -0.0067 -0.0100 -0.0022 -0.0009

0 96 -0.0146 -0.0063 -0.0125 -0.0143 -0.0153 -0.0160 -0.0150 -0.0342 -0.0042 -0.0075
576 -0.0019 -0.0008 -0.0023 -0.0021 -0.0020 -0.0020 -0.0020 -0.0028 -0.0009 -0.0040

0.25 96 -0.0126 -0.0008 -0.0043 -0.0053 -0.0113 -0.0120 -0.0120 -0.0385 -0.0024 -0.0009
576 0.0013 -0.0002 -0.0032 -0.0091 -0.0040 -0.0023 -0.0023 -0.0066 -0.0011 -0.0020

0.45 96 -0.0022 -0.0012 -0.0032 -0.0046 -0.0007 -0.0007 -0.0006 -0.0489 -0.0015 -0.0066
576 0.0105 -0.0004 -0.0018 -0.0027 -0.0055 -0.0047 -0.0124 -0.0166 -0.0007 -0.0007
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Table 5.11: RMSE estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(1, d0, 0). The estimates are obtained under Gaussian innovations, with α = 0.5.

φ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFBS

-0.9 -0.25 96 1.7257 1.7330 1.7259 1.7157 1.7078 1.7069 1.7269 1.7375 1.7171 1.7896
576 0.9774 0.9811 0.9715 0.9688 0.9579 0.9477 0.9777 0.9954 0.9594 0.9963

0 96 1.7217 1.7533 1.7557 1.7383 1.7251 1.7226 1.7236 1.7350 1.7283 1.7748
576 0.9750 0.9233 0.9876 0.9796 0.9766 0.9713 0.9756 0.9941 0.9813 0.9916

0.25 96 1.7225 1.7147 1.7709 1.7459 1.7271 1.7207 1.7251 1.7368 1.7151 1.7775
576 0.9768 0.9737 0.9803 0.9850 0.9796 0.9700 0.9779 0.9954 0.9842 0.9978

0.45 96 1.7230 1.7653 1.7825 1.7515 1.7285 1.7260 1.7261 1.7391 1.7267 1.7063
576 0.9809 0.9809 0.9959 0.9929 0.9850 0.9716 0.9825 0.9979 0.9829 0.9946

-0.4 -0.25 96 0.3243 0.3874 0.3368 0.3297 0.3253 0.3229 0.3249 0.3723 0.3599 0.4553
576 0.1623 0.1673 0.1703 0.1646 0.1630 0.1626 0.1626 0.1926 0.1751 0.2030

0 96 0.3217 0.3293 0.3288 0.3194 0.3131 0.3219 0.3225 0.3708 0.3466 0.4321
576 0.1611 0.1602 0.1573 0.1541 0.1520 0.1514 0.1614 0.1912 0.1782 0.1965

0.25 96 0.3238 0.3104 0.3068 0.3042 0.2957 0.2829 0.3248 0.3718 0.3434 0.4210
576 0.1619 0.1556 0.1549 0.1510 0.1462 0.1424 0.1624 0.1917 0.1729 0.1931

0.45 96 0.3257 0.4680 0.4551 0.4489 0.4281 0.3167 0.3270 0.3731 0.3391 0.4226
576 0.1637 0.1608 0.1538 0.1497 0.1456 0.1445 0.1645 0.1930 0.1656 0.1890

0.4 -0.25 96 0.3155 0.3235 0.3208 0.3220 0.3166 0.3112 0.3161 0.3741 0.3215 0.4624
576 0.1620 0.1573 0.1512 0.1447 0.1428 0.1423 0.1623 0.1921 0.1762 0.2061

0 96 0.3148 0.3067 0.3000 0.2914 0.2859 0.2854 0.3154 0.3725 0.3174 0.4284
576 0.1608 0.1596 0.1519 0.1437 0.1417 0.1411 0.1611 0.1911 0.1717 0.1963

0.25 96 0.3157 0.3133 0.3110 0.3023 0.2968 0.2963 0.3163 0.3745 0.3254 0.4103
576 0.1611 0.1670 0.1619 0.1544 0.1522 0.1515 0.1615 0.1919 0.1770 0.1919

0.45 96 0.3167 0.3150 0.3140 0.3111 0.3079 0.3023 0.3173 0.3755 0.3315 0.4062
576 0.1625 0.1580 0.1508 0.1471 0.1438 0.1430 0.1630 0.1931 0.1543 0.1886
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Table 5.12: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(0, d0, 1). The estimates are obtained under Gaussian innovations, with α = 0.5.

θ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFBS

-0.9 -0.25 96 -0.3908 -0.3222 -0.3353 -0.3431 -0.3555 -0.3635 -0.3735 -0.3429 -0.3341 -0.3239
576 -0.2356 -0.1749 -0.1868 -0.1866 -0.1996 -0.2074 -0.2153 -0.2013 -0.1882 -0.2276

0 96 -0.3647 -0.3215 -0.3356 -0.3405 -0.3681 -0.3666 -0.3147 -0.3413 -0.3334 -0.3435
576 -0.2276 -0.1678 -0.1777 -0.1721 -0.1795 -0.1885 -0.1927 -0.2025 -0.1759 -0.2014

0.25 96 -0.3801 -0.3130 -0.3228 -0.3373 -0.3419 -0.3812 -0.3314 -0.3458 -0.3242 -0.3295
576 -0.2665 -0.2149 -0.2548 -0.2632 -0.2657 -0.2663 -0.2315 -0.2307 -0.2169 -0.2382

0.45 96 -0.3710 -0.3066 -0.3169 -0.23202 -0.3413 -0.3713 -0.3245 -0.3543 -0.3315 -0.3116
576 -0.2565 -0.2140 -0.2263 -0.2365 -0.2434 -0.2554 -0.2260 -0.2398 -0.2214 -0.2323

-0.4 -0.25 96 -0.0426 -0.0164 -0.0211 -0.0270 -0.0358 -0.0445 -0.0344 -0.0299 -0.0185 -0.0456
576 -0.0003 -0.0014 -0.0018 -0.0020 -0.0036 -0.0008 -0.0008 0.0099 -0.0047 -0.0017

0 96 -0.0663 -0.0324 -0.0466 -0.0520 -0.0679 -0.0673 -0.0573 -0.0441 -0.0354 -0.0426
576 -0.0112 -0.0066 -0.0131 -0.0182 -0.0216 -0.0114 -0.0094 -0.0126 -0.0086 -0.0061

0.25 96 -0.0653 -0.0148 -0.0551 -0.0611 -0.0650 -0.0652 -0.0451 -0.0314 -0.0223 -0.0335
576 -0.0081 -0.0010 -0.0012 -0.0020 -0.0057 -0.0072 -0.0062 -0.0041 -0.0025 -0.0039

0.45 96 -0.0542 -0.0155 -0.0164 -0.0215 -0.0362 -0.0532 -0.0332 -0.0285 -0.0186 -0.0247
576 0.0012 -0.0007 -0.0024 -0.0049 -0.0059 0.0030 0.0010 0.0110 -0.0074 -0.0008

0.4 -0.25 96 0.0260 0.0044 0.0091 0.0182 0.0248 0.0254 0.0154 0.0120 0.0084 0.0094
576 0.0096 0.0006 0.0011 0.0021 0.0070 0.0086 0.0076 0.0082 0.0015 0.0009

0 96 0.0151 0.0026 0.0118 0.0138 0.0158 0.0156 0.0106 0.0076 0.0035 0.0127
576 0.0024 0.0002 0.0009 0.0025 0.0026 0.0025 0.0025 0.0023 0.0014 0.0039

0.25 96 0.0177 0.0017 0.0115 0.0195 0.0203 0.0192 0.0092 0.0057 0.0026 0.0177
576 0.0057 0.0008 0.0024 0.0039 0.0046 0.0068 0.0038 0.0041 0.0011 0.0022

0.45 96 0.0274 0.0085 0.0685 0.0476 0.0316 0.0298 0.0198 0.0173 0.0086 0.0230
576 0.0149 0.0006 0.0036 0.0022 0.0021 0.0170 0.0070 0.0142 0.0014 0.0034
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Table 5.13: RMSE estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on
2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block
(MB) sub-samples, both versions of the GS estimator, and the prefiltered sieve bootstrap estimator, for
the DGP: ARFIMA(0, d0, 1). The estimates are obtained under Gaussian innovations, with α = 0.5.

θ0 d0 n d̂n d̂Opt−NO
J,2 d̂Opt−NO

J,3 d̂Opt−NO
J,4 d̂Opt−NO

J,6 d̂Opt−NO
J,8 d̂Opt−MB

J,2 d̂GS
1 d̂Opt−GS

1 d̂PFBS

-0.9 -0.25 96 0.8762 0.8973 0.8927 0.8836 0.8796 0.8681 0.8815 0.8819 0.8757 0.8830
576 0.6692 0.6536 0.6456 0.6447 0.6311 0.6300 0.6649 0.6954 0.6513 0.6485

0 96 0.8517 0.8446 0.8430 0.8267 0.8147 0.8134 0.8482 0.8474 0.8341 0.8303
576 0.6744 0.6521 0.6466 0.6388 0.6260 0.6150 0.6274 0.6539 0.6215 0.6223

0.25 96 0.9215 0.9473 0.9212 0.9112 0.9036 0.9027 0.9153 0.9346 0.9154 0.9869
576 0.6744 0.6709 0.6690 0.6560 0.6550 0.6447 0.6678 0.6942 0.6597 0.6955

0.45 96 0.9165 0.9355 0.9257 0.9212 0.9176 0.9052 0.9060 0.9298 0.9125 0.9628
576 0.6719 0.6618 0.6536 0.6518 0.6498 0.6419 0.6451 0.6938 0.6550 0.6913

-0.4 -0.25 96 0.3192 0.3127 0.3086 0.3078 0.3007 0.2901 0.3201 0.3728 0.3284 0.4744
576 0.1622 0.1565 0.1525 0.1453 0.1331 0.1325 0.1625 0.1929 0.1659 0.2080

0 96 0.3214 0.3179 0.3083 0.2990 0.2828 0.2722 0.3222 0.3725 0.3418 0.4328
576 0.1612 0.1703 0.1704 0.1642 0.1622 0.1622 0.1616 0.1913 0.1706 0.1960

0.25 96 0.3221 0.3485 0.3354 0.3279 0.3232 0.3215 0.3227 0.3731 0.3583 0.4101
576 0.1613 0.1520 0.1508 0.1442 0.1322 0.1217 0.1617 0.1916 0.1734 0.1913

0.45 96 0.3212 0.3157 0.3033 0.2962 0.2920 0.2817 0.3217 0.3732 0.3569 0.4013
576 0.1622 0.1497 0.1461 0.1359 0.1233 0.1126 0.1626 0.1929 0.1594 0.1880

0.4 -0.25 96 0.3164 0.3488 0.3304 0.3223 0.3174 0.3169 0.3170 0.3721 0.3458 0.4578
576 0.1617 0.1512 0.1407 0.1344 0.1225 0.1120 0.1620 0.1921 0.1641 0.2066

0 96 0.3148 0.3072 0.3001 0.2915 0.2859 0.2754 0.3154 0.3708 0.3257 0.4298
576 0.1607 0.1595 0.1497 0.1436 0.1316 0.1210 0.1610 0.1911 0.1549 0.1992

0.25 96 0.3164 0.3037 0.2940 0.2840 0.2777 0.2671 0.3171 0.3722 0.3338 0.4153
576 0.1613 0.1597 0.1428 0.1349 0.1224 0.1118 0.1618 0.1918 0.1644 0.1956

0.45 96 0.3175 0.3018 0.2990 0.2867 0.2791 0.2683 0.3183 0.3728 0.3048 0.4123
576 0.1627 0.1421 0.1302 0.1278 0.1243 0.1133 0.1633 0.1930 0.1591 0.1917
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Chapter 6

Conclusion

6.1 Introduction

The statistical analysis of strongly dependent, or long range dependent, data is at the core

of the economics and finance disciplines, amongst others. Such time series cannot be mod-

elled by the conventional autoregressive moving average [ARMA] or autoregressive inte-

grated moving average [ARIMA] models, as the autocovariances tend to zero like a power

function and slowly enough for their sum to diverge. The statistical model that plays the cen-

tral role in these studies is the fractionally integrated autoregressive moving average [ARFIMA]

model, which was introduced by Granger and Joyeux (1980) and Hosking (1981). The model

is a natural extension of the autoregressive integrated moving average [ARIMA] model by

permitting the order of integration to be any real number. The ARFIMA(p, d, q) model takes

the form of φ (L) (1− L)d (yt − µ) = θ (L) εt, where yt is the tth observation of the time series,

µ is the process mean, φ (L) and θ (L) are the autoregressive and moving average components

of orders p and q respectively, and {εt} is a white noise process with zero mean and constant

variance. Here, d is the order of integration that will be known as the fractional differencing

parameter hereinafter. Throughout the thesis we impose the restriction the true value of d lies

in the range, d ∈ (−0.5, 0.5), and that the characteristic roots of the components φ (L) and

θ (L) lie within the unit circle. Under this setting, the process {yt} is said to be is station-
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ary. Interest in fractionally integrated processes stems from the fact that they allow for the

full continuum of memory properties, including the long memory that is the primary focus

here. For reviews of early work on the use of fractional processes see Beran (1994) and Bail-

lie (1996), with more recent developments being discussed in Beran et al. (2013), Pipiras and

Taqqu (2017) and Hassler (2018).

The thesis aims to make methodological and theoretical contributions in the context of

the stationary class of ARFIMA models. Statistical inference based on parametric estimation

techniques typically relies on the assumption that the assumed model is correctly specified.

In this case, parametric estimators of the dynamics parameters are
√

n− consistent for the

true values, and asymptotic normality is achieved (see, Fox and Taqqu, 1986, Dahlhaus, 1989,

Hualde and Robinson, 2011 and Lieberman et al., 2012, among others). This assumption of

correct specification of the model for a given data generating process [DGP] is violated in

practice, as the true values of p and q – the number of AR and MA components – are not

known. Assessing the impact of incorrect specification of the model is a non-trivial task. The

thesis presents a complete analysis of the repercussions of mis-specifying the model, both

asymptotically and in finite samples.

While the convention in the area has been to adopt complete parametric specifications for

the dynamics in the time series, semi-parametric approaches have featured of late; for exam-

ple, see Geweke and Porter-Hudak (1983) and Robinson (1995a) among others. These methods

are most widely used, as they are not influenced by mis-specification of the short memory dy-

namics. However, they exhibit large finite sample bias and the bias-corrected semi-parametric

estimators are inefficient compared to their (correctly-specified) parametric counterparts due

to the trade-off between bias-reduction and variance. Therefore, the other main contribution
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of the thesis is to develop an optimally bias-corrected semi-parametric estimator, by control-

ling both bias-reduction and the increase in variance.

6.2 Summary and discussion

Chapter 1 introduces the ARFIMA model and provides an outline of the thesis. A review

of the class of ARFIMA models and the existing parametric and semi-parametric estimation

methods is given in Chapter 2. In what follows we shall summarize the contribution of the

three main chapters.

Chapter 3:

This chapter quantifies the impact of mis-specification of short memory dynamics in sta-

tionary fractionally integrated models on four alternative parametric estimators, namely, fre-

quency domain maximum likelihood [FML], discrete Whittle [DWH], time domain maximum

likelihood [TML] and conditional sum of squares [CSS]. Under common mis-specification, we

show that all four parametric estimators converge to the same pseudo-true value, which is

different from the true value of the vector parameter. A closed-form expression for the first

order conditions that define the pseudo-true value is provided. The rate of convergence and

the limiting distribution are case-specific, depending on the degree of mis-specification mea-

sured by the difference between the true value of the fractional differencing parameter (d0)

and its pseudo-true value (d1), denoted as d∗ = d0 − d1. If 0.25 < d∗ < 0.5, the limiting

distribution is non-Gaussian and the rate of convergence is slower than
√

n, and depends on

d∗, when n is sample size. If d∗ = 0.25, asymptotic normality is achieved with a rate of con-

vergence that is a function of the true spectral density and the spectral density of the fitted

model and the sample size. Whenever −1 < d∗ < 0.25, both asymptotic normality and a
√

n
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rate of convergence hold. Under mis-specification, all four parametric estimation methods are

asymptotically equivalent. The above mentioned theoretical results are established under the

assumption that the process mean is known, but without assuming Gaussianity for the true

process.

A simulation exercise is used to investigate the finite sample performance of the alternative

methods in terms of estimating the pseudo-true parameter d1. Provided that the process mean

is known, the CSS estimator uniformly outperforms the other three estimators, while the FML

estimator is the least efficient estimator. When the mean is estimated by the sample mean, the

DWH estimator is preferred among the four parametric estimators.

Chapter 4:

This chapter investigates the repercussions of mis-specifying the short memory dynamics

in stationary fractionally integrated models when the process mean is not known, by extend-

ing the theory established in Chapter 3. We establish the theory only for the EWH, TML and

CSS estimation methods, as FML and DWH are invariant to the mean. We show that the three

estimators converge to the same pseudo-true value that is identified under the known mean

case. The limiting distribution is identical to that of FML and DWH estimators. Two examples

of mean estimators, namely sample mean and the best linear unbiased estimator [BLUE] are

considered. Although the sample mean is unaffected by the specification of the model, the

BLUE is. However, BLUE is consistent for the true mean regardless of the model specifica-

tion. In a Monte-Carlo experiment with the sample mean and the BLUE being the estimators

of mean, it is observed that DWH performs best in estimating d1, and this conclusion holds

for both the Gaussian and Chi-squared error processes.
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Chapter 5:

This chapter develops a new bias-correction method for the log-periodogram regression

[LPR] estimator by focusing on bias reduction while minimizing the concurrent increase in

variance. We adopt a jackknife technique for such bias-adjustment. The resultant jackknife

based bias-corrected LPR estimator is a linear combination of the full sample and sub-sample

LPR estimators, where sub-samples are drawn using either the non-overlapping or moving-

block method. The weights in the linear combination are ‘optimal’ in the sense of producing

bias reduction with the minimum increase in variance, and the associated jackknife estima-

tor referred to as ‘optimal’ accordingly. The optimal weights are functions of two types of

covariance terms: (i) the covariance between the full- and sub-sample log-periodogram or-

dinates, and, (ii) the covariance between distinct sub-sample log-periodogram ordinates. We

derive these terms as follows. Firstly, we derive the cumulants of the discrete Fourier trans-

forms [DFT] associated with the full sample and the sub-samples, and derive the covariances

between the periodograms using the cumulants. Under certain regularity conditions on the

spectral density of the underlying process, we show that the periodograms associated with

the full sample and the sub-samples are asymptotically independent Chi-squared random

variables. Using the distributional results, we find the joint probability distribution of the

log-periodogram associated with the full sample and any sub-sample (or for two distinct sub-

samples). Using the joint distribution of the log-periodograms, we can derive the moment

generating function of the joint distribution. This leads to the derivation of the above men-

tioned covariance terms. We show that the optimally bias-corrected jackknife LPR estimator

is consistent for d0 and asymptotically normal, with an asymptotic variance that is same as

that of the original LPR estimator. That is, there is no loss in asymptotic efficiency compared
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to the LPR estimator.

In a simulation study, the optimally bias-corrected jackknife LPR estimator performs better

than the alternative bias-reduced LPR estimators of Guggenberger and Sun (2006) and Poskitt

et al. (2016), in terms of bias and root mean squared error [RMSE]. This result holds when

the true values of all the dynamic parameters are used in evaluating the optimal weights. In

practice the true values are not known and hence the optimal jackknife method is infeasible.

To this end, we introduce a feasible version of the estimator by implementing the jackknife

estimator using an iterative procedure. The feasible version of the jackknife estimator does

not consistently outperform the feasible version of Guggenberger and Sun or Poskitt et al.,

in terms of bias or RMSE, but still remains competitive and is sometimes the least biased

estimator of all.

6.3 Future directions

In this section we briefly discuss some new research ideas that have emerged while inves-

tigating the research issues presented in the thesis. These ideas are not pursued here, but,

as discussed below, we expect that they would produce some challenging topics for future

research.

In Chapters 3 and 4, we developed the asymptotic theory for parametric estimators when

fitting a mis-specified ARFIMA model with an incorrect choice of the number of short run

parameters. The technical results are established under the assumption that both the true DGP

and the fitted (mis-specified) model are stationary, where an ARFIMA model is stationary only

if d < 0.5 (and the short memory dynamics are in the stationary and invertible region) and is
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non-stationary if d ≥ 0.5. However, in practice this strong assumption is often violated and

non-stationarity has been documented in many financial time series such as treasury bills and

interest rates (see Škare and Stjepanović, 2013).1. Besides, a non-stationary ARFIMA process

can be easily mis-specified as a non-stationary ARIMA model, and vice versa, due to the slow

decay observed in the autocovariances of both models. Hence, relaxing the assumption of

stationarity in the true DGP and/or the fitted model is an important avenue to explore. Doing

so would lead to several fundamental questions: (i) how is the degree of mis-specification

measured?, (ii) do any of the parametric estimators still converge? If so, do they converge to

the same pseudo-true value that occurs in the stationary case or to a different value?, (iii) can

the
√

n– rate of convergence shall be achieved under some conditions, and (iv) is the limiting

distribution different from normal? This extension is non-trivial and the limiting criterion

function,

Q(η) =
σ2

0
2π

π∫
0

f0(λ)

f1(η,λ)
dλ , (6.1)

that defines the pseudo-true value, is not well-defined whenever the values of d0 and d are

greater than or equal to 0.5. Hence the remaining technical details need to be derived rig-

orously. The topic would provide an interesting introduction to other challenging topics for

future research along this line.

Chapters 3 and 4 use artificial data to illustrate the in-sample finite sample performance

of five parametric estimators (FML, DWH, EWH, TML and CSS) of the pseudo-true value of

the fractional differencing parameter. We intend to extend this analysis to forecasting per-

formance, documenting the performance of both point and distributional forecasts under:

1In the literature, there has been some theory focussed on estimation of non-stationary fractionally integrated
processes under correct specification of the model (see, Tanaka, 1999, Velasco, 1999a,b and Robinson, 2005). For
example, Robinson shows that the ordinary least squares estimator converges to a normal distribution, provided
that certain strong regularity conditions are satisfied.
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different degrees of mis-specification, for different forecast horizons, and using different (mis-

specified) estimators. Results of this analysis will then inform an empirical investigation, in

which mis-specification is an unavoidable feature. We expect that these explorations will re-

veal the importance of mis-specification for a practitioner and, ideally, provide useful guide-

lines to follow.

Although the theory developed in Chapters 3 and 4 is restricted to linear ARFIMA models,

the main ideas are likely to carry over to some time-varying and/or nonlinear time series

models as well. For example, we consider extending the issues related to mis-specification in

generalized autoregressive conditional heteroskedastic (GARCH) models of Bollerslev (1986).

The extension to such models is technically challenging as the process
{

ε2
t
}

is autocorrelated.

In Chapter 5, the proposed optimal bias correction is used to reduce the dominant bias

term exhibited by the LPR estimator without inflating the variance. Whilst this technique

has been shown to be very successful, as mentioned previously, the resultant estimator is

infeasible in practice, as the optimal weights depend on the true, and unknown, values of the

dynamic parameters. The suggested feasible version of the jackknife estimator does not show

significant reduction in bias compared with the feasible estimators of Guggenberger and Sun

(2006) and Poskitt et al. (2016), and we need to explore more effective ways of estimating the

parameters that enter the weight functions. One possible approach is to replace the spectral

density with its estimate, as suggested by Moulines and Soulier (1999). We expect that this

may provide better finite sample performance, but is something left for future research.

An alternative semi-parametric estimator, the local Whittle [LW] estimator of Robinson

(1995a) also encounters the same challenge as that of the LPR estimator in terms of exhibit-
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ing large finite sample bias. Therefore the insights developed in this chapter, including the

detailed technical results, will certainly be useful for extending the jackknife-based bias re-

duction methodology to the LW estimator.
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