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Abstract

Design of experiments is a useful and practical branch of statistics. One often needs

to predict a relationship between any phenomenon (or, response) and the causes (often,

called as the predictors) for that phenomenon. Experimental design involves not only the

selection of suitable predictors and outcomes, but planning the delivery of the experiment

under statistically optimal conditions given the constraints of available resources.

In this thesis, I have worked in four areas of design of experiments namely, (i) choice

designs, (ii) supersaturated designs, (iii) covering designs (or, coverings), and (iv) pseudo

generalized Youden designs.

(i) Choice designs: Choice experiments mirror real-world situations closely and

help manufacturers, service-providers, policy-makers and other researchers in taking busi-

ness decisions on the characteristics of their products and services based on the perceived

utility. In a paired choice experiment, several pairs of options are shown to respondents.

The respondents are asked to give their preference among the many options for each of

the choice sets shown to them. In order to conduct an experiment, a choice design is

customarily used to efficiently estimate the parameters of interest which essentially con-

sist of either the main effects only or the main plus two-factor interaction effects of the

attributes. For two-level paired choice experiments, we have obtained a simple form of

the information matrix of a choice design for estimating the main effects, and provided

D- and MS -optimal paired choice designs with distinct choice sets under the main effects

model for any number of choice sets. It is also shown that the optimal designs under the

main effects model are also optimal under the broader main effects model. We found that

optimal choice designs with a choice set size two often outperform their counterparts with

larger choice set sizes.

Traditionally, while using designs for discrete choice experiments, every respondent

is shown the same collection of choice pairs (that is, the choice design). Also, as the

ix



attributes and/or the number of levels under each attribute increases, the number of choice

pairs in an optimal paired choice design increases rapidly. Moreover, in the literature

under the utility-neutral setup, random subsets of the theoretically obtained optimal

designs are often allocated to respondents. The question therefore is whether one can do

better than a random allocation of subsets. To address these concerns, in the linear paired

comparison model (or, equivalently the multinomial logit model), we first incorporate the

fixed respondent effects (also referred to as the block effects) and then obtain optimal

designs for the parameters of interest. Our approach is simple and theoretically tractable,

unlike other approaches which are algorithmic in nature. We present several constructions

of optimal block designs for estimating main effects or main plus two-factor interaction

effects. Our results show when and how an optimal design for the model without blocks

can be split into blocks so as to retain the optimality properties under the block model. For

paired choice designs, two new construction methods are also proposed for the estimation

of the main effects. These designs require about 30-50% fewer choice pairs than the

existing designs and at the same time have reasonable highD-efficiencies for the estimation

of the main effects.

Considering all factors at 3 levels each, and for paired choice designs, we have also

obtained a sharper lower bound to the A- and D-values for estimating the main effects

under the utility-neutral multinomial logit model. New A- and D-optimal (and efficient)

designs are also provided. Considering three-level paired choice designs for estimating all

the main effects and two-factor interaction effects under the utility-neutral multinomial

logit model, we have provided a general technique involving generators to reduce the

number of choice pairs in aD-optimal design. Generators are identified allowing significant

reduction in the total number of choice pairs for D-optimal designs.

For two-level choice experiments with k factors, we consider a model involving the

main plus all two-factor interaction effects with our interest lying in the estimation of the

main effects and a specified set of two-factor interaction effects. The two-factor interaction

effects of interest are either (i) one factor interacting with each of the remaining n − 1

factors or (ii) each of the two factors interacting with each of the remaining n− 2 factors.

For the two models, we first characterized the information matrix and then constructed

universally optimal choice designs for choice set sizes 3 and 4.

Several author-groups have contributed to the theoretical development of discrete
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choice experiments and for finding optimal choice designs under the multinomial logit

model. The author-groups Street–Burgess and Huber–Zwerina have adopted different

approaches and used seemingly different information matrices under the multinomial logit

model. The information matrix plays a crucial role for finding optimal designs in both

approaches. Since the expressions for the relevant matrices look very different and it is

not obvious how the two approaches are related, this has given rise to some confusion

in the literature. We resolve this confusion by showing, in general, how the information

matrices under the two approaches are related. There have also been some confusion

regarding the inference parameters expressed as linear functions of the utility parameter

vector τ . We theoretically establish a unified approach to discrete choice experiments and

introduce the general inference problem in terms of a simple linear function of τ . This

allows us to show that the commonly used effects coding under the A-criterion for the

non-singular full-rank inference problem inherently attaches unequal importance to the

elementary contrasts of attribute levels. On the contrary, we see that the orthonormal

coding leads to attaching equal importance to the elementary contrasts of attribute levels.

However, for a singular full-rank inference problem involving the full set of effects-coded

parameters, we show that the orthonormal coding provides an equivalent approach to

obtain A-optimal designs.

(ii) Supersaturated designs: Supersaturated designs are useful for factor screen-

ing experiments under the factor sparsity assumption that only a small number of factors

are active. The popular E(s2)-criterion for choosing two-level supersaturated designs min-

imizes the sum of squares of the entries of the information matrix over the designs in which

the two levels of each factor appear equal number of times. Recently Jones and Majumdar

(2014) proposed the UE(s2)-criterion which is essentially the same as the E(s2)-criterion

except that the requirement of factor-level-balance is dropped. Since this requirement is

bypassed, usually there are many UE(s2)-optimal designs with diverse characteristics and

performances. It is necessary to choose better designs from them. We proposed additional

criteria and provided constructions for superior UE(s2)-optimal designs having good pro-

jection properties. Usually E(s2)-optimal designs are difficult to construct, whereas our

construction methods of superior UE(s2)-optimal designs are simple and systematic. We

also identified several families of designs that are both E(s2)- and UE(s2)-optimal.

(iii) Coverings: A t-(v, k, λ) covering is a collection of k-element subsets, called
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blocks, of a v-set of points such that each t-subset of points occurs in at least λ blocks.

If each t-subset of points occurs in exactly λ blocks the covering is a t-(v, k, λ) design.

Fisher’s inequality famously states that every 2-(v, k, λ) design has at least v blocks. In

1975 Ray-Chaudhuri and Wilson generalised this result to higher t by showing that every

t-(v, k, λ) design has at least
(

v
bt/2c

)
blocks, and Wilson gave a streamlined proof of this

result in 1982. Horsley (2017) adapted a well-known proof of Fishers inequality to produce

a new lower bound on the number of blocks in some 2-(v, k, λ) coverings. In this thesis,

we have shown how ideas from these papers can be combined to obtain improved lower

bounds on the number of blocks in t-(v, k, λ) coverings for t > 2. We have also identified

some infinite families of parameter sets where our bound exists and is an improvement

over the best available lower bounds. We also found an infinite family where our bound

is tight, that is, there exists a t-(v, k, λ) covering attaining our bound.

(iv) Pseudo generalized Youden designs: Sixty years ago, Kiefer (1958) intro-

duced generalized Youden designs (GYDs) for eliminating heterogeneity in two directions.

A GYD is a row-column design whose k rows form a balanced block design (BBD) and

whose b columns do likewise. Later Cheng (1981b) introduced pseudo Youden designs

(PYDs) in which k = b and where the k rows and the b columns, considered together

as blocks, form a BBD. Kiefer (1975b) proved a number of results on the optimality of

GYDs. A PYD has the same optimality properties as a GYD. In this thesis, we have

introduced and investigated pseudo generalized Youden designs (PGYDs) which gener-

alise both GYDs and PYDs. A PGYD is a row-column design where the k rows and b

columns, considered together as blocks, form an equireplicate generalized binary variance

balanced design. Every GYD is a PGYD and a PYD is exactly a PGYD with k = b. We

have shown, however, that there are situations where a PGYD exists but neither a GYD

nor a PYD does. We also obtained necessary conditions, in terms of v, k and b, for the

existence of a PGYD. Using these conditions, we provided an exhaustive list of parameter

sets satisfying v 6 25, k 6 50, b 6 50 for which a PGYD exists. We constructed families

of PGYDs using patchwork methods based on affine planes.
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Chapter 1

Introduction

1.1 Motivation and Background

Design of experiments is a useful and practical branch of statistics. One often needs to

predict a relationship between any phenomenon (or, response) and the causes (often, called

the predictors) for that phenomenon. Design of experiments helps in such prediction.

Experimental design involves not only the selection of suitable predictors and outcomes,

but planning the delivery of the experiment under statistically optimal conditions given

the constraints of available resources.

The experiments with only one predictor variable at various discrete levels are com-

monly known as block designs. Block designs consist of many blocks in which predictor

variables are replicated appropriately to achieve the desired precision of the experiment.

Typically, blocking is done using a blocking factor which controls the variability that is

not of primary interest to the experimenter. For example, in an experiment involving

prediction of marks of students of class X, the gender of students can be treated as a

blocking factor.

If an experiment, however, involves many predictor variables each with discrete pos-

sible values or “levels”, then it is termed as a factorial experiment and the design layout is

known as a factorial design. Such an experiment allows the investigator to study the effect

of each predictor (or, factor) on the response variable, as well as the effects of interactions

between factors on the response variable. For the vast majority of factorial experiments,

each factor has only two or three levels.

Correctly designed experiments help in gaining better knowledge in many practical
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fields like nature sciences, social sciences, engineering, marketing, policy making, etc.

In this report, we discuss some open problems in four areas of design of experiments

namely, (i) choice designs, (ii) supersaturated designs, (iii) covering designs (or, coverings),

and (iv) pseudo generalized Youden designs.

1.1.1 Choice Designs

Choice experiments are widely used in marketing, transport, environmental resource eco-

nomics and public welfare analysis. They mirror real-world situations closely and help

manufacturers, service-providers, policy-makers and other researchers in taking business

decisions on the characteristics of their products and services based on the perceived

utility.

A choice experiment consists of N choice sets, each containing m options. A re-

spondent is shown each of the choice sets in turn and is asked for the preferred option

as per his or her perceived utility. Each option in a choice set is described by a set of

k attributes, where each attribute has two or more levels. We assume that there are no

repeated options in a choice set. Furthermore, in this thesis, we consider that for a set of

k attributes, for i = 1, . . . , k, the ith attribute has vi levels, vi ≥ 2. We represent the vi

levels by 0, . . . , vi − 1, unless stated otherwise. Thus, there are a total of
∏

i vi options.

It is ensured that respondents choose one of the options in each choice set. A choice

design is a collection of choice sets that are employed in a choice experiment. Though

choice designs may contain repeated choice sets, one may prefer that no two choice sets

are repeated. For excellent reviews of designs for choice experiments, see Großmann and

Schwabe (2015) and Street and Burgess (2012).

Huber and Zwerina (1996), following the seminal work of McFadden (1974), used a

modelling approach to compare choice designs. Subsequently Street and Burgess (2007),

using the approach of El-Helbawy and Bradley (1978), presented a comprehensive exposi-

tion of designs for choice experiments under the multinomial logit model. The model spec-

ifies the probability of an individual choosing one of the m options from a choice set. For

a paired choice design, for example, the multinomial logit model supposes that the proba-

bility of preferring option 1 over option 2 in the ith choice pair is π12i = eu1i/(eu1i + eu2i),

where u1i and u2i represent the systematic part of the utilities attached to the two options

in the ith choice pair. Similarly π21i = 1−π12i is the probability that option 2 is preferred

2



over option 1. It follows that for the ith choice pair, the choice probabilities depend only

on the utility difference u1i − u2i. For a design d with N choice pairs, since options are

described by k factors, following Huber and Zwerina (1996), the utilities are modelled

using the linear predictor uj = Pjθ, where θ is a vector representing the main effects, Pj

is an effects coded matrix for the jth option, and uj = (uji) is an N × 1 utility vector for

the jth option, j = 1, 2; i = 1, . . . , N . The utility difference u1 − u2 = (P1 − P2)θ = Xθ

is then a linear function of the parameter vector θ. In what follows, we refer to X as the

design matrix of design d. Since multinomial logit choice models are non-linear in the

parameters and the information matrix is a function of the parameters, a utility-neutral

approach (that is, taking θ = 0) of finding the information matrix has been developed over

the last two decades. Under such a utility-neutral multinomial logit model, the Fisher

information matrix for a design d is (1/4)Md, where Md = XTX.

Simultaneously, Graßhoff et al. (2004) studied linear paired comparison designs which

are analyzed under the linear paired comparison model. Here, the quantitative response

Z is the observed utility difference between the two options and is described by the model,

Z = U1 − U2 + ε = (P1 − P2)θ + ε = Xθ + ε, where ε is a random error vector. For a

design d, the matrix Md is the information matrix under the linear paired comparison

model. Although the linear paired comparison and the multinomial logit models follow

different approaches, the information matrix for a choice design for m = 2 under the latter

with equal choice probability (Huber and Zwerina, 1996) is proportional to that under

the former.

One objective of a choice experiment is to optimally or efficiently estimate the param-

eters of interest which essentially consist of either only the main effects or the main plus

two-factor interaction effects of the k attributes. As noted in Großmann and Schwabe

(2015), most optimality results for choice designs are available for the D-criterion. A

D-optimal design has the maximum determinant of the information matrix among all

competing information matrices. D-criterion is invariant to reparameterizations or in

other words, it does not depend on the coding of the attribute levels. Furthermore, Groß-

mann and Schwabe (2015) observed that the paired choice designs that are optimal under

the linear paired comparison model are also D-optimal under the multinomial logit model

and vice versa.

Optimal designs have been obtained theoretically under the utility-neutral setup, for
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example, see Graßhoff et al. (2003), Graßhoff et al. (2004), Street and Burgess (2007),

Street and Burgess (2012), Demirkale, Donovan and Street (2013), Bush (2014), Groß-

mann and Schwabe (2015) and Singh, Chai and Das (2015). We refer the reader to com-

prehensive reviews provided by Street and Burgess (2007) and Großmann and Schwabe

(2015).

1.1.2 Supersaturated Designs

In an n-run factorial experiment involving m two-level factors, for the general mean

and all the main effects to be estimable, we must have n > m + 1. A design is called

supersaturated if n < m + 1. Under the assumption that only a small number of factors

are active (factor sparsity), a supersaturated design can provide considerable cost saving

in factor screening. In supersaturated designs, as in factorial experiments, most of the

results correspond to the situations where each of the factors has two levels. Each two-

level supersaturated design can be represented by an n × m matrix having entries 1s

and −1s, with each column of Xd corresponding to one factor and each row representing

a factor-level combination. A factor is said to be level-balanced if the corresponding

column of Xd has the same numbers of 1s and −1s. This is possible only if n is even.

For an odd n, a factor is said to be nearly level-balanced if in the corresponding column

the numbers of times 1 and −1 appear differ by one. Without loss of generality, we

require that 1 appears (n − 1)/2 times and −1 appears (n + 1)/2 times. A design is

said to be level-balanced (respectively, nearly level-balanced) if all the factors are level-

balanced (respectively, nearly level-balanced). Usually, under the main-effects model, one

is interested in finding the best lower bounds for E(s2) (which is defined later and is a

measure of non-orthogonality of the design) and then one is also interested in finding the

designs which attain the lower bounds to E(s2). More details are given in Chapter 9.

1.1.3 Coverings

An incidence structure is a pair (V,B) where V is a set of points and B is a collection of

subsets of V called blocks. For positive integers t, v, k and λ with t < k < v, a t-(v, k, λ)

covering is an incidence structure (V,B) such that |V | = v, |B| = k for all B ∈ B, and

each t-subset of V is contained in at least λ blocks in B. If each t-subset of V is contained
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in exactly λ blocks in B, then (V,B) is a t-(v, k, λ) design. Usually we are interested

in finding coverings with as few blocks as possible. The covering number Cλ(v, k, t) is

the minimum number of blocks in any t-(v, k, λ) covering. The Schönheim bound for the

covering number is given by

Cλ(v, k, t) > Lλ(v, k, t) where Lλ(v, k, t) =

⌈
v

k

⌈
v − 1

k − 1
· · ·
⌈
v − t+ 2

k − t+ 2

⌈
λ(v − t+ 1)

k − t+ 1

⌉⌉
· · ·
⌉⌉

.

We are interested in improving lower bounds on covering numbers, wherever possible,

and in constructing coverings attaining the improved lower bounds. More details are given

in Chapter 10.

1.1.4 Pseudo Generalized Youden Designs

A GYD is a row-column design whose k rows form a balanced block design (BBD) and

whose b columns do likewise. Pseudo Youden designs (PYDs) are designs in which k = b

and where the k rows and the b columns, considered together as blocks, form a BBD. We

introduce and investigate pseudo generalized Youden designs (PGYDs) which generalize

both GYDs and PYDs. A PGYD is a row-column design where the k rows and b columns,

considered together as blocks, form an equireplicate generalized binary variance balanced

design. Every GYD is a PGYD and a PYD is exactly a PGYD with k = b. More details

are given in Chapter 11.

1.2 Outline of the Thesis

In this thesis, each chapter is independent in itself and therefore notations are consistent

only throughout each chapter. Chapters 2–8 is a collection of work done in the area of

choice experiments. All chapters except Chapter 6 and Chapter 8 are published or ac-

cepted in peer-reviewed journals. Chapter 6 has been submitted to Statistics & Probability

Letters and Chapter 8 is an ongoing work. Chapter 9 is in the area of supersaturated

designs. Chapter 10 and Chapter 11 are in the area of coverings and pseudo generalized

Youden designs, respectively. Chapters 9–11 are also published/accepted in peer-reviewed

journals. Chapter 12 provides conclusions and future research in the areas I have covered

in this thesis.
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Chapter 2

Optimal two-level choice designs for

any number of choice sets

This chapter is based on the following work:

Singh et al. (2015): Singh, Rakhi; Chai, Feng-Shun; Das, Ashish. Optimal two-level

choice designs for any number of choice sets. Biometrika 102 (2015), no. 4, 967–973.

2.1 Introduction and preliminaries

In this chapter, we consider each attribute to be at two levels, −1 and 1, leading to a total

of 2k options. Let Ti = (ti1, . . . , tim) denote the ith choice set, where tiα is the αth option

in the ith choice set (i = 1, . . . , N ; α = 1, . . . ,m). The collection of all such choice sets Ti

is called a choice design T , with parameters N , k and m. As in Street and Burgess (2007),

under the multinomial model and equal choice probabilities, the information matrix for

options of a choice design with N choice sets is Λ = (Λ(r,s)), where

m2NΛ(r,s) =

 (m− 1)nr, r = s,

−nr,s, r 6= s

with r and s the labels of the corresponding options, nr the number of times option label

r appears in the choice design and nr,s the number of times option labels r and s occur

together in choice sets of the design.

We consider choice experiments where our interest is restricted to the main effects

of the attributes. For a 2k choice experiment, let B represent the orthonormal contrast
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matrix for the k main effects and let B(2) represent the orthonormal contrast matrix

for all the k(k − 1)/2 two-factor interactions. Then, in the main effects model with

no interactions, the information matrix, also called the C-matrix, of the main effects is

Cm = BΛBT . Similarly, in the broader main effects model, where all interactions that

involve three or more factors are absent, the C-matrix of the main effects is

C(2)
m = Cm −BΛBT

(2)(B(2)ΛB
T
(2))
−B(2)ΛB

T . (2.1)

A choice design is connected if all the main effects are estimable under the main

effects model, and this happens if and only if Cm has rank k. In what follows, the class

of all connected choice designs that involve k two-level attributes and N choice sets each

of size m is denoted by DN,k,m. For a choice design T ∈ DN,k,m, let 0 < γ1 ≤ · · · ≤ γk be

the eigenvalues of Cm. Then, T ∗ ∈ DN,k,m is said to be A-, D-, or E-optimal in DN,k,m
if, respectively,

∑k
i=1 γ

−1
i ,

∏k
i=1 γ

−1
i , or γ−1

1 is minimum for the design T ∗. Furthermore,

Eccleston and Hedayat (1974) introduced the MS -optimality criterion: T ∗ ∈ DN,k,m is

said to be MS -optimal in DN,k,m if
∑k

i=1 γ
2
i is minimum for the design T ∗ among all

designs T ∈ DN,k,m having maximum
∑k

i=1 γi .

Graßhoff et al. (2004) and Demirkale et al. (2013) obtained D-optimal paired choice

designs, which are also A-, E- and MS -optimal, under the main effects model. Though

their results are exhaustive, for two-level choice designs, their C-matrix is necessarily a

scalar multiple of identity matrix, with N being a multiple of 4. Graßhoff et al. (2004)

also noted that under their setup the model of paired comparisons is equivalent to the

weighing of k objects in a chemical balance. Under the main effects model, we derive a

simple form of the C-matrix in terms of the design matrix of the paired choice design.

We see that even under a broader main effects model, there is a one-one correspondence

between optimal paired choice designs and chemical balance weighing designs. Thus, by

suitably modifying the constructions on the weighing designs, we construct new D- and

MS -optimal paired choice designs in DN,k,2, for all N under the broader main effects

model. We also find that the optimal choice designs with m = 2 often outperform their

counterparts with m > 2.
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2.2 Information Matrix and D-optimal Designs

Let m = 2. For the ith choice set Ti, let tiα = (t
(1)
iα · · · t

(k)
iα ) where t

(j)
iα represents the level

of the jth attribute in the αth option. For α = 1, 2, define an N × k matrix Pα = (t
(j)
iα )

such that {P1, P2} represent the paired choice design T . Also, let X = (P1 − P2)/2.

Henceforth, we will refer to the matrix X as the paired choice design matrix, or simply,

the design matrix. Since X is a matrix with elements ±1 and 0, it is similar to a chemical

balance weighing design matrix. We now present a simple form of the information matrix

of a choice design for estimating the main effects.

Theorem 2.1. For a paired choice design T with parameters N and k, C2 = XTX/(N2k).

Also, rank(C2) = k only if k 6 N .

Großmann and Schwabe (2015) established how the information matrix under the

equal choice probability approach of Huber and Zwerina (1996) for m ≥ 2 is related to the

information matrices for pairs. Supplementing this, we show that under the equal choice

probability multinomial logit model approach of Street and Burgess (2007) the information

matrix for a choice design withm ≥ 2 is proportional to the sum ofm(m−1)/2 information

matrices of paired choice designs. This generalizes Theorem 2.1, details of which are as

follows.

As in Street and Burgess (2007), under the multinomial model and equal choice

probabilities, the information matrix, for options, of a choice design with N choice sets

is,

Λ =
1

N

N∑
i=1

Λi =
1

N

N∑
i=1

(
1

m2

m−1∑
α=1

m∑
α1=α+1

∆i(αα1)

)
, (2.2)

where Λi is the information matrix of the ith choice set Ti and for α 6= α1 = 1, . . . ,m,

∆i(αα1), with elements ∆i(αα1)(r, s), is a matrix of order 2k corresponding to αth and α1th

options in the ith choice set, with

∆i(αα1)(r, s) =

 n
(i)
r , r = s,

−n(i)
r,s, r 6= s.

Here, r and s are the labels of the corresponding options, n
(i)
r is the number of times

option label r appears in the pair (tiα, tiα1) and n
(i)
r,s is the number of times option labels

r and s occur together in the pair (tiα, tiα1).

9



Under the main effects model, the following lemma derives the C-matrix for general

m in terms of the paired choice design matrices. We then see that Theorem 2.1 is a special

case of Lemma 2.2.

Lemma 2.2. Let T be a choice design with parameters N , k and m. For any α 6= α1 =

1, . . . ,m, define the N × k matrix Pα = (t
(j)
iα ) and Xαα1 = (Pα − Pα1)/2. Then,

Cm =
1

m2N2k−2

m−1∑
α=1

m∑
α1=α+1

XT
αα1

Xαα1 .

Proof. Let tiα and tiα1 be the ith rows of Pα and Pα1 , respectively, and let xiαα1 be the

ith row of Xαα1 . Without loss of generality, let tiα and tiα1 correspond to the rth and the

sth lexicographic labels, with r < s.

Without any loss of generality, we take the k×2k orthonormal contrast matrix B for

main effects, as defined in Street and Burgess (2007). The columns of B are lexicographic

arrangement of all 2k options. Let 2(k/2)B = (B1 br B2 bs B3), where B1 is of order

k × (r − 1), B2 is of order k × (s − r − 1), and B3 is of order k × (2k − s). Since rth

and sth column of B are the rth and sth treatment combinations in lexicographic order,

respectively, br = tTiα and bs = tTiα1
.

Also, by definition, ∆i(αα1) =
(

02k×(r−1) wTiαα1
02k×(s−r−1) −wTiαα1

02k×(2k−s)
)

where

wiαα1
=
(

01×(r−1) 1 01×(s−r−1) −1 01×(2k−s)
)
. Then,

2kB∆i(αα1)B
T = 2(k/2)

(
0k×(r−1) (tTiα − tTiα1

) 0k×(s−r−1) (tTiα1
− tTiα) 0k×(2k−s)

)
BT

= 2(k/2)
(

0k×(r−1) 2xTiαα1
0k×(s−r−1) −2xTiαα1

0k×(2k−s)
)
BT

= 2(xTiαα1
tiα − xTiαα1

tiα1 ) = 2xTiαα1
(tiα − tiα1 ) = 4xTiαα1

xiαα1 .

From (2.2), we get,

Cm = BΛBT = 1
N
B
∑N

i=1

(
1
m2

∑m−1
α=1

∑m
α1=α+1 ∆i(α,α1)

)
BT

= 1
m2N2k−2

∑m−1
α=1

∑m
α1=α+1

(∑N
i=1 x

T
iαα1

xiαα1

)

= 1
m2N2k−2

∑m−1
α=1

∑m
α1=α+1 X

T
αα1

Xαα1 .

Remark 2.3. Großmann and Schwabe (2015) show that the information matrix for the

D-optimal two-level paired choice design d∗ under the equal choice probability multino-

mial logit model approach of Street and Burgess (2007) is proportional to the information

matrix of the approximate uniform D-optimal two-level design ξ∗ under the linear paired
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comparison model. In contrast, Theorem 2.1 establishes that the result holds true for any

two-level paired choice design d.

We now provide optimal designs in DN,k,2. From Theorem 2.1, it follows that finding

an optimal paired choice design T is equivalent to finding an optimal design matrix X

with elements ±1 and 0. Galil and Kiefer (1980) showed that for D-optimal designs,

within the class of all choice design matrices, it suffices to find a D-optimal design within

the class of choice design matrices with elements ±1 only.

From (2.1) we see that a sufficient condition for C
(2)
m = Cm is BΛBT

(2) = 0. Further-

more, corresponding to any X with elements ±1 only, the choice design d ∈ DN,k,2 has

BΛBT
(2) = 0. This orthogonality condition holds since ΛBT

(2) = 0 if X has elements ±1

only. Details are as follows.

The following result establishes a sufficient condition for orthogonality of main effects

and two-factor interaction effects in a paired choice design.

Lemma 2.4. Let T be a paired choice design with parameters N and k. Then ΛBT
(2) = 0

if X has elements ±1 only.

Proof. Let X have elements ±1 only. Then, for the corresponding paired choice design

T , the ith choice set Ti = (ti1, −ti1), i = 1, . . . , N . Without loss of generality, let

ti1 will correspond to the rth lexicographic label, r ≤ 2k−1. Then −ti1 corresponds

to the (2k − r + 1)th lexicographic label. Let 2kB(2) = (B∗1 b∗r B∗2 b∗
2k−r+1

B∗3),

where B∗1 is of order k∗ × (r − 1), B∗2 is of order k∗ × (2k − 2r), and B∗3 is of order

k∗ × (r − 1) where k∗ = k(k − 1)/2. It is easy to see that b∗r = b∗
2k−r+1

. Also since,

Λi =
(

02k×(r−1) wTi 02k×(2k−2r) −wTi 02k×(r−1)

)
with

4wi =
(

01×(r−1) 1 01×(2k−2r) −1 01×(r−1)

)
, therefore, N2kΛBT

(2) = 2k
∑N

i=1 ΛiB
T
(2) =∑N

i=1w
T
i (b∗Tr − b∗T2k−r+1

) = 0.

Thus, if a design matrix X with elements ±1 is optimal under the main effects model

then it is also optimal under the broader main effects model. In this context, we note that

Graßhoff et al. (2003) established optimality of a uniform design ξ̄d for the main effects

having a block diagonal information matrix with block matrices corresponding to main

effects and two-factor interactions respectively. In contrast, our orthogonality condition

BΛBT
(2) = 0 establishes that any paired choice design d such that Xd has elements ±1
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only has a block-diagonal information matrix where the two block matrices need not be

scalar multiples of the identity matrix.

Let HN,N denote a Hadamard matrix of order N ≡ 0 (mod 4) in its normal form. For

every k ≤ N , by deleting any N − k columns of HN,N we get HN,k such that HT
N,kHN,k =

NIk, where Ik is the identity matrix of order k. In such a situation X = HN,k is A-, D-,

E- and MS -optimal.

A choice design with no two choice sets repeated has a design matrix with distinct

rows. Two rows of a design matrix are distinct if the absolute value of their inner product

is less than k. Modifying the constructions of D-optimal matrices given in Payne (1974)

and Galil and Kiefer (1980), we now provide new constructions such that the rows of X

are all distinct. We take up the cases N ≡ i (mod 4) (i = 0, 1, 2, 3) separately.

Construction-(0) for N ≡ 0 (mod 4), k ≤ N : Starting from HN,N , it is easy to see

that one can randomly delete a maximum of N/2 − 1 columns resulting in an optimal

design matrix X0 = HN,k with k > N/2, such that no two rows have an inner product

equal to ±k, that is, all rows are distinct. However, in order to delete N/2 or more

columns, one would need to delete columns carefully to ensure that all rows are distinct.

As established in Graßhoff et al. (2004) and Demirkale et al. (2013), the choice design d0

corresponding to X0 is A-, D- and E-optimal in DN,k,2.

Construction-(I) for N ≡ 1 (mod 4), k < N : Consider X0 = HN−1,k of Construction-

(0). To ensure that no two choice sets are repeated, one may add to X0 any row of ±1’s

not present in X0 or −X0 to get a design matrix, say X1. The following theorem shows

that the resultant X1 is D-optimal.

Theorem 2.5. For N ≡ 1 (mod 4) and k < N , one can add any row consisting of entries

±1 to HN−1,k, and the resultant paired choice design d1 corresponding to X1 is D-optimal

in DN,k,2.

Proof. Let HN−1,N−1 be a Hadamard matrix of order N − 1 and a be column vector of

order k consisting entirely of entries ±1. Keeping any k columns of HN−1,N−1, a (N−1)×k

matrix HN−1,k is obtained. Then, HT
N−1,kHN−1,k = (N − 1)Ik.

Let X1 be an N × k matrix with k < N such that X1 = ( HN−1,k a
T )T . Then,

XT
1 X1 = HT

N−1,kHN−1,k + aaT , or XT
1 X1 = (N − 1)Ik + aaT , and the eigenvalues of
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XT
1 X1 are N − 1 and N − 1 + aTa with respective multiplicities k − 1 and 1. Thus,

det(XT
1 X1) = (N − 1 + k)(N − 1)k−1, attaining the theoretical bound as obtained in

Payne (1974). Therefore, X1 is D-optimal.

Unlike the construction of Payne (1974), Theorem 2.5 allows us to broaden the

selection of the D-optimal paired choice designs by adding any one of the 2k − 2(N − 1)

possible options, which are not options in the rows of ±X0. Furthermore, based on the

results of Cheng (1980), it follows that the paired choice design d1 is also A- and E-

optimal in DN,k,2.

Construction-(II) for N ≡ 2 (mod 4), k ≤ N : For k ≤ N − 2, consider X0 = HN−2,k

of Construction-(0). Then to obtain X2, we add to X0 two rows as follows. A row of all 1’s

is added after multiplying any column of X0 by −1. As second row, one can add any row

consisting of entries ±1 such that number of 1’s and −1’s differ by at most 1 and is distinct

from the other N − 1 rows. The resultant paired choice design d2, corresponding to the

design matrix X2, is D-optimal in DN,k,2, as multiplying any column by −1 doesn’t change

the Hadamard properties of HN−2,k. Cheng (1980) and Jacroux et al. (1983) showed that

X2 is also E- and A-optimal within the restricted class of choice design matrices with

elements ±1 only. Furthermore, for certain values of k, Cheng et al. (1985) showed that

X2 with respective choice design d2 is A-optimal in DN,k,2.

For k = N and N − 1, consider X0 = HN+2,k of Construction-(0). Then delete from

X0 the first row of all 1’s and a row such that number of 1’s and −1’s differ by at most

1. This results in X2 corresponding to a paired choice design d2. Payne (1974) and Galil

and Kiefer (1980) did not provide any constructions for k = N and N − 1.

Construction-(III) for N ≡ 3 (mod 4), k ≤ N : ConsiderX0 = HN+1,k of Construction-

(0). Delete any row from X0 to get a design matrix, say X3. This would facilitate to get

N distinct rows of X3 if X0 had at most two repeated rows. The following theorem, proof

of which follows on lines similar to Theorem 2.5, establishes D-optimality of X3.

Theorem 2.6. For N ≡ 3 (mod 4) and k ≤ N , one can delete any row from HN+1,k,

and the resultant paired choice design d3 corresponding to X3 is D-optimal in DN,k,2 for

k ≤ (N + 5)/2.

Unlike the constructions of Payne (1974) and Galil and Kiefer (1980), this result
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allows us to broaden the selection of D-optimal paired choice designs by deleting any one

of the N + 1 possible options which are options in the rows of HN+1,k. For certain values

of k, Cheng et al. (1985) showed that d3 is A-optimal in DN,k,2

Remark 2.7. So far, under the broader main effects model, we have generally provided D-

optimal, and in some cases, A- and E-optimal, paired choice designs with distinct choice

pairs. However, there are several situations where systematic construction of D-optimal

design matrices are not available. Below, we summarize the cases in which uncertainties

remain:

(a) when N ≡ 1 (mod 4), no systematic construction is available for k = N except

when 2N − 1 is a perfect square;

(b) when N ≡ 2 (mod 4), no systematic construction is available for k = N and

k = N − 1;

(c) when N ≡ 3 (mod 4), neither sharp upper bounds to det(XTX), nor systematic

constructions are available for (N + 5)/2 < k 6 N .

The link http: // www. indiana. edu/ ~ maxdet/ and Galil and Kiefer (1982) pro-

vide examples of D-optimal matrices for k = N ≤ 119 and N ≡ 3 (mod 4), (N + 5)/2 <

k 6 N , respectively.

2.3 MS -optimal Designs

In order to address situations where D-optimal designs could not be identified, we now

find MS -optimal designs in DN,k,2. From Theorem 2.1 it follows that, a paired choice

design in DN,k,2 with its C-matrix having maximum
∑k

i=1 γi has a corresponding design

matrix necessarily belonging to the class of choice design matrices with elements ±1 only.

Thus, finding a MS -optimal paired choice design is equivalent to finding a design matrix

X with elements ±1 only, such that
∑k

i=1 λ
2
i is minimum where 0 < λ1 ≤ · · · ≤ λk are

the eigenvalues of XTX. The eigenvalues of C2 are γi = λi/(N2k) ( i = 1, . . . , k). First

we provide a lower bound to
∑k

i=1 λ
2
i .

Theorem 2.8. Let X be a matrix with elements ±1 only. Then
∑k

i=1 λ
2
i > N2k + L,

where
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L =



0, N ≡ 0 (mod 4),

2k(k − 2), N ≡ 2 (mod 4), k even,

2{k(k − 2) + 1}, N ≡ 2 (mod 4), k odd,

k(k − 1), N ≡ 1 (mod 4) or N ≡ 3 (mod 4).

Proof. Let XTX = M = (mij). Then
∑k

i=1 λ
2
i = tr(M2) = N2k +

∑k
i=1

∑k
j(6=i)=1m

2
ij,

which is used to get the final bound. For every given row of X, the four possible values for

the ith and jth column entries are (1, 1), (1,−1), (−1, 1) and (−1,−1). For the ith and jth

columns of X, let f1, f2, f3 and f4 be the number of rows of X with entries (1, 1), (1,−1),

(−1, 1) and (−1,−1), respectively. Then, f1 +f2 +f3 +f4 = N and (f1 +f4)− (f2 +f3) =

mij, which implies that

f1 + f4 = (mij +N)/2, f2 + f3 = (N −mij)/2. (2.3)

Since f1 + f4 is an integer, mij is even when N is even and mij is odd when N is odd.

Now we define eij = (−1)2f1+f2+f3 . For N ≡ 2 (mod 4), using (2.3), when mij ≡ 0

(mod 4) then eij = −1, and when mij ≡ 2 (mod 4) then eij = 1. We observe that,

for k ≥ 3, there is no matrix X such that mij = 0 for all i, j. Thus, we minimize the

number of mij’s taking the value 2. The minimum number of cases for eij = 1 and

eji = 1 are k(k − 2)/2 for k even, and are {k(k − 2) + 1}/2 for k odd. For each such

case | mij | ≥ 2 for all i, j. Hence,
∑k

i=1

∑k
j( 6=i)=1 m

2
ij ≥ 2k(k − 2) for k even, and∑k

i=1

∑k
j( 6=i)=1 m

2
ij ≥ 2{k(k − 2) + 1} for k odd.

When N ≡ i (mod 4) (i = 0, 1, 3), the bounds follow on similar lines.

Note that X attains the MS -optimality lower bound if the off-diagonal elements of

XTX are:

(i) 0, when N ≡ 0 (mod 4);

(ii) ±2 for k(k − 2)/2 elements, when N ≡ 2 (mod 4) and k is even;

(iii) ±2 for {k(k − 2) + 1}/2 elements, when N ≡ 2 (mod 4) and k is odd; or

(iv) ±1, when either N ≡ 1 (mod 4) or N ≡ 3 (mod 4).

For i = 0, 1, 2, 3, based on Xi, as given in Constructions(0)-(III), the off-diagonal

elements of XT
i Xi satisfies the above structure and thus attains the MS -optimality lower

bound. Therefore,
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Theorem 2.9. For i = 0, 1, 2, 3, a paired choice design di corresponding to the design

matrix Xi is MS-optimal in DN,k,2.

The D-optimal choice designs obtained by Graßhoff et al. (2004) and Demirkale et al.

(2013) for N ≡ 0 (mod 4) are also MS -optimal. To conclude, under the broader main

effects model, we have provided MS -optimal paired choice designs for every N and k

except k = N ≡ 1 (mod 4), k = N ≥ 9. For k = N = 5, §4 gives a design.

2.4 Comparing Designs with m = 2 and m > 2

Burgess and Street (2006) and Großmann and Schwabe (2015) have studied optimality

aspects of choice designs with respect to choice set size. For two-level choice designs,

Burgess and Street (2006) established that D-optimal choice designs are equivalent so

long as the choice set sizes are multiples of 2. However, for their paired choice D-optimal

designs, it is necessary that N ≡ 0 (mod 4). Similarly, Großmann and Schwabe (2015)

observed that if the number of levels is small, then sometimes using choice sets of size

m = 2 may be better than using m > 2. We now broaden their results by considering

optimal designs for all N , and show that designs with m = 2 are D-better than the best

possible designs with m = 3, 5. For two designs, that with the bigger det(Cm) is said to

be D-better than the other. Similarly, a design is MS -better than another design when

compared with respect to the MS -criteria. Contrary to the results of Burgess and Street

(2006), we first show that there could be designs with m = 4 which are better than a

D-optimal design with m = 2 for situations where N 6≡ 0 (mod 4).

Consider two designs d2 ∈ D5,5,2 and d4 ∈ D5,5,4. Let d2 = {(P p), (−P − p)} and

d4 = {(P p), (−P − p), (P − p), (−P p)}, where P is a 5 × 4 matrix with −1 in

the (i, i)th position (i = 1, 2, 3, 4), and 1 elsewhere and p =
(

1 1 1 1 −1
)T

. Here,

d2 is D- and MS -optimal in D5,5,2. Now, det(160C
(2)
4 )d4 = det(160C4)d4 = 2560 > 2304 =

det(160C2)d2 = det(160C
(2)
2 )d2 , and thus d4 ∈ D5,5,4 is D-better than d2 ∈ D5,5,2. In fact,

d4 is also MS -better than d2. Here, det(C)d denotes the determinant of C corresponding

to a choice design d.

Choice designs with m > 5 are expected to be less useful when there exist optimal

designs with m 6 5. We now concentrate on choice designs X1, X2, X3, constructed in

§2, and establish that they are D-better than the best possible designs with m = 3 and
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m = 5. We show this in the next two theorems.

Theorem 2.10. For N ≡ i (mod 4), i = 1, 2, 3, and k < N , di ∈ DN,k,2 is D-better than

the D-optimal design in DN,k,3, except possibly when i = 2 and k = N − 1.

Proof. An upper bound to tr(C
(2)
m ) for m odd is 2ktr(C

(2)
m ) 6 2ktr(Cm) 6 k(m2− 1)/m2.

Therefore, for m = 3 we have tr(C
(2)
3 ) ≤ 2k/{9(2k−2)} and since the sum of the eigenvalues

equals the trace of a matrix, det(C
(2)
3 ) 6 [2/{9(2k−2)}]k or det(N2kC

(2)
3 ) 6 (8N/9)k. To

prove the result, it suffices to show that f(k) = det(N2kC2)di − (8N/9)k > 0. For N ≡ i

(mod 4), we treat the three cases separately.

For i = 1, from Payne (1974), det(N2kC2)d1 = (N − 1 + k)(N − 1)k−1. Thus, it

suffices to show that, for fixed N , f(k) = (N − 1 + k)(N − 1)k−1 − (8N/9)k > 0. For a

proof by induction, first note that f(1) = N/9 > 0. Now, assuming that f(k) > 0, we

prove that f(k + 1) = (N − 1 + k)(N − 1)k − (8N/9)k+1 > 0. Since f(k) = (N − 1 +

k)(N − 1)k−1 − (8N/9)k,

f(k + 1) >
{(N + k)(N − 1)k}{(8N/9)k} − {(8N/9)k+1}{(N − 1 + k)(N − 1)k−1}

(N − 1 + k)(N − 1)k−1(8N/9)k
= A.

Now,

A =
(N + k)(N − 1)k

(N − 1 + k)(N − 1)k−1
− (8N/9)k+1

(8N/9)k
=
N(N − 1) + k(N − 9)

9(N − 1 + k)
.

Thus, A > 0, for N ≥ 9. When N = 5, A > 0 for k < 5.

Case (ii) i = 2: From Payne (1974), for k < N−1 and the design d2, det(N2kC2)d2 =

{(N−2+k)2−µ}(N−2)k−2, where µ = 0 if k is even and 1 otherwise. It suffices to show

that, for fixed N , f(k) = {(N − 2 + k)2 − µ}(N − 2)k−2 − (8N/9)k > 0. Using induction

we get, for k even,

f(k + 2) > A =
(N + k)2(N − 2)2

(N − 2 + k)2
−
(

8N

9

)2

,

and for k odd,
(N + k + 1)(N − 2)2

(N − 3 + k)
−
(

8N

9

)2

.

To show A > 0, we may equivalently show that 9(N + k)(N − 2) > 8N(N − 2 + k)

for k even or 9(N − 2) ≥ 8N for k odd, which is always true for N ≥ 18. Complete

enumeration shows that the result holds for N = 6, 10, 14; k < N − 1.
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Case (iii) i = 3: From Payne (1974), det(N2kC2)d3 = (N + 1 − k)(N + 1)k−1. It

suffices to show that, for fixed N , f(k) = (N + 1− k)(N + 1)k−1 − (8N/9)k > 0. We first

prove that the above inequality holds for k ≤ N − 8. Using induction, we get,

f(k + 1) > A =
N(N + 1)− k(N + 9)

9(N + 1− k)
.

Putting k = N − 8, we see that A = 8/9 > 0 for any N . Thus, for k ≤ N − 8, the above

inequality holds.

Now, for other cases, that is, k = N − 7, . . . , N − 1. Let k = N − α, α = 1, . . . , 7.

Hence, f(k) = f(N − α) = 9N−α(α + 1)(N + 1)N−α−1 − 8N−αNNN−α−1. Since N + 1 >

N , it suffices to show that for each k, 9N−α(α + 1) > 8N−αN . It can be easily seen

that f1(N,α) = 9N−α(α + 1) − 8N−αN is an increasing function in N for N ≥ 23 and

f1(23, α) > 0 for α = 1, . . . , 7. Thus, for k = N −7, . . . , N −1 and N ≥ 23, the inequality

holds. Complete enumeration shows that the result holds for k < N ; 7 ≤ N ≤ 19.

Theorem 2.11. For N ≡ i (mod 4) (i = 1, 2, 3), and k < N , di ∈ DN,k,2 is D-better than

the D-optimal design in DN,k,5, except possibly when (i) i = 1 and k = N − 1 = 4; (ii)

i = 2 and k = N or k = N − 2 = 4, 8 or k = N − 3 = 7; (iii) i = 3 and k = N − 1 ≤ 58

or k = N − 2 ≤ 41 or 8 ≤ k = N − 3 ≤ 28 or 11 ≤ k = N − 4 ≤ 15.

Proof. An upper bound to tr(C
(2)
5 ) is obtained as in the proof of Theorem 2.10. For

m = 5, we have tr(C
(2)
5 ) ≤ 6k/{25(2k−2)} and thus, det(C

(2)
5 ) 6 [6/{25(2k−2)}]k or

det(N2kC
(2)
5 ) 6 (24N/25)k. Thus, to prove the result, it suffices to show that f(k) =

det(N2kC2)di − (24N/25)k > 0.

For N ≡ i (mod 4), we take up the three cases separately.

Case (i) i = 1: Working on lines similar to the proof of Theorem 2.10, we get

25(N − 1 + k)A = N(N − 1) + k(N − 25). Thus, A > 0, for N ≥ 25. Complete

enumeration shows that A > 0 for k < N = 9, 13, 17, 21 and for N = 5 with k < 4.

Case (ii) i = 2: Let k < N − 1. Working on lines similar to the proof of Theorem

2.10, we only have to show that for k even, N(N − 2) + k(N − 50) > 0, and for k odd,

25(N − 2) ≥ 24N . It is easy to see that the inequalities are always true for N ≥ 50. For

N = 14 through 42, since k < N − 1, complete enumeration shows that the inequality

holds. Also, for N = 10 with k < 7 and for N = 6 with k < 4, the above inequalities

hold.
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Case (iii) i = 3: We first prove that the inequality holds for k ≤ N − 24 and

then treat the remaining cases k = N − α, α = 1, . . . , 23 separately. Working on lines

similar to the proof of Theorem 2.10, we get 25(N + 1 − k)A = N(N + 1) − k(N + 25).

Putting k = N − 24, we see that A = 24/25 > 0 for any N . Thus, we have shown that

for k ≤ N − 24, the above inequality holds. Now, we take up the other cases, that is,

k = N − 23, . . . , N − 1. Let k = N − α, α = 1, . . . , 23. Then on lines similar to the proof

of Theorem 2.10, we see that the inequality holds for N ≥ 59 and k = N − 23, . . . , N − 2

and for N ≥ 63 and k = N − 1. Complete enumeration for remaining N ≤ 59 shows

that (N + 1 − k)(N + 1)k−1 > (24N/25)k for all N and k < N except when (i) N ≤ 59,

k = N − 1 (ii) N ≤ 43, k = N − 2 (iii) 11 ≤ N ≤ 31, k = N − 3 and (iv) 15 ≤ N ≤ 19,

k = N − 4.

2.5 Concluding Remarks

The D- and MS -optimal two-level paired choice designs found in this chapter provide

solutions in situations where, for every N 6≡ 0 (mod 4), the information matrix of an

optimal exact design is different from the information matrix of the optimal approximate

design, for which the corresponding exact optimal design would not be available. However,

D-optimal design constructions for situations as mentioned in Remark 2.7, and MS -

optimal designs for k = N ≡ 1 (mod 4) can be further explored. This work complements

previous work giving optimal exact designs only for N ≡ 0 (mod 4). Thus experimenters

can now use optimal designs for any number of choice sets N . Designs in this chapter are

optimal for estimating the main effects under a broader model containing all two-factor

interactions, which is more realistic in practice. From a statistical perspective we have

established that one should prefer optimal paired choice designs to choice designs with

m = 3 or m = 5. This also adds in achieving the desired quality of response through

reduced choice set size.
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Chapter 3

Optimal paired choice block designs

This chapter is based on the following work:

Singh et al. (2018): Singh, Rakhi; Das, Ashish; Chai, Feng-Shun. Optimal Paired Choice

Block Designs. Stat. Sinica (2018), accepted, doi: 10.5705/ss.202016.0084.

3.1 Introduction

In a choice experiment, respondents are shown multiple choice sets of options and from

each set they choose the preferred option. Considering choice sets of size two and r given

respondents, a paired choice experiment is usually perceived as showing the same set of

N choice pairs to each of the r respondents. The respondents are asked to give their

preference among the two options for each of the N choice pairs shown to them.

D-optimal designs have been obtained theoretically under the utility-neutral setup,

for example, see Graßhoff et al. (2003), Graßhoff et al. (2004), Street and Burgess (2007),

Street and Burgess (2012), Demirkale, Donovan and Street (2013), Bush (2014), Groß-

mann and Schwabe (2015) and Singh, Chai and Das (2015). In contrast, in the locally-

optimal and the Bayesian approach, D-optimal designs have been obtained using com-

puter algorithms (see, Huber and Zwerina (1996), Sándor and Wedel (2001), Sándor and

Wedel (2002), Sándor and Wedel (2005), Kessels, Goos and Vandebroek (2006), Kessels,

Goos and Vandebroek (2008), Kessels, Jones, Goos and Vandebroek (2008), Kessels et al.

(2009), Yu, Goos and Vandebroek (2009)). In this chapter, we follow the utility-neutral

approach.

Traditionally, in a choice experiment, respondents are shown the same collection of
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N choice pairs under the assumption that the respondents are alike. A choice experi-

ment with the inherent premise that the respondents are alike is not quite practical since

respondents, being a random sample from a population, are more likely to be hetero-

geneous. Kessels, Goos and Vandebroek (2008) also noted that heterogeneity leads to

responses from different respondents being different.

In a paired choice experiment, there is always a constraint on the maximum number

of choice pairs that can be shown to each respondent so as to maintain overall response

quality. A major concern with the traditional optimal paired choice designs is that the

number of choice pairs in the design increases rapidly as k and/or vi’s are moderately

increased.

Attempts have been made to address the issue of heterogeneity through different

models and approaches. Sándor and Wedel (2002) have addressed the heterogeneity in

respondents by constructing designs through a computer-intensive algorithmic approach

under the so called mixed logit model. In their approach, same set of N choice pairs are

shown to every respondent. Subsequently, Sándor and Wedel (2005) demonstrated that

the use of different choice designs for different respondents and the random allocation

of respondents to these designs yields substantially higher efficiency than the designs

obtained in Sándor and Wedel (2002). Later Kessels, Goos and Vandebroek (2008), for

catering to heterogeneity in conjoint experiments, introduced a random respondent effects

model for estimating the main effects and used algorithmic methods for constructing D-

optimal designs. The conjoint designs under their setup consists of identifying as many

sets of options as there are respondents. Therefore, the approach, though similar, is not

applicable to our setup.

Often in practice, there is a pool of choice sets and respondents are allocated a ran-

dom subset of choice sets (Street and Burgess, 2007). This process is continued until all

choice sets are used once. Thereafter the process is started again. To address the ad

hoc approach in the random allocation of choice sets, we use an additional fixed-effect

term in the model to systematically split the pool of choice sets. In experimental de-

sign theory, the concept of blocking, as a tool to eliminate systematic heterogeneity in

the experimental material, has been used extensively. Following the same approach, we

consider the respondents as blocks. Thus, in contrast to the computer-intensive algorith-

mic approaches of Sándor and Wedel (2005) and Kessels, Goos and Vandebroek (2008),
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we treat the respondent heterogeneity as a nuisance factor by including respondent-level

block effect terms in the model and then design experiments to optimally estimate the

parameters of interest after eliminating the respondent (block) effects. Adopting such an

approach also enables the experimenter to get optimal designs with reasonable number of

choice pairs s(< N) shown to each of the r respondents. Later in Section 3.2, we discuss

the kind of heterogeneity that is being taken care of in our approach and the seemingly

similar approaches.

In what follows, a design with b blocks each of size s is generated and that each

block is associated to a respondent. Usually t copies of a proposed design is used for

larger numbers of respondents r = tb, since replicating the design does not affect its

optimality. We therefore, restrict ourselves to optimal paired choice block designs with b

blocks each of size s with N = bs.

In this context, the traditional paired choice designs reduce to b = 1, s = N and

r = t where s is necessarily atleast the number of model parameters. However, for b > 1,

the block size s can be smaller than the number of model parameters, but the paired

choice design with b blocks can still estimate all model parameters. In order to estimate

the model parameters, we provide optimal designs with block sizes that are flexible and

practical under our setup.

In Section 3.2, treating respondent heterogeneity as a nuisance factor and incorpo-

rating the fixed respondent (block) effects in the model, we obtain the information matrix

for estimating the parameters of interest after eliminating the respondent (block) effects.

In Section 3.3, under the main effects block model, we provide optimal paired choice block

designs for estimating the main effects for symmetric and asymmetric attributes. We also

give a simple solution to the problem of identifying generators in the constructions of

optimal paired choice designs. In Section 3.4, under a broader main effects block model,

we provide optimal paired choice block designs for symmetric and asymmetric attributes.

The broader main effects model constitutes the main effects and the two-factor inter-

action effects with interest lying only in the estimation of the main effects. Finally, in

Section 3.5, we provide optimal paired choice block designs for estimating the main plus

two-factor interaction effects. Finally, we provide a Discussion in Section 3.6.
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3.2 Preliminaries and the model incorporating re-

spondent effects

Most of the work on optimal choice designs is based on the multinomial logit model

approach of either Huber and Zwerina (1996) or that followed in Street and Burgess

(2007). Großmann and Schwabe (2015) observed that the two approaches are equivalent

for the purpose of finding optimal designs. We work with the multinomial logit model

approach of Huber and Zwerina (1996). The multinomial logit model supposes that the

probability of preferring option 1 over option 2 in the ith choice pair can be expressed as

π12i = eu1i/(eu1i + eu2i), where u1i and u2i represent the systematic part of the utilities

attached to the two options in choice pair i. Similarly π21i = 1 − π12i is the probability

that option 2 is preferred over option 1. It follows that for the ith choice pair, the choice

probabilities depend only on the utility difference u1i− u2i. For a design d with N choice

pairs, since options are described by k attributes, the utilities are modeled using the linear

predictor uj = Ppjθ, where θ is a p× 1 vector representing the parameters of interest, Ppj

is an N × p effects-coded matrix for the jth option, and uj = (uji) is an N × 1 utility

vector for the jth option, j = 1, 2. The utility difference u1 − u2 = (Pp1 − Pp2)θ = Ppθ

is then a linear function of the parameter vector θ. For the purpose of deriving optimal

designs, it is often assumed that θ = 0. This indifference or the utility-neutral assumption

means that the two options in a choice set are equally attractive and leads to a considerable

simplification of the information matrix and the design problem. Under the utility-neutral

multinomial logit model, the Fisher information matrix is (1/4)P ′pPp (see, Großmann and

Schwabe (2015)).

Simultaneously, Graßhoff et al. (2003) and Graßhoff et al. (2004) studied linear paired

comparison designs which are analyzed under the linear paired comparison model. The

observed utility difference Z between the two options again depends on the difference

matrix Pp = Pp1 − Pp2. More precisely, the response is described by the model, Z =

u1 − u2 + ε = (Pp1 − Pp2)θ+ ε = Ppθ+ ε, where ε is the random error vector. The matrix

C = P ′pPp is the information matrix under the linear paired comparison model. Since

C is proportional to the information matrix under the utility neutral multinomial logit

model, it follows that the designs optimal under the linear paired comparison model are

also optimal under the multinomial logit model and vice versa.
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We discuss only D-optimality since, as noted in Großmann and Schwabe (2015),

most of the optimality results for choice designs and linear paired comparison designs are

available for the D-criterion. A D-optimal design has the maximum determinant of the

information matrix among all competing designs.

For paired choice experiments, the multinomial logit model as well as the linear

paired comparison model are based on the utility difference u1 − u2. By incorporating

respondent effects, the relevant utility differences under the block model, with blocks

being the respondents, becomes

u1 − u2 = (Pp1 − Pp2)θ +Wβ = Ppθ +Wβ, (3.1)

where β = (β1, . . . , βb)
′ represents the b × 1 vector of block effects, and W = (wij) is an

N × b incidence matrix with wij = 1 if the ith choice pair belongs to the jth block and 0

otherwise. Without loss of generality, we take W = Ib ⊗ 1s, where Ia and 1a denotes the

identity matrix of order a and the a× 1 vector of all ones, respectively. Here, ⊗ denotes

the Kronecker product. Note that (3.1) corresponds to a paired choice block design with

b blocks each of size s and that such b blocks are repeated t times to accommodate for

r = tb respondents. Each of the r respondents is associated to a single block of the design.

Unlike Sándor and Wedel (2005) and Kessels, Goos and Vandebroek (2008), where

an assumed distribution on the model parameters takes care of the respondent effects,

our approach, following the standard block design theory, has been to consider βj as a

fixed-effects term. While the vast literature on theoretically obtained D-optimal designs

for choice experiments rests on a multinomial logit model without any respondent effects,

our fixed-effects block model attempts to obtain the optimal block designs theoretically

under the utility-neutral setup.

In either the multinomial logit model or the linear paired comparison model, in-

cluding respondent effects β can be regarded as adding b two-level attributes to the set

of p predictor variables. Then, the corresponding difference matrix for the pairs, in b

blocks, has an additional component and can be written as (Pp,W ). Thus, under the

utility-neutral multinomial logit block model, it follows that the information matrix for

estimating θ and β is

M =
1

4

 C P ′pW

W ′Pp W ′W

 (3.2)
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where C = P ′pPp, as defined earlier. Moreover, upto a constant factor of 1/4, M coincides

with the information matrix in the linear paired comparison block model. Thus, optimal

designs under the linear paired comparison block model are also optimal under the utlity

neutral multinomial logit block model. The information matrix for estimating θ under

the linear paired comparison block model after eliminating the block effects is

C̃ = C − P ′pW (W ′W )−1W ′Pp = C − (1/s)P ′pWW ′Pp. (3.3)

This follows from the standard linear model theory where a parameter vector is partitioned

into a parameter vector of interest and the nuisance parameters (see, for example, Page

68 of Haines (2015)).

A paired choice block design is connected if all the parameters of interest are es-

timable, and this happens if and only if C̃ has rank p. In what follows, the class of all

connected paired choice block designs with k attributes in b blocks each of size s is de-

noted by Dk,b,s. From (3.3), since C− C̃ is a non-negative definite matrix, if in the class of

unblocked designs with N = bs, a paired choice design d is D-optimal, then d, considered

as a design in Dk,b,s, is also D-optimal, provided C̃ = C.

It is observed that eliminating respondent effects simultaneously controls the within-

pair order effects (see, Goos and Großmann (2011) and Bush, Street and Burgess (2012)).

3.3 Optimal block designs under the main effects model

Under the main effects block model, from (3.1) it follows that u1− u2 = (PM1−PM2)τ +

Wβ = PMτ +Wβ, where τ is a
∑k

i=1(vi−1)×1 parameter vector for main effects, PMj is

an N ×
∑k

i=1(vi − 1) effects-coded matrix of the main effects for the jth option, j = 1, 2,

and PM = PM1−PM2. In a row of PMj is embedded the effects-coded row vector of length

vi − 1 for the ith attribute. The effects coding for level l is represented by a unit vector

with 1 in the (l + 1)th position for l = 0, . . . , vi − 2, and for level vi − 1 is represented

by −1 in each of the vi − 1 positions, i = 1, . . . , k. For example, for v = 3, effects-coded

vectors for l = 0, 1, 2 are (1 0), (0 1) and (−1 − 1), respectively.

From (3.3), the information matrix for estimating the main effects after eliminating

the block effects is

C̃M = CM − (1/s)P ′MWW ′PM , (3.1)
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where CM = P ′MPM is the information matrix for estimating the main effects under the

unblocked model. From (3.1), it follows that a necessary and sufficient condition for

C̃M = CM to hold is W ′PM = 0. Therefore, by suitably blocking the choice pairs of an

optimal paired choice design into b blocks such that W ′PM = 0, one can obtain an optimal

paired choice block design. We provide a simple condition to achieve the same, proof of

which is provided in the Appendix A.

Theorem 3.1. C̃M = CM if for each block, the levels of every attribute appear equally

often in the first option as well as in the second option.

This property of every level of an attribute appearing the same number of times in

the first and second option of pairs is also known as position-balance (see, Großmann and

Schwabe (2015)).

An orthogonal array OA(n, k, v1 × · · · × vk, t), of strength t, is an n × k array with

elements in the ith column from a set of vi distinct symbols {0, 1, . . . , vi−1} (i = 1, . . . , k),

such that all possible combinations of symbols appear equally often as rows in every n× t

subarray. An orthogonal array is symmetric if vi = v for all i and the corresponding OA

is denoted by OA(n, k, vk, t), else it is an asymmetric orthogonal array.

Street and Burgess (2007), Demirkale, Donovan and Street (2013) and Bush (2014)

provide the OA+G method for constructing optimal paired choice designs using orthogo-

nal arrays and generators G. Let G be a collection of h generators G1, . . . , Gh where Gj =

(gj1 , gj2 , . . . , gjk). The OA + G method gives a paired choice design (A,Bj), j = 1, . . . , h

where A = (Ali) is an OA(n1, k, v1 × · · · × vk, t) and Bj = (Bj
li) with Bj

li = Ali + gji

reduced mod vi, l = 1, . . . , n1, i = 1 . . . , k, j = 1, . . . , h. This method depends on

the availability of the required orthogonal array, which may not always exist. The SAS

link http://support.sas.com/techsup/technote/ts723.html, the Sloane link http:

//neilsloane.com/oadir/ and Hedayat, Sloane and Stufken (1999) provide a compre-

hensive summary of orthogonal arrays and their constructions.

In the literature, arriving at the generators G has been usually through a trial-and-

error approach, and no general results on the structure of such generators appear to exist.

In fact, Bush (2014) highlights the complexities involved in choosing the sets of generators.

We present a simple result that systematically provides the h generators, proof of which

is provided in the Appendix A. Let lcm(a1, . . . , ak) denotes the least common multiple of

a1, . . . , ak.
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Theorem 3.2. Number of generators for the optimal paired choice design with k attributes

is h = lcm(h1, . . . , hk) where hi = vi − 1 for vi even and hi = (vi − 1)/2 for vi odd,

i = 1, . . . , k. The generators are then given by Gj = (gj1 , gj2 , . . . , gjk), where gji takes

each of the values from the set {1, . . . , hi} with frequency h/hi, j = 1, . . . , h, i = 1, . . . , k.

Note that Theorem 3.2 provides generators for the unblocked paired choice designs.

As in Street and Burgess (2007), we use several sets of generators to create the final design

and that the number of generators given in Theorem 3.2 may not be the smallest possible.

Example 3.3. Suppose there are three attributes with v1 = 2, v2 = 3 and v3 = 4. Then we

have h1 = 1, gj1 = 1; h2 = 1, gj2 = 1; and h3 = 3, gj3 = 1, 2, 3. Thus, h = lcm(1, 1, 3) = 3.

This leads to the generators G1 = (111), G2 = (112) and G3 = (113). Thus, for a given

OA(24, 3, 2× 3× 4, 2), the corresponding optimal paired choice design with parameters k,

v1 = 2, v2 = 3, v3 = 4, b = 1, N = s = hn1 = 3× 24 = 72, is obtained using the OA + G

method of construction with three generators. The corresponding design is given in the

Appendix A.

Example 3.4. As another example, suppose there are two attributes with v1 = 4 and

v2 = 5. Then we have h1 = 3, gj1 = 1, 2, 3 and h2 = 2, gj2 = 1, 2. Thus, h = lcm(3, 2) = 6.

This leads to the six generators G1 = (11), G2 = (12), G3 = (21), G4 = (22), G5 = (31)

and G6 = (32) which will give an optimal paired choice design when used in conjunction

with OA(20, 2, 4× 5, 2).

In general, for a given OA(n1, k, v1 × · · · × vk, 2), the corresponding optimal paired

choice design d1 with parameters k, v1, . . . , vk, b = 1, N = s = hn1, is obtained using the

OA+G method of construction with generators Gj, j = 1, . . . , h. When N = s is large, we

find that practitioners advocate allocation of the choice pairs into more than one blocks

either randomly or using a spare attribute (see, Street and Burgess (2007), Bliemer and

Rose (2011)). Based on Theorem 3.1, it follows that under our block model, we can retain

optimality of the design obtained through the OA + G method if blocking is done using

a column corresponding to an attribute. Any other blocking approach may jeopardize

the characteristics of the design. We now provide four theorems and their constructions,

detailed proofs of which are provided in the Appendix A.
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Theorem 3.5. For δ ≥ 1 and an OA(n1, k + 1, v1 × · · · × vk × δ, 2), there exists an

optimal paired choice block design d2 ∈ Dk,b,s with parameters k, v1, . . . , vk, b = hδ,

s = n1/δ, where h = lcm(h1, . . . , hk).

Construction. For a given OA(n1, k + 1, v1 × · · · × vk × δ, 2), corresponding to the k

attributes at levels vi, i = 1, . . . , k, let d1 be the design constructed through OA+G method

using h = lcm(h1, . . . , hk) generators from Theorem 3.2. Then d1 with parameters k,

vi, i = 1, . . . , k, b = 1, s = hn1 is an optimal paired choice design. From d1, the choice

pairs obtained through each of the h generators constitute a block of size n1. Finally, we

use the δ symbols of the (k+1)th column of the orthogonal array for further blocking. This

gives us a paired choice block design d2 with parameters k, v1, . . . , vk, b = hδ, s = n1/δ.

Example 3.6. From an OA(24, 15, 213×3×4, 2), for estimating the main effects of k = 14

attributes of which 13 attributes are at 2 levels and 1 attribute is at 3 levels, an optimal

paired choice block design can be constructed for δ = 4, h = 1, k = 14, b = 4, s = 6 are

optimal. As an illustration, we give a 24×3 paired choice block design d2 with parameters

k = 5, b = 4, s = 6.

d2 =

B1 B2 B3 B4

(00000, 11111) (01102,10010) (10112,01000) (10001,01112)

(11010,00101) (11110,00001) (00111,11002) (00012,11100)

(01101,10012) (11011,00102) (01002,10110) (10100,01011)

(11002,00110) (00100,11011) (11101,00012) (01011,10102)

(10111,01002) (10012,01100) (01010,10101) (01110,10001)

(00112,11000) (00001,11112) (10000,01111) (11102,00010)

It is noted that when the attributes have mixed levels greater than 3, the OA + G

method leads to choice designs with a large number of choice pairs. However, blocking

still helps in reducing the number of choice pairs shown to respondent from N = s = 96

to s = 24. For example, an OA(32, 11, 23 × 47 × 8, 2) can be used to construct a paired

choice block design having three 2-level attributes and seven 4-level attributes in N = 96

choice pairs with b = 24 and s = 4.

For many parameter sets corresponding to k attributes each at v levels, Graßhoff

et al. (2004) and Demirkale, Donovan and Street (2013) have provided constructions of

optimal paired choice designs with a reduced number of choice pairs in comparison to the

OA+G method of construction. We now show how an optimal paired choice block design

can be constructed starting from their designs.
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Theorem 3.7. For a Hadamard matrix Hm, an optimal paired choice design d3 with

parameters k, v, b = 1, s = mv(v − 1)/2, k 6 m exists. Furthermore for v odd, a paired

choice block design d4 with parameters k, v, b = m(v− 1)/2, s = v exists, which is optimal

in Dk,b,s.

Construction. For a given Hm, an optimal paired choice design d3 is obtained through

Theorem 3 of Graßhoff et al. (2004) with parameters k, v, b = 1, s = mv(v − 1)/2. More-

over, for v odd, the choice pairs corresponding to each of the rows of {Hm,−Hm} forms

a block and the design so obtained is an optimal paired choice block design. Now, using

a result from Dey (2009), v(v − 1)/2 combinations involving v levels taken two at a time

can be grouped into (v − 1)/2 replicate each comprising v elements. Therefore, the blocks

generated by each row of Hm can be further broken into (v − 1)/2 blocks each of size v,

which gives the optimal paired choice block design d4.

Example 3.8. Consider v = 3 with combinations (0, 1), (1, 2), (2, 0) and the Hadamard

matrix H4. An optimal paired choice design d3 with parameters k = 4, v = 3, b = 1, s = 12

exists. Furthermore, since v is odd, an optimal paired choice block design d4 is constructed

with parameters k = 4, v = 3, b = 4, s = 3 by considering choice pairs generated by each

row of {H4,−H4} as a block.

d4 =

B1 B2 B3 B4

(0000,1111) (0101,1010) (0011,1100) (0110,1001)

(1111,2222) (1212,2121) (1122,2211) (1221,2112)

(2222,0000) (2020,0202) (2200,0022) (2002,0220)

Theorem 3.9. For an OA(n2, k + 1, vk × vk+1, 2) with vk+1 = n2/v, an optimal paired

choice design d5 with parameters k, v, b = 1, s = n2(v − 1)/2 exists. Furthermore for v

odd, a paired choice block design d6 with parameters k, v, b = n2(v − 1)/2v, s = v exists,

which is optimal in Dk,b,s.

Construction. For a given OA(n2, k+1, vk×vk+1, 2) with vk+1 = n2/v, an optimal paired

choice design d5 is obtained through Construction 3.2 of Demirkale, Donovan and Street

(2013) with parameters k, v, b = 1, s = vk+1

(
v
2

)
. Moreover, for v odd, the choice pairs

corresponding to each of the parallel sets of the orthogonal array forms a block and the

design so obtained is an optimal paired choice block design. Now, following Dey (2009),

the blocks generated by each parallel set can be further broken into (v − 1)/2 blocks each

of size v, which gives the optimal paired choice block design d6.
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Theorem 3.10. For δ ≥ 1 and an OA(n3, k+1,m1×· · ·×mk×δ, 2) with mi = vi(vi−1)/2

for some odd vi, an optimal paired choice block design d8 with parameters k, vi, . . . , vk, b =

δ, s = n3/δ exists.

Construction. For a given OA(n3, k+ 1,m1×· · ·×mk× δ, 2) with mi = vi(vi− 1)/2 for

some odd vi, an optimal paired choice design d7 is obtained through Theorem 4 of Graßhoff

et al. (2004) with parameters k, vi, . . . , vk, b = 1, s = n3. Then, similar to construction

of Theorem 3.5, we use the δ (≥ 1) symbols of the (k + 1)th column of the orthogonal

array for blocking. This gives us an optimal paired choice block design d8 with parameters

k, vi, . . . , vk, b = δ, s = n3/δ. Note that this method of blocking is applicable only for odd

vi.

Table 3.1 highlights the flexibility in the number of blocks while blocking the tradi-

tional optimal symmetric paired choice designs as listed in Table 2 of Demirkale, Donovan

and Street (2013). We list the values of s and b corresponding to the optimal designs ob-

tained through Theorem 3.5 and Theorem 3.7. It is observed that in the parameter range

of Table 3.1, Theorems 3.9 and 3.10 do not provide any additional designs that are not

obtainable from Theorem 3.5 and Theorem 3.7. Some of the traditional optimal paired

choice designs, marked ∗, are not optimal under the block setup for blocks of size s = N

and b = 1 since the design matrices are not orthogonal to the vector of all ones. However,

by having b > 1, optimal designs having blocks of size s = N/b are feasible using Theorem

3.5.

Note that, from a given optimal paired choice design in Dk,b,s, we can randomly

group the b blocks into b/x blocks each of size xs to obtain optimal paired choice designs

in Dk,b/x,sx. In Table 3.1, the designs with x = 1 are first obtained using the Theorems

as mentioned in the corresponding column headers whereas the designs with x > 1 are

obtained thereafter through random grouping. One could obtain a table similar to Ta-

ble 3.1, for optimal asymmetric paired choice designs based on a list of more than 600

orthogonal arrays with n ≤ 100.

31



Table 3.1: Optimal designs in Dk,b,s

v k Traditional (s,1) Theorem 3.5 (s, b) Theorem 3.7 (s, b)

2 3 4 (4,1)

2 4 4* (4x,2/x), x=1,2

2 5-6 8
(4x,2/x), x=1,2

(6x,2/x), x=1,2

2 7 8

(8,1)

(6x,2/x), x=1,2

(4x,4/x), x=1,2,4

2 8 8*
(6x,2/x), x=1,2

(4x,4/x), x=1,2,4

2 9-10 12

(6x,2/x), x=1,2

(4x,4/x), x=1,2,4

(10x,2/x), x=1,2

2 11 12

(12,1)

(4x,4/x), x=1,2,4

(10x,2/x), x=1,2

(6x,4/x), x=1,2,4

2 12 12*

(4x,4/x), x=1,2,4

(10x,2/x), x=1,2

(6x,4/x), x=1,2,4

3 3 9,12 (3x,3/x), x=1,3 (3x,4/x), x=1,2,4

3 4 9,12,18
(9,1)

(3x,4/x), x=1,2,4
(3x,6/x), x=1,2,3,6

3 5,6 18,24 (3x,6/x), x=1,2,3,6 (3x,8/x), x=1,2,4,8

3 7 18,24,27
(9x,2/x), x=1,2

(3x,8/x), x=1,2,4,8
(3x,9/x), x=1,3,9

3 8 24,27 (3x,9/x), x=1,3,9 (3x,8/x), x=1,2,4,8

3 9 27,36 (3x,9/x), x=1,3,9 (3x,12/x), x=1,2,3,4,6,12

3 10-12 27,36
(9x,3/x), x=1,3

(3x,12/x), x=1,2,3,4,6,12
(3x,12/x), x=1,2,3,4,6,12

4 3-4 24*,28 (4x,12/x), x=1,2,3,4,6,12

4 5 48
(16x,3/x), x=1,3

(4x,24/x), x=1,2,3,4,6,8,12,24

4 6-8 48*,96 (4x,24/x), x=1,2,3,4,6,8,12,24

4 9 72*,96
(16x,6/x), x=1,2,3,6

(4x,36/x), x=1,2,3,4,6,9,12,18,36

4 10-12 72*,144 (4x,36/x), x=1,2,3,4,6,9,12,18,36

5 3-4 40,50 (5x,10/x), x=1,2,5,10 (5x,8/x), x=1,2,4,8

5 5 50,80 (5x,10/x), x=1,2,5,10 (5x,16/x), x=1,2,4,8,16

5 6 50,80,100
(25x,2/x), x=1,2

(5x,16/x), x=1,2,4,8,16
(5x,20/x), x=1,2,4,5,10,20

5 7-8 80,100 (5x,20/x), x=1,2,4,5,10,20 (5x,16/x), x=1,2,4,8,16

5 9-10 100,120 (5x,20/x), x=1,2,4,5,10,20 (5x,24/x), x=1,2,3,4,6,12,24

6 3 60*,180
(12x,15/x), x=1,3,5,15

(18x,10/x), x=1,2,5,10

6 4 60*,180*,360 (6x,60/x), x=1-6,10,12,15,20,30,60

6 5-6 120*,180*,360 (6x,60/x), x=1-6,10,12,15,20,30,60

7 3-4 84,147 (7x,21/x), x=1,3,7,21 (7x,12/x), x=1,2,3,4,6,12

7 5-7 147,168 (7x,21/x), x=1,3,7,21 (21x,8/x), x=1,2,4,8

7 8 147,168,294
(49x,3/x), x=1,3

(21x,8/x), x=1,2,4,8
(7x,42/x), x=1,2,3,6,7,14,21,42
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3.4 Optimal block designs under the broader main

effects model

In this section, we consider estimation of the main effects under the broader main effects

model for an asymmetric paired choice design where the ith attribute is at vi levels,

i = 1, . . . , k. The broader main effects model constitutes the main effects and the two-

factor interaction effects with interest lying only in the estimation of the main effects. For

the symmetric paired choice designs, Graßhoff et al. (2003) characterized optimal paired

choice designs under the broader main effects model. More recently, for vi = 2, Singh,

Chai and Das (2015) obtained optimal designs under such a model.

With the introduction of the respondent effects, from (3.1), the relevant utility dif-

ferences become

u1 − u2 = (PM1 − PM2)τ + (PI1 − PI2)γ +W ′β = PMτ + PIγ +W ′β, (3.1)

where γ is a
∑k−1

i=1

∑k
j=i+1(vi−1)(vj−1)×1 parameter vector for the two-factor interaction

effects, PIj is an N ×
∑k−1

i=1

∑k
j=i+1(vi − 1)(vj − 1) effects-coded matrix of the two-factor

interaction effects for the jth option, j = 1, 2, and PI = PI1−PI2. Let PIj = (P 1′
Ij , . . . , P

n′
Ij )′

where P l
Ij corresponds to the lth choice pair in PIj. Also, let P l

Mj(i) represent the columns

of PMj corresponding to the lth choice pair and ith attribute. Then, P l
Ij = (P l

Mj(1) ⊗

P l
Mj(2), P

l
Mj(1) ⊗ P l

Mj(3), . . . , P
l
Mj(k−1) ⊗ P l

Mj(k)).

The information matrix for estimating the main effects after eliminating the two-

factor interaction effects and the block effects is

C̃B = CM − [P ′MPI P
′
MW ]

[
P ′IPI P ′IW

P ′IW W ′W

]− [
P ′IPM

W ′PM

]
. (3.2)

Therefore, a paired choice design which is optimal under the main effects model is

also optimal under the broader main effects block model if C̃B = CM , that is, if P ′IPM = 0

and W ′PM = 0. The designs in Theorem 3.5 satisfy W ′PM = 0 and for symmetric designs

with v = 2, it follows from Singh, Chai and Das (2015) that the designs additionally

satisfy P ′IPM = 0. Therefore, in particular, for symmetric designs with v = 2, the paired
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choice block designs of Theorem 3.5 are also optimal under the broader main effects block

model.

We now give the following construction for optimal paired choice block designs under

the broader main effects model.

Theorem 3.11. Under the broader main effects model, for an OA(n1, k, v1 × · · · × vk, 3)

and h = lcm(v1, . . . , vk), there exists a paired choice block design dB1 with parameters

k, v1, . . . , vk, b = 1, s = hn1, which is optimal in Dk,b,s.

Construction. We obtain dB1 through the OA + G method of construction using h gen-

erators as in Theorem 3.2. Detailed proof is provided in the Appendix A.

Theorem 3.12. Under the broader main effects model, for δ ≥ 1 and an OA(n1, k+1, v1×

· · ·×vk×δ, 3), there exists a paired choice block design dB2 with parameters k, v1, . . . , vk, b =

hδ, s = n1/δ, which is optimal in Dk,b,s.

Construction. On lines similar to Theorem 3.5, the construction here is based on using

sets of generators, from Theorem 3.2, on an orthogonal array of strength 3.

We now provide another method to obtain symmetric optimal paired choice block

designs with s = v; v ≥ 3.

Theorem 3.13. For an OA(n1, k − 1, vk−1, 3), there exists a paired choice block design

dB3 with parameters k, v ≥ 3, s = v, b = hn1, which is optimal in Dk,b,s.

Construction. We adopt the following method of construction.

(i) Following Theorem 3.12, construct dB2 from an OA(n1, k, v
k−1×1, 3) for k−1 attributes

each at v levels. While constructing dB2 , the h generators, as in Theorem 3.2, are (k− 1)-

tuples of the form (1 . . . 1), · · · , (v− 1 . . . v− 1) for v even (h = (v− 1)), and of the form

(1 . . . 1), · · · , ((v − 1)/2 . . . (v − 1)/2) for v odd (h = (v − 1)/2). Then, for each choice

pair, add the kth attribute at level 0 in the option 1 and similarly, the kth attribute in

the second option is generated using the same generator as that used for the other k − 1

attributes.

(ii) For each of the h generators, generate v − 1 additional copies of the design obtained

in (i) by adding 1 (mod v),. . . , (v − 1) (mod v) in every attribute under both the options.

Note that every copy in (ii) is just the recoding of the design obtained in (i), and hence

the resultant design with parameters k, v, s = hn1v, b = 1 is also optimal.
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(iii) Finally for each of the h generators, the ith block of size v comprises of the ith row

from each of the v copies created in (ii), i = 1, . . . , n1.

The hn1 blocks so obtained with s = v forms the required optimal design dB3 . The design

so obtained has distinct choice pairs in every block.

3.5 Optimal block designs for estimating the main

plus two-factor interaction effects

The literature on optimal paired choice designs for estimating the main plus two-factor

interaction effects is very limited since such designs require a large number of choice pairs

to be shown to every respondent. Graßhoff et al. (2003), Street and Burgess (2004) and

Großmann, Schwabe and Gilmour (2012) have provided optimal and/or efficient paired

choice designs under this setup for k attributes each at two levels. In this Section, we

consider each of the k attributes to be at two levels. Let q = dk/2e, where dze represents

the smallest integer greater than or equal to z. The construction method of Street and

Burgess (2007) entails starting with an orthogonal array OA(n1, k, 2
k, 4) as a set of n1

first options, and then taking the foldover of α attributes in the second option, keeping

the rest of the k−α attributes same for each of the n1 choice pairs. Here α = q for k odd

and α = q and q + 1 for k even. This process is repeated for
(
k
α

)
possible combinations

of the attributes. Here, the foldover of an attribute in the second option of a choice pair

means that the attribute level in the second option is different from that in the first. Such

a paired choice design dI1 with parameters k, v, s, b = 1 is optimal where s = n1

(
k
q

)
for k

odd and s = n1

(
k+1
q+1

)
for k even.

Incorporating respondent effects, the model is as given in (3.1). However, in contrast

to Section 3.4, interest here lies in the estimation of both the main-effects and the two-

factor interaction effects. The information matrix for estimating the main plus two-factor

interaction effects under the multinomial logit model incorporating respondent effects is

C̃I =

[
CM P ′MPI

P ′IPM P ′IPI

]
− (1/s)[P ′MW P ′IW ]

[
W ′PM

W ′PI

]
. (3.1)

As earlier, in order to achieve optimal paired choice block designs, we start with an

optimal paired choice design dI1 and enforce blocking such that W ′PM = 0 and W ′PI = 0.
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We provide a simple condition to achieve the same, proof of which is provided in the

Appendix A.

Let pair (a1, b1) means that a1 and b1 are the levels corresponding to an attribute

for the first and second options, respectively. Similarly, let pair (a1a2, b1b2) means that

a1a2 and b1b2 are the levels corresponding to the two attributes for the first and second

options, respectively.

Theorem 3.14. W ′PM = 0 and W ′PI = 0 if and only if for every block,

(i) the frequency of the pair (1, 0) is same as the frequency of the pair (0, 1) for every

attribute;

(ii) the frequency of the pairs from the set {(01, 00), (01, 11), (10, 00), (10, 11)} is

same as the frequency of the pairs from the set {(00, 01), (00, 10), (11, 01), (11, 10)} for

every two attributes.

We now provide a method of construction for optimal paired choice block designs

with s = 4.

Theorem 3.15. For k > 4, there exists a paired choice block design dI2 with parameters

k, v = 2, s = 4, b, which is optimal in Dk,b,s. Here b = 2k−3
(
k
q

)
for k odd and b = 2k−3

(
k+1
q+1

)
for k even.

Construction. Let F be a set of
(
k
α

)
attribute indices of size α = q obtained from the

attribute labels 1, · · · , k taking α labels at a time such that 2 ≤ α ≤ k−2. For an element

f = (f1, . . . , fi, . . . , fα) of F , let f ′ = {1, . . . , k} − f = (f ′1, . . . , f
′
j, . . . , f

′
(k−α)) be the

complement of f . Keeping in view the construction of the design dI1, we adopt the steps

(i)-(v) to construct an optimal paired choice block design dI2 for k attributes.

(i) Write the complete factorial involving 2α combinations. Divide this set into two-halves

such that the second half is a foldover of the first half.

(ii) Write the complete factorial involving 2k−α combinations. Divide this set into two-

halves such that the second half is a foldover of the first half.

(iii) Take one combination from the first half of (i), say a, and two combinations from the

first half of (ii), say b and c. Let a′, b′ and c′ be the foldovers of a, b and c, respectively.

Corresponding to the element f of F , make a block having choice pairs (ab, a′b), (ab′, a′b′),

(a′c, ac), (a′c′, ac′). Here, in a choice pair, the option ab implies that if a = a1 · · · ai · · · aα
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and b = b1 · · · bj · · · bk−α, then ai corresponds to the attribute index fi and bj corresponds

to the attribute index f ′j.

(iv) Repeat (iii) for each of the 2α−1 combinations in the first half of (i) using the same b

and c as in (iii). Then, repeat the entire process for two different combinations from the

first half of (ii).

(v) Repeating (i)-(iv) for every element f of F corresponding to α = q for k odd and

α = q and q + 1 for k even, an optimal paired choice block design dI2 is obtained with

parameters k, v = 2, s = 4, b where b = 2k−3
(
k
q

)
for k odd and b = 2k−3

(
k+1
q+1

)
for k even.

Example 3.16. Let k = 4, v = 2, b = 10, s = 8. For k = 4, α takes the values 2 and 3.

Since α = 3 > 2 = k − 2, Theorem 3.15 does not allow to achieve dI2 from dI1. However,

for α = 2, the proposed construction method still holds, for which we get 12 blocks each

of size 4, as below.

B1 B2 B3 B4 B5 B6

(0000,1100) (0100,1000) (0000,1010) (0010,1000) (0000,1001) (0001,1000)

(0011,1111) (0111,1011) (0101,1111) (0111,1101) (0110,1111) (0111,1110)

(1101,0001) (1001,0101) (1011,0001) (1001,0011) (1011,0010) (1010,0011)

(1110,0010) (1010,0110) (1110,0100) (1100,0110) (1101,0100) (1100,0101)

B7 B8 B9 B10 B11 B12

(0000,0110) (0010,0100) (0000,0101) (0001,0100) (0000,0011) (0001,0010)

(1001,1111) (1011,1101) (0110,0011) (0111,0010) (1100,1111) (1101,0010)

(0111,0001) (0101,0011) (1011,1110) (1010,1111) (0111,0100) (0110,0101)

(1110,1000) (1100,1010) (1101,1000) (1100,1001) (1011,1000) (1010,1001)

For α = 3, we provide a design in 4 blocks each of size 8, as below.

B13 B14 B15 B16

(0000,1110) (0000,1011) (0000,1101) (0000,0111)

(0110,1000) (0011,1000) (0101,1000) (0011,0100)

(1010,0100) (1010,0001) (1100,0001) (0101,0010)

(1100,0010) (1001,0010) (1001,0100) (0110,0001)

(0001,1111) (0100,1111) (0010,1111) (1000,1111)

(0111,1001) (0111,1100) (0111,1010) (1011,1100)

(1011,0101) (1110,0101) (1110,0011) (1101,1010)

(1101,0011) (1101,0110) (1011,0110) (1110,1001)

We form 6 blocks each of size 8 by combining blocks Bi and Bi+6, i = 1, . . . , 6,

which in combination with the 4 blocks Bi, i = 13, . . . , 16 gives the optimal design with

parameters k = 4, b = 10, s = 8.
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3.6 Discussion

In situations where an optimal design has more choice pairs than a respondent can com-

plete, the N choice pairs can be split among the respondents (blocks) either randomly

or using a spare attribute, if there is one available (see, Street and Burgess (2007)). To

this effect, we have instances of respondents being considered as blocks in various choice

experiments, although without much theoretical rigor. Bliemer and Rose (2011) reported

that 64% of studies used a blocking column to allocate choice sets to respondents, 13%

assigned choice sets randomly to respondents, 5% studies provided the full factorial to

each respondent and for the remaining 18% of the studies, it could not be determined

how choice sets were assigned to respondents.

With an objective to assess the main or interaction effects, wherever practical, the

same set of N optimal choice pairs are shown to every respondent. As such there are

no theoretical results on optimal designs, under the utility-neutral setup, where different

respondent sees smaller and different designs. In contrast, the approach that is adopted

here allows the construction of optimal designs with smaller and flexible number of choice

pairs, to be shown to every respondent. Even in situations where simple techniques like

blocking using a spare attribute can not be used, we provide optimal paired choice block

designs.

In contrast to the approaches of Sándor and Wedel (2005) and Kessels, Goos and

Vandebroek (2008), following the block design theory, we adopt the fixed-effects block

model for obtaining optimal designs. The approach adopted here treats respondent het-

erogeneity as a nuisance factor by including respondent-level fixed-effect terms in the

model and enables the derivation of analytical results. Though there is no guarantee

that the optimal block designs obtained under this setup and the heterogeneous designs

obtained by Sándor and Wedel (2005) would be same, it would require a separate study

to compare optimal designs obtained under the two approaches.

Furthermore, unlike their designs, which are available only for situations when es-

timation of the main effects is of interest, we have provided optimal paired choice block

designs not only under the main effects model but also under the broader main effects

model and under the main plus two-factor interaction effects model.
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Chapter 4

Efficient paired choice designs with

fewer choice pairs

This chapter is based on the following work:

Dey et al. (2017): Dey, Aloke; Singh, Rakhi; Das, Ashish. Efficient paired choice designs

with fewer choice pairs. Metrika 80 (2017), no. 3, 309–317.

4.1 Introduction

In this chapter, we consider paired choice experiments with each option being described

by k factors each at v levels. We denote these levels by 0, . . . , v − 1. For an attribute,

the level l is coded and represented by a unit vector with 1 in the (l + 1)th position for

l = 0, . . . , v − 2, and for level v − 1 is represented by −1 in each of the v − 1 positions.

For example, for v = 3, effects-coded vectors for l = 1, 2, 3 are (1 0), (0 1) and (−1 − 1),

respectively.

We now consider designs under the linear paired comparison model for estimating the

main effects. The response is described by the model, Z = U1−U2 + ε = (P1−P2)θ+ ε =

Xθ+ ε, where ε is the random error vector, θ is the parameter vector for the main effects,

Pj is an N × k(v− 1) effects-coded matrix of the main effects for the jth option, j = 1, 2,

and X = P1−P2. For a paired choice design d, the matrix Md = XTX is the information

matrix for estimating the main effects under the linear paired comparison model. A paired

choice design d is connected if all the main effects are estimable, and this happens if and

only if Md has rank k(v− 1). We consider D-optimality in this chapter. The D-efficiency
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effD(d) of a paired choice designs d with N choice pairs is defined as

effD(d) =

(
det(Md/N)

det(Md∗/N∗)

)1/(k(v−1))

,

where d∗ is a D-optimal design in N∗ choice pairs. In view of invariance, the D-efficiency of

a design d is same under the linear paired comparison approach and under the multinomial

logit model approach.

A major concern with the available optimal paired choice designs is that the number

of choice pairs in the design increases rapidly as k and/or v are even moderately increased.

Such large designs may not be attractive to an experimenter. In this chapter, we propose

two construction methods yielding highly efficient paired choice designs with fewer choice

pairs.

4.2 Construction of D-efficient designs

In this section we provide two construction methods for D-efficient paired choice designs

with fewer choice pairs. The following result is well known (see e.g., Dey (2009)).

Lemma 4.1. Consider v(v − 1)/2 combinations involving v levels taken two at a time.

Then,

(i) For v odd, the combinations can be grouped into g = (v − 1)/2 groups G0, . . . ,

Gg−1 each comprising s = v combinations. Here Gi = {(i, v − 2 − i), (i + 1, v − 1 −

i), . . . , (i+ v − 1, 2v − 3− i)} and the levels are reduced modulo v; i = 0, . . . , g − 1.

(i) For v even, the combinations can be grouped into g = v − 1 groups G0, . . . , Gg−1

each comprising s = v/2 combinations. Here Gi = {(i,∞), (i+ 1, i+ v− 2), (i+ 2, i+ v−

3), . . . , (i + v/2 − 1, i + v/2)} and the levels are reduced modulo v − 1; i = 0, . . . , g − 1.

Here, ∞ is the invariant level v − 1.

For paired choice designs, only constructions 3.2 and 3.4 of Demirkale et al. (2013)

are applicable and construction 3.4 of Demirkale et al. (2013) is same as the construction

in Theorem 3 of Graßhoff et al. (2004). Modifications to these constructions, using g

groups as in Lemma 4.1 gives rise to efficient designs with fewer choice pairs.

For k ≤ m, let Hm,k be a m×k matrix with elements ±1 such that HT
m,kHm,k = mIk,

where Ik is the identity matrix of order k. When k = m, Hm,k is called a Hadamard matrix.
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Construction 1: Graßhoff et al. (2004) used an Hm,k to construct an optimal paired

choice design d with parameters N = mgs = mv(v − 1)/2, k, v, by associating the gs =

v(v − 1)/2 combinations of v levels taken two at a time with the rows of {Hm,k,−Hm,k}.

From every row of {Hm,k,−Hm,k}, gs choice pairs are obtained by replacing ‘1’ in the row

by the first element of the combinations and ‘−1’ in the row by the second element of the

combinations.

An efficient design is obtained by associating only g′s combinations (where g′ = g−1

or g′ = g − 2) with each row of {Hm,k,−Hm,k}. Corresponding to the jth row of

{Hm,k,−Hm,k}, (j = 1, . . . ,m), the combinations in the g′ groupG(j−1)(mod g), Gj(mod g),

. . . , G(j+g′−2)(mod g) are used for generating the choice pairs. This gives rise to an effi-

cient paired choice design with k attributes each at v levels and N = mg′s choice pairs

with g′ = g − 1 or g′ = g − 2.

Example 4.2. For k = 9, v = 4, starting from a normal H12,12, a H12,9 is obtained

by retaining the 2nd to 10th column of H12,12. Then generating gs = v(v − 1)/2 = 6

choice pairs from each row of H12,9, an optimal paired choice design is obtained. Since

v = 4, from Lemma 4.1, the g = 3 groups G0 = {(0, 3), (1, 2)}, G1= {(1, 3), (2, 0)} and

G2={(2, 3), (0, 1)} are each of size s = 2.

We choose g′ = v−2 = 2 and associate 4 combinations to each row of {H12,9,−H12,9}.

For the jth row of H12,9, the combinations in the groups G(j−1)(mod 3) and Gj(mod 3) are used,

j = 1, . . . , 12. This gives a design in 48 choice pairs with effD(d) = 0.96. Notice that the

optimal design is available in 72 choice pairs. Therefore, we observe that with 4% loss in

D-efficiency, a 33% reduction in the number of choice pairs is achieved.

We now recall the definition of an orthogonal array. An orthogonal arrayOA(n, k, v1×

· · · × vk, t), of strength t, is an n × k array with elements in the ith column from a set

of vi distinct symbols {0, . . . , vi − 1} (i = 1, . . . , k), such that all possible combinations

of symbols appear equally often as rows in every n × t subarray. An orthogonal array

is symmetric if vi = v for all i and the corresponding OA is denoted by OA(n, k, vk, t).

The link http://support.sas.com/techsup/technote/ts723.html and Hedayat et al.

(1999) provide a comprehensive description of orthogonal arrays and their constructions.

An orthogonal array is said to be 1-resolvable (or, simply, resolvable) if its rows can be par-

titioned into sets of rows (also called parallel classes) such that each set is an orthogonal
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array of strength unity.

Construction 2: Demirkale et al. (2013) used an OA(nv, k + 1, vk × n, 2) to form a

1-resolvable OA(nv, k, vk, 2) having n parallel sets of v rows each, and then to construct

an optimal paired choice design d with parameters N = ngs = nv(v − 1)/2, k, v. Let

{i, j} be a typical combination among the gs = v(v − 1)/2 combinations of v numbers

{0, 1, . . . , v − 1} taken two at a time. Then, for each such combination and from each of

the n parallel sets, (i+ 1)th row and (j + 1)th row are chosen to form the choice pairs of

the optimal paired choice design.

An efficient design is obtained by associating only g′s combinations (where g′ =

g − 1 or g′ = g − 2) with each of the n parallel sets of 1-resolvable OA(vn, k, vk, 2).

Then, corresponding to the jth parallel set (j = 1, . . . , n), the combinations in the group

G(j−1)(mod g), Gj(mod g), . . . , G(j+g′−2)(mod g) are used for generating the choice pairs. This

gives rise to an efficient paired choice design with k attributes each at v levels andN = ng′s

choice pairs with g′ = g − 1 or g′ = g − 2.

Example 4.3. For k = 5, v = 7, from an OA(49, 8, 7, 2) in the website link mentioned

and using the first factor as the resolving factor, 7 parallel sets are created and an opti-

mal paired choice design is obtained by constructing gs = v(v − 1)/2 = 21 choice pairs

corresponding to each parallel set. Since v = 7, from Lemma 4.1, three groups formed are

G0 = {(0, 5), (1, 6), (2, 0) ,(3, 1), (4, 2), (5, 3), (6, 4)}, G1= {(1, 4), (2, 5), (3, 6), (4, 0),

(5, 1), (6, 2), (0, 3)} and G2={(2, 3), (3, 4), (4, 5), (5, 6), (6, 0), (0, 1), (1, 2)}.

We choose g′ = (v − 3)/2 = 2 and hence associate 14 combinations to each of

the parallel sets. For the jth parallel set, the combinations in the group G(j−1)(mod 3) and

Gj(mod 3) are used, j = 1, . . . , 7. This gives a design in 98 choice pairs with effD(d) = 0.98.

Notice that the optimal design is available in 147 choice pairs. Therefore, we observe that

with 2% loss in D-efficiency, a 33% reduction in the number of choice pairs is achieved.

4.3 Tables of Designs and Concluding Remarks

We have two methods of construction of efficient designs. Since, for v = 2, 3, the number

of choice pairs involved are not very large, it may be preferable to use optimal designs

for such cases. However, as the number of levels increases, the number of choice pairs
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in an optimal design increases rapidly, and thus, it is preferable to use efficient designs

with fewer choice pairs. The significant gain through the reduced number of choice pairs

compensates for the marginal loss in D-efficiency. In most practical situations, very large

values of v and/or k are not useful. We thus restrict ourselves to the values of v, k as in

Table 2 of Demirkale et al. (2013). We provide a list of efficient designs in Tables 4.1-4.4.

From these tables, we see that retaining a D-efficiency of more than 0.9, on an average

there is 30− 50% reduction in the number of choice pairs in the design.

Hg′/g in the Table represent the designs constructed following the Graßhoff et al.

(2004) approach using g′ groups as against the g groups in the optimal designs, and Dg′/g

represent the designs constructed following the Demirkale et al. (2013) approach using g′

groups as against the g groups in the optimal designs. N∗ represents the least number of

choice pairs for an optimal design as in Table 2 of Demirkale et al. (2013). The last column

‘Reduction’ depicts the percentage reduction in the number of choice pairs vis-á-vis the

designs as in Table 2 of Demirkale et al. (2013).

Table 4.1: Efficient designs for v = 4
k N∗ N effD (d) Design Reduction

3 24 16 0.9596 H2/3 33%

4 24 16 0.9449 H2/3 33%

5 48 32 0.9691 D2/3 33%

6 48 32 0.9596 D2/3 33%

7 48 32 0.9515 H2/3 33%

k N∗ N effD (d) Design Reduction

8 48 32 0.9449 H2/3 33%

9 72 48 0.9590 H2/3 33%

10 72 48 0.9542 H2/3 33%

11 72 48 0.9491 H2/3 33%

12 72 48 0.9449 H2/3 33%

Table 4.2: Efficient designs for v = 5
k N∗ N effD (d) Design Reduction

3 40 25 0.9469 D1/2 38%

3 40 20 0.9283 H1/2 50%

4 40 25 0.9188 D1/2 38%

4 40 20 0.8944 H1/2 50%

5 50 40 0.9146 H1/2 20%

5 50 25 0.8944 D1/2 50%

6 50 40 0.9283 H1/2 20%

7 80 50 0.9300 D1/2 38%

k N∗ N effD (d) Design Reduction

7 80 40 0.9088 H1/2 50%

8 80 50 0.9174 D1/2 38%

8 80 40 0.8944 H1/2 50%

9 100 60 0.9162 H1/2 40%

9 100 50 0.9056 D1/2 50%

10 100 60 0.9061 H1/2 40%

10 100 50 0.8944 D(1/2 50%

11 100 60 0.9035 H1/2 40%

Table 4.3: Efficient designs for v = 6
k N∗ N effD (d) Design Reduction

3 60 48 0.9860 H4/5 20%

3 60 36 0.9606 H3/5 40%

4 60 48 0.9801 H4/5 20%

4 60 36 0.9426 H3/5 40%

5 120 108 0.9781 D3/5 10%

k N∗ N effD (d) Design Reduction

5 120 96 0.9886 H4/5 20%

5 120 72 0.9681 H3/5 40%

6 120 108 0.9736 D3/5 10%

6 120 96 0.9850 H4/5 20%

6 120 72 0.9585 H3/5 40%
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Table 4.4: Efficient designs for v = 7
k N∗ N effD (d) Design Reduction

3 84 56 0.9752 H2/3 33%

3 84 49 0.9327 D1/3 42%

3 84 28 0.8847 H1/3 67%

4 84 56 0.9638 H2/3 33%

4 84 49 0.9099 D1/3 42%

4 84 28 0.8198 H1/3 67%

5 147 112 0.9764 H2/3 24%

5 147 98 0.9764 D2/3 33%

5 147 56 0.8876 H1/3 62%

k N∗ N effD (d) Design Reduction

5 147 49 0.8878 D1/3 67%

6 147 112 0.9706 H2/3 24%

6 147 98 0.9697 D2/3 33%

6 147 56 0.8556 H1/3 62%

6 147 49 0.8530 D1/3 67%

7 147 112 0.9689 H2/3 24%

7 147 98 0.9638 D2/3 33%

7 147 56 0.8483 H1/3 62%

7 147 49 0.8198 D1/3 67%
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Chapter 5

Three-level A- and D-optimal paired

choice designs

This chapter is based on the following work:

Chai et al. (2017): Chai, Feng-Shun; Das, Ashish; Singh, Rakhi. Three-level A- and

D-optimal paired choice designs. Statist. Probab. Lett. 122 (2017), 211–217.

5.1 Introduction

In this chapter, we consider each factor to be at three levels, 0, 1 and 2 (say). For a design d

with N choice pairs, since options are described by k factors, following Huber and Zwerina

(1996), the utilities are modeled using the linear predictor uj = Pjθ, where θ is a 2k × 1

vector representing the main effects, Pj is anN×2k effects coded matrix for the jth option,

and uj = (uji) is an N × 1 utility vector for the jth option, j = 1, 2; i = 1, . . . , N . The

utility difference u1−u2 = (P1−P2)θ = Xθ is then a linear function of the parameter vector

θ. In what follows, we refer to X as the design matrix of design d. Since multinomial

logit choice models are non-linear in the parameters and the information matrix is a

function of the parameters, a utility-neutral approach (that is, taking θ = 0) of finding

the information matrix has been developed over the last two decades. Under such a

utility-neutral multinomial logit model, the Fisher information matrix for a design d is

(1/4)Md, where Md = XTX.

Simultaneously, Graßhoff et al. (2004) for a design d, the matrixMd is the information

matrix under the linear paired comparison model.
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Recently, Sun and Dean (2016) have provided an efficient computer algorithm to

obtain two-level A-optimal choice designs under the locally-optimal approach (that is,

taking θ = θ0, for an a priori θ0). In this chapter, we consider each factor to be at three

levels and theoretically obtain new A- and D-optimal designs under the utility-neutral

multinomial logit model setup.

For three-level factors, a choice design d is connected if all the main effects are

estimable, and this happens if and only if Md has rank 2k. In what follows, the class of all

connected paired choice designs with k three-level factors and N choice pairs is denoted

by Dk,N . As a performance measure, we use the standard A- and D-optimality criteria.

The A-value of a design d is trace(M−1
d ) and the D-value is det(M−1

d ). A design that

minimizes the A-value (the D-value) among all designs in Dk,N is said to be A-optimal

(D-optimal).

In this chapter, we provide constructions of A- and D-optimal designs for estimating

the main effects under the utility-neutral multinomial logit model using effects coding.

We also provide designs having high A- and D-efficiencies. Finally, we investigate optimal

designs under the utility-neutral multinomial logit model approach of Street and Burgess

(2007) and show that the D-optimal designs obtained under the model using effects coding

are also A- and D-optimal under the Street–Burgess approach.

5.2 Lower bounds to the A-value

Considering each factor at 3 levels, the ith row of the N × 2k effects coded matrix Pj

contains the effects coding for the jth option in ith choice pair, i = 1, . . . , N , j = 1, 2.

For each of the k factors, level 0 is effects coded as (1 0), level 1 as (0 1) and level

2 as (−1 − 1). The design matrix X = P1 − P2 for the pairs can be partitioned as

X = (X(1)|X(2)| · · · |X(k)), where X(p) is a N × 2 matrix corresponding to the pth factor.

A row in X(p) determine the corresponding options in a design for the pth factor. In X(p),

rows (+2, +1), (−2, −1), (+1, +2), (−1, −2), (+1, −1) and (−1, +1) correspond to

choice pairs (0, 2), (2, 0), (1, 2), (2, 1), (0, 1) and (1, 0) respectively. Similarly, row

(0, 0) corresponds to any of the choice pairs (0, 0), (1, 1) or (2, 2). Let, Mpq = XT
(p)X(q);

p = 1, . . . , k; q = 1, . . . , k. Clearly, for a design d, Md = (Mdpq), where Mdpq denotes Mpq

for design d. Let d1 have w > 0 rows of X(p) that are equal to (0, 0) and let d2 be the

46



design obtained from d1 by replacing the w rows (0, 0) by either (1, −1) or (−1, 1).

Then, Md2pp −Md1pp = w

[
1 −1

−1 1

]
is a non-negative definite matrix. Thus, without

affecting the generality of the results that follow, we write Mdpp having X(p) with no rows

(0, 0). It is easy to see that

Mdpp =

[
3y +N 3(y + z)−N

3(y + z)−N 3z +N

]
, (5.1)

where y is the number of rows of X(p) that are equal to either (2, 1) or (−2,−1) and

z is the number of rows of X(p) that are equal to either (1, 2) or (−1,−2). Then the

remaining N − (y + z) rows of X(p) are necessarily equal to either (1, −1) or (−1, 1).

We first obtain a lower bound to trace(M−1
dpp). From (5.1), trace(M−1

dpp) = (3(y+z)+

2N)/hN(y, z) = gN(y, z) (say) where hN(y, z) = det(Mdpp) = 9(yz+N(y+ z)− (y+ z)2).

Note that since both hN(y, z) and gN(y, z) are symmetric in y and z, it follows that

hN(y, z) = hN(z, y) and gN(y, z) = gN(z, y). We now find the values y and z for which

gN(y, z) is minimized for 1 ≤ y + z ≤ N , y 6= N , z 6= N . These conditions are required

so that the design d is connected, that is, Md has full rank. Even though it appears

that these conditions are only needed for ensuring that rank(Mdpp) = 2, in fact if these

conditions are not satisfied for every p, then rank(Md) < 2k. This can be seen easily since

if one of the factors (say the pth factor) does not meet the conditions, all the N pairs

would assume only one type of values which would mean that the two columns of X(p)

are linearly dependent. Let mind∈D1,N
trace(M−1

dpp) = min1≤y+z≤N,y 6=N,z 6=NgN(y, z) = La.

Also, let bxc denote the greatest integer contained in x.

Lemma 5.1. For a single-factor design d ∈ D1,N with N > 4, trace(M−1
dpp) = gN(y, z) ≥

La = gN(a∗, b∗) where gN(a∗, b∗) is min{gN(a1, b1), gN(a2, b2), gN(a3, b3)} with (i) a1 =

b1 = t, (ii) a2 = b2 = t + 1, (iii) a3 = t, b3 = t + 1 and t = bN(
√

3 − 1)/3c. For N = 4,

trace(M−1
dpp) = gN(y, z) ≥ La = gN(a∗, b∗) = 14/45 with a∗ = b∗ = 1.

Proof. Treating y and z as continuous variables and adopting the usual derivative ap-

proach to minimize gN(y, z), we get ∂gN(y, z)/∂y = 9(3y2−2N2+6yz+4Ny+2Nz)/h2
N(y, z).

Similarly, ∂gN(y, z)/∂z=9(3z2 − 2N2 + 6yz + 4Nz + 2Ny)/h2
N(y, z).

Now, ∂gN(y, z)/∂y = ∂gN(y, z)/∂z = 0 implies that (y − z)(3(y + z) + 2N) = 0. In

other words, y=z, since 3(y + z) + 2N > 0.
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Now, for y = z, it follows that ∂gN(y, z)/∂y = 0 implies that 9y2 + 6Ny− 2N2=0 or

y = N(±
√

3−1)/3. However, since y ≥ 0, the only feasible solution of y is N(
√

3−1)/3 =

t1.

Similarly, checking the matrix of second derivatives, we see that the minimum of

gN(y, z) is attained at y = z = t1. Since t1 is non-integer, gN(y, z) = La at one of the

integer points nearest to (t1, t1).

For N = 4, since y + z ≥ 1, the only valid integer points nearest to (t1, t1) are (1, 1)

or (0, 1). It is then easy to see that gN(0, 1) ≥ gN(1, 1) and therefore, trace(M−1
dpp) =

gN(y, z) ≥ La = gN(a∗, b∗) = 14/45 with a∗ = b∗ = 1.

Using Lemma 5.1, we have computed the values of a∗ and b∗ for 4 ≤ N ≤ 64 and

summarize it below.

Remark 5.2. For a single-factor design d ∈ D1,N , the values of a∗ and b∗ are

1. a∗ = b∗ = t when

(i) N = 4i+ 1, i = 1, . . . , 10, (ii) N = 4i+ 2, i = 7, . . . , 15.

2. a∗ = t, b∗ = t+ 1 when

(i) N = 4i+ 2, i = 1, . . . , 6, (ii) N = 4i+ 3, i = 4, . . . , 15, (iii) N = 60, 64.

3. a∗ = b∗ = t+ 1 when

(i) N = 4i, i = 1, . . . , 13, (ii) N = 4i+ 1, i = 11, . . . , 15, (iii) N = 7, 11.

4. a∗ = 3, b∗ = 4 or a∗ = b∗ = 4 when N = 15.

5. a∗ = 13, b∗ = 14 or a∗ = b∗ = 14 when N = 56.

Note that since gN(y, z) is symmetric in y and z, interchanging the values of a∗

and b∗ in Lemma 5.1 and in Remark 5.2 would yield the same values of gN(a∗, b∗) and

therefore for the sake of simplicity, we have reported only one of the a∗ and b∗ values.

Let LA = mind∈Dk,N trace(M
−1
d ). We now give a lower bound for the A-value for paired

choice designs with k factors in N choice pairs.
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Theorem 5.3. For a paired choice design d ∈ Dk,N , trace(M−1
d ) ≥ LA ≥ kLa =

kgN(a∗, b∗) where a∗ and b∗ are as in Lemma 5.1.

Proof. First we apply the inequality trace(M−1
d ) ≥

∑k
p=1 trace(M

−1
dpp) which, using Schur

complement and the inverse of partitioned matrices, follows easily for k = 2. Thereafter,

it is easy to see, using the method of induction, that the inequality holds for general k

(see, Appendix B for detailed proof). Finally, using Lemma 5.1, the proof follows.

5.3 Lower bounds to the D-value

In this section, we provide general results for the lower bounds to D-values. We first

obtain a lower bound to det(M−1
dpp). From (5.1), det(M−1

dpp) = 1/hN(y, z). We now find the

values y and z for which hN(y, z) is minimized for 1 ≤ y + z ≤ N , y 6= N , z 6= N . Let

mind∈D1,N
det(M−1

dpp) = min1≤y+z≤N,y 6=N,z 6=N(1/hN(y, z)) = Ld.

Lemma 5.4. For a single-factor design d ∈ D1,N , det(M−1
dpp) = 1/hN(y, z) ≥ Ld =

1/hN(a∗, b∗) where the values of a∗ and b∗ are (i) a∗ = l, b∗ = l if N = 3l, (ii) a∗ = l, b∗ = l

or a∗ = l, b∗ = l + 1 if N = 3l + 1 and (iii) a∗ = l, b∗ = l + 1 or a∗ = l + 1, b∗ = l + 1 if

N = 3l + 2. Also, if N = 3l, then hN(a∗, b∗) = 3N2, else hN(a∗, b∗) = 3(N2 − 1).

Proof. Assuming y, z to be continuous, we find their values such that 1/hN(y, z) is

minimized or equivalently hN(y, z) is maximized. Now ∂hN (y,z)
∂y

=9(N − 2y − z), while

∂hN (y,z)
∂z

=9(N − 2z − y). Equating these equations to zero, we get a∗=b∗=N
3

as a feasible

solution when N is divisible by 3. Therefore, for N = 3l, a∗ = b∗ = l and hN(l, l) = 3N2.

For situations when N is not divisible by 3, we have the following two cases.

Case 1. N = 3l+ 1. For integers i, j, consider the difference hN(l, l)−hN(l+ i, l+ j). On

simplification we see that, hN(l, l)− hN(l+ i, l+ j) = 9(i2 + j2 + ij − i− j). We have the

following four cases. Case (a) i ≥ 0, j ≥ 0, Case (b) i < 0, j < 0, Case (c) i ≥ 0, j < 0 and

Case (d) i < 0, j ≥ 0. Clearly, for Case (a) and Case (b), hN(l, l)−hN(l+i, l+j) ≥ 0. For

Case (c), hN(l, l)−hN(l+ i, l+j) = 9((i+j)2− ij− i−j) = 9((i+j)2 + i(−j−1)−j) ≥ 0.

Similarly, for Case (d), hN(l, l)− hN(l + i, l + j) ≥ 0.

Now, hN(l, l) = hN(l+ i, l+j) when (i2 +j2 + ij− i−j) = i(i−1)+j(j−1)+ ij = 0,

that is, when either (i) i = j = 0, or (ii) i = 0, j = 1, or (iii) i = 1, j = 0. Therefore,

a∗ = l, b∗ = l or a∗ = l, b∗ = l + 1 or a∗ = l + 1, b∗ = l and hN(a∗, b∗) = 3(N2 − 1).
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Case 2. N = 3l+2. For integers i, j, consider the difference hN(l+1, l+1)−hN(l+1+i, l+

1+j). On lines similar to that in Case 1, we see that, hN(l+1, l+1)−hN(l+1+i, l+1+j) =

9(i2 + j2 + ij + i+ j) ≥ 0.

Now, hN(l + 1, l + 1) = hN(l + 1 + i, l + 1 + j) when (i2 + j2 + ij + i + j) =

i(i+ 1) + j(j + 1) + ij = 0, that is, when either (i) i = j = 0, or (ii) i = 0, j = −1, or (iii)

i = −1, j = 0. Therefore, a∗ = l + 1, b∗ = l + 1 or a∗ = l + 1, b∗ = l or a∗ = l, b∗ = l + 1

and hN(a∗, b∗) = 3(N2 − 1).

Note that since hN(y, z) is symmetric in y and z, interchanging the values of a∗ and

b∗ in Lemma 5.4 would yield the same values of hN(a∗, b∗) and therefore for the sake of

simplicity, we have reported only one of the a∗ and b∗ values.

Now, to obtain a lower bound to the D-value for paired choice designs with k factors

in N choice pairs, we use the inequality det(M−1
d ) ≥

∏k
p=1 det(M

−1
dpp) which is easy to

establish by using Schur complement and the method of induction (see, Appendix B for

detailed proof). Let LD = mind∈Dk,Ndet(M
−1
d ). Thus, using Lemma 5.4, we have

Theorem 5.5. For a paired choice design d ∈ Dk,N , det(M−1
d ) ≥ LD ≥ (Ld)

k =

(1/hN(a∗, b∗))k where a∗ and b∗ are as in Lemma 5.4. Also, hN(a∗, b∗) = 3N2, if N ≡ 0

(mod 3) and hN(a∗, b∗) = 3(N2 − 1) otherwise.

In situations where N is not a multiple of 3, the lower bound for det(M−1
d ) obtained

above is an improvement over the bounds obtainable from optimal approximate designs

of Graßhoff et al. (2004). When N is a multiple of 3, the two bounds are the same.

In the next section, we provide some optimal designs attaining the lower bounds

of Theorem 5.3 and Theorem 5.5. In some situations, since we are not able to provide

designs attaining the A- and D-lower bounds, A- and D-efficiencies are given.

5.4 Design Constructions

Let d ∈ D1,N be an optimal design. Since d is not unique, we have many such designs.

Let dp, p = 1, . . . , k be k such designs satisfying XT
(p)X(p′) = 0, p 6= p′; p = 1, . . . , k; p′ =

1, . . . , k, where the N×2 matrix X(p) denotes the design matrix of dp ∈ D1,N . Then, from

Theorem 5.3 and Theorem 5.5, X = (X(1)|X(2)| · · · |X(k)) gives rise to an optimal paired
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choice design in Dk,N . It may be noted that single-factor optimal designs dp, p = 1, . . . , k,

satisfying the stated orthogonality condition XT
(p)X(p′) = 0, may not always exist.

For N ≤ 9 and certain values of k, through a computer search we are able to identify

dp’s and the corresponding optimal designs in Dk,N . In particular, we find D-optimal

designs for k = 2 and N = 4, 5, 6, 8, 9 as well as for k = 3 and N = 7. Similarly, we find

A-optimal designs for k = 1 and N = 5, for k = 2 and N = 4, 6, 9, for k = 3 and N = 7,

and for k = 4 and N = 8. We refer to these designs as base designs. The base designs

are subsequently used for constructing optimal and efficient designs for larger numbers of

factors k and N > 9.

Since for k = 2 and N = 5 there is no design in D2,5 satisfying XT
(1)X(2) = 0 and

attaining the lower bound 2La, we did an exhaustive search in D2,5 to obtain an A-optimal

design. The search established that the D-optimal design in D2,5 is also A-optimal. This

shows that the lower bound of Theorem 5.3 is not always attainable.

For a paired choice design with k factors and N choice pairs, we denote a D-optimal

design by d(k,N), an A-optimal design by a(k,N) and a design which is both A- and D-

optimal by ad(k,N). In the Appendix B, we provide the base designs for k = 2 and k = 3.

A choice design where no two choice pairs are repeated has distinct choice pairs.

While obtaining A-optimal design for k = 2 and N = 9, a complete search indicates that

even though there exist X(1) and X(2) satisfying Theorem 5.3 such that XT
(1)X(2) = 0, they

lead to choice designs with repeated choice pairs. The A-optimal design a(2,9) is one such

example provided in the Appendix B. However, such a design is not recommended for

experimentation. Accordingly, a complete search was made among designs with distinct

choice pairs to arrive at an A-optimal design a+
(2,9), which is also provided in the Appendix

B. However, a+
(2,9) does not attain the lower bound 2La in Theorem 5.3.

All the base designs in the Appendix B satisfy the orthogonality conditionXT
(p)X(p′) =

0 for p 6= p′. Moreover, the lower bounds in Theorem 5.3 and Theorem 5.5 are attained

by all A- and D-optimal base designs respectively, except for the A-optimal designs ad(2,5)

and a+
(2,9).

We now propose a general method of construction to obtain optimal and efficient

designs with k ≥ 4. We use Hadamard matrices for our construction. A Hadamard matrix

Hm is a m×m matrix with elements ±1 such that HT
mHm = HmH

T
m = mIm.

Consider A- and D-optimal base designs d′ ∈ Dk′,N ′ with LA = k′gN ′(a
′, b′) and LD =
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(1/hN ′(a
′, b′))k

′
respectively. Note that, we are considering the A- and D-optimal base

designs in Dk′,N ′ for which the bound values LA and LD respectively, are not necessarily

equal to the lower bounds in Theorem 5.3 and Theorem 5.5. This also implies that a′

and b′ are equal to a∗ and b∗ respectively, only in cases where the base design attains the

lower bounds in Theorem 5.3 and Theorem 5.5. Using such a base design d′, we construct

a paired choice design dH with parameters k = mk′, N = mN ′ having corresponding

design matrix XH = Hm ⊗ X, where X is the design matrix of d′. The idea behind

the construction is essentially the same as in Theorem 5 of Graßhoff et al. (2004), where

optimal designs are obtained as the Kronecker product using an orthogonal array as the

base design. This chapter extends this idea in the sense that the base designs are not

restricted to orthogonal arrays and that the two- or three-factor base designs are found by

means of complete computer searches. This enables one to construct designs with smaller

number of choice pairs than other researchers.

For any design d ∈ Dk,N , from Theorem 5.3, the lower bound to the A-value is

kgN(a∗, b∗). In contrast, dH ∈ Dk,N has the A-value trace(M−1
dH

) = trace(M−1
d′ ) =

k′gN ′(a
′, b′), since MdH = XT

HXH = HT
mHm⊗XTX = mIm⊗XTX = mIm⊗Md′ . There-

fore the A-efficiency is given by φA = kgN (a∗,b∗)
k′gN′ (a

′,b′)
. Similarly, φD =

(
(m2hN′ (a

′,b′))k

(hN (a∗,b∗))k

)1/(2k)

=√
m2hN′ (a

′,b′)
hN (a∗,b∗)

is the D-efficiency of dH ∈ Dk,N where hN(a∗, b∗) is as in Theorem 5.5.

Also, note that the D-efficiency φD is based on the lower bounds in Theorem 5.5 for

exact designs in Dk,N . Therefore, φD only agrees with the efficiency based on the optimal

approximate design when N is a multiple of three.

In Table 5.1, we provide designs with distinct choice pairs that are A-optimal and D-

optimal (wherever we get one), andA-efficient andD-efficient. G2004 and S2007 respectively

represents designs constructed as in Graßhoff et al. (2004) and Street and Burgess (2007).

In Table 5.1 we denote designs dH obtained using the Hadamard matrix Hm and a base

design ad(k′,N ′) by Hm⊗ad(k′,N ′). Similar representations are used for base designs a(k′,N ′)

and d(k′,N ′). A design with a smaller k retains its optimality property for given N when

factors are deleted from a design with larger k.

We see that there are several situations where for given k, a highly D-efficient design

with smaller N is available through the method given in this chapter as compared to the

D-optimal designs available in the literature. For example, for k = 8, we get an A-optimal

design in N = 16 choice pairs with φD = 0.976 as against a D-optimal design with 24
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choice pairs. Similarly, for k = 6, we get a design with φD = 0.992 in N = 14 choice pairs

as against an A-optimal design in 16 and a D-optimal design in 18 choice pairs. We also

have a few situations where for given k and N , we have two different designs of which

one is A-optimal or A-efficient and the other is D-optimal or D-efficient. Unlike the new

optimal designs constructed here, the D-optimal designs that follow from Graßhoff et al.

(2004) and Street and Burgess (2007) force N to be a multiple of 9 or 12, except for

N = 6.

Table 5.1: A-optimal and D-optimal designs with distinct choice pairs

k N φA φD Method k N φA φD Method

2 4 Opt Opt ad(2,4) 3–4 18 0.983 0.981 H2 ⊗ a+
(2,9)

2 5 Opt Opt ad(2,5) 3–7 18 0.936 Opt G2004, S2007

2 6 Opt 0.971 a(2,6) 5–8 20 0.943 0.981 H4 ⊗ ad(2,5)

2 6 0.955 Opt G2004 5–8 24 0.978 0.957 H4 ⊗ a(2,6)

2–3 7 Opt Opt ad(3,7) 5–8 24 0.933 Opt G2004

2 8 0.948 Opt d(2,8) 7–13 27 0.934 Opt G2004, S2007

2–4 8 Opt 0.976 H2 ⊗ ad(2,4) 5–12 28 0.985 0.99 H4 ⊗ ad(3,7)

2 9 0.985 0.981 a+
(2,9) 9–16 32 Opt 0.969 H8 ⊗ ad(2,4)

2–4 9 0.938 Opt G2004, S2007 9–12 36 0.933 Opt G2004

3–4 10 0.951 0.985 H2 ⊗ ad(2,5) 9–16 40 0.943 0.98 H8 ⊗ ad(2,5)

3–4 12 0.978 0.957 H2 ⊗ a(2,6) 9–16 48 0.978 0.957 H8 ⊗ a(2,6)

3–4 12 0.933 Opt G2004 13–16 48 0.933 Opt G2004

3–6 14 0.989 0.992 H2 ⊗ ad(3,7) 17–25 54 0.933 Opt G2004, S2007

3–4 16 0.948 0.994 H2 ⊗ d(2,8) 17–24 56 0.985 0.99 H8 ⊗ ad(3,7)

5–8 16 Opt 0.976 H4 ⊗ ad(2,4) 17–32 64 0.999 0.968 H16 ⊗ ad(2,4)

5.5 Optimal designs under the Street–Burgess ap-

proach

In Section 5.2 and Section 5.3, we have obtained A- and D-optimal designs under the

utility-neutral multinomial logit model approach using effects coding (see, for example,

Huber and Zwerina (1996), Graßhoff et al. (2004) and Großmann and Schwabe (2015)).

However, a different approach has been adopted by the school comprising researchers like
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Street, Burgess, Bush and others for obtaining choice designs under the utility-neutral

multinomial logit model (see, Street and Burgess (2007), Großmann and Schwabe (2015)).

The approach varies in the sense that an information matrix for the option effects is

obtained first and then a suitable contrast of the option effects constitutes the main

effects. In this section, we investigate optimal designs following the approach of Street

and Burgess (2007). Note that since the D-criterion is invariant to re-parameterizations,

the designs that are D-optimal under the effects coding setup are also D-optimal under

the utility-neutral multinomial logit model approach of Street and Burgess (2007) (see,

Großmann and Schwabe (2015)). However, A-optimal designs may be different for the

two approaches.

Under the utility-neutral multinomial logit model approach of Street and Burgess

(2007), the information matrix for estimating main effects is given by Cd = BΛdB
T where

B is the 2k× 3k orthonormal contrast matrix for the k main effects and Λd is the 3k × 3k

information matrix for the options of a paired choice design d. Hereafter, for notational

simplicity we drop the subscript d in Cd and Λd. For a paired choice design d with N

choice pairs, Λ = (λrs), where

4Nλrs =

{
nr for r = s,

−nr,s for r 6= s

with r and s being the labels of the corresponding options, nr being the number of times

r appears in the choice design and nr,s = 1 or 0 depending on whether r and s forms a

choice pair in the design or not.

Similar to the approach followed in Section 5.2 and Section 5.3, we now find the

information matrix for k = 1. Let for the pth factor in N choice pairs, Λp be the corre-

sponding 3 × 3 information matrix of the levels, and Bo is a 2 × 3 orthonormal contrast

matrix given by,

Bo =

(
−1/
√

2 0 1/
√

2

1/
√

6 −2/
√

6 1/
√

6

)
.

Note that Bo is not unique. As in the earlier sections, let the design d for a single factor

have y choice pairs equal to either (0, 2) or (2, 0) and have z choice pairs equal to either

(1, 2) or (2, 1). Then the remaining N − (y + z) choice pairs are necessarily equal to

either (0, 1) or (1, 0). Then the 2× 2 information matrix for estimating the main effect
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for the pth factor is

C(p) = BoΛpB
T
o =

1

N

N∑
i=1

BoΛ
i
pB

T
o =

1

N

N∑
i=1

Ci
(p),

where Λi
p is the Λp corresponding to the ith choice pair and Ci

(p) is the information matrix

of the ith choice pair for estimating the main effect for the pth factor. It is easy to see

that Ci
(p) = 1

2

(
4 0

0 0

)
= C0,2 (say) corresponding to the ith choice pair equal to either

(0, 2) or (2, 0). Similarly, Ci
(p) = 1

2

(
1
√

3
√

3 3

)
= C1,2 (say) corresponds to the ith

choice pair equal to either (1, 2) or (2, 1) and Ci
(p) = 1

2

(
1 −

√
3

−
√

3 3

)
= C0,1 (say)

corresponds to the ith choice pair equal to either (0, 1) or (1, 0). Therefore,

C(p) =
1

N
(yC0,2 +zC1,2 +(N−y−z)C0,1) =

1

2N

(
N + 3y

√
3(y + 2z −N)

√
3(y + 2z −N) 3(N − y)

)
,

and det(C(p)) = 3(yz + N(y + z) − (y + z)2)/N2 = hN(y, z)/3N2 where hN(y, z) is as

defined in Section 5.2. Thus, det(C−1
(p)) = 3N2/hN(y, z). Also, trace(C−1

(p)) = 2det(C−1
(p)) =

6N2/hN(y, z) ≥ 6N2min1≤y+z≤N,y 6=N,z 6=N(1/hN(y, z)) = 6N2Ld.

Now, let C = (Cpq) where Cpq is the pqth 2 × 2 sub-matrix of C, p = 1, . . . , k; q =

1, . . . , k. Therefore, since 3k−1Cpp = C(p), we have,

trace(C−1) ≥
k∑
p=1

trace(C−1
pp ) = 3k−1

k∑
p=1

trace(C−1
(p)) = 2×3k−1

k∑
p=1

det(C−1
(p)) ≥ 2×3kN2kLd.

This establishes the following result.

Theorem 5.6. The D-optimal designs that satisfy the bounds obtained in Theorem 5.5 are

also A-optimal and D-optimal under the utility-neutral multinomial logit model approach

of Street–Burgess.

This shows that A-optimal designs could be different under the two approaches as

envisaged in Großmann and Schwabe (2015). The D-optimal designs in Table 5.1 are

A-optimal and D-optimal under the Street–Burgess approach.

5.6 Concluding Remarks

In the literature, most of the theoretical results on optimal paired choice designs are ones

where the information matrix of the optimal design has a certain balanced structure.
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This, for a three-level optimal paired choice design, forces N to be a multiple of 3. Unlike

the above, the present chapter adopts an approach to theoretically identify three-level A-

and D-optimal designs where N is not necessarily a multiple of 3. Table 5.1 provides such

new three-level A- and D-optimal designs. The optimal designs provided have distinct

choice pairs. However, the base designs constructed in the current chapter can contain

repeated pairs (for example, a(2,9)). Therefore, one should always check that choice pairs

in the base design are distinct. Our general method of construction using Hadamard

matrices would always give rise to an optimal or efficient design having distinct choice

pairs provided the base design has distinct choice pairs.

The D-optimal designs under effects coding are also A- and D-optimal under or-

thonormal contrasts. However, under effects coding, A-optimal designs are usually not

D-optimal, even if N is a multiple of three; for example the design a(2,6).

While considering the paired choice designs with parameters k = 2, N = 6, we

observe that for each of the two factors, the A-optimal design a(2,6) has three pairs which

are either (0, 1) or (1, 0), two pairs which are either (1, 2) or (2, 1), and one pair which

is either (0, 2) or (2, 0). Thus, it appears that under effects coding the A-optimal design

a(2,6) attaches more importance to compare the factor-levels 0 and 1 for each of the two

factors. On the contrary, for the orthonormal contrasts, the A-optimal design with the

same parameters k = 2, N = 6 (the design being the same as the D-optimal design in

G2004) appears to give equal importance to the pairwise comparison between the three

factor-levels since this design has two pairs of each of the 3 pair-types. This example

illustrates the need for more work to understand whether one should recommend A-

optimal designs for orthonormal contrasts or should one recommend A-optimal designs

under effects coding.
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Chapter 6

On three-level D-optimal paired

choice designs

This chapter is based on the following work:

Singh (2019): Singh, Rakhi. On three-level D-optimal paired choice designs. Statist.

Probab. Lett. 145 (2019), 127–132.

6.1 Introduction

In this chapter, we consider N paired choice sets with k three-level factors, employed

in a choice experiment. We are interested in the estimation of all the main effects and

all two-factor interaction effects. For k three-level factors, following Huber and Zwerina

(1996), the utilities uj are modeled as uj = Pjθ, where θ is a
(
2k + 4

(
k
2

))
× 1 vector

representing the main and two-factor interaction effects, Pj is an N ×
(
2k+ 4

(
k
2

))
effects-

coded matrix for the jth option, and uj = (uji) is an N × 1 utility vector for the jth

option, j = 1, 2; i = 1, . . . , N . We also define P = P1 − P2 and refer to it as the design

matrix of design d. For attaining theoretically optimal designs under the multinomial

logit model, a utility-neutral approach (that is, taking θ = 0) is in practice for finding

the information matrix. Under such a utility-neutral multinomial logit model, the Fisher

information matrix for a design d reduces to (1/4)Md, where Md = P TP .

In this chapter, we are interested in the estimation of all the main effects and all

two-factor interaction effects. As an example, interest on such main-effects and all two-

factors interaction effects may arise when say, a fast-food joint wants to assess the effect
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of four factors (food, drinks, sides, and price) and their interactions on its marketing

strategies. These four factors are say at 3 levels each: food (vegetarian, egg, and chicken),

drinks (hot coffee, fruit juice, and soft-drinks), sides (fries, onion rings, and popcorn),

and price (3, 5, 7). In such situation, when the fast-food joint wants to assess not just

the impact of these factors as main-effects but also the impact of interaction effects of

each the two factors (interaction of price and food, interaction of sides and drinks, etc.)

on their marketing strategies, the designs in this chapter will be useful. Designs for such

estimation problems in choice experiments are studied by several authors (see, Street and

Burgess (2007), Großmann and Schwabe (2015), etc.).

Graßhoff et al. (2003) provided D-optimal designs for estimating main effects and

two-factor interaction effects with total number of choice pairs N = g3k, where g =(
k
t∗

)
2t
∗

when 3 does not divide k − 2 and g =
(
k
t∗

)
2t
∗

+
(

k
t∗+1

)
2t
∗+1, otherwise. Here,

t∗ = k − 1 − [k−2
3

]. Street and Burgess (2007) reduced the total number of choice pairs

to N = gn, where g is same as Graßhoff et al. (2003) and n is the size of a strength

four orthogonal array on k three-level factors. Thus, Street and Burgess (2007) reduced

the number of choice pairs by using an orthogonal array instead of a complete factorial

design. In this chapter, we further provide a significant reduction in the number of choice

pairs for such an optimal design by reducing the number of generators g. For example, for

k = 4, currently a D-optimal design would need N = 32n choice pairs, whereas we provide

construction of D-optimal design in N = 4n choice pairs, implying a reduction of 88%

in the number of choice pairs. We provide construction of such designs for k = 3, 4, 5, 6

factors after obtaining generators with much reduced values of g. Using the approach of

Singh et al. (2018), we also provide a way to further reduce the number of choice pairs

by using orthogonal blocking methodology.

6.2 Preliminaries

In this section, we introduce some notations and discuss the existing work done in de-

tails. Let Pj for main effects and two-factor interaction effects be denoted by Xj and Yj

respectively, j = 1, 2. Also, let X = X1 − X2 and Y = Y1 − Y2. When our interest lies

in the estimation of both the main effects and the two-factor interaction effects, the cor-

responding information matrix Md under the linear paired comparison model (Graßhoff
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et al., 2003) is

Md = P TP =

[
XTX XTY

Y TX Y TY

]
. (6.1)

For main effects, the effects-coded vectors for levels 0, 1 and 2 are (1 0), (0 1) and

(−1 − 1), respectively. Let X i
j` represent Xj corresponding to the ith choice pair and

`th factor. Then, ith row of Xj is (X i
j1 X

i
j2 . . . X i

jk). Also, ith row of Yj is defined as

(X i
j1 ⊗X i

j2, X
i
j1 ⊗X i

j3, . . . , X
i
j(k−1) ⊗X i

jk).

In our context, a choice design d is connected if each of the main effects and the

two-factor interaction effects are estimable, and this happens if and only if Md has rank

2k + 4
(
k
2

)
= 2k2. In what follows, the class of all connected paired choice designs with k

three-level factors and N choice pairs is denoted by Dk,N . We make use of the standard

D-optimality criteria. A design that minimizes det(M−1
d ) among all designs in Dk,N is

said to be D-optimal.

A design is said to be a uniform design (Graßhoff et al., 2003) if it assigns equal

weight to all choice pairs with meaningful comparisons, that is, for each factor, equal

weight is given to each of six choice pairs (s, t) of distinct levels, s 6= t. The comparison

depth t in a design d is an integer such that exactly t of the k factors have different

levels in both the options and in each of the choice pairs. For estimating main effects and

two-factor interaction effects, Graßhoff et al. (2003) showed that the information matrix

Md in (6.1) for any uniform design d with comparison depth t can be written as

Md(t) =

(
h1(t)Ik ⊗M2 0

0 h2(t)Ik(k+1)/2 ⊗M2 ⊗M2

)
(1)

where M2 = (I2 + J2), I` denotes the identity matrix of order ` and J` denotes the

` × ` matrix of all ones, and ⊗ denotes the Kronecker product. Also, h1(t) = Nt/k and

h2(t) = N t
k
(2

3
− t−1

2(k−1)
), where N is the total number of choice pairs in a choice design d.

Let t∗ = k − 1 − [k−2
3

] and w∗ = (t∗ + 1)/(3t∗ + 1), where [x] denotes the largest

integer less than or equal to x. Graßhoff et al. (2003) showed that if 3 does not divide

k − 2, then a uniform design d(t∗), which gives equal weight to all N = g3k =
(
k
t∗

)
2t
∗
3k

choice pairs with comparison depth t∗, is D-optimal in D(k,N). These N choice pairs are

formed by pairing each of the 3k options to 2t
∗

options obtained such that t∗ positions

in second option is different than the corresponding positions in the first option and this

needs to be done for each of the
(
k
t∗

)
possibilities. The information matrix for such an
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optimal design d(t∗) is then given by Md(t∗). Furthermore, if 3 divides k − 2, then an

optimal design d is a combination of two uniform designs d1 and d2 with weights w∗ and

1 − w∗ respectively. Here, d1 and d2 are paired choice designs with all the choice pairs

having comparison depths of t∗ and t∗ + 1, respectively. The information matrix for such

an optimal design d(t∗) is then given by w∗Md(t∗) + (1 − w∗)Md(t∗+1). In this case, total

number of choice pairs in an optimal design are N = g3k = {
(
k
t∗

)
2t
∗

+
(

k
t∗+1

)
2t
∗+1}3k.

An orthogonal array OA(n, 3k, t), of strength t, is an n×k array with elements from

a set of 3 distinct symbols {0, 1, 2}, such that all possible combinations of symbols appear

equally often as rows in every n× t subarray. Street and Burgess (2007), Demirkale et al.

(2013) and Bush (2014) provided the OA + G method for constructing optimal paired

choice designs using orthogonal arrays and generators G. Let G be a collection of h

generators G1, . . . , Gh where Gu = (gu1 , gu2 , . . . , guk). The OA+G method gives a paired

choice design (A,Bu), u = 1, . . . , h where A = (Ai`) is an OA(n1, 3
k, t) and Bu = (Bu

i`)

with Bu
i` = (Ai` + gu`) reduced modulo 3, i = 1, . . . , n1, ` = 1 . . . , k, u = 1, . . . , h. This

method depends on the availability of the required orthogonal array, which may not always

exist. For this problem, Street and Burgess (2007) reduced the total number of choice

pairs to N = gn, where g is same as Graßhoff et al. (2003) and n is the size of a strength

four orthogonal array on k three-level factors. They reduced the number of choice pairs

by using an orthogonal array instead of a complete factorial design.

It is obvious that the construction method of Graßhoff et al. (2003) can also be

framed as an OA + G construction method where, for example, for the case when 3

does not divide k− 2, the 3k options act as an orthogonal array and there are g =
(
k
t∗

)
2t
∗

generators such that exactly t∗ of the k factors change their levels between the two options

in a pair.

6.3 New generators and construction

In this section, we first provide a general result on the required properties of generators

for constructing optimal designs for estimating all main effects and two-factor interaction

effects. We now give the following result, proof of which is in the Appendix C.

Theorem 6.1. In an OA+G method, starting from an OA(n, 3k, 4), let a paired choice

design d1 be constructed using

60



•
(
k
t∗

)
distinct generators such that each of the generators has non-zeros in all possible

t∗ positions and zeros in remaining k − t∗ positions, when 3 does not divide k − 2;

•
(
k
t∗

)
distinct generators such that each of the generators has non-zeros in all possible

t∗ positions and zeros in remaining k − t∗ positions and
(

k
t∗+1

)
distinct generators

such that each of the generators has non-zeros in all possible t∗ + 1 positions and

zeros in remaining k − t∗ − 1 positions, when 3 divides k − 2.

Additionally, for any two-factors, all the generators (rows) with both non zero entry

should be such that they can be clubbed in several groups of two generators of the type

{(11, 12), (11, 21), (22, 21), (22, 12)}. Then, the resultant design d1 with N = gSn is opti-

mal for estimating all main effects and all two-factor interaction effects. Here, gS =
(
k
t∗

)
when 3 does not divide k − 2 and gS =

(
k
t∗

)
+
(

k
t∗+1

)
otherwise.

Theorem 6.1 reduces N by 2t
∗

times when 3 does not divide k − 2. When 3 divides

k − 2, then the reduction is calculated using the gS−g
gS

= 1 − ( kt∗)2t
∗

+( k
t∗+1)2t

∗+1

( kt∗)+( k
t∗+1)

. The

percentage reduction in N and the generators, using Theorem 6.1 is given in Table 6.1

for a few example of k’s. The columns NS denotes the total number of choice pairs

required from Theorem 6.1 and NSB denotes the number of best available choice pairs

from Street and Burgess (2007). These examples have mostly been obtained by a hit-and-

trial approach. Note that it is not possible to get generators of type as in Theorem 6.1

for k = 3 and therefore, the least number of generators needed for k = 3 is 6. As a next

step, one may obtain the generators for higher k.

In practice, there is a pool of choice sets and respondents are allocated a random

subset of choice sets (Street and Burgess, 2007) and this process is continued until all

choice sets are used once. To avoid random allocation, Singh et al. (2018) provided a

method to systematically split the pool of choice sets by introducing a blocking component

in the model. Using their notations, they provided a break-up of N choice pairs into b

blocks each of size s such that rather than showing N choice pairs to each respondent,

one can show s choice pairs to b respondents. They showed that such a design is optimal

under the block model.

Use of Singh et al. (2018) approach would help in further reducing the number

of choice pairs to be shown to respondents at one point of time. We now provide a

construction result, optimality of which, under the block model, can be easily proved on
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Table 6.1: Generators for k = 3, 4, 5, 6

k Generators NS NSB % Reduction

3 (1,1,0) (1,0,1) (0,1,1) (1,2,0) (2,0,1) (0,1,2) 6n 12n 50%

4 (2,1,1,0) (1,1,0,2) (1,0,1,1) (0,1,2,1) 4n 32n 88%

5

(1,1,2,1,0) (1,2,1,0,1) (2,1,0,1,1) (1,0,2,2,1)

15n 160n 91%
(0,1,1,2,1) (2,1,1,0,0) (1,1,0,1,0) (2,0,2,2,0)

(0,1,2,2,0) (2,2,0,0,1) (1,0,1,0,1) (0,2,2,0,1)

(2,0,0,1,1) (0,2,0,1,2) (0,0,1,2,2)

6

(1,1,2,1,0,0) (1,2,1,0,1,0) (2,1,0,1,1,0) (1,0,2,2,1,0)

15n 240n 94%
(0,1,1,2,1,0) (2,1,1,0,0,2) (1,1,0,1,0,1) (2,0,2,2,0,1)

(0,1,2,2,0,1) (2,2,0,0,1,1) (1,0,1,0,1,1) (0,2,2,0,1,2)

(2,0,0,1,1,1) (0,2,0,1,2,1) (0,0,1,2,2,1)

the similar lines as in Singh et al. (2018).

Theorem 6.2. In an OA+G method, starting from an OA(n, 3k, 4), let a paired choice

design d1 be constructed as in Theorem 6.1. Then, d2 can be obtained as a paired choice

block design with s = n, b = gS =
(
k
t∗

)
when 3 does not divide k−2; or b = gS =

(
k
t∗

)
+
(

k
t∗+1

)
otherwise and d2 is optimal under the paired choice block model of Singh et al. (2018).

The paired choice block design d2 is obtained from d1 by considering the choice pairs

generated using different generators as different blocks.

Example 6.3. We now give an example of a paired choice design with four 3-level factors

for estimating all the main effects and all two-factor interaction effects. From Table 6.1,

for k = 4, the number of generators is gS = 4 and we use an orthogonal array OA(81, 34, 4)

for four 3-level factors with n = 81 runs. Using gS = 4 generators, as provided in Table

6.1, and n = 81, the paired choice design exists in N = 324 choice pairs and is provided

below. Now, invoking Theorem 6.2, the paired choice block design is obtained using each

of the generators as a block. Here, s = 81, b = gS = 4, and N = 324.
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Block 1: using generator (2,1,1,0)

(0000, 2110) (0100, 2210) (0200, 2010) (1000, 0110) (1100, 0210) (1200, 0010) (2000, 1110) (2100, 1210) (2200, 1010)

(0001, 2111) (0101, 2211) (0201, 2011) (1001, 0111) (1101, 0211) (1201, 0011) (2001, 1111) (2101, 1211) (2201, 1011)

(0002, 2112) (0102, 2212) (0202, 2012) (1002, 0112) (1102, 0212) (1202, 0012) (2002, 1112) (2102, 1212) (2202, 1012)

(0010, 2120) (0110, 2220) (0210, 2020) (1010, 0120) (1110, 0220) (1210, 0020) (2010, 1120) (2110, 1220) (2210, 1020)

(0011, 2121) (0111, 2221) (0211, 2021) (1011, 0121) (1111, 0221) (1211, 0021) (2011, 1121) (2111, 1221) (2211, 1021)

(0012, 2122) (0112, 2222) (0212, 2022) (1012, 0122) (1112, 0222) (1212, 0022) (2012, 1122) (2112, 1222) (2212, 1022)

(0020, 2100) (0120, 2200) (0220, 2000) (1020, 0100) (1120, 0200) (1220, 0000) (2020, 1100) (2120, 1200) (2220, 1000)

(0021, 2101) (0121, 2201) (0221, 2001) (1021, 0101) (1121, 0201) (1221, 0001) (2021, 1101) (2121, 1201) (2221, 1001)

(0022, 2102) (0122, 2202) (0222, 2002) (1022, 0102) (1122, 0202) (1222, 0002) (2022, 1102) (2122, 1202) (2222, 1002)

Block 2: using generator (1,1,0,2)

(0000, 1102) (0100, 1202) (0200, 1002) (1000, 2102) (1100, 2202) (1200, 2002) (2000, 0102) (2100, 0202) (2200, 0002)

(0001, 1100) (0101, 1200) (0201, 1000) (1001, 2100) (1101, 2200) (1201, 2000) (2001, 0100) (2101, 0200) (2201, 0000)

(0002, 1101) (0102, 1201) (0202, 1001) (1002, 2101) (1102, 2201) (1202, 2001) (2002, 0101) (2102, 0201) (2202, 0001)

(0010, 1112) (0110, 1212) (0210, 1012) (1010, 2112) (1110, 2212) (1210, 2012) (2010, 0112) (2110, 0212) (2210, 0012)

(0011, 1110) (0111, 1210) (0211, 1010) (1011, 2110) (1111, 2210) (1211, 2010) (2011, 0110) (2111, 0210) (2211, 0010)

(0012, 1111) (0112, 1211) (0212, 1011) (1012, 2111) (1112, 2211) (1212, 2011) (2012, 0111) (2112, 0211) (2212, 0011)

(0020, 1122) (0120, 1222) (0220, 1022) (1020, 2122) (1120, 2222) (1220, 2022) (2020, 0122) (2120, 0222) (2220, 0022)

(0021, 1120) (0121, 1220) (0221, 1020) (1021, 2120) (1121, 2220) (1221, 2020) (2021, 0120) (2121, 0220) (2221, 0020)

(0022, 1121) (0122, 1221) (0222, 1021) (1022, 2121) (1122, 2221) (1222, 2021) (2022, 0121) (2122, 0221) (2222, 0021)

Block 3: using generator (1,0,1,1)

(0000, 1011) (0100, 1111) (0200, 1211) (1000, 2011) (1100, 2111) (1200, 2211) (2000, 0011) (2100, 0111) (2200, 0211)

(0001, 1012) (0101, 1112) (0201, 1212) (1001, 2012) (1101, 2112) (1201, 2212) (2001, 0012) (2101, 0112) (2201, 0212)

(0002, 1010) (0102, 1110) (0202, 1210) (1002, 2010) (1102, 2110) (1202, 2210) (2002, 0010) (2102, 0110) (2202, 0210)

(0010, 1021) (0110, 1121) (0210, 1221) (1010, 2021) (1110, 2121) (1210, 2221) (2010, 0021) (2110, 0121) (2210, 0221)

(0011, 1022) (0111, 1122) (0211, 1222) (1011, 2022) (1111, 2122) (1211, 2222) (2011, 0022) (2111, 0122) (2211, 0222)

(0012, 1020) (0112, 1120) (0212, 1220) (1012, 2020) (1112, 2120) (1212, 2220) (2012, 0020) (2112, 0120) (2212, 0220)

(0020, 1001) (0120, 1101) (0220, 1201) (1020, 2001) (1120, 2101) (1220, 2201) (2020, 0001) (2120, 0101) (2220, 0201)

(0021, 1002) (0121, 1102) (0221, 1202) (1021, 2002) (1121, 2102) (1221, 2202) (2021, 0002) (2121, 0102) (2221, 0202)

(0022, 1000) (0122, 1100) (0222, 1200) (1022, 2000) (1122, 2100) (1222, 2200) (2022, 0000) (2122, 0100) (2222, 0200)

Block 4: using generator (0,1,2,1)

(0000, 0121) (0100, 0221) (0200, 0021) (1000, 1121) (1100, 1221) (1200, 1021) (2000, 2121) (2100, 2221) (2200, 2021)

(0001, 0122) (0101, 0222) (0201, 0022) (1001, 1122) (1101, 1222) (1201, 1022) (2001, 2122) (2101, 2222) (2201, 2022)

(0002, 0120) (0102, 0220) (0202, 0020) (1002, 1120) (1102, 1220) (1202, 1020) (2002, 2120) (2102, 2220) (2202, 2020)

(0010, 0101) (0110, 0201) (0210, 0001) (1010, 1101) (1110, 1201) (1210, 1001) (2010, 2101) (2110, 2201) (2210, 2001)

(0011, 0102) (0111, 0202) (0211, 0002) (1011, 1102) (1111, 1202) (1211, 1002) (2011, 2102) (2111, 2202) (2211, 2002)

(0012, 0100) (0112, 0200) (0212, 0000) (1012, 1100) (1112, 1200) (1212, 1000) (2012, 2100) (2112, 2200) (2212, 2000)

(0020, 0111) (0120, 0211) (0220, 0011) (1020, 1111) (1120, 1211) (1220, 1011) (2020, 2111) (2120, 2211) (2220, 2011)

(0021, 0112) (0121, 0212) (0221, 0012) (1021, 1112) (1121, 1212) (1221, 1012) (2021, 2112) (2121, 2212) (2221, 2012)

(0022, 0110) (0122, 0210) (0222, 0010) (1022, 1110) (1122, 1210) (1222, 1010) (2022, 2110) (2122, 2210) (2222, 2010)
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Chapter 7

Optimal two-level choice designs for

estimating main and specified

two-factor interaction effects

This chapter is based on the following work:

Chai et al. (2018): Chai, Feng-Shun; Das, Ashish; Singh, Rakhi. Optimal two-level choice

designs for estimating main and specified two-factor interaction effects. J. Stat. Theory

Pract. 12 (2018), no. 1, 82–92.

7.1 Introduction

In this chapter, a choice experiment consists of N choice sets with each set containing m

options with no repeated options in a choice set. Each option in a choice set is described

by k two-level factors.

We denote αth choice set by Tα = (Tα1, Tα2, . . . , Tαm), where Tαi is the ith option

in the αth choice set, α = 1, 2, . . . , N and i = 1, 2, . . . ,m. Since an option in the choice

set is a representation of k factors, Tαi can be written as (i1i2 · · · in)α where iq represents

the level of the qth factor fq in the ith option. The collection of all such choice sets Tα,

α = 1, 2, . . . , N is a choice design, say d, with parameters N , k and m.

For the purpose of deriving optimal designs, it is often assumed that θ = 0. This

indifference or the utility-neutral assumption means that the m options in a choice set are

equally attractive. Großmann and Schwabe (2015) showed that for a choice design with
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choice set size m, the average information matrix, under the utility-neutral multinomial

logit model, using Huber and Zwerina (1996) approach, is

C =
4

Nm2

∑
1≤i<j≤m

Cij (7.1)

where Cij = (Pi−Pj)′(Pi−Pj) is the average information matrix corresponding to options

i and j and Pi = (p′1i | · · · | p′Ni)′ is the N × p effects-coded matrix for the ith option,

i = 1, . . . ,m. This also means that the contribution of the choice set Tα to the information

matrix is equal to 4/(Nm2) times the sum of the individual contributions of them(m−1)/2

different component pairs (Tαi, Tαj), 1 ≤ i < j ≤ m, that Tα contains. In next chapter

(Das and Singh, 2016), we have shown that the approach of Huber and Zwerina (1996) and

that of Street and Burgess (2007) are equivalent. Therefore, in this chapter, we restrict

ourselves to the Huber and Zwerina (1996) approach for utility-neutral multinomial logit

model.

Most of the work on optimal designs for choice experiments under the utility-neutral

multinomial logit model is based on an a priori assumption that either only the main

effects of the factors or the main effects and all two-factor interaction effects are to be

estimated. However, in practice, there are situations where interest lies in the estimation

of main plus some two-factor interaction effects. For example, interest on such specified

two-factor interaction effects arise in situations when one or each of the two factor(s)

like price and/or brand of a product interact individually with the other factors of the

product. In the traditional factorial design setup, the issue of estimability and optimality

in situations of this kind has been addressed by Hedayat and Pesotan (1992), Wu and

Chen (1992), Hedayat and Pesotan (1997), Chiu and John (1998), Dey and Mukerjee

(1999) and Dey and Suen (2002).

Street and Burgess (2012) and Großmann and Schwabe (2015) observed that there

are no general results on the optimal choice designs for estimating main plus some two-

factor interaction effects, though Street and Burgess (2007) highlighted the problem giving

few examples.

For h = 1, . . . , k, let Fh represent the main effects corresponding to the factor fh, and

for h = k+(q−1)(2k−q)/2+q′−q = q(2k−q−1)/2+q′, 1 6 q < q′ 6 k, Fh represent the

two-factor interaction effects corresponding to the factors fq and fq′ . Note that for the

two-factor interaction effects Fh corresponding to the factors fq and fq′ , 1 ≤ q < q′ ≤ k,
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the value of h ranges from k + 1 to k + k(k − 1)/2. We consider a model that includes

main and all two-factor interaction effects with our interest lying in the estimation of

the main effects and a specified set of two-factor interaction effects where either one or

each of the two factor(s) interact individually with the remaining factors. Without loss of

generality, we consider the model classM1 where the factor f1 interacts with each of the

remaining k − 1 factors and thus our interest lies in the k main effects Fh, h = 1, . . . , k

and k− 1 = t1 (say) specified two-factor interaction effects Fh, h = k+ 1, . . . , 2k− 1, that

is, the two-factor interactions between factor f1 and each of f2, f3, . . . , fk. Similarly, we

consider the model classM2 where each of the factors f1 and f2 interact with each of the

remaining k − 2 factors and thus our interest lies in the k main effects Fh, h = 1, . . . , k

and 2k − 4 = t2 (say) specified two-factor interaction effects Fh, h = k + 2, . . . , 3k − 2,

that is, the two-factor interactions between factor f1 and each of f3, f4, . . . , fk and that

between f2 and each of f3, f4, . . . , fk. Let S denote the indices of main effects and all

two-factor interaction effects, that is, S = {1, . . . , k, k + 1, . . . , k + k(k − 1)/2} and let

Ss denote the set of indices of the main effects and two-factor interaction effects under

model class Ms. Clearly, Ss ⊂ S. Also, cardinality of the model parameters in M1 is

|S1| = k + t1 = 2k − 1 and that in M2 is |S2| = k + t2 = 3k − 4.

As noted in Großmann and Schwabe (2015), choice sets of size m = 2, 3, or 4 are more

useful in applications since for m ≥ 5, the increased information processing requirements

affect the quality of the responses. In this chapter, we construct universally optimal choice

designs for estimating main effects and the specified set of two-factor interaction effects

when m = 3 and m = 4, under the assumption that all three or higher order interaction

effects are absent.

7.2 The information matrix

For ith option, we partition the p parameters into the k main effects and k(k − 1)/2

two-factor interaction effects such that Pi = (PMi | PIi). The effects coding is used as in

Großmann and Schwabe (2015). Furthermore, for any two options i < j, we define Xij =

PMi − PMj and Yij = PIi − PIj. Then, from (7.1), the information matrix corresponding

to options i and j, for estimating the main plus two-factor interaction effects, is
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Cij =

[
X ′ijXij X ′ijYij

Y ′ijXij Y ′ijYij

]
. (7.2)

Since, for s = 1, 2, under the model class Ms our interest lies in the k main effects

Fh, h = 1, . . . , k and the ts specified two-factor interaction effects, let Yij be further

partitioned such that Yij = (Ys(1)ij Ys(2)ij), where Ys(1)ij is a N × ts matrix corresponding

to the selected two-factor interaction effects and Ys(2)ij is a N × k(k− 1)/2− ts matrix of

the remaining two-factor interaction effects. Denoting summations over 1 ≤ i < j ≤ m

by Σ, let X ′X = ΣX ′ijXij, X
′Ys(v) = ΣX ′ijYs(v)ij, and Y ′s(u)Ys(v) = ΣY ′s(u)ijYs(v)ij; u = 1, 2,

v = 1, 2. Then, using (7.1) and (7.2), the information matrix for estimating the main plus

two-factor interaction effects is,

C =
4

Nm2


X ′X X ′Ys(1) X ′Ys(2)

Y ′s(1)X Y ′s(1)Ys(1) Y ′s(1)Ys(2)

Y ′s(2)X Y ′s(2)Ys(1) Y ′s(2)Ys(2)

 . (7.3)

Using (7.3), the information matrix for estimating the main effects and the specified

two-factor interaction effects under model class Ms is C̃s where

Nm2

4
C̃s =

(
X ′X X ′Ys(1)

Y ′s(1)X Y ′s(1)Ys(1)

)
−

(
X ′Ys(2)

Y ′s(1)Ys(2)

)
(Y ′s(2)Ys(2))

−(Y ′s(2)X Y ′s(2)Ys(1)). (7.4)

A choice design for estimating the main effects and the specified two-factor interac-

tions under the model Ms is said to be connected if rank(C̃s) = k + ts. In what follows,

under the modelMs, the class of all connected choice designs involving k two-level factors

and N choice sets each of size m is denoted by D(s)
N,k,m.

For Fh, h = 1, . . . , k, we define the hth positional value for the option Tαi as ih. Also,

corresponding to the two-factor interactions involving fq and fq′ , that is, for Fh, h = k +

1, . . . , k+k(k−1)/2, the hth positional value for the option Tαi is defined as iq+iq′ (mod 2)

(= i∗h, say).

For the option Tαi, the hth and `th positional value is (ihi`)h` when both the hth and

`th indices correspond to the main effects, that is, h 6= `, h ∈ {1, . . . , n}, ` ∈ {1, . . . , n}.

For the option Tαi, the hth and `th positional value is (ihi
∗
`)h` when hth index corresponds

to the main effect and `th index corresponds to the two-factor interactions, that is, h ∈

{1, . . . , n}, ` ∈ {k + 1, . . . , k + k(k − 1)/2}. Similarly, for the option Tαi, the hth and `th

positional value is (i∗hi
∗
`)h` when hth and `th indices both correspond to the two-factor

interactions, that is, h 6= `, h ∈ {k+1, . . . , k+k(k−1)/2}, ` ∈ {k+1, . . . , k+k(k−1)/2}.
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Also, for the component pair (Tαi, Tαj), the hth and `th positional value for the above

three cases respectively are (ihi`, jhj`)h`; (ihi
∗
` , jhj

∗
` )h`; and (i∗hi

∗
` , j
∗
hj
∗
` )h`.

For Fh and F`, h 6= `, let N+
h` and N−h` be the total number of component pairs of the

positional value type (00, 11)h` and (01, 10)h` respectively, across all m(m− 1)/2 possible

pairs of a choice set of size m and among all such N sets in the choice design.

Theorem 7.1. The off-diagonal elements of C̃ are zero if N+
h` = N−h`, for h 6= `, h ∈

{1, . . . , k + k(k − 1)/2}, ` ∈ {1, . . . , k + k(k − 1)/2}.

Proof. It is easy to see that for h, ` ∈ S, the exhaustive cases leading to possible values

of the (h, `)th entries of X ′ijXij, X
′
ijYij, Y

′
ijYij for its associated component pairs (Tαi, Tαj),

are

(i) Case 1: For h 6= `, h ∈ {1, . . . , n}, ` ∈ {1, . . . , n} , (h, `)th entry corresponding to

αth choice set in X ′ijXij is −4 if (ihi`, jhj`)h` ≡ (01, 10)h`, is 4 if (ihi`, jhj`)h` ≡ (00, 11)h`

and is 0 otherwise.

(ii) Case 2: For h ∈ {1, . . . , n}, ` ∈ {k + 1, . . . , k + k(k − 1)/2}, (h, `)th entry

corresponding to αth choice set in X ′ijYij is 4 if (ihi
∗
` , jhj

∗
` )h` ≡ (01, 10)h`, is −4 if

(ihi
∗
` , ihj

∗
` )h` ≡ (00, 11)h` and is 0 otherwise.

(iii) Case 3: For h 6= `, h ∈ {k+ 1, . . . , k+ k(k− 1)/2} and ` ∈ {k+ 1, . . . , k+ k(k−

1)/2}, (h, `)th entry corresponding to αth choice set in Y ′ijYij is −4 if (i∗hi
∗
` , j
∗
hj
∗
` )h` ≡

(01, 10)h`, is 4 if (i∗hi
∗
` , j
∗
hj
∗
` )h` ≡ (00, 11)h` and is 0 otherwise.

Applying the above three cases, proof follows from (7.4) and the definition of N+
h`

and N−h`.

As a particular case of Theorem 7.1, we have the following.

Corollary 7.2. The off-diagonal elements of C̃s, s = 1, 2 are zero if,

(i) N+
h` = N−h`, for h 6= `, h ∈ Ss, ` ∈ Ss, and

(ii) N+
h` = N−h`, for h ∈ Ss and ` ∈ S − Ss.

In a choice set Tα, let nhα ∈ {0, 1, 2, . . . ,m} represents the number of options such

that the hth positional value is 0. The following Theorem gives upper bound to trace(C̃s).

Theorem 7.3. For a choice design d with N choice sets of size m, under model Ms, an

upper bound of trace(C̃s) is

trace(C̃s) 6

{
4(k + ts) for m even

4(k + ts)(m
2 − 1)/m2 for m odd

,
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with equality attaining when the following two conditions are satisfied:

(i) nhα = m/2 for m even and nhα = (m− 1)/2 or (m+ 1)/2 for m odd for every h ∈ Ss
and for every choice set Tα and

(ii) N+
h` = N−h`, for h ∈ Ss, ` ∈ S − Ss.

Proof. Note that from (7.4), trace(C̃s) 6 (4/Nm2){trace(X ′X)+ trace(Y ′s(1)Ys(1))} since

the matrix (Y ′s(2)X Y ′s(2)Ys(1))(Y
′
s(2)Ys(2))

−(Y ′s(2)X Y ′s(2)Ys(1))
′ is non-negative definite.

Now we find the maximum possible trace of X ′X and Y ′s(1)Ys(1).

For h ∈ {1, . . . , n}, hth diagonal entry in X ′ijXij is 4 if ih − jh = ±1 and is 0

otherwise. For h ∈ {k + 1, . . . , k + k(k − 1)/2}, hth diagonal entry in Y ′ijYij is 4 if

i∗h− j∗h = ±1 and is 0 otherwise. This implies that the value of hth diagonal entry of X ′X

and Y ′s(1)Ys(1) is non-zero when hth factor differs among two options and this happens

nhα(m − nhα) times. Therefore, every choice set Tα adds a value 4nhα(m − nhα) to the

hth diagonal entry of X ′X and Y ′s(1)Ys(1). Clearly, 4nhα(m − nhα) is maximum when

nhα = m/2 for m even, and nhα = (m− 1)/2 or (m+ 1)/2 for m odd. By simple addition

of (1/m2N) max(4nhα(m− nhα)) over all choice sets α = 1, . . . , N , we get

trace(X ′X/m2N) 6

{
n for m even

n(m2 − 1)/m2 for m odd

and

trace(Y ′s(1)Ys(1)/m
2N) 6

{
ts for m even

ts(m
2 − 1)/m2 for m odd

.

Remark 7.4. For m = 2, it is noted that the upper bound of trace(C̃s), as in Theorem 7.3,

is not achievable. However, for m = 3, 4 it is achievable. For given N and k, with respect

to choice designs with maximum trace(C̃s), (i) all designs with m even are equivalent and

(ii) a design with m odd is always inferior to a design with m even.

7.3 Construction of universally optimal designs

The criteria of universal optimality was introduced by Kiefer (1975b) and is a strong family

of optimality criteria which includes A−, D−, and E− criteria as particular cases. Kiefer

(1975b) also obtained the following sufficient condition for universal optimality. Suppose
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d∗ ∈ D and C̃d∗ satisfies (i) C̃d∗ is scalar multiple of Ip and, (ii) trace(C̃d∗) = maxd∈D

trace(C̃d). Then d∗ is universally optimal in D.

We first provide a simple method for constructing universally optimal two-level choice

designs with choice set size m = 3 and m = 4 under the model class M1.

Theorem 7.5. Let k = 4t − j, where t is a positive integer and j = 0, 1, 2, 3. Also,

given a Hadamard matrix H of order 4t in normal form, let H1 be the Hadamard matrix

derived from H by multiplying the first column of H by −1. Let Z1 = H,Z2 = −H,Z3 =

H1, Z4 = −H1. For w = 1, 2, 3, 4, let Aw be respective matrices obtained by replacing

every entry i (i = 1,−1) of Zw by (1 + i)/2, and then deleting rightmost j columns

from Zw, where j = 4t − k, j ∈ {0, 1, 2, 3}. Consider rows of Aw as options. Then,

d
(1)
1 = (A1, A2, A3, A4) and d

(1)
2 =

[
(A1, A2, A3)

(A1, A2, A4)

]
are universally optimal two-

level choice design in D(1)
4t,k,4 and in D(1)

8t,k,3, respectively.

Proof. To prove that d
(1)
1 and d

(1)
2 are universally optimal choice designs, we show that

the information matrix C̃1 for the designs d
(1)
1 and d

(1)
2 are of the form βIk for some scalar

β and that d
(1)
1 and d

(1)
2 maximizes trace(C̃1) in the respective classes of designs D(1).

First we show that for every h 6= `, h ∈ S, ` ∈ S, the (h, `)th element of the C̃1 is

zero. Note that the design d
(1)
1 consists of the component pair designs {(Aδ, Aδ′), 1 6 δ <

δ′ 6 4}. Denoting the component pair designs of d
(1)
1 by d

(1)
1(δδ′), 1 6 δ < δ′ 6 4, we now

calculate N+
h` and N−h` for the design d

(1)
1 . Since H is a Hadamard matrix of order 4t,

for all h 6= `, h ∈ S, ` ∈ S, the combinations from the set {(00)h`, (11)h`} and from the

set {(10)h`, (01)h`} occur equally often for each of the component pair designs (A1, A2),

(A1, A3), (A2, A4), (A3, A4), i.e., N+
(δδ′)h` = N−(δδ′)h` = 0 or 2t for (δ, δ′) = (1, 2), (1, 3),

(2, 4), (3, 4), where N+
(δδ′)h` is the total number of pairs of the type (00, 11)h` corresponding

to hth and `th positional values in d
(1)
1(δδ′), and N−(δδ′)h` is the total number of pairs of the

type (01, 10)h` corresponding to hth and `th positional values in d
(1)
1(δδ′). Furthermore, for

(δ, δ′) = (1, 4), (2, 3), the respective component pair designs (A1, A4) and (A2, A3) have

N+
(δδ′)h` = N−(δδ′)h` = 0 or 2t for all h 6= `, h ∈ S and ` ∈ S, except (h, k) = (h, k + h− 1),

h = 2, 3, . . . , k, i.e., (h, `) corresponding to the main effects involving fh and the two-factor

interaction effects involving f1 and fh, h = 2, . . . , k. For such (h, `)’s, N+
(14)h` = N−(23)h` =

4t, and N−(14)h` = N+
(23)h` = 0. Therefore, using the result of Corollary 7.2 it follows that

C̃1 for the design d
(1)
1 has off-diagonal elements zero. The design d

(1)
1 also ensures that
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nhα = 2, for h ∈ S1 and for every choice set. Therefore using Theorem 7.3, it follows that

each of the diagonal elements of C̃1 equals 4 and trace(C̃1) is maximum for the design

d
(1)
1 . Thus d

(1)
1 is universally optimal in D(1)

4t,k,4.

To establish that the design d
(1)
2 is universally optimal in D(1)

8t,k,3, one can see that the

component pairs of the design are similar to the ones corresponding to d
(1)
1 and thus

C̃1 for the design d
(1)
2 has off-diagonal elements zero. Regarding the diagonal elements

of the C̃1, the design d
(1)
2 ensures that nhα = 1 or 2, for h ∈ S1 and for every choice

set. Therefore, from Theorem 7.3, each of the diagonal elements of C̃1 equals 32/9 and

trace(C̃1) is maximum for d
(1)
2 . Thus, the design d

(1)
2 is universally optimal in D(1)

8t,k,3.

Remark 7.6. As an alternative to d
(1)
2 , if situation demands, one may consider a choice

design d
(1)
2′ =

[
(A1, A2, A3)

(A∗1, A∗2, A∗4)

]
with distinct options, which is also universally optimal

in D(1)
8t,k,3. Here, for w = 1, 2, 4, A∗w is obtained from Aw by adding 1 to the elements of

the 2nd column of Aw, reduced mod 2.

We now provide a simple method for constructing universally optimal two-level choice

designs with choice set size m = 3 and m = 4 under the model class M2.

Theorem 7.7. Let k = 4t− j, where t is a positive integer and j = 0, 1, 2, 3. Also, given

a Hadamard matrix H of order 4t in normal form, let H1 be the Hadamard matrix derived

from H by multiplying the first column of H by −1. Let Z1 = (H ′ H ′1)′ = (Z1a Z1b), where

Z1a is of order 8t× 2 and Z1b is of order 8t× (4t− 2). Define Z2 = −Z1, Z3 = (−Z1a Z1b)

and Z4 = −Z3. For w = 1, 2, 3, 4, let Aw be respective matrices obtained by replacing

every entry i (i = 1,−1) of Zw by (1 + i)/2, and then deleting rightmost j columns

from Zw, where j = 4t − k, j ∈ {0, 1, 2, 3}. Consider rows of Aw as options. Then,

d
(2)
1 = (A1, A2, A3, A4) and d

(2)
2 =

[
(A1, A2, A3)

(A1, A2, A4)

]
are universally optimal two-

level choice design in D(2)
8t,k,4 and in D(2)

16t,k,3, respectively.

Proof. On lines similar to the proof of Theorem 7.5, we first note that the design d
(2)
1

consists of the component pair designs {(Aδ, Aδ′), 1 6 δ < δ′ 6 4}. Denoting the compo-

nent pair designs of d
(2)
1 by d

(2)
1(δδ′), 1 6 δ < δ′ 6 4, we now calculate N+

h` and N−h` for the

design d
(2)
1 . It is easy to see that for all h 6= `, h ∈ S, ` ∈ S, the combinations from the set

{(00)h`, (11)h`} and from the set {(10)h`, (01)h`} occur equally often for each of the com-

ponent pair designs (A1, A2), (A1, A3), (A2, A4), (A3, A4), i.e., N+
(δδ′)h` = N−(δδ′)h` = 0 or 4t
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for (δ, δ′) = (1, 2), (1, 3), (2, 4), (3, 4). Furthermore, as in the proof of Theorem 7.5, for

(δ, δ′) = (1, 4), (2, 3), the respective component pair designs (A1, A4) and (A2, A3) have

N+
(14)h` = N−(23)h` and N−(14)h` = N+

(23)h`. Therefore, using the result of Corollary 7.2, it

follows that C̃2 for the design d
(2)
1 has off-diagonal elements zero. The design d

(2)
1 also

ensures that nhα = 2, for h ∈ S2 and for every choice set. Therefore using Theorem 7.3,

it follows that each of the diagonal elements of C̃2 equals 4 and trace(C̃2) is maximum

for the design d
(2)
1 . Thus d

(2)
1 is universally optimal in D(2)

8t,k,4.

To establish that the design d
(2)
2 is universally optimal in D(2)

16t,k,3, one can see that the

component pairs of the design are similar to the ones corresponding to d
(2)
1 and thus C̃2 for

the design d
(2)
2 has off-diagonal elements zero. Regarding the diagonal elements of the C̃2,

the design d
(2)
2 ensures that nhα = 1 or 2, for h ∈ S2 and for every choice set. Therefore,

from Theorem 7.3, each of the diagonal elements of C̃2 equals 32/9 and trace(C̃2) is

maximum for d
(2)
2 . Thus, the design d

(2)
2 is universally optimal in D(2)

16t,k,3.

Example 7.8. Consider a 28−j choice experiment (j = 0, 1, 2, 3) conducted through 8

choice sets of size 4 each. The 28 (j = 0) choice design d
(1)
1 , is universally optimal in

D(1)
8,8,4.

d
(1)
1 =

(00000000, 11111111, 10000000, 01111111)

(01010101, 10101010, 11010101, 00101010)

(00110011, 11001100, 10110011, 01001100)

(01100110, 10011001, 11100110, 00011001)

(00001111, 11110000, 10001111, 01110000)

(01011010, 10100101, 11011010, 00100101)

(00111100, 11000011, 10111100, 01000011)

(01101001, 10010110, 11101001, 00010110)

.

Deleting the last j factors we get the corresponding universally optimal design in D(1)
8,8−j,4,

j = 1, 2, 3.

Now consider the design d
(1)
2 .

d
(1)
2 =

(00000000, 11111111, 10000000) (01101001, 10010110, 11101001)

(01010101, 10101010, 11010101) (00000000, 11111111, 01111111)

(00110011, 11001100, 10110011) (01010101, 10101010, 00101010)

(01100110, 10011001, 11100110) (00110011, 11001100, 01001100)

(00001111, 11110000, 10001111) (01100110, 10011001, 00011001)

(01011010, 10100101, 11011010) (00001111, 11110000, 01110000)

(00111100, 11000011, 10111100) (01011010, 10100101, 00100101)

(00111100, 11000011, 01000011) (01101001, 10010110, 00010110)

.
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Deleting the last j factors (j = 0, 1, 2, 3) of the design d
(1)
2 we get the corresponding

universally optimal design in D(1)
16,8−j,3, j = 0, 1, 2, 3.

Similarly, the design d
(2)
1 is universally optimal in D(2)

16,8−j,4 when deleting the last j factors,

j = 0, 1, 2, 3.

d
(2)
1 =

(00000000, 11111111, 11000000, 00111111) (10000000, 01111111, 01000000, 10111111)

(01010101, 10101010, 10010101, 01101010) (11010101, 00101010, 00010101, 11101010)

(00110011, 11001100, 11110011, 00001100) (10110011, 01001100, 01110011, 10001100)

(01100110, 10011001, 10100110, 00011001) (11100110, 00011001, 00100110, 10011001)

(00001111, 11110000, 11001111, 00110000) (10001111, 01110000, 01001111, 10110000)

(01011010, 10100101, 10011010, 01100101) (11011010, 00100101, 00011010, 11100101)

(00111100, 11000011, 11111100, 00000011) (10111100, 01000011, 01111100, 10000011)

(01101001, 10010110, 10101001, 01010110) (11101001, 00010110, 00101001, 11010110)

.

7.4 Concluding Remarks

In this chapter, we have obtained optimal two-level choice designs for estimating main

effects and specified two-factor interaction effects in the model class Ms, s = 1, 2. As

discussed earlier, practical situations arise where factors like f1 = “price” and/or f2 =

“brand” interact with the other important factors. Apart from all the main effects, these

factors interacting with the other factors are of significance, while studying the other

interactions are of less consequence in preliminary studies. As indicated earlier, there

are no general results on the optimal choice designs for estimating main plus specified

two-factor interaction effects in the choice design literature, though Street and Burgess

(2007) highlighted the problem giving few examples.

One could argue that the optimal designs available for estimating main effects and

all two-factor interactions could be used for our specific problem because of a lack of

theoretical results. However, when one increases the parameters of interest (especially

2-factor interactions), theoretically obtained optimal designs usually have large number

of choice sets.

As an illustration, an optimal design for 25 in 16 choice sets of size m = 3 can be

obtained for estimating main effects fq, q = 1, . . . , 5 and two-factor interactions f1fq′ ,

q′ = 2, . . . , 5 (i.e., under the model classM1). However, if the remaining 10− 4 = 6 two-

factor interactions are to be additionally estimated optimally, a D-optimal choice design

with m = 2, suggested by Street and Burgess (2007), is available in 320 choice sets. They
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also suggest a design with m = 2 in 48 choice sets which is 91% efficient. Similarly, a

D-optimal design for 25 choice experiment with m = 3 has been obtained by Burgess and

Street (2003) in 1440 choice sets.

As another example, for k = 4,m = 3, a D-optimal design available in the literature

requires 160 choice sets, while a 96.7% efficient design is available in 32 choice sets (see,

Burgess and Street (2003)). However, our design for estimating main and specified two-

factor interaction effects can be constructed in 8 choice sets.

Under our model, we have provided theoretical results characterizing optimal designs

for any m. However, we provide optimal design constructions for more practical values

of m, i.e., m = 3 and m = 4. Though Remark 7.4 guided us to not consider the case

m = 2, nevertheless, the case for m = 2 still remains a relevant open problem unless one

uses large designs that are optimal for estimating main and all two-factor interactions as

obtained by Street and Burgess (2007).

As a way forward one can possibly extend this work for factors with asymmetric

levels. One could also consider other sets of specified two-factor interaction effects as

indicated in Dey and Suen (2002).
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Chapter 8

A unified approach to discrete choice

experiments

This chapter is based on the following work:

Das and Singh (2016): Das, Ashish; Singh, Rakhi. A unified approach to discrete choice

experiments. Ongoing.

8.1 Introduction

As stated before, the primary objective of a discrete choice experiment is to study the

impact of k attributes of an option where the ith attribute has vi (≥ 2) levels labeled

0, . . . , vi − 1; i = 1, . . . , k. With the options being described by the levels of the at-

tributes, each option is a k-tuple and there are a total of L =
∏k

i=1 vi possible op-

tions. Let the L lexicographically arranged options be denoted by t1, t2, . . . , tL where,

tw = (w1w2 · · ·wk), wi = 0, 1, . . . , vi − 1; i = 1, 2, . . . , k. Here, w denotes the lexicographic

number of the option tw and is given by w = w1

∏k
i=2 vi+w2

∏k
i=3 vi+· · ·+wk−1vk+wk+1.

A choice design is a collection of choice sets employed in a choice experiment.

Discrete choice experiments have been discussed primarily under the multinomial

logit model (MNL model) setup. Street and Burgess (2007) have derived the information

matrix to study choice experiments under the MNL model. Independently, Huber and

Zwerina (1996) have also derived the information matrix under the same model. We refer

to the two approaches as SB approach and HZ approach. The information matrices under

the two approaches look superficially different and moreover, the attributes are also coded
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differently, even though we have considered the average information matrix in both the

SB and the HZ approach.

One of the many objectives of a choice experiment is to optimally or efficiently

estimate the parameters of interest which essentially consists of either only the main

effects or the main plus two-factor interaction effects of the k attributes. D-optimal

designs have been obtained theoretically under the utility-neutral setup, for example, see

Graßhoff et al. (2004), Street and Burgess (2007), Demirkale et al. (2013), and Singh

et al. (2015). Additionally, Sun and Dean (2016), Sun and Dean (2017), and Chai et al.

(2017) have obtained A-optimal choice designs. For such optimal designs, researchers

either used the information matrix following the HZ approach under effects coding, or

used the information matrix following the SB approach under orthonormal coding.

The author-groups SB and HZ have used seemingly different information matrices

under the MNL model. There have also been some confusion regarding the inference

parameters expressed as linear functions of the utility parameter vector τ . We theoreti-

cally establish a unified approach to discrete choice experiments and introduce the general

inference problem in terms of a simple linear function of τ ; say Mτ .

After introducing the SB and HZ approaches in Section 8.2, we show their equivalence

in Section 8.3. In Section 8.4, the inference problem under different codings is expressed

in simple terms as a function of τ . In Section 8.5, with respect to the A-criterion, we

discuss how different codings may be interpreted. We also propose a related coding which

is appropriate for test-control discrete choice experiments wherein some new test levels

of an attribute are compared with an existing control level. Finally, in Section 8.6 we

summarize the results along with a short discussion.

8.2 The SB and HZ approaches

We now discuss the two approaches, SB and HZ, which have generally been used in the

theory of choice experiments.

In a choice design, we denote the nth choice set by Tn = (t(n1), t(n2), . . . , t(nm)), where

t(nj) is the jth option in the nth choice set, n = 1, . . . , N , j = 1, . . . ,m. Each option

t(nj) = tw for some w ∈ {1, . . . , L}, where w, as mentioned before, is the lexicographic

number of the option. Corresponding to the jth option in the N choice sets, let Aj =
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(tT(1j) t
T
(2j) · · · tT(Nj))T be a N × k matrix representing the levels of the k attributes.

8.2.1 SB approach

Let Sn be the set of m lexicographic numbers w corresponding to Tn = (t(nj)), j =

1, . . . ,m. Thus, a respondent α assigns some utility Uwα to tw, w ∈ Sn, n = 1, . . . , N .

In a choice experiment, it is assumed that each respondent chooses the option having

maximum utility among the other options in a choice set. The respondent chooses tw in Tn

if Uwα > Uw′α, tw′ being the other options in Tn. The systematic component of the utility

that can be captured, is denoted by the utility parameter τwα and that Uwα = τwα + εwα.

If εwα is independently and identically Gumbel distributed, then the choice model is the

MNL model. In this chapter, as is generally the case in the literature, we assume that the

respondents are alike and this assumption allows us to drop the subscript α. Following

Street and Burgess (2007), the probability of choosing t(nj) (which is say, tw) from Tn is

then given by,

Pnj = Pw = P (Uw > Uw′ , for all w′ 6= w ∈ Sn) =
eτw∑

w′∈Sn e
τw′
.

Let I(Mτ) denote the Fisher information matrix for a linear function Mτ in the

MNL model with utility parameter vector τ = (τ1 · · · τL)T . Street and Burgess (2007),

using the approach of El-Helbawy and Bradley (1978), gives the Fisher information matrix

for estimating p parameters of interest BOτ (= βO, say), where BO is a p×L orthonormal

contrast matrix corresponding to the p parameters of interest. The Fisher information

matrix for BOτ , as obtained by them, is

I(BOτ) = BOΛBT
O, (8.1)

where Λ is the information matrix for τ . For a choice design with N choice sets each

containing m options, under the MNL model, the L × L information matrix for τ is

(Street and Burgess, 2007, p. 81) Λ = (Λ(r,r′)), where

Λ(r,r′) =


1
N

∑
n∈T r

eτr(
∑
l 6=r∈Sn e

τl)
(
∑
l∈Sn e

τl)
2 , r = r′, r = 1, . . . , L,

− 1
N

∑
n∈T rr′

eτr eτr′

(
∑
l∈Sn e

τl)
2 , r 6= r′, r, r′ = 1, . . . , L,

(8.2)

with T r being the subset of indices of choice sets containing tr, and T rr
′

being the subset

of indices of choice sets containing both tr and tr′ . Here, the set of indices of choice set
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is {1, . . . , N} and note that Λ(r,r′) = 0 when T rr
′

is an empty set and Λ(r,r) = 0 when T r

is an empty set. Under the utility-neutral MNL model assumption of all options being

equally attractive, Λ(r,r′) reduces to

m2NΛ(r,r′) =

{
−ar,r′ , r 6= r′,

(m− 1)ar, r = r′,
(8.3)

where ar is the number of times tr appears in the choice design and ar,r′ is the number of

times options tr and tr′ appear together in the design. In what follows, unless otherwise

stated, Λ will refer to Λ as in (8.2).

8.2.1.1 Coding under SB approach

The choice designs are studied by Street and Burgess (2007) under orthonormal coding.

The columns of the p × L matrix BO correspond to the orthonormal coding for the L

options arranged in lexicographic order. We are interested in estimating BOτ = βO under

this approach.

As an example, for main effects, the pM ×L matrix BO with pM =
∑k

i=1(vi − 1) is,

BO =


B

(1)
o ⊗ 1√

v2
1Tv2 ⊗ · · · ⊗

1√
vk

1Tvk
1√
v1

1Tv1 ⊗B
(2)
o ⊗ · · · ⊗ 1√

vk
1Tvk

...
1√
v1

1Tv1 ⊗
1√
v2

1Tv2 ⊗ · · · ⊗B
(k)
o

 (8.4)

where B
(i)
o is a (vi− 1)× vi matrix, the vi columns of which define an orthonormal coding

for the vi levels of the ith attribute, that is, B
(i)
o B

(i)T
o = Ivi−1 and B

(i)
o 1vi = 0. Here, 1s is

a s×1 vector of all ones, Is is an identity matrix of order s, and ⊗ denotes the Kronecker

product.

The subscript O in BO and βO implies the orthonormal coding.

8.2.2 HZ approach

In the marketing literature, under the MNL model, usually a different approach of Huber

and Zwerina (1996), following the seminal work of McFadden (1974), is followed. In this

approach, the utilities corresponding to t(nj) are modelled as Unj = hnjβH +εnj, where hnj

is a general coded row vector of order p characterizing t(nj) based on a general coding of the
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k attributes and βH is a column vector of order p representing the estimable parameters

of interest. Then, the probability of choosing the jth option from the nth choice set is

given by,

Pnj =
ehnjβH∑m
j′=1 e

hnj′βH
. (8.5)

The information matrix for βH , as given in Huber and Zwerina (1996), is

I(βH) =
1

N

N∑
n=1

m∑
j=1

(hnj −
m∑
j′=1

hnj′Pnj′)
TPnj(hnj −

m∑
j′=1

hnj′Pnj′). (8.6)

Also, under the utility-neutral MNL model (that is, taking βH = 0, or equivalently

by assuming Pnj = 1/m for all n and j), the information matrix reduces to the sum of

m(m− 1)/2 matrices corresponding to all possible pairs of options, that is,

I(βH) =
1

Nm2

m−1∑
j=1

m∑
j′=j+1

XT
H(jj′)XH(jj′). (8.7)

where XH(jj′) = Hj −Hj′ , is the N × p difference matrix for the jth and j′th options; the

N × p matrix Hj = (hT1j h
T
2j · · · hTNj)T corresponds to the Aj, j = 1, . . . ,m and is coded

with a general coding.

8.2.2.1 Coding under HZ approach: General coding

The derivation of the information matrix in McFadden (1974) and subsequently used by

Huber and Zwerina (1996) is based on a general coding. Rows of the matrix Hj consists

of general coded vectors hnj having a one-to-one correspondence with the choice sets t(nj).

Each of the L options can be coded according to the general coding. We now define

the p × L general coded matrix BH , columns of which correspond to the general coding

corresponding to the L options arranged in lexicographic order. Corresponding to Aj

involving t(nj), n = 1, . . . , N , the nth row of Hj is the wth column of BH , with w being

the lexicographic number of the option t(nj).

As an example, for main effects, the pM × L general coded matrix BH is

BH =


B

(1)
h ⊗ 1Tv2 ⊗ · · · ⊗ 1Tvk

1Tv1 ⊗B
(2)
h ⊗ · · · ⊗ 1Tvk

...

1Tv1 ⊗ 1Tv2 ⊗ · · · ⊗B
(k)
h

 , (8.8)
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where B
(i)
h is a (vi − 1) × vi matrix having full row rank, vi columns of which define a

general coding for the vi levels of the ith attribute. For an attribute, the vi columns of

B
(i)
h represent a general coding for the respective vi levels labeled 0, . . . , vi − 1.

In what follows, the subscript H in BH and βH implies the general coding.

8.2.2.2 Coding under HZ approach: Effects coding

The coding that is generally used in the marketing literature for describing attributes is

more formally known as effects coding (see, Großmann and Schwabe (2015)). Correspond-

ing to each option t(nj), we denote the effects coded vector by enj. For effects coding, we

also use BE and enj to denote BH and hnj respectively. The L columns in BE represent

the effects coding for the L lexicographically arranged options. This simply means that,

the wth column of BE is the effects coding for tw. Under effects coding, the information

matrix for the parameter of interest βE is

I(βE) =
1

N

N∑
n=1

m∑
j=1

(enj −
m∑
j′=1

enj′Pnj′)
TPnj(enj −

m∑
j′=1

enj′Pnj′), (8.9)

where enj is the effects coded vector corresponding to t(nj).

As an example, for main effects, the effects coding for level labeled l is represented

by a unit row vector of length vi − 1 with 1 in the (l + 1)th position for l = 0, . . . , vi − 2,

and the effects coding for level labeled vi − 1 is represented by −1Tvi−1, i = 1, . . . , k. For

example, the effects coded vectors for one factor at three levels l = 0, 1, 2 are (1 0), (0 1)

and (−1 − 1), respectively. Now for estimation of the main effects, BE is of the same

form BH given in (8.8) with B
(i)
h replaced by B

(i)
e . For obtaining B

(i)
e , effects coding

corresponding to level l is put as the (l + 1)th column of B
(i)
e . For example, for vi = 3,

B
(i)
e =

(
1 0 −1

0 1 −1

)
since the effects coded vectors for l = 0, 1, 2 are (1 0), (0 1) and

(−1 − 1), respectively.

In what follows, the subscript E in BE and βE implies the effect coding.

8.3 Equivalence of SB and HZ approaches

The mathematical derivations used while obtaining the information matrices under the SB

approach and under the HZ approach appears to be somewhat different. This difference in
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the mathematical derivations of the variance-covariance matrix has resulted in significant

confusion within the literature (see, for example Rose and Bliemer (2014)). The major

differences in the two approaches are: (a) the expressions for the information matrices

under the two approaches appear to be different, and (b) coding of levels in the two

approaches are different.

Under the utility-neutral effects coding setup, the similarity of the two approaches

for a D-optimal paired (m = 2) choice design was first addressed by Großmann and

Schwabe (2015) (pp. 793). We now show how for any general coded matrix BH and

under a general setup, the two seemingly different structures of the information matrices

are related. Below is the equivalence result, a proof of which is in the Appendix D.

Theorem 8.1. For a general coded matrix BH , the information matrix I(βH), un-

der the MNL model, satisfies I(βH) = 1
N

∑N
n=1

∑m
j=1(hnj −

∑m
j′=1 hnj′Pnj′)

TPnj(hnj −∑m
j′=1 hnj′Pnj′) = BHΛBT

H , where Λ and Pnj are as defined in (8.2) and (8.5), respec-

tively.

Theorem 8.1 shows that once the coded matrix BH is decided, the two expressions

of the information matrix, which appear different, are in fact the same. This also implies

that the two seemingly independent derivations result in the same information matrix.

In what follows, V ar(β̂H) represents the asymptotic covariance matrix of the maxi-

mum likelihood estimator of βH and is inverse of the information matrix I(βH). Similar

statement holds for βO and βE when BH = BO and BH = BE respectively. The following

are two special cases of Theorem 8.1.

Corollary 8.2. Under the MNL model,

(i) For orthonormally coded matrix BO, the information matrix I(βO) = BOΛBT
O =

I(BOτ). In other words, the variance V ar(β̂O) = (BOΛBT
O)−1 = V ar(BOτ̂).

(ii) For effects coded matrix BE, the information matrix I(βE) = BEΛBT
E. In other

words, the variance V ar(β̂E) = (BEΛBT
E)−1.

Proof. For orthonormal coding BO, Street-Burgess derived that I(BOτ) = BOΛBT
O.

Additionally, from Theorem 8.1, BOΛBT
O = I(βO). Therefore, for orthonormal coding,

Corollary 8.2(i) holds. It is easy to see that (ii) is just a special case of Theorem 8.1 for

effects coding.
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Note that in Corollary 8.2(i), we indicate that V ar(β̂O) = V ar(BOτ̂). However, in

Corollary 8.2(ii), we mention the variance only of β̂E, not mentioning it in terms of τ̂ . We

elaborate on the same in the next section.

8.4 Inference problem in terms of utility parameters

In the previous section, we have established that for any general coded matrix BH , the

information matrix of βH is I(βH) = BHΛBT
H . This shows the equivalence of the SB and

the HZ approaches. For the SB approach, where βH has been taken as βO with BH = BO,

the parameter βO is expressible in terms of the utility parameter vector τ through BOτ .

However, in the effects coded HZ approach, βH = βE is the parameter of interest. Under

such an effects coding setup BE, we need to understand what βE is in terms of utility

parameter vector τ . In this section, we express the general inference problem βH in terms

of utility parameter vector τ .

In comparative experiments, like the choice experiments, the problem of estimation

for inferring Mτ may be specified as Π : βH = Mτ , where M is a p × L matrix with

M1L = 0, τ is a utility parameter vector and 1L is a column vector of size L having all

1s. Thus βH contains p parametric contrasts. With reference to Π, we call a design d

as acceptable if all components of βH are estimable using d. Let DΠ be the class of all

acceptable designs with reference to the problem Π. The problem Π is referred to as (i)

non-singularly estimable if and only if rank(M) = p ≤
∑

(vi− 1), and, more explicitly as

(ii) non-singularly estimable full-rank problem if and only if rank(M) = p =
∑

(vi − 1).

Furthermore, when rank(M) =
∑

(vi − 1) < p, we refer to Π as singularly estimable

full-rank problem.

We first examine the two different functions of τ that are available in the literature,

one given by Großmann and Schwabe (2015) and the other by Street and Burgess (2007).

For notational clarity, as and when required, Λ corresponding to a design d is denoted

by Λd. A generalized inverse of a matrix A is denoted by A−, while the MoorePenrose

inverse is denoted by A+.

Großmann and Schwabe (2015) have indicated that under the utility-neutral setup,

for D-optimal balanced paired choice designs d∗, the information matrix for βE is,

I(βE) = I(SGτ) = (S(GΛd∗G
T )−ST )−. (8.10)
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Here, G is obtained from (8.4) by replacing every (vi− 1)× vi matrix B
(i)
o with the vi× vi

centering matrix Kvi = Ivi − 1
vi
Jvi and S is a rectangular block diagonal matrix with the

ith (vi − 1)× vi diagonal block being Dvi = (
√

vi
L
Ivi−1, 0vi−1×1), i = 1, . . . , k.

Remark 8.3. From the proof of the expression for the information matrix in (8.10)

(Großmann and Schwabe, 2015, pp. 798), it follows that the Moore-Penrose inverse of

GΛd∗G
T should be used rather than a generalized inverse. Therefore, the correct version of

their expression (as (8.10), above) for the information matrix of the estimable parameter

vector βE is

I(βE) = I(SGτ) = (S(GΛd∗G
T )+ST )−1. (8.11)

Contrary to Großmann and Schwabe’s identification of the matrix SG for the in-

ference problem βE expressed as a function of τ , Street and Burgess (2007) (pp. 77–78)

gives an impression, through an example, that under the utility-neutral setup,

I(βE) = I(BEτ) = BEΛd∗B
T
E . (8.12)

We now study an example of a D-optimal paired choice design.

Example 8.4. For k = 2, v1 = v2 = 3 and N = 9, consider a D-optimal paired choice

design d∗

d∗ = {(00, 11), (10, 21), (20, 01), (01, 12), (11, 22), (21, 02), (02, 10), (12, 20), (22, 00)}.

Then, from (8.11),

I(SGτ) = (S(GΛd∗G
T )+ST )−1 =


0.50 0.25 0 0

0.25 0.50 0 0

0 0 0.50 0.25

0 0 0.25 0.50

 = A, say.

Again, from (8.12), it is easy to see that

BEΛd∗B
T
E = A.

Therefore, here it follows that I(SGτ) = (S(GΛd∗G
T )+ST )−1 = BEΛd∗B

T
E. From the

impression created by Street and Burgess (2007), it follows that BEΛd∗B
T
E = I(BEτ) and

therefore I(SGτ) = I(BEτ). Also from Theorem 8.1, we have that BEΛd∗B
T
E = I(βE).

Therefore, it seems that the inference problem βE expressed in terms of τ is SGτ as well

as BEτ . However, BE 6= SG since

85



BE=


1 1 1 0 0 0 −1 −1 −1

0 0 0 1 1 1 −1 −1 −1

1 0 −1 1 0 −1 1 0 −1

0 1 −1 0 1 −1 0 1 −1

 and SG = 1
9


2 2 2 −1 −1 −1 −1 −1 −1

−1 −1 −1 2 2 2 −1 −1 −1

2 −1 −1 2 −1 −1 2 −1 −1

−1 2 −1 −1 2 −1 −1 2 −1

 .

In the above example, though we have taken a specific D-optimal design, we are

able to highlight the lack of clarity on what βE is in terms of τ . Is it that βE = BEτ or

βE = SGτ or is it something else?

In the result that follows, for a general coded matrix BH , we obtain the corresponding

inference problem for inferring on βH in terms of the utility parameter vector τ . The result

has been obtained under a more general unrestricted setup for any design d with m ≥ 2

and no restriction of utility-neutrality. Proof of the following result is in the Appendix D.

Theorem 8.5. Under the MNL model, for a general coded matrix BH ,

(i) V ar(BH τ̂) = (BHB
T
H)(BHΛBT

H)−1(BHB
T
H), and

(ii) V ar((BHB
T
H)−1BH τ̂) = (BHΛBT

H)−1 = V ar(β̂H).

As a consequence of Theorem 8.5, we have I(BHτ) = (BHB
T
H)−1(BHΛBT

H)(BHB
T
H)−1

and I((BHB
T
H)−1BHτ) = BHΛBT

H = I(βH). We now have the following Corollary as

special cases when (i) BH = BO, (ii) BH = BE and (iii) BH = (BEB
T
E)−1BE.

Corollary 8.6. Under the MNL model, the following holds.

(i) V ar(BOτ̂) = (BOΛBT
O)−1 = V ar(β̂O); and I(BOτ) = BOΛBT

O = I(βO).

(ii) V ar((BEB
T
E)−1BE τ̂) = (BEΛBT

E)−1 = V ar(β̂E); and I((BEB
T
E)−1BEτ) = BEΛBT

E =

I(βE),

(iii) V ar(BE τ̂) = (BEB
T
E)(BEΛBT

E)−1(BEB
T
E); and I(BEτ) = (BEB

T
E)−1(BEΛBT

E)(BEB
T
E)−1.

Under orthonormal coding (Corollary 8.6(i)), the inference problem is BOτ with

I(BOτ) = BOΛBT
O. Corollary 8.6(ii) shows that under the usual effects coding setup, the

inference problem is not BEτ (as illustrated by Street and Burgess (2007), pp. 77–78)

but the correct inference problem is (BEB
T
E)−1BEτ with I((BEB

T
E)−1BEτ) = BEΛBT

E .

Finally, the inference problem BEτ (Corollary 8.6(iii)) implies test-control setup with

I(BEτ) = (BEB
T
E)−1(BEΛBT

E)(BEB
T
E)−1. We discuss more on the test-control setup in

Section 8.5.

It is also easy to establish directly from the definition of the matrices BE, S and

G that (BEB
T
E)−1BE = SG (proof in Appendix D), and thus, BE = (SGGTST )−1SG.
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Thus, another form of the inference problem SGτ as in (8.11), when written as a function

of effects coded matrix, is (BEB
T
E)−1BEτ . However, referring to (8.11), we see that

I(βE) = I(SGτ) = (S(GΛd∗G
T )+ST )−1 holds only for D-optimal paired choice designs

d∗ of Graßhoff et al. (2004), while I(βE) = I(SGτ) = I((BEB
T
E)−1BEτ) = BEΛBT

E holds

for any arbitrary choice design. Using the identity BE = (SGGTST )−1SG, it thus follows

that for any arbitrary choice design, I(βE) = I(SGτ) = I((BEB
T
E)−1BEτ) = BEΛBT

E =

(SGGTST )−1SGΛGTST (SGGTST )−1.

The most commonly studied optimal designs under the choice experiments are the D-

optimal designs. For a general full-rank inference problem Mτ , the D-optimality criterion

is invariant to the choice of M . However, for some other criterion, different M may lead to

different optimal designs (see, Morgan and Stallings (2014)). For example, the A-optimal

designs are generally different for the two non-singular full-rank inference problems βO =

BOτ and βE = (BEB
T
E)−1BEτ . When our interest lies in the estimation of main effects,

it is important to understand the preferred inference problem. Recently, Sun and Dean

(2016) and Sun and Dean (2017) have obtained A-optimal designs under orthonormal

coding, while Chai et al. (2017) have obtained three-level A-optimal designs both under

effects coding as well as under orthonormal coding. Chai et al. (2017) show that the A-

optimal designs under the effects coding are different than those under the orthonormal

coding. Their non-singular full-rank inference problem for the A-optimal designs under

effects coding is (BEB
T
E)−1BEτ , whereas the non-singular full-rank inference problem

under the orthonormal coding is BOτ . We discuss more on this in Section 8.5.

Before we conclude this section, as an application to the equivalence of the SB and

the HZ approaches, we generalize the paired choice D-optimality results of Graßhoff et al.

(2004) for m ≥ 2. Street and Burgess (2007) have provided sufficiency conditions to

obtain D-optimal choice designs for m ≥ 2 under the utility-neutral setup. Since D-

optimality criterion is invariant with respect to reparameterizations, we now provide the

corresponding D-optimality results for estimating βE = (BEB
T
E)−1BEτ and BEτ . Proof

of the following result is in the Appendix D.

Theorem 8.7. Let d∗ be a D-optimal choice design, under the utility-neutral setup,

for estimating the main effects BOτ and Id∗(BOτ) = diag(α1Iv1−1, . . . , αkIvk−1), where

αi = 2viSi
m2L(vi−1)

and Si is as in Street and Burgess (2007)[Theorem 6.3.1]. Then, d∗ is

also D-optimal under the HZ approach for inferring on βE and BEτ . Furthermore, the
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respective information matrices for inferring on βE and BEτ are:

(i) Id∗(βE) = Id∗((BEB
T
E)−1BEτ) = diag(α1V1, . . . , αkVk), and

(ii) Id∗(BEτ) = diag(α1V
−1

1 , . . . , αkV
−1
k ),

where Vi = L
vi

(Ivi−1 + Jvi−1) and V −1
i = 1

L
(viIvi−1 − Jvi−1).

8.5 Inference problem under A-optimality

In this section, we consider different inference problems for optimal estimation of k main

effects corresponding to the k attributes with the ith attribute at vi levels. For the ease

of understanding, we first discuss the result for one attribute (the ith attribute) and then

generalize it for k attributes.

Let Z(i,u) = (−Iu 1u 0u×(vi−u−1)) for u = 1, . . . , vi−1. Then, the
(
vi
2

)
× vi coefficient

matrix of all normalized elementary comparisons between the vi levels of the ith attribute

is

Zi =
1√
2

(
Z(i)

Z̄(i)

)
,

where Z(i) = (ZT
(i,1) Z

T
(i,2) · · · ZT

(i,vi−2))
T and Z̄(i) = Z(i,vi−1). Note that Z̄(i) is a contrast

matrix for comparing level labeled vi − 1 of ith attribute to each of the remaining vi − 1

levels labeled 0, 1, . . . , vi− 2. Similarly, Z(i) is a contrast matrix for pairwise comparisons

of the levels labeled 0, 1, . . . , vi − 2 of attribute i.

For the inference problem Ziτ , the matrix Zi represents all normalized elementary

comparisons between levels of the ith attribute. Then, as a consolidated measure of

goodness of a choice design, the sum of the variances of the estimates of all normalized

elementary comparisons is given by

tr[V ar(Ziτ̂)]. (8.13)

For measuring goodness of a choice design, (8.13) ensures that equal importance is

provided to each of the
(
vi
2

)
elementary comparisons of which only vi − 1 comparisons

are independent. We now show the relationship between the sum of the variances of

the estimates of all normalized elementary comparisons and the sum of variances of the
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estimates under different inference problems. We first have the following theorem whose

proof we discuss later.

Theorem 8.8. Under the main effects model, for attribute i,

tr[V ar(B(i)
o τ̂)] =

2

vi
tr[V ar(Ziτ̂)].

It follows from Theorem 8.8 that under orthonormal coding, for attribute i, the aver-

age variance of B
(i)
o τ̂ is proportional to the average variance of

(
vi
2

)
elementary comparisons

among the levels of the attribute.

Huber and Zwerina (1996) (pp. 309), for minimizing errors around the estimated

parameter β̂H , considered the A-criterion under the non-singular full-rank setup. Accord-

ingly, we first focus on the non-singular full-rank inference problem. As in Theorem 8.8,

we first consider a single attribute setup, keeping the general result and its proof for a

later theorem.

Theorem 8.9. For attribute i, under a non-singular full-rank inference problem,

(i) tr[V ar((B
(i)
e B

(i)T
e )−1B

(i)
e τ̂)] = 2

v2i
tr[V ar(Ziτ̂)] + 1

vi
tr[V ar(Z(i)τ̂)],

(ii) tr[V ar(B
(i)
e τ̂)] = tr[V ar(Z̄(i)τ̂)].

For the inference problem under effects coding, from Theorem 8.9(i) we find that for

A-optimality of the ith attribute, there is a disproportionately higher weight (importance)

attached for the estimation of the main effect components representing comparisons among

the first vi − 1 levels labeled 0, 1, . . . , vi − 2. To compare A-optimal designs under effects

coding and under orthonormal coding, we consider the following example.

Example 8.10. Let k = 2, N = 6, v1 = v2 = 3. Under the utility-neutral setup, for the

estimation of main effects, we consider two designs d1 and d2 (Chai et al., 2017), where

d1 =
(21, 02), (20, 11), (22, 10)

(11, 00), (12, 01), (01, 10)
and d2 =

(00, 11), (11, 22), (22, 00)

(01, 10), (12, 21), (20, 02)
.

The design d1 is A-optimal under effects coding (the non-singular full-rank inference

problem (BEB
T
E)−1BEτ) whereas d2 is A-optimal under orthonormal coding (the non-

singular full-rank inference problem BOτ) .

A closer look at d1 shows an unequal number of paired comparisons of attribute levels

for each attribute. For example, for each of the two attributes in d1, the unordered pair
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(2,0) occurs once, (2,1) occurs twice and (1,0) occurs thrice. However d2, which is A-

optimal under orthonormal coding, gives equal importance to the pairwise comparisons

between the three attribute levels, i.e., comparing levels labeled {0 and 1}, {0 and 2}, and

{1 and 2} for each attribute.

Example 8.10 shows that for the non-singular full-rank inference problem (BEB
T
E)−1BEτ ,

A-optimal design is such that it gives more importance to comparsions of the levels (0,1) as

against the other comparsions, whereas under the orthonormal coding with non-singular

full-rank inference problem BOτ , equal importance is attached to all the three elementary

comparisons (0,1), (0,2) and (1,2).

We now give a generalization of Theorem 8.8 and Theorem 8.9 for k attributes, proof

(and a mathematical version of the same) is given in the Appendix D. In order to use

effects coding for the purpose of identifying A-optimal designs, parity is achieved among

the attributes with different number of levels by considering rows of M , of the inference

problem Mτ , in its normal form.

Theorem 8.11. In a choice experiment having k attributes with the ith attribute at vi

levels, under the A-criterion, in the main effects model,

(i) all elementary comparisons among the levels of each attribute are given equal impor-

tance for the inference problem BOτ ,

(ii)
(
vi−1

2

)
elementary comparisons among the levels 0, . . . , vi − 2 of each attribute are

given more importance for the normalized inference problem (BEB
T
E)−1BEτ ,

(iii) vi−1 elementary comparisons of levels 0, . . . , vi−2 with level vi−1 of each attribute

are given more importance for the normalized inference problem BEτ .

It seems reasonable that one would want to attach equal importance to all elementary

comparisons of the attribute levels for finding a good design for estimating each of the

main effects. Restricting to a non-singular full-rank inference problem, this suggests that

for conducting search of good choice designs under the A-criterion, it is more appropriate

to use orthonormal coding than the effects coding.

The inference problem BEτ , that came up in Theorem 8.9(ii) (and Theorem 8.11

(iii)), addresses situations where the primary interest lies in making test-control com-
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parisons. In test versus control comparisons, some new levels (called test levels) of an

attribute are compared with an existing control level.

Optimal designs under the single attribute setup have been amply provided by sev-

eral researchers; we refer the readers to the review papers by Hedayat et al. (1988) and

Majumdar (1996). Under the multi-attribute setup, designs for test-control experiments

have been obtained by Gupta (1995) and Gupta (1998). In discrete choice experiments,

when manufacturers/service providers or policymakers want to study the effect of few

potential attribute-levels on the utility of a product/service, test-control discrete choice

experiments would be more practical.

Our primary goal in a test-control discrete choice experiment is to determine which

level among the test levels has a significantly more impact on the utility when compared

against the control level. Thus, for the ith attribute, we make elementary comparisons

between control level labeled vi − 1 and each of the remaining vi − 1 test levels (labeled

0, 1, . . . , vi − 2) with as much precision as possible. There is a need for more work for

finding A-efficient or A-optimal test-control choice designs.

As indicated in Großmann and Schwabe (2015), the inference problem (BEB
T
E)−1BEτ

has more appeal than the inference problem BOτ since the inference problem under effects

coding has a clearer interpretation. This is so because the vi−1 independent comparisons

under effects coding are representing the difference between the true unknown latent

utility value of a level li (where li is considered only for vi− 1 levels, i.e., 0, 1, . . . , vi− 2),

of an attribute i, and the average (over all levels li, where li = 0, 1, . . . , vi− 1) of the true

unknown latent utility values, for each i = 1, . . . , k.

Moreover, as also indicated in Graßhoff et al. (2003) (pp. 379) and also in Graßhoff

et al. (2004) (pp. 375), to consider A-optimality under effects coding, one needs to resort

to the singular full-rank inference problem by additionally considering, for each attribute,

the left out comparison of one of the level effects (corresponding to level vi−1) as deviates

from the average of all level effects of attribute i. Accordingly, the revised inference

problem would be singular with M of order (
∑
vi)×L rather than (

∑
(vi− 1))×L. The

corresponding information matrix for such an inference problem Mτ would be of order

(
∑
vi) × (

∑
vi) having rank

∑
(vi − 1). For A-optimality considerations, we now show

the equivalence of such a singular full-rank inference problem to that of the non-singular

full-rank orthonormal inference problem.
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It is easy to see that the normalized form of (BEB
T
E)−1BE is ΥE(BEB

T
E)−1BE where

ΥE = diag(
√

L
v1−1

Iv1−1, . . . ,
√

L
vk−1

Ivk−1). We define a matrix A of order (
∑
vi) × pM

such that A = diag(B
(1)T
e , . . . , B

(k)T
e ). Also, let Bn = AΥE(BEB

T
E)−1BE. The weighted

sum of variances of the
∑
vi normalized comparisons is given by

k∑
i=1

vi − 1

vi
tr[V ar(B(i)

n τ̂)] = tr[ΓnV ar(Bnτ̂)], (8.14)

where B
(i)
n is Bn corresponding to the ith attribute, and Γn = diag(Γn1,Γn2, . . . ,Γnk) with

Γni = ((vi − 1)/vi)Ivi .

While obtaining tr[ΓnV ar(Bnτ̂)] in (8.14), for each attribute i, we account for the

contribution of V ar(B
(i)
n τ̂) through vi−1

vi
tr[V ar(B

(i)
n τ̂)]. This ensures providing equal im-

portance to each of the k sets of vi comparisons of which only vi − 1 comparisons are

independent, i = 1, 2, . . . , k. We now have the following result, proof of which is in the

Appendix D.

Theorem 8.12. Under the main effects model,

tr[V ar(BOτ̂)] = tr[ΓnV ar(AΥE(BEB
T
E)−1BE τ̂)] = tr[ΓnV ar(Bnτ̂)].

It follows from Theorem 8.12 that while considering a full set of
∑
vi normalized

contrasts under effects coding, one would get the same A-optimal designs as one would

get under orthonormal coding.

8.6 Discussion

In the theory of discrete choice experiments, we show the equivalence of two seemingly

different approaches (the SB and the HZ approaches) for deriving the information matrices

under the MNL model. Under the utility-neutral effects coding setup, the similarity of

the two approaches for a D-optimal paired (m = 2) choice design was first addressed

by Großmann and Schwabe (2015). We have shown how for any general coded matrix

BH and under a general setup, the two seemingly different structures of the information

matrices are related.

We have obtained a simple linear function of τ that is being inferred upon under

different inference problems. This allows us to establish that the inference problem being
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addressed under effects coding is not BEτ , but (BEB
T
E)−1BEτ . This helps us in estab-

lishing that the information matrix under the SB approach for the inference problem

(BEB
T
E)−1BEτ is BEΛBT

E , which is same as the information matrix for effects coding

under the HZ approach.

Most design criteria are sensitive to the coding of the attributes. As discussed, an

exception is the D-optimality criterion because the criterion is not affected by reparame-

terizations. That is why most optimality results for choice and paired comparison designs

have been derived for the D-criterion. For the non-singular full-rank setup, Sun and

Dean (2016) and Sun and Dean (2017) obtained A-optimal designs under orthonormal

coding, while Chai et al. (2017) have obtained three-level A-optimal paired choice designs,

both under effects coding and orthonormal coding. Since A-optimal designs usually differ

depending on the inference problem being addressed and the corresponding codings of

the attributes, it is pertinent to understand which coding is more appropriate for defin-

ing main effects. In this connection, under the non-singular full-rank inference problem,

the followers of the HZ approach have been usually adopting the effects coding of the

attributes. Although, the orthonormal coding may be technically convenient, the con-

trast represented by the matrix BO usually have no natural interpretation for qualitative

attributes (see, Großmann and Schwabe (2015)).

To obtain A-optimal designs under a non-singular full-rank main-effects problem, we

show that BOτ attaches equal importance to each of the
(
vi
2

)
elementary comparisons of

the ith main effect, i = 1, . . . , k. On the contrary, the non-singular full-rank inference

problem (BEB
T
E)−1BEτ attaches more importance to

(
vi−1

2

)
of the overall

(
vi
2

)
elemen-

tary comparisons, for the ith main effect, i = 1, . . . , k. However, to consider A-optimality

under effects coding, one needs to resort to the singular full-rank inference problem by ad-

ditionally considering the left out comparison of one of the level effects for each attribute.

We have shown that from the point of obtaining a good A-optimal designs for choice

experiments, one can equivalently use either orthonormal coding for the non-singular full-

rank inference problem or normalized effects coding for the singular full-rank inference

problem.

In situations where the primary interest lies in making test-control comparisons, test-

control discrete choice experiments are conducted. The inference problem then, would

be to estimate BEτ . The issue of construction of A-efficient and A-optimal designs for
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estimating BEτ will be discussed in a future work.
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Chapter 9

E(s2)- and UE(s2)-Optimal

Supersaturated Designs

This chapter is based on the following work:

Cheng et al. (2018): Cheng, Ching-Shui; Das, Ashish; Singh Rakhi; Tsai, Pi-Wen; E(s2)-

and UE(s2)-Optimal Supersaturated Designs. J. Statist. Plann. Inference 196 (2018),

105–114.

9.1 Introduction

In an n-run factorial experiment involving m two-level factors, for the general mean

and all the main effects to be estimable, we must have n > m + 1. A design is called

supersaturated if n < m + 1. Under the assumption of factor sparsity that only a small

number of factors are active, a supersaturated design can provide considerable cost saving

in factor screening.

Each two-level supersaturated design d can be represented by an n ×m matrix Xd

having entries 1s and −1s, with each column of Xd corresponding to one factor and each

row representing a factor-level combination. Let Zd = [1 Xd], where 1 is the n×1 column

of 1s, be the model matrix of the main-effects model for d. Two columns u and v of Zd

such that u = v or u = −v are said to be aliased. We require that no two columns of Zd

are aliased.

A factor is said to be level-balanced if the corresponding column of Xd has the same

numbers of 1s and −1s. This is possible only if n is even. For an odd n, a factor is said to
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be nearly level-balanced if in the corresponding column the numbers of times 1 and −1

appear differ by one. Without loss of generality, we require that 1 appears (n−1)/2 times

and −1 appears (n+1)/2 times. A design is said to be level-balanced (respectively, nearly

level-balanced) if all the factors are level-balanced (respectively, nearly level-balanced).

Later in Section 9.3 we provide a motivation behind level-balanced and nearly level-

balanced designs.

Ideally one would want the columns of Zd to be mutually orthogonal, which clearly is

not possible for supersaturated designs. Under level-balanced designs, columns of Xd are

orthogonal to 1. In this case, a simple measure (Booth and Cox, 1962) of nonorthogonality

among the columns of Xd is

Ed(s
2) =

1(
m
2

) ∑
16i<j6m

(xTi xj)
2, (9.1)

where xi is the ith column of Xd. The popular E(s2)-criterion (Lin, 1993b) is to minimize

(9.1) among the level-balanced designs. For the case when n is odd, Nguyen and Cheng

(2008) suggested minimizing (9.1) among nearly level-balanced designs.

Prima facie it appears that there is no need to impose the restriction of level-balance

or near-level-balance while identifying a good supersaturated design so long as it mini-

mizes the overall nonorthogonality among the columns of Zd. Marley and Woods (2010)

extended the definition of Ed(s
2) to include the inner products of 1 and the columns of

Xd. Jones and Majumdar (2014) also introduced the criterion

UEd(s
2) =

1(
m+1

2

) [ m∑
i=1

(1Txi)
2 +

∑
16i<j6m

(xTi xj)
2

]
. (9.2)

For given m and n, let DU(m,n) be the class of all supersaturated designs without the

restriction of level-balance or near-level-balance, and let DR(m,n) be the subclass of

level-balanced or nearly level-balanced supersaturated designs. A supersaturated design

d∗ ∈ DU(m,n) is said to be UE(s2)-optimal if UEd∗(s
2) 6 UEd(s

2) for all d ∈ DU(m,n).

It is clear that an E(s2)-optimal design is UE(s2)-optimal over the subclass DR(m,n),

but may not be UE(s2)-optimal over the entire class DU(m,n).

Removing the constraint of level-balance or near-level-balance makes the construc-

tion of UE(s2)-optimal designs very easy, and produces a smaller sum of squares of the

entries of the information matrix ZT
d Zd, which is twice the sum of the two quantities
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inside the brackets in (9.2). While the former is an advantage because in general E(s2)-

optimal designs are difficult to construct, a consequence is that usually there are many

UE(s2)-optimal designs with diverse characteristics and performances. Additional criteria

are needed to choose among UE(s2)-optimal designs. Among possible secondary criteria,

Jones and Majumdar (2014) mentioned the maximization of the number of level-balanced

factors among the UE(s2)-optimal designs. Regarding the reduction of the sum of squares

of the entries of the information matrix, since
∑m

i=1(1Txi)
2 is minimized by level-balanced

or nearly level-balanced designs, the difference in the E(s2)- and UE(s2)-criteria, when

both are considered as criteria over the entire DU(m,n), is that an UE(s2)-optimal design

minimizes the sum of
∑m

i=1(1Txi)
2 and

∑
16i<j6m(xTi xj)

2, while an E(s2)-optimal design

minimizes the former followed by the minimization of the latter. In other words, the

E(s2)-criterion places a heavier weight on
∑m

i=1(1Txi)
2. We denote this quantity by SS

in the rest of the chapter.

Since only a small number of factors is expected to be active, one way to evaluate

the performance of a supersaturated design is to consider its average efficiency over lower

dimensional projections. Such an approach based on average D-efficiencies was proposed

in Wu (1993). A comparison in Section 9.2 of the E(s2)- and UE(s2)-optimal designs for

n = 12 and m = 14 discussed in Example 2 of Jones and Majumdar (2014) shows that

the UE(s2)-optimal design has worse projection properties than the E(s2)-optimal design.

Also, this UE(s2)-optimal design, with 11 level-balanced factors, has worse projection

properties than some other UE(s2)-optimal designs with fewer level-balanced factors. This

indicates that maximizing the number of level-balanced factors is not an appropriate

secondary criterion.

In Section 9.3 we show that the traditional E(s2)-criterion is a good surrogate for

maximizing the average D-efficiency over f -factor projections for small f (relative to m).

A similar argument leads to the minimization of SS as a good secondary criterion for

selecting UE(s2)-optimal designs with good lower-dimensional projections. In Section

9.4 we present simple and systematic methods of constructing designs that minimize

SS among the UE(s2)-optimal designs constructed by using the method of Jones and

Majumdar (2014). Our examples show that, for lower dimensional projections, the best

UE(s2)-optimal designs have nearly as good average D-efficiencies as the E(s2)-optimal

designs. We also provide UE(s2)-optimal design construction for the case n = m ≡ 1 (mod
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4), which is missing in Jones and Majumdar (2014). In Section 9.5, we derive conditions

under which E(s2)-optimal designs are also UE(s2)-optimal and identify several families

of designs that are optimal under both criteria.

9.2 An example

The basis of using a supersaturated design is the inherent assumption that there are very

few active factors. The identification of the active factors is usually based on a forward

selection method of model building involving projections onto various subsets of factors.

Thus it is desirable to use a supersaturated design with good projection properties in the

sense that on average the model parameters can be efficiently estimated during the model

building process.

Suppose among the m factors, only those in a set F of f factors are active, f 6 n−1.

Let XdF be the design matrix of dF consisting of the f corresponding columns of Xd.

Here dF is the projected design of d onto the factors in F . Consider the model matrix

ZdF = [1 XdF ] and let MdF be the information matrix of dF . Then

MdF = ZT
dFZdF =

[
n 1TXdF

XT
dF 1 XT

dFXdF

]
.

Suppose we measure the performance of the projected design by the D-criterion

D(XdF ) = {(det[MdF ])1/(f+1)}/n. Then the overall D-efficiency of f -factor projections of

a supersaturated design d can be measured by the average D-efficiency

Df (d) =
1(
m
f

) ∑
F :|F |=f

D(XdF ),

where the sum is over all the subsets F consisting of f factors, and the objective is to

maximize Df (d), f = 1, 2, . . . , (n− 1). Another quantity of interest is the number of non-

estimable f -factor projective main-effects models, denoted by NEf . Note that Df and

NEf are related to, respectively, information capacity and estimation capacity proposed

by Sun (1993).

In Example 9.1 , we compare the performances of several E(s2)- and UE(s2)-optimal

designs with m = 14 and n = 12 with respective to Df and NEf for all f 6 11. For each

design, we also report the values of the following three characteristics which, as demon-

strated later, are useful for helping identify UE(s2)-optimal designs with good projection

properties:
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LB = the number of level-balanced (nearly level-balanced) factors for n even (odd);

OF = the number of orthogonal (nearly orthogonal) pairs of factors among the
(
m
2

)
pairs

for n even (odd);

Q = LB + OF.

Here two factors are said to be orthogonal (nearly orthogonal) if the inner product of

their corresponding columns in the model matrix is zero (±1).

Example 9.1. For m = 14 and n = 12, a UE(s2)-optimal design, say d6, and an E(s2)-

optimal design, say d1, are displayed in Table 9.2 and Table 9.3 respectively, of Jones and

Majumdar (2014). Here d6 has 11 level-balanced factors. We construct four additional

UE(s2)-optimal designs d2, d3, d4, and d5 with 6, 12, 6, and 5 level-balanced factors,

respectively. All the six designs can be found in the Appendix E. Table 9.1 shows that

di > d6 for all i = 1, . . . , 5, where di > dj (di dominates dj) means that di is at least as

good as dj under both Df and NEf for every f = 1, . . . , n − 1, and di is better than dj

in some cases. In particular, the E(s2)-optimal design d1 dominates the UE(s2)-optimal

design d6. We also note that d2 > dj, j = 3, 4, 5, 6. This indicates that, at least in

terms of projection properties, maximizing the number of level-balanced factors is not

an appropriate secondary criterion. Design d2 is the best among the five UE(s2)-optimal

designs in the table. In fact, based on an exhaustive search, it is the best design among

UE(s2)-optimal designs constructed using the method of Jones and Majumdar (2014)

with respect to Df and NEf . Between d2 and d1, d1 is better than d2 under Df for f 6 5

(but d2 is at least 99% efficient as d1 in all these cases, where the efficiency is measured

by the ratio of Df values), the two designs are tied under NEf for f 6 6, and d2 is better

than d1 for 6 6 f 6 11. Thus d2 can be recommended. However, it takes additional work

to identify it among many UE(s2)-optimal designs.

9.3 Projection justification

It is well-known that a good surrogate for maximizing D(XdF ) is the (M.S)-criterion

proposed by Eccleston and Hedayat (1974): maximizing tr[MdF ] and minimizing tr[MdF ]2

among those that maximize tr[MdF ]. This goes back to the result of Kiefer (1958, 1975b)

that a design is optimal with respect to many criteria if it maximizes the trace of the
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Table 9.1: Comparison of six designs with m = 14 and n = 12
d1 d2 d3 d4 d5 d6

SS 0 32 32 44 48 48

LB 14 6 12 6 5 11

OF 67 36 72 36 37 73

Q 81 42 84 42 42 84

(D1, NE1) (1, 0) (0.9920, 0) (0.9918, 0) (0.9889, 0) (0.9879, 0) (0.9877, 0)

(D2, NE2) (0.9898, 0) (0.9809, 0) (0.9805, 0) (0.9765, 0) (0.9751, 0) (0.9744, 0)

(D3, NE3) (0.9759, 0) (0.9679, 0) (0.9671, 0) (0.9626, 0) (0.9609, 0) (0.9579, 1)

(D4, NE4) (0.9590, 0) (0.9530, 0) (0.9498, 3) (0.9470, 0) (0.9449, 0) (0.9341, 13)

(D5, NE5) (0.9391, 0) (0.9360, 0) (0.9235, 30) (0.9291, 0) (0.9268, 0) (0.8972, 75)

(D6, NE6) (0.9157, 0) (0.9162, 0) (0.8808, 135) (0.9084, 0) (0.9058, 0) (0.8400, 255)

(D7, NE7) (0.8869, 3) (0.8928, 0) (0.8116, 360) (0.8832, 3) (0.8801, 4) (0.7540, 568)

(D8, NE8) (0.8476, 25) (0.8630, 6) (0.7048, 627) (0.8484, 24) (0.8439, 30) (0.6323, 867)

(D9, NE9) (0.7831, 82) (0.8163, 36) (0.5522, 738) (0.7876, 84) (0.7799, 97) (0.4731, 918)

(D10, NE10) (0.6614, 143) (0.7189, 93) (0.3565, 585) (0.6566, 165) (0.6455, 177) (0.2879, 665)

(D11, NE11) (0.4060, 161) (0.4790, 132) (0.1477, 300) (0.3803, 180) (0.3710, 184) (0.1108, 316)

information matrix and all the eigenvalues of the information matrix are equal. Since

tr[MdF ] = n(f + 1) is a constant, a good surrogate for maximizing Df (d) is to minimize

1(
m
f

) ∑
F :|F |=f

tr[MdF ]2 =
1(
m
f

) ∑
F :|F |=f

tr[ZT
dFZdF ]2. (9.3)

Using the fact that the first- and second-order inclusion probabilities under simple random

sampling of size f without replacement from a population of size m are, respectively, f/m

and f(f − 1)/[m(m− 1)], it is easy to see that

1(
m
f

) ∑
F :|F |=f

tr[ZT
dFZdF ]2 = constant +

2f

m
[1TXdX

T
d 1] +

f(f − 1)

m(m− 1)
tr[(XT

d Xd)
2]. (9.4)

Due to factor sparsity, f/m is small; thus f(f −1)/[m(m−1)] is much smaller than f/m.

It follows that a good surrogate for minimizing (9.4) is the two-step procedure of first min-

imizing 1TXdX
T
d 1(= SS), and then minimizing tr[(XT

d Xd)
2]. The first step is achieved by

level-balanced or nearly level-balanced designs. The second step is equivalent to minimiz-

ing Ed(s
2). This justifies the traditional E(s2)-criterion and shows why it is important

to restrict to level-balanced or nearly level-balanced designs for achieving good lower-

dimensional projection properties. Earlier, Lin (1993a) and Tsai and Gilmour (2016)

studied two-level saturated main effects screening designs under factor sparsity. They

found that those with good lower-dimensional projections are to be found among level-

balanced or nearly level-balanced ones.
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For each design d ∈ DU(m,n), let UE d
f (s2) be the average of the UEdF (s2) values

over all F involving f factors; that is,

UE d
f (s2) =

1(
m
f

) ∑
F :|F |=f

UEdF (s2).

Since ZT
dFZdF has constant diagonals n, minimizing UE d

f (s2) is equivalent to minimizing

(9.3), and thus is also a good surrogate for maximizing Df (d).

The following can easily be established:

UE d
f (s2) =

m+ 1

(f + 1)(m− 1)

{
(f − 1)UEd(s

2) +
2(m− f)

m(m+ 1)
1TXdX

T
d 1

}
. (9.5)

A possible secondary criterion for discriminating UE(s2)-optimal designs is to minimize

UE d
f (s2) among the UE(s2)-optimal designs. By (9.5), this is to minimize 1TXdX

T
d 1

among the UE(s2)-optimal designs. The resulting designs do not depend on f .

The traditional E(s2)-criterion is equivalent to the two-step procedure of minimizing

SS and then minimizing UEd(s
2) among those that minimize SS. Thus using the mini-

mization of SS as a secondary criterion for UE(s2) amounts to reversing the two steps of

the traditional E(s2)-criterion as formulated above: when the minimization of SS is not

done before minimizing UEd(s
2), it should be done afterwards. Let DH(m,n) be the class

of all UE(s2)-optimal designs constructed from a Hadamard matrix using the method of

Jones and Majumdar (2014). A design that minimizes SS over DH(m,n) is said to be

superior UE(s2)-optimal.

Usually superior UE(s2)-optimal designs are not unique. In fact, the E(s2)-criterion

also suffers from this problem. The issue of choosing better E(s2)-optimal designs arises

naturally, but it has not received much attention in the literature, perhaps because E(s2)-

optimal designs are difficult to construct. The easy construction of superior UE(s2)-

optimal designs makes it possible to further choose better designs from them.

An interesting observation in Table 9.1 is that for the two designs with SS = 32 (and

also those with SS = 48), the one with more level-balanced factors has worse projection

properties. We offer the following explanation. It is desirable to make the columns of

the model matrix as nearly orthogonal as possible, that is, to make the absolute values

(or, equivalently, the squares) of the off-diagonal entries of the information matrix as

uniformly small as possible. For this purpose, we do not want to have too many pairs of

orthogonal zi and zj once UEd(s
2) has been minimized, where zi and zj are columns of
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Zd. After the minimization of UEd(s
2), the sum of squares of all pairwise inner products

zTi zj, i 6= j, is fixed. If there are too many zeros among these inner products, then the

overall distribution of the squared pairwise inner products is likely to be more dispersed.

Thus, subject to the minimization of UEd(s
2), it is better not to have too many orthogonal

pairs (zi, zj), i 6= j. Since the number of such pairs is equal to Q = LB+OF, it is preferable

to have a small Q. In particular, we do not want to have too many level-balanced factors

among the designs with the same values of UEd(s
2) and SS.

The discussion above can be linked to the concept of majorization (Marshall and

Olkin, 1979). Given two vectors x = (x1, . . . , xk)
T and y = (y1, . . . , yk)

T , we say that x is

majorized by y if
k∑
i=1

xi =
k∑
i=1

yi (9.6)

and
t∑
i=1

x[i] >
t∑
i=1

y[i] for all 1 6 t 6 k − 1, (9.7)

where x[1] 6 · · · 6 x[k] and y[1] 6 · · · 6 y[k] are ordered values of x1, . . . , xk and y1, . . . , yk,

respectively. Under (9.6) and (9.7), the entries in x can be regarded as less dispersed than

those in y. For example, the vector with x1 = · · · = xk is majorized by all the y’s satisfying

(9.6). Majorization is a strong property that requires all the k− 1 inequalities in (9.7) to

hold. Suppose all the components of x and y are nonnegative, (9.6) is satisfied, x has Qx

zero components, and y has Qy zero components. If Qx < Qy, then (9.7) is satisfied for

all 1 6 t 6 Qy. In this case (9.7) partially holds for a subset of the inequalities.

Table 9.1 exhibits the patterns that (i) designs with smaller SS and Q tend to have

better projection properties and (ii) those with smaller SS but larger Q may have better

lower-dimensional and worse higher-dimensional projection properties. For example, d2

has smaller SS and Q than the other UE(s2)-optimal designs in the table; at the same

time it dominates all these designs. At the other extreme, d6 has larger SS and Q than

the other UE(s2)-optimal designs in the table, and it is dominated by all of them. Design

d3 has the same value of SS as d2, but has a larger Q; we see that it is dominated by d2.

Design d4 has the same value of Q as d5, but has a smaller SS; we also have that d4 domi-

nates d5. Even though d3 has a smaller SS than d4 and d5, it has a much larger Q. We see

that d3 has better lower-dimensional, but worse higher-dimensional projection properties

than these two other designs. A similar observation applies to the comparison of d1 and d2.
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Example 9.2. Consider m = 16 and n = 10. Seven designs are listed in Table 9.2.

Design d1 is E(s2)-optimal, while d2, d3, d4, d5, d6, and d7 are UE(s2)-optimal. These

designs can be found in the Appendix E. The six UE(s2)-optimal designs in the table

have the same values of SS, and are labeled according to increasing values of Q. We

have d1 > d2 > d3 > d4 > d6 > d5 > d7. Note that d5 has a very slightly smaller SS

than d6 (53 vs. 54), but is very slightly dominated by the latter. The E(s2)-optimal

design d1 dominates all the UE(s2)-optimal designs in the table, but a carefully chosen

UE(s2)-optimal design such as d2 is at least 96% efficient as d1 under the Df -criterion for

f 6 7.

Table 9.2: Comparison of seven designs with m = 16 and n = 10
d1 d2 d3 d4 d5 d6 d7

SS 0 60 60 60 60 60 60

LB 16 1 1 7 7 7 9

OF 0 5 8 43 46 47 58

Q 16 6 9 50 53 54 67

(D1, NE1) (1, 0) (0.9811, 0) (0.9811, 0) (0.9807, 0) (0.9807, 0) (0.9807, 0) (0.9799, 0)

(D2, NE2) (0.9792, 0) (0.9562, 0) (0.9556, 0) (0.9552, 0) (0.9546, 0) (0.9550, 0) (0.9521, 0)

(D3, NE3) (0.9504, 0) (0.9276, 0) (0.9262, 0) (0.9247, 1) (0.9232, 1) (0.9243, 1) (0.9165, 3)

(D4, NE4) (0.9157, 0) (0.8951, 0) (0.8927, 0) (0.8866, 16) (0.8841, 16) (0.8861, 16) (0.8663, 48)

(D5, NE5) (0.8748, 0) (0.8568, 6) (0.8529, 10) (0.8367, 114) (0.8326, 118) (0.8357, 116) (0.7914, 336)

(D6, NE6) (0.8261, 4) (0.8075, 76) (0.8000, 126) (0.7693, 486) (0.7614, 534) (0.7664, 513) (0.6817, 1376)

(D7, NE7) (0.7652, 46) (0.7354, 451) (0.7181, 725) (0.6762, 1427) (0.6597, 1661) (0.6679, 1568) (0.5326, 3680)

(D8, NE8) (0.6791, 311) (0.6141, 1684) (0.5759, 2526) (0.5396, 3205) (0.5111, 3767) (0.5227, 3562) (0.3522, 6732)

(D9, NE9) (0.5149, 1679) (0.3908, 4410) (0.3316, 5710) (0.3222, 5835) (0.2923, 6421) (0.3009, 6264) (0.1649, 8648)

The empirical studies we have carried out indicate that a design is likely to dominate

those with larger SS and larger (or similar) Q, two designs with about the same SS and Q

are expected to perform similarly, and one with smaller SS but a much larger Q may have

better lower-dimensional projections and worse higher-dimensional projections. There is

no guarantee that a simple surrogate criterion such as what we propose here will produce

the best design, but minimizing SS followed by minimizing Q is an effective way of getting

UE(s2)-optimal designs with good projection properties. We are interested in using a

computationally cheap criterion to identify good designs (such as d2 in both Example 9.1

and Example 9.2), rather than to rank the UE(s2)-optimal designs.
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In certain cases E(s2)-optimal designs are easy to construct; then the strategy of

minimizing Q can be used to find better designs. For example, Lin (1993b) proposed a

simple method of using a Hadamard matrix of order 4t to construct a supersaturated

design with m = 4t − 2 and n = 2t. Nguyen (1996) showed that such half-Hadamard

matrices achieve the lower bound on E(s2) derived by Nguyen (1996) and Tang and Wu

(1997), and hence are E(s2)-optimal. They are also UE(s2)-optimal (see Theorem 9.6 in

Section 9.5). Furthermore, with SS = 0, they minimize SS among the UE(s2)-optimal

designs. Projection properties of several half-Hadamard matrices and UE(s2)-optimal

designs for the case m = 22 and n = 12 are summarized in Table 9.3. All the designs in

this table are UE(s2)-optimal and can be found in the Appendix E. Designs d1 and d2 are

half-Hadamard matrices constructed by using Hadamard matrices of order 24 available

in http://neilsloane.com/hadamard/. Designs d3, d4, and d5 are obtained by deleting

rows and columns of a Hadamard matrix without the restriction of level-balance. We can

see that for the two E(s2)-optimal designs, d1 has smaller Q and dominates d2. Design d3

dominates d4 and d5. The better E(s2)-optimal design d1 is better than d3 with respect to

Df for all f ≤ 10, but has more nonestimable models when f > 7. Overall, d3 performs

quite well.

Table 9.3: Comparison of five designs with m = 22 and n = 12

d1 d2 d3 d4 d5

SS 0 0 44 80 140

LB 22 22 11 8 8

OF 132 138 66 67 78

Q 154 160 77 75 86

(D1, NE1) (1, 0) (1, 0) (0.9930, 0) (0.9872, 0) (0.9774, 0)

(D2, NE2) (0.9835, 0) (0.9833, 0) (0.9741, 0) (0.9663, 0) (0.9529, 0)

(D3, NE3) (0.9611, 0) (0.9606, 0) (0.9505, 0) (0.9416, 0) (0.9263, 0)

(D4, NE4) (0.9347, 0) (0.9338, 0) (0.9234, 0) (0.9138, 0) (0.8972, 0)

(D5, NE5) (0.9044, 0) (0.9032, 0) (0.8927, 0) (0.8827, 0) (0.8651, 0)

(D6, NE6) (0.8699, 0) (0.8684, 0) (0.8580, 0) (0.8477, 0) (0.8294, 0)

(D7, NE7) (0.8302, 10) (0.8284, 12) (0.8183, 0) (0.8077, 0) (0.7890, 0))

(D8, NE8) (0.7836, 159) (0.7816, 212) (0.7719, 0) (0.7613, 8) (0.7424, 0)

(D9, NE9) (0.7264, 1445) (0.7238, 1884) (0.7159, 0) (0.7053, 151) (0.6867, 0)

(D10, NE10) (0.6486, 10403) (0.6448, 12478) (0.6438, 88) (0.6328, 1669) (0.6157, 216)

(D11, NE11) (0.5089, 72727) (0.5013, 81856) (0.5337, 5401) (0.5171, 22181) (0.5078, 8463)
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Remark 9.3. Jones and Majumdar (2014) argued that although insisting on level-balance

achieves the highest efficiency for the intercept, “estimation of the intercept... is not

a goal for most experiments”, and “it comes at the expense of precision of main effect

estimation.” Suppose the intercept is treated as a nuisance parameter; then for any subset

F of {1, . . . ,m}, the information matrix for the f main effects isXT
dF (In− 1

n
11T )XdF , where

Ia denotes the identity matrix of order a. Similar to earlier discussions in this section, a

good surrogate for maximizing the average D-efficiency of the main-effect estimates over

all f -factor projections is to maximize 1

(mf )

∑
F :|F |=f tr[XT

dF (In− 1
n
11T )XdF ], and subject to

that, minimize 1

(mf )

∑
F :|F |=f tr[XT

dF (In− 1
n
11T )XdF ]2. A similar derivation as before shows

that this is equivalent to minimizing SS, and subject to that, minimizing tr[(XT
d Xd)

2], i.e.

the traditional E(s2)-optimality. Therefore the E(s2)-optimality is also a good surrogate

for maximizing the average D-efficiency even when the mean is treated as a nuisance

parameter and only the main effects are of interest. In this case, for the average D-

efficiencies of the designs in Table 9.1 and Table 9.2, the pattern remains the same.

9.4 Construction of superior UE(s2)-optimal designs

There is no simple general construction of E(s2)-optimal designs and, except for some

limited values of m and n, they are not readily available. This section is devoted to

the construction of UE(s2)-optimal designs that minimize SS among the UE(s2)-optimal

designs in DH(m,n). There is no guarantee that such superior UE(s2)-optimal designs

minimize SS among all the UE(s2)-optimal designs since the method given by Jones

and Majumdar (2014) does not produce all the UE(s2)-optimal designs. However, our

construction method is simple, systematic, and can be applied to all cases. We need the

following result:

Lemma 9.4. A design minimizes SS among the UE(s2)-optimal designs if and only if it

maximizes tr[(XdX
T
d )2].

Proof. We have

tr[(ZT
d Zd)

2] = n2 + 2 · 1TXdX
T
d 1 + tr[(XT

d Xd)
2]. (9.8)

Since all the UE(s2)-optimal designs have the same value of tr[(ZT
d Zd)

2], by (9.8), 1TXdX
T
d 1

is minimized if and only if tr[(XT
d Xd)

2] = tr[(XdX
T
d )2] is maximized.
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In Jones and Majumdar (2014), the construction of UE(s2)-optimal designs considers

four cases depending on whether m is of the form 4t− 1, 4t− 2, 4t, or 4t+ 1, where t is

a positive integer.

(a) Construction for m = 4t− 1.

Let H be a 4t × 4t (normalized) Hadamard matrix with all the entries in the first

row and first column equal to 1. To construct a UE(s2)-optimal design, we delete the

first column and 4t− n rows of H. Then the resulting matrix O is UE(s2)-optimal with

m = 4t − 1, provided that Y = [1 O] has no aliased columns. Note that Y is an n × 4t

matrix in which any two rows are orthogonal.

We first address the existence of a Y with no aliased columns, an issue not considered

in Jones and Majumdar (2014). Without loss of generality, let HT =
[
Y T GT

]
. Also, let

Y TY = [uij] and GTG = [wij]. Then since HTH = (4t)I4t, for all i, j,

|uij| = |wij|, |uij| 6 n, and |wij| 6 4t− n. (9.9)

If Y has two aliased columns, say the i0th and j0th columns, then |ui0j0| = n. Then it

follows from (9.9) that n 6 4t − n. This shows that as long as n > 2t, any matrix Y

obtained by deleting 4t− n rows from H does not contain aliased columns.

On the other hand, if n is too small, then the aliasing of some columns in Y cannot

be avoided. This can be seen as follows. There are at most 2n−1 columns of 1s and −1s

of size n that are not mutually aliased. Thus in order for Y to have no aliased columns,

we must have 2n−1 > 4t, or n > dlog2te+ 3, where dze is the smallest integer greater than

or equal to z.

When 4t is a power of 2, say 4t = 2w, let H be a Hadamard matrix of order 4t that

is the Kronecker product of w normalized Hadamard matrices of order 2. In this case,

dlog2te+3 = w+1. For any n > w+1, let Y be the n×4t submatrix of H consisting of the

w+ 1 rows ⊗wi=1(1, 1), (1,−1)⊗wi=2 (1, 1), ⊗ji=1(1, 1)⊗ (1,−1)⊗wi=j+2 (1, 1), j = 1, ..., w− 2,

⊗w−1
i=1 (1, 1)⊗ (1,−1), and any n− w − 1 additional rows of H if n > w + 1. Then it can

be seen that Y has no aliased columns.

When 4t is not a power of 2, for Hadamard matrices of order 4t, 2 < t < 25 and

n ≥ dlog2te+ 4, we have enumerated and found that there exists at least one set of 4t−n

rows that can be deleted to get a Y without aliased columns.
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Theorem 9.5. If m is of the form 4t − 1, then all the UE(s2)-optimal designs have the

same value of SS.

Proof. When m is of the form 4t − 1, each UE(s2)-optimal Xd is such that any two

rows of the n × (4t) matrix Zd = [1 Xd] are orthogonal. Then ZdZ
T
d = (4t)In and hence

tr[(ZT
d Zd)

2] = tr[(ZdZ
T
d )2] = (4t)2n. On the other hand, XdX

T
d is a matrix with all the

diagonal entries equal to 4t− 1 and all the off-diagonal entries equal to −1. This implies

that tr[(XT
d Xd)

2] = tr[(XdX
T
d )2] is a constant. It follows from (9.8) that 1TXdX

T
d 1 is

also a constant.

Note that Theorem 9.5 is not restricted to designs constructed by the method of

Jones and Majumdar (2014).

(b) Construction for m = 4t− 2.

For m = 4t − 2, according to the construction of Jones and Majumdar (2014), a

UE(s2)-optimal Xd can be obtained by deleting 1 and another column α = (α1, . . . , αn)T

from Y , where Y is as described above. To construct a superior UE(s2)-optimal design,

we have to ensure that 1TααT1 is maximized. This is achieved if α is a least level-balanced

column; that is, one such that the difference of the numbers of times 1 and −1 appear is

the largest.

(c) Construction for m = 4t.

For m = 4t, we need to add a column α to O such that 1TααT1 is minimized; that is,

add a level-balanced or nearly level-balanced column that is not aliased with any column

of O.

(d) Construction for m = 4t+ 1, n < m.

For m = 4t + 1, the construction of Jones and Majumdar (2014) adds to O two

columns α and β such that the resulting design has no aliased columns. However, since

n 6 4t, we have n < m.
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Suppose in the n× 2 matrix [α β], (1, 1), (−1,−1), (1,−1), and (−1, 1) appear a, b,

c, and d times as row vectors, respectively. Then in order for Xd to be UE(s2)-optimal,

a + b and c + d differ by at most one; see Jones and Majumdar (2014). Since Y has

orthogonal rows and Xd is obtained by deleting 1 and adding α and β to Y , by suitably

rearranging the rows of Xd, we have

XdX
T
d =


(m− 1)Ia + Ja,a −3Ja,b −Ja,c −Ja,d

−3Jb,a (m− 1)Ib + Jb,b −Jb,c −Jb,d
−Jc,a −Jc,b (m− 1)Ic + Jc,c −3Jc,d

−Jd,a −Jd,b −3Jd.c (m− 1)Id + Jd,d

 , (9.10)

where Ja,b is the a × b matrix of 1s. By Lemma 9.4, we need to maximize tr[(XdX
T
d )2],

the sum of squares of all the entries of the matrix in (9.10). By direct computation, this

is achieved if ab + cd is maximized. It follows that for given a + b and c + d, a and b

should differ by at most 1, and c and d also should differ by at most 1. Combining this

with that a+ b and c+ d differ by at most 1, we conclude that

(i) for n = 4s, a = b = c = d = s;

(ii) for n = 4s+ 1, {a, b} = {s, s+ 1}, c = d = s or a = b = s, {c, d} = {s, s+ 1};

(iii) for n = 4s+ 2, {a, b} = {c, d} = {s, s+ 1};

(iv) for n = 4s+ 3, {a, b} = {s, s+ 1}, c = d = s+ 1 or a = b = s+ 1, {c, d} = {s, s+ 1}.

(e) Construction for m = 4t+ 1, n = m.

For the case m = 4t+1, as noted earlier, the method of Jones and Majumdar (2014)

cannot be applied to the construction of UE(s2)-optimal designs with n = m. In this

case, instead of adding two columns to O, one can start with a larger Hadamard matrix

H ′ of order 4t+ 4 and delete from H ′ three rows, a column of 1s, and two other columns

in which the number of rows that are (1, 1) or (−1,−1) and the number of rows that are

(1,−1) or (−1, 1) differ by at most 1. Two such columns exist because there must be two

columns such that the corresponding 1 × 2 rows in the first two deleted rows are (1, 1)

and (−1, 1). Then no matter what entries in the third row are, the required condition

holds. In order to maximize tr(XdX
2
d) among the UE(s2)-optimal designs so constructed,
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we need to maximize the sum of squares of the inner products of the 3 × 1 vector of 1s

and the two 3 × 1 columns corresponding to the two deleted columns and three deleted

rows. Theoretically, such a maximum is achieved when the two columns are (1, 1, 1)T

or (−1,−1,−1)T . This is not possible since otherwise the design would not be UE(s2)-

optimal. The next best is to delete two columns with the corresponding column sums in

the deleted rows being ±3 and ±1. The existence of such columns can be seen as follows.

The last 4t + 3 rows of H form an orthogonal array of size 4t + 4 and strength two. It

follows from Theorem 2.1 of Cheng (1995) that, for any three of the 4t + 3 rows, either

each of the eight possible 3× 1 columns of 1s and −1s appears at least once or one of the

three rows is aliased with the component-wise product of the other two rows. Using this,

one can easily establish the existence of the required columns.

9.5 Cases where traditional E(s2)-optimal designs are

also UE(s2)-optimal

Several families of supersaturated designs are known to be E(s2)-optimal:

(a) As mentioned in the paragraph before Remark 9.3, half Hadamad matrices are E(s2)-

optimal. Such designs have n = 2t,m = 4t− 2.

(b) Cheng (1997) showed that a design obtained by deleting an arbitrary factor from any

design in (a) is E(s2)-optimal. Such designs have n = 2t,m = 4t− 3.

(c) Extending the result in (a) to the case of odd n, Nguyen and Cheng (2008) constructed

E(s2)-optimal designs for n = 2t− 1 and m = 4t− 2.

(d) A design obtained by deleting an arbitrary factor from any design in (c) is E(s2)-

optimal. Such designs have n = 2t− 1 and m = 4t− 3.

(e) Let H∗ be obtained by deleting a column of 1s from a 4t × 4t Hadamard matrix,

and let α be a level-balanced column that is not aliased with any column of H∗. Let

Xd∗ = [α H∗]. Then d∗ is E(s2)-optimal. Such designs have n = m = 4t.

(f) Let H∗ be as in part (e) and let α and β be 4t × 1 columns of 1s and −1s such

that neither is aliased with any column of H∗ and each of (1, 1), (1,−1), (−1, 1), and
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(−1,−1) appears t times as a row of [α β]. Let Xd∗ = [α β H∗]. Then d∗ is E(s2)-

optimal. Such designs have n = 4t,m = 4t+ 1.

(g) Let H∗ be obtained by deleting a column of 1s and a row of 1s from a 4t×4t Hadamard

matrix, and Xd∗ = H∗. Then d∗ is E(s2)-optimal. Such designs have n = m = 4t− 1.

(h) Let H∗ be as in (g). Then the design obtained by adding to H∗ a nearly level-balanced

column that is not aliased with any column of H∗ is E(s2)-optimal. Such designs have

n = 4t− 1,m = 4t.

(i) Let H∗ be as in (g) and let α and β be (4t−1)×1 nearly level-balanced columns of 1s

and −1s such that neither is aliased with any column of H∗, each of (1,−1), (−1, 1),

and (−1,−1) appears t times and (1, 1) appears t − 1 times as a row of [α β]. Let

Xd∗ = [α β H∗]. Then d∗ is E(s2)-optimal. Such designs have n = 4t− 1,m = 4t+ 1.

Theorem 9.6. All the E(s2)-optimal designs given in (a) – (i) are also UE(s2)-optimal.

Proof. For each of the cases (a), (c), and (e)-(i), the result follows directly from the lower

bound in Theorem 2.1 of Jones and Majumdar (2014). Let d∗ be the E(s2)-optimal design

specified in (b) and (d). We need to show that it minimizes tr{([1n Xd]
T [1n Xd])

2} =

tr{([1n Xd][1n Xd]
T )2} among all the n×m matrices Xd with 1 and −1 entries. We note

that [1n Xd∗ ] can be obtained by deleting a column of 1’s and a level-balanced (or nearly

level-balanced) column from an n×4t matrix in which any two rows are orthogonal. That

d∗ minimizes tr{([1 Xd][1 Xd]
T )2} among all the n× (4t− 3) matrices Xd with 1 and −1

entries follows from the fact that [1n Xd∗ ][1n Xd∗ ]
T is of the form[

A 0

0 B

]
,

where all the diagonal entries of A and B are 4t − 2, all their off-diagonal entries have

absolute values 2, and the orders of A and B differ by at most 1.

The UE(s2)- and E(s2)-optimal designs listed in (a)-(i) are very easy to construct

and, since they are level-balanced or nearly level-balanced, SS is automatically minimized.

For example, if we want to construct a UE(s2)-optimal design in case (a) by using the

method of Jones and Majumdar (2014), then we would have to start with a rather large

4t × 4t Hadamard matrix and choose 2t rows from the 4t rows. An arbitrary UE(s2)-

optimal design so constructed may have a large SS and not so good projection properties.
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In contrast, good designs can be obtained very easily by the simple half Hadamard matrix

construction. When t is even, an E(s2)- and UE(s2)-optimal design in this case can also

be constructed by putting together two 2t× (2t− 1) matrices, each of which is obtained

by deleting a column of 1’s from a 2t×2t Hadamard matrix. Jones and Majumdar (2014)

also observed that such designs are both E(s2)- and UE(s2)-optimal.

Remark 9.7. It follows from the definition of UE(s2)-optimal designs that level-balanced

or nearly level-balanced UE(s2)-optimal designs, i.e., UE(s2)-optimal designs with SS = 0

(when n is even) or m (when n is odd) are also E(s2)-optimal. This leaves the possibility

of constructing previously unknown E(s2)-optimal designs through our construction of

superior UE(s2)-optimal designs.

For d ∈ DR(m,n), the inner product of each column of Xd and 1 is 0 or −1 when

n is even or odd, respectively. Using this, it is easy to see that (m + 1)UEd(s
2) =

(m − 1)Ed(s
2) + 1 + (−1)n+1. Thus, since mind∈DR(m,n)UEd(s

2) ≥ mind∈DU (m,n)UEd(s
2),

it follows that

(m+ 1)mind∈DU (m,n)UEd(s
2) ≤ (m− 1)mind∈DR(m,n)Ed(s

2) + 1 + (−1)n+1. (9.11)

It follows easily from (9.11) that a necessary and sufficient condition for E(s2)-

optimal designs over DR(m,n) to be UE(s2)-optimal over DU(m,n) is that equality holds

in (9.11). In this case, the E(s2)-optimal designs over DR(m,n) are also UE(s2)-optimal

over DU(m,n). In particular, for any m and even n, (9.11) is the same as (2.11) of

Jones and Majumdar (2014), and if a lower bound on Ed(s
2) over DR(m,n) multiplied

by (m − 1)/(m + 1) is equal to the corresponding lower bound on UEd(s
2) of Jones and

Majumdar (2014), then E(s2)-optimal designs that achieve the lower bound on E(s2) are

also UE(s2)-optimal over DU(m,n). The parameter combinations (m,n) for which such

equality holds for the sharpest available lower bounds on E(s2) given by Das et al. (2008)

can be determined via some tedious arguments. This leads to the following result, a proof

of which is given in the Appendix E.

Theorem 9.8. For even n, E(s2)-optimal designs achieving the lower bounds on Ed(s
2)

given in Das et al. (2008) are also UE(s2)-optimal if and only if one of the following holds:

(i) n ≡ 0 (mod 2), m = 2(n− 1),

(ii) n ≡ 0 (mod 4), m = n,
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(iii) n ≡ 0 (mod 4), m = 4h+ 1, n/4 ≤ h ≤ (n− 2)/2,

(iv) n ≡ 2 (mod 4), m = 8h+ 1, (n+ 2)/8 ≤ h ≤ (n− 2)/4.

For example, cases (a), (e), and (f) of Theorem 9.6 correspond to (i), (ii), and (iii)

with h = n/4, respectively, in Theorem 9.8, and case (b) of the former corresponds to

(iii) with h = (n− 2)/2 and (iv) with h = (n− 2)/4 in Theorem 9.8.

Let L(m,n) be the lower bound on Ed(s
2) over d ∈ DR(m,n) derived by Das et al.

(2008). It is shown in the proof of Theorem 9.8 that [(m − 1)/(m + 1)]L(m,n) >

mind∈DU (m,n)UEd(s
2). The four cases in Theorem 9.8 are when the equality holds. In

particular, if a design d∗ is E(s2)-optimal over DR(m,n), then we have [(m − 1)/(m +

1)]Ed∗(s
2) > [(m − 1)/(m + 1)]L(m,n) > mind∈DU (m,n)UEd(s

2). If d∗ is also UE(s2)-

optimal, then we must have [(m− 1)/(m+ 1)]L(m,n) = mind∈DU (m,n)UEd(s
2). It follows

that m and n must fall in one of the four cases in Theorem 9.8. This yields a neces-

sary condition for E(s2)-optimal designs over DR(m,n) to be also UE(s2)-optimal over

DU(m,n).

9.6 Concluding Remarks

The UE(s2)-criterion skips the step of minimizing nonorthogonality between the intercept

and the main effects. Jones and Majumdar (2014) argued that a consequence of this

step is that “the intercept is estimated with the highest efficiency”, but “an unintended

consequence of the high efficiency of intercept estimation is that it comes at the expense

of precision of main effect estimation.” It is our opinion that minimizing nonorthogonality

between the intercept and the main effects also helps the estimation of main effects and

is an important step for achieving good projection properties. Also, minimizing UEd(s
2)

alone produces a large class of UE(s2)-optimal designs that requires secondary criteria to

discriminate. An arbitrary UE(s2)-optimal design may have poor projection properties.

We have proposed secondary criteria to identify good UE(s2)-optimal designs. A smaller

value of SS along with minimum Q are common features of many UE(s2)-optimal designs

with good projection properties. Although no simple surrogate criterion is expected to

always produce the best design, minimizing SS followed by minimizing Q is an effective

way of getting UE(s2)-optimal designs with good projection properties.
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There is no simple general method of constructing E(s2)-optimal designs. We provide

easy construction of superior UE(s2)-optimal designs that are almost as efficient as E(s2)-

optimal designs (where available) with respect to the Df -criteria.
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Chapter 10

Lower bounds on the sizes of

t-(v, k, λ) coverings

This chapter is based on the following work:

Horsley and Singh (2018): Horsley, Daniel; Singh, Rakhi. New lower bounds for t-

coverings. J. Combin. Des 26 (2018), no. 8, 369–386.

10.1 Introduction

For our purposes, an incidence structure is a pair (V,B) where V is a set of points and B is

a multiset of subsets of V called blocks. For positive integers t, v, k and λ with t 6 k 6 v,

a t-(v, k, λ) covering is an incidence structure (V,B) such that |V | = v, |B| = k for all

B ∈ B, and each t-subset of V is contained in at least λ blocks in B. If each t-subset of V

is contained in exactly λ blocks in B, then (V,B) is a t-(v, k, λ) design. For an incidence

structure (V,B) and a subset X ⊆ V , define b(X) to be the number of blocks in B that

contain X. Coverings were introduced for t = 2 by Erdős and Rényi (1956) and then

generalised to arbitrary t by Erdős and Hanani (1963).

Usually we are interested in finding coverings with as few blocks as possible. The

covering number Cλ(v, k, t) is the minimum number of blocks in any t-(v, k, λ) covering.

When λ = 1 we omit the subscript. It is convenient to set Cλ(v, k, 0) = λ for all v, k and

λ. In Rödl (1985) introduced the famous nibble method to show that C(v, k, t) ∼
(
v
t

)
/
(
k
t

)
as v →∞.

Observe that if (V,B) is a t-(v, k, λ) covering and X is a subset of V with |X| 6 t,

115



then (V \X,B′), where B′ = {B \X : B ∈ B, X ⊆ B}, is a (t− |X|)-(v− |X|, k− |X|, λ)

covering and hence

b(X) > Cλ(v − |X|, k − |X|, t− |X|). (10.1)

Using this fact with |X| = 1 and some simple counting gives

Cλ(v, k, t) >
⌈v
k
Cλ(v − 1, k − 1, t− 1)

⌉
. (10.2)

Iterating this inequality yields the Schönheim bound (Schönheim, 1964) which states that

Cλ(v, k, t) > Lλ(v, k, t) where

Lλ(v, k, t) =

⌈
v

k

⌈
v − 1

k − 1
· · ·
⌈
v − t+ 2

k − t+ 2

⌈
λ(v − t+ 1)

k − t+ 1

⌉⌉
· · ·
⌉⌉

.

Furthermore, Mills and Mullin (1992) have shown that if vCλ(v − 1, k − 1, t− 1) 6≡

0 (mod k) and Cλ(v − 1, k − 1, t − 1) = (
(
v−1
r−1

)
/
(
k−1
r−1

)
)Cλ(v − r, k − r, t − r) for some

r ∈ {2, . . . , t}, then

Cλ(v, k, t) >
⌈v
k

(Cλ(v − 1, k − 1, t− 1) + r)
⌉
. (10.3)

This result is easiest to apply in the case r = t = 2, when it states that if λ(v − 1) ≡

0 (mod k − 1) and λv(v − 1) ≡ 1 (mod k), then Cλ(v, k, t) > Lλ(v, k, t) + 1. A result

(Theorem 6.5) of Keevash (2014) implies that, for a fixed t, k and λ and for all sufficiently

large v, Cλ(v, k, t) = hλ(v, k, t)/
(
k
t

)
where hλ(v, k, t) is the size of a smallest t-(v, t, λ)

covering (V,B) with the property that
(
k−|X|
t−|X|

)
divides b(X) for each subset X of V with

|X| 6 t. In the case t = 2, this establishes that the Schönheim bound with the Mills and

Mullin improvement is tight for all sufficiently large v. Glock et al. (2016) have recently

extended Keevash’s main result.

Our interest here is principally in establishing lower bounds for covering numbers

Cλ(v, k, t) when k is a significant fraction of v. Exact values for Cλ(v, k, t) have been

determined when (k, t) ∈ {(3, 2), (4, 2)}, when (t, λ) = (2, 1) and v 6 13
4
k, and for most

cases when (t, λ) = (3, 1) and v 6 8
5
k (see Gordon and Stinson (2007)). In the case

t = 2, a number of results have been proved which improve on the Schönheim bound in

various cases where k is a significant fraction of v Bluskov et al. (2000); Bose and Connor

(1952); Bryant et al. (2011); Füredi (1990); Todorov (1984, 1989). A number of other

lower bounds for specific parameter sets, which have been mostly obtained by computer

searches, are available in literature (see Gordon (n.d.); Gordon and Stinson (2007)). For
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surveys on coverings see Gordon and Stinson (2007); Mills and Mullin (1992). Gordon

maintains a repository for small coverings Gordon (n.d.).

Fisher’s inequality (Fisher, 1940) famously states that every 2-(v, k, λ) design with

v > k has at least v blocks. Ray-Chaudhuri and Wilson (1975) generalised this result to

higher t by showing that every t-(v, k, λ) design with v > k + s has at least
(
v
s

)
blocks

for any positive integer s 6 b t
2
c. Subsequently Wilson (1982) gave an alternate proof

of this generalised result using so-called higher incidence matrices. In this chapter we

demonstrate how an approach based on these matrices can be used to obtain improved

lower bounds on covering numbers Cλ(v, k, t). Our results generalise both the results of

Ray-Chaudhuri and Wilson (1975) and the more recent results of Horsley (2017) which

established lower bounds for Cλ(v, k, 2).

To avoid triviality, we often consider only t-(v, k, λ) coverings with 2 < k < v. The

bounds we prove in this chapter apply to covering numbers Cλ(v, k, t) for arbitrary λ.

However in our discussions, as in most of the literature concerning coverings with t > 3,

we will concentrate on the case λ = 1. The methods in this chapter should also be

applicable to packings, but we do not pursue this here.

In the next section we discuss our proof strategy and prove some preliminary results.

In Sections 10.3, 10.5 and 10.6 we then prove and discuss bounds that generalise Theorems

1, 11 and 14 of Horsley (2017) respectively. The results in Sections 10.5 and 10.6 make use

of a result of Caro and Tuza (1991) which guarantees an m-independent set of a certain

size in a multigraph with a specified degree sequence. In Section 10.4 we exhibit infinite

families of parameter sets t-(v, k, λ) for which our results improve on the best bounds

previously known.

10.2 Strategy and preliminary results

To prove our results we will combine ideas from Horsley (2017) with those from a proof

by Wilson (1982) of the generalisation of Fisher’s inequality to higher t. The methods in

Horsley (2017) were, in turn, inspired by a proof by Bose (1949) of Fisher’s inequality.

Following Wilson (1982), we make use of higher incidence matrices. For a nonnegative

integer s, the s-incidence matrix of an incidence structure (V,B) is the matrix whose rows

are indexed by the s-subsets of V , whose columns are indexed by the blocks in B, and
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where the entry in row X and column B is 1 if X ⊆ B and 0 otherwise. For a set V and

a nonnegative integer i, let
(
V
i

)
denote the set of all i-subsets of V .

We will make use of standard facts about positive definite matrices (see (Hogben,

2013, §9.4)). If A is a square matrix whose rows and columns are indexed by the elements

of a set Z, then a principal submatrix of A is a square submatrix whose rows and columns

are both indexed by the same subset Z ′ of Z. We say a real matrix is diagonally dominant

if, in each of its rows, the magnitude of the diagonal entry is strictly greater than the sum

of the magnitudes of the other entries in that row. It follows easily from the well-known

Gershgorin circle theorem (see (Hogben, 2013, p16-6)) that real diagonally dominant

matrices are positive definite. Our bounds rest on the following simple observations.

Lemma 10.1. Let (V,B) be an incidence structure and let A be the s-incidence matrix

of (V,B) for some positive integer s. Then

(i) AAT is the symmetric matrix whose row and columns are indexed by
(
V
s

)
and where

the entry in row X and column Y is b(X ∪ Y ); and

(ii) |B| > rank(AAT ).

Proof. Part (i) follows from the definition of matrix multiplication. Because A has only

|B| columns, rank(A) 6 |B|. Thus |B| > rank(A) > rank(AAT ), proving part (ii).

By Lemma 10.1 we can bound the number of blocks in a covering by bounding

rank(AAT ). Our strategy to bound this rank is as follows. We first write AAT = P +M

where P is positive semidefinite. We then find a diagonally dominant, and hence positive

definite, principal submatrix M ′ of M . Because every principal submatrix of P is positive

semidefinite, the submatrix of AAT with row and column indices corresponding to those

of M ′ is positive definite and hence full rank. Thus the rank of AAT is at least the order

of M ′.

We choose P so that the entry in row X and column Y for X 6= Y is b|X∪Y |, where

bs+1, . . . , b2s are positive integers chosen so that each i-subset of V is in at least bi blocks

in B for i ∈ {s+ 1, . . . , 2s}. The entries on the lead diagonal of P are chosen to be small

as possible, given that P must be positive semidefinite. We establish that P is indeed

positive semidefinite using an approach from Wilson (1982) in which P is written as a

nonnegative linear combination of Gram matrices.

We will require the following simple identity for binomial coefficients.
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Lemma 10.2. Let i and ` be nonegative integers with i 6 `. Then

∑̀
j=i

(−1)i+j
(
`
j

)(
j
i

)
=

{
0, if i < `;

1, if i = `.

Proof. The multinomial theorem implies that the coefficient of xi in the expansion of

(x− 1 + 1)` is
`−i∑
j′=0

(
`

i+j′

)(
i+j′

i

)
(−1)j

′
=
∑̀
j=i

(−1)i+j
(
`
j

)(
j
i

)
,

where the equality is obtained by substituting j = i + j′. So because (x − 1 + 1)` = x`,

the result now follows by equating the coefficients of xi.

The next lemma establishes that if A is the higher incidence matrix of a t-(v, k, λ)

covering, then AAT has a specific form that we can exploit. Subsequent results in this

chapter will often explicitly assume the hypotheses of Lemma 10.3 and use its notation.

Lemma 10.3. Let t, v, k, λ and s be positive integers such that t < k < v and s 6 b t
2
c.

Let b2s, b2s−1, . . . , bs be positive integers such that

(i) Lλ(v − 2s, k − 2s, t− 2s) 6 b2s 6 Cλ(v − 2s, k − 2s, t− 2s);

(ii) d v−i
k−ibi+1e 6 bi 6 Cλ(v − i, k − i, t− i) for i = 2s− 1, 2s− 2, . . . , s; and

(iii) aj > 0 for j ∈ {0, . . . , s}, where aj =
∑j

i=0(−1)i+j
(
j
i

)
b2s−i.

If (V,B) is a t-(v, k, λ) covering and A is the s-incidence matrix of (V,B), then b(Z) > b|Z|

for any Z ⊆ V with |Z| ∈ {s, . . . , 2s} and AAT = P + M for matrices P = (pXY ) and

M = (mXY ) such that

pXY =

{
b|X∪Y | if X 6= Y

bs − as if X = Y
mXY =

{
b(X ∪ Y )− b|X∪Y | if X 6= Y

as + b(X)− bs if X = Y
.

Furthermore, the following hold.

(a) P =
∑s−1

j=0 ajQ
T
j Qj, where Qj is the j-incidence matrix of the incidence structure

(V,
(
V
s

)
). Hence P is positive semidefinite.

(b) For any X ∈
(
V
s

)
,∑

Y ∈(Vs)\{X}

mXY =
∑

Y ∈(Vs)\{X}

(
b(X ∪ Y )− b|X∪Y |

)
= (b(X)− bs)

((
k
s

)
− 1
)

+ d

where d = bs(
(
k
s

)
− 1)−

∑s−1
i=0

(
s
i

)(
v−s
s−i

)
b2s−i is a nonnegative integer.
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Proof. Let Z ⊆ V with |Z| ∈ {s, . . . , 2s}. That b(Z) > b|Z| follows because b|Z| 6

Cλ(v − |Z|, k − |Z|, t − |Z|) by (i) and (ii) and Cλ(v − |Z|, k − |Z|, t − |Z|) 6 b(Z) by

(10.1). That AAT = P +M follows immediately from Lemma 10.1 (i) and the definitions

of P and M . Let V =
(
V
s

)
and V0 = {X ∈ V : b(X) = bs}.

We prove (a). Observe that for j ∈ {0, . . . , s}, QT
j Qj is the matrix whose rows and

columns are indexed by
(
V
s

)
and whose (X, Y ) entry is

(|X∩Y |
j

)
for all X, Y ∈

(
V
s

)
. In

particular, QT
sQs = I. Let

Q′ =
s∑
j=0

ajQ
T
j Qj = asI +

s−1∑
j=0

ajQ
T
j Qj.

It suffices to show that Q′ = asI + P .

Let X, Y ∈
(
V
s

)
, let ` = |X ∩ Y |, and note that ` 6 s. For j ∈ {0, . . . , s}, the (X, Y )

entry of QT
j Qj is

(
`
j

)
. Thus the (X, Y ) entry of Q′ is

s∑
j=0

aj
(
`
j

)
=

s∑
j=0

j∑
i=0

(−1)i+j
(
`
j

)(
j
i

)
b2s−i =

s∑
i=0

s∑
j=i

(−1)i+j
(
`
j

)(
j
i

)
b2s−i.

So it follows from Lemma 10.2 that the (X, Y ) entry of Q′ is b2s−` = b|X∪Y |. Thus

Q′ = asI + P .

Now we prove (b). For each X ∈ V ,∑
Y ∈V\{X}

b(X ∪ Y ) = b(X)
((
k
s

)
− 1
)

because each block that contains X contributes
(
k
s

)
− 1 to this sum. Also for each X ∈ V ,

∑
Y ∈V\{X}

b|X∪Y | =
s−1∑
i=0

(
s
i

)(
v−s
s−i

)
b2s−i

because, for each i ∈ {0, . . . , s− 1}, |{Y : |X ∩ Y | = i}| =
(
s
i

)(
v−s
s−i

)
. Together, these facts

imply that (b) holds provided d is nonnegative. By (ii), bi+1 6 k−i
v−ibi for i = 2s− 1, 2s−

2, . . . , s and so it can be seen that b2s−i 6 (
(
k−s
s−i

)
/
(
v−s
s−i

)
)bs for i = s−1, s−2, . . . , 0. Thus,

s−1∑
i=0

(
s
i

)(
v−s
s−i

)
b2s−i 6 bs

s−1∑
i=0

(
s
i

)(
k−s
s−i

)
= bs(

(
k
s

)
− 1),

and it follows that d > 0.

Remark 10.4. In many cases condition (ii) of Lemma 10.3 implies condition (iii). Specif-

ically, we claim that if condition (ii) is satisfied then aj > 0 for j ∈ {0, . . . ,min(b v
k
c, s)}.
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This means that we can ignore condition (iii) whenever v > sk. Certainly, a0 = b2s > 1.

To see that the rest of our claim is true, fix j ∈ {1, . . . ,min(b v
k
c, s)}, and let δ = 2 if j is

even and δ = 1 if j is odd. Then, pairing consecutive terms in the definition of aj, we see

that

aj >
∑

i∈{δ,δ+2,...,j}

((
j
i

)
b2s−i −

(
j
i−1

)
b2s−i+1

)
.

For i ∈ {δ, δ + 2, . . . , j}, using condition (ii),

(
j
i

)
= j−i+1

i

(
j
i−1

)
> 1

j

(
j
i−1

)
and b2s−i >

⌈
v−2s+i
k−2s+i

b2s−i+1

⌉
> v

k
b2s−i+1 > jb2s−i+1,

and hence
(
j
i

)
b2s−i >

(
j
i−1

)
b2s−i+1. Thus aj > 0.

It follows from Lemma 10.3(a) that the diagonal entries bs − as of P are at least

a0 = b2s > 0. Hence bs > as. This fact will be used several times in later sections. We

are now ready to prove Lemma 10.5, which forms the basis of all the lower bounds that

we establish in this chapter.

Lemma 10.5. Suppose the hypotheses of Lemma 10.3 hold. If there is a subset S of
(
V
s

)
such that, for each X ∈ S,∑

Y ∈S\{X}

(
b(X ∪ Y )− b|X∪Y |

)
< as + b(X)− bs,

then |B| > |S|.

Proof. By Lemma 10.1 (ii), it suffices to show that the principal submatrix of AAT whose

rows and columns are indexed by S is positive definite and hence full rank.

By Lemma 10.3, AAT can be written as the sum of a positive semidefinite matrix

P and a matrix M whose (X, Y ) entry is the nonnegative integer b(X ∪ Y ) − b|X∪Y | for

all distinct X, Y ∈
(
V
s

)
and whose (X,X) entry is the nonnegative integer as + b(X)− bs

for all X ∈
(
V
s

)
. Because every principal submatrix of P is positive semidefinite, it in

fact suffices to show that the principal submatrix M ′ of M whose rows and columns are

indexed by S is positive definite. Given the hypothesis of the lemma that∑
Y ∈S\{X}

(
b(X ∪ Y )− b|X∪Y |

)
< as + b(X)− bs,

M ′ is diagonally dominant and hence it is positive definite by the Gershgorin circle theo-

rem (see (Hogben, 2013, p.16-6)).
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10.3 Basic bound

Here we use Lemma 10.5 to prove the simplest and most easily stated of our results, and

then discuss when it can be usefully applied.

Theorem 10.6. Suppose the hypotheses of Lemma 10.3 hold and that d < as. Then

Cλ(v, k, t) >

⌈(
v
s

)
(bs + 1)(
k
s

)
+ 1

⌉
.

Proof. Let (V,B) be a t-(v, k, λ) covering. Let V =
(
V
s

)
and V0 = {X ∈ V : b(X) = bs}.

Because d < as, it follows from Lemma 10.3(b) that we can apply Lemma 10.5 with

S = V0 and hence conclude that |B| > |V0|.

Since each block in B covers
(
k
s

)
sets in V , we have that

∑
X∈V b(X) = |B|

(
k
s

)
. Thus

|{X ∈ V : b(X) > bs}| 6 |B|
(
k
s

)
−
(
v
s

)
bs

because b(X) > bs for each X ∈ V . It follows that |B| > |V0| >
(
v
s

)
− (|B|

(
k
s

)
−
(
v
s

)
bs). A

simple calculation now establishes that

|B| >
(
v
s

)
(bs + 1)(
k
s

)
+ 1

.

It is useless to apply Theorem 10.6 with bs chosen to be less than the best known

lower bound for Cλ(v − s, k − s, t − s), because the bound of Theorem 10.6 is always

inferior to the bound given by s iterated applications of (10.2) to bs + 1 (note this latter

bound is at least dbs
(
v
s

)
/
(
k
s

)
e). Furthermore, from the definitions of d and as we have that

as − d =

(
s−1∑
i=0

(
s
i

)
(
(
v−s
s−i

)
+ (−1)s−i)b2s−i

)
−
((
k
s

)
− 2
)
bs, (10.4)

which is increasing in b2s−i for each i ∈ {0, . . . , s− 1}. Thus, in the absence of condition

(iii) of Lemma 10.3, it can be seen that when attempting to apply Theorem 10.6 we only

need consider choosing bi to be the best known lower bound on Cλ(v − i, k − i, t − i)

for i ∈ {s, . . . , 2s}. Throughout the rest of the chapter, we shall refer to this as the

natural choice for the bi. Condition (iii) complicates the picture somewhat, but in view

of Remark 10.4 this is only of concern when v 6 (s − 1)k (note that as > d > 0 by our

hypotheses and Lemma 10.3). In many cases the best known lower bounds are all given

by the Schönheim bound and in these cases the natural choice of the bi amounts to taking

bi = Lλ(v − i, k − i, t− i) for i ∈ {s, . . . , 2s}.
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For each of the subsequent lower bounds we establish in this chapter (see Theo-

rems 10.15 and 10.18), we will also show that we only need consider the natural choice

for bs. With this choice fixed, the natural choice for the remaining bi will minimise d and

maximise as − d, by the definition of d and (10.4). Considering this and Remark 10.4,

we believe that taking the natural choice for the bi in our theorems will almost always

produce the best results.

For the Theorem 10.6 bound to exceed the bound obtained by s iterated applications

of (10.2) to bs, it must be the case that bs <
(
k
s

)
(again note the latter bound is at

least dbs
(
v
s

)
/
(
k
s

)
e). Furthermore, the other lower bounds we establish in this chapter will

explicitly require bs <
(
k
s

)
. We have bs <

(
k
s

)
only when v < ( k

t

s!λ
)1/(t−s) because

(
k
s

)
6 ks

s!

and bs > Lλ(v− s, k− s, t− s) > λ
(
v−s
t−s

)
/
(
k−s
t−s

)
> λ( v

k
)t−s. So none of the lower bounds of

this chapter are of use when v > ( k
t

s!λ
)1/(t−s).

Theorem 10.6 implies Ray-Chaudhuri and Wilson (1975) generalisation of Fisher’s

inequality. If there exists a t-(v, k, λ) design (V,B) with v > k+s for some positive integer

s 6 b t
2
c, then applying Theorem 10.6 with bi = Lλ(v− i, k− i, t− i) = λ

(
v−i
t−i

)
/
(
k−i
t−i

)
for i ∈

{s, . . . , 2s} we have Cλ(v, k, t) >
(
v
s

)
(bs+1)/(

(
k
s

)
+1) (the hypotheses are satisfied because

d = 0 and aj = λ
(
v−2s
k−2s+j

)
/
(
v−t
k−t

)
for j ∈ {0, . . . , s}). But, because (V,B) is a design, it has

exactly
(
v
s

)
bs/
(
k
s

)
blocks. So we can conclude that

(
v
s

)
bs/
(
k
s

)
>
(
v
s

)
(bs + 1)/(

(
k
s

)
+ 1) which

implies bs >
(
k
s

)
and hence that (V,B) has at least

(
v
s

)
blocks.

10.4 Infinite families of improvements

In this section we first give, in Lemma 10.7, an infinite family of parameter sets for

which applying Theorem 10.6 with s = 2 yields an improvement over the Schönheim

bound. Then we exhibit, in Theorem 10.10, an infinite family of parameter sets for which

applying Theorem 10.6 with s = 1 establishes exact covering numbers. In this section we

will often use the simple observation that, for given t, k and λ, Cλ(v, k, t) 6 Cλ(v
′, k, t)

when v 6 v′.

Lemma 10.7. Let m > 6 be an integer, and let v = m2(m−2)+4 and k = m(m−1)+2.

An application of Theorem 10.6 with s = 2 establishes that C(v, k, 5) > L(v, k, 5)+m(m−

4)− 10.
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Proof. Let `i = L(v − i, k − i, t− i) for i = 4, 3, 2. We can successively calculate

`4 = d v−4
k−4
e = dm− 1 + m−2

m(m−1)−2
e = m

`3 = d v−3
k−3

`4e = m(m− 1)

`2 = d v−2
k−2

`3e = m2(m− 2) + 2.

We will apply Theorem 10.6 with s = 2 and bi = `i for i = 4, 3, 2. Routine cal-

culations show that, in the terminology of Lemma 10.3, a0 = m, a1 = m(m − 2),

a2 = m3 − 4m2 + 3m + 2, and d = 0. Using this, and recalling that m > 6, it can

be seen that the hypotheses of Theorem 10.6 are satisfied and hence

C(v, k, 5) >
⌈

v(v−1)
k(k−1)+2

(`2 + 1)
⌉
.

This implies that C(v, k, 5) > m5 − 4m4 + 21m2 − 14m− 55.

On the other hand,

L(v, k, 5) = d v
k
d v−1
k−1

`2ee

and for m > 14 we can calculate that this is equal to m5− 4m4 + 20m2− 10m− 45. Thus

it can be seen that the lemma holds for m > 14, and it is routine to check it holds for

6 6 m 6 13.

Further routine calculations establish that, for v and k as in Lemma 10.7, neither

the result of Mills and Mullin (1992) nor the results of this chapter (including those in

Sections 10.5 and 10.6) give improvements over the Schönheim bound for the parameter

sets C(v− 1, k− 1, 4), C(v− 2, k− 2, 3) or C(v− 3, k− 3, 2). We believe that, in general,

no bound better than the Schönheim bound was previously known for this family of

parameter sets. Since d = 0 in our application of Theorem 10.6, we could make a slight

further improvement to this result by instead applying Theorem 10.18(a) below.

We now move on to show that Theorem 10.6 with s = 1 can be applied to establish

that certain coverings constructed from affine planes are optimal, and thus obtain a family

of exact covering numbers.

Let q be a prime power. It is well known (see Gordon et al. (1995), for example)

that if we take V to be the qt points of the affine geometry AG(t, q) and B to be the set

of its (t−1)-flats, then (V,B) is a t-(qt, qt−1, 1) covering with q( q
t−1
q−1

) blocks. Further, it is

straightforward to calculate that L(qt, qt−1, t) = q( q
t−1
q−1

) and hence C(qt, qt−1, t) = q( q
t−1
q−1

).

The following lemma is based on a well-known “blow up” construction for coverings.
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Lemma 10.8. Let m, t and q be positive integers such that q is a prime power. Then

C(v,mqt−1, t) 6 q( q
t−1
q−1

) for each v 6 mqt.

Proof. Let (U,A) be the t-(qt, qt−1, 1) covering with q( q
t−1
q−1

) blocks obtained from the

(t − 1)-flats of AG(t, q). Let M be a set of m elements, let V = U ×M and let B =

{A ×M : A ∈ A}. Then (V,B) is an (mqt,mqt−1, 1)-covering with q( q
t−1
q−1

) blocks. The

result now follows because C(v − 1, k, t) 6 C(v, k, t) for any parameter set (v, k, t).

Next we determine the value of the Schönheim bound in the cases we are concerned

with.

Lemma 10.9. Let v, m, q and t be positive integers such that q is a prime power,

m > 2q + 2, 2 6 t < mqt−1, and mqt − 2q + 3 6 v 6 mqt. Let `t = 1 and let

`i = L(v − i,mqt−1 − i, t− i) for i = t− 1, t− 2, . . . , 0. Then

(i) `i = qt−i+1−1
q−1

for i = t− 1, t− 2, . . . , 0;

(ii) `1 =


qt−1
q−1

if mqt − q + 2 6 v 6 mqt

q( q
t−1−1
q−1

) if mqt − 2q + 3 6 v 6 mqt − q + 1;

(iii) `0 =

 q( q
t−1
q−1

) if mqt − q + 2 6 v 6 mqt

q2( q
t−1−1
q−1

) if mqt − 2q + 3 6 v 6 mqt − q + 1.

Proof. Let c be the integer such that v = mqt − q + 1 + c. By definition, for i =

t− 1, t− 2, . . . , 0,

`i =

⌈
(mqt − q + 1 + c− i)`i+1

mqt−1 − i

⌉
= q`i+1 +

⌈
((i− 1)(q − 1) + c)`i+1

mqt−1 − i

⌉
. (10.5)

Since c ∈ {−q + 2, . . . , q − 1}, (10.5) implies that `i = q`i+1 + 1 for i > 2, provided

`i+1 6 mqt−1−i
i(q−1)

. Using this fact, it is easy to prove (i) by induction on i. In particular,

we have `2 = qt−1−1
q−1

, and applying (10.5) once more establishes (ii). Applying (10.5) one

final time using (ii) and the hypothesis m > 2q + 2 establishes (iii).

Together, Lemmas 10.8 and 10.9 establish the known result that, under the hy-

potheses of Lemma 10.9, C(v,mqt−1, t) = q( q
t−1
q−1

) for v ∈ {mqt − q + 2, . . . ,mqt}. By

applying Theorem 10.6 with s = 1 we can strengthen this result to cover some cases

where v 6 mqt − q + 1.
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Theorem 10.10. Let m, q and t be positive integers such that q is a prime power,

m > 2q + 2 and 2 6 t < mqt−1. Then C(v,mqt−1, t) = q( q
t−1
q−1

) for each integer v such

that

mqt − q + 1− z 6 v 6 mqt where z = min

(
q − 2,

⌊
m(q − 1)qt−1

qt − 1

⌋
− 2q + 1

)
.

Proof. Note that z > 0 because m > 2q+ 2. Let v′ = mqt− q+ 1− z. It suffices to show

that C(v′,mqt−1, t) > q( q
t−1
q−1

), because then, for each integer v such that v′ 6 v 6 mqt,

we have

q

(
qt − 1

q − 1

)
6 C(v′,mqt−1, t) 6 C(v,mqt−1, t) 6 C(mqt,mqt−1, t) 6 q

(
qt − 1

q − 1

)
,

where the final inequality follows from Lemma 10.8.

For i ∈ {0, 1, 2}, let `i = L(v′ − i,mqt−1 − i, t − i). By Lemma 10.9, `1 = q( q
t−1−1
q−1

)

and `2 = qt−1−1
q−1

. To bound C(v′,mqt−1, t) below, we will apply Theorem 10.6 with s = 1,

b1 = `1 and b2 = `2. Obviously this choice satisfies hypotheses (i) and (ii) of Lemma 10.3.

Because v′ > mqt−2q+ 3, a simple calculation establishes that `1(mqt−1−2) < `2(v′−2)

and thus d < a1 (because d > 0, this also implies that a1 > 0 and that hypothesis (iii) of

Lemma 10.3 holds). So, by Theorem 10.6, we have

C(v, k, t) >

⌈
v′(`1 + 1)

mqt−1 + 1

⌉
= q(`1 + 1)−

⌊
(2q + z − 1)(`1 + 1)

mqt−1 + 1

⌋
.

A routine calculation shows that the second upper bound on z in our hypotheses is

equivalent to (2q + z − 1)(`1 + 1) 6 mqt−1 and hence C(v, k, t) > q(`1 + 1). Observing

that q(`1 + 1) = q( q
t−1
q−1

) completes the proof.

Corollary 10.11. Let m, q and t be positive integers such that q is a prime power,

m > 3q and 2 6 t < mqt−1. Then C(v,mqt−1, t) = q( q
t−1
q−1

) for each integer v such that

mqt − 2q + 3 6 v 6 mqt.

Proof. This follows by observing that, in Theorem 10.10, z = q − 2 if m > 3q.

10.5 Bounds for the case d > as

Using the terminology of Lemma 10.3, Theorem 10.6 applies only when d < as. In this

section we will establish a bound that can be applied when d > as. For a multigraph

G and a subset S of V (G), let G[S] denote the sub-multigraph of G induced by S. In
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this section and the next, we will make use of the notion of an n-independent set in a

multigraph G, which is defined as a subset S of V (G) such that G[S] has maximum degree

strictly less than n. Setting n = 1 recovers the usual notion of an independent set. Let

µG(xy) denote the number of edges between vertices x and y in a multigraph G.

If M is the matrix defined in Lemma 10.3 and G is the multigraph whose adjacency

matrix agrees with M in its off-diagonal entries, then an n-independent set in G corre-

sponds to a principal submatrix of M in which the off-diagonal entries in each row sum

to less than n. This allows us to use results that guarantee an n-independent set in a

multigraph to find the diagonally dominant principal submatrix of M that we require. In

particular we will use the following result of Caro and Tuza (1991).

Theorem 10.12 (Caro and Tuza (1991)). Let n be a positive integer and let G be a

multigraph. There is an n-independent set in G of size at least d
∑

u∈V (G) fn(degG(u))e

where

fn(x) =

{
1− x

2n
, if x 6 n;

n+1
2(x+1)

, if x > n.

We next prove a technical lemma that enables us to deduce bounds of a specific form

that we denote by CB(v,k,λ;s)(α, β). We will state the bounds in this section and the next

in terms of this notation. Observe that the bound of Theorem 10.6 is CB(v,k,λ;s)(1, 0).

Lemma 10.13. Let s and bs be positive integers and let α and β be nonnegative real

numbers such that α > 2β. Suppose that any t-(v, k, λ) covering (V,B) has b(X) > bs

for each X ∈
(
V
s

)
, and |B| > α|V0| + β|V1| where Vi = {X ∈

(
V
s

)
: b(X) = bs + i} for

i ∈ {0, 1}. Then

Cλ(v, k, t) >
⌈
CB(v,k,λ;s)(α, β)

⌉
where CB(v,k,λ;s)(α, β) =

bs(α− β)
(
v
s

)
+ α

(
v
s

)
(α− β)

(
k
s

)
+ 1

.

Proof. Let (V,B) be a t-(v, k, λ) covering. Let V =
(
V
s

)
, x = |B|

(
k
s

)
− bs

(
v
s

)
and vi = |Vi|

for i ∈ {0, 1}. Note that v1 + 2
((
v
s

)
− v0 − v1

)
6 x because b(X) = bs + i for each X ∈ Vi

for i ∈ {0, 1}, b(X) > bs + 2 for each X ∈ V \ (V0 ∪ V1), and
∑

X∈V b(X) = |B|
(
k
s

)
. It

follows that v0 > 1
2
(2
(
v
s

)
− v1 − x) and so from our hypotheses we have

|B| > 1
2
α
(
2
(
v
s

)
− v1 − x

)
+ βv1 = α

(
v
s

)
− 1

2
αx− 1

2
(α− 2β)v1.

Thus, because α > 2β, it follows from v1 6 |V \ V0| 6 x that

|B| > α
(
v
s

)
− 1

2
αx− 1

2
(α− 2β)x = α

(
v
s

)
− (α− β)x.

127



Since x = |B|
(
k
s

)
− bs

(
v
s

)
, we can deduce |B| > CB(v,k,λ;s)(α, β).

Remark 10.14. A routine calculation shows that if bs + 1 > β
(
k
s

)
, then the bound

dCB(v,k,λ;s)(α, β)e is inferior to the bound given by s iterated applications of (10.2) to

bs + 1.

Theorem 10.15. Suppose the hypotheses of Lemma 10.3 hold, that bs <
(
k
s

)
, and that

d > as > 1. Then

Cλ(v, k, t) >

⌈
CB(v,k,λ;s)

(
as + 1

2(d+ 1)
,

as + 1

2
(
d+

(
k
s

)))⌉ .
Proof. Let (V,B) be a t-(v, k, λ) covering. Let Vi = {X ∈

(
V
s

)
: b(X) = bs + i} for i ∈

{0, 1}. Let G be the multigraph with vertex set
(
V
s

)
such that µG(XY ) = b(X∪Y )−b|X∪Y |

for each pair of distinct vertices X and Y .

By the definition of G, for a positive integer n, an n-independent set S in the

multigraph G is a subset of
(
V
s

)
with the property that, for all X ∈ S,∑

Y ∈S\{X}

(
b(X ∪ Y )− b|X∪Y |

)
< n.

Consequently, if n 6 as, then S satisfies the hypotheses of Lemma 10.5 and |B| > |S|.

So, by Lemma 10.13, it suffices to show that G has an as-independent set of size at least

as + 1

2d+ 2
|V0|+

as + 1

2
(
d+

(
k
s

)) |V1|.

By Lemma 10.3(b), degG(X) = d for all X ∈ V0 and degG(X) = d +
(
k
s

)
− 1 for all

X ∈ V1. Thus, because d > as, G has an as-independent set of the required size by

Theorem 10.12.

We only need consider the natural choice of bs in Theorem 10.15. This follows by

Remark 10.14 because

(as + 1)
(
k
s

)
2
(
d+

(
k
s

)) < as + 1

2
< as + 1 < bs + 1.

10.6 Improved bounds for the case d < as

In this section we will show that, by using techniques similar to those of the last section in

the case d < as, we can sometimes improve on Theorem 10.6. We require a slight variant

of Lemma 10.5.
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Lemma 10.16. Suppose the hypotheses of Lemma 10.3 hold and there exists a subset S

of
(
V
s

)
and positive real numbers (cX)X∈S such that, for each X ∈ S,∑

Y ∈S\{X}

cY
(
b(X ∪ Y )− b|X∪Y |

)
< cX (as + b(X)− bs) ,

then |B| > |S|.

Proof. The proof of Lemma 10.5 applies, except that our hypotheses here imply via the

Gershgorin circle theorem (see (Hogben, 2013, p.16-6)) that the matrix M ′′ rather than

M ′ is positive definite, where M ′′ is obtained from M ′ by multiplying the entries in column

X by cX for each X ∈ S. However, it is easy to see (using Sylvester’s criterion (Hogben,

2013, p.9-7), for example) that M ′ is positive definite if and only if M ′′ is.

In Section 10.5 we employed multigraphs, but in this section we will work in a more

general setting of edge-weighted graphs. An edge-weighted graph G is a complete (simple)

graph in which each edge has been assigned a nonnegative real weight. We denote the

weight of an edge uw in such a graph G by wtG(uw) and we define the weight of a vertex

u of G as wtG(u) =
∑

w∈V (G)\{u}wtG(uw). For S ⊆ V (G), let G[S] denote the edge-

weighted subgraph of G induced by S. We generalise our notion of an n-independent set

by saying, for a positive integer n, that a subset S of the vertices of an edge-weighted

graph G is n-independent in G if wtG[S](u) < n for each u ∈ S.

We will require a technical result which guarantees the existence of an n-independent

set of a certain size in an edge-weighted graph of a specific form. This result was effectively

proved in Horsley (2017).

Lemma 10.17. Let n, d and d′ be nonnegative integers such that d < n < d′ − d, and

let G be a multigraph on some vertex set V0 ∪ V1 such that degG(X) = d for X ∈ V0 and

degG(X) = d′ for X ∈ V1. Let c be a real number such that c > d
n

and let G∗ be the

edge-weighted graph on vertex set V0 ∪ V1 such that, for all distinct X, Y ∈ V0 ∪ V1,

wtG∗(XY ) =


0, if X, Y ∈ V0;

µG(XY ), if X, Y ∈ V1;

cµG(XY ), otherwise.

Let α and β be real numbers such that one of the following holds.

(a) (α, β) =
(

1− d2

2n(n+1)
, n+2

2(d′+1)

)
.
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(b) (α, β) =
(

1, 1− dd′

n(n+1)

)
, d > n

2
and dd′ < n(n+ 1).

(c) (α, β) =
(

1,
√

d(n+2)
(n+1)(n−d)

− d(d′+1)
2(n+1)(n−d)

)
, d < n

2
, and d(d′+1)2 < 4(n+1)(n+2)(n−d).

Then α > 2β > 0 and, if c is sufficiently close to d
n

, G∗ has an (n+ 1)-independent set S

such that V0 ⊆ S and |S| > α|V0|+ β|V1|.

Proof. When (a) holds we obviously have β > 0 and

α− 2β =
(d′ − n− d− 1)(2n(n+ 1)− d2) + (n− d)(2d(n+ 1) + d2)

2n(n+ 1)(d′ + 1)

is nonnegative because d′ > n + d and n > d. When (b) holds we have β > 0 because

dd′ < n(n+ 1) and

α− 2β =
2dd′ − n(n+ 1)

n(n+ 1)

is nonnegative because d′ > n + d and d > n
2
. When (c) holds we have β > 0 because

d(d′+ 1)2 < 4(n+ 1)(n+ 2)(n−d) and d(d′+1)
(n+1)(n−d)

> d(n+2)
(n+1)(n−d)

because d′ > n. Thus, since

2
√
x− x 6 1 for each nonnegative real number x, we have α > 2β.

In the course of the proof of (Horsley, 2017, Theorem 14), the remainder of this

result is proved for the case d′ = d+ k− 1. It is a routine exercise to show that the proof

given there applies here for any d′ > n+ d.

We can now establish our improvements on Theorem 10.6.

Theorem 10.18. Suppose the hypotheses of Lemma 10.3 hold, that bs <
(
k
s

)
, and that

d < as. Let d′ = d +
(
k
s

)
− 1. Then Cλ(v, k, t) >

⌈
CB(v,k,λ;s) (α, β)

⌉
when one of the

following holds.

(a) (α, β) =
(

1− d2

2as(as+1)
, as+2

2(d′+1)

)
.

(b) (α, β) =
(

1, 1− dd′

as(as+1)

)
, d > as

2
and dd′ < as(as + 1).

(c) (α, β) =
(

1,
√

d(as+2)
(as+1)(as−d)

− d(d′+1)
2(as+1)(as−d)

)
, d < as

2
and d(d′ + 1)2 < 4(as + 1)(as +

2)(as − d).

Proof. Let (V,B) be a t-(v, k, λ) covering. Let Vi = {X ∈
(
V
s

)
: b(X) = bs + i} for i ∈

{0, 1}. Let G be the multigraph with vertex set
(
V
s

)
such that µG(XY ) = b(X∪Y )−b|X∪Y |

for each pair of distinct vertices X and Y . Note that, by Lemma 10.3, degG(X) = d for

each X ∈ V0 and degG(X) = d′ for each X ∈ V1. Also, d < as < d′ − d because
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d′ − d =
(
k
s

)
− 1 and as < bs <

(
k
s

)
. Thus, by Lemma 10.17, there is a real number c > d

as

such that the edge-weighted graph G∗ obtained from G[V0 ∪ V1] as in Lemma 10.17 has

an (as+1)-independent set S such that V0 ⊆ S and |S| > α|V0|+β|V1|. We show that we

can apply Lemma 10.16 to S choosing cX = c for X ∈ S ∩V0 and cX = 1 for X ∈ S ∩V1.

By Lemma 10.13 this will suffice to complete the proof.

If X ∈ S ∩ V0, then cX = c, b(X) = bs, and∑
Y ∈S\{X}

cY
(
b(X ∪ Y )− b|X∪Y |

)
6 d < cas = cX (as + b(X)− bs)

where the first inequality follows from Lemma 10.3(b). If X ∈ S ∩ V1, then cX = 1,

b(X) = bs + 1, and∑
Y ∈S\{X}

cY
(
b(X ∪ Y )− b|X∪Y |

)
= wtG∗[S](X) < as + 1 = cX (as + b(X)− bs)

where the first equality follows from the definition of G∗ and our choice of cY for Y ∈ S

and the inequality follows from the fact that S is an (as + 1)-independent set in G∗.

Again, we only need consider the natural choice of bs in Theorem 10.18. To establish

this it suffices, by Remark 10.14 and the fact that bs > as, to show that as + 2− β
(
k
s

)
is

positive. When (a) holds this is the case because

(as + 2)
(
k
s

)
2(d′ + 1)

6
as + 2

2
< as + 2.

When (b) or (c) holds, as + 2−β
(
k
s

)
is a quadratic in

(
k
s

)
(note that d′ = d+

(
k
s

)
− 1) and

we can compute its global minimum in terms of as and d. When (b) holds this minimum

is equal to

1

4das(as + 1)

(
(2d− as)(a3

s + 2a2
s + ad+ as) + d(2a3

s − d3 + 7a2
s + 4as) + d2(2a2

s + 2d− 1)
)

which is positive since as
2
6 d < a. When (c) holds this minimum is equal to

1

8(as + 1)(as − d)

(
4d
√
d(as + 1)(as + 2)(as − d) + (as − 2d)(2a2

s + 6as + 12)

+ (2a3
s − d3 + 16d) + 2as(3as − 2)

)
which is positive since 0 6 d < as

2
.

There are situations in which each of the Theorem 10.18 bounds is superior to both

of the others. In the special case when d = 0, Theorem 10.18(a) is the best of our bounds.
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10.7 Improvements for small parameter sets

We conclude with some tables which detail small parameter sets for which the results

in this chapter produce an improvement over the previously best known lower bound on

C(v, k, t). For t = 2 similar tables appear in Horsley (2017), so we concentrate here on

the case t > 3. Our methodology in producing these tables is as follows.

To determine whether we see an improvement for C(v′, k′, t′) we successively evaluate

a “best known” bound b(v,k,t) for C(v, k, t) for (v, k, t) = (v′ − t′ + 1, k′ − t′ + 1, 1), (v′ −

t′ + 2, k′ − t′ + 2, 2), . . . , (v′, k′, t′). This “best known” bound incorporates the following.

• C(v, k, 1) = d v
k
e.

• C(v, k, t) > d v
k
b(v−1,k−1,t−1)e by (10.2).

• The Mills and Mullin result stated in (10.3).

• Results for a fixed number of blocks from Mills (1979); Greig et al. (2006); Todorov

(1985); Todorov and Tonchev (1982). These include results for t = 2, for t = 3,

and for general t. (The t ∈ {2, 3} results are summarised in Gordon and Stinson

(2007).)

• Theorems 2.1, 3.1 and 4.4 of Todorov (1989).

• The lower bound of de Caen (1983).

• The lower bounds listed for t 6 8, v 6 99, k 6 25 at the La Jolla Covering

Repository Gordon (n.d.).

• Theorems 10.6, 10.15 and 10.18 of this chapter, applied with s ∈ {1, . . . , b t
2
c} and

with bi chosen as b(v−i,k−i,t−i) for i ∈ {s, . . . , 2s} (note that these theorems with

s = 1 specialise to the results in Horsley (2017)).

If the bound provided for C(v′, k′, t′) by one of the theorems of this chapter (using a

particular choice of s) strictly exceeds the bound provided by any of the other results,

then we include v′ in the appropriate location in the tables. If, moreover, the bound

provided for C(v′, k′, t′) by Theorem 10.15 or Theorem 10.18 strictly exceeds the bound

provided by Theorem 10.6, then the table entry is set in italic or bold font, respectively.

All improvements for k 6 40 when t = 3, when t ∈ {4, 5} and when t ∈ {6, 7, 8} are given
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in Tables 10.1, 10.2, and 10.3 respectively (recall from the discussion after Theorem 10.6

that we obtain no improvements for sufficiently large v). Of course the listed improvements

will, via (10.2), imply many further improvements for higher values of t, but we do not

include these subsequent improvements in our tables.
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Table 10.1: v’s with an improved lower bound on C(v, k, t) when t = 3

k s = 1

9 19

10 21,22

12 26

13 29

15 33,42,45

16 35,36,45,46,48,49

17 33,48,49,51,52,53

18 35,40,51,59

19 37,42,43,54,55,58,62

20 39,44,57,61,62,66

21 41,47,60,61,64,65,66,69

22 43,49,50,63,64,73,88,89

23 45,51,66,71,76,87,88,89,92,93,95,96,97

24 47,53,54,69,74,75,80,91,92,93,96,97,99,101

25 49,56,57,72,73,77,78,79,83,95,96,97,100,101

26 51,58,75,87,100,101,104,105,106

27 53,60,61,78,84,90,103,104,105,108,109,110,114,115

28 55,62,63,64,81,82,87,88,94,107,108,109,112,113,114,117,118,119

29 57,64,65,84,85,90,91,92,97,111,112,113,116,117,118,121,122,123,124

30 59,67,68,87,101,115,116,117,120,121,122,126,127,128

31 61,69,70,71,90,91,97,104,119,120,121,124,125,126,127,130,131,132,133

32 63,71,72,93,100,101,107,108,123,124,125,129,130,131,135,136,137,160,161

33 65,73,74,75,96,97,103,104,105,111,127,128,129,133,134,135,139,140,141,

158,159,160,161,165,166,168,169,170,171

34 67,76,77,78,99,100,106,114,115,131,132,133,137,138,139,143,144,145,146,

163,164,165,166,170,171,173,174,175,176,177

35 69,78,79,102,109,110,117,118,135,136,137,141,142,143,148,149,150,168,169,

170,171,175,176,179,180,181,182

36 71,80,81,82,105,113,114,122,139,140,141,145,146,147,148,152,153,154,155,

174,175,176,180,181,184,186,187

37 73,82,83,84,85,108,109,116,117,118,124,125,143,144,145,150,151,152,157,

158,159,178,179,180,181,183,185,186,187,189,192,193,195,196

38 75,85,86,111,119,128,129,147,148,149,154,155,156,161,162,163,183,184,185,

186,189,190,191,192,197,198,201

39 77,87,88,89,114,122,123,132,151,152,153,158,159,160,165,166,167,168,188,

189,190,191,194,195,196,197,201,202,203,206

40 79,89,90,91,92,117,118,125,126,127,134,135,136,155,156,157,162,163,164,

170,171,172,193,194,195,196,199,200,201,202,205,206,207,208,209,212
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Table 10.2: v’s with an improved lower bound on C(v, k, t) when t = 4, 5

t = 4 t = 5

k s = 1 s = 1 s = 2

9 17

11 29

14 47

15 42

16 33 55

17 30,35 59

18 32,37 66

19 34,39 70

20 39,41

21 37,41,43 75,93

22 39,43,45,46 36 79,98

23 41,45,48,52 87,123

24 43,47,50

25 37,45,49,52,59 41 113,135,141

26 51,54 118

27 47,48,53 44 127,147

28 50,55,64,66,68,70 46,52 132,153

29 43,52,57,61,69 54

30 54,59,63,73,75,76 49,54,56 138,147,161,192

31 54,56,61,65,71,73,74,80 51,56 143,171,199,206

32 56,57,63,67,74,78,81 65 148,177,206,213

33 49,59,65,69,76,78,79,80,81,85,88 54,67 158

34 61,67,71,81,86 56,61,69 216

35 61,63,69,73,81,83,84,85,86,90,93 63,66,71 227,231,235,259

36 63,65,71,75,76,83,86,91,92,93,96,97 59,65,68,73 201

37 55,65,66,67,73,78,88,89,90,91 61,67,70,75 207,275

38 68,75,80,88,91,93,96,97,101,105 77 218,248,283

39 68,70,77,82,90,93,95,96,99,104 64,70,79 224,255,264,287,299

40 70,72,79,84,95,96,98,101,102,103,106,107,113,114 66,72,81 230,299,307
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Table 10.3: v’s with an improved lower bound on C(v, k, t) when t = 6, 7, 8

t = 6 t = 7 t = 8

k s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3

9 25

12 23

16 29

17 33,38 31

18 43

19 75

20 39

21 30 57

22 33

23 58 51,53

24 36 33

25 58 125

26 36,39

27 63,75 97

28 68,78 68 166

29 83,94 40 68

30 86 57

31 43,49 89 41

32 82 61,77 221

33 52,55 117,127 45 65,82,85 63

34 47 86,92 45

35 55,58 91,143

36 50,57,60 124 102,105,107 71

37 122,139,156 49 170,181

38 60,63 108,122,136,143 52 102 52

39 54,65 111 58

40 61,63 114,179 53 96
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Chapter 11

Pseudo Generalized Youden Designs

This chapter is based on the following work:

Das et al. (2018): Das, Ashish; Horsley, Daniel; Singh, Rakhi. Pseudo Generalized Youden

Designs. J. Combin. Des 26 (2018), no. 9, 439–454

11.1 Introduction

This chapter deals with designs on some set of treatments. Unless we specify otherwise

we will always take this set of treatments to be the set {1, . . . , v} where v is a positive

integer called the order of the design.

A balanced block design (BBD) with order v, block size k and index λ consists of a

multiset B of blocks such that

• each block is a multiset of k treatments from {1, . . . , v};

• each treatment appears in blocks an equal number of times in total, and each treat-

ment appears in each block bk/vc times or bk/vc+ 1 times;

• each pair of distinct treatments is covered a total of exactly λ times by blocks, where

the number of times a block B covers a pair {i, j} is given by the product of the

number of times i appears in B and the number of times j appears in B.

A balanced incomplete block design (BIBD) is simply a BBD whose block size is less than

its order. The incidence matrix of a BBD with b blocks is a v×b matrix whose (i, `) entry

is the number of times that treatment i appears in the `th block of the design. A BBD can
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be equivalently defined by demanding that the matrix NNT be completely symmetric,

where N is the incidence matrix of the design and completely symmetric means that all

of the diagonal entries are equal and all of the off-diagonal entries are equal. It is easily

seen that for any BBD with block size k > v and incidence matrix N there is a BIBD

with incidence matrix N − bk/vcJ , where J is an all-ones matrix, and that the converse

also holds.

In this chapter we are principally concerned with row-column designs which are

rectangular arrays, each cell of which contains a treatment from {1, . . . , v}. Three varieties

of row-column designs are of particular significance here.

Youden square designs. Also known as Youden rectangles, these are classical objects

in design theory. A Youden rectangle can be defined as a k × v row-column design

such that each treatment appears once in each row of the design and the columns

of the design form the blocks of a BIBD.

Generalized Youden designs (GYDs). These were introduced by Kiefer (1958) (al-

though he originally called them generalized Youden squares). A GYD is a k × b

row-column design such that the rows of the design form the blocks of a BBD and,

separately, the columns of the design do likewise. Results on the existence and con-

struction of GYDs can be found in Kiefer (1975b), Ruiz and Seiden (1974), Seiden

and Wu (1978), Ash (1981) and Kunert and Sailer (2007). We give an example of

a GYD with v = 6, k = 10, b = 15 obtained in Ash (1981).

GYD for v = 6, k = 10, b = 15

1 2 3 4 5 6 1 2 3 4 5 6 3 4 2

2 3 4 5 6 1 2 3 4 5 6 1 2 3 1

3 4 5 6 1 2 3 4 5 6 1 2 4 1 5

4 5 6 1 2 3 4 5 6 1 2 3 1 6 4

5 6 1 2 3 4 5 6 1 2 3 4 6 5 3

6 1 2 3 4 5 6 1 2 3 4 5 5 2 6

3 5 1 6 5 4 3 2 1 6 4 2 1 5 3

6 3 2 1 2 5 1 4 5 4 6 3 5 4 2

2 1 5 4 6 1 4 3 6 3 2 5 6 2 1

1 2 4 2 1 3 6 5 4 5 3 6 3 6 4

Pseudo Youden designs (PYDs). These were introduced by Cheng (1981b). A PYD

is a k × k row-column design such that the rows and columns of the design, taken

together as blocks, form a BBD. The existence and properties of PYDs have been

investigated in Cheng (1981b), Cheng (1981a), Ash (1981), McSorley and Phillips
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(2007) and Nilson (2011). We give an example of a PYD with v = 9, k = 6 provided

in Cheng (1981b). This PYD can also be obtained through Theorem 11.9 of the

current chapter.

PYD for v = 9, k = 6

4 7 8 6 9 5

3 1 2 8 7 9

2 5 1 3 6 4

9 3 6 2 5 8

7 6 9 4 1 3

5 8 4 7 2 1

These three kinds of row-column designs share the properties that they are optimal in

various statistically-desirable senses under the most common set of assumptions for eval-

uating experimental designs. More formally, under the usual additive and homoscedastic

fixed effects two-way heterogeneity model, they are A- and E-optimal and, when v 6= 4,

they are also D-optimal. (The optimality is among all k × b row-column designs on v

treatments that allow estimation of all treatment contrasts.) We refer the reader to Shah

and Sinha (1989) for an introduction to these concepts along with the appropriate defini-

tions. Kiefer established this optimality for GYDs in Kiefer (1975b), and Cheng (1981b)

observed that his proof can be generalized to the case of PYDs. It is crucial to this proof

that a particular matrix associated with the relevant design, called the information ma-

trix or C-matrix of the design, is completely symmetric. The information matrix for a

row-column design is given by

C = R− b−1MMT − k−1NNT + (kb)−1rr′, (11.1)

where

• R = diag(r1, r2, . . . , rv) and r = (r1, r2, . . . , rv)
′ where ri is the number of times that

treatment i occurs in the design;

• M is the v × k treatment-row incidence matrix of the design whose (i, `) entry is

the number of times treatment i appears in `th row of the design;

• N is the v× b treatment-column incidence matrix of the design whose (i, `) entry is

the number of times treatment i appears in `th column of the design.

Note that the different coefficients of MMT and NNT in (11.1) mean that if we allowed

a k × b design for b 6= k in the definition of PYD, then the information matrix would no
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longer necessarily be completely symmetric and the design would not be guaranteed to

be optimal.

Here we introduce pseudo generalized Youden designs, which generalize both GYDs

and PYDs. A pseudo generalized Youden design (PGYD) is a k × b row-column design

such that

(A1) each treatment appears exactly kb/v times in total;

(A2) each treatment appears bb/vc or bb/vc+1 times in each row, and bk/vc or bk/vc+1

times in each column;

(A3) kMMT + bNNT is completely symmetric, where M is the treatment-row incidence

matrix and N is the treatment-column incidence matrix.

In statistical terminology, a PGYD is a row-column design satisfying (A1) and (A2)

and where the k rows and b columns, considered together as blocks, form a variance

balanced design. For an introduction to variance-balanced block designs with different

block sizes, one can refer to Hedayat and Stufken (1989) and references therein.

In view of our comments on the incidence matrix of BBDs it can be seen that

every GYD is a PGYD and every PYD is a PGYD. We will show, however, that there

are parameter sets (v, k, b) for which a PGYD exists, but neither a GYD nor a PYD

does. For some examples of PGYDs, which are non-GYD and non-PYD, one can refer

to appendix F. Using the techniques of Kiefer (1975b), it can be seen that PGYDs share

the optimality properties of GYDs and PYDs that we discussed. This fact means that,

from the perspective of experimental design, our definition of PGYDs is more natural and

useful than simply allowing k 6= b in the PYD definition.

In Section 11.2, we obtain necessary conditions, in terms of v, k and b, for the

existence of a PGYD. In Section 11.3, we construct families of PGYDs using patchwork

methods based on affine planes. Using our necessary conditions, we also provide an

exhaustive list of admissible parameter sets satisfying v 6 25, k 6 50, b 6 50. For each,

we establish that a PGYD exists, except for one where we demonstrate non-existence.
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11.2 Necessary conditions for existence of PGYDs

We first show that condition (A3) of the PGYD definition can be rephrased more combi-

natorially, in terms of the blocks consisting of the treatments that appear more often in

a particular row or column.

Definition 11.1. Let D be a k × b row-column design on v > 2 treatments that obeys

(A1) and (A2). In what follows, let k = k′v + k′′ and b = b′v + b′′ where k′ = bk/vc,

b′ = bb/vc and k′′ and b′′ are non-negative integers. For u ∈ {1, . . . , k} let Ru be the set

of treatments that occur b′ + 1 times in row u and for w ∈ {1, . . . , b} let Cw be the set of

treatments that occur k′+ 1 times in column w. For any two treatments i, j in {1, . . . , v},

we define

δij = |{u : {i, j} ⊆ Ru}|; and

λij = |{w : {i, j} ⊆ Cw}|.

Let the collection {R1, . . . ,Rk} be denoted by DR and the collection {C1, . . . , Cb} be denoted

by DC.

Theorem 11.2. Let D be a k× b row-column design on v > 2 treatments that obeys (A1)

and (A2). Then D is a PGYD if and only if kδij + bλij is identical for any two distinct

treatments i and j.

Proof. Let M and N be the treatment-row and treatment-column incidence matrices of

D, respectively. We first consider the diagonal entries of kMMT + bNNT . Because each

treatment occurs b′ + 1 times in exactly r − kb′ rows and exactly b′ times in the rest, it

can be seen that the diagonal elements of MMT are all equal. Similarly, each treatment

occurs k′ + 1 times in exactly r − bk′ columns and exactly k′ times in the rest, and the

diagonal elements of NNT are all equal. Thus the diagonal elements of kMMT + bNNT

are all equal.

We now consider the off-diagonal entries of kMMT + bNNT . Let i and j be distinct

treatments and let νz = |{u : |{i, j}∩Ru| = z}| for z ∈ {0, 1, 2}. The (i, j) entry in MMT

is

(b′)2ν0 + b′(b′ + 1)ν1 + (b′ + 1)2ν2 = k(b′)2 + b′ν1 + (2b′ + 1)ν2

where the equality follows because ν0 = k − ν1 − ν2. Because there are exactly r − kb′

rows in which i occurs b′ + 1 times and r − kb′ rows in which j occurs b′ + 1 times,
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ν1 = 2(r − kb′ − ν2). Also, ν2 = δij. Thus, the (i, j) entry in MMT is

2b′r − k(b′)2 + δij.

Similarly, it can be established that the (i, j) entry in NNT is

2k′r − b(k′)2 + λij.

Thus it can be seen that the off-diagonal elements of kMMT + bNNT are all equal

if and only if kδij + bλij is identical for any two distinct treatments i and j.

We can view Theorem 11.2 in terms of edge decompositions of complete multigraphs.

The condition of Theorem 11.2 is equivalent to requiring that the collection consisting

of k-fold complete multigraphs on vertex sets DR and of b-fold complete multigraphs on

vertex sets DC forms a decomposition of an x-fold complete multigraph on vertex set

{1, . . . , v} for some positive integer x.

Our next result provides necessary conditions for the existence of a PGYD.

Theorem 11.3. If there exists a k × b PGYD on v > 2 treatments, then the following

hold.

(1) k + b > v.

(2) k(r−kb′)(b′′−1)+b(r−bk′)(k′′−1)
v−1

= t is an integer.

(3) There exist p > 1 pairs of non-negative integers (m1, n1), . . . , (mp, np) such that, for

` = 1, . . . , p,

(i) km` + bn` = t

(ii) 2r − 2kb′ − k 6 m` 6 r − kb′ and 2r − 2bk′ − b 6 n` 6 r − bk′.

(4) There exist non-negative integers z1, . . . , zp such that

(i)
∑p

`=1 z` =
(
v
2

)
,

(ii)
∑p

`=1 z`m` = k
(
b′′

2

)
,

(iii)
∑p

`=1 z`n` = b
(
k′′

2

)
.
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Proof. Suppose there exists k× b PGYD D on v > 2 treatments. We provide the proofs

for each of the conditions (1)− (4) below.

Condition (1): Let M and N be the treatment-row and treatment-column incidence

matrices of D, respectively. Elementary linear algebra establishes that rank([M
... N ]) >

rank(kMMT + bNNT ). Since [M
... N ] is v× (k+ b), it has rank at most k+ b. Following

Dey (1975), since kMMT + bNNT is v × v and completely symmetric, it has rank v.

Condition (1) follows. This condition is in fact a necessary condition for the existence of

the corresponding variance balanced design with block sizes k and b.

Condition (2): This follows from the requirement that kδij + bλij in Theorem 11.2 is

an integer. Let t = kδij + bλij. To find its value, we note that the total number of pairs

of treatments in blocks of DR and DC are respectively,∑
i<j

δij = k

(
b′′

2

)
and

∑
i<j

λij = b

(
k′′

2

)
. (11.2)

This is so because in DR there are k blocks and each block is of size b′′, and in DC there

are b blocks and each block is of size k′′. Therefore, summing over all
(
v
2

)
treatment pairs,

we get
∑

i<j(kδij + bλij) =
∑

i<j t, which using (11.2) gives

t =
k2
(
b′′

2

)
+ b2

(
k′′

2

)(
v
2

) =
k(r − kb′)(b′′ − 1) + b(r − bk′)(k′′ − 1)

v − 1
.

Condition (3): Index the distinct pairs in {(δij, λij) : 1 6 i < j 6 v} as (m1, n1), . . . , (mp, np).

Using Condition (2) above, km`+bn` = t for ` = 1, . . . , p. From the proof of Theorem 11.2,

since ν2 = δij, ν1 = 2(r−kb′−ν2) = 2(r−kb′−δij) and ν0 = k−ν1−ν2 = k−2r+2kb′+δij

must be non-negative, we have 2r − 2kb′ − k 6 m` 6 r − kb′ for ` = 1, . . . , p. Similarly,

we have 2r − 2bk′ − b 6 n` 6 r − bk′ for ` = 1, . . . , p.

Condition (4): Let z` = |{(i, j) : (δij, λij) = (m`, n`), 1 6 i < j 6 v}|, ` = 1, . . . , p.

It is clear that
∑p

`=1 z` =
(
v
2

)
. Also, from (11.2),

p∑
`=1

z`m` = k

(
b′′

2

)
and

p∑
`=1

z`n` = b

(
k′′

2

)
.

A k × b row-column design with v treatments is called regular if k ≡ 0 (mod v)

or b ≡ 0 (mod v); otherwise it is said to be non-regular. Accordingly, a PGYD with

parameters v, k = k′v + k′′, b = b′v + b′′ is regular exactly when k′′ = 0 or b′′ = 0. A
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regular PGYD reduces to a regular GYD, the existence of which depends solely on the

existence of a corresponding BIBD Agrawal (1966). Thus, we restrict ourselves to non-

regular PGYDs for which v divides neither k nor b (that is, k′′ 6= 0 and b′′ 6= 0). Also,

without loss of generality, henceforth assume k 6 b. In view of the proof of Theorem 11.3

we can give additional necessary conditions for the existence of a PGYD that is not a

GYD.

Corollary 11.4. Necessary conditions for the existence of a k× b non-GYD PGYD with

v treatments, in addition to necessary conditions (1) and (2) in Theorem 11.3 are,

(3′) p ≥ 2, in the condition (3), and

(4′) at least two of the z`’s are non-zero, in the condition (4).

Theorem 11.3 also specialises to give well-known necessary conditions for the exis-

tence of a GYD.

Corollary 11.5. Necessary conditions for the existence of a k× b non-regular GYD with

v treatments are,

(1′) k > v and b > v, and

(2′) k
(
b′′

2

)
/
(
v
2

)
and b

(
k′′

2

)
/
(
v
2

)
are integers.

The rows of a GYD form a BBD with k blocks and the columns form a BBD with

b blocks. Thus, (1′) follows from Dey’s generalization of Fisher’s inequality Dey (1975).

Also, (2′) follows directly from the condition (4) of Theorem 11.3 since for a GYD exactly

one of the z`’s should be non-zero.

Remark 11.6. In addition to the necessary conditions for a non-regular GYD as given

in Corollary 11.5, additional parametric conditions for the existence of the corresponding

BIBDs, as given in Theorem 10.3.1 and Thoerem 16.1.3 of Hall (1998), must also hold.

11.3 Construction of PGYDs

The constructions presented in this section are patchwork methods which go back to

Kiefer (1975a). These constructions rely heavily on affine planes. For our purposes an

affine plane of order q is a BIBD with q2 treatments and q(q + 1) blocks of size q, where
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any two treatments appear together in exactly one block. The blocks of such a design can

be partitioned into q+1 parallel classes each containing q blocks such that any two blocks

from the same parallel class are disjoint and any two blocks from different parallel classes

intersect in exactly one point. We will use this property frequently. An affine plane of

order q is known to exist whenever q is a prime power. We will also sometimes consider

complements of affine planes. For a block B of an affine plane on treatment set V , let

Bc = V \B and for a parallel class P of such a plane, let Pc = {Bc : B ∈ P}.

Lemma 11.7. Let m, n and v be positive integers with n ≡ 0 (mod v), let {1, . . . , v} be

a set of v treatments, and let S1, . . . , Sn be m-subsets of {1, . . . , v}. If every treatment

occurs exactly mn/v times in the collection {S1, . . . , Sn}, then there is an m × n matrix

A such that the set of treatments in the wth column of A is Sw and each treatment occurs

n/v times in each row of A.

Proof. Let G be the bipartite graph with parts {c1, . . . , cn} and {1, . . . , v} such that

the set of vertices adjacent to cw is Sw for w ∈ {1, . . . , n}. Then degG(cw) = m for

w ∈ {1, . . . , n} and, by our hypothesis, degG(i) = mn/v for each i ∈ {1, . . . , v}. By a

result of de Werra (1971) the edges of G can be colored with m colours, say 1, . . . ,m,

such that each vertex in {c1, . . . , cn} is incident with exactly one edge of each color, and

each vertex in {1, . . . , v} is incident with exactly n/v edges of each color.

Form A by placing in the (u,w) position the unique element i of {1, . . . , v} such that

the edge cwi of G is assigned color u. That the set of treatments in the wth column of

A is Sw follows from the definition of G. That each treatment occurs n/v times in each

row of A follows from the fact that each vertex in {1, . . . , v} is incident with exactly n/v

edges of each color.

This lemma can also be proved using the literature on systems of distinct represen-

tatives (see (Ford and Fulkerson, 1958, Theorem 1), for example).

Lemma 11.8. Let P1, . . . ,Pq−1 and Q1, . . . ,Qq−1 be parallel classes (not necessarily dis-

tinct) of an affine plane of order q such that Px 6= Qy for x, y ∈ {1, . . . , q − 1}.

(i) For any x, y ∈ {1, . . . , q−1} there is a q×q matrix A such that the sets of treatments

in the rows of A are the elements of Px and the sets of treatments in the columns

of A are the elements of Qy.
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(ii) For any x ∈ {1, . . . , q − 1} there is a q × (q2 − q) matrix A such that the sets of

treatments in the rows of A are the elements of Pcx and the sets of treatments in the

columns of A are the elements of Q1, . . . ,Qq−1.

(iii) There is a (q2 − q)× (q2 − q) matrix A such that the sets of treatments in the rows

of A are the elements of Pc1, . . . ,Pcq−1 and the sets of treatments in the columns of

A are the elements of Qc1, . . . ,Qcq−1.

Proof. For x, y ∈ {1, . . . , q − 1}, let Px = {Px,1, . . . , Px,q} and let Qy = {Qy,1, . . . , Qy,q}.

Case (i): We will show that there exists a q × q matrix A such that the set of

treatments in the uth row of A is Px,u and the set of treatments in the wth column of A

is Qy,w. Because x 6= y, |Px,u ∩Qy,w| = 1 for all u,w ∈ {1, . . . , q}. So A can be obtained

by placing the unique element of Px,u ∩Qy,w in the (u,w) position.

Case (ii): As in the proof of (i) there is, for each y ∈ {1, . . . , q−1}, a q×q matrix Ay

such that the set of treatments in the uth row of Ay is Px,u+y and the set of treatments in

the wth column of Ay is Qy,w (where the subscripts are considered modulo q). We take

A =
[
A1 A2 · · · Aq−1

]
.

The set of treatments in the uth row of A is P c
x,u.

Case (iii): As in the proof of (i) there is, for each x, y ∈ {1, . . . , q − 1}, a q × q

matrix Ax,y such that the set of treatments in the uth row of Ax,y is Px,u+y and the set

of treatments in the wth column of Ax,y is Qy,w+x (where the subscripts are considered

modulo q). We take

A =


A1,1 A1,2 · · · A1,q−1

A2,1 A2,2 · · · A2,q−1

...
...

. . .
...

Aq−1,1 Aq−1,2 · · · Aq−1.q−1

 .
The set of treatments in the uth row of A is P c

x,u′ where u = (x−1)q+u′ and u′ ∈ {1, . . . , q}.

Similarly the set of treatments in the wth column of A is Qc
y,w′ where w = (y − 1)q + w′

and w′ ∈ {1, . . . , q}.

The following theorem gives us four families of PGYDs based on the residues of k

and b modulo q2.
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Theorem 11.9. Let q be a prime power. There exists a k × b PGYD with v = q2

treatments if

(i) k ≡ ±q (mod q2);

(ii) b ≡ ±q (mod q2);

(iii) k = k∗q(q + 1) + b
gcd(b,k)

q(q + 1 − n) and b = b∗q(q + 1) + k
gcd(b,k)

nq for some

n ∈ {0, . . . , q} and non-negative integers k∗ and b∗.

Proof. From (i) and (ii) we have k = k′q2 +k′′ and b = b′q2 + b′′ where k′′, b′′ ∈ {q, q2−q}

and k′ and b′ are non-negative integers. Let P1, . . . ,Pq+1 be the parallel classes of an

affine plane of order q. Let g = gcd(b, k).

Let x1, . . . , xk/q be the unique non-decreasing sequence of indices from {1, . . . , q+ 1}

such that each index in {1, 2, . . . , n} occurs k∗ times in the sequence and each index

in {n + 1, . . . , q + 1} occurs k∗ + b/g times in the sequence. For u ∈ {1, . . . , k/q}, let

Ru = Pxu if b′′ = q and Ru = Pcxu if b′′ = q2 − q. Let y1, . . . , yb/q be the unique non-

increasing sequence of indices from {1, . . . , q + 1} such that each index in {1, 2, . . . , n}

occurs b∗+ k/g times in the sequence and each index in {n+ 1, . . . , q+ 1} occurs b∗ times

in the sequence. For w ∈ {1, . . . , b/q}, let Cw = Pyw if k′′ = q and Cw = Pcyw if k′′ = q2− q.

We will form the required design as[
W X

Y Z

]

where

• W is a (k− k′′)× (b− b′′) matrix such that each treatment occurs the same number

of times in each row of W and the same number of times in each column of W .

• X is a (k−k′′)× b′′ matrix such that the sets of treatments in the rows of X are the

elements of R1, . . . ,R(k−k′′)/q and each treatment occurs k′ times in each column of

X.

• Y is a k′′× (b− b′′) matrix such that the sets of treatments in the columns of Y are

the elements of C1, . . . , C(b−b′′)/q and each treatment occurs b′ times in each row of

Y .
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• Z is a k′′ × b′′ matrix such that the sets of treatments in the rows of Z are the

elements of R(k−k′′)/q+1, . . . ,Rk/q and the sets of treatments in the columns of Z are

the elements of C(b−b′′)/q+1, . . . , Cb/q.

We will first show that such a design is a PGYD and then show that we can construct

matrices W , X, Y and Z with the required properties.

It is clear that such a design obeys (A1) and (A2). So to show the design is a PGYD

it suffices, by Theorem 11.2, to show that kδij + bλij is identical for each pair of distinct

treatments (i, j). Let (i, j) be a pair of distinct treatments. Define

γij =

{
1, if i and j occur together in a block in P1 ∪ · · · ∪ Pn;

0, if i and j occur together in a block in Pn+1 ∪ · · · ∪ Pq+1.

Note that i and j occur together in 1− γij blocks in Pn+1 ∪ · · · ∪ Pq+1. Note also that i

and j occur together in q− 1 blocks of Pcα if i and j occur together in a block of Pα and i

and j occur together in q− 2 blocks of Pcα otherwise. Then from our construction we can

calculate that λij and δij are as given below.

λij =

{
b∗ + k

g
γij, if k′′ = q;

b∗(q2 − q − 1) + k
g
(n(q − 2) + γij), if k′′ = q2 − q.

δij =

{
k∗ + b

g
(1− γij), if b′′ = q;

k∗(q2 − q − 1) + b
g
((q + 1− n)(q − 2) + (1− γij)), if b′′ = q2 − q.

Considering four cases according to the values of k′′ and b′′, it is easy to check that the

value of kδij + bλij is independent of γij. Hence kδij + bλij is identical for each pair of

distinct treatments (i, j) and the design is a PGYD.

We now show that we can construct matrices W , X, Y and Z with the required prop-

erties. It is easy to form W by tiling q2×q2 latin squares. Because each treatment appears

once in each parallel class and appears q − 2 times in the complement of each parallel

class, and because b− b′′ ≡ 0 (mod q2), Lemma 11.7 can be used to construct a matrix Y

with the required properties. Similarly, by applying Lemma 11.7 and taking a transpose,

a matrix X with the required properties can be constructed. Finally, Lemma 11.8 yields

a matrix Z with the required properties provided that the sets {x(k−k′′)/q+1, . . . , xk/q} and

{y(b−b′′)/q+1, . . . , yb/q} are disjoint. We complete the proof by establishing this claim.

When k′′ = b′′ = q, {yb/q} = {1} and {xk/q} = {q+1}. When b′′ = q and k′′ = q2−q,

{yb/q} = {1} and {x(k−k′′)/q+1, . . . , xk/q} ⊆ {3, . . . , q + 1}. When b′′ = q2 − q and k′′ = q,
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{xk/q} = {q + 1} and {y(b−b′′)/q+1, . . . , yb/q} ⊆ {1, . . . , q − 1}. In each of these cases the

claim is true, so we may assume that b′′ = k′′ = q2 − q and q 6= 2. We consider two cases

according to whether b = k.

Suppose first that k 6= b. We are assuming k 6 b without loss of generality, so k < b.

Then

g = q gcd(b′q + q − 1, k′q + q − 1) = q gcd(b′q + q − 1, (b′ − k′)q) 6 q(b′ − k′) 6 b′q,

where the last equality follows because (b′−k′)q = (b′q+q−1)− (k′q+q−1) and the first

inequality follows because gcd(b′q+q−1, q) = 1. So we have b/g > (b′q2+q2−q)/(b′q) > q.

Thus {x(k−k′′)/q+1, . . . , xk/q} = {q + 1}. Obviously {y(b−b′′)/q+1, . . . , yb/q} ⊆ {1, . . . , q − 1},

and the claim follows.

Now suppose that k = b. Then it follows from (iii) that k = b = b∗q(q+1)+nq where

n ∈ {0, (q + 1)/2}. So, because b ≡ −q (mod q2), b∗ ≡ q − n− 1 (mod q). Thus, it must

be the case that n = 0 and b∗ > 2 or that n = (q+ 1)/2 and b∗ > 1 or that n = (q+ 1)/2,

b∗ = 0 and q = 3. In each of these cases it can be verified that {y(b−b′′)/q+1, . . . , yb/q} ⊆

{1, . . . , b(q + 1)/2c} and {x(k−k′′)/q+1, . . . , xk/q} ⊆ {d(q + 3)/2e, . . . , q + 1}.

Theorem 11.9 produces a PYD when k = b. In this case it must be that n = 0 or

n = (q+1)/2. Cheng’s construction in Theorem 2.2 of Cheng (1981b) necessarily requires

that b ≡ q (mod q2) and produces designs for parameter sets covered by Theorem 11.9.

However, Theorem 11.9 also produces PYDs for parameter sets not covered by Theorem

2.2 of Cheng (1981b). In particular, it does so when b ≡ −q (mod q2), as stated in the

following corollary.

Corollary 11.10. Let q be a prime power and a be a positive integer. Then an (aq2 −

q)× (aq2 − q) PYD with q2 treatments exists

(i) when q is odd and a ≡ −1 (mod q+1
2

); and

(ii) when q is even and a ≡ −1 (mod q + 1).

Remark 11.11. Theorem 11.9 gives a GYD when n = 0 and Corollary 11.10 gives a

GYD when a ≡ −1 (mod q + 1).

It appears harder to analyze when Theorem 11.9 can be applied with n 6= 0 and b 6= k

so as to produce a PGYD which is not a GYD or PYD. Instead we present Table 11.1
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which, for q 6 8, lists the parameter sets of such designs obeying k 6 b 6 v2 (there are

no such parameter sets for q ∈ {2, 3, 8}). For q = 9 such a listing would be too lengthy

and we instead list those obeying k 6 b 6 v2/3. It appears we obtain a wider variety of

parameter sets when q is a perfect square.

Table 11.1: Parameter sets of non-GYD non-PYD PGYDs given by Theorem 11.9 for
q 6 8 and k 6 b 6 v2 and for q = 9 and k 6 b 6 v2/3

q = 4, v = 16 q = 5, v = 25 q = 7, v = 49 q = 9, v = 81

k b n k b n k b n k b n

12 36 4 405 495 3 924 1428 4 234 1872 8

28 196 4 924 2100 4 396 2178 6

36 108 2 1428 2100 4 819 1287 9

44 132 3 1820 2100 4 819 1953 9

52 156 4 882 1386 2

68 204 1 1224 1368 6

76 228 2 1368 2016 6

84 132 4 1386 2178 6

84 252 3 1449 1953 9

108 204 4 1872 2016 8

156 228 4

196 252 4

We now present a simple method of obtaining a non-GYD PYD from a PYD that is

a GYD and has a particular additional property.

Theorem 11.12. Let D be a k × k GYD with v treatments, of the form[
W X

Y Z

]

where W is vk′ × vk′ and is formed by tiling latin squares of order v, Z is k′′ × k′′, and

each treatment occurs k′ times in each column of X and k′ times in each row of Y . If

there is a pair of treatments that occur together in the columns of Z a different number of

times from in the rows of Z, then the design D∗ formed from D by replacing Z with ZT

is a PYD that is not a GYD.

Proof. Using the logic of Theorem 11.2, it follows that in the GYD D each pair of distinct

treatments (i, j) appears µ times in the rows of [XT ... ZT ]T and µ times in the columns

of [Y
... Z] for some positive integer µ.
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Let (i, j) be a pair of distinct treatments. Say (i, j) appears δZij times in the rows of

Z and λZij times in the columns of Z. So (i, j) appears (µ − δZij) times in the rows of X

and (µ− λZij) times in the columns of Y . Then D∗ has the form[
W X

Y ZT

]
and (i, j) appears µ − δZij + λZij times in the rows of [XT ... Z]T and µ − λZij + δZij times in

the columns of [Y
... ZT ]. So, in D∗, kλij + kδij = k(µ− λZij + δZij + µ− δZij + λZij) = 2kµ.

Thus, in D∗, kλij+kδij is identical for any pair (i, j) of distinct treatments, and D∗ is

a PYD by Theorem 11.2. However, by our hypotheses, there is some pair (i, j) of distinct

treatments that appears δZij times in the rows of Z and λZij times in the columns of Z where

δZij 6= λZij. So, using our arguments above, λij 6= δij in D∗ because µ−δZij+λZij 6= µ−λZij+δZij.

Therefore, D∗ is not a GYD.

Remark 11.13. Any GYD with k = b constructed according to the proof of Theorem 11.9

will satisfy the conditions of Theorem 11.12. To see this, note that in the proof of The-

orem 11.9, 1 ∈ {y(k−k′′)/q+1, . . . , yk/q} but 1 /∈ {x(b−b′′)/q+1, . . . , xb/q}. It follows that any

pair of treatments that appears in a block in P1 will appear more often in the columns of

Z than in the rows of Z.

Ash (1981) gave constructions of GYDs for all parameter sets satisfying v 6 25, k 6

b 6 50 and the conditions of Corollary 11.5, with two exceptions. For (v, k, b) =

(15, 21, 35) a GYD is known not to exist by Remark 11.6. For (v, k, b) = (25, 40, 40)

it is not known whether a GYD exists, but Ash provides a PYD. Consequently a PGYD

exists trivially for all of Ash’s parameter sets except (15,21,35), and in these cases we turn

our attention to whether there exists a non-GYD PGYD. Table 11.2 lists these parameter

sets together with whether a non-GYD PGYD is known to exist or not exist. The param-

eters in Table 11.2 where a non-GYD PGYD exists can be obtained from Theorem 11.9

and Theorem 11.12 (see Remark 11.13), except for (8, 14, 28), (8, 28, 28), (9, 24, 48) and

(10, 36, 45). However, a non-GYD PGYD for (8, 28, 28) can be obtained by applying The-

orem 11.12 to the GYD for (8, 28, 28) provided in Ash (1981) and a non-GYD PGYD for

(9, 24, 48) is provided in the appendix F. The special statuses of (15, 21, 35) and (25, 40, 40)

are marked in Table 11.2 by an asterisk (*) and an exclamation (!), respectively.

There are seven parameter sets in the range v 6 25, k 6 b 6 50 that satisfy the

conditions of Theorem 11.2 but not those of Corollary 11.5. For all of these a PGYD
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exists. These parameter sets are listed in Table 11.3 together with the condition of

Corollary 11.5 they violate and references to constructions of corresponding PGYDs.

Other than two non-GYD PGYDs for (8, 20, 50) and (18, 12, 48) provided in the appendix

F, the constructions for the non-GYD PGYDs follow from Theorem 11.9.

Table 11.2: Existence of non-GYD PGYDs for parameter sets satisfying v 6 25, k 6 b 6
50 and the conditions of Corollary 11.5

v k b Non-GYD PGYD? v k b Non-GYD PGYD?

4 6 6 Yes: Theorem 11.12 8 28 28 Yes: Theorem 11.12

4 6 18 No: Corollary 11.4 (3′) 8 28 42 No: Corollary 11.4 (4′)

4 6 30 No: Corollary 11.4 (3′) 9 12 12 Yes: Theorem 11.12

4 6 42 No: Corollary 11.4 (3′) 9 12 24 No: Corollary 11.4 (4′)

4 18 18 Yes: Theorem 11.12 9 12 48 No: Corollary 11.4 (3′)

4 18 30 No: Corollary 11.4 (4′) 9 24 24 Yes: Theorem 11.12

4 18 42 No: Corollary 11.4 (3′) 9 24 48 Yes: appendix F

4 30 30 Yes: Theorem 11.12 9 48 48 Yes: Theorem 11.12

4 30 42 No: Corollary 11.4 (4′) 10 15 36 No: Corollary 11.4 (3′)

4 42 42 Yes: Theorem 11.12 10 18 45 No: Corollary 11.4 (3′)

6 10 15 No: Corollary 11.4 (3′) 10 36 45 Unknown

6 10 45 No: Corollary 11.4 (3′) 12 33 44 No: Corollary 11.4 (3′)

6 15 20 No: Corollary 11.4 (4′) 15∗ 21 35 No: Corollary 11.4 (4′)

6 15 40 No: Corollary 11.4 (3′) 15 35 42 No: Corollary 11.4 (3′)

6 15 50 No: Corollary 11.4 (3′) 16 20 20 Yes: Theorem 11.12

6 20 45 No: Corollary 11.4 (3′) 21 30 35 No: Corollary 11.4 (4′)

6 40 45 No: Corollary 11.4 (3′) 25 30 30 Yes: Theorem 11.12

6 45 50 No: Corollary 11.4 (4′) 25! 40 40 Yes: Ash

8 14 28 Unknown
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Table 11.3: Existence of non-GYD PGYDs for parameter sets satisfying v 6 25, k 6 b 6
50 but failing the conditions of Corollary 11.5

v k b GYD? Non-GYD PGYD?

8 20 50 No: Corollary 11.5 (2′) Yes: appendix F

9 6 6 No: Corollary 11.5 (1′) Yes: Cheng, Theorem 11.9

9 30 30 No: Corollary 11.5 (2′) Yes: Cheng, Theorem 11.9

9 42 42 No: Corollary 11.5 (2′) Yes: Theorem 11.9

16 12 36 No: Corollary 11.5 (1′) Yes: Theoerm 11.9

18 12 48 No: Corollary 11.5 (1′) Yes: appendix F

25 45 45 No: Corollary 11.5 (2′) Yes: Theorem 11.9
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Chapter 12

Summary and future work

In this thesis, we have worked on solving important problems in the areas of optimal

design theory, discrete choice experiments, supersaturated designs, coverings and Youden

designs. In what follows, we provide concluding remarks and discuss possible future work

in these areas.

12.1 Summary

12.1.1 Discrete Choice Experiments

Discrete choice experiments have gained importance over the last few years because of

their use in studying people’s preferences in a wide range of industries such as marketing,

transportation economics, health economics, environmental economics and public eco-

nomics. The responses in these studies are usually discrete or qualitative choices. Being a

relatively new area of study from a statistical perspective, there are a lot of open problems

in the area. Several authors have worked in this area and fantastic surveys are available

by Street-Burgess and Großmann-Schwabe (Street and Burgess, 2007; Großmann and

Schwabe, 2015). One of the biggest challenges is to keep the number of choice sets as

small as possible while still being able to achieve the best possible results. For a major

part of this thesis, we have worked on choice experiments. Throughout the thesis, we

have worked on solving this problem of reducing the number of choice sets under various

choice experiment setups including the estimation of either main-effects or main-effects

plus two-factor interaction effects. We now give a chapter-wise summary for the work
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done in this thesis.

12.1.1.1 Chapter 2

For two-level paired choice experiments, we have obtained a simple form of the information

matrix of a choice design for estimating the main effects, and provided D- and MS -optimal

paired choice designs with distinct choice sets under the main effects model for any number

of choice sets. The D- and MS -optimal two-level paired choice designs found in this

chapter provide solutions in situations where, for every N 6≡ 0 (mod 4), the information

matrix of an optimal exact design is different from the information matrix of the optimal

approximate design, for which the corresponding exact optimal design was not previously

available. This work complements previous work giving optimal exact designs only for

N ≡ 0 (mod 4). Thus experimenters can now use optimal designs for any number of

choice sets N . It is also shown that the optimal designs under the main effects model are

also optimal under the broader main effects model. From a statistical perspective we have

established that one should prefer optimal paired choice designs to choice designs with

m = 3 or m = 5. This also assists in achieving the desired quality of response through

reduced choice set size.

12.1.1.2 Chapter 3

Traditionally, while using designs for discrete choice experiments, every respondent is

shown the same collection of choice pairs (that is, the choice design). Also, as the at-

tributes and/or the number of levels under each attribute increases, the number of choice

pairs in an optimal paired choice design increases rapidly. Moreover, in the literature

under the utility-neutral setup, random subsets of the theoretically obtained optimal de-

signs are often allocated to respondents. The question therefore is whether one can do

better than a random allocation of subsets. To address these concerns, in the linear paired

comparison model (or, equivalently the multinomial logit model), we first incorporate the

fixed respondent effects (also referred to as the block effects) and then obtain optimal

designs for the parameters of interest. Our approach is simple and theoretically tractable,

unlike other approaches which are algorithmic in nature. We present several constructions

of optimal block designs for estimating main effects or main plus two-factor interaction

effects. Our results show when and how an optimal design for the model without blocks
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can be split into blocks so as to retain the optimality properties under the block model.

12.1.1.3 Chapter 4

In this chapter, for paired choice designs, two new construction methods are also proposed

for the estimation of the main effects. These designs require about 30-50% fewer choice

pairs than the existing designs and at the same time have reasonably high D-efficiencies for

the estimation of the main effects. Since, for v = 2, 3, the number of choice pairs involved

is not very large, it may be preferable to use optimal designs for such cases. However, as

the number of levels increases, the number of choice pairs in an optimal design increases

rapidly, and thus, it is preferable to use efficient designs with fewer choice pairs. The

significant gain through the reduced number of choice pairs compensates for the marginal

loss in D-efficiency.

12.1.1.4 Chapter 5

In this chapter, for paired choice designs with all factors having 3 levels, we have obtained

a sharper lower bound to the A- and D-values for estimating the main effects under the

utility-neutral multinomial logit model in the cases where number of choice pairs N is

not necessarily a multiple of 3. New A- and D-optimal (and efficient) designs are also

provided. The D-optimal designs under effects coding are also A- and D-optimal under

orthonormal contrasts. However, under effects coding, A-optimal designs are usually not

D-optimal, even if N is a multiple of three; for example the design a(2,6). The example

a(2,6) illustrates the need for more work to understand whether one should recommend

A-optimal designs for orthonormal contrasts or one should recommend A-optimal designs

under effects coding.

12.1.1.5 Chapter 6

Considering three-level paired choice designs for estimating all the main effects and two-

factor interaction effects under the utility-neutral multinomial logit model, we have pro-

vided a general technique involving generators to reduce the number of choice pairs in

a D-optimal design. Generators are identified allowing significant reduction in the total

number of choice pairs for D-optimal designs. We have also given several examples of

generators for the practical k’s.
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12.1.1.6 Chapter 7

For two-level choice experiments with k factors, we consider a model involving the main

plus all two-factor interaction effects with our interest lying in the estimation of the main

effects and a specified set of two-factor interaction effects. The two-factor interaction

effects of interest are either (i) one factor interacting with each of the remaining n −

1 factors or (ii) each of the two factors interacting with each of the remaining n − 2

factors. There are no general results on the optimal choice designs for estimating main plus

specified two-factor interaction effects in the choice design literature, though Street and

Burgess (2007) highlighted the problem by giving a few examples. One could argue that

the optimal designs available for estimating main effects and all two-factor interactions

could be used for this specific problem because of a lack of theoretical results. However,

when one increases the number of parameters of interest (especially 2-factor interactions),

theoretically obtained optimal designs usually have a large number of choice sets. Under

our model, we have provided theoretical results characterizing optimal designs for any

m. However, we provide optimal design constructions for more practical values of m, i.e.,

m = 3 and m = 4. The case for m = 2 still remains a relevant open problem unless one

uses large designs that are optimal for estimating main and all two-factor interactions as

obtained by Street and Burgess (2007). As a way forward, one can possibly extend this

work to factors with asymmetric levels. One could also consider other sets of specified

two-factor interaction effects as indicated in Dey and Suen (2002).

12.1.1.7 Chapter 8

The author-groups Street–Burgess and Huber–Zwerina have adopted different approaches

and used seemingly different information matrices under the multinomial logit model. The

information matrix plays a crucial role for finding optimal designs in both approaches.

Since the expressions for the relevant matrices look very different and it is not obvious

how the two approaches are related, this has given rise to some confusion in the litera-

ture. We resolved this confusion by showing, in general, how the information matrices

under the two approaches are related. There had also been some confusion regarding the

inference parameters expressed as linear functions of the utility parameter vector τ . We

theoretically established a unified approach to discrete choice experiments and introduce

the general inference problem in terms of a simple linear function of τ . This allowed us
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to show that the commonly used effects coding under the A-criterion for the non-singular

full-rank inference problem inherently attaches unequal importance to the elementary

contrasts of attribute levels. On the contrary, we see that the orthonormal coding leads

to attaching equal importance to the elementary contrasts of attribute levels. However,

for a singular full-rank inference problem involving the full set of effects-coded parame-

ters, we showed that the orthonormal coding provides an equivalent approach to obtain

A-optimal designs.

12.1.2 Supersaturated Designs

In supersaturated designs, the E(s2) optimality criterion was proposed by Booth and Cox

(1962). Jones and Majumdar (2014) proposed the UE(s2) optimality criterion. In this

thesis (Chapter 9), we have compared the advantages of the two criteria and proposed

methods for compromising between the two. Minimizing UEd(s
2) alone produces a large

class of UE(s2)-optimal designs that require secondary criteria to discriminate. An ar-

bitrary UE(s2)-optimal design may have poor projection properties. We have proposed

secondary criteria to identify good UE(s2)-optimal designs. A smaller value of SS along

with minimum Q are common features of many UE(s2)-optimal designs with good pro-

jection properties. Although no simple surrogate criterion is expected to always produce

the best design, we have seen that minimizing SS followed by minimizing Q is an effective

way of getting UE(s2)-optimal designs with good projection properties. We have also pro-

vided easy constructions of superior UE(s2)-optimal designs that are almost as efficient

as E(s2)-optimal designs. Alongside, we have also identified several families of designs

that are both E(s2)- and UE(s2)-optimal.

12.1.3 Coverings

We have seen the definition of a coverings in Chapter 10. To recall, for positive integers t,

v, k and λ with t < k < v, a t-(v, k, λ) covering is an incidence structure (V,B) such that

|V | = v, |B| = k for all B ∈ B, and each t-subset of V is contained in at least λ blocks

in B. The covering number Cλ(v, k, t) is the minimum number of blocks in any t-(v, k, λ)

covering. In the area of coverings, it is of crucial importance to find a lower bound on

the covering number. We have obtained an improved lower bound for t-coverings and
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we have also obtained infinite families of coverings attaining our lower bounds (Horsley

and Singh, 2018). For these families, our lower bound is an improvement over the best

available lower bounds. We also found an infinite family where our bound is tight, that

is, there exists a t-(v, k, λ) covering attaining our bound.

12.1.4 Pseudo generalized Youden designs

In Chapter 11, we have seen that in the area of row column designs, Kiefer (1958) intro-

duced generalized Youden designs (GYDs) for eliminating heterogeneity in two directions.

A GYD is a row-column design whose k rows form a balanced block design (BBD) and

whose b columns do likewise. Later Cheng (1981b) introduced pseudo Youden designs

(PYDs) in which k = b and where the k rows and the b columns, considered together as

blocks, form a BBD. In our work (Das et al., 2018) (Chapter 11), we have introduced and

investigated pseudo generalized Youden designs (PGYDs) which generalise both GYDs

and PYDs. We have obtained necessary conditions for the existence of a PGYD and

have constructed families of PGYDs based on affine planes. We have also provided an

exhaustive list of parameter sets satisfying v 6 25, k 6 50, b 6 50 for which a PGYD

exists.

12.2 Future work

Discrete choice experiments are studied under a generalized linear model where the re-

sponses are non-normal and therefore, the designs are dependent on the unknown param-

eters of the fitted model. In this thesis, we have mostly obtained theoretically D-optimal

designs under the indifference assumption wherein designs are not dependent on the un-

known parameters. This has been done to obtain theoretical results in the area. However,

another important and interesting sub-area of research in choice experiments forgoes this

indifference assumption. This is usually done with the help of Bayesian experiments.

My future research will not only involve generalizing the results in this thesis to other

well known optimality criteria but will also include obtaining Bayesian optimal designs

for many of the practical situations inspired by the work carried out by Peter Goos,

Roselinde Kessels, etc. (Kessels et al., 2006; Kessels, Goos and Vandebroek, 2008). A few

open problems are also mentioned in Section 12.1.1.4, 12.1.1.6, and 12.1.1.7.
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In the area of supersaturated designs, we will work on finding a lower bound for

the SS criterion we defined for UE(s2)- optimal designs (Chapter 9), and on constructing

designs achieving this lower bound. We have already been working on this front and we

will soon be able to present it in a manuscript form. Further works in this area will also

be discussed in the said manuscript.

In the area of coverings, we have worked on improving the lower bounds for t-

coverings using lessons learned from the lower bounds for 2-coverings. Whether these

methods can be extended to generalized covering designs is an area for future work.

There are several other problems posed in Bailey et al. (2011) on generalized covering

designs. Therefore, in future work, we would like to generalize the results in this thesis

to generalized covering designs and solve some of the problems posed in the paper.

In future research on PGYDs, we may try to obtain PGYDs for the parameter

sets (given in Chapter 11) for which a non-GYD PGYD is unknown, for example for

parameters v = 8, k = 14, b = 28. This will help in closing the gaps of the unavailable

designs for a larger range of parameter sets. We can also try to construct tables as in

Chapter 11 for a larger range of v so as to understand the missing designs and to obtain

a general construction for the same, if possible.

161





Appendix A

Additional Material for Chapter 3

This appendix provides some additional details for the Chapter 3.

Design for Example 3.3 k = 3, v1 = 2, v2 = 3, v3 = 4, b = 1, N = s = 72.

(000,111) (000,222) (000,333) (100,211) (100,322) (100,033) (020,131) (020,313) (120,302)

(001,112) (001,223) (001,330) (101,212) (101,323) (101,030) (021,132) (021,310) (121,303)

(002,113) (002,220) (002,331) (102,213) (102,320) (102,031) (022,133) (022,311) (122,300)

(003,110) (003,221) (003,332) (103,210) (103,321) (103,032) (023,130) (023,312) (123,301)

(010,121) (010,232) (010,303) (110,221) (110,332) (110,003) (020,202) (120,231) (120,013)

(011,122) (011,233) (011,300) (111,222) (111,333) (111,000) (021,203) (121,232) (121,010)

(012,123) (012,230) (012,301) (112,223) (112,330) (112,001) (022,200) (122,233) (122,011)

(013,120) (013,231) (013,302) (113,220) (113,331) (113,002) (023,201) (123,230) (123,012)

Lemma A.1. A necessary and sufficient condition for C̃M = CM to hold is that for each

block and each attribute, the frequency distribution of the levels of the attribute are same

for the two options.

Proof. Let PMj = ((Pj)
′
1 · · · (Pj)′t · · · (Pj)′b)′ where (Pj)t represents PMj for the tth block.

Then the condition W ′PM = 0 is equivalent to the condition 1′(P1)t = 1′(P2)t, t = 1, . . . , b.

Let (Pj)t = ((Pj)
1
t · · · (Pj)wt · · · (Pj)kt ) where (Pj)

w
t is of order s× (vw − 1) and represents

(Pj)t for the wth attribute. Therefore for t = 1, . . . , b, if 1′(P1)t = 1′(P2)t, then 1′(P1)wt =

1′(P2)wt for every w and t. Now, since the ith column of (Pj)
w
t provides frequency of

level i and level vw in the wth attribute of the jth option in the tth block, therefore,

1′(P1)wt = 1′(P2)wt implies that the frequency of each of the levels of attribute w is same

in the two options among the s choice pairs in block t.

The converse follows by noting that if for each block and each attribute, the frequency

distribution of the levels of the attribute are same for the two options, then 1′(P1)t =
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1′(P2)t for every t.

Proof of Theorem 3.1. The proof follows as a special case of Lemma A.1.

Proof of Theorem 3.2. Under the linear paired comparison model, a design d optimally

estimates the main effects if CM = diag(C(1), . . . , C(k)) (see Großmann and Schwabe

(2015)) where C(i) = zi(Ivi−1 + Jvi−1) with zi = 2N/(vi − 1), i = 1, . . . , k. This implies

that CM normalized by number of pairs would attain an optimal structure if C(i) =

zi(Ivi−1 + Jvi−1) with zi = 2/(vi − 1), i = 1, . . . , k.

Since the OA+G method of construction entails adding generators to the orthogonal

array of strength t, (t ≥ 2), the off-diagonal elements of P ′MPM corresponding to two

different attributes is zero since under each level of the first attribute, all the levels of

the second attribute occur equally often. Also, since in an orthogonal array, under each

column (attribute) the levels are equally replicated, to establish that each C(i) attains

an optimal structure of the form zi(Ivi−1 + Jvi−1), it is enough to show that normalized

P ′MPM corresponding to a paired choice design with one attribute, say at v levels, attains

the structure z(Iv−1 + Jv−1), where z = 2/(v − 1).

Without loss of generality, we consider only v choice pairs for a typical attribute since

under each column, the n rows of the orthogonal array involves v symbols each replicated

n/v times. While using the generator gj, let P 0
1 , P j

2 be the v×(v−1) effects-coded matrix

for the main effects for the first and second options, respectively, corresponding to any

one attribute at v levels. When h > 1, note that PM is the collection of different matrices

generated out of the corresponding {P 0
1 , P

j
2}, j = 1 . . . , h of choice pairs. For notational

simplicity, we denote P 0
1 by P0 and P j

2 by Pj, j = 1, . . . , v − 1. Also, note that 1′Pj = 0

and
∑v−1

j=0 Pj = 0.

Consider the information matrix P ′MPM normalized for v even. v(v − 1)P ′MPM =∑v−1
j=1(P0−Pj)′(P0−Pj) =

∑v−1
j=1(P ′0P0 +P ′jPj −P ′0Pj −P ′jP0) =

∑v−1
j=1{2(Iv−1 + Jv−1)}−

P ′0(
∑v−1

j=1 Pj) − (
∑v−1

j=1 P
′
j)P0 = {2(v − 1)(Iv−1 + Jv−1)} − P ′0(−P0) − (−P ′0)P0 = 2{(v −

1)(Iv−1 + Jv−1)}+ 2P ′0P0 = 2v(Iv−1 + Jv−1). Thus, for v even, h = v− 1 generators of the

type gj = 1, . . . , v − 1 leads to the optimal structure of normalized P ′MPM .

For v odd, we note that, if say, mth row of P0 corresponds to the level i, then

the mth row of Pv−j corresponds to the level i − j (mod v). Similarly, if say, lth row

of Pj corresponds to the level i, then the lth row of P0 corresponds to the level i − j
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(mod v). This makes the lth row of Pj and P0 same as the mth row of P0 and Pv−j

for every two rows l 6= m = 1, . . . , v. Therefore, for v odd, P ′jP0 = P ′0Pv−j. Now,

v(v−1)/2P ′MPM =
∑(v−1)/2

j=1 (P0−Pj)′(P0−Pj) =
∑(v−1)/2

j=1 (P ′0P0 +P ′jPj−P ′0Pj−P ′jP0) =∑(v−1)/2
j=1 {2(Iv−1 +Jv−1)}−

∑(v−1)/2
j=1 (P ′0Pj+P

′
jP0) = (v−1)(Iv−1 +Jv−1)−

∑(v−1)/2
j=1 (P ′0Pj+

P ′0Pv−j) = (v−1)(Iv−1+Jv−1)−P ′0
∑(v−1)/2

j=1 (Pj+Pv−j) = (v−1)(Iv−1+Jv−1)−P ′0
∑v−1

j=1 Pj =

(v−1)(Iv−1 +Jv−1)−P ′0(−P0) = v(Iv−1 +Jv−1). Thus, for v odd, h = (v−1)/2 generators

of the type gj = 1, . . . , (v− 1)/2 leads to the optimal structure of normalized P ′MPM .

Proof of Theorem 3.5. For a given OA(n1, k+ 1, v1× · · ·× vk× δ, 2), corresponding to

the k attributes at levels vi, i = 1, . . . , k, let d1 be the design constructed through OA+G

method using h = lcm(v1, . . . , vk) generators. Then d1 with parameters k, v1, . . . , vk,

b = 1, s = hn1 is an optimal paired choice design. From d1, the choice pairs obtained

through each of the h generators constitute a block of size n1. This is true since n1 rows

of a block form the orthogonal array in the first option and, with labels re-coded through

the generator, in the second option and hence the conditions in Theorem 3.1 are satisfied.

Finally, we use the δ symbols of the (k + 1)th column of the orthogonal array for

further blocking giving a paired choice block design d2 with parameters k, v1, . . . , vk,

b = hδ, s = n1/δ. This is true since for every attribute in each of the blocks so formed,

each of the vi levels occurs equally often under ith attribute and hence by Theorem 3.1,

d2 is optimal in Dk,b,s.

Proofs for Theorem 3.7 and Theorem 3.9 require a result from Dey (2009) that is

given below.

Lemma A.2 (Dey (2009)). Consider v(v − 1)/2 combinations involving v levels taken

two at a time. Then, for v odd, the combinations can be grouped into (v− 1)/2 replicates

each comprising v combinations. The groups are {(i, v − 2− i), (i+ 1, v − 1− i), . . . , (i+

v − 1, v − 2− (i− (v − 1)))} and the levels are reduced modulo v; i = 0, . . . , (v − 3)/2.

Proof of Theorem 3.7. Theorem 3 of Graßhoff et al. (2004) states that from m(≥ k)

rows of a Hadamard matrix Hm of order m, an optimal paired choice design d3 with

parameters k, v, b = 1, s = mv(v − 1)/2 is constructed using the v(v − 1)/2 combinations

of v levels taken two at a time. From every row of {Hm,−Hm}, v(v − 1)/2 choice pairs

are obtained by replacing ‘1’ in the row by the first column of the combinations and ‘−1’

in the row by the second column of the combinations. If v is odd, then (v − 1)/2 is an
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integer and the v(v−1)/2 combinations can be arranged in rows such that each of the two

columns have every level appearing equally often. Such an arrangement is always possible

and follows from systems of distinct representatives. Therefore, corresponding to each of

the rows of {Hm,−Hm}, using v(v − 1)/2 choice pairs as a block, a paired choice block

design with parameters k, v, b = m, s = v(v − 1)/2 is obtained which, following Theorem

3.1 is optimal. Now for v odd, from Dey (2009), v(v − 1)/2 combinations involving v

levels taken two at a time can be grouped into (v − 1)/2 replicates each comprising v

combinations. Therefore, the blocks generated by each row of Hm can be further broken

into (v − 1)/2 blocks each of size v, which gives us d4.

Proof of Theorem 3.9. Construction 3.2 of Demirkale, Donovan and Street (2013) uses

an OA(n2, k + 1, vk × vk+1, 2) with vk+1 = n2/v and forms vk+1 parallel sets each having

v rows. Then, an optimal paired choice design with parameters k, v, b = 1, s = vk+1

(
v
2

)
is constructed using the v(v − 1)/2 combinations of v numbers {1, . . . , v} taken two at

a time. Let {i, j} be a typical row. Then, for each such row of size two, corresponding

rows i and j from each of the vk+1 parallel sets are chosen to form the choice pairs of the

optimal paired choice design d6. Again as earlier, for v odd, the v(v − 1)/2 combinations

can be arranged in rows such that each of the two columns have every number appearing

equally often. Considering the v(v − 1)/2 choice pairs, obtained from a parallel set, as a

block, we get the paired choice block design with parameters k, v, b = vk+1, s = v(v−1)/2

which is optimal in Dk,b,s. Further proof follows on the same lines as the proof of Theorem

3.7 by treating the pairs generated by each parallel set as blocks.

Proof of Theorem 3.10. Theorem 4 of Graßhoff et al. (2004) uses an OA(n3, k+1,m1×

· · · ×mk × δ, 2) with mi = vi(vi − 1)/2 for some odd vi to construct an optimal paired

choice design d7 with parameters k, vi, . . . , vk, b = 1, s = n3. This method involves a one-

one mapping between mi levels of orthogonal array to the vi(vi − 1)/2 combinations on

vi symbols. For a combination {i, j} corresponding to a symbol of an orthogonal array,

the first option in a pair is obtained by replacing i in place of that symbol and the second

option has j in the corresponding position. Then, similar to construction of Theorem 3.9,

using the δ (≥ 1) symbols of the (k+1)th column of the orthogonal array for blocking gives

us an optimal paired choice block design d8 with parameters k, vi, . . . , vk, b = δ, s = n3/δ.

Note that this method is applicable only for odd vi since for even vi, it is not possible to
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arrange vi(vi − 1)/2 combinations in a position-balanced manner.

Proof of Theorem 3.11. From Theorem 3.1, for each of the h generators, a paired

choice design using the OA + G method of construction is optimal under the broader

main effects block model if P ′MPI = 0.

For a given generator, to show that P ′MPI = 0, it suffices to show that the inner

product of the columns of PM corresponding to the mth main effect and the columns

of PI corresponding to the two-factor interaction effect of ith and jth attribute is zero.

Using an OA(n1, k, v1 × · · · × vk, 3) in the OA + G method of construction, we establish

the result through the following two cases.

Case (i) m = i: In an orthogonal array of strength 2, each of the vivj combinations

occur equally often n1/(vivj) times as rows. Therefore, since the paired choice design

is based on the orthogonal array, for showing that P ′MPI = 0, it suffices to show that

P ′MPI = 0 for one of the n1/(vivj) sets of vivj rows of the type (i, j); i = 0, . . . , vi −

1; j = 0, . . . , vj − 1. For such vivj rows, note that PMy, (y = 1, 2), corresponding to

the jth attribute, can be partitioned into vi sets PMy(j) each of vj distinct rows. Then,

1′PMy(j) = 0. Let PIy corresponding to the ith attribute fixed at level il (il = 0, . . . , vi−1)

and the jth attribute taking vj distinct levels be represented by PIy(ilj). Then, the columns

of PIy(ilj) are multiples of either PMy(j) or 0v. Therefore, 1′PIy(ilj) = 0 for y = 1, 2.

Let PM corresponding to the ith attribute at level il be represented by Xil . Then,

Xil = 1x′il where x′il is a row vector of size vi− 1. Therefore, P ′MPI =
∑vi−1

il=0 X
′
il
(PI1(ilj)−

PI2(ilj)) =
∑vi−1

il=0 xil(1
′PI1(ilj) − 1′PI2(ilj)) = 0.

Case (ii) m 6= i: In an orthogonal array of strength 3, each of the vivjvm combinations

occur equally often n1/(vmvivj) times as rows. Therefore, as in Case (i), for showing that

P ′MPI = 0, it suffices to show that P ′MPI = 0 for one of the n1/(vmvivj) sets of vmvivj

rows of the type (m, i, j);m = 0, . . . , vm − 1; i = 0, . . . , vi − 1; j = 0, . . . , vj − 1.

For such vmvivj rows, note that PIy, (y = 1, 2), corresponding to the ith and jth

attribute, can be partitioned into vm sets PIy(ij) each of vivj distinct rows. Therefore,

1′PIy(ij) = 0 for y = 1, 2, since from Case (i), 1′PIy(ilj) = 0 for the ith attribute at level il.

Finally, since for the mth attribute at level ml (ml = 0, . . . , vm−1), the vivj combina-

tions under attributes i and j occur equally often, therefore P ′MPI =
∑vm−1

ml=0 X
′
ml

(PI1(ij)−

PI2(ij)) =
∑vm−1

ml=0 xml(1
′PI1(ij) − 1′PI2(ij)) = 0.
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Proof of Theorem 3.14. From Lemma A.1, W ′PM = 0 if and only if for each attribute

under the choice pairs having foldover in the second option of a choice pair, the level l

(l = 0, 1) appears equally often in both the options in every block and thus, the frequency

of the pair (1, 0) is same as the frequency of the pair (0, 1) under every attribute in each

block.

Let PI = (Y ′1 · · ·Y ′t · · ·Y ′b )′ where Yt is the s × k(k − 1)/2 matrix corresponding

to the tth block. With (PIj)t representing PIj for the tth block, Yt = (PI1)t − (PI2)t.

Then, the condition W ′PI = 0 is equivalent to the condition 1′(PI1)t = 1′(PI2)t for every

t = 1, . . . , b. Consider (PIj)t = ((PIj)
12
t · · · (PIj)lmt · · · (PIj)

(k−1)k
t ) where (PIj)

lm
t is of order

s × 1 and represents (PIj)t for the two-factor interaction between the lth and the mth

attribute. Therefore, the necessary and sufficient condition for 1′(PI1)t = 1′(PI2)t is that

1′(PI1)lmt = 1′(PI2)lmt for every l and m.

In the tth block, for the choice pairs where either both the attributes have a foldover

in the second option or both do not have a foldover in the second option, the corresponding

rows in (PI2)lmt are same as the corresponding rows in (PI1)lmt .

However, for the pairs in which one attribute has a foldover in the second option and

another does not have foldover in the second option, the corresponding rows in (PI2)lmt

are negative of the corresponding rows in (PI1)lmt . In such a case, 1′(PI1)lmt = 1′(PI2)lmt if

and only if 1′(PI1)lmt = −1′(PI2)lmt = 0. Now, 1′(PI1)lmt = 0 if and only if the frequency

of the pairs from the set {(01, 00), (01, 11), (10, 00),(10, 11)} is same as the frequency of

the pairs from the set {(00, 01), (00, 10), (11, 01), (11, 10)} under the lth and the mth

attribute.

Proof of Theorem 3.15. In steps (iii)-(iv), corresponding to an element f of F , make

the first set of 2α−12k−α−2 = 2k−3 blocks having choice pairs (ab, a′b), (ab′, a′b′), (a′c, ac),

(a′c′, ac′). Similarly, following the steps (iii)-(iv), we make an additional set of 2k−3

blocks having choice pairs (ac, a′c), (ac′, a′c′), (a′b, ab), (a′b′, ab′). Note that each of the

constructed blocks satisfy conditions (i) and (ii) of Theorem 3.14. This gives rise to a

total of 2k−2 sets of blocks each of size 4. The way we have constructed the choice pairs in

steps (iii)-(iv), it follows that the collection of first option in the 2k choice pairs forms a

complete factorial having 2k combinations. Furthermore, the additional set of 2k−3 blocks,

in the construction, is identical to the first set of 2k−3 blocks. Accordingly, we retain only

the first set of 2k−3 blocks. This gives rise to a total of 2k−1 choice pairs divided into 2k−3
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blocks each of size 4. Therefore, step (v) gives an optimal paired choice block design dI2

with parameters k, v = 2, s = 4, b where b = 2k−3
(
k
q

)
for k odd and b = 2k−3

(
k+1
q+1

)
for k

even.
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Appendix B

Additional Material for Chapter 5

This appendix contains some extra details about Chapter 5.

Proof of Theorem 5.3. First we give a proof of trace(M−1
d ) ≥

∑k
p=1 trace(M

−1
dpp).

Let for k = 2, the 2× 2 partitioned matrix M is M =

[
M11 M12

M21 M22

]
. Then M−1 =[

(M11 −M12M
−1
22 M21)−1 −M−1

11 M12(M22 −M21M
−1
11 M12)−1

−M−1
22 M21(M11 −M12M

−1
22 M21)−1 (M22 −M21M

−1
11 M12)−1

]
. SinceM12M

−1
22 M21

is non-negative definite, (M11−M12M
−1
22 M21) ≤M11 and therefore (M11−M12M

−1
22 M21)−1 ≥

M−1
11 . Similarly, (M22 −M21M

−1
11 M12)−1 ≥ M−1

22 . Therefore, trace(M−1) = trace(M11 −

M12M
−1
22 M21)−1 + trace(M22 −M21M

−1
11 M12)−1 ≥ trace(M−1

11 ) + trace(M−1
22 ).

Using the principle of induction, let the relationship holds for t = k − 1 or that

trace(M−1) ≥
∑t

p=1 trace(M
−1
pp ).

Now, the relation for t = k can be proved considering one block matrix (say, M11)

consisting of k− 1 blocks and M22 being the last block and proceeding in the similar way

as for 2× 2 partitioned matrices.

Finally, using Lemma 5.1, the proof follows.

Proof of Theorem 5.5. First, we give a proof of det(M−1
d ) ≥

∏k
p=1 det(M

−1
dpp) by in-

duction. Let for k = 2, the 2 × 2 partitioned matrix M is M =

[
M11 M12

M21 M22

]
. Then

det(M) = det(M11)det(M22 − M21M
−1
11 M12) ≤ det(M11)det(M22) since M21M

−1
11 M12 is

non-negative definite. Therefore, det(M−1) ≥ det(M−1
11 )det(M−1

22 ). Let the relationship

hold for t = k − 1 or that det(M−1) ≥
∏t

p=1 det(M
−1
pp ).
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Now, the relation for t = k can be proved considering one block matrix (say, M11)

consisting of k− 1 blocks and M22 being the last block and proceeding in the similar way

as for 2× 2 partitioned matrices.

Finally, using Lemma 5.4, the proof follows.

Designs as discussed in Chapter 5

ad(2,4) =


20, 01

21, 10

12, 00

02, 11

 ad(2,5) =



00, 22

01, 10

02, 11

11, 20

12, 21


a(2,6) =



21, 02

20, 11

22, 10

11, 00

12, 01

01, 10



ad(3,7) =



211, 022

222, 000

202, 121

220, 112

101, 010

110, 001

011, 100


d(2,8) =



21, 00

01, 22

10, 21

12, 20

20, 11

01, 12

02, 11

10, 02



a(2,9) =



22, 01

20, 02

21, 12

22, 10

11, 00

11, 00

10, 01

11, 00

01, 10



a+
(2,9) =



00, 11

00, 12

00, 21

01, 12

01, 20

02, 10

02, 20

10, 21

11, 22


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Appendix C

Additional Material for Chapter 6

This appendix contains some extra details about Chapter 6.

Proof of Theorem 6.1. The proof of Theorem 6.1 is immediate from the following

Lemma C.1, C.2 and C.3. Lemma C.1 talks about the off-diagonal entries of the in-

formation matrix. Lemma C.2 and C.3 talks about the diagonal blocks for main effects

matrix and the two-factor interaction effects matrix, respectively.

Lemma C.1. If a paired choice design is constructed by adding generators to orthogonal

array OA(n, 3k, 4), then

(i) XTX and Y TY are block diagonal matrices with blocks of size two and four, respec-

tively;

(i) XTY = 0.

Proof. Note that for an factor with three levels, the only possible generators are 0, 1 or

2. Now, for a design with one factor sum of the rows of the main effects matrix X is zero

as long as 0,1 and 2 appear equally often in the first part of a paired choice design and

that the generators are either G1 = 0, G1 = 1 or G1 = 2. Similarly, for a design with

two factors, sum of the rows of the two-factor interaction effects matrix Y is zero as long

as each of the 9 pairs 00,01, 01, 10, 11, 12, 20, 21 and 22 appear equally often in the

first part of a paired choice design and that the generators are either of the following 9

generators, G1 = 00, G1 = 01, G1 = 02, G1 = 10, G1 = 11, G1 = 12, G1 = 20, G1 = 21

or G1 = 22.
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Since a strength four orthogonal array is a strength 2 orthogonal array as well, our

construction method implies that for any two factors, each of the 9 combinations appear

equally often. Therefore, for each 0 in one factor of the first part of the pair, each of 0, 1

and 2 appear in another factor of the first part of the pair. Then, whatever the generator

maybe, the sum of three rows of X for second factor is 0. Similar thing hold for 1 and 2 in

that factor of the first part of the pair. Therefore, the off-diagonal blocks corresponding

to XTX are zero matrices. Similarly, for Y TY , since for each of the 9 combinations for

two factors, the other two factors would have all 9 combinations appearing equally often

making the sum of the rows of corresponding Y as 0. Since these will happen for any set

of 4 factors of Y , we get off-diagonal blocks of Y TY as 0.

Case (ii) can also be proved on the similar lines by using strength 3 properties of an

the staring orthogonal array.

The construction methods given in Chapter 6 are OA+G methods and the starting

orthogonal array is OA(n, 3k, 4). Therefore, from Lemma C.1(i), one can write XTX as

a block diagonal matrix with k blocks corresponding to each of the k factors, such that

XTX = diag((XTX)1, . . . , (X
TX)`, . . . , (X

TX)k) where `th block (XTX)` corresponds

to `th factor. Similarly, Y TY is a block diagonal matrix with
(
k
2

)
blocks such that Y TY =

diag((Y TY )12, . . . , (Y
TY )`m, . . . , (Y

TY )(k−1)k) where `mth block (XTX)`m corresponds

to a two-factor interaction between `th and mth factors.

Lemma C.2. In an OA + G method, starting from an OA(n, 3k, 4), let a paired choice

design be constructed using
(
k
t

)
distinct generators such that each of the generators has

non 0s in all possible t positions and 0s in remaining k − t positions. Then each block in

XTX has the structure h1(t)M2.

Proof. Firstly, note that a paired choice design using
(
k
t

)
distinct generators along with

an orthogonal array of size n has a total of N = n
(
k
t

)
choice pairs. It is easy to see that

for each of the factor,
(
k−1
t

)
generators are 0s and remaining generators

(
k
t

)
-
(
k−1
t

)
= t

k

(
k
t

)
are non 0s. Therefore, the number of contributing generators is t

k

(
k
t

)
.

It is easy to see that for `th factor, paired choice design generated using any non 0

generator gives XTX corresponding to the `th factor as (XTX)` = n(I2 + J2). To see

this, for `th factor, let X1 = (XT
11 . . . XT

1u)
T where n = 3u and X1w, w = 1, . . . , u is

a 3 × 2 matrix with rows being some permutation of the three rows: (1 0), (0 1) and
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(−1 − 1). Without loss of generality we assume that X1w =


1 0

0 1

−1 −1

. Using g1` = 1,

we get X2w =


0 1

−1 −1

1 0

 and using g1` = 2, we get X2w =


−1 −1

1 0

0 1

. It is then

easy to see that for ith factor XT
wXw = 3(I2 + J2) where Xw = X1w − X2w. Therefore,

(XTX)` = n(I2 + J2).

Hence, by counting the total number of generators and their contribution, we get

that (XTX)` = n t
k

(
k
t

)
(I2 + J2) = N t

k
(I2 + J2).

Lemma C.3. In an OA + G method, starting from an OA(n, 3k, 4), let a paired choice

design be constructed using
(
k
t

)
distinct generators such that each of the generators has

non 0s in all possible t positions and 0s in remaining k−t positions. Additionally, for any

two factors, all the generators (rows) with both non 0 entry should be such that they can be

clubbed in several groups of two generators of the type {(11, 12), (11, 21), (22, 21), (22, 12)}.

Then, each block in Y TY has the structure h2(t)M2 ⊗M2.

Proof. Firstly, note that a paired choice design using
(
k
t

)
distinct generators along with

an orthogonal array of size n has a total of N = n
(
k
t

)
choice pairs. It is easy to see that

for any two factors ` and m, there are

(a)
(
k−2
k−t

)
generators such that generators for both `th and mth factors are non-zero;

(b)
(
k−2
t

)
generators such that generators for both `th and mth factors are zero;

(c)
(
k
t

)
−
(
k−2
t

)
−
(
k−2
k−t

)
generators such that generators for `th factor is zero and mth

factor is non-zero or vice-versa.

We now see the contribution from each of these types of generators to (Y TY )`m. For

`th and mth factor, note that since Y1 will have effects-coding corresponding to each of

the 32 factor-level combinations occurring equally often, we can write Y1 = (Y T
11 . . . Y T

1u)
T

where n = 9u and Y1w, w = 1, . . . , u is a 9× 4 matrix with rows being some permutation

of the nine rows: (1 0 0 0), (0 1 0 0), (−1 − 1 0 0), (0 0 1 0), (0 0 0 1), (0 0 − 1 −

1), (−1 0 − 1 0), (0 − 1 0 − 1), and (1 1 1 1). Then, without loss of generality if we

use the generators such that generators for `th factor is zero and mth factor is non-zero

175



or vice-versa, we get Y T
1wY1w = 3(I2 + J2) ⊗ (I2 + J2) for each w. Then, since u = n/9,

we get (Y TY )`m =
∑

w Y
T

1wY1w = n
3
(I2 + J2) ⊗ (I2 + J2). Similarly, when we use two

sets of generators such that it is one among {(11, 12), (11, 21), (22, 21), (22, 12)}, the total

number of pairs are then 2n and since we get Y T
1wY1w = 3(I2 +J2)⊗ (I2 +J2) and u = n/9,

we get (Y TY )`m =
∑

w Y
T

1wY1w = n
3
(I2 + J2)⊗ (I2 + J2).

Now generators of type (a) contribute n
3
(I2 +J2)⊗(I2 +J2) to Y TY , one generator of

type (c) contribute n
3
(I2 +J2)⊗(I2 +J2) to Y TY and one generator of type (b) contributes

nothing to Y TY .

Since there are a total of
(
k
t

)
generators of type (a)-(c), we get the total contribution

to Y TY as 1
2

(
k−2
k−t

)
n
3
(I2 + J2) ⊗ (I2 + J2) + (

(
k
t

)
−
(
k−2
t

)
−
(
k−2
k−t

)
)n

3
(I2 + J2) ⊗ (I2 + J2).

Therefore, we get (Y TY )`m = h2(t)M2 ⊗M2.
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Appendix D

Additional Material for Chapter 8

This appendix provides some additional details for the Chapter 8.

Proof of Theorem 8.1. It is easy to see that

Λ =
1

N

N∑
n=1

Λn =
1

N

N∑
n=1

∑
1=j<j′=m

∆n(jj′)(r, r
′),

where

(∑
l∈Sn

eτl

)2

∆n(jj′)(r, r
′) =

{
−eτreτr′ , r 6= r′, r, r′ = 1, . . . , L,

+eτreτr′ , r = r′, r = 1, . . . , L,

As per the definition, options are lexicographically arranged in Λ as well as BH . Also,

the row in Hj corresponding to an option τw, is given by wth column of BH . Let BH be

as defined in the Chapter 8.

Let BH = [B1 br B2 br′ B3], where B1 is of order p × (r − 1), B2 is of order

p × (r′ − r − 1), and B3 is of order p × (L − r′). Without loss of generality, let hnj

and hnj′ correspond to the rth and the r′th lexicographic labels of rth and r′th options

respectively, with r < r′. Then, br = hTnj and br′ = hTnj′ . Here T denotes the transposition.

Therefore,

BHΛBT
H =

1

N
BH

N∑
n=1

(
1

m2

m−1∑
j=1

m∑
j′=j+1

∆n(jj′)(r, r
′)

)
BT
H

=
1

m2N

N∑
n=1

m−1∑
j=1

m∑
j′=j+1

BH∆n(jj′)(r, r
′)BT

H .

Now, by definition,
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(∑
l∈Sn e

τl
)2

∆n(jj′) = eτreτr′
[

0L×(r−1) wTnjj′ 0L×(r′−r−1) −wTnjj′ 0L×(L−r′)
]
,

where wnjj′ =
[

01×(r−1) 1 01×(r′−r−1) −1 01×(L−r′)
]
. Then,

BH∆n(jj′)B
T
H =

eτreτr′(∑
l∈Sn

eτl
)2 [ 0p×(r−1) (hTnj − hTnj′) 0p×(r′−r−1) (hTnj′ − hTnj) 0p×(L−r′)

]
BTH

=
eτreτr′(∑
l∈Sn

eτl
)2 ((hTnj − hTnj′)hnj − (hTnj − hTnj′)hnj′) =

eτreτr′(∑
l∈Sn

eτl
)2 (hTnj − hTnj′)(hnj − hnj′).

From the definition, we get,

BHΛBT
H =

1

N

N∑
n=1

1(∑
l∈Sn e

τl
)2

m−1∑
j=1

m∑
j′=j+1

eτreτr′ (hnj − hnj′)T (hnj − hnj′)

=
1

N

N∑
n=1

m−1∑
j=1

m∑
j′=j+1

PnjPnj′(hnj − hnj′)T (hnj − hnj′).

Upon simple rearrangement and using the fact that
∑m

j=1 Pnj = 1 for each n = 1, . . . , N ,

we get,

BHΛBTH =
1

N

N∑
n=1

 m∑
j=1

hTnjhnjPnj(1− Pnj)−
m∑

j 6=j′=1

hTnjhnj′PnjPnj′


=

1

N

N∑
n=1

 m∑
j=1

hTnjhnj(Pnj − 2P 2
nj) +

m∑
j=1

hTnjhnjP
2
nj(

m∑
j′=1

Pnj′)− 2

m∑
j 6=j′=1

hTnjhnj′Pnj′Pnj′

+

m∑
j1 6=j2=1

hTnj1hnj2Pnj1Pnj2(

m∑
j′=1

Pnj′)


=

1

N

N∑
n=1

m∑
j=1

Pnj

hTnjhnj − m∑
j′=1

hTnj′hnjPnj′ − hTnj
m∑
j′=1

hnj′Pnj′ +

m∑
j′=1

hTnj′hnj′P
2
nj′

+
∑
j1 6=j2

hTnj1hnj2Pnj1Pnj2


=

1

N

N∑
n=1

m∑
j=1

Pnj

hTnjhnj − m∑
j′=1

hTnj′hnjPnj′ − hTnj
m∑
j′=1

hnj′Pnj′ + (

m∑
j′=1

hnj′Pnj′)
T (

m∑
j′=1

hnj′Pnj′)


=

1

N

N∑
n=1

m∑
j=1

(hnj
√
Pnj −

√
Pnj

m∑
j′=1

hnj′Pnj′)
T (hnj

√
Pnj −

√
Pnj

m∑
j′=1

hnj′Pnj′)

Hence,

BHΛBT
H =

1

N

N∑
n=1

m∑
j=1

(hnj −
m∑
j′=1

hnj′Pnj′)
TPnj(hnj −

m∑
j′=1

hnj′Pnj′).

Proof of (BEBT
E)−1BE = SG. From (8.4), G can be written as,
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G =


Kv1 ⊗ 1√

v2
1Tv2 ⊗ · · · ⊗ 1√

vk
1Tvk

1√
v2

1Tv1 ⊗ Kv2 ⊗ · · · ⊗ 1√
vk

1Tvk
... ⊗ ... ⊗ · · · ⊗ ...

1√
v1

1Tv1 ⊗
1√
v2

1Tv2 ⊗ · · · ⊗ Kvk


Also, from definition, S is a rectangular block diagonal matrix given by,

S =
1√
L


Dv1 0(v1−1)×v2 · · · 0(v1−1)×vk

0(v2−1)×v1 Dv2 · · · 0(v2−1)×vk
...

...
...

...

0(vk−1)×v1 0(vk−1)×v2 · · · Dvk

 .

Therefore, on multiplication,

SG =
1

L


Tv1 ⊗ 1Tv2 ⊗ · · · ⊗ 1Tvk

1Tv1 ⊗ Tv2 ⊗ · · · ⊗ 1Tvk
... ⊗ ... ⊗ · · · ⊗ ...

1Tv1 ⊗ 1Tv2 ⊗ · · · ⊗ Tvk

 , (AD.1)

where Tvi is the (vi − 1) × vi matrix of the first vi − 1 rows of viKvi . Now, it is easy to

see that

(BEB
T
E)−1 =

1

L


v1Iv1−1 − Jv1−1 0 · · · 0

0 v2Iv2−1 − Jv2−1 · · · 0
...

... · · · ...

0 0 · · · vkIvk−1 − Jvk−1

 .

and that (viIvi−1 − Jvi−1)B
(i)
e = Tvi . Therefore,

(BEB
T
E)−1BE =

1

L


Tv1 ⊗ 1Tv2 ⊗ · · · ⊗ 1Tvk

1Tv1 ⊗ Tv2 ⊗ · · · ⊗ 1Tvk
... ⊗ ... ⊗ · · · ⊗ ...

1Tv1 ⊗ 1Tv2 ⊗ · · · ⊗ Tvk

 . (AD.2)

Then the result follows from (AD.1) and (AD.2).

Proof of Theorem 8.5. For every p × L matrix BH whose rows are not necessarily

orthogonal but that span the same vector space as the rows of p × L matrix BO, there

exists a non-singular matrix Q of order p such that

BH = QBO. (AD.3)
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Now, BH = QBO implies BO = Q−1BH . Also, since BOB
T
O = Ip, it follows that BHB

T
H =

QBOB
T
OQ

T = QQT . Then, from Corollary 3.1 (i),

V ar(BH τ̂) = V ar(QBOτ̂)

= QV ar(BOτ̂)QT

= Q(BOΛBT
O)−1QT

= {(QT )−1(BOΛBT
O)Q−1}−1

= {(QT )−1(Q−1BHΛ(Q−1BH)T )Q−1}−1

= {(QQT )−1(BHΛBT
H)(QQT )−1}−1

= {(BHB
T
H)−1(BHΛBT

H)(BHB
T
H)−1}−1

= (BHB
T
H)(BHΛBT

H)−1(BHB
T
H). (AD.4)

Also, from (AD.4) and Theorem 3.1, it follows that,

V ar((BHB
T
H)−1BH τ̂) = (BHB

T
H)−1V ar(BH τ̂)(BHB

T
H)−1

= (BHΛBT
H)−1

= V ar(β̂H).

Proof of Theorem 8.7. Let BE = (BT
E(1) B

T
E(2) · · ·BT

E(k))
T , where BE(i) =

(
⊗i−1
i′=11Tvi′

)
⊗

B
(i)
e ⊗ki′=i+1 1Tvi′ and B

(i)
e is a (vi−1)× vi effects coded matrix for ith attribute at vi levels.

Now, taking BH = BE in (AD.3), we have, BE(i) = QiBO, where Q = (QT
1 QT

2 · · · QT
k )T

is a non-singular matrix and Qi is of order (vi − 1) ×
∑k

i=1(vi − 1). Also note that

BOB
T
O = I∑k

i=1(vi−1), BEB
T
E = diag(BE(1)B

T
E(1), . . . , BE(k)B

T
E(k)) and BE(i)B

T
E(i) = Vi,
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i = 1, . . . , k. Therefore, for d∗ ∈ Dk,m,N ,

Id∗(βE) = Id∗((BEB
T
E)−1BEτ)

= BEΛd∗B
T
E

= QBOΛd∗B
T
OQ

T

= Q(diag(α1Iv1−1, . . . , αkIvk−1))QT

= diag(α1Q1Q
T
1 , . . . , αkQkQ

T
k )

= diag(α1BE(1)B
T
E(1), . . . , αkBE(k)B

T
E(k))

= diag(α1V1, . . . , αkVk).

Similarly, since (BEB
T
E)−1 = diag((BE(1)B

T
E(1))

−1, . . . , (BE(k)B
T
E(k))

−1) = diag(V −1
1 , . . . , V −1

k ),

it follows that Id∗(BEτ) = (BEB
T
E)−1(BEΛd∗B

T
E)(BEB

T
E)−1 = diag(α1V

−1
1 , . . . , αkV

−1
k ).

Mathematical version and proof of Theorem 8.11 as Theorem D.1

Let Z(i,u) = (−Iu 1u 0u×(vi−u−1)) for u = 1, . . . , vi − 1. Then, the
(
vi
2

)
× vi coefficient

matrix of all normalized elementary comparisons between the vi levels of the ith attribute

is

Zi =
1√
2

(
Z(i)

Z̄(i)

)
,

where Z(i) = (ZT
(i,1) Z

T
(i,2) · · · ZT

(i,vi−2))
T and Z̄(i) = Z(i,vi−1).

Also, define

Wi =

(
⊗i−1
i′=1

1
√
vi′

1Tvi′

)
⊗ 1√

2
Z(i) ⊗ki′=i+1

1
√
vi′

1Tvi′ ,

W i =

(
⊗i−1
i′=1

1
√
vi′

1Tvi′

)
⊗ 1√

2
Z̄(i) ⊗ki′=i+1

1
√
vi′

1Tvi′ .

Note that W i is the contrast matrix for comparing level labeled vi − 1 of attribute i

to each of the remaining vi− 1 levels labeled 0, 1, . . . , vi− 2. Similarly, Wi is the contrast

matrix for pairwise comparisons of the levels labeled 0, 1, . . . , vi − 2 of attribute i. Let

Yi = (W T
i W

T

i )T . Then, the t × L matrix Z = (Y T
1 Y T

2 · · · Y T
k )T represents the matrix

of normalized elementary comparisons between levels of each and every attribute, with

t = (
∑k

i=1

(
vi
2

)
).
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The weighted sum of the variances of all normalized elementary comparisons is given

by
k∑
i=1

vi − 1(
vi
2

) tr[V ar(Yiτ̂)] =
k∑
i=1

2

vi
tr[V ar(Yiτ̂)] = tr[ΓOV ar(Zτ̂)], (AD.5)

where ΓO = diag(ΓO1,ΓO2, . . . ,ΓOk) and ΓOi = (2/vi)I(vi2 ).

While obtaining tr[ΓOV ar(Zτ̂)] in (AD.5), for each attribute i, we account for the

contribution of V ar(Yiτ̂) through vi−1

(vi2 )
tr[V ar(Yiτ̂)]. This ensures providing equal impor-

tance to each of the k sets of
(
vi
2

)
elementary comparisons of which only vi−1 comparisons

are independent, i = 1, 2, . . . , k.

For A-optimality considerations, to bring in parity between different attributes with

different number of levels, we normalize each of (BEB
T
E)−1BE and BE. It is easy to see that

the normalized form of (BEB
T
E)−1BE is ΥE(BEB

T
E)−1BE where ΥE = diag(

√
L

v1−1
Iv1−1,

. . . ,
√

L
vk−1

Ivk−1). Also, ΥTBE is the normalized form ofBE where ΥT = diag(
√

v1
2L
Iv1−1, . . . ,√

vk
2L
Ivk−1).

Finally, we introduce the two notations ΓE = diag(ΓE1,ΓE2, . . . ,ΓEk) and ΓW =

diag(ΓW1,ΓW2, . . . ,ΓWk), where ΓEi = 2
vi(vi−1)

I(vi2 ) and ΓWi = 1
(vi−1)

I(vi−1
2 ).

Theorem D.1. Under the main effects model, (i) tr[V ar(BOτ̂)] = tr[ΓOV ar(Zτ̂)],

(ii) tr[V ar(ΥE(BEB
T
E)−1BE τ̂)] =

(
tr[ΓEV ar(Zτ̂)] + 2

∑k
i=1 tr[ΓWiV ar(Wiτ̂)]

)
,

(iii) tr[V ar(ΥTBE τ̂)] =
∑k

i=1 tr[V ar(Wiτ̂)].

Proof. Since the rows of Z spans the same vector space as the rows of BO, there exists

a matrix Ro of order t × pM such that Z = RoBO. Now, Z = RoBO implies ZBT
O =

RoBOB
T
O = Ro. Therefore, Z = ZBT

OBO. Also, it is easy to see that BOZ
TΓOZB

T
O = IpM ,

where pM =
∑k

i=1(vi − 1). Then,

tr[ΓO V ar(Zτ̂)] = tr[ΓO V ar(ZB
T
OBOτ̂)]

= tr[ΓO ZB
T
OV ar(BOτ̂)BOZ

T ]

= tr[BOZ
TΓO ZB

T
OV ar(BOτ̂)]

= tr[V ar(BOτ̂)].

There exists a matrix Re of order t × pM such that Z = ReΥE(BEB
T
E)−1BE. Now,

Z = ReΥE(BEB
T
E)−1BE implies ZBT

E = ReΥE. Also multiplying by Υ−1
E on both sides,
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we get ZBT
EΥ−1

E = Re. Therefore, Z = ZBT
EΥ−1

E ΥE(BEB
T
E)−1BE. Also, it is easy to see

that Υ−1
E BEZ

TΓEZB
T
EΥ−1

E = diag(V1, . . . , Vk) where Vi = 1
vi

(Ivi−1 + Jvi−1). Then,

tr[ΓE V ar(Zτ̂)] = tr[ΓE V ar(ZBTEΥ−1E ΥE(BEB
T
E)−1BE τ̂)]

= tr[ΓE ZBTEΥ−1E V ar(ΥE(BEB
T
E)−1BE τ̂)Υ−1E BEZ

T ]

= tr[Υ−1E BEZ
TΓE ZBTEΥ−1E V ar(ΥE(BEB

T
E)−1BE τ̂)]

= tr[diag(V1, . . . , Vk)V ar(ΥE(BEB
T
E)−1BE τ̂)]

=

k∑
i=1

tr[ViV ari(
√
L/(vi − 1)(BEB

T
E)−1BE τ̂)]

=

k∑
i=1

1

vi

{
tr[V ari(

√
L/(vi − 1)(BEB

T
E)−1BE τ̂)]

+tr[Jvi−1V ari(
√
L/(vi − 1)(BEB

T
E)−1BE τ̂)]

}
, (AD.6)

where V ari(
√
L/(vi − 1)(BEB

T
E)−1BE τ̂), of order (vi − 1) × (vi − 1), is the ith diagonal

sub-matrix of V ar(ΥE(BEB
T
E)−1BE τ̂). Let ti be the ith column of Ik. Then, it is easy to

see that Υ−1
E BEW

T
i ΓWiWiB

T
EΥ−1

E = tit
T
i ⊗Gi, where Gi = 1

2vi
((vi−1)Ivi−1−Jvi−1). Now,

tr[ΓWiV ar(Wiτ̂)] = tr[ΓWiV ar(WiB
T
EΥ−1E ΥE(BEB

T
E)−1BE τ̂)]

= tr[ΓWiWiB
T
EΥ−1E V ar(ΥE(BEB

T
E)−1BE τ̂)Υ−1E BEW

T
i ]

= tr[Υ−1E BEW
T
i ΓWiWiB

T
EΥ−1E V ar(ΥE(BEB

T
E)−1BE τ̂)]

= tr[Υ−1E (tit
T
i ⊗Gi)Υ−1E V ar(ΥE(BEB

T
E)−1BE τ̂)]

=
1

2vi

{
(vi − 1)tr[V ari(

√
L/(vi − 1)(BEB

T
E)−1BE τ̂)]

−tr[Jvi−1V ari(
√
L/(vi − 1)(BEB

T
E)−1BE τ̂)]

}
. (AD.7)

Therefore,

2

k∑
i=1

tr[ΓWiV ar(Wiτ̂)] =

k∑
i=1

1

vi

{
(vi − 1)tr[V ari(

√
L/(vi − 1)(BEB

T
E)−1BE τ̂)]

− tr[Jvi−1V ari(
√
L/(vi − 1)(BEB

T
E)−1BE τ̂)]

}
(AD.8)

From (AD.6) and (AD.8), we get,

tr[ΓEV ar(Zτ̂)] + 2
k∑
i=1

tr[ΓWiV ar(Wiτ̂)] =
k∑
i=1

tr[V ari(
√

(vi − 1)/L(BEB
T
E)−1BE τ̂)],

or

tr[ΓEV ar(Zτ̂)] + 2
k∑
i=1

tr[ΓWiV ar(Wiτ̂)] = tr[V ar(ΥE((BEB
T
E)−1BE τ̂)].
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For establishing tr[V ar(ΥTBE τ̂)] =
∑k

i=1 tr[V ar(Wiτ̂)], it is easy to see that ΥTBE τ̂ =

(W
T

1 ,W
T

2 , . . . ,W
T

k )T τ̂ and therefore the result follows by taking trace of variance on either

sides.

The relationship between tr[V ar(BOτ̂)] and tr[ΓnV ar(AΥE(BEB
T
E)−1BE τ̂)] is now

established where A = diag(B
(1)T
e , . . . , B

(k)T
e ) is a (

∑
vi)×pM matrix. We also define Γn =

diag(Γn1,Γn2, . . . ,Γnk), where Γni = ((vi − 1)/vi)Ivi . Furthermore, for representational

ease, let Bn = AΥE(BEB
T
E)−1BE.

Proof of Theorem 8.12. Since the rows of Bn spans the same vector space as the rows

of BO, there exists a matrix Rn of order (
∑
vi) × pM such that Bn = RnBO. Now,

Bn = RnBO implies BnB
T
O = RnBOB

T
O = Rn. Therefore, Bn = BnB

T
OBO. Also, it is easy

to see that BOB
T
nΓnBnB

T
O = IpM , where pM =

∑k
i=1(vi − 1). Then,

tr[Γn V ar(Bnτ̂)] = tr[Γn V ar(BnB
T
OBOτ̂)]

= tr[Γn BnB
T
OV ar(BOτ̂)BOB

T
n ]

= tr[BOB
T
nΓn BnB

T
OV ar(BOτ̂)]

= tr[V ar(BOτ̂)].
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Appendix E

Additional Material for Chapter 9

This appendix provides some additional details for the Chapter 9. It includes: designs

discussed in Tables 9.1, 9.2, and Table 9.3 to demonstrate that UE(s2)-optimal designs

with better projection properties tend to have smaller values of SS and Q, and a proof of

Theorem 9.8.

Designs for Tables 9.1, 9.2, and 9.3

(a). Designs for the case m = 14 and n = 12 (Table 9.1):

d1

1 1 1 1 1-1 1-1-1 1 1-1 1-1

1 1 1-1-1-1 1 1 1-1 1-1-1 1

-1 1-1-1 1 1 1-1 1-1-1-1 1 1

1-1 1 1 1-1-1-1-1-1-1 1-1 1

1-1-1-1-1-1 1 1-1-1-1 1 1-1

-1-1 1 1-1 1 1 1-1 1-1-1 1 1

-1 1-1 1 1 1-1 1-1-1 1-1-1-1

-1-1-1 1 1-1-1 1 1 1 1 1 1 1

-1 1-1 1-1-1 1-1 1 1-1 1-1-1

-1-1 1-1-1 1-1-1 1-1 1 1 1-1

1-1 1-1 1 1-1 1 1 1-1-1-1-1

1 1-1-1-1 1-1-1-1 1 1 1-1 1

d2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1-1-1-1-1 1 1 1 1-1-1-1-1

-1-1 1 1-1-1 1 1-1-1 1 1-1-1

-1-1-1-1 1 1 1 1-1-1-1-1 1 1

-1-1-1-1 1 1-1-1 1 1 1 1-1-1

-1-1 1 1-1-1-1-1 1 1-1-1 1 1

1 1-1-1-1-1-1-1-1-1 1 1 1 1

1 1 1 1 1 1-1-1-1-1-1-1-1-1

1-1 1-1 1-1 1-1 1-1 1-1 1-1

1-1-1 1-1 1 1-1 1-1-1 1-1 1

-1 1 1-1-1 1 1-1-1 1 1-1-1 1

-1 1-1 1 1-1-1 1 1-1 1-1-1 1

d3

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1-1-1-1-1-1-1-1-1 1 1

-1-1-1-1 1 1 1 1-1-1-1-1 1 1

-1-1-1-1-1-1-1-1 1 1 1 1 1 1

1 1-1-1 1 1-1-1 1 1-1-1-1-1

1 1-1-1-1-1 1 1-1-1 1 1-1-1

-1-1 1 1 1 1-1-1-1-1 1 1-1-1

-1-1 1 1-1-1 1 1 1 1-1-1-1-1

1-1 1-1 1-1 1-1 1-1 1-1 1-1

1-1 1-1-1 1-1 1-1 1-1 1 1-1

-1 1-1 1 1-1 1-1-1 1-1 1 1-1

-1 1-1 1-1 1-1 1 1-1 1-1 1-1
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d4

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1-1-1-1-1 1 1 1-1-1-1-1 1

-1-1 1 1-1-1 1-1-1 1 1-1-1 1

-1-1-1-1 1 1 1-1-1-1-1 1 1 1

-1-1-1-1 1 1-1 1 1 1 1-1-1 1

-1-1 1 1-1-1-1 1 1-1-1 1 1 1

1 1-1-1-1-1-1-1-1 1 1 1 1 1

1 1 1 1 1 1-1-1-1-1-1-1-1 1

1-1 1-1 1-1-1 1-1 1-1 1-1-1

1-1-1 1-1 1-1 1-1-1 1-1 1-1

-1 1 1-1-1 1-1-1 1 1-1-1 1-1

-1 1-1 1 1-1 1 1-1 1-1-1 1-1

d5

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1-1-1-1-1 1 1 1 1-1-1-1-1 1

-1 1 1-1-1 1 1-1-1 1 1-1-1 1

-1-1-1 1 1 1 1-1-1-1-1 1 1 1

-1-1-1 1 1-1-1 1 1 1 1-1-1 1

-1 1 1-1-1-1-1 1 1-1-1 1 1 1

1-1-1-1-1-1-1-1-1 1 1 1 1 1

1 1 1 1 1-1-1-1-1-1-1-1-1 1

-1 1-1 1-1 1-1 1-1 1-1 1-1-1

-1-1 1-1 1 1-1 1-1-1 1-1 1-1

1 1-1-1 1 1-1-1 1 1-1-1 1-1

1-1 1 1-1-1 1 1-1 1-1-1 1-1

d6

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1-1-1-1-1-1-1-1-1 1 1 1

-1-1-1 1 1 1 1-1-1-1-1 1 1 1

-1-1-1-1-1-1-1 1 1 1 1 1 1 1

1-1-1 1 1-1-1 1 1-1-1 1-1-1

1-1-1-1-1 1 1-1-1 1 1 1-1-1

-1 1 1 1 1-1-1-1-1 1 1 1-1-1

-1 1 1-1-1 1 1 1 1-1-1 1-1-1

-1 1-1 1-1 1-1 1-1 1-1-1 1-1

-1 1-1-1 1-1 1-1 1-1 1-1 1-1

1-1 1 1-1 1-1-1 1-1 1-1 1-1

1-1 1-1 1-1 1 1-1 1-1-1 1-1
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(b). Designs for the case m = 16 and n = 10 (Table 9.2):

d1

1-1-1-1 1-1 1 1-1-1 1 1-1-1-1 1

-1 1-1 1 1 1-1 1 1-1-1-1-1-1-1-1

1-1 1 1 1 1-1-1 1 1 1 1-1-1 1 1

-1 1 1-1 1 1-1-1-1-1-1 1 1 1-1 1

1-1 1-1 1-1-1 1-1 1-1-1 1 1 1-1

-1 1 1-1-1-1 1-1 1-1-1 1-1-1 1-1

1 1 1 1-1-1 1-1-1 1 1-1-1 1-1-1

-1-1-1 1-1-1-1 1 1 1 1 1 1 1-1-1

-1-1-1 1-1 1 1-1-1 1-1-1 1-1 1 1

1 1-1-1-1 1 1 1 1-1 1-1 1 1 1 1

d2

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1

1-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1

-1-1-1-1 1 1 1 1-1-1-1-1 1 1 1 1

1 1-1 1 1-1 1-1-1 1-1 1 1-1 1-1

1-1 1 1 1 1-1-1-1-1 1 1 1 1-1-1

1-1-1-1-1-1-1-1 1 1 1 1 1 1 1 1

1-1 1 1-1 1-1 1 1 1-1-1 1-1 1-1

-1 1-1 1-1 1 1-1 1-1 1-1 1-1-1 1

-1 1 1-1 1 1-1-1 1-1-1 1-1-1 1 1

d3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1-1-1-1-1-1-1-1-1

-1 1 1 1-1-1-1-1 1 1 1 1-1-1-1-1

1 1 1 1-1-1-1-1-1-1-1-1 1 1 1 1

1 1-1-1 1 1-1-1 1 1-1-1 1 1-1-1

1 1-1-1 1 1-1-1-1-1 1 1-1-1 1 1

-1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1

-1-1 1-1-1 1-1 1 1-1 1-1-1 1-1 1

-1-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1

-1-1-1 1-1 1 1-1-1 1 1-1 1-1-1 1

d4

1 1 1 1 1 1-1 1 1 1 1 1 1 1 1 1

1 1-1-1-1-1-1 1 1 1-1-1-1-1 1 1

-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1

-1-1-1-1 1 1 1 1-1-1-1-1 1 1 1 1

1-1 1-1 1-1-1-1 1-1 1-1 1-1 1-1

1-1-1 1-1 1 1-1 1-1-1 1-1 1 1-1

-1 1 1-1-1 1-1-1-1 1 1-1-1 1 1-1

-1 1-1 1-1 1-1-1 1-1 1-1 1-1-1 1

-1 1 1-1 1-1 1-1 1-1-1 1-1 1-1 1

1-1-1 1 1-1 1-1-1 1 1-1-1 1-1 1

d5

1 1 1 1 1 1-1 1 1 1 1 1 1 1 1 1

1 1-1-1-1-1-1 1 1 1-1-1-1-1 1 1

-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1

-1-1-1-1 1 1 1 1-1-1-1-1 1 1 1 1

1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1

1-1-1 1-1 1-1-1 1-1-1 1-1 1 1-1

-1 1 1-1-1 1-1-1-1 1 1-1-1 1 1-1

-1 1-1 1-1 1 1-1 1-1 1-1 1-1-1 1

-1 1 1-1 1-1 1-1 1-1-1 1-1 1-1 1

1-1-1 1 1-1-1-1-1 1 1-1-1 1-1 1

d6

1 1 1 1 1 1-1 1 1 1 1 1 1 1 1 1

1 1-1-1-1-1-1 1 1 1-1-1-1-1 1 1

-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1

-1-1-1-1 1 1 1 1-1-1-1-1 1 1 1 1

1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1

1-1-1 1-1 1-1-1 1-1-1 1-1 1 1-1

-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1-1

-1 1-1 1-1 1-1-1 1-1 1-1 1-1-1 1

-1 1 1-1 1-1 1-1 1-1-1 1-1 1-1 1

1-1-1 1 1-1-1-1-1 1 1-1-1 1-1 1

d7

1 1 1 1 1 1 1 1-1 1 1 1 1 1 1 1

-1-1-1-1-1-1-1-1-1 1 1 1 1 1 1 1

1 1 1 1-1-1-1-1 1 1 1-1-1-1-1 1

-1-1-1-1 1 1 1 1 1 1 1-1-1-1-1 1

1 1-1-1 1 1-1-1-1-1-1 1 1-1-1 1

-1-1 1 1-1-1 1 1 1-1-1 1 1-1-1 1

1 1-1-1-1-1 1 1 1-1-1-1-1 1 1 1

-1-1 1 1 1 1-1-1 1-1-1-1-1 1 1 1

1-1 1-1 1-1 1-1-1 1-1 1-1 1-1-1

-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1-1

(c). Designs for the case m = 22 and n = 12 (Table 9.3):

d1

-1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 1 1 1 1

1 -1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 1 -1 -1 -1 1 1 -1

-1 1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1

-1 -1 1 1 -1 1 1 1 1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1

1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 -1 1

1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 1 1

-1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1

1 -1 1 -1 1 1 1 1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 -1 1

-1 1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1

1 -1 -1 1 -1 1 1 1 1 1 1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1

1 -1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 1

1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 1 1 -1 -1

d2

1 -1 -1 -1 -1 1 -1 1 1 1 1 1 1 -1 -1 1 -1 -1 1 -1 1 1

1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 1 1 -1 1 1 1 -1 1 -1

-1 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 1 1

-1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1

1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 1

-1 1 1 -1 1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1

1 -1 1 -1 1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 -1

-1 1 1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 -1

1 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 1

-1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 1 1 -1

1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 1 -1 -1 -1 -1 1 1

1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
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d3

1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1 1 1 1 1

1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1

-1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1

-1 1 1 1 -1 1 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 1

1 -1 1 1 1 1 1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 1

1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 1 1 -1 -1

-1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 -1

-1 1 1 -1 1 -1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1 -1

1 1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 1

-1 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1

1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1

1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 1

d4

1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1

1 -1 -1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1

1 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1 1

1 1 1 1 1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 1 1 -1 1 -1

-1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1

-1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1

-1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 -1 1 1

1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1

-1 1 1 1 1 1 1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1

-1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 1 1 -1

1 -1 -1 -1 -1 1 1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 1

d5

1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 -1

1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1

1 1 1 -1 1 -1 -1 -1 1 1 1 1 -1 1 1 1 1 -1 1 1 -1 -1

1 1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1

-1 -1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 1 1 1 1 1

-1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1

-1 1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1

-1 1 1 -1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1

-1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1

1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 -1 -1 1 1 1

1 -1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 -1 1 1 1 1 1 -1

Proof of Theorem 9.8. We first mention the sharpest available lower bounds for Ed(s
2)

as per Das et al. (2008).

When n is even, let m = q(n− 1) + r (q positive, −n
2
< r < n

2
). Then,

(1) When n ≡ 0(mod 4),

Ed(s
2) ≥ L(m,n) =

n2(m− n+ 1)

(n− 1)(m− 1)
+

n

m(m− 1)

{
D − r2

n− 1

}
, (AE.1)

where

D =


n+ 2|r| − 3 for |r| ≡ 1 (mod 4)

2n− 4 for |r| ≡ 2 (mod 4)

n+ 2|r|+ 1 for |r| ≡ 3 (mod 4)

4|r| for |r| ≡ 0 (mod 4).

(2) When n ≡ 2 (mod 4),

Ed(s
2) ≥ L(m,n) = max

{
n2(m− n+ 1)

(n− 1)(m− 1)
+

n

m(m− 1)

{
D − r2

n− 1

}
, 4

}
, (AE.2)

where
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D =



n+ 2|r| − 3 + x/n for |r| ≡ 1 (mod 4) and q even

2|r| − 8|r|/n+ n− 16/n+ 9 for |r| ≡ 1 (mod 4) and q odd

2n− 4 + 8/n for |r| ≡ 2 (mod 4) and q even

4|r| − 8|r|/n− 8/n+ 8 for |r| ≡ 2 (mod 4) and q odd

n+ 2|r|+ 1 for |r| ≡ 3 (mod 4) and q even

2|r|+ n+ 8/n− 3 for |r| ≡ 3 (mod 4) and q odd

4|r| for |r| ≡ 0 (mod 4) and q even

2n− 4 + x/n for |r| ≡ 0 (mod 4) and q odd.

and x = 32 if
{
m−1−2i

4
+ bm+(1+2i)(n−1)

4(n−1)
c
}
≡ (1 − i) (mod 2), for i = 0 or 1; else

x = 0. Here bzc denotes the largest integer less than or equal to z.

Jones and Majumdar (2014) obtained the attainable lower bounds for UEd(s
2) as

below.

mind∈DU (m,n)UEd(s
2) =

n(m+ 1− n)

m
+

nB

m(m+ 1)
, (AE.3)

where

B =


0 for m+ 1 ≡ 0 (mod 4),

2(n− 2) for m+ 1 ≡ 2 (mod 4) and even n,

2{(n− 2) + 1/n} for m+ 1 ≡ 2 (mod 4) and odd n,

n− 1 for m+ 1 ≡ 1 (mod 4) or m+ 1 ≡ 3 (mod 4).

We now show that

m− 1

m+ 1
L(m,n)−mind∈DU (m,n)UEd(s

2) =
nI

m(n− 1)(m+ 1)
≥ 0,

where using (AE.1), (AE.2) and (AE.3),

I = A+ (n− 1)(D −B) (AE.4)

with A = (m+ 1− n)2 − r2. In other words, we shall identify the cases where I = 0 and

show that I > 0 for the remaining cases .

Additionally, we define W = m − (n − 1)b m
n−1
c, 0 ≤ W ≤ n − 2. Then, since

m = q(n− 1) + r, −n/2 < r < n/2,

r =

{
W for 0 ≤ W < n

2
, or equivalently 0 ≤ r < n

2
,

W − n+ 1 for n
2
≤ W ≤ n− 2, or equivalently − n

2
< r < 0

(AE.5)

Using (AE.5), A can also be written in terms of n, q, r and W as below,

A =

{
(n− 1)2(q − 1)2 + 2r(n− 1)(q − 1), for 0 ≤ r < n

2
,

((q − 2)2 − 1)(n− 1)2 + 2W (n− 1)(q − 1), for − n
2
< r < 0.

(AE.6)

189



From (AE.6), it is clear that A ≥ 0 since

a) A > 0, for q ≥ 2,

b) A = 0, for q = 1, 0 ≤ r < n
2
,

c) A = −(n− 1)2 for q = 1,−n
2
< r < 0, which is not possible since then m < n.

(AE.7)

We take up the following exhaustive cases to arrive at the required conditions.

For n ≡ 0 (mod 4)

Case A. |r| ≡ 0 (mod 4)

Case A1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

First note that in this case the situation q = 1 does not arise. Now from (AE.1) and

(AE.3), we get D−B = 4|r|−n+1. Therefore, from (AE.4), I = A+(n−1)(4|r|−n+1)

which, by (AE.6), reduces to

I =

{
(n− 1)2((q − 1)2 − 1) + 2r(n− 1)(q + 1) if 0 ≤ r < n

2
,

(n− 1)2((q − 2)2 + 2) + 2W (n− 1)(q − 3) if − n
2
< r < 0.

This implies that for 0 ≤ r < n
2
, I > 0 when q ≥ 3 and when q = 2, r 6= 0.

Furthermore, I = 0 ( equality holds) for r = 0, q = 2, i.e., for m = 2(n− 1). Similarly for

−n
2
< r < 0, I > 0 for q ≥ 2.

Case A2. m ≡ 1 (mod 4)

First note that in this case the situations q = 1, 2 do not arise. Now from (AE.1) and

(AE.3), we getD−B = 2(2|r|−n+2). Therefore, from (AE.4), I = A+2(n−1)(2|r|−n+2)

which, by (AE.6), reduces to

I =

{
(n− 1)2((q − 1)2 − 2) + 2(n− 1)(r(q + 1) + 1) if 0 ≤ r < n

2
,

(n− 1)2((q − 2)2 − 1) + 2(n− 1)(W (q − 3) + n) if − n
2
< r < 0.

This implies that I > 0 when q ≥ 3.

Case A3. m ≡ 3 (mod 4)

First note that in this case the situation q = 1, r = 0 does not arise. Now from

(AE.1) and (AE.3), we get D−B = 4|r|. Therefore, from (AE.4), I = A+4(n−1)|r| > 0

since from (AE.7) A = 0 only when q = 1, 0 ≤ r < n
2
.
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Case B. |r| ≡ 1 (mod 4)

Case B1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

First note that in this case the situation q = 1, r = −1 does not arise. Now from

(AE.1) and (AE.3), we get D − B = 2(|r| − 1). Therefore, from (AE.4), I = A + 2(n −

1)(|r| − 1) > 0 except when A = 0, r = 1. Thus, from (AE.7), I = 0 ( equality holds) for

r = 1, q = 1, i.e., for m = n.

Case B2. m ≡ 1 (mod 4)

First note that in this case the situation q = 1 does not arise. Now from (AE.1) and

(AE.3), we get D−B = 2|r|−(n−1). Therefore, from (AE.4), I = A+2(n−1)|r|−(n−1)2

which, by (AE.6), reduces to

I =

{
(n− 1)2((q − 1)2 − 1) + 2qr(n− 1) if 0 ≤ r < n

2
,

(q − 2)2(n− 1)2 + 2W (n− 1)(q − 2) if − n
2
< r < 0.

This implies that I > 0 when q ≥ 2, 0 ≤ r < n
2

and when q ≥ 3,−n
2
< r < 0.

Furthermore, I = 0 for −n
2
< r < 0, q = 2, i.e., for m = 2(n− 1) + r,−n/2 < r < 0. Let

m = 4s + 1, where s is an integer. Then −n/2 < m − 2(n − 1) ≤ −1 and substituting

m = 4s + 1 yields 3(n − 2)/8 < s ≤ (n − 2)/2. Therefore, I = 0 (equality holds) when

m = 4s+ 1, 3(n− 2)/8 < s ≤ (n− 2)/2, n > 2.

Case B3. m ≡ 3 (mod 4)

From (AE.1) and (AE.3), we get D − B = (n + 2|r| − 3). Therefore, from (AE.4),

I = A + (n + 2|r| − 3)(n − 1), which is greater than 0 since the second term is greater

than 0.

Case C. |r| ≡ 2 (mod 4)

Case C1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

From (AE.1) and (AE.3), we get D − B = n − 3. Therefore, from (AE.4), I =

A+ (n− 1)(n− 3), which is greater than 0 since the second term is greater than 0.

Case C2. m ≡ 1 (mod 4)

From (AE.1) and (AE.3), we get D − B = 0. Therefore, from (AE.4) and (AE.7),

I = A > 0 except when q = 1, 0 ≤ r < n
2
. Thus, I = 0 for 0 ≤ r < n

2
, q = 1, i.e., for
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m = (n− 1) + r. Let m = 4s+ 1, where s is an integer. Then 2 ≤ m− n+ 1 < n/2 and

substituting m = 4s + 1 yields n/4 ≤ s < (3n − 4)/8. Therefore, I = 0 (equality holds)

when n/4 ≤ s < (3n− 4)/8, n > 4.

Case C3. m ≡ 3 (mod 4)

From (AE.1) and (AE.3), we get D − B = (2n − 4). Therefore, from (AE.4),

I = A+ 2(n− 2)(n− 1), which is greater than 0 since the second term is greater than 0.

Case D. |r| ≡ 3 (mod 4)

Case D1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

From (AE.1) and (AE.3), we get D − B = 2(|r| + 1). Therefore, from (AE.4),

I = A+ 2(n− 1)(|r|+ 1), which is greater than 0 since the second term is greater than 0.

Case D2. m ≡ 1 (mod 4)

First note that in this case the situation q = 1 does not arise. Now from (AE.1) and

(AE.3), we get D − B = 2|r| − (n − 5). Therefore, from (AE.4), I = A + 2(n − 1)|r| −

(n− 1)(n− 5) which, by (AE.6), reduces to

I =

{
(n− 1)2q(q − 2) + 2(n− 1)(rq + 2) if 0 ≤ r < n

2
,

(n− 1)2(q − 2)2 + 2W (n− 1)(q − 2) + 4(n− 1) if − n
2
< r < 0.

This implies that I > 0 when q ≥ 2.

Case D3. m ≡ 3 (mod 4)

From (AE.1) and (AE.3), we get D − B = (n + 2|r| + 1). Therefore, from (AE.4),

I = A + 2(n − 1)(n + 2|r| + 1), which is greater than 0 since the second term is greater

than 0.

For n ≡ 2 (mod 4)

Case A. |r| ≡ 0 (mod 4)

Case A1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

First note that in this case the situation q = 1 does not arise. Now from (AE.2) and

(AE.3), we get D−B = 4|r|−n+1. Therefore, from (AE.4), I = A+(n−1)(4|r|−n+1),
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which is the same as the corresponding expression for the case n ≡ 0 (mod 4). Therefore,

I = 0 (equality holds) for r = 0, q = 2, i.e., for m = 2(n− 1).

Case A2. m ≡ 1 (mod 4)

Now from (AE.2) and (AE.3), we get D − B = x/n. Therefore, from (AE.4),

I = A + (n − 1)(x/n). Thus, I = 0 when A = 0 and x = 0 or from (AE.7), I = 0

when q = 1, r > 0, x = 0, i.e., m = (n − 1) + r,m ≡ 1 (mod 8). Let m = 8s + 1,

where s is an integer. Then 4 ≤ m − n + 1 < n/2 and substituting m = 8s + 1 yields

(n+2)/8 ≤ s < (3n−4)/16. Therefore, I = 0 (equality holds) whenm = 8s+1, (n+2)/8 ≤

s < (3n− 4)/16, n > 8.

Case A3. m ≡ 3 (mod 4)

From (AE.2) and (AE.3), we get D −B = (2n− 4 + x/n). Therefore, from (AE.4),

I = A + (n − 1)(2n − 4 + x/n), which is greater than 0 since the second term is greater

than 0.

Case B. |r| ≡ 1 (mod 4)

Case B1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

First note that in this case the situation q = 1,−n
2
< r < 0 does not arise. Now from

(AE.2) and (AE.3), we get D − B = 2(|r| − 4|r|/n − 8/n + 5). Therefore, from (AE.4),

I = A+ 2(n− 1)(|r| − 4|r|/n− 8/n+ 5), which is greater than 0 since the second term is

greater than 0.

Case B2. m ≡ 1 (mod 4)

First note that in this case the situation q = 1 does not arise. Now from (AE.2)

and (AE.3), we get D − B = 2|r|(n − 1) − (n − 1)2 + (x/n)(n − 1). Therefore, from

(AE.4), I = A+ 2|r|(n− 1)− (n− 1)2 + (x/n)(n− 1), which is same as the corresponding

expression for the case n ≡ 0 (mod 4) except the addition of the last term. Therefore,

I = 0 for −n
2
< r < 0, q = 2, x = 0, i.e., for m = 2(n − 1) + r,−n/2 < r < 0,m ≡ 1

(mod 8). Let m = 8s + 1, where s is an integer. Then −n/2 < m − 2(n − 1) ≤ −1 and

substituting m = 8s + 1 yields 3(n − 2)/16 < s ≤ (n − 2)/4. Therefore, I = 0 (equality

holds) for m = 8s+ 1, 3(n− 2)/16 < s ≤ (n− 2)/4, n > 2.
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Case B3. m ≡ 3 (mod 4)

From (AE.2) and (AE.3), we get D − B = (n + 2|r| − 3 + x/n). Therefore, from

(AE.4), I = A+ (n− 1)(n+ 2|r|− 3 +x/n), which is greater than 0 since the second term

is greater than 0.

Case C. |r| ≡ 2 (mod 4)

Case C1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

From (AE.2) and (AE.3), we get D − B = n − 3 + 8/n. Therefore, from (AE.4),

I = A + (n − 1)(n − 3) + (8/n)(n − 1), which is greater than 0 since the last two terms

are greater than 0.

Case C2. m ≡ 1 (mod 4)

First note that in this case the situations q = 1, 2 do not arise. Now from (AE.2)

and (AE.3), we get D −B = 2(2|r|+ 4− 4|r|/n− 4/n− n+ 2). Therefore, from (AE.4),

I = A+ (n− 1)(4|r|+ 8− 8|r|/n− 8/n)− 2(n− 1)(n− 2) which, by (AE.6), reduces to

I =

 (n− 1)((n− 1)(q − 1)2 − 2n) + (2/n)(n− 1)(r(n(q + 1)− 4) + 2(3n− 2) if 0 ≤ r < n
2 ,

((q − 2)2 − 1)(n− 1)2 + 2(n− 1)(W ((q − 3) + 4/n) + n) if − n
2 < r < 0.

This implies that I > 0 when q ≥ 3.

Case C3. m ≡ 3 (mod 4)

From (AE.2) and (AE.3), we get D−B = (4|r|+ 8− 8|r|/n− 8/n). Therefore, from

(AE.4), I = A+ (4|r|+ 8− 8|r|/n− 8/n), which is greater than 0 since the second term

is greater than 0.

Case D. |r| ≡ 3 (mod 4)

Case D1. m ≡ 0 (mod 4) or m ≡ 2 (mod 4)

From (AE.2) and (AE.3), we get D−B = 2(|r| − 1) + 8/n. Therefore, from (AE.4),

I = A+ 2(|r| − 1) + 8/n, which is greater than 0 since the last term is greater than 0.

Case D2. m ≡ 1 (mod 4)

First note that in this case the situation q = 1 does not arise. Now from (AE.2) and

(AE.3), we get D − B = 2|r| − (n − 5). Therefore, from (AE.4), I = A + 2|r|(n − 1) −
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(n− 1)(n+ 5), which is same as the corresponding expression for the case n ≡ 0 (mod 4).

Therefore, I is greater than 0.

Case D3. m ≡ 3 (mod 4)

From (AE.2) and (AE.3), we get D − B = (n + 2|r| + 1). Therefore, from (AE.4),

I = A + 2(n − 1)(n + 2|r| + 1), which is greater than 0 since the second term is greater

than 0.
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Appendix F

Additional Material for Chapter 11

This appendix provides extra details for Chapter 11. Non-GYD PGYD for (v, k, b) =

(8, 20, 50) is the transpose of the following matrix. The twelve 8 × 8 grids are latin

squares of order 8. The blocks in DC cover each pair of treatments eleven times, except

for the pairs {1, 4}, {2, 3}, {5, 8}, {6, 7} which are covered nine times. The blocks in DR
cover each of the pairs {1, 4}, {2, 3}, {5, 8}, {6, 7} five times.

197



1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 7 8
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 7 8 3 4
3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6
4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 5 6 1 2
5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 1 3 6 8
6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 8 2 4
7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 2 4 5 7
8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 5 7 1 3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 4 6 7
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 6 7 2 3
3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 2 3 5 8
4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 5 8 1 4
5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 2 1 8 7
6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 8 7 4 3
7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 4 3 6 5
8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 6 5 2 1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 3 1 8 6
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 8 6 4 2
3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 4 2 7 5
4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 7 5 3 1
5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 4 1 7 6
6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 7 6 3 2
7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 3 2 8 5
8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 5 4 1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 1
3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 6 7 5 8
4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 7 6 8 5
5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 3 8 1 6
6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 4 5 2 7
7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 5 1 7 3
8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 4 6 2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 7 3 2 6
3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 6 5
4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 6 7 1
5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 2 8 5 3
6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 5 1 4 8
7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 8 7 1 2
8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 6 5 8 7

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 5 6
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 4 3 8 7
3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 8 7 1 2
4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 5 6 4 3
5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 3 1 7 5
6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 2 4 6 8
7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 6 8 3 1
8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 7 5 2 4

5 8 6 7 1 4 2 3 5 8 6 7 1 4 2 3 5 1 6 2
8 5 7 6 4 1 3 2 8 5 7 6 4 1 3 2 8 4 7 3
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Non-GYD PGYD for (v, k, b) = (9, 24, 48) is the transpose of the following matrix. The

ten 9 × 9 grids are latin squares of order 9. The blocks in DR form four copies of one

parallel class of an affine plane of order 9 and two copies of two other parallel classes.

The blocks in DC form the complements of five copies of the parallel class not occurring

in DR, four copies of the parallel classes occurring twice in DR, and three copies of the

parallel class occurring four times in DR.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 4 6 5 7 8 9
2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 7 8 9 1 2 3
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 1 3 2 4 5 6
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 6 9 8 2 3 5
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 9 1 4 3 6 7
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 8 7 1 5 4 2
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 3 2 6 8 7 4
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 5 4 3 9 1 8
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 2 5 7 6 9 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 4 6 5 7 8 9
2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 7 8 9 1 2 3
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 1 3 2 4 5 6
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 6 9 8 2 3 5
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 9 1 4 3 6 7
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 8 7 1 5 4 2
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 3 2 6 8 7 4
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 5 4 3 9 1 8
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 2 5 7 6 9 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 4 6 5 7 8 9
2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 7 8 9 1 2 3
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 1 3 2 4 5 6
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 6 9 8 2 3 5
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 9 1 4 3 6 7
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 8 7 1 5 4 2
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 3 2 6 8 7 4
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 5 4 3 9 1 8
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 2 5 7 6 9 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 7 9 4 3 5
2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 9 2 7 5 4 3
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 7 9 2 3 5 4
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 3 6 5 7 1 8
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 3 6 8 7 1
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 5 3 1 8 7
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 4 1 8 6 9 2
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 4 1 2 6 9
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 1 8 4 9 2 6

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 4 6 5 7 8 9
2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 7 8 9 1 2 3
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 1 3 2 4 6 5
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 3 2 6 8 7 4
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 4 3 9 1 8
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 2 5 7 6 9 1
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 9 7 4 5 3 2
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 6 1 8 3 5 7
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 8 9 1 2 4 6

1 2 3 9 7 8 6 4 5 1 2 3 9 7 8 6 4 5 1 2 3 4 5 6
4 5 6 1 2 3 8 9 7 4 5 6 1 2 3 8 9 7 4 5 6 7 8 9
7 8 9 5 6 4 1 2 3 7 8 9 5 6 4 1 2 3 7 8 9 1 2 3
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Non-GYD PGYD for (v, k, b) = (18, 12, 48) is the transpose of the following matrix. The

blocks in DC form the complements of the blocks of a BIBD with order 18, block size 6

and index 5, and with three blocks removed. The blocks in DR form the complements of

four copies of each of these three removed blocks.

4 5 6 10 11 12 13 14 15 16 17 18
1 2 3 7 8 9 16 17 18 10 11 12
7 8 9 13 14 15 1 2 3 4 5 6

13 14 15 16 17 18 4 5 6 7 8 9
10 11 12 1 2 3 7 8 9 13 14 15
16 17 18 4 5 6 10 11 12 1 2 3
5 6 7 8 9 10 11 12 16 17 18 4

17 18 13 14 15 7 8 9 1 2 3 16
14 15 1 2 3 4 5 6 10 11 12 13
11 12 4 5 6 13 14 15 7 8 9 10
2 3 10 11 12 16 17 18 13 14 15 1
8 9 16 17 18 1 2 3 4 5 6 7
3 4 2 15 7 5 18 10 8 12 13 17
6 10 5 3 1 8 9 13 11 18 16 14

15 1 14 6 4 2 12 16 17 9 7 11
9 13 17 18 10 11 3 7 14 6 4 2

12 16 8 9 13 17 6 1 2 15 10 5
18 7 11 12 16 14 15 4 5 3 1 8
2 3 5 6 7 8 10 11 13 15 16 18
1 17 3 8 6 9 11 12 4 13 14 16
4 1 2 5 15 7 12 10 14 18 9 17
3 2 9 7 5 6 14 16 10 12 17 13
8 5 1 2 4 11 9 13 12 16 18 15
7 8 4 1 3 17 6 18 15 14 10 11

18 16 14 13 12 10 8 9 5 4 3 2
14 9 17 11 10 16 15 7 6 5 1 3
15 13 11 17 2 12 18 8 7 1 6 4
9 11 10 16 17 15 13 4 3 2 8 6

10 18 12 15 16 14 7 5 8 6 2 1
11 12 7 9 14 18 4 3 1 17 13 5
12 7 13 4 11 5 16 17 2 3 15 9
17 10 6 14 13 3 5 1 18 8 12 7
6 14 16 10 18 1 2 15 11 9 4 8

13 4 18 12 8 2 3 6 16 7 11 14
5 6 15 18 9 13 1 2 17 11 7 10

16 15 8 3 1 4 17 14 9 10 5 12

2 3 4 5 7 9 10 11 15 16 18 14
1 6 5 3 11 7 12 8 13 15 16 17
4 1 2 6 12 10 8 9 14 13 17 18
3 2 6 4 10 8 7 12 17 14 15 16
6 5 1 2 9 12 11 7 16 18 14 13
5 4 3 1 8 11 9 10 18 17 13 15
8 12 11 9 14 17 15 18 2 5 3 6

12 8 9 11 17 14 18 15 5 2 6 3
7 9 10 12 15 18 13 16 3 6 1 4
9 7 12 10 18 15 16 13 6 3 4 1

11 10 7 8 13 16 14 17 1 4 2 5
10 11 8 7 16 13 17 14 4 1 5 2
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