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Abstract

Design of experiments is a useful and practical branch of statistics. One often needs
to predict a relationship between any phenomenon (or, response) and the causes (often,
called as the predictors) for that phenomenon. Experimental design involves not only the
selection of suitable predictors and outcomes, but planning the delivery of the experiment
under statistically optimal conditions given the constraints of available resources.

In this thesis, I have worked in four areas of design of experiments namely, (i) choice
designs, (ii) supersaturated designs, (iii) covering designs (or, coverings), and (iv) pseudo
generalized Youden designs.

(i) Choice designs: Choice experiments mirror real-world situations closely and
help manufacturers, service-providers, policy-makers and other researchers in taking busi-
ness decisions on the characteristics of their products and services based on the perceived
utility. In a paired choice experiment, several pairs of options are shown to respondents.
The respondents are asked to give their preference among the many options for each of
the choice sets shown to them. In order to conduct an experiment, a choice design is
customarily used to efficiently estimate the parameters of interest which essentially con-
sist of either the main effects only or the main plus two-factor interaction effects of the
attributes. For two-level paired choice experiments, we have obtained a simple form of
the information matrix of a choice design for estimating the main effects, and provided
D- and MS-optimal paired choice designs with distinct choice sets under the main effects
model for any number of choice sets. It is also shown that the optimal designs under the
main effects model are also optimal under the broader main effects model. We found that
optimal choice designs with a choice set size two often outperform their counterparts with
larger choice set sizes.

Traditionally, while using designs for discrete choice experiments, every respondent

is shown the same collection of choice pairs (that is, the choice design). Also, as the
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attributes and/or the number of levels under each attribute increases, the number of choice
pairs in an optimal paired choice design increases rapidly. Moreover, in the literature
under the utility-neutral setup, random subsets of the theoretically obtained optimal
designs are often allocated to respondents. The question therefore is whether one can do
better than a random allocation of subsets. To address these concerns, in the linear paired
comparison model (or, equivalently the multinomial logit model), we first incorporate the
fixed respondent effects (also referred to as the block effects) and then obtain optimal
designs for the parameters of interest. Our approach is simple and theoretically tractable,
unlike other approaches which are algorithmic in nature. We present several constructions
of optimal block designs for estimating main effects or main plus two-factor interaction
effects. Our results show when and how an optimal design for the model without blocks
can be split into blocks so as to retain the optimality properties under the block model. For
paired choice designs, two new construction methods are also proposed for the estimation
of the main effects. These designs require about 30-50% fewer choice pairs than the
existing designs and at the same time have reasonable high D-efficiencies for the estimation

of the main effects.

Considering all factors at 3 levels each, and for paired choice designs, we have also
obtained a sharper lower bound to the A- and D-values for estimating the main effects
under the utility-neutral multinomial logit model. New A- and D-optimal (and efficient)
designs are also provided. Considering three-level paired choice designs for estimating all
the main effects and two-factor interaction effects under the utility-neutral multinomial
logit model, we have provided a general technique involving generators to reduce the
number of choice pairs in a D-optimal design. Generators are identified allowing significant

reduction in the total number of choice pairs for D-optimal designs.

For two-level choice experiments with k factors, we consider a model involving the
main plus all two-factor interaction effects with our interest lying in the estimation of the
main effects and a specified set of two-factor interaction effects. The two-factor interaction
effects of interest are either (i) one factor interacting with each of the remaining n — 1
factors or (ii) each of the two factors interacting with each of the remaining n — 2 factors.
For the two models, we first characterized the information matrix and then constructed

universally optimal choice designs for choice set sizes 3 and 4.

Several author-groups have contributed to the theoretical development of discrete



choice experiments and for finding optimal choice designs under the multinomial logit
model. The author-groups Street—Burgess and Huber—Zwerina have adopted different
approaches and used seemingly different information matrices under the multinomial logit
model. The information matrix plays a crucial role for finding optimal designs in both
approaches. Since the expressions for the relevant matrices look very different and it is
not obvious how the two approaches are related, this has given rise to some confusion
in the literature. We resolve this confusion by showing, in general, how the information
matrices under the two approaches are related. There have also been some confusion
regarding the inference parameters expressed as linear functions of the utility parameter
vector 7. We theoretically establish a unified approach to discrete choice experiments and
introduce the general inference problem in terms of a simple linear function of 7. This
allows us to show that the commonly used effects coding under the A-criterion for the
non-singular full-rank inference problem inherently attaches unequal importance to the
elementary contrasts of attribute levels. On the contrary, we see that the orthonormal
coding leads to attaching equal importance to the elementary contrasts of attribute levels.
However, for a singular full-rank inference problem involving the full set of effects-coded
parameters, we show that the orthonormal coding provides an equivalent approach to

obtain A-optimal designs.

(ii) Supersaturated designs: Supersaturated designs are useful for factor screen-
ing experiments under the factor sparsity assumption that only a small number of factors
are active. The popular F(s?)-criterion for choosing two-level supersaturated designs min-
imizes the sum of squares of the entries of the information matrix over the designs in which
the two levels of each factor appear equal number of times. Recently | Jones and Majumdar
(2014) proposed the UE(s?)-criterion which is essentially the same as the E(s?)-criterion
except that the requirement of factor-level-balance is dropped. Since this requirement is
bypassed, usually there are many UE(s?)-optimal designs with diverse characteristics and
performances. It is necessary to choose better designs from them. We proposed additional
criteria and provided constructions for superior UE(s?)-optimal designs having good pro-
jection properties. Usually F(s?)-optimal designs are difficult to construct, whereas our
construction methods of superior UE(s?)-optimal designs are simple and systematic. We

also identified several families of designs that are both E(s*)- and UFE(s?)-optimal.

(iii) Coverings: A t-(v,k,\) covering is a collection of k-element subsets, called

x1



blocks, of a v-set of points such that each t-subset of points occurs in at least A blocks.
If each t-subset of points occurs in exactly A blocks the covering is a t-(v, k, \) design.
Fisher’s inequality famously states that every 2-(v, k, ) design has at least v blocks. In
1975 Ray-Chaudhuri and Wilson generalised this result to higher ¢ by showing that every

t-(v, k, A) design has at least ( ) blocks, and Wilson gave a streamlined proof of this

/2]
result in 1982. [Horsley| (2017)) adapted a well-known proof of Fishers inequality to produce
a new lower bound on the number of blocks in some 2-(v, k, A) coverings. In this thesis,
we have shown how ideas from these papers can be combined to obtain improved lower
bounds on the number of blocks in ¢-(v, k, ) coverings for ¢ > 2. We have also identified
some infinite families of parameter sets where our bound exists and is an improvement
over the best available lower bounds. We also found an infinite family where our bound
is tight, that is, there exists a t-(v, k, A) covering attaining our bound.

(iv) Pseudo generalized Youden designs: Sixty years ago, Kiefer| (1958) intro-
duced generalized Youden designs (GYDs) for eliminating heterogeneity in two directions.
A GYD is a row-column design whose k rows form a balanced block design (BBD) and
whose b columns do likewise. Later (Chengl (1981%) introduced pseudo Youden designs
(PYDs) in which k& = b and where the k rows and the b columns, considered together
as blocks, form a BBD. Kiefer| (19758) proved a number of results on the optimality of
GYDs. A PYD has the same optimality properties as a GYD. In this thesis, we have
introduced and investigated pseudo generalized Youden designs (PGYDs) which gener-
alise both GYDs and PYDs. A PGYD is a row-column design where the k rows and b
columns, considered together as blocks, form an equireplicate generalized binary variance
balanced design. Every GYD is a PGYD and a PYD is exactly a PGYD with k£ = 0. We
have shown, however, that there are situations where a PGYD exists but neither a GYD
nor a PYD does. We also obtained necessary conditions, in terms of v, k£ and b, for the
existence of a PGYD. Using these conditions, we provided an exhaustive list of parameter
sets satisfying v < 25,k < 50,b < 50 for which a PGYD exists. We constructed families

of PGYDs using patchwork methods based on affine planes.
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Chapter 1

Introduction

1.1 Motivation and Background

Design of experiments is a useful and practical branch of statistics. One often needs to
predict a relationship between any phenomenon (or, response) and the causes (often, called
the predictors) for that phenomenon. Design of experiments helps in such prediction.
Experimental design involves not only the selection of suitable predictors and outcomes,
but planning the delivery of the experiment under statistically optimal conditions given
the constraints of available resources.

The experiments with only one predictor variable at various discrete levels are com-
monly known as block designs. Block designs consist of many blocks in which predictor
variables are replicated appropriately to achieve the desired precision of the experiment.
Typically, blocking is done using a blocking factor which controls the variability that is
not of primary interest to the experimenter. For example, in an experiment involving
prediction of marks of students of class X, the gender of students can be treated as a
blocking factor.

If an experiment, however, involves many predictor variables each with discrete pos-
sible values or “levels”, then it is termed as a factorial experiment and the design layout is
known as a factorial design. Such an experiment allows the investigator to study the effect
of each predictor (or, factor) on the response variable, as well as the effects of interactions
between factors on the response variable. For the vast majority of factorial experiments,
each factor has only two or three levels.

Correctly designed experiments help in gaining better knowledge in many practical



fields like nature sciences, social sciences, engineering, marketing, policy making, etc.
In this report, we discuss some open problems in four areas of design of experiments
namely, (i) choice designs, (ii) supersaturated designs, (iii) covering designs (or, coverings),

and (iv) pseudo generalized Youden designs.

1.1.1 Choice Designs

Choice experiments are widely used in marketing, transport, environmental resource eco-
nomics and public welfare analysis. They mirror real-world situations closely and help
manufacturers, service-providers, policy-makers and other researchers in taking business
decisions on the characteristics of their products and services based on the perceived
utility.

A choice experiment consists of N choice sets, each containing m options. A re-
spondent is shown each of the choice sets in turn and is asked for the preferred option
as per his or her perceived utility. Each option in a choice set is described by a set of
k attributes, where each attribute has two or more levels. We assume that there are no
repeated options in a choice set. Furthermore, in this thesis, we consider that for a set of
k attributes, for ¢ = 1,...,k, the ith attribute has v; levels, v; > 2. We represent the v;
levels by 0,...,v; — 1, unless stated otherwise. Thus, there are a total of [ [, v; options.
It is ensured that respondents choose one of the options in each choice set. A choice
design is a collection of choice sets that are employed in a choice experiment. Though
choice designs may contain repeated choice sets, one may prefer that no two choice sets
are repeated. For excellent reviews of designs for choice experiments, see |(Groimann and
Schwabe, (2015)) and |Street and Burgess (2012)).

Huber and Zwerina| (1996), following the seminal work of McFadden| (1974), used a
modelling approach to compare choice designs. Subsequently Street and Burgess (2007)),
using the approach of |[El-Helbawy and Bradley| (1978), presented a comprehensive exposi-
tion of designs for choice experiments under the multinomial logit model. The model spec-
ifies the probability of an individual choosing one of the m options from a choice set. For
a paired choice design, for example, the multinomial logit model supposes that the proba-
bility of preferring option 1 over option 2 in the ith choice pair is mg; = €%t /(e"1i 4 e2i),
where uy; and ug; represent the systematic part of the utilities attached to the two options

in the ith choice pair. Similarly m9;; = 1 —719; is the probability that option 2 is preferred



over option 1. It follows that for the ¢th choice pair, the choice probabilities depend only
on the utility difference uy; — ug;. For a design d with N choice pairs, since options are
described by k factors, following Huber and Zwerina (1996)), the utilities are modelled
using the linear predictor u; = P;0, where 6 is a vector representing the main effects, P;
is an effects coded matrix for the jth option, and u; = (u;;) is an N x 1 utility vector for
the jth option, 7 = 1,2;4 = 1,..., N. The utility difference u; —us = (P; — P,)0 = X0
is then a linear function of the parameter vector #. In what follows, we refer to X as the
design matrix of design d. Since multinomial logit choice models are non-linear in the
parameters and the information matrix is a function of the parameters, a utility-neutral
approach (that is, taking § = 0) of finding the information matrix has been developed over
the last two decades. Under such a utility-neutral multinomial logit model, the Fisher

information matrix for a design d is (1/4)M,, where My = X7 X.

Simultaneously, |GraBhoff et al.|(2004)) studied linear paired comparison designs which
are analyzed under the linear paired comparison model. Here, the quantitative response
Z is the observed utility difference between the two options and is described by the model,
Z =U —Uy+e= (P — P)0+¢e = X0 +e¢, where € is a random error vector. For a
design d, the matrix M, is the information matrix under the linear paired comparison
model. Although the linear paired comparison and the multinomial logit models follow
different approaches, the information matrix for a choice design for m = 2 under the latter
with equal choice probability (Huber and Zwerina, [1996)) is proportional to that under

the former.

One objective of a choice experiment is to optimally or efficiently estimate the param-
eters of interest which essentially consist of either only the main effects or the main plus
two-factor interaction effects of the k£ attributes. As noted in [Grofimann and Schwabe
(2015), most optimality results for choice designs are available for the D-criterion. A
D-optimal design has the maximum determinant of the information matrix among all
competing information matrices. D-criterion is invariant to reparameterizations or in
other words, it does not depend on the coding of the attribute levels. Furthermore, |Grof3-
mann and Schwabe| (2015) observed that the paired choice designs that are optimal under
the linear paired comparison model are also D-optimal under the multinomial logit model

and vice versa.

Optimal designs have been obtained theoretically under the utility-neutral setup, for



example, see |GraBBhoff et al.| (2003), |GraBihoff et al.| (2004), |Street and Burgess (2007)),
Street and Burgess| (2012), Demirkale, Donovan and Street| (2013)), Bush| (2014), |Grof-
mann and Schwabe, (2015) and [Singh, Chai and Das (2015]). We refer the reader to com-

prehensive reviews provided by |Street and Burgess (2007) and (Grofimann and Schwabe

(2015).

1.1.2 Supersaturated Designs

In an n-run factorial experiment involving m two-level factors, for the general mean
and all the main effects to be estimable, we must have n > m + 1. A design is called
supersaturated if n < m + 1. Under the assumption that only a small number of factors
are active (factor sparsity), a supersaturated design can provide considerable cost saving
in factor screening. In supersaturated designs, as in factorial experiments, most of the
results correspond to the situations where each of the factors has two levels. Each two-
level supersaturated design can be represented by an n X m matrix having entries 1s
and —1s, with each column of X corresponding to one factor and each row representing
a factor-level combination. A factor is said to be level-balanced if the corresponding
column of X, has the same numbers of 1s and —1s. This is possible only if n is even.
For an odd n, a factor is said to be nearly level-balanced if in the corresponding column
the numbers of times 1 and —1 appear differ by one. Without loss of generality, we
require that 1 appears (n — 1)/2 times and —1 appears (n + 1)/2 times. A design is
said to be level-balanced (respectively, nearly level-balanced) if all the factors are level-
balanced (respectively, nearly level-balanced). Usually, under the main-effects model, one
is interested in finding the best lower bounds for F(s?) (which is defined later and is a
measure of non-orthogonality of the design) and then one is also interested in finding the

designs which attain the lower bounds to E(s?). More details are given in Chapter |§]

1.1.3 Coverings

An incidence structure is a pair (V, B) where V is a set of points and B is a collection of
subsets of V' called blocks. For positive integers ¢, v, k and A with ¢t < k < v, a t-(v, k, \)
covering is an incidence structure (V, B) such that |V| = v, |B| = k for all B € B, and

each t-subset of V is contained in at least A blocks in B. If each ¢t-subset of V' is contained



in exactly A blocks in B, then (V,B) is a t-(v, k,\) design. Usually we are interested
in finding coverings with as few blocks as possible. The covering number Cy(v,k,t) is
the minimum number of blocks in any t-(v, k, ) covering. The Schdonheim bound for the

covering number is given by

-1 —t+2 [ AMov—t+1
Cx(v.k,t) > La(v,k ) where Lm,k,wﬂ [Z_lmm_tj?{ ;_JQHH

We are interested in improving lower bounds on covering numbers, wherever possible,

and in constructing coverings attaining the improved lower bounds. More details are given

in Chapter [I0]

1.1.4 Pseudo Generalized Youden Designs

A GYD is a row-column design whose k rows form a balanced block design (BBD) and
whose b columns do likewise. Pseudo Youden designs (PYDs) are designs in which k£ = b
and where the k rows and the b columns, considered together as blocks, form a BBD. We
introduce and investigate pseudo generalized Youden designs (PGYDs) which generalize
both GYDs and PYDs. A PGYD is a row-column design where the k rows and b columns,
considered together as blocks, form an equireplicate generalized binary variance balanced
design. Every GYD is a PGYD and a PYD is exactly a PGYD with £ = b. More details
are given in Chapter [L1]

1.2 Outline of the Thesis

In this thesis, each chapter is independent in itself and therefore notations are consistent
only throughout each chapter. Chapters is a collection of work done in the area of
choice experiments. All chapters except Chapter [6] and Chapter [§] are published or ac-
cepted in peer-reviewed journals. Chapter [0 has been submitted to Statistics € Probability
Letters and Chapter [§ is an ongoing work. Chapter [J] is in the area of supersaturated
designs. Chapter [L0] and Chapter [11| are in the area of coverings and pseudo generalized
Youden designs, respectively. Chapters are also published/accepted in peer-reviewed
journals. Chapter [12| provides conclusions and future research in the areas I have covered

in this thesis.






Chapter 2

Optimal two-level choice designs for

any number of choice sets

This chapter is based on the following work:
Singh et al.| (2015)): Singh, Rakhi; Chai, Feng-Shun; Das, Ashish. Optimal two-level
choice designs for any number of choice sets. Biometrika 102 (2015), no. 4, 967-973.

2.1 Introduction and preliminaries

In this chapter, we consider each attribute to be at two levels, —1 and 1, leading to a total
of 2 options. Let T; = (1, ..., tm) denote the ith choice set, where t;, is the ath option
in the ith choice set (i =1,...,N; a =1,...,m). The collection of all such choice sets T;
is called a choice design T, with parameters N, k and m. As in Street and Burgess| (2007)),
under the multinomial model and equal choice probabilities, the information matrix for

options of a choice design with N choice sets is A = (A 5)), where

with r and s the labels of the corresponding options, n, the number of times option label
r appears in the choice design and n, , the number of times option labels r and s occur
together in choice sets of the design.

We consider choice experiments where our interest is restricted to the main effects

of the attributes. For a 2* choice experiment, let B represent the orthonormal contrast
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matrix for the £ main effects and let B(y) represent the orthonormal contrast matrix
for all the k(k — 1)/2 two-factor interactions. Then, in the main effects model with
no interactions, the information matrix, also called the C-matrix, of the main effects is
C,, = BABT. Similarly, in the broader main effects model, where all interactions that

involve three or more factors are absent, the C-matrix of the main effects is

m

A choice design is connected if all the main effects are estimable under the main
effects model, and this happens if and only if (), has rank k. In what follows, the class
of all connected choice designs that involve k two-level attributes and N choice sets each
of size m is denoted by Dy .. For a choice design T € Dy j, m, let 0 <y < -+ < be
the eigenvalues of C,,. Then, T* € Dy, is said to be A-, D-, or E-optimal in Dy,
if, respectively, Zle v Hle 7%, or 4! is minimum for the design 7. Furthermore,
Eccleston and Hedayat| (1974) introduced the MS-optimality criterion: T* € Dy, is
said to be MS-optimal in Dy, if Zle 7? is minimum for the design T* among all

designs T' € Dy j,m having maximum Zle Vi

GraBhoff et al.| (2004) and |Demirkale et al.| (2013) obtained D-optimal paired choice
designs, which are also A-, E- and MS-optimal, under the main effects model. Though
their results are exhaustive, for two-level choice designs, their C-matrix is necessarily a
scalar multiple of identity matrix, with N being a multiple of 4. |Grafihoff et al.| (2004)
also noted that under their setup the model of paired comparisons is equivalent to the
weighing of k£ objects in a chemical balance. Under the main effects model, we derive a
simple form of the C-matrix in terms of the design matrix of the paired choice design.
We see that even under a broader main effects model, there is a one-one correspondence
between optimal paired choice designs and chemical balance weighing designs. Thus, by
suitably modifying the constructions on the weighing designs, we construct new D- and
MS-optimal paired choice designs in Dy o, for all N under the broader main effects
model. We also find that the optimal choice designs with m = 2 often outperform their

counterparts with m > 2.



2.2 Information Matrix and D-optimal Designs

Let m = 2. For the ith choice set T;, let ¢;, = (tl(l) t(k)) where tgi) represents the level
of the jth attribute in the ath option. For a = 1,2, define an N x k matrix P, = (tgi))
such that {P;, P»} represent the paired choice design T'. Also, let X = (P, — P,)/2.
Henceforth, we will refer to the matrix X as the paired choice design matrix, or simply,
the design matrix. Since X is a matrix with elements 41 and 0, it is similar to a chemical
balance weighing design matrix. We now present a simple form of the information matrix

of a choice design for estimating the main effects.

Theorem 2.1. For a paired choice design T with parameters N and k, Cy = XTX/(N2F).
Also, rank(Cy) =k only if k < N

GroBmann and Schwabe| (2015)) established how the information matrix under the
equal choice probability approach of Huber and Zwerina| (1996)) for m > 2 is related to the
information matrices for pairs. Supplementing this, we show that under the equal choice
probability multinomial logit model approach of Street and Burgess (2007)) the information
matrix for a choice design with m > 2 is proportional to the sum of m(m—1)/2 information
matrices of paired choice designs. This generalizes Theorem [2.1], details of which are as
follows.

As in [Street and Burgess| (2007), under the multinomial model and equal choice
probabilities, the information matrix, for options, of a choice design with N choice sets
is,

:%ﬁj Nz<m22 Z Amal), (2.2)

a=1 a1=a+1
where A; is the information matrix of the ith choice set T; and for a # «a; = 1,...,m,
Aj(aa,), With elements Ajaq,) (7, 5), is a matrix of order 2% corresponding to ath and a;th

options in the ith choice set, with

Ai(aal)(r7 5) =
Here, r and s are the labels of the corresponding options, n,(j) is the number of times
option label r appears in the pair (¢4, tio,) and n 5 1s the number of times option labels

r and s occur together in the pair (t;q, tia, )-



Under the main effects model, the following lemma derives the C-matrix for general
m in terms of the paired choice design matrices. We then see that Theorem is a special

case of Lemma 2.2

Lemma 2.2. Let T be a choice design with parameters N, k and m. For any o # oy =

1,...,m, define the N x k matriz P, = (tg‘;)) and Xoo, = (Py — Pa,)/2. Then,

1 m—1 m
Cm:WZ Z XgalXaa1-

a=1 ay=a+1
Proof. Let t;, and t;,, be the ith rows of P, and P,,, respectively, and let x;,4, be the
ith row of X,4,. Without loss of generality, let ¢;, and t;,, correspond to the rth and the
sth lexicographic labels, with r < s.

Without any loss of generality, we take the k x 2¥ orthonormal contrast matrix B for
main effects, as defined in [Street and Burgess (2007). The columns of B are lexicographic
arrangement of all 2F options. Let 2%/2 B = (B, b, By by Bs), where B is of order
k x (r —1), By is of order k x (s —r — 1), and Bs is of order k x (2¥ — s). Since rth

and sth column of B are the rth and sth treatment combinations in lexicographic order,

respectively, b, = t1, and by = t1, .
Also, by definition, Aiaa,) = ( Ogr s (r—1) wiTaal O2k x (s—r—1) *wiTaal Ok (2% —s) )
where
Wicen :( O1x(r—1) 1 O1x(s—r—1) —1 Orxar_g) ) Then,
28BA(0a) BT = 2(k/2) ( Ok (r—1) (tiTa_tz;l) Ok (s—r—1) (tﬁl —+T) Ot (25— s) )BT
= 2(/9/2)( Okx (r—1) Zwij:xal Okx (s—r—1) —2:17;1:1&1 OkX(Qk—s) )BT

T . _ T . — T Lt — T .
2($iaa1t10¢ ‘Iiaaltlal) - 2Ii&[¥1 (tla tlal) - 4$iaalxlaal .

From (2.2), we get,
N m—1 m
Cm = BAB" = %B Zizl (# Za:l Za1:a+1 AZ'(Oém)) BT

- 1 m—1 m N T
= e e Yca (N T T =

= m Z;nz_ll Z;nlzaﬂ XgalXaoq-
Remark 2.3. |Groffmann and Schwabe (2015) show that the information matrixz for the
D-optimal two-level paired choice design d* under the equal choice probability multino-
mial logit model approach of Street and Burgess (2007) is proportional to the information

matrix of the approrimate uniform D-optimal two-level design & under the linear paired

10



comparison model. In contrast, Theorem [2.1] establishes that the result holds true for any

two-level paired choice design d.

We now provide optimal designs in Dy ;2. From Theorem , it follows that finding
an optimal paired choice design T is equivalent to finding an optimal design matrix X
with elements £1 and 0. |Galil and Kiefer| (1980) showed that for D-optimal designs,
within the class of all choice design matrices, it suffices to find a D-optimal design within
the class of choice design matrices with elements £1 only.

From we see that a sufficient condition for C\2 = C,, is BAB(TQ)
more, corresponding to any X with elements &1 only, the choice design d € Dy 2 has

= 0. Further-

BAB(, = 0. This orthogonality condition holds since AB{, = 0 if X has elements +1
only. Details are as follows.
The following result establishes a sufficient condition for orthogonality of main effects

and two-factor interaction effects in a paired choice design.

Lemma 2.4. Let T be a paired choice design with parameters N and k. Then AB(E) =0
if X has elements £1 only.

Proof. Let X have elements 41 only. Then, for the corresponding paired choice design
T, the ith choice set T; = (tsy, —tn), @ = 1,...,N. Without loss of generality, let
t;1 will correspond to the rth lexicographic label, » < 2¥=!. Then —t;; corresponds
to the (28 — r + 1)th lexicographic label. Let 2*By) = (Bf b B by .., Bj),

where B} is of order k* x (r — 1), Bj is of order k* x (2F — 2r), and Bj is of order

k* x (r — 1) where k* = k(k — 1)/2. It is easy to see that by = b}, . Also since,
Ai = ( Ogk s (r—1) w! Ogr (25 —2r) —w/ Ogk s (r—1) ) with

qw; = ( Oixg—1) 1 Opyor_ory —1 Ok ), therefore, N2kAB(7;) — ok Zfil AiB(TZ) =
Zi]\il w;‘F(b:T - b;;{—rﬂ) = 0. L

Thus, if a design matrix X with elements 41 is optimal under the main effects model
then it is also optimal under the broader main effects model. In this context, we note that
GraBhoff et al| (2003) established optimality of a uniform design &; for the main effects
having a block diagonal information matrix with block matrices corresponding to main
effects and two-factor interactions respectively. In contrast, our orthogonality condition

BAB(E) = 0 establishes that any paired choice design d such that X, has elements +1
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only has a block-diagonal information matrix where the two block matrices need not be
scalar multiples of the identity matrix.

Let Hy n denote a Hadamard matrix of order N = 0 (mod 4) in its normal form. For
every k < N, by deleting any N — k columns of Hy y we get Hy , such that HﬁkHMk =
N1}, where [, is the identity matrix of order k. In such a situation X = Hy, is A-, D-,
E- and MS-optimal.

A choice design with no two choice sets repeated has a design matrix with distinct
rows. Two rows of a design matrix are distinct if the absolute value of their inner product
is less than k. Modifying the constructions of D-optimal matrices given in Payne| (1974)
and |Galil and Kiefer| (1980]), we now provide new constructions such that the rows of X

are all distinct. We take up the cases N =i (mod 4) (: =0, 1,2, 3) separately.

Construction-(0) for N =0 (mod 4), k < N: Starting from Hy y, it is easy to see
that one can randomly delete a maximum of N/2 — 1 columns resulting in an optimal
design matrix Xy = Hyy with & > N/2, such that no two rows have an inner product
equal to +k, that is, all rows are distinct. However, in order to delete N/2 or more
columns, one would need to delete columns carefully to ensure that all rows are distinct.
As established in (GraBhoff et al.| (2004)) and Demirkale et al.| (2013]), the choice design dy
corresponding to Xy is A-, D- and E-optimal in Dy .

Construction-(I) for N =1 (mod 4), k < N: Consider Xy = Hy_1 of Construction-
(0). To ensure that no two choice sets are repeated, one may add to Xy any row of £1’s
not present in X, or — X, to get a design matrix, say X;. The following theorem shows

that the resultant X; is D-optimal.

Theorem 2.5. For N =1 (mod 4) and k < N, one can add any row consisting of entries
+1 to Hy_1 1, and the resultant paired choice design d, corresponding to X, is D-optimal

m DNJC,Q'

Proof. Let Hy_; n—1 be a Hadamard matrix of order N — 1 and a be column vector of
order k consisting entirely of entries £1. Keeping any k columns of Hy_1 y_1, a (N—1)xk
matrix Hy_1 is obtained. Then, H{ |  Hy_ 14 = (N — 1)I}.

Let X; be an N x k matrix with & < N such that X; = ( Hy_;, o” )". Then,
XX, = H{_  Hy 1 +aad”, or X[X; = (N — 1)1 4 aa”, and the eigenvalues of
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XIX, are N -1 and N — 1+ a’a with respective multiplicities k — 1 and 1. Thus,
det(XTX,) = (N — 1 + k)(N — 1)*71 attaining the theoretical bound as obtained in
Payne (1974). Therefore, X; is D-optimal. H

Unlike the construction of [Payne| (1974), Theorem allows us to broaden the
selection of the D-optimal paired choice designs by adding any one of the 2 — 2(N — 1)
possible options, which are not options in the rows of £X,. Furthermore, based on the
results of |(Cheng| (1980), it follows that the paired choice design d; is also A- and E-

optimal in Dy 2.

Construction-(1I) for N =2 (mod 4), k < N: For k < N — 2, consider Xo = Hy_o
of Construction-(0). Then to obtain X5, we add to X two rows as follows. A row of all 1’s
is added after multiplying any column of Xy by —1. As second row, one can add any row
consisting of entries +1 such that number of 1’s and —1’s differ by at most 1 and is distinct
from the other N — 1 rows. The resultant paired choice design ds, corresponding to the
design matrix Xy, is D-optimal in Dy, 2, as multiplying any column by —1 doesn’t change
the Hadamard properties of Hy_s . (Chengl (1980) and |Jacroux et al.| (1983) showed that
Xy is also E- and A-optimal within the restricted class of choice design matrices with
elements +1 only. Furthermore, for certain values of k, |Cheng et al.| (1985) showed that
X, with respective choice design dy is A-optimal in Dy 2.

For k = N and N — 1, consider X, = Hpy42 of Construction-(0). Then delete from
X the first row of all 1’s and a row such that number of 1’s and —1’s differ by at most
1. This results in X, corresponding to a paired choice design dy. [Payne (1974) and |Galil
and Kiefer| (1980) did not provide any constructions for k = N and N — 1.

Construction-(I111) for N = 3 (mod 4), k < N: Consider Xy = Hy1 of Construction-
(0). Delete any row from X, to get a design matrix, say X3. This would facilitate to get
N distinct rows of X3 if Xy had at most two repeated rows. The following theorem, proof

of which follows on lines similar to Theorem [2.5 establishes D-optimality of Xj.

Theorem 2.6. For N = 3 (mod 4) and k < N, one can delete any row from Hy.iqy,
and the resultant paired choice design ds corresponding to Xs is D-optimal in Dy o for

k<(N+5)/2.
Unlike the constructions of |Payne| (1974) and (Galil and Kiefer| (1980), this result
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allows us to broaden the selection of D-optimal paired choice designs by deleting any one
of the N + 1 possible options which are options in the rows of Hyyq . For certain values

of k, Cheng et al| (1985)) showed that ds is A-optimal in Dy o

Remark 2.7. So far, under the broader main effects model, we have generally provided D-
optimal, and in some cases, A- and E-optimal, paired choice designs with distinct choice
pairs. However, there are several situations where systematic construction of D-optimal
design matrices are not available. Below, we summarize the cases in which uncertainties
remain.:

(a) when N =1 (mod 4), no systematic construction is available for k = N except
when 2N — 1 is a perfect square;

(b) when N = 2 (mod 4), no systematic construction is available for k = N and
k=N-—1;

(c) when N =3 (mod 4), neither sharp upper bounds to det(XT X), nor systematic
constructions are available for (N +5)/2 < k < N.

The link http: //www. indiana. edu/ ~mazdet/ and Galil and Kiefer| (1982) pro-
vide examples of D-optimal matrices for k = N <119 and N =3 (mod 4), (N +5)/2 <

k < N, respectively.

2.3 MS-optimal Designs

In order to address situations where D-optimal designs could not be identified, we now
find MS-optimal designs in Dy 2. From Theorem it follows that, a paired choice
design in Dy o with its C-matrix having maximum Zle v; has a corresponding design
matrix necessarily belonging to the class of choice design matrices with elements +1 only.
Thus, finding a MS-optimal paired choice design is equivalent to finding a design matrix
X with elements +1 only, such that Zle )\? is minimum where 0 < Ay < --- < )\, are

the eigenvalues of X7 X. The eigenvalues of Cy are 7; = \;/(N2¥) (i =1,... k). First

we provide a lower bound to 325 | A2,

Theorem 2.8. Let X be a matriz with elements 1 only. Then Zle A > N2k + L,

where
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( 0, N =0 (mod 4),
I 2k(k — 2), N =2 (mod 4), k even,
2{k(k—2)+1}, N =2 (mod4), k odd,
\ k(k—1), N =1 (mod 4) or N =3 (mod 4).

Proof. Let X"X = M = (my;). Then Y7, A2 = tr(M?) = N?k + 30, 35 L,y m,
which is used to get the final bound. For every given row of X, the four possible values for
the ith and jth column entries are (1,1), (1, —1), (—=1,1) and (=1, —1). For the ith and jth
columns of X, let f1, fo, f3 and fy be the number of rows of X with entries (1, 1), (1, —1),
(=1,1) and (-1, —1), respectively. Then, f; + fo+ fs+ fo = N and (f1+ fa) = (fo+ f3) =

m;;, which implies that
it fo=(miy +N)/2,  fot fs= (N —my)/2. (2.3)

Since f1 + f4 is an integer, m;; is even when N is even and m,; is odd when N is odd.
Now we define ¢;; = (—1)*/17/2%5 For N = 2 (mod 4), using (2.3)), when m;; = 0
(mod 4) then e;; = —1, and when m;; = 2 (mod 4) then e;; = 1. We observe that,
for £ > 3, there is no matrix X such that m,;; = 0 for all 4,j. Thus, we minimize the
number of m;;’s taking the value 2. The minimum number of cases for e;; = 1 and
e;i = 1 are k(k — 2)/2 for k even, and are {k(k — 2) + 1}/2 for k odd. For each such
2> 2k(k — 2) for k even, and

case | m;; | > 2 for all 4,5. Hence, Zle ZE(#)ZI mi;
S S o mE = 2{k(k — 2) + 1} for k odd.

When N =i (mod 4) (i =0, 1,3), the bounds follow on similar lines. O

Note that X attains the MS-optimality lower bound if the off-diagonal elements of
XTX are:
(i) 0, when N =0 (mod 4);
(i) £2 for k(k — 2)/2 elements, when N = 2 (mod 4) and k is even;
(iii) £2 for {k(k — 2) 4+ 1}/2 elements, when N =2 (mod 4) and k is odd; or
(iv) £1, when either N =1 (mod 4) or N = 3 (mod 4).
For i = 0,1,2,3, based on X;, as given in Constructions(0)-(III), the off-diagonal

elements of X X; satisfies the above structure and thus attains the MS-optimality lower

bound. Therefore,

15



Theorem 2.9. For 1 = 0,1,2,3, a paired choice design d; corresponding to the design

matriz X; s MS-optimal in Dy j 2.

The D-optimal choice designs obtained by |Graihoff et al.| (2004) and Demirkale et al.
(2013) for N = 0 (mod 4) are also MS-optimal. To conclude, under the broader main
effects model, we have provided MS-optimal paired choice designs for every N and k

except k=N =1 (mod 4), k =N > 9. For k = N =5, §4 gives a design.

2.4 Comparing Designs with m =2 and m > 2

Burgess and Street| (2006) and |(Grofmann and Schwabe (2015)) have studied optimality
aspects of choice designs with respect to choice set size. For two-level choice designs,
Burgess and Street| (2006) established that D-optimal choice designs are equivalent so
long as the choice set sizes are multiples of 2. However, for their paired choice D-optimal
designs, it is necessary that N = 0 (mod 4). Similarly, Grofimann and Schwabe (2015)
observed that if the number of levels is small, then sometimes using choice sets of size
m = 2 may be better than using m > 2. We now broaden their results by considering
optimal designs for all N, and show that designs with m = 2 are D-better than the best
possible designs with m = 3,5. For two designs, that with the bigger det(C,,) is said to
be D-better than the other. Similarly, a design is MS-better than another design when
compared with respect to the MS-criteria. Contrary to the results of |Burgess and Street
(2006), we first show that there could be designs with m = 4 which are better than a
D-optimal design with m = 2 for situations where N # 0 (mod 4).

Consider two designs d*> € D555 and d* € D5 54. Let d> = {(P p), (-P —p)} and
d*={(P p), (=P —p), (P —p), (—P p)}, where P is a 5 x 4 matrix with —1 in
the (7,4)th position (i = 1,2,3,4), and 1 elsewhere and p = ( 1111 =1 )T. Here,
d? is D- and MS-optimal in Ds 5. Now, det(160C> )z = det(160C,) g = 2560 > 2304 =
det(160C3) 42 = det(lGOCf))da, and thus d* € Dj 5,4 is D-better than d? € Ds5,. In fact,
d* is also MS-better than d?. Here, det(C)q denotes the determinant of C' corresponding
to a choice design d.

Choice designs with m > 5 are expected to be less useful when there exist optimal
designs with m < 5. We now concentrate on choice designs X, X5, X3, constructed in

§2, and establish that they are D-better than the best possible designs with m = 3 and
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m = 5. We show this in the next two theorems.

Theorem 2.10. For N =i (mod 4), i =1,2,3, and k < N, d; € Dy 2 is D-better than
the D-optimal design in Dy 3, except possibly when i =2 and k = N — 1.

Proof. An upper bound to tr(C\Y) for m odd is 2¥tr(C) < 25tr(Cyn) < k(m? — 1) /m?2.
Therefore, for m = 3 we have tr(C’?EQ)) < 2k/{9(2¥%)} and since the sum of the eigenvalues
equals the trace of a matrix, det(C?Ez)) < [2/{9(2*)}]* or det(NQkC:,(,Q)) < (8N/9)k. To
prove the result, it suffices to show that f(k) = det(N2¥Cy)y, — (8N/9)¥ > 0. For N =i
(mod 4), we treat the three cases separately.

For i = 1, from Payne| (1974), det(N2"C5)q, = (N — 1 + k)(N — 1)*71. Thus, it
suffices to show that, for fixed N, f(k) = (N — 1+ k)(N — 1)*1 — (8N/9)F > 0. For a
proof by induction, first note that f(1) = N/9 > 0. Now, assuming that f(k) > 0, we
prove that f(k+1) = (N — 1+ k)(N — 1)k — (8N/9)**1 > 0. Since f(k) = (N — 1+
BY(N — 1) — (8N/9),

{(N + BV = DFHBN/9M} = {BN/YH(N — 1+ k(N - D1}

Skt 1) > (N — 1+ B)(N — )--1(8N/O)t 4
Now,
Ao (N+RW -1 (8N/9)k*1  N(N —1) + k(N —9)
T (N—1+k)(N -1 1 (8N/9* — 9N —1+k)

Thus, A >0, for N > 9. When N =5, A > 0 for k£ < 5.

Case (ii) i = 2: From Payne| (1974)), for k < N —1 and the design dy, det(N28Cy) 4, =
{(N—=2+k)*>—pu}(N—2)"2 where = 0 if k is even and 1 otherwise. It suffices to show
that, for fixed N, f(k) = {(N — 2+ k)?> — u}(N —2)¥=2 — (8N/9)* > 0. Using induction

we get, for k even,

(N +Ek2N—-22 [(8N)\?
flk+2)>A= N2+ ) —(—>7

and for k£ odd,

(N+k+1)(N—=2)2 (8N’
(N —3+k) _(?)'

To show A > 0, we may equivalently show that 9(N + k)(N — 2) > 8N(N — 2 + k)
for k even or 9(N — 2) > 8N for k odd, which is always true for N > 18. Complete
enumeration shows that the result holds for N =6,10,14;k < N — 1.
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Case (iii) i = 3: From [Payne| (1974), det(N2*Cs)g, = (N +1 — k)(N + 1)*1. 1t
suffices to show that, for fixed N, f(k) = (N +1—k)(N +1)¥1 — (8N/9)* > 0. We first
prove that the above inequality holds for £ < N — 8. Using induction, we get,

N(N+1)—k(N+9)

SR+ D> A== T

Putting k = N — 8, we see that A =8/9 > 0 for any N. Thus, for £ < N — 8, the above
inequality holds.

Now, for other cases, that is, k=N —-7,.... N—1. Let k=N —a,a=1,...,7.
Hence, f(k) = f(N —a) = 9N *(a+ 1)(N + 1)N7o71 - gN-aNNN=~1 Since N + 1 >
N, it suffices to show that for each k, 9V "%(a + 1) > 8V=*N. It can be easily seen
that fi(N,a) = 9V %(a + 1) — 8¥7*N is an increasing function in N for N > 23 and
f1(23,) >0 for o =1,...,7. Thus, for k=N—7,...,N—1and N > 23, the inequality
holds. Complete enumeration shows that the result holds for £k < N;7 < N < 19. O

Theorem 2.11. For N =i (mod 4) (i =1,2,3), and k < N, d; € Dy 2 is D-better than
the D-optimal design in Dy 5, except possibly when (i) i =1 and k = N — 1 = 4; (i)
i=2andk=Nork=N-2=480ork=N-3=7; (i1i)i=3 and k=N —1 < 58
ork=N—-2<41 or8<k=N-3<280r11<k=N-—4<15.

Proof. An upper bound to tr(C’éQ)) is obtained as in the proof of Theorem m For
m = 5, we have tr(C?) < 6k/{25(2"-2)} and thus, det(C{¥) < [6/{25(2F-2)}F or
det(N25C?) < (24N/25)F. Thus, to prove the result, it suffices to show that f(k) =
det(N2FCy)g, — (24N/25)F > 0.

For N =i (mod 4), we take up the three cases separately.

Case (i) ¢ = 1: Working on lines similar to the proof of Theorem we get
25(N — 1+ k)A = N(N — 1) + k(N — 25). Thus, A > 0, for N > 25. Complete
enumeration shows that A > 0 for kK < N =9,13,17,21 and for N =5 with k£ < 4.

Case (ii) ¢ = 2: Let £ < N — 1. Working on lines similar to the proof of Theorem
2.10, we only have to show that for k even, N(N — 2) + k(N — 50) > 0, and for k odd,
25(N —2) > 24N. It is easy to see that the inequalities are always true for N > 50. For
N = 14 through 42, since k < N — 1, complete enumeration shows that the inequality
holds. Also, for N = 10 with £ < 7 and for N = 6 with k& < 4, the above inequalities
hold.
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Case (iii) ¢ = 3: We first prove that the inequality holds for £ < N — 24 and
then treat the remaining cases k = N — o, a = 1,...,23 separately. Working on lines
similar to the proof of Theorem [2.10] we get 25(N + 1 — k)A = N(N + 1) — k(N + 25).
Putting k = N — 24, we see that A = 24/25 > 0 for any N. Thus, we have shown that
for £ < N — 24, the above inequality holds. Now, we take up the other cases, that is,
k=N-=-23,...,.N—1. Let k=N —«a, a=1,...,23. Then on lines similar to the proof
of Theorem [2.10] we see that the inequality holds for N > 59 and k = N —23,..., N — 2
and for N > 63 and k = N — 1. Complete enumeration for remaining N < 59 shows
that (N +1 —k)(N + 1)*1 > (24N/25)* for all N and k < N except when (i) N < 59,
k=N-1(Gi)N<43, k=N —2(iii)) 11 < N<3l, k=N —3and (iv) 15 < N < 19,
k=N —4. [

2.5 Concluding Remarks

The D- and MS-optimal two-level paired choice designs found in this chapter provide
solutions in situations where, for every N # 0 (mod 4), the information matrix of an
optimal exact design is different from the information matrix of the optimal approximate
design, for which the corresponding exact optimal design would not be available. However,
D-optimal design constructions for situations as mentioned in Remark and MS-
optimal designs for kK = N =1 (mod 4) can be further explored. This work complements
previous work giving optimal exact designs only for N = 0 (mod 4). Thus experimenters
can now use optimal designs for any number of choice sets V. Designs in this chapter are
optimal for estimating the main effects under a broader model containing all two-factor
interactions, which is more realistic in practice. From a statistical perspective we have
established that one should prefer optimal paired choice designs to choice designs with
m = 3 or m = 5. This also adds in achieving the desired quality of response through

reduced choice set size.
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Chapter 3

Optimal paired choice block designs

This chapter is based on the following work:
Singh et al| (2018)): Singh, Rakhi; Das, Ashish; Chai, Feng-Shun. Optimal Paired Choice
Block Designs. Stat. Sinica (2018), accepted, doi: 10.5705/s5.202016.0084.

3.1 Introduction

In a choice experiment, respondents are shown multiple choice sets of options and from
each set they choose the preferred option. Considering choice sets of size two and r given
respondents, a paired choice experiment is usually perceived as showing the same set of
N choice pairs to each of the r respondents. The respondents are asked to give their
preference among the two options for each of the N choice pairs shown to them.

D-optimal designs have been obtained theoretically under the utility-neutral setup,
for example, see GraBihoff et al.| (2003)), GraBhoff et al. (2004), Street and Burgess (2007)),
Street and Burgess (2012), Demirkale, Donovan and Street| (2013), Bush/ (2014)), |Grof3-
mann and Schwabe| (2015 and [Singh, Chai and Das| (2015)). In contrast, in the locally-
optimal and the Bayesian approach, D-optimal designs have been obtained using com-
puter algorithms (see, [Huber and Zwerina| (1996), |Sandor and Wedel| (2001)), |Sandor and
Wedel (2002)), Sandor and Wedel (2005), Kessels, Goos and Vandebroek! (2006]), Kessels,
Goos and Vandebroek! (2008]), [Kessels, Jones, Goos and Vandebroek] (2008), Kessels et al.
(2009), 'Yu, Goos and Vandebroek| (2009)). In this chapter, we follow the utility-neutral
approach.

Traditionally, in a choice experiment, respondents are shown the same collection of
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N choice pairs under the assumption that the respondents are alike. A choice experi-
ment with the inherent premise that the respondents are alike is not quite practical since
respondents, being a random sample from a population, are more likely to be hetero-
geneous. |Kessels, Goos and Vandebroek (2008) also noted that heterogeneity leads to

responses from different respondents being different.

In a paired choice experiment, there is always a constraint on the maximum number
of choice pairs that can be shown to each respondent so as to maintain overall response
quality. A major concern with the traditional optimal paired choice designs is that the
number of choice pairs in the design increases rapidly as k and/or v;’s are moderately

increased.

Attempts have been made to address the issue of heterogeneity through different
models and approaches. Sandor and Wedel| (2002) have addressed the heterogeneity in
respondents by constructing designs through a computer-intensive algorithmic approach
under the so called mixed logit model. In their approach, same set of N choice pairs are
shown to every respondent. Subsequently, Sandor and Wedel (2005) demonstrated that
the use of different choice designs for different respondents and the random allocation
of respondents to these designs yields substantially higher efficiency than the designs
obtained in Sandor and Wedel (2002)). Later Kessels, Goos and Vandebroek (2008), for
catering to heterogeneity in conjoint experiments, introduced a random respondent effects
model for estimating the main effects and used algorithmic methods for constructing D-
optimal designs. The conjoint designs under their setup consists of identifying as many
sets of options as there are respondents. Therefore, the approach, though similar, is not

applicable to our setup.

Often in practice, there is a pool of choice sets and respondents are allocated a ran-
dom subset of choice sets (Street and Burgess|, 2007). This process is continued until all
choice sets are used once. Thereafter the process is started again. To address the ad
hoc approach in the random allocation of choice sets, we use an additional fixed-effect
term in the model to systematically split the pool of choice sets. In experimental de-
sign theory, the concept of blocking, as a tool to eliminate systematic heterogeneity in
the experimental material, has been used extensively. Following the same approach, we
consider the respondents as blocks. Thus, in contrast to the computer-intensive algorith-

mic approaches of [Sandor and Wedel (2005) and Kessels, Goos and Vandebroek| (2008)),
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we treat the respondent heterogeneity as a nuisance factor by including respondent-level
block effect terms in the model and then design experiments to optimally estimate the
parameters of interest after eliminating the respondent (block) effects. Adopting such an
approach also enables the experimenter to get optimal designs with reasonable number of
choice pairs s(< N) shown to each of the r respondents. Later in Section [3.2 we discuss
the kind of heterogeneity that is being taken care of in our approach and the seemingly

similar approaches.

In what follows, a design with b blocks each of size s is generated and that each
block is associated to a respondent. Usually ¢ copies of a proposed design is used for
larger numbers of respondents r = tb, since replicating the design does not affect its
optimality. We therefore, restrict ourselves to optimal paired choice block designs with b

blocks each of size s with N = bs.

In this context, the traditional paired choice designs reduce to b = 1,s = N and
r =t where s is necessarily atleast the number of model parameters. However, for b > 1,
the block size s can be smaller than the number of model parameters, but the paired
choice design with b blocks can still estimate all model parameters. In order to estimate
the model parameters, we provide optimal designs with block sizes that are flexible and

practical under our setup.

In Section [3.2] treating respondent heterogeneity as a nuisance factor and incorpo-
rating the fixed respondent (block) effects in the model, we obtain the information matrix
for estimating the parameters of interest after eliminating the respondent (block) effects.
In Section 3.3, under the main effects block model, we provide optimal paired choice block
designs for estimating the main effects for symmetric and asymmetric attributes. We also
give a simple solution to the problem of identifying generators in the constructions of
optimal paired choice designs. In Section [3.4] under a broader main effects block model,
we provide optimal paired choice block designs for symmetric and asymmetric attributes.
The broader main effects model constitutes the main effects and the two-factor inter-
action effects with interest lying only in the estimation of the main effects. Finally, in
Section (3.5 we provide optimal paired choice block designs for estimating the main plus

two-factor interaction effects. Finally, we provide a Discussion in Section |3.6
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3.2 Preliminaries and the model incorporating re-

spondent effects

Most of the work on optimal choice designs is based on the multinomial logit model
approach of either Huber and Zwerina (1996) or that followed in Street and Burgess
(2007). |GroBmann and Schwabe| (2015]) observed that the two approaches are equivalent
for the purpose of finding optimal designs. We work with the multinomial logit model
approach of [Huber and Zwerina/ (1996). The multinomial logit model supposes that the
probability of preferring option 1 over option 2 in the ith choice pair can be expressed as
1o = €' /(e" + e“2'), where uy; and ug; represent the systematic part of the utilities
attached to the two options in choice pair 7. Similarly m; = 1 — m9; is the probability
that option 2 is preferred over option 1. It follows that for the ith choice pair, the choice
probabilities depend only on the utility difference uy; — us;. For a design d with N choice
pairs, since options are described by k attributes, the utilities are modeled using the linear
predictor u; = P,;0, where 6 is a p X 1 vector representing the parameters of interest, P,;
is an N x p effects-coded matrix for the jth option, and u; = (uj;) is an N x 1 utility
vector for the jth option, j = 1,2. The utility difference uy —uy = (P — Pp2)0 = P,0
is then a linear function of the parameter vector #. For the purpose of deriving optimal
designs, it is often assumed that 6 = 0. This indifference or the utility-neutral assumption
means that the two options in a choice set are equally attractive and leads to a considerable
simplification of the information matrix and the design problem. Under the utility-neutral
multinomial logit model, the Fisher information matrix is (1/4) P, P, (see, GroBmann and

Schwabe| (2015))).

Simultaneously, GraBihoff et al.| (2003) and (GraB3hoff et al.| (2004)) studied linear paired
comparison designs which are analyzed under the linear paired comparison model. The
observed utility difference Z between the two options again depends on the difference
matrix P, = P, — Pj. More precisely, the response is described by the model, Z =
uy —ug + € = (Pyy — Pp)0 + € = P,0 + ¢, where € is the random error vector. The matrix
C = PP, is the information matrix under the linear paired comparison model. Since
C' is proportional to the information matrix under the utility neutral multinomial logit
model, it follows that the designs optimal under the linear paired comparison model are

also optimal under the multinomial logit model and vice versa.
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We discuss only D-optimality since, as noted in |Grofmann and Schwabe| (2015)),
most of the optimality results for choice designs and linear paired comparison designs are
available for the D-criterion. A D-optimal design has the maximum determinant of the
information matrix among all competing designs.

For paired choice experiments, the multinomial logit model as well as the linear
paired comparison model are based on the utility difference u; — us. By incorporating
respondent effects, the relevant utility differences under the block model, with blocks

being the respondents, becomes
Ul—UQZ(Ppl—Pp2>9+W6:PpQ+WB7 (31)

where 5 = (f1,..., ) represents the b x 1 vector of block effects, and W = (wj;) is an
N x b incidence matrix with w;; = 1 if the ¢th choice pair belongs to the jth block and 0
otherwise. Without loss of generality, we take W = I, ® 1,, where I, and 1, denotes the
identity matrix of order a and the a x 1 vector of all ones, respectively. Here, ® denotes
the Kronecker product. Note that corresponds to a paired choice block design with
b blocks each of size s and that such b blocks are repeated ¢ times to accommodate for
r = tb respondents. Each of the r respondents is associated to a single block of the design.

Unlike [Sandor and Wedel (2005) and |Kessels, Goos and Vandebroek! (2008]), where
an assumed distribution on the model parameters takes care of the respondent effects,
our approach, following the standard block design theory, has been to consider 3; as a
fixed-effects term. While the vast literature on theoretically obtained D-optimal designs
for choice experiments rests on a multinomial logit model without any respondent effects,
our fixed-effects block model attempts to obtain the optimal block designs theoretically
under the utility-neutral setup.

In either the multinomial logit model or the linear paired comparison model, in-
cluding respondent effects 5 can be regarded as adding b two-level attributes to the set
of p predictor variables. Then, the corresponding difference matrix for the pairs, in b
blocks, has an additional component and can be written as (P,, W). Thus, under the
utility-neutral multinomial logit block model, it follows that the information matrix for
estimating # and [ is
1| ¢ BW

M==

(3.2)
“Yiwe, ww

25



where C' = P)P,, as defined earlier. Moreover, upto a constant factor of 1/4, M coincides
with the information matrix in the linear paired comparison block model. Thus, optimal
designs under the linear paired comparison block model are also optimal under the utlity
neutral multinomial logit block model. The information matrix for estimating # under

the linear paired comparison block model after eliminating the block effects is

C=C-PWWW)'WP,=C-(1/s)P,WW'P,. (3.3)
This follows from the standard linear model theory where a parameter vector is partitioned
into a parameter vector of interest and the nuisance parameters (see, for example, Page
68 of [Haines| (2015))).

A paired choice block design is connected if all the parameters of interest are es-
timable, and this happens if and only if C' has rank p. In what follows, the class of all
connected paired choice block designs with k attributes in b blocks each of size s is de-
noted by Dy . From , since C—C'is a non-negative definite matrix, if in the class of
unblocked designs with N = bs, a paired choice design d is D-optimal, then d, considered
as a design in Dy, s, is also D-optimal, provided C=C.

It is observed that eliminating respondent effects simultaneously controls the within-

pair order effects (see, Goos and Grofimann| (2011)) and Bush, Street and Burgess (2012)).

3.3 Optimal block designs under the main effects model

Under the main effects block model, from it follows that uy — us = (Py1 — Pu2)7T +
WpB = Pyt+ W, where 7 is a Zle(vi — 1) x 1 parameter vector for main effects, Py, is
an N X Zle(vi — 1) effects-coded matrix of the main effects for the jth option, j = 1,2,
and Py = Py — Pare. In arow of Pyyj is embedded the effects-coded row vector of length
v; — 1 for the ith attribute. The effects coding for level [ is represented by a unit vector
with 1 in the (I + 1)th position for [ = 0,...,v; — 2, and for level v; — 1 is represented
by —1 in each of the v; — 1 positions, i = 1,..., k. For example, for v = 3, effects-coded
vectors for [ = 0,1,2 are (10),(01) and (—1 — 1), respectively.

From , the information matrix for estimating the main effects after eliminating
the block effects is

Cy = Cyr — (1/8) P, WW' Py, (3.1)
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where Cy; = P, Py is the information matrix for estimating the main effects under the
unblocked model. From (3.1, it follows that a necessary and sufficient condition for
Chy = Cy to hold is WPy = 0. Therefore, by suitably blocking the choice pairs of an
optimal paired choice design into b blocks such that W’ Py; = 0, one can obtain an optimal
paired choice block design. We provide a simple condition to achieve the same, proof of

which is provided in the Appendix [A]

Theorem 3.1. Cy; = Ch if for each block, the levels of every attribute appear equally

often in the first option as well as in the second option.

This property of every level of an attribute appearing the same number of times in
the first and second option of pairs is also known as position-balance (see, Grofimann and
Schwabe (2015))).

An orthogonal array OA(n, k,v; X -+ X vy, t), of strength ¢, is an n x k array with
elements in the ith column from a set of v; distinct symbols {0, 1,...,v;—1} (i =1,... k),
such that all possible combinations of symbols appear equally often as rows in every n x t
subarray. An orthogonal array is symmetric if v; = v for all 7 and the corresponding OA
is denoted by OA(n, k,v*,t), else it is an asymmetric orthogonal array.

Street and Burgess| (2007), |[Demirkale, Donovan and Street| (2013)) and Bush, (2014))
provide the OA + G method for constructing optimal paired choice designs using orthogo-
nal arrays and generators G. Let G be a collection of h generators Gy, ..., G}, where G =
(Gjrs Gjas - - - Gjp)- The OA + G method gives a paired choice design (A, B;),j =1,...,h
where A = (Ay) is an OA(ny, k,v1 X -+ X v, t) and B; = (B}) with B, = A, + g
reduced mod v;, | = 1,...,nq, ¢ = 1...,k, 7 = 1,...,h. This method depends on
the availability of the required orthogonal array, which may not always exist. The SAS
link http://support.sas.com/techsup/technote/ts723.html, the Sloane link http:
//neilsloane.com/oadir/ and Hedayat, Sloane and Stutken| (1999) provide a compre-
hensive summary of orthogonal arrays and their constructions.

In the literature, arriving at the generators G has been usually through a trial-and-
error approach, and no general results on the structure of such generators appear to exist.
In fact, Bush| (2014) highlights the complexities involved in choosing the sets of generators.
We present a simple result that systematically provides the h generators, proof of which
is provided in the Appendix [A| Let lem(ay, ..., a;) denotes the least common multiple of

A1y.e.y Q.
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Theorem 3.2. Number of generators for the optimal paired choice design with k attributes
is h = lem(hy, ..., hy) where h; = v; — 1 for v; even and h; = (v; — 1)/2 for v; odd,
i = 1,...,k. The generators are then given by G; = (gj,, Gjss - - -, 9j,), where g;, takes
each of the values from the set {1,... h;} with frequency h/h;, j=1,... h,i=1,... k.

Note that Theorem provides generators for the unblocked paired choice designs.
As in Street and Burgess (2007)), we use several sets of generators to create the final design

and that the number of generators given in Theorem may not be the smallest possible.

Example 3.3. Suppose there are three attributes with v = 2,vy = 3 and v3 = 4. Then we
havehy =1, gj, =1; ho =1, g;, =1; and hs =3, gj, = 1,2,3. Thus, h =lem(1,1,3) = 3.
This leads to the generators Gy = (111), Gy = (112) and G5 = (113). Thus, for a given
OA(24,3,2 x 3 x 4,2), the corresponding optimal paired choice design with parameters k,
v =2,15=3,v3=4,b=1, N =5 =hny =3 x 24 =72, is obtained using the OA+ G
method of construction with three generators. The corresponding design is given in the

Appendiz [A]

Example 3.4. As another example, suppose there are two attributes with v1 = 4 and
vy = 5. Then we have hy =3, gj, = 1,2,3 and hy = 2, g;, = 1,2. Thus, h = lcm(3,2) = 6.
This leads to the siz generators G; = (11), Gy = (12), G5 = (21), G4 = (22), G5 = (31)
and G¢ = (32) which will give an optimal paired choice design when used in conjunction

with OA(20,2,4 x 5,2).

In general, for a given OA(ny, k,v; X - -+ X vg, 2), the corresponding optimal paired
choice design d; with parameters k, v{,...,vs, b =1, N = s = hnq, is obtained using the
OA+G method of construction with generators G;,j = 1,...,h. When N = s is large, we
find that practitioners advocate allocation of the choice pairs into more than one blocks
either randomly or using a spare attribute (see, Street and Burgess (2007)), Bliemer and
Rose (2011))). Based on Theorem , it follows that under our block model, we can retain
optimality of the design obtained through the OA + G method if blocking is done using
a column corresponding to an attribute. Any other blocking approach may jeopardize
the characteristics of the design. We now provide four theorems and their constructions,

detailed proofs of which are provided in the Appendix [A]
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Theorem 3.5. For 6 > 1 and an OA(ny, k + 1,01 X -+ X v, X 6,2), there exists an

optimal paired choice block design dy € Dyys with parameters k, vy, ..., vy, b = hd,

s =nq1/0, where h = lem(hy, ... hg).

Construction. For a given OA(ny, k + 1,v1 X -++ X v X 6,2), corresponding to the k
attributes at levels v;,i = 1,. ..k, let dy be the design constructed through OA+ G method
using h = lem(hy, ..., hg) generators from Theorem . Then dy with parameters k,
vi,t =1,...,k, b=1, s = hny is an optimal paired choice design. From dy, the choice
pairs obtained through each of the h generators constitute a block of size ny. Finally, we
use the § symbols of the (k+1)th column of the orthogonal array for further blocking. This
LUk, b=ho, s =ny/d.

gives us a paired choice block design dy with parameters k, vy, ..

Example 3.6. From an OA(24,15,2'3 x3x4,2), for estimating the main effects of k = 14
attributes of which 13 attributes are at 2 levels and 1 attribute is at 3 levels, an optimal
paired choice block design can be constructed for 6 = 4,h = 1,k = 14,b = 4,5 = 6 are

optimal. As an illustration, we give a 2* x 3 paired choice block design dy with parameters

k=5b=45=6.

B1

B>

Bs

By

(00000, 11111)
(11010,00101)
(01101,10012)
(11002,00110)
(10111,01002)
(00112,11000)

(01102,10010)
(11110,00001)
(11011,00102)
(00100,11011)
(10012,01100)
(00001,11112)

(10112,01000)
(00111,11002)
(01002,10110)
(11101,00012)
(01010,10101)
(10000,01111)

(10001,01112)
(00012,11100)
(10100,01011)
(01011,10102)
(01110,10001)
(11102,00010)

It is noted that when the attributes have mixed levels greater than 3, the OA + G
method leads to choice designs with a large number of choice pairs. However, blocking
still helps in reducing the number of choice pairs shown to respondent from N = s = 96
to s = 24. For example, an OA(32,11,2% x 47 x 8,2) can be used to construct a paired
choice block design having three 2-level attributes and seven 4-level attributes in N = 96
choice pairs with b = 24 and s = 4.

For many parameter sets corresponding to k attributes each at v levels, (Graf$hoft
et al.| (2004) and Demirkale, Donovan and Street| (2013)) have provided constructions of
optimal paired choice designs with a reduced number of choice pairs in comparison to the
OA+ G method of construction. We now show how an optimal paired choice block design

can be constructed starting from their designs.
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Theorem 3.7. For a Hadamard matriz H,,, an optimal paired choice design ds with
parameters k,v,b = 1,5 = mv(v — 1)/2, k < m ezists. Furthermore for v odd, a paired
choice block design dy with parameters k,v,b =m(v—1)/2,s = v exists, which is optimal

m Dk,b,s-

Construction. For a given H,,, an optimal paired choice design d3 is obtained through
Theorem 3 of \Grafhoff et al| (2004) with parameters k,v,b =1, = mv(v — 1)/2. More-
over, for v odd, the choice pairs corresponding to each of the rows of {Hp, —Hp,} forms
a block and the design so obtained is an optimal paired choice block design. Now, using
a result from | Dey (2009), v(v — 1)/2 combinations involving v levels taken two at a time
can be grouped into (v — 1)/2 replicate each comprising v elements. Therefore, the blocks
generated by each row of H,, can be further broken into (v — 1)/2 blocks each of size v,

which gives the optimal paired choice block design dy.

Example 3.8. Consider v = 3 with combinations (0,1),(1,2),(2,0) and the Hadamard
matriz Hy. An optimal paired choice design ds with parameters k =4,v=3,b=1,5 =12
exists. Furthermore, since v is odd, an optimal paired choice block design dy is constructed
with parameters k = 4,v = 3,b = 4,s = 3 by considering choice pairs generated by each

row of {Hy, —H4} as a block.

B1 B Bs By
(0000,1111) | (0101,1010) | (0011,1100) | (0110,1001)
(1111,2222) | (1212,2121) | (1122,2211) | (1221,2112)
(2222,0000) | (2020,0202) | (2200,0022) | (2002,0220)

dy =

Theorem 3.9. For an OA(ng, k + 1,vF X vy41,2) with vgy1 = na/v, an optimal paired
choice design ds with parameters k,v,b = 1,5 = ng(v — 1)/2 exists. Furthermore for v
odd, a paired choice block design dg with parameters k,v,b = ny(v — 1)/2v,s = v ewists,

which is optimal in Dy .

Construction. For a given OA(ng, k+1,v X vy 1, 2) with viy1 = na /v, an optimal paired
choice design ds is obtained through Construction 3.2 of Demirkale, Donovan and Street,
(2013) with parameters k,v,b = 1,8 = vk+1(;’). Moreover, for v odd, the choice pairs
corresponding to each of the parallel sets of the orthogonal array forms a block and the
design so obtained is an optimal paired choice block design. Now, following Dey (2009),
the blocks generated by each parallel set can be further broken into (v — 1)/2 blocks each

of size v, which gives the optimal paired choice block design dg.
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Theorem 3.10. For§ > 1 and an OA(ns, k+1,mq X - - Xmy x0,2) with m; = v;(v;—1)/2
for some odd v;, an optimal paired choice block design dg with parameters k,v;, ... v, b=

5,8 =ngz/d exists.

Construction. For a given OA(nz, k—+1,my X -+ X my X 6, 2) with m; = v;(v; —1)/2 for
some odd v;, an optimal paired choice design dr is obtained through Theorem 4 of Grafshof]|
et al.| (2004) with parameters k,v;,...,v5, b = 1,5 = ng. Then, similar to construction
of Theorem we use the 6 (> 1) symbols of the (k + 1)th column of the orthogonal
array for blocking. This gives us an optimal paired choice block design dg with parameters
k,vi,..., 05,0 = 0,8 =mngz/d. Note that this method of blocking is applicable only for odd

V;.

Table highlights the flexibility in the number of blocks while blocking the tradi-
tional optimal symmetric paired choice designs as listed in Table 2 of Demirkale, Donovan
and Street| (2013]). We list the values of s and b corresponding to the optimal designs ob-
tained through Theorem and Theorem 3.7} It is observed that in the parameter range
of Table [3.1] Theorems and do not provide any additional designs that are not
obtainable from Theorem [3.5] and Theorem 3.7 Some of the traditional optimal paired
choice designs, marked *, are not optimal under the block setup for blocks of size s = N
and b = 1 since the design matrices are not orthogonal to the vector of all ones. However,
by having b > 1, optimal designs having blocks of size s = N/b are feasible using Theorem
3.5

Note that, from a given optimal paired choice design in Dy s, we can randomly
group the b blocks into b/x blocks each of size xs to obtain optimal paired choice designs
in Dy p/z.s0- In Table , the designs with z = 1 are first obtained using the Theorems
as mentioned in the corresponding column headers whereas the designs with > 1 are
obtained thereafter through random grouping. One could obtain a table similar to Ta-
ble B.1] for optimal asymmetric paired choice designs based on a list of more than 600

orthogonal arrays with n < 100.
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Table 3.1: Optimal designs in Dy 3, s

k Traditional (s,1) | Theorem |3.5| (s,b) Theorem |37| (s,0)
4 (4,1)
2| 4 4% (4x,2/x), x=1,2
4x,2/x), x=1,2
2 | 5-6 8 ( /)
(6x,2/x), x=1,2
8.1)
2|7 8 (6x,2/x), x=1,2
(4x,4/x), x=1,2,4
6x,2/x), x=1,2
s | e (6%,2/%),
(4x,4/x), x=1,2,4
(6x,2/x), x=1,2
2 | 9-10 12 (4x,4/x), x=1,2,4
(10x,2/x), x=1,2
(12,1)
4x,4/x), x=1,2,4
2 11 12 ( /%)
(10x,2/x), x=1,2
(6x,4/x), x=1,2,4
(4x,4/x), x=1,2,4
2| 12 12* (10x,2/x), x=1,2
(6x,4/x), x=1,2,4
313 9,12 (3x,3/x), x=1,3 (3x,4/x), x=1,2,4
1)
3|4 9,12,18 (3%,4/x), x=1,2,4
(3x,6/x), x=1,2,3,6
3| 56 18,24 (3%,6/x), x=1,2,3,6 (3x,8/x), x=1,2,4,8
(9%,2/x), x=1,2
3|7 18,24,27 (3x,8/x), x=1,2,4,8
(3x,9/x), x=1,3,9
3|8 24,27 (3x,9/x), x=1,3,9 (3x,8/x), x=1,2,4,8
9 27,36 (3x,9/x), x=1,3,9 (3x,12/x), x=1,2,3,4,6,12
(9%,3/x), x=1,3
3| 10-12 | 27,36 (3%,12/x), x=1,2,3,4,6,12
(3x,12/x), x=1,2,3,4,6,12
4] 34 | 24%28 (4x,12/x), x=1,2,3,4,6,12
16x,3/x), x=1,3
4 |5 48 ( /)
(4x,24/x), x=1,2,3,4,6,8,12,24
4 | 68 48* 96 (4x,24/x), x=1,2,3,4,6,8,12,24
(16x,6/x), x=1,2,3,6
49 72%.96
(4x,36/x), x=1,2,3,4,6,9,12,18,36
10-12 | 72*,144 (4x,36 /%), x=1,2,3,4,6,9,12,18,36
34 | 40,50 (5x,10/x), x=1,2,5,10 (5x,8/x), x=1,2,4,8
515 50,80 (5x,10/x), x=1,2,5,10 (5%,16/x), x=1,2,4,8,16
(25%,2/x), x=1,2
5106 50,80,100 (5x,16/x), x=1,2,4,8,16
(5x,20/x), x=1,2,4,5,10,20
7-8 | 80,100 (5x,20/x), x=1,2,4,5,10,20 (5%,16/x), x=1,2,4,8,16
9-10 | 100,120 (5%,20/x), x=1,2,4,5,10,20 (5x,24/x), x=1,2,3,4,6,12,24
(12x,15/x), x=1,3,5,15
6 | 3 60*,180
(18x,10/x), x=1,2,5,10
6| 4 60*,180*,360 (6x,60/x), x=1-6,10,12,15,20,30,60
6 | 56 120*,180%,360 (6x,60/x), x=1-6,10,12,15,20,30,60
7 | 34 84,147 (7x,21/x), x=1,3,7,21 (7x,12/x), x=1,2,3,4,6,12
7| 57 147,168 (7x,21/x), x=1,3,7,21 (21x,8/x), x=1,2,4,8
(49x,3/x), x=1,3
718 147,168,294 (21x,8/x), x=1,2,4,8

(7x,42/x), x=1,2,3,6,7,14,21,42
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3.4 Optimal block designs under the broader main

effects model

In this section, we consider estimation of the main effects under the broader main effects
model for an asymmetric paired choice design where the ith attribute is at v; levels,
t = 1,..., k. The broader main effects model constitutes the main effects and the two-
factor interaction effects with interest lying only in the estimation of the main effects. For
the symmetric paired choice designs, |(Graihoff et al. (2003) characterized optimal paired
choice designs under the broader main effects model. More recently, for v; = 2, Singh,
Chai and Das| (2015) obtained optimal designs under such a model.

With the introduction of the respondent effects, from , the relevant utility dif-

ferences become
uy — uz = (Pa1 — Pua)T + (P — Pr)y + W'8 = Pyt + Py + W', (3.1)

where yisa SF ! Zf: i1 (vi—1)(v;—1) x 1 parameter vector for the two-factor interaction
effects, Pr; is an NV x Zi:ll Z§:¢+1(Ui — 1)(v; — 1) effects-coded matrix of the two-factor
interaction effects for the jth option, j = 1,2, and P; = Pjy—Pre. Let Pp; = (P};, o ,PI"j/)’
where P}j corresponds to the Ith choice pair in Pr;. Also, let P, j(i) represent the columns
of Py corresponding to the [th choice pair and ith attribute. Then, PIlj = (P]le(l) ®
! ! ! ! !

Parjiay Parjy ® Prjay -+ Parjia-n) ® Phsjay)-

The information matrix for estimating the main effects after eliminating the two-

factor interaction effects and the block effects is

PP, PIW
PW W'wW

PiPy

Cp=Cy — [P, P, P.,W
B =Cn — [Py Pr PyW] i

. (3.2)

Therefore, a paired choice design which is optimal under the main effects model is
also optimal under the broader main effects block model if Cy = Cu, that is, if P{Py =0
and W’ Py, = 0. The designs in Theorem |3.5|satisfy W’ Py; = 0 and for symmetric designs
with v = 2, it follows from |Singh, Chai and Das| (2015) that the designs additionally

satisfy P;Py; = 0. Therefore, in particular, for symmetric designs with v = 2, the paired
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choice block designs of Theorem are also optimal under the broader main effects block
model.
We now give the following construction for optimal paired choice block designs under

the broader main effects model.

Theorem 3.11. Under the broader main effects model, for an OA(ny, k,vy X -+ X v, 3)
and h = lem(vy,...,v), there exists a paired choice block design dP with parameters

k,vi,...,v,b= 1,5 = hny, which is optimal in Dy s.

Construction. We obtain d? through the OA + G method of construction using h gen-
erators as in Theorem[3.3. Detailed proof is provided in the Appendiz[A].

Theorem 3.12. Under the broader main effects model, for § > 1 and an OA(ny, k+1, vy X
X up X6, 3), there exists a paired choice block design dF with parameters k, vy, ..., vy, b=

hé, s = ny/d, which is optimal in Dyp.s.

Construction. On lines similar to Theorem 3.5, the construction here is based on using

sets of generators, from Theorem|3.4, on an orthogonal array of strength 3.

We now provide another method to obtain symmetric optimal paired choice block

designs with s = v;v > 3.

Theorem 3.13. For an OA(ny, k — 1,057, 3), there exists a paired choice block design

d® with parameters k,v > 3,s = v,b = hny, which is optimal in Dy .

Construction. We adopt the following method of construction.

(i) Following Theorem[3.13, construct d¥ from an OA(ny, k,v* "' x1,3) for k—1 attributes
each at v levels. While constructing dZ, the h generators, as in Theorem|(3.4, are (k—1)-
tuples of the form (1...1),--- ,(v—1...v—1) for v even (h = (v—1)), and of the form
(1...1),--,(v=1)/2...(v—=1)/2) forv odd (h = (v—1)/2). Then, for each choice
pair, add the kth attribute at level 0 in the option 1 and similarly, the kth attribute in
the second option is generated using the same generator as that used for the other k — 1

attributes.

(1i) For each of the h generators, generate v — 1 additional copies of the design obtained
in (i) by adding 1 (mod v),...,(v—1) (mod v) in every attribute under both the options.
Note that every copy in (ii) is just the recoding of the design obtained in (i), and hence

the resultant design with parameters k,v,s = hnyv,b =1 is also optimal.
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(111) Finally for each of the h generators, the ith block of size v comprises of the ith row

from each of the v copies created in (i), i =1,...,n;.

The hny blocks so obtained with s = v forms the required optimal design d%. The design

so obtained has distinct choice pairs in every block.

3.5 Optimal block designs for estimating the main

plus two-factor interaction effects

The literature on optimal paired choice designs for estimating the main plus two-factor
interaction effects is very limited since such designs require a large number of choice pairs
to be shown to every respondent. GraBihoff et al.| (2003)), [Street and Burgess| (2004) and
Grofimann, Schwabe and Gilmour| (2012) have provided optimal and/or efficient paired
choice designs under this setup for k attributes each at two levels. In this Section, we
consider each of the k attributes to be at two levels. Let ¢ = [k/2], where [z] represents
the smallest integer greater than or equal to z. The construction method of [Street and
Burgess (2007) entails starting with an orthogonal array OA(ny, k,2%,4) as a set of n;
first options, and then taking the foldover of « attributes in the second option, keeping
the rest of the k — « attributes same for each of the n, choice pairs. Here a = ¢ for k odd
and o = ¢ and ¢ + 1 for k even. This process is repeated for (];) possible combinations
of the attributes. Here, the foldover of an attribute in the second option of a choice pair
means that the attribute level in the second option is different from that in the first. Such
a paired choice design d! with parameters k,v,s,b = 1 is optimal where s = nl(’;) for k
odd and s = ny (Zj:) for k even.

Incorporating respondent effects, the model is as given in . However, in contrast
to Section [3.4] interest here lies in the estimation of both the main-effects and the two-

factor interaction effects. The information matrix for estimating the main plus two-factor

interaction effects under the multinomial logit model incorporating respondent effects is

Cu PP
PiPy PP

W' Py
W' Py

Gy = — (1/8)[Pl,W PIW] (3.1)

As earlier, in order to achieve optimal paired choice block designs, we start with an

optimal paired choice design d! and enforce blocking such that W’Py; = 0 and W'P; = 0.
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We provide a simple condition to achieve the same, proof of which is provided in the
Appendix [A]

Let pair (a1, b;) means that a; and by are the levels corresponding to an attribute
for the first and second options, respectively. Similarly, let pair (ajas, bybe) means that
aias and biby are the levels corresponding to the two attributes for the first and second

options, respectively.

Theorem 3.14. W/Py; =0 and W' P; = 0 if and only if for every block,

(i) the frequency of the pair (1,0) is same as the frequency of the pair (0,1) for every
attribute;

(i1) the frequency of the pairs from the set {(01,00), (01,11), (10,00), (10,11)} s
same as the frequency of the pairs from the set {(00,01), (00,10), (11,01), (11,10)} for

every two attributes.

We now provide a method of construction for optimal paired choice block designs

with s = 4.

Theorem 3.15. For k > 4, there exists a paired choice block design db with parameters
k,v=2,s=4,b, which is optimal in Dy s. Here b= 2k=3 (’;) for k odd and b = 2+3 (’;ﬂ)
for k even.

Construction. Let F' be a set of (2) attribute indices of size o = q obtained from the
attribute labels 1,--- |k taking « labels at a time such that 2 < o < k—2. For an element
f= 1, fiseoosfa) of F, let ff =A{1,...)k} = f = (f],..-, ;,...,f(’k_a)) be the
complement of f. Keeping in view the construction of the design dl, we adopt the steps

(i)-(v) to construct an optimal paired choice block design d for k attributes.

(1) Write the complete factorial involving 2% combinations. Divide this set into two-halves

such that the second half is a foldover of the first half.

(ii) Write the complete factorial involving 28~ combinations. Divide this set into two-

halves such that the second half is a foldover of the first half.

(111) Take one combination from the first half of (i), say a, and two combinations from the
first half of (ii), say b and c. Let o', V' and ¢’ be the foldovers of a, b and ¢, respectively.
Corresponding to the element f of F, make a block having choice pairs (ab, a’b), (ab',a't’),

(d'c,ac), (a'd,acd). Here, in a choice pair, the option ab implies that if a = ay-+-a; - - aq
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and b =by---b;---by_q, then a; corresponds to the attribute index f; and b; corresponds

to the attribute index f;.

(iv) Repeat (iii) for each of the 2°~' combinations in the first half of (i) using the same b
and ¢ as in (iii). Then, repeat the entire process for two different combinations from the

first half of (ii).

(v) Repeating (i)-(iv) for every element f of F corresponding to o = q for k odd and
a = q and g+ 1 for k even, an optimal paired choice block design db is obtained with

parameters k,v = 2,5 = 4,b where b = 2F3 (];) for k odd and b = 2F3 (Sﬁ) for k even.

Example 3.16. Let k = 4,0 = 2,0 =10,s = 8. For k = 4, « takes the values 2 and 3.
Sincea=3>2=Fk—2, Theorem does not allow to achieve di from dl. However,
for a = 2, the proposed construction method still holds, for which we get 12 blocks each

of size 4, as below.

B Bs B3 By Bs Bg
(0000,1100) | (0100,1000) | (0000,1010) | (0010,1000) | (0000,1001) | (0001,1000)
(0011,1111) | (0111,1011) | (0101,1111) | (0111,1101) | (0110,1111) | (0111,1110)
(1101,0001) | (1001,0101) | (1011,0001) | (1001,0011) | (1011,0010) | (1010,0011)
(1110,0010) | (1010,0110) | (1110,0100) | (1100,0110) | (1101,0100) | (1100,0101)

By Bg By Bio Bi11 B2
(0000,0110) | (0010,0100) | (0000,0101) | (0001,0100) | (0000,0011) | (0001,0010)
(1001,1111) | (1011,1101) | (0110,0011) | (0111,0010) | (1100,1111) | (1101,0010)
(0111,0001) | (0101,0011) | (1011,1110) | (1010,1111) | (0111,0100) | (0110,0101)
(1110,1000) | (1100,1010) | (1101,1000) | (1100,1001) | (1011,1000) | (1010,1001)

For a = 3, we provide a design in 4 blocks each of size 8, as below.

Bis Bis Bis Bis
(0000,1110) | (0000,1011) | (0000,1101) | (0000,0111)
(0110,1000) | (0011,1000) | (0101,1000) | (0011,0100)
(1010,0100) | (1010,0001) | (1100,0001) | (0101,0010)
(1100,0010) | (1001,0010) | (1001,0100) | (0110,0001)
(0001,1111) (0100,1111) (0010,1111) (1000,1111)
(0111,1001) | (0111,1100) | (0111,1010) | (1011,1100)
(1011,0101) | (1110,0101) | (1110,0011) | (1101,1010)
(1101,0011) | (1101,0110) | (1011,0110) | (1110,1001)

We form 6 blocks each of size 8 by combining blocks B; and Biig, © = 1,...,6,
which in combination with the 4 blocks B;, i = 13,...,16 gives the optimal design with
parameters k = 4,b =10,s = 8.
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3.6 Discussion

In situations where an optimal design has more choice pairs than a respondent can com-
plete, the N choice pairs can be split among the respondents (blocks) either randomly
or using a spare attribute, if there is one available (see, Street and Burgess (2007)). To
this effect, we have instances of respondents being considered as blocks in various choice
experiments, although without much theoretical rigor. [Bliemer and Rose (2011) reported
that 64% of studies used a blocking column to allocate choice sets to respondents, 13%
assigned choice sets randomly to respondents, 5% studies provided the full factorial to
each respondent and for the remaining 18% of the studies, it could not be determined
how choice sets were assigned to respondents.

With an objective to assess the main or interaction effects, wherever practical, the
same set of N optimal choice pairs are shown to every respondent. As such there are
no theoretical results on optimal designs, under the utility-neutral setup, where different
respondent sees smaller and different designs. In contrast, the approach that is adopted
here allows the construction of optimal designs with smaller and flexible number of choice
pairs, to be shown to every respondent. Even in situations where simple techniques like
blocking using a spare attribute can not be used, we provide optimal paired choice block
designs.

In contrast to the approaches of Séndor and Wedel (2005) and Kessels, Goos and
Vandebroek (2008), following the block design theory, we adopt the fixed-effects block
model for obtaining optimal designs. The approach adopted here treats respondent het-
erogeneity as a nuisance factor by including respondent-level fixed-effect terms in the
model and enables the derivation of analytical results. Though there is no guarantee
that the optimal block designs obtained under this setup and the heterogeneous designs
obtained by Sandor and Wedel (2005)) would be same, it would require a separate study
to compare optimal designs obtained under the two approaches.

Furthermore, unlike their designs, which are available only for situations when es-
timation of the main effects is of interest, we have provided optimal paired choice block
designs not only under the main effects model but also under the broader main effects

model and under the main plus two-factor interaction effects model.
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Chapter 4

Efficient paired choice designs with

fewer choice pairs

This chapter is based on the following work:
Dey et al.| (2017): Dey, Aloke; Singh, Rakhi; Das, Ashish. Efficient paired choice designs
with fewer choice pairs. Metrika 80 (2017), no. 3, 309-317.

4.1 Introduction

In this chapter, we consider paired choice experiments with each option being described
by k factors each at v levels. We denote these levels by 0,...,v — 1. For an attribute,
the level [ is coded and represented by a unit vector with 1 in the (I + 1)th position for
[ =0,...,v—2, and for level v — 1 is represented by —1 in each of the v — 1 positions.
For example, for v = 3, effects-coded vectors for | = 1,2,3 are (10),(0 1) and (-1 — 1),
respectively.

We now consider designs under the linear paired comparison model for estimating the
main effects. The response is described by the model, Z = U} —Uy+€ = (P, — P)0 +¢€ =
X0+ e, where € is the random error vector, 6 is the parameter vector for the main effects,
P; is an N x k(v — 1) effects-coded matrix of the main effects for the jth option, j =1, 2,
and X = P, — P,. For a paired choice design d, the matrix M; = X7 X is the information
matrix for estimating the main effects under the linear paired comparison model. A paired
choice design d is connected if all the main effects are estimable, and this happens if and

only if My has rank k(v —1). We consider D-optimality in this chapter. The D-efficiency
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effp(d) of a paired choice designs d with N choice pairs is defined as

det(My/N) 1/(k(v=1))
efio(d) = (det(Md*/N*)) ’
where d* is a D-optimal design in N* choice pairs. In view of invariance, the D-efficiency of
a design d is same under the linear paired comparison approach and under the multinomial
logit model approach.

A major concern with the available optimal paired choice designs is that the number
of choice pairs in the design increases rapidly as k and/or v are even moderately increased.
Such large designs may not be attractive to an experimenter. In this chapter, we propose
two construction methods yielding highly efficient paired choice designs with fewer choice

pairs.

4.2 Construction of D-efficient designs

In this section we provide two construction methods for D-efficient paired choice designs

with fewer choice pairs. The following result is well known (see e.g., Dey| (2009)).

Lemma 4.1. Consider v(v — 1)/2 combinations involving v levels taken two at a time.
Then,

(1) For v odd, the combinations can be grouped into g = (v — 1)/2 groups Gy, ...,
Ggy-1 each comprising s = v combinations. Here G; = {(i,v —2 —i),(i + 1,0 —1—
i),...,(i+v—1,2v—=3—1)} and the levels are reduced modulo v; 1 =0,...,g — 1.

(1) For v even, the combinations can be grouped into g = v — 1 groups Gy, ..., Gy
each comprising s = v/2 combinations. Here G; = {(i,00), i+ 1,i+v—2),(i+2,i+v—
3),...,(i+v/2—=1,i4+v/2)} and the levels are reduced modulo v —1;i=10,...,9 — 1.

Here, oo 1s the invariant level v — 1.

For paired choice designs, only constructions 3.2 and 3.4 of Demirkale et al. (2013))
are applicable and construction 3.4 of Demirkale et al.| (2013) is same as the construction
in Theorem 3 of (GraBhoft et al.| (2004). Modifications to these constructions, using g
groups as in Lemma gives rise to efficient designs with fewer choice pairs.

For k < m, let H,, be a m x k matrix with elements 1 such that Hﬁkam,k = mly,

where I}, is the identity matrix of order k. When k = m, H,, . is called a Hadamard matrix.
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Construction 1: |Gralhoft et al.| (2004) used an H,,  to construct an optimal paired
choice design d with parameters N = mgs = mv(v — 1)/2, k,v, by associating the gs =
v(v — 1)/2 combinations of v levels taken two at a time with the rows of {H., 4, —Hp 1 }-
From every row of { H,, y, —H 1}, gs choice pairs are obtained by replacing ‘1’ in the row
by the first element of the combinations and ‘—1’ in the row by the second element of the
combinations.

An efficient design is obtained by associating only ¢’s combinations (where ¢’ = g—1
or ¢ = g — 2) with each row of {H,,x, —Hnx}. Corresponding to the jth row of
{Hpmp, —Hpmpi}, (5 =1,...,m), the combinations in the ¢’ group G(;_1)(mod g), G;(mod g),
..., G(j4g—2)(mod g) are used for generating the choice pairs. This gives rise to an effi-
cient paired choice design with k attributes each at v levels and N = mg’s choice pairs

withg =g—1or g =g—2.

Example 4.2. For k = 9,v = 4, starting from a normal Hyz12, a Hiag is obtained
by retaining the 2nd to 10th column of His12. Then generating gs = v(v — 1)/2 = 6
choice pairs from each row of Hysg, an optimal paired choice design is obtained. Since
v =4, from Lemmal[.1, the g = 3 groups Go = {(0,3), (1,2)}, G1={(1,3), (2,0)} and
G2={(2,3), (0,1)} are each of size s = 2.

We choose ¢ = v—2 = 2 and associate 4 combinations to each row of {Hi29, —Hi29}-
For the jth row of Hyiay, the combinations in the groups G(j—1)(mod 3) and Gj(mod 3) are used,
j=1,...,12. This gives a design in 48 choice pairs with effp(d) = 0.96. Notice that the
optimal design is available in 72 choice pairs. Therefore, we observe that with 4% loss in

D-efficiency, a 33% reduction in the number of choice pairs is achieved.

We now recall the definition of an orthogonal array. An orthogonal array O A(n, k, vy X

- X vy, t), of strength ¢, is an n x k array with elements in the ith column from a set
of v; distinct symbols {0,...,v; — 1} (i = 1,...,k), such that all possible combinations
of symbols appear equally often as rows in every n x t subarray. An orthogonal array
is symmetric if v; = v for all i and the corresponding OA is denoted by OA(n, k, v*,t).
The link http://support.sas.com/techsup/technote/ts723.html and Hedayat et al.
(1999) provide a comprehensive description of orthogonal arrays and their constructions.
An orthogonal array is said to be 1-resolvable (or, simply, resolvable) if its rows can be par-

titioned into sets of rows (also called parallel classes) such that each set is an orthogonal
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array of strength unity.

Construction 2: Demirkale et al| (2013) used an OA(nv,k + 1,0* x n,2) to form a
l-resolvable OA(nv, k,v*,2) having n parallel sets of v rows each, and then to construct
an optimal paired choice design d with parameters N = ngs = nv(v — 1)/2,k,v. Let
{i,7} be a typical combination among the gs = v(v — 1)/2 combinations of v numbers
{0,1,...,v — 1} taken two at a time. Then, for each such combination and from each of
the n parallel sets, (¢ + 1)th row and (j + 1)th row are chosen to form the choice pairs of
the optimal paired choice design.

An efficient design is obtained by associating only ¢'s combinations (where ¢’ =
g—1or g = g—2) with each of the n parallel sets of 1-resolvable OA(vn,k,v*, 2).
Then, corresponding to the jth parallel set (j = 1,...,n), the combinations in the group
G (j=1)(mod ¢)s Gj(mod g)» - - - » G(j4+g'—2)(mod ¢) are used for generating the choice pairs. This
gives rise to an efficient paired choice design with & attributes each at v levels and N = ng’s

choice pairs with ¢ =g —1or ¢ =g — 2.

Example 4.3. For k = 5,v = 7, from an OA(49,8,7,2) in the website link mentioned
and using the first factor as the resolving factor, 7 parallel sets are created and an opti-
mal paired choice design is obtained by constructing gs = v(v — 1)/2 = 21 choice pairs
corresponding to each parallel set. Since v =7, from Lemmal{.1], three groups formed are
Go = {(0,5), (1,6), (2,0) ,(3,1), (4,2), (5,3), (6,4)}, G1= {(1,4), (2,5), (3,6), (4,0),
(5,1), (6,2), (0,3)} and G2={(2,3), (3,4), (4,5), (5,6), (6,0), (0,1), (1,2)}.

We choose ¢ = (v — 3)/2 = 2 and hence associate 14 combinations to each of
the parallel sets. For the jth parallel set, the combinations in the group G(j_1)(mod3) and
Gi(mod 3) are used, j = 1,...,7. This gives a design in 98 choice pairs with effp(d) = 0.98.
Notice that the optimal design is available in 147 choice pairs. Therefore, we observe that

with 2% loss in D-efficiency, a 33% reduction in the number of choice pairs is achieved.

4.3 Tables of Designs and Concluding Remarks

We have two methods of construction of efficient designs. Since, for v = 2, 3, the number
of choice pairs involved are not very large, it may be preferable to use optimal designs

for such cases. However, as the number of levels increases, the number of choice pairs
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in an optimal design increases rapidly, and thus, it is preferable to use efficient designs
with fewer choice pairs. The significant gain through the reduced number of choice pairs
compensates for the marginal loss in D-efficiency. In most practical situations, very large
values of v and/or k are not useful. We thus restrict ourselves to the values of v, k as in
Table 2 of Demirkale et al. (2013). We provide a list of efficient designs in Tables [4.1}4.4]
From these tables, we see that retaining a D-efficiency of more than 0.9, on an average
there is 30 — 50% reduction in the number of choice pairs in the design.

Hy )y in the Table represent the designs constructed following the |Grafihoft et al.
(2004) approach using ¢’ groups as against the g groups in the optimal designs, and D,
represent the designs constructed following the Demirkale et al.| (2013) approach using ¢’
groups as against the g groups in the optimal designs. N* represents the least number of
choice pairs for an optimal design as in Table 2 of Demirkale et al. (2013). The last column

‘Reduction’ depicts the percentage reduction in the number of choice pairs vis-a-vis the

designs as in Table 2 of Demirkale et al.| (2013).

Table 4.1: Efficient designs for v = 4

k| N* | N | effp(d) | Design | Reduction kE | N* | N | effp(d) | Design | Reduction
3 24 16 0.9596 Hy ;3 33% 8 48 32 0.9449 Hy /3 33%

4 24 16 0.9449 Hy ;s 33% 9 72 48 0.9590 Hy /s 33%

51 48 | 32 | 0.9691 | Dy 33% 10 | 72 | 48 | 0.9542 | Hyjy 33%

6| 48 | 32| 09596 | Dyys 33% 11| 72 | 48 | 0.9491 | Hyps 33%

7| 48 | 32 | 09515 | Hys 33% 12 | 72 | 48 | 0.9449 | Hyq 33%

Table 4.2: Efficient designs for v =5

k| N* | N | effp(d) | Design | Reduction k | N* | N | effp(d) | Design | Reduction
3] 40 | 25 | 09469 | Dy 38% 7 | 80 [ 40 | 0.9088 | Hys 50%

3 40 20 0.9283 Hy /o 50% 8 80 50 0.9174 Dy /o 38%

4| 40 | 25 | 09188 | Dy 38% 8 | 80 | 40 | 0.8944 | Hyjy 50%

4 40 20 0.8944 Hy o 50% 9 100 | 60 0.9162 Hy /o 40%

5| 50 | 40 | 0.9146 | Hy s 20% 9 | 100 | 50 | 09056 | Dy, 50%

51 50 | 25 | 0.8944 | Dy 50% 10 | 100 | 60 | 0.9061 | Hy 40%

6| 50 |40 | 09283 | Hys 20% 10 | 100 | 50 | 0.8944 | Dy 50%

7| 8 | 50 | 09300 | Dy 38% 11| 100 | 60 | 0.9035 | Hy/, 40%

Table 4.3: Efficient designs for v = 6

k| N* N effp(d) | Design | Reduction k| N* N effp(d) | Design | Reduction
3] 60 | 48 | 09860 | Hys 20% 51120 | 96 | 09886 | Hys 20%
3| 60 | 36 | 09606 | Hss 40% 5| 120 | 72 | 09681 | Hyjs 40%
4 60 48 0.9801 Hyys 20% 6 | 120 | 108 0.9736 D35 10%
4 60 36 0.9426 H3/s 40% 6 | 120 96 0.9850 Hys 20%
5 | 120 | 108 0.9781 D35 10% 6 | 120 72 0.9585 H3/s 40%
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Table 4.4: Efficient designs for v =7

k| N* N effp(d) | Design | Reduction k| N* N effp(d) | Design | Reduction
3 84 56 0.9752 Hy /s 33% 5 | 147 49 0.8878 Dy/3 67%
3 84 49 0.9327 Dy/3 42% 6 | 147 | 112 0.9706 Hy/3 24%
3 84 28 0.8847 Hy3 67% 6 | 147 98 0.9697 Dy/3 33%
4 84 56 0.9638 Hy /3 33% 6 | 147 56 0.8556 Hyy3 62%
4 84 49 0.9099 Dy /3 42% 6 | 147 49 0.8530 Dy /3 67%
4 84 28 0.8198 H1/3 67% 7 147 | 112 0.9689 H2/3 24%
5 | 147 | 112 0.9764 Hy /3 24% 7| 147 98 0.9638 Dy/3 33%
5 | 147 98 0.9764 Dy/3 33% 7| 147 56 0.8483 Hy3 62%
5 | 147 56 0.8876 Hy s 62% 7| 147 49 0.8198 D3 67%
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Chapter 5

Three-level A- and D-optimal paired

choice designs

This chapter is based on the following work:
Chai et al| (2017): Chai, Feng-Shun; Das, Ashish; Singh, Rakhi. Three-level A- and
D-optimal paired choice designs. Statist. Probab. Lett. 122 (2017), 211-217.

5.1 Introduction

In this chapter, we consider each factor to be at three levels, 0, 1 and 2 (say). For a design d
with N choice pairs, since options are described by k factors, following Huber and Zwerina
(1996)), the utilities are modeled using the linear predictor u; = P;#, where 6 is a 2k x 1
vector representing the main effects, P; is an NV x 2k effects coded matrix for the jth option,
and u; = (uj;) is an N x 1 utility vector for the jth option, j = 1,2;4 =1,...,N. The
utility difference u; —us = (Py—P,)0 = X0 is then a linear function of the parameter vector
0. In what follows, we refer to X as the design matrix of design d. Since multinomial
logit choice models are non-linear in the parameters and the information matrix is a
function of the parameters, a utility-neutral approach (that is, taking # = 0) of finding
the information matrix has been developed over the last two decades. Under such a
utility-neutral multinomial logit model, the Fisher information matrix for a design d is
(1/4)My, where My = XTX.

Simultaneously, Graihoff et al.| (2004)) for a design d, the matrix M, is the information

matrix under the linear paired comparison model.
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Recently, Sun and Dean| (2016 have provided an efficient computer algorithm to
obtain two-level A-optimal choice designs under the locally-optimal approach (that is,
taking 6 = 6, for an a priori ). In this chapter, we consider each factor to be at three
levels and theoretically obtain new A- and D-optimal designs under the utility-neutral
multinomial logit model setup.

For three-level factors, a choice design d is connected if all the main effects are
estimable, and this happens if and only if M, has rank 2k. In what follows, the class of all
connected paired choice designs with k three-level factors and N choice pairs is denoted
by Dy n. As a performance measure, we use the standard A- and D-optimality criteria.
The A-value of a design d is trace(M;"') and the D-value is det(M;'). A design that
minimizes the A-value (the D-value) among all designs in Dy y is said to be A-optimal
(D-optimal).

In this chapter, we provide constructions of A- and D-optimal designs for estimating
the main effects under the utility-neutral multinomial logit model using effects coding.
We also provide designs having high A- and D-efficiencies. Finally, we investigate optimal
designs under the utility-neutral multinomial logit model approach of [Street and Burgess
(2007)) and show that the D-optimal designs obtained under the model using effects coding

are also A- and D-optimal under the Street—Burgess approach.

5.2 Lower bounds to the A-value

Considering each factor at 3 levels, the ith row of the N x 2k effects coded matrix P;
contains the effects coding for the jth option in ith choice pair, ¢ = 1,..., N, j = 1,2.
For each of the k factors, level 0 is effects coded as (1 0), level 1 as (0 1) and level
2 as (—1 —1). The design matrix X = P, — P, for the pairs can be partitioned as
X = (Xq)| X+ | Xx)), where X, is a N x 2 matrix corresponding to the pth factor.
A row in X(,) determine the corresponding options in a design for the pth factor. In X,
rows (+2, +1), (=2, —1), (+1, +2), (-1, —2), (+1, —1) and (=1, +1) correspond to
choice pairs (0, 2), (2, 0), (1, 2), (2, 1), (0, 1) and (1, 0) respectively. Similarly, row
(0, 0) corresponds to any of the choice pairs (0, 0), (1, 1) or (2, 2). Let, My, = X[ X();
p=1,...,k;qg=1,... k. Clearly, for a design d, My = (My,,), where My,, denotes M,
for design d. Let d; have w > 0 rows of X, that are equal to (0, 0) and let dy be the
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design obtained from d; by replacing the w rows (0, 0) by either (1, —1) or (—1, 1).
1 -1

Then, My,pp — Ma,pp = w [ is a non-negative definite matrix. Thus, without
-1 1

affecting the generality of the results that follow, we write Mgy, having X, with no rows

(0, 0). It is easy to see that

3y + N 3y+z2)—N

My, =
"ol 3(y+2)—-N  3z+N

(5.1)

where y is the number of rows of X, that are equal to either (2, 1) or (—2,—1) and
z is the number of rows of X, that are equal to either (1, 2) or (—1,—2). Then the
remaining N — (y + z) rows of X, are necessarily equal to either (1, —1) or (=1, 1).
We first obtain a lower bound to trace(Mg,). From , trace(Mg,) = (3(y+2)+
2N)/hn(y, z) = gn(y, 2) (say) where hy(y, z) = det(May) = 9(yz + N(y +2) — (y +2)*).
Note that since both hy(y,z) and gn(y,z) are symmetric in y and z, it follows that
hn(y,2z) = hn(z,y) and gn(y, 2) = gn(z,y). We now find the values y and z for which
gn(y, z) is minimized for 1 <y + 2z < N, y # N, z # N. These conditions are required
so that the design d is connected, that is, My has full rank. Even though it appears
that these conditions are only needed for ensuring that rank(Mgy,,) = 2, in fact if these
conditions are not satisfied for every p, then rank(My) < 2k. This can be seen easily since
if one of the factors (say the pth factor) does not meet the conditions, all the N pairs
would assume only one type of values which would mean that the two columns of X,
are linearly dependent. Let mindepl,Ntmce(Md_p;) = MM <y+2<Ny£N,~NIN (Y, 2) = Lq.

Also, let |z] denote the greatest integer contained in x.

Lemma 5.1. For a single-factor design d € Dy ny with N > 4, trace(Md_p;) =gn(y,2) >
La = gN(a*vb*) where gN(a*7b*) is min{gN(alabl)vgN(a%b2>agN(a'37b3)} with (Z) ay =
by =t, (ii) ag = by =t + 1, (iii) a3 = t,b3 =t + 1 and t = |[N(v/3 —1)/3]|. For N =4,

tmce(Md’p}?) =gn(y,2) > L, = gn(a*,b*) = 14/45 with a* = b* = 1.

Proof. Treating y and z as continuous variables and adopting the usual derivative ap-
proach to minimize gy (y, 2), we get dgn (v, 2) /0y = 9(3y*—2N?+6yz+4Ny+2Nz)/h3 (y, 2).
Similarly, dgn (y, 2)/02=9(32% — 2N? + 6yz + 4Nz + 2Ny)/h% (y, ).

Now, dgn(y, z)/0y = Ogn(y, z)/0z = 0 implies that (y — 2)(3(y + z) + 2N) = 0. In
other words, y=z, since 3(y + z) + 2N > 0.
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Now, for y = z, it follows that dgy(y, 2)/0y = 0 implies that 9y? + 6 Ny — 2N?=0 or
y = N(+v/3—1)/3. However, since y > 0, the only feasible solution of y is N(v/3—1)/3 =
t1.

Similarly, checking the matrix of second derivatives, we see that the minimum of
gn(y, z) is attained at y = z = ¢;. Since t; is non-integer, gy (y,2) = L, at one of the
integer points nearest to (ty,11).

For N =4, since y + z > 1, the only valid integer points nearest to (¢1,t;) are (1, 1)
or (0,1). It is then easy to see that gn(0,1) > gn(1,1) and therefore, trace(M ') =

dpp
gn(y,2) > Lo = gn(a*,b*) = 14/45 with a* = b* = 1. O

Using Lemma [5.1} we have computed the values of a* and b* for 4 < N < 64 and

summarize it below.

Remark 5.2. For a single-factor design d € Dy n, the values of a* and b* are

1. a* =b* =t when

(i) N=4i+1,i=1,...,10, (ii)) N =4i+2,i=17,...,15.

2. a* =t,b* =t+ 1 when
(1)) N=4i+2,i=1,...,6, (ii) N=4i+3,i=4,...,15, (i) N = 60,64.

3.a*=0b"=t+1 when
(i) N=4i,i=1,...,13, (ii) N =4i+ 1,: =11,...,15, (4i) N =7, 11.

4. a*=3,0"=4 ora* =0"=4 when N = 15.

5.a* =13,0" =14 or a* = b* = 14 when N = 56.

Note that since gn(y,z) is symmetric in y and z, interchanging the values of a*
and b* in Lemma and in Remark would yield the same values of gy(a*,b*) and
therefore for the sake of simplicity, we have reported only one of the a* and b* values.
Let Ly = mingep, ytrace(M, ). We now give a lower bound for the A-value for paired

choice designs with &k factors in N choice pairs.
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Theorem 5.3. For a paired choice design d € Dy, trace(Md_l) > Ly > kL, =
kgn(a*,b*) where a* and b* are as in Lemmal[5.1]

Proof. First we apply the inequality trace(M; ') > Z’;Zl trace(M d_p;) which, using Schur
complement and the inverse of partitioned matrices, follows easily for k = 2. Thereafter,
it is easy to see, using the method of induction, that the inequality holds for general k

(see, Appendix [B| for detailed proof). Finally, using Lemma the proof follows. O

5.3 Lower bounds to the D-value

In this section, we provide general results for the lower bounds to D-values. We first
obtain a lower bound to det(Md;;). From (5.1)), det(Md;;) = 1/hn(y,z). We now find the
values y and z for which Ay (y, 2) is minimized for 1 <y + 2z < N,y # N, z # N. Let

mingep, ydet(My,) = mini <y <ny+n,-#8(1/hn(y, 2)) = La.

Lemma 5.4. For a single-factor design d € Dy, det(MCED) = 1/hn(y,2) > Lg =
1/hn(a*,b*) where the values of a* and b* are (i) a* = 1,b* =1 if N =31, (ii) a* =1,b* =1
ora*=0b"=1+1if N=3l+1and (ii) a* =1,b*=1+1ora*=1+1,0"=1+11if

N =3l+2. Also, if N =3I, then hy(a*,b*) = 3N?, else hy(a*,b*) = 3(N? —1).

Proof. Assuming y,z to be continuous, we find their values such that 1/hy(y,z) is

minimized or equivalently hn(y,z) is maximized. Now ‘%%—S”Z):%N — 2y — z), while
%Na—iy’z):%]\f — 2z — y). Equating these equations to zero, we get a*:b*:% as a feasible

solution when N is divisible by 3. Therefore, for N = 3, a* = b* = [ and hy(l,1) = 3N2.

For situations when NN is not divisible by 3, we have the following two cases.

Case 1. N = 31+ 1. For integers 1, j, consider the difference hy(l,1) —hn(l+i,1+ 7). On
simplification we see that, hy(l,1) — hy(l+ 4,0+ 7) = 9(i* + 5% +1ij —i — j). We have the
following four cases. Case (a) i > 0,5 > 0, Case (b) i < 0,7 <0, Case (¢) i > 0,5 < 0 and
Case (d) i < 0,7 > 0. Clearly, for Case (a) and Case (b), hn(l,1) —hn(I+1i,l+7) > 0. For
Case (c), hy(l,1) —hn(l+i,1+7) =9((i+5)*—ij—i—7) = 9((i+5)*+i(—j—1)—7) > 0.
Similarly, for Case (d), hn(l,1) — hn(I 4,1+ j) > 0.

Now, hy(l,1) = hy(l+1i,1+7) when (*+ 52 +ij—i—j) =i(i—1)+j(j—1)+ij = 0,
that is, when either (i) ¢ = j = 0, or (ii) ¢ = 0,5 = 1, or (iii) ¢ = 1,7 = 0. Therefore,
a*=0Lb"=lora*=01b"=1+1ora*=1+1,b"=1and hy(a*,b*) =3(N? —1).
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Case 2. N = 31+2. For integers 7, j, consider the difference hy(141,1+1)—hy(I4+1+7, 1+
147). On lines similar to that in Case 1, we see that, hy(I4+1,14+1)—hyx(I+1+14,[+14j) =
9(i% + j2 +ij +1i+7) > 0.

Now, hy(l + 1,1+ 1) = hy(l + 1+ 4,0 + 1+ j) when (i + j2 +ij +i + j) =
i(i+1)+3j(j+1)+ij =0, that is, when either (i) i = j =0, or (ii) i = 0,7 = —1, or (iii)
it = —1,7 = 0. Therefore, a* =1+ 1,0 =[+1ora* =1+ 1,0"=lora*=01b"=1+1
and hy(a*,b*) = 3(N? —1). O

Note that since hy(y, z) is symmetric in y and z, interchanging the values of a* and
b* in Lemma would yield the same values of hy(a*,b*) and therefore for the sake of
simplicity, we have reported only one of the a* and b* values.

Now, to obtain a lower bound to the D-value for paired choice designs with k factors
in N choice pairs, we use the inequality det(M;') > H];:1 det(M d’p;) which is easy to
establish by using Schur complement and the method of induction (see, Appendix [B| for
detailed proof). Let Lp = mingep, ydet(M; ). Thus, using Lemma , we have

Theorem 5.5. For a paired choice design d € Dy, det(M;') > Lp > (Lg)* =
(1/hn(a*, b))k where a* and b* are as in Lemmal[5.4 Also, hy(a*,b*) = 3N?, if N =0
(mod 3) and hy(a*,b*) = 3(N? — 1) otherwise.

In situations where N is not a multiple of 3, the lower bound for det(M; ") obtained
above is an improvement over the bounds obtainable from optimal approximate designs
of |GraBhoff et al.| (2004). When N is a multiple of 3, the two bounds are the same.

In the next section, we provide some optimal designs attaining the lower bounds
of Theorem and Theorem [5.5 In some situations, since we are not able to provide

designs attaining the A- and D-lower bounds, A- and D-efficiencies are given.

5.4 Design Constructions

Let d € D; x be an optimal design. Since d is not unique, we have many such designs.
Let d,, p =1,...,k be k such designs satisfying X&X(p/) =0,p#pip=1,... . kp =
1,...,k, where the N x 2 matrix X, denotes the design matrix of d, € D; y. Then, from
Theorem and Theorem X = (X)X |X®)) gives rise to an optimal paired
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choice design in Dy, y. It may be noted that single-factor optimal designs d,,,p =1,...,k,

=0, may not always exist.

satisfying the stated orthogonality condition X (jz;)X (»

For N <9 and certain values of k, through a computer search we are able to identify
d,’s and the corresponding optimal designs in Dy n. In particular, we find D-optimal
designs for k =2 and N = 4,5,6,8,9 as well as for k = 3 and N = 7. Similarly, we find
A-optimal designs for k =1 and N =5, for k=2 and N =4,6,9, for k=3 and N =7,
and for k = 4 and N = 8. We refer to these designs as base designs. The base designs
are subsequently used for constructing optimal and efficient designs for larger numbers of

factors k and N > 9.

Since for £ = 2 and N = 5 there is no design in D, 5 satisfying Xa)X(g) = 0 and

attaining the lower bound 2L,, we did an exhaustive search in D, 5 to obtain an A-optimal
design. The search established that the D-optimal design in Dy 5 is also A-optimal. This
shows that the lower bound of Theorem is not always attainable.

For a paired choice design with k factors and N choice pairs, we denote a D-optimal
design by d n), an A-optimal design by a(, ) and a design which is both A- and D-
optimal by adj n). In the Appendix @ we provide the base designs for £k = 2 and k£ = 3.

A choice design where no two choice pairs are repeated has distinct choice pairs.
While obtaining A-optimal design for £k = 2 and N = 9, a complete search indicates that
even though there exist X(;y and Xy satisfying Theorem such that X (Tl)X 2) = 0, they
lead to choice designs with repeated choice pairs. The A-optimal design a(y ) is one such
example provided in the Appendix [B] However, such a design is not recommended for
experimentation. Accordingly, a complete search was made among designs with distinct
choice pairs to arrive at an A-optimal design aag), which is also provided in the Appendix
. However, aag) does not attain the lower bound 2L, in Theorem

All the base designs in the Appendix satisfy the orthogonality condition X é)X W) =
0 for p # p’. Moreover, the lower bounds in Theorem and Theorem are attained
by all A- and D-optimal base designs respectively, except for the A-optimal designs ad(, )
and aag).

We now propose a general method of construction to obtain optimal and efficient
designs with k£ > 4. We use Hadamard matrices for our construction. A Hadamard matrix

H,, is a m x m matrix with elements +1 such that HI H,, = H,,HL = mI,,.

Consider A- and D-optimal base designs d' € Dy y» with Ly = K'gn/(a’,b") and Lp =
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(1/hyi(a/,1'))¥ respectively. Note that, we are considering the A- and D-optimal base
designs in Dy yv for which the bound values L4 and Lp respectively, are not necessarily
equal to the lower bounds in Theorem [5.3| and Theorem This also implies that o
and b’ are equal to a* and b* respectively, only in cases where the base design attains the
lower bounds in Theorem and Theorem [5.5] Using such a base design d’, we construct
a paired choice design dy with parameters k = mk’, N = mN’ having corresponding
design matrix Xy = H,, ® X, where X is the design matrix of d’. The idea behind
the construction is essentially the same as in Theorem 5 of |Grahoff et al.| (2004), where
optimal designs are obtained as the Kronecker product using an orthogonal array as the
base design. This chapter extends this idea in the sense that the base designs are not
restricted to orthogonal arrays and that the two- or three-factor base designs are found by
means of complete computer searches. This enables one to construct designs with smaller

number of choice pairs than other researchers.

For any design d € Dy y, from Theorem (5.3 the lower bound to the A-value is
kgn(a*,b*). In contrast, dg € Dyy has the A-value trace(M,') = trace(M,') =
K gni(a', V), since My, = X5 Xy = HLH,, @ XTX =ml, ® XX = ml,, ® My. There-

: o kon(@®b") (m2h (a5 ))* | R
fore the A-efficiency is given by ¢4 = Vo @) Similarly, ¢p = (W—b))k =
2 h (@)

hn(a*,b*)

Also, note that the D-efficiency ¢p is based on the lower bounds in Theorem [5.5] for

is the D-efficiency of dy € Dy, vy where hy(a*,b*) is as in Theorem

exact designs in Dy, . Therefore, ¢p only agrees with the efficiency based on the optimal

approximate design when N is a multiple of three.

In Table[5.1], we provide designs with distinct choice pairs that are A-optimal and D-
optimal (wherever we get one), and A-efficient and D-efficient. Gagoq and Sago7 respectively
represents designs constructed as in |Grahoff et al.| (2004)) and |Street and Burgess (2007)).
In Table we denote designs dy obtained using the Hadamard matrix H,, and a base
design ad nvy by Hy, ® ad (i nvy. Similar representations are used for base designs a( nv)
and d nvy. A design with a smaller £ retains its optimality property for given N when
factors are deleted from a design with larger k.

We see that there are several situations where for given k, a highly D-efficient design
with smaller /V is available through the method given in this chapter as compared to the
D-optimal designs available in the literature. For example, for k = 8, we get an A-optimal

design in N = 16 choice pairs with ¢p = 0.976 as against a D-optimal design with 24
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choice pairs. Similarly, for k = 6, we get a design with ¢p = 0.992 in N = 14 choice pairs
as against an A-optimal design in 16 and a D-optimal design in 18 choice pairs. We also
have a few situations where for given k£ and N, we have two different designs of which
one is A-optimal or A-efficient and the other is D-optimal or D-efficient. Unlike the new
optimal designs constructed here, the D-optimal designs that follow from (Grafihoft et al.
(2004) and |Street and Burgess| (2007) force N to be a multiple of 9 or 12, except for
N = 6.

Table 5.1: A-optimal and D-optimal designs with distinct choice pairs

k| N oy oD Method k N oy 1035 Method

2 | 4| Opt | Opt adz,4) 34 | 18109830981 | Hy® a(}g)

2 5 Opt | Opt ads5) 3-7 [ 181 0.936 | Opt | Gagos, S2007

2 | 6| Opt |0.971 a2,6) 5-8 |20 0.943 | 0.981 | Hy® ad s

2 | 6 (095 | Opt G004 5-8 240978 | 0.957 | Hi® apg
2-3| 7 | Opt | Opt ads 7 5-8 |24 ] 0.933 | Opt G2004

2 | 810948 | Opt d2,8) 7-13 | 271 0.934 | Opt | Gaooa, S2007
241 8 | Opt | 0976 | Hy ®adpya) || 512 | 28 | 0.985 | 0.99 | Hs® adgy

2 | 9 ]0.985 | 0.981 aam 9-16 | 32 | Opt | 0.969 | Hg® ad(y)
2-41 9 10938 | Opt | Gaoos, S2007 || 9-12 | 36 | 0.933 | Opt G2004
3-4 |10 | 0.951 | 0.985 | Hy ®ad(ap) | 9-16 | 40 | 0.943 | 0.98 | Hg® adzp)
34|12 10978 | 0.957 | Hy®ape || 9-16 | 48 | 0.978 | 0.957 | Hg ® a)
3-4 1120933 | Opt G2004 13-16 | 48 | 0.933 | Opt G2004
3-6 | 14 0.989 | 0.992 | Hy ® adz7) || 17-25 | 54 | 0.933 | Opt | Gao04, S2007
34116 | 0.948 | 0.994 | Hy®d2s) || 1724 | 56 | 0.985 | 0.99 | Hg® adsy)
58|16 | Opt | 0.976 | Hy ® ad(2,4) || 17-32 | 64 | 0.999 | 0.968 | His ® ad(z4)

5.5 Optimal designs under the Street—Burgess ap-
proach

In Section and Section we have obtained A- and D-optimal designs under the
utility-neutral multinomial logit model approach using effects coding (see, for example,
Huber and Zwerina (1996), |GraBhoff et al. (2004) and (Grofmann and Schwabe| (2015)).

However, a different approach has been adopted by the school comprising researchers like
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Street, Burgess, Bush and others for obtaining choice designs under the utility-neutral
multinomial logit model (see, |Street and Burgess| (2007)), GroSmann and Schwabe| (2015])).
The approach varies in the sense that an information matrix for the option effects is
obtained first and then a suitable contrast of the option effects constitutes the main
effects. In this section, we investigate optimal designs following the approach of |Street
and Burgess| (2007). Note that since the D-criterion is invariant to re-parameterizations,
the designs that are D-optimal under the effects coding setup are also D-optimal under
the utility-neutral multinomial logit model approach of Street and Burgess| (2007)) (see,
GroBmann and Schwabe| (2015))). However, A-optimal designs may be different for the
two approaches.

Under the utility-neutral multinomial logit model approach of |Street and Burgess
(2007), the information matrix for estimating main effects is given by C;y = BAyBT where
B is the 2k x 3* orthonormal contrast matrix for the k& main effects and A, is the 3% x 3%
information matrix for the options of a paired choice design d. Hereafter, for notational
simplicity we drop the subscript d in Cy; and Ay. For a paired choice design d with N

choice pairs, A = (\,5), where

n, for r = s,
ANN, ;s =
—n,, forr#s

with r» and s being the labels of the corresponding options, n, being the number of times
r appears in the choice design and n,s = 1 or 0 depending on whether r and s forms a
choice pair in the design or not.

Similar to the approach followed in Section and Section [5.3] we now find the
information matrix for £ = 1. Let for the pth factor in N choice pairs, A, be the corre-
sponding 3 x 3 information matrix of the levels, and B, is a 2 x 3 orthonormal contrast

matrix given by,

B ~1/vV2 0 1/V2
Ve —2/v6 1VE )

Note that B, is not unique. As in the earlier sections, let the design d for a single factor
have y choice pairs equal to either (0, 2) or (2, 0) and have z choice pairs equal to either
(1, 2) or (2, 1). Then the remaining N — (y + z) choice pairs are necessarily equal to

either (0, 1) or (1, 0). Then the 2 x 2 information matrix for estimating the main effect
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for the pth factor is

N
T 2 : P pRT __ § i
C(p B A B N B A B — N - C(p),
where A? is the A, corresponding to the ith choice pair and C’(ip) is the information matrix

of the ¢th choice pair for estimating the main effect for the pth factor. It is easy to see

. 4 0
i1

) = (2 (say) corresponding to the ith choice pair equal to either
0 0

1 V3
V3 3

choice pair equal to either (1, 2) or (2, 1) and C’(ip) =1 (

(0, 2) or (2, 0). Similarly, C” ) = (2 (say) corresponds to the ith

1 =3
A3 ) = Cp1 (say)

corresponds to the ith choice pair equal to either (0, 1) or (1, 0). Therefore,

1 N + 3y V3(y +22 — N)
N\ VB(y+2:—N)  3(N-y) ’
and det(C,)) = 3(yz + N(y + z) — (y + 2)*)/N? = hn(y, 2)/3N? where hy(y, z) is as
defined in Section | Thus, det(C, ) = 3N?/hy(y, 2). Also, t?"ace(C'(;)l) = 2det(C’(;;-) -
6N?/hn(y, z) > 6N?*mini<yt.<nyzn 28 (1/hn(y, 2)) = 6N?Ly.

Now, let C' = (C,,) where C,, is the pgth 2 x 2 sub-matrix of C, p =1,...,k;q¢ =

1
—(yCo2+2C1 2+ (N—y—2)Coa) =

1,...,k. Therefore, since 3*1C,, = C(p ), we have,
trace(C™") > Z trace(C pp = 3F! Z trace(C 1) = = 2x3k-1 Z det(C3) > 2x3* N2k L,.

This establishes the following result.

Theorem 5.6. The D-optimal designs that satisfy the bounds obtained in Theorem[5.5 are
also A-optimal and D-optimal under the utility-neutral multinomial logit model approach

of Street—Burgess.

This shows that A-optimal designs could be different under the two approaches as
envisaged in |Grofmann and Schwabe (2015). The D-optimal designs in Table are
A-optimal and D-optimal under the Street—Burgess approach.

5.6 Concluding Remarks

In the literature, most of the theoretical results on optimal paired choice designs are ones

where the information matrix of the optimal design has a certain balanced structure.
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This, for a three-level optimal paired choice design, forces N to be a multiple of 3. Unlike
the above, the present chapter adopts an approach to theoretically identify three-level A-
and D-optimal designs where N is not necessarily a multiple of 3. Table provides such
new three-level A- and D-optimal designs. The optimal designs provided have distinct
choice pairs. However, the base designs constructed in the current chapter can contain
repeated pairs (for example, a(s9)). Therefore, one should always check that choice pairs
in the base design are distinct. Our general method of construction using Hadamard
matrices would always give rise to an optimal or efficient design having distinct choice
pairs provided the base design has distinct choice pairs.

The D-optimal designs under effects coding are also A- and D-optimal under or-
thonormal contrasts. However, under effects coding, A-optimal designs are usually not
D-optimal, even if N is a multiple of three; for example the design a(sg).

While considering the paired choice designs with parameters £ = 2, N = 6, we
observe that for each of the two factors, the A-optimal design a(,¢) has three pairs which
are either (0,1) or (1,0), two pairs which are either (1,2) or (2,1), and one pair which
is either (0,2) or (2,0). Thus, it appears that under effects coding the A-optimal design
a(2,6) attaches more importance to compare the factor-levels 0 and 1 for each of the two
factors. On the contrary, for the orthonormal contrasts, the A-optimal design with the
same parameters k = 2, N = 6 (the design being the same as the D-optimal design in
Gla004) appears to give equal importance to the pairwise comparison between the three
factor-levels since this design has two pairs of each of the 3 pair-types. This example
illustrates the need for more work to understand whether one should recommend A-
optimal designs for orthonormal contrasts or should one recommend A-optimal designs

under effects coding.
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Chapter 6

On three-level D-optimal paired

choice designs

This chapter is based on the following work:
Singhl (2019): Singh, Rakhi. On three-level D-optimal paired choice designs. Statist.
Probab. Lett. 145 (2019), 127-132.

6.1 Introduction

In this chapter, we consider N paired choice sets with k three-level factors, employed
in a choice experiment. We are interested in the estimation of all the main effects and
all two-factor interaction effects. For k three-level factors, following Huber and Zwerina
(1996), the utilities u; are modeled as u; = P;f, where 6 is a (Qk: + 4(5)) x 1 vector
representing the main and two-factor interaction effects, P; is an IV X (2]<: + 4(’;)) effects-
coded matrix for the jth option, and u; = (u;;) is an N x 1 utility vector for the jth
option, 7 = 1,2;4 = 1,..., N. We also define P = P, — P, and refer to it as the design
matrix of design d. For attaining theoretically optimal designs under the multinomial
logit model, a utility-neutral approach (that is, taking # = 0) is in practice for finding
the information matrix. Under such a utility-neutral multinomial logit model, the Fisher
information matrix for a design d reduces to (1/4)My, where My = PTP.

In this chapter, we are interested in the estimation of all the main effects and all
two-factor interaction effects. As an example, interest on such main-effects and all two-

factors interaction effects may arise when say, a fast-food joint wants to assess the effect
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of four factors (food, drinks, sides, and price) and their interactions on its marketing
strategies. These four factors are say at 3 levels each: food (vegetarian, egg, and chicken),
drinks (hot coffee, fruit juice, and soft-drinks), sides (fries, onion rings, and popcorn),
and price (3,5,7). In such situation, when the fast-food joint wants to assess not just
the impact of these factors as main-effects but also the impact of interaction effects of
each the two factors (interaction of price and food, interaction of sides and drinks, etc.)
on their marketing strategies, the designs in this chapter will be useful. Designs for such
estimation problems in choice experiments are studied by several authors (see, |Street and
Burgess (2007)), GroBmann and Schwabe, (2015)), etc.).

GraBhoff et al. (2003) provided D-optimal designs for estimating main effects and
two-factor interaction effects with total number of choice pairs N = ¢3*, where g =
(t’i)Qt* when 3 does not divide £ — 2 and g = (t]i)Qt* + (t*i1)2t*+17 otherwise. Here,
t* =k — 1 — [52]. [Street and Burgess| (2007) reduced the total number of choice pairs
to N = gn, where g is same as |GraB3hoff et al. (2003) and n is the size of a strength
four orthogonal array on k three-level factors. Thus, |Street and Burgess (2007)) reduced
the number of choice pairs by using an orthogonal array instead of a complete factorial
design. In this chapter, we further provide a significant reduction in the number of choice
pairs for such an optimal design by reducing the number of generators g. For example, for
k = 4, currently a D-optimal design would need N = 32n choice pairs, whereas we provide
construction of D-optimal design in N = 4n choice pairs, implying a reduction of 88%
in the number of choice pairs. We provide construction of such designs for £ = 3,4,5,6
factors after obtaining generators with much reduced values of g. Using the approach of
Singh et al. (2018), we also provide a way to further reduce the number of choice pairs

by using orthogonal blocking methodology.

6.2 Preliminaries

In this section, we introduce some notations and discuss the existing work done in de-
tails. Let P; for main effects and two-factor interaction effects be denoted by X; and Y;
respectively, 7 = 1,2. Also, let X = X; — Xy, and Y = Y] — Y;. When our interest lies
in the estimation of both the main effects and the two-factor interaction effects, the cor-

responding information matrix My under the linear paired comparison model (Grafihoff
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et al., 2003) is
XTX XTy

M,=PT'p =
YTX YTY

. (6.1)

For main effects, the effects-coded vectors for levels 0,1 and 2 are (1 0),(0 1) and
(=1 — 1), respectively. Let X]Q represent X; corresponding to the ith choice pair and
(th factor. Then, ith row of X; is (X}, Xj, ... X7;). Also, ith row of Y} is defined as
(X5 @ Xip, Xy @ X, o0, X gy ® X))

In our context, a choice design d is connected if each of the main effects and the
two-factor interaction effects are estimable, and this happens if and only if M, has rank
2k + 4(’2“) = 2k?. In what follows, the class of all connected paired choice designs with &
three-level factors and N choice pairs is denoted by Dy y. We make use of the standard
D-optimality criteria. A design that minimizes det(M ) among all designs in Dy y is
said to be D-optimal.

A design is said to be a uniform design (GraBihoff et al.. [2003)) if it assigns equal
weight to all choice pairs with meaningful comparisons, that is, for each factor, equal
weight is given to each of six choice pairs (s,t) of distinct levels, s # ¢t. The comparison
depth ¢ in a design d is an integer such that exactly ¢ of the k factors have different
levels in both the options and in each of the choice pairs. For estimating main effects and
two-factor interaction effects, (GraBhoft et al. (2003) showed that the information matrix

M, in (6.1)) for any uniform design d with comparison depth ¢ can be written as

y hn(£) 1, ® My 0 "
dt) =
" 0 ho(8) Ik 1)72 @ Moy @ Mo

where My = (I + Js), I, denotes the identity matrix of order ¢ and J, denotes the
¢ x ¢ matrix of all ones, and ® denotes the Kronecker product. Also, hi(t) = Nt/k and
hao(t) = N£(3 — 2&;_11)), where N is the total number of choice pairs in a choice design d.

Let t* = k — 1 — [%.52] and w* = (¢* + 1)/(3t* + 1), where [z] denotes the largest
integer less than or equal to x. (GraBhoft et al. (2003) showed that if 3 does not divide
k — 2, then a uniform design d(t*), which gives equal weight to all N = ¢g3* = (tlﬁ)Zt*?)k
choice pairs with comparison depth ¢*, is D-optimal in D(k, N). These N choice pairs are

formed by pairing each of the 3* options to 2 options obtained such that t* positions

in second option is different than the corresponding positions in the first option and this

k

needs to be done for each of the (t) possibilities. The information matrix for such an
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optimal design d(t*) is then given by Myy~). Furthermore, if 3 divides & — 2, then an
optimal design d is a combination of two uniform designs d; and dy with weights w* and
1 — w* respectively. Here, d; and dy are paired choice designs with all the choice pairs
having comparison depths of t* and t* 4 1, respectively. The information matrix for such
an optimal design d(t*) is then given by w* My + (1 — w*)Mgu+41y. In this case, total
number of choice pairs in an optimal design are N = ¢3F = {(t’i)2t* + (t*i1)2t*+1}3’“.

An orthogonal array OA(n, 3%, t), of strength ¢, is an n x k array with elements from
a set of 3 distinct symbols {0, 1,2}, such that all possible combinations of symbols appear
equally often as rows in every n x t subarray. [Street and Burgess (2007), Demirkale et al.
(2013)) and Bush| (2014) provided the OA + G method for constructing optimal paired
choice designs using orthogonal arrays and generators GG. Let G be a collection of h
generators Gy, ..., G, where Gy = (Guy, Guss - - - » Gu,)- The OA+ G method gives a paired
choice design (A, B,),u = 1,...,h where A = (A;) is an OA(ny,3%,t) and B, = (BY%)
with BY, = (A + gue) reduced modulo 3, i =1,...,ny, { =1...,k, u=1,...,h. This
method depends on the availability of the required orthogonal array, which may not always
exist. For this problem, Street and Burgess| (2007) reduced the total number of choice
pairs to N = gn, where g is same as |GraBhoff et al.| (2003) and n is the size of a strength
four orthogonal array on k three-level factors. They reduced the number of choice pairs
by using an orthogonal array instead of a complete factorial design.

It is obvious that the construction method of Grafihoff et al. (2003)) can also be
framed as an OA + G construction method where, for example, for the case when 3
does not divide k — 2, the 3* options act as an orthogonal array and there are g = ( ﬁ)?t*
generators such that exactly t* of the k factors change their levels between the two options

in a pair.

6.3 New generators and construction

In this section, we first provide a general result on the required properties of generators
for constructing optimal designs for estimating all main effects and two-factor interaction

effects. We now give the following result, proof of which is in the Appendix [C]

Theorem 6.1. In an OA + G method, starting from an OA(n, 3% 4), let a paired choice

design dy be constructed using
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° (tk) distinct generators such that each of the generators has non-zeros in all possible

t* positions and zeros in remaining k — t* positions, when 3 does not divide k — 2;

° (tk) distinct generators such that each of the generators has non-zeros in all possible

k

t*+1) distinct generators

t* positions and zeros in remaining k — t* positions and (
such that each of the generators has non-zeros in all possible t* + 1 positions and

zeros in remaining k — t* — 1 positions, when 3 divides k — 2.

Additionally, for any two-factors, all the generators (rows) with both non zero entry
should be such that they can be clubbed in several groups of two generators of the type
{(11,12), (11,21), (22,21),(22,12)}. Then, the resultant design d; with N = ggn is opti-
mal for estimating all main effects and all two-factor interaction effects. Here, gs = (tk)

when & does not divide k — 2 and gg = (tk) + (t*il) otherwise.
Theorem reduces N by 2" times when 3 does not divide k — 2. When 3 divides

()2 (k)20
‘ : . The
(%)

percentage reduction in N and the generators, using Theorem is given in Table

k — 2, then the reduction is calculated using the 92—;9 =1-

for a few example of k’s. The columns Ng denotes the total number of choice pairs
required from Theorem [6.1] and Ngp denotes the number of best available choice pairs
from |Street and Burgess| (2007). These examples have mostly been obtained by a hit-and-
trial approach. Note that it is not possible to get generators of type as in Theorem
for k = 3 and therefore, the least number of generators needed for k = 3 is 6. As a next
step, one may obtain the generators for higher k.

In practice, there is a pool of choice sets and respondents are allocated a random
subset of choice sets (Street and Burgess, 2007) and this process is continued until all
choice sets are used once. To avoid random allocation, Singh et al. (2018) provided a
method to systematically split the pool of choice sets by introducing a blocking component
in the model. Using their notations, they provided a break-up of N choice pairs into b
blocks each of size s such that rather than showing N choice pairs to each respondent,
one can show s choice pairs to b respondents. They showed that such a design is optimal
under the block model.

Use of Singh et al.| (2018)) approach would help in further reducing the number
of choice pairs to be shown to respondents at one point of time. We now provide a

construction result, optimality of which, under the block model, can be easily proved on
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Table 6.1: Generators for k = 3,4,5,6

k  Generators Ns Nsg % Reduction
3 (1,1,0) (1,0,1) (0,1,1) (1,2,0) (2,0,1) (0,1,2) 6n  12n  50%
4 (2,1,1,0) (1,1,0,2) (1,0,1,1) (0,1,2,1) An 320 88%
(1,1,2,1,0) (1,2,1,0,1) (2,1,0,1,1) (1,0,2,2,1)
5 (0,1,1,2,1) (2,1,1,0,0) (1,1,0,1,0) (2,0,2,2,0)
15n  160n  91%
(0,1,2,2,0) (2,2,0,0,1) (1,0,1,0,1) (0,2,2,0,1)
(2,0,0,1,1) (0,2,0,1,2) (0,0,1,2,2)
(1,1,2,1,0,0) (1,2,1,0,1,0) (2,1,0,1,1,0) (1,0,2,2,1,0)
6 (0,1,1,2,1,0) (2,1,1,0,0,2) (1,1,0,1,0,1) (2,0,2,2,0,1)
15n  240n  94%
(0,1,2,2,0,1) (2,2,0,0,1,1) (1,0,1,0,1,1) (0,2,2,0,1,2)
(2,0,0,1,1,1) (0,2,0,1,2,1) (0,0,1,2,2,1)

the similar lines as in [Singh et al.| (2018).

Theorem 6.2. In an OA + G method, starting from an OA(n, 3% 4), let a paired choice
design dy be constructed as in Theorem [6.1 Then, dy can be obtained as a paired choice
block design with s =n, b= gg = (tk) when 8 does not divide k—2; orb = gg = (t'i)—i-(t*il)

otherwise and dy is optimal under the paired choice block model of |Singh et al.| (2018).

The paired choice block design ds is obtained from d; by considering the choice pairs

generated using different generators as different blocks.

Example 6.3. We now give an example of a paired choice design with four 3-level factors
for estimating all the main effects and all two-factor interaction effects. From Table [6.1]
for k = 4, the number of generators is gg = 4 and we use an orthogonal array O A(81, 3*,4)
for four 3-level factors with n = 81 runs. Using gg = 4 generators, as provided in Table
6.1, and n = 81, the paired choice design exists in N = 324 choice pairs and is provided
below. Now, invoking Theorem [6.2] the paired choice block design is obtained using each
of the generators as a block. Here, s =81, b = g¢ = 4, and N = 324.
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Block 1: using generator (2,1,1,0)

(0000, 2110)
(0001, 2111)
(0002, 2112)
(0010, 2120)
(0011, 2121)
(0012, 2122)
(0020, 2100)
(0021, 2101)
(0022, 2102)

(0100, 2210)
(0101, 2211)
(0102, 2212)
(0110, 2220)
(0111, 2221)
(0112, 2222)
(0120, 2200)
(0121, 2201)
(0122, 2202)

(0200, 2010)
(0201, 2011)
(0202, 2012)
(0210, 2020)
(0211, 2021)
(0212, 2022)
(0220, 2000)
(0221, 2001)
(0222, 2002)

(1000, 0110)
(1001, 0111)
(1002, 0112)
(1010, 0120)
(1011, 0121)
(1012, 0122)
(1020, 0100)
(1021, 0101)
(1022, 0102)

(1100, 0210)
(1101, 0211)
(1102, 0212)
(1110, 0220)
(1111, 0221)
(1112, 0222)
(1120, 0200)
(1121, 0201)
(1122, 0202)

(1200, 0010)
(1201, 0011)
(1202, 0012)
(1210, 0020)
(1211, 0021)
(1212, 0022)
(1220, 0000)
(1221, 0001)
(1222, 0002)

Block 2: using generator (1,1,0,2)

(2000, 1110)
(2001, 1111)
(2002, 1112)
(2010, 1120)
(2011, 1121)
(2012, 1122)
(2020, 1100)
(2021, 1101)
(2022, 1102)

(2100, 1210)
(2101, 1211)
(2102, 1212)
(2110, 1220)
(2111, 1221)
(2112, 1222)
(2120, 1200)
(2121, 1201)
(2122, 1202)

(2200, 1010)
(2201, 1011)
(2202, 1012)
(2210, 1020)
(2211, 1021)
(2212, 1022)
(2220, 1000)
(2221, 1001)
(2222, 1002)

(0000, 1102)
(0001, 1100)
(0002, 1101)
(0010, 1112)
(0011, 1110)
(0012, 1111)
(0020, 1122)
(0021, 1120)
(0022, 1121)

(0100, 1202)
(0101, 1200)
(0102, 1201)
(0110, 1212)
(0111, 1210)
(0112, 1211)
(0120, 1222)
(0121, 1220)
(0122, 1221)

(0200, 1002)
(0201, 1000)
(0202, 1001)
(0210, 1012)
(0211, 1010)
(0212, 1011)
(0220, 1022)
(0221, 1020)
(0222, 1021)

(1000, 2102)
(1001, 2100)
(1002, 2101)
(1010, 2112)
(1011, 2110)
(1012, 2111)
(1020, 2122)
(1021, 2120)
(1022, 2121)

(1100, 2202)
(1101, 2200)
(1102, 2201)
(1110, 2212)
(1111, 2210)
(1112, 2211)
(1120, 2222)
(1121, 2220)
(1122, 2221)

(1200, 2002)
(1201, 2000)
(1202, 2001)
(1210, 2012)
(1211, 2010)
(1212, 2011)
(1220, 2022)
(1221, 2020)
(1222, 2021)

Block 3: using generator (1,0,1,1)

(2000, 0102)
(2001, 0100)
(2002, 0101)
(2010, 0112)
(2011, 0110)
(2012, 0111)
(2020, 0122)
(2021, 0120)
(2022, 0121)

(2100, 0202)
(2101, 0200)
(2102, 0201)
(2110, 0212)
(2111, 0210)
(2112, 0211)
(2120, 0222)
(2121, 0220)
(2122, 0221)

(2200, 0002)
(2201, 0000)
(2202, 0001)
(2210, 0012)
(2211, 0010)
(2212, 0011)
(2220, 0022)
(2221, 0020)
(2222, 0021)

(0000, 1011)
(0001, 1012)
(0002, 1010)
(0010, 1021)
(0011, 1022)
(0012, 1020)
(0020, 1001)
(0021, 1002)
(0022, 1000)

(0100, 1111)
(0101, 1112)
(0102, 1110)
(0110, 1121)
(0111, 1122)
(0112, 1120)
(0120, 1101)
(0121, 1102)
(0122, 1100)

(0200, 1211)
(0201, 1212)
(0202, 1210)
(0210, 1221)
(0211, 1222)
(0212, 1220)
(0220, 1201)
(0221, 1202)
(0222, 1200)

(1000, 2011)
(1001, 2012)
(1002, 2010)
(1010, 2021)
(1011, 2022)
(1012, 2020)
(1020, 2001)
(1021, 2002)
(1022, 2000)

(1100, 2111)
(1101, 2112)
(1102, 2110)
(1110, 2121)
(1111, 2122)
(1112, 2120)
(1120, 2101)
(1121, 2102)
(1122, 2100)

(1200, 2211)
(1201, 2212)
(1202, 2210)
(1210, 2221)
(1211, 2222)
(1212, 2220)
(1220, 2201)
(1221, 2202)
(1222, 2200)

Block 4: using generator (0,1,2,1)

(2000, 0011)
(2001, 0012)
(2002, 0010)
(2010, 0021)
(2011, 0022)
(2012, 0020)
(2020, 0001)
(2021, 0002)
(2022, 0000)

(2100, 0111)
(2101, 0112)
(2102, 0110)
(2110, 0121)
(2111, 0122)
(2112, 0120)
(2120, 0101)
(2121, 0102)
(2122, 0100)

(2200, 0211)
(2201, 0212)
(2202, 0210)
(2210, 0221)
(2211, 0222)
(2212, 0220)
(2220, 0201)
(2221, 0202)
(2222, 0200)

(0000, 0121)
(0001, 0122)
(0002, 0120)
(0010, 0101)
(0011, 0102)
(0012, 0100)
(0020, 0111)
(0021, 0112)
(0022, 0110)

(0100, 0221)
(0101, 0222)
(0102, 0220)
(0110, 0201)
(0111, 0202)
(0112, 0200)
(0120, 0211)
(0121, 0212)
(0122, 0210)

(0200, 0021)
(0201, 0022)
(0202, 0020)
(0210, 0001)
(0211, 0002)
(0212, 0000)
(0220, 0011)
(0221, 0012)
(0222, 0010)

(1000, 1121)
(1001, 1122)
(1002, 1120)
(1010, 1101)
(1011, 1102)
(1012, 1100)
(1020, 1111)
(1021, 1112)
(1022, 1110)

(1100, 1221)
(1101, 1222)
(1102, 1220)
(1110, 1201)
(1111, 1202)
(1112, 1200)
(1120, 1211)
(1121, 1212)
(1122, 1210)

63

(1200, 1021)
(1201, 1022)
(1202, 1020)
(1210, 1001)
(1211, 1002)
(1212, 1000)
(1220, 1011)
(1221, 1012)
(1222, 1010)

(2000, 2121)
(2001, 2122)
(2002, 2120)
(2010, 2101)
(2011, 2102)
(2012, 2100)
(2020, 2111)
(2021, 2112)
(2022, 2110)

(2100, 2221)
(2101, 2222)
(2102, 2220)
(2110, 2201)
(2111, 2202)
(2112, 2200)
(2120, 2211)
(2121, 2212)
(2122, 2210)

(2200, 2021)
(2201, 2022)
(2202, 2020)
(2210, 2001)
(2211, 2002)
(2212, 2000)
(2220, 2011)
(2221, 2012)
(2222, 2010)






Chapter 7

Optimal two-level choice designs for
estimating main and specified

two-factor interaction effects

This chapter is based on the following work:
Chai et al.| (2018): Chai, Feng-Shun; Das, Ashish; Singh, Rakhi. Optimal two-level choice
designs for estimating main and specified two-factor interaction effects. J. Stat. Theory

Pract. 12 (2018), no. 1, 82-92.

7.1 Introduction

In this chapter, a choice experiment consists of N choice sets with each set containing m
options with no repeated options in a choice set. Each option in a choice set is described
by k two-level factors.

We denote ath choice set by To = (Ta1, Tag, - - -, Tam), where T, is the ith option
in the ath choice set, « = 1,2,..., N and ¢ = 1,2,...,m. Since an option in the choice
set is a representation of k factors, Ty, can be written as (iyis - - - 4, ), Where i, represents
the level of the gth factor f, in the ith option. The collection of all such choice sets 7,
a=1,2,..., N is a choice design, say d, with parameters N, k and m.

For the purpose of deriving optimal designs, it is often assumed that § = 0. This
indifference or the utility-neutral assumption means that the m options in a choice set are

equally attractive. Gromann and Schwabe| (2015) showed that for a choice design with
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choice set size m, the average information matrix, under the utility-neutral multinomial

logit model, using Huber and Zwerina| (1996) approach, is

4
~— i) (7.1)

1<i<j<m

C:

where C;; = (P,— P;)' (P, — P;) is the average information matrix corresponding to options

!/

iand j and P, = (p; |---| ply;) is the N X p effects-coded matrix for the ith option,
i = 1,...,m. This also means that the contribution of the choice set 7, to the information
matrix is equal to 4/(Nm?) times the sum of the individual contributions of the m(m—1)/2
different component pairs (Tni, Tn;),1 < i < j < m, that 7T, contains. In next chapter
(Das and Singh, [2016), we have shown that the approach of Huber and Zwerina, (1996) and
that of Street and Burgess| (2007) are equivalent. Therefore, in this chapter, we restrict
ourselves to the [Huber and Zwerina) (1996) approach for utility-neutral multinomial logit
model.

Most of the work on optimal designs for choice experiments under the utility-neutral
multinomial logit model is based on an a priori assumption that either only the main
effects of the factors or the main effects and all two-factor interaction effects are to be
estimated. However, in practice, there are situations where interest lies in the estimation
of main plus some two-factor interaction effects. For example, interest on such specified
two-factor interaction effects arise in situations when one or each of the two factor(s)
like price and/or brand of a product interact individually with the other factors of the
product. In the traditional factorial design setup, the issue of estimability and optimality
in situations of this kind has been addressed by |Hedayat and Pesotan (1992), [Wu and
Chen (1992), Hedayat and Pesotan (1997), Chiu and John (1998), Dey and Mukerjee
(1999) and [Dey and Suen| (2002]).

Street and Burgess (2012)) and |GrofSimann and Schwabe| (2015]) observed that there
are no general results on the optimal choice designs for estimating main plus some two-
factor interaction effects, though Street and Burgess (2007) highlighted the problem giving
few examples.

For h =1,...,k, let F} represent the main effects corresponding to the factor f;,, and
forh=k+(qg—1)2k—q)/24¢ —q=q(2k—q—1)/2+¢,1 < q < ¢ <k, F}, represent the
two-factor interaction effects corresponding to the factors f, and f,. Note that for the

two-factor interaction effects Fj, corresponding to the factors f, and f,, 1 < ¢ < ¢ <k,
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the value of h ranges from k + 1 to k + k(k — 1)/2. We consider a model that includes
main and all two-factor interaction effects with our interest lying in the estimation of
the main effects and a specified set of two-factor interaction effects where either one or
each of the two factor(s) interact individually with the remaining factors. Without loss of
generality, we consider the model class M; where the factor f; interacts with each of the
remaining k — 1 factors and thus our interest lies in the k& main effects F,h =1,....k
and k — 1 = t; (say) specified two-factor interaction effects Fj,,h = k+1,...,2k — 1, that
is, the two-factor interactions between factor f; and each of fo, f3, ..., fi. Similarly, we
consider the model class My where each of the factors f; and f; interact with each of the
remaining k — 2 factors and thus our interest lies in the & main effects Fj,,h = 1,... )k
and 2k — 4 = ty (say) specified two-factor interaction effects Fj,,h = k + 2,...,3k — 2,
that is, the two-factor interactions between factor f; and each of f3, f4, ..., fi and that
between fo and each of f3, f4, ..., fx. Let S denote the indices of main effects and all
two-factor interaction effects, that is, S = {1,.... k,k+1,...,k + k(k — 1)/2} and let
S, denote the set of indices of the main effects and two-factor interaction effects under
model class M. Clearly, S, C S. Also, cardinality of the model parameters in M is
|S1| =k +t; = 2k — 1 and that in My is |Ss| = k + ty = 3k — 4.

As noted in |Grofimann and Schwabe, (2015)), choice sets of size m = 2, 3, or 4 are more
useful in applications since for m > 5, the increased information processing requirements
affect the quality of the responses. In this chapter, we construct universally optimal choice
designs for estimating main effects and the specified set of two-factor interaction effects
when m = 3 and m = 4, under the assumption that all three or higher order interaction

effects are absent.

7.2 The information matrix

For ith option, we partition the p parameters into the k& main effects and k(k — 1)/2
two-factor interaction effects such that P, = (Pyy | Pr;). The effects coding is used as in
Grofimann and Schwabe| (2015). Furthermore, for any two options ¢ < j, we define X;; =
Py — Pyj and Yy = Pr; — Pr;. Then, from , the information matrix corresponding

to options ¢ and j, for estimating the main plus two-factor interaction effects, is
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XigXiy XiYy
ViXi YV

ij

Since, for s = 1,2, under the model class M, our interest lies in the k main effects
Fn,h = 1,...,k and the t; specified two-factor interaction effects, let Y;; be further
partitioned such that Y;; = (Ys1)ij Ys(2)ij), where Yyq);; is a N x t; matrix corresponding
to the selected two-factor interaction effects and Y(2);; is a N x k(k —1)/2 — t, matrix of
the remaining two-factor interaction effects. Denoting summations over 1 <7 < j < m
by 3, let X'X = XX Xy, X'Yyw) = XX, Y)ij, and YS/(U)Y;(U) = EYS/(U)Z-J-K@)U; u=1,2,
v = 1,2. Then, using and , the information matrix for estimating the main plus

IRl

two-factor interaction effects is,

X'X X' X'V

4
C=m52 | YoX YoYa YioYae |- (7.3)
Ys/(Q)X Ys’(2)YS(1) Y;(g)ys(z)

Using ([7.3)), the information matrix for estimating the main effects and the specified

two-factor interaction effects under model class M, is C, where

Nm? - X'X XY XYz _
1 Cs = ( ) ) W) - , @ (YY) (Yo X Yo)Ys)- (7.4)
Ys(l)X Ys(1)Ys(1) Ys(1)Ys(2)

A choice design for estimating the main effects and the specified two-factor interac-
tions under the model M, is said to be connected if mnk(é’s) = k + t,. In what follows,
under the model M, the class of all connected choice designs involving k two-level factors
and N choice sets each of size m is denoted by D](\‘;)km

For Fj,, h =1, ..., k, we define the hth positional value for the option T,; as i;,. Also,
corresponding to the two-factor interactions involving f, and f,, that is, for £}, h =k +
1,...,k+k(k—1)/2, the hth positional value for the option Ty, is defined as i,+i, (mod 2)
(=i}, say).

For the option Ty, the hth and ¢th positional value is (ipi¢)n, when both the hth and
¢th indices correspond to the main effects, that is, h # ¢,h € {1,...,n}, ¢ € {1,...,n}.
For the option Ty, the hth and ¢th positional value is (i47} )n when hth index corresponds
to the main effect and /th index corresponds to the two-factor interactions, that is, h €
{1,...,n},0e{k+1,....,k+ k(k—1)/2}. Similarly, for the option T,;, the hth and ¢th
positional value is (i}i})s when hth and ¢th indices both correspond to the two-factor

interactions, that is, h # ¢, h € {k+1,...,k+k(k—1)/2},0 e {k+1,...,k+k(k—1)/2}.
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Also, for the component pair (Tn;, T,;), the hth and ¢th positional value for the above
three cases respectively are (inie, jnje)ne; (iniy, Jnjy )ne; and (75, 55 j; )ne-

For F}, and Fy, h # (, let N}, and N,, be the total number of component pairs of the
positional value type (00, 11),, and (01, 10)y, respectively, across all m(m — 1)/2 possible

pairs of a choice set of size m and among all such N sets in the choice design.

Theorem 7.1. The off-diagonal elements of C' are zero if Ny, = N, for h # (,h €
{1,...k+k(k—=1)/2},0e{1,....k+k(k—1)/2}.

Proof. It is easy to see that for h,¢ € S, the exhaustive cases leading to possible values
of the (h, £)th entries of X[, X;;, X[.Yj;, Y/}Y;; for its associated component pairs (Twi, Ta;),
are

(i) Case 1: For h £ ¢, h € {1,...,n}, 0 €{1,...,n}, (h,{)th entry corresponding to
ath choice set in Xj; X;; is —4 if (inie, jnje)ne = (01,10)n, is 4 if (inig, jnje)ne = (00, 11)4e
and is 0 otherwise.

(ii) Case 2: For h € {1,....,n},0 € {k+1,....k + k(k — 1)/2}, (h,{)th entry
corresponding to ath choice set in X[.Vi; is 4 if (inij, jnj;)ne = (01,10)pe, is —4 if
(ini}, 0077 )ne = (00, 11)5, and is 0 otherwise.

(iii) Case 3: For h # {,h e {k+1,...,k+k(k—1)/2} and L € {k+1,... , k+k(k—
1)/2}, (h,€)th entry corresponding to ath choice set in Y Y, is —4 if (i}i7, jiji)ne =
(01,10)pe, is 4 if (i}i3, 55 j; )ne = (00,11), and is 0 otherwise.

Applying the above three cases, proof follows from and the definition of N,

and N,,. O
As a particular case of Theorem [7.1], we have the following.

Corollary 7.2. The off-diagonal elements of Cs, s = 1,2 are zero if,
(i) N}, = Ny, for h # €, h € S5, 0 € S5, and
(ii) N, = N,,, forh € Ss and ¢ € S — S;.
In a choice set T,, let n,, € {0,1,2,...,m} represents the number of options such

that the hth positional value is 0. The following Theorem gives upper bound to trace(Cs).

Theorem 7.3. For a choice design d with N choice sets of size m, under model My, an

upper bound of trace(Cy) is

4(k +t,) for m even

trace(Cy) < {
4(k +ts)(m* —1)/m*  for m odd
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with equality attaining when the following two conditions are satisfied:

(1) np, = m/2 for m even and ny, = (m—1)/2 or (m+1)/2 for m odd for every h € S
and for every choice set T, and

(i) N}, = N,,, for h € S5, € S — S;.

Proof. Note that from 1} trace(Cy) < (4/Nm?){trace(X'X) +trace(Y{,,Ysq))} since
the matrix (Y, X Y5 Ys))(Yig)Ys@) (YinX Y]yYs) is non-negative definite.
Now we find the maximum possible trace of X’X and Ys’(l)Ys(l).

For h € {1,...,n}, hth diagonal entry in Xj;X;; is 4 if 4, — j, = +1 and is 0
otherwise. For h € {k +1,...,k + k(k — 1)/2}, hth diagonal entry in Y/}Yj; is 4 if
iy —jp = =1 and is 0 otherwise. This implies that the value of hth diagonal entry of X'X
and YS’(l)Y;(l) is non-zero when hth factor differs among two options and this happens
N, (m — ny, ) times. Therefore, every choice set 7T, adds a value 4n,, (m — np,) to the
hth diagonal entry of X’'X and Y;’(I)Y;(l). Clearly, 4n,, (m — np,) is maximum when
np, = m/2 for m even, and ny,, = (m—1)/2 or (m+1)/2 for m odd. By simple addition

of (1/m?N) max(4ny,, (m — ny,)) over all choice sets @ = 1,..., N, we get

n for m even

trace(X'X/m?N) <
n(m? —1)/m? for m odd

and
ts for m even

ts(m? —1)/m? for m odd

S

tmce(Y'(l)Ys(l)/mQN) < {
]

Remark 7.4. Form = 2, it is noted that the upper bound oftmce(é’s), as in Theorem
1s not achievable. However, for m = 3,4 it is achievable. For given N and k, with respect

to choice designs with mazimum trace(Cy), (i) all designs with m even are equivalent and

(11) a design with m odd is always inferior to a design with m even.

7.3 Construction of universally optimal designs

The criteria of universal optimality was introduced by Kiefer| (19758 and is a strong family
of optimality criteria which includes A—, D—, and E— criteria as particular cases. [Kiefer

(19758) also obtained the following sufficient condition for universal optimality. Suppose
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d* € D and Cy satisfies (i) Cy is scalar multiple of I, and, (ii) tmce(é’d*) = Maxgep
trace(Cy). Then d* is universally optimal in D.
We first provide a simple method for constructing universally optimal two-level choice

designs with choice set size m = 3 and m = 4 under the model class M;.

Theorem 7.5. Let k = 4t — j, where t is a positive integer and j = 0,1,2,3. Also,
giwen a Hadamard matrix H of order 4t in normal form, let Hy be the Hadamard matriz
derived from H by multiplying the first column of H by —1. Let Zy = H,Zy = —H, Z3 =
H,,Z, = —H,. Forw = 1,2,3,4, let A, be respective matrices obtained by replacing
every entry i (i = 1,—1) of Z,, by (1 +4)/2, and then deleting rightmost j columns
from Z,, where j = 4t — k,j € {0,1,2,3}. Consider rows of A, as options. Then,
(A1, Az, Az)
(A1, As, Ay)

level choice design in Dfé?h 4 and in Dé;)m, respectively.

dgl) = (A, A, Az, Ay) and dél) = are universally optimal two-

Proof. To prove that dﬁ” and dél) are universally optimal choice designs, we show that
the information matrix Cy for the designs dgl) and dél) are of the form 1 for some scalar
f and that dgl) and dél) maximizes trace(C}) in the respective classes of designs D).
First we show that for every h # ¢, h € S, £ € S, the (h,¢)th element of the C is
zero. Note that the design dgl) consists of the component pair designs {(As, Asr),1 <0 <
d" < 4}. Denoting the component pair designs of dgl) by d%y),l <0 < ¢ <4, we now
calculate N;}, and N,, for the design dgl). Since H is a Hadamard matrix of order 4t¢,
forall h # ¢, h € S, £ € S, the combinations from the set {(00)ss, (11)n,} and from the
set {(10)ne, (01)pe} occur equally often for each of the component pair designs (A;, As),
(A1, A3), (A, Aa), (A3, Ag), e, Ny = Niggone = 0 or 2t for (6,0) = (1,2), (1,3),
(2,4), (3,4), where N(Jgé,)hﬁ is the total number of pairs of the type (00, 11),, corresponding
to hth and /th positional values in dgl(fw), and N(_M,)M is the total number of pairs of the
type (01, 10),, corresponding to hth and ¢th positional values in d% 5): Furthermore, for
(0,0") = (1,4),(2,3), the respective component pair designs (A, Ay) and (Ag, A3) have
N(Jgaf)he = N(_M,)M =0or2tforall h# /¢ he Sand /€S, except (h, k)= (h,k+h—1),
h=23,...,k,ie., (h,{) corresponding to the main effects involving f;, and the two-factor
interaction effects involving f; and f,, h = 2,... k. For such (h,?)’s, N(+14)hé = Niggyne =
4t, and N(_1 Dhe = N(Jgg)hé = 0. Therefore, using the result of Corollary it follows that

C, for the design dgl) has off-diagonal elements zero. The design dgl) also ensures that
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np, = 2, for h € S; and for every choice set. Therefore using Theorem [7.3] it follows that
each of the diagonal elements of Cy equals 4 and trace(C}) is maximum for the design
dgl). Thus dgl) is universally optimal in DE,);:, 4

To establish that the design dél) is universally optimal in Dé}&?kﬁ? one can see that the

component pairs of the design are similar to the ones corresponding to dgl) and thus
Cy for the design dgl) has off-diagonal elements zero. Regarding the diagonal elements
of the C}, the design dél) ensures that n,, = 1 or 2, for h € S; and for every choice
set. Therefore, from Theorem each of the diagonal elements of C; equals 32 /9 and
trace(C}) is maximum for d(zl). Thus, the design dg) is universally optimal in Déi,)kﬁ‘ ]
Remark 7.6. As an alternative to dél), if situation demands, one may consider a choice
(A1, Az, A3)
(A7, A3, A}
m Dé(éi,)kﬁ' Here, for w =1,2,4, A} is obtained from A, by adding 1 to the elements of

design dg}) = with distinct options, which is also universally optimal

the 2nd column of A, reduced mod 2.

We now provide a simple method for constructing universally optimal two-level choice

designs with choice set size m = 3 and m = 4 under the model class M.

Theorem 7.7. Let k = 4t — j, where t is a positive integer and 7 = 0,1,2,3. Also, given
a Hadamard matriz H of order 4t in normal form, let Hy be the Hadamard matriz derived
from H by multiplying the first column of H by —1. Let Zy = (H' H}) = (Z14 Z1), where
Z14 18 of order 8t x 2 and Zyy, is of order 8t x (4t —2). Define Zy = —Z1, Z3 = (—Z1a Z1p)
and Zy = —Z3. For w = 1,2,3,4, let A, be respective matrices obtained by replacing
every entry i (1 = 1,—1) of Zy, by (1 +4)/2, and then deleting rightmost j columns
from Z,, where j = 4t — k,j € {0,1,2,3}. Consider rows of A, as options. Then,
(A1, As, A3)
(A1, As, Ay)

level choice design in Dg,)kA and in D%,m, respectively.

d?) = (A, Ay, Az, Ay) and df) = are universally optimal two-

Proof. On lines similar to the proof of Theorem , we first note that the design d§2)
consists of the component pair designs {(As, As'),1 < § < ¢ < 4}. Denoting the compo-
nent pair designs of df) by dgz(fw), 1 <6 < ¢ <4, we now calculate N, and N,, for the
design d?’. It is easy to see that for all h # ¢, h € S, ¢ € S, the combinations from the set
{(00)pe, (11)pe} and from the set {(10)pe, (01)4} occur equally often for each of the com-
ponent pair designs (A, As), (A1, As), (A2, Aa), (As, Aa), e, Nisz0 = Niggryne = 0 or 4t
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for (6,6") = (1,2), (1,3), (2,4),(3,4). Furthermore, as in the proof of Theorem [7.5 for
(0,0") = (1,4),(2,3), the respective component pair designs (A;, Ay) and (As, A3) have
N(L)M = N@SW and N(_14)h = N(23)h£ Therefore, using the result of Corollary , it
follows that C, for the design dg has off-diagonal elements zero. The design de) also
ensures that n,, = 2, for h € Sy and for every choice set. Therefore using Theorem [7.3]
it follows that each of the diagonal elements of Cy equals 4 and trace(C,) is maximum
for the design de). Thus d?) is universally optimal in Dg’)k’ 4

To establish that the design dg) is universally optimal in D%,k’g, one can see that the
component pairs of the design are similar to the ones corresponding to d§2) and thus C, for
the design d(22) has off-diagonal elements zero. Regarding the diagonal elements of the C,
the design dg) ensures that n,, =1 or 2, for h € Sy and for every choice set. Therefore,
from Theorem 7.3, each of the diagonal elements of C, equals 32/9 and trace(Cs) is

maximum for dg). Thus, the design df) is universally optimal in D§27k73. O]

Example 7.8. Consider a 2877 choice experiment (j = 0,1,2,3) conducted through 8
choice sets of size 4 each. The 28 (j = 0) choice design d , 18 unwversally optimal in

1
D31

(00000000, 11111111, 10000000, 01111111)
(01010101, 10101010, 11010101, 00101010)
(00110011, 11001100, 10110011, 01001100)
dg” _ (01100110, 10011001, 11100110, 00011001)-
(00001111, 11110000, 10001111, 01110000)
(01011010, 10100101, 11011010, 00100101)
(00111100, 11000011, 10111100, 01000011)
(01101001, 10010110, 11101001, 00010110)

Deleting the last j factors we get the corresponding universally optimal design in Dgg—j,m

i=1,2,3.

Now consider the design dgl)

00000000, 11111111, 10000000
01010101, 10101010, 11010101
00110011, 11001100, 10110011

( 01101001, 10010110, 11101001
(
(
o — (01100110, 10011001, 11100110
(
(
(
(

00000000, 11111111, 01111111
01010101, 10101010, 00101010
00110011, 11001100, 01001100
01100110, 10011001, 00011001
00001111, 11110000, 01110000
01011010, 10100101, 00100101
01101001, 10010110, 00010110

00001111, 11110000, 10001111
01011010, 10100101, 11011010
00111100, 11000011, 10111100
00111100, 11000011, 01000011

—_— — Y ~— Y ~— ~— —

(
(
(
(
(
(
(
(

T — — — — T — —
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Deleting the last j factors (j = 0,1,2,3) of the design d(zl) we get the corresponding

unwversally optimal design in D%?gfﬂ,, 7 =0,1,2,3.

Simialarly, the design d§2) 18 universally optimal in D%)’S_M when deleting the last j factors,

j=0,1,2,3.

d® =

10000000, 01111111, 01000000, 10111111
11010101, 00101010, 00010101, 11101010
10110011, 01001100, 01110011, 10001100
11100110, 00011001, 00100110, 10011001
10001111, 01110000, 01001111, 10110000
11011010, 00100101, 00011010, 11100101
10111100, 01000011, 01111100, 10000011
11101001, 00010110, 00101001, 11010110

00000000, 11111111, 11000000, 00111111
01010101, 10101010, 10010101, 01101010
00110011, 11001100, 11110011, 00001100
01100110, 10011001, 10100110, 00011001
00001111, 11110000, 11001111, 00110000
01011010, 10100101, 10011010, 01100101
00111100, 11000011, 11111100, 00000011
01101001, 10010110, 10101001, 01010110

(
(
(
(
(
(
(
(

T — — — — T T —

( )
( )
( )
( )
( ) |
( )
( )
( )

7.4 Concluding Remarks

In this chapter, we have obtained optimal two-level choice designs for estimating main
effects and specified two-factor interaction effects in the model class M, s = 1,2. As
discussed earlier, practical situations arise where factors like f; = “price” and/or fy =
“brand” interact with the other important factors. Apart from all the main effects, these
factors interacting with the other factors are of significance, while studying the other
interactions are of less consequence in preliminary studies. As indicated earlier, there
are no general results on the optimal choice designs for estimating main plus specified
two-factor interaction effects in the choice design literature, though [Street and Burgess
(2007) highlighted the problem giving few examples.

One could argue that the optimal designs available for estimating main effects and
all two-factor interactions could be used for our specific problem because of a lack of
theoretical results. However, when one increases the parameters of interest (especially
2-factor interactions), theoretically obtained optimal designs usually have large number
of choice sets.

As an illustration, an optimal design for 2° in 16 choice sets of size m = 3 can be
obtained for estimating main effects f,, ¢ = 1,...,5 and two-factor interactions f;fy,
¢ =2,...,5 (i.e., under the model class M;). However, if the remaining 10 — 4 = 6 two-
factor interactions are to be additionally estimated optimally, a D-optimal choice design

with m = 2, suggested by [Street and Burgess (2007)), is available in 320 choice sets. They
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also suggest a design with m = 2 in 48 choice sets which is 91% efficient. Similarly, a
D-optimal design for 2° choice experiment with m = 3 has been obtained by Burgess and
Street| (2003)) in 1440 choice sets.

As another example, for £k = 4, m = 3, a D-optimal design available in the literature
requires 160 choice sets, while a 96.7% efficient design is available in 32 choice sets (see,
Burgess and Street| (2003))). However, our design for estimating main and specified two-
factor interaction effects can be constructed in 8 choice sets.

Under our model, we have provided theoretical results characterizing optimal designs
for any m. However, we provide optimal design constructions for more practical values
of m, i.e., m = 3 and m = 4. Though Remark [7.4] guided us to not consider the case
m = 2, nevertheless, the case for m = 2 still remains a relevant open problem unless one
uses large designs that are optimal for estimating main and all two-factor interactions as
obtained by [Street and Burgess| (2007)).

As a way forward one can possibly extend this work for factors with asymmetric
levels. One could also consider other sets of specified two-factor interaction effects as

indicated in |Dey and Suen| (2002).
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Chapter 8

A unified approach to discrete choice

experiments

This chapter is based on the following work:
Das and Singh| (2016)): Das, Ashish; Singh, Rakhi. A unified approach to discrete choice

experiments. Ongoing.

8.1 Introduction

As stated before, the primary objective of a discrete choice experiment is to study the
impact of k attributes of an option where the ith attribute has v; (> 2) levels labeled
0,...,v;, —1; ¢« = 1,..., k. With the options being described by the levels of the at-
tributes, each option is a k-tuple and there are a total of L = Hle v; possible op-
tions. Let the L lexicographically arranged options be denoted by ti,%s,...,t; where,
ty = (wywg -+ wg),w; =0,1,...,0; —1;i =1,2,..., k. Here, w denotes the lexicographic
number of the option t¢,, and is given by w = w, HfZQ V; +Ws Hf:g Vi wp_ v Fw+ 1.
A choice design is a collection of choice sets employed in a choice experiment.

Discrete choice experiments have been discussed primarily under the multinomial
logit model (MNL model) setup. Street and Burgess (2007) have derived the information
matrix to study choice experiments under the MNL model. Independently, Huber and
Zwerina| (1996) have also derived the information matrix under the same model. We refer
to the two approaches as SB approach and HZ approach. The information matrices under

the two approaches look superficially different and moreover, the attributes are also coded
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differently, even though we have considered the average information matrix in both the
SB and the HZ approach.

One of the many objectives of a choice experiment is to optimally or efficiently
estimate the parameters of interest which essentially consists of either only the main
effects or the main plus two-factor interaction effects of the k attributes. D-optimal
designs have been obtained theoretically under the utility-neutral setup, for example, see
GraBihoff et al.| (2004)), [Street and Burgess (2007), Demirkale et al.| (2013)), and [Singh
et al.| (2015). Additionally, [Sun and Dean| (2016), Sun and Dean (2017), and (Chai et al.
(2017) have obtained A-optimal choice designs. For such optimal designs, researchers
either used the information matrix following the HZ approach under effects coding, or
used the information matrix following the SB approach under orthonormal coding.

The author-groups SB and HZ have used seemingly different information matrices
under the MNL model. There have also been some confusion regarding the inference
parameters expressed as linear functions of the utility parameter vector 7. We theoreti-
cally establish a unified approach to discrete choice experiments and introduce the general
inference problem in terms of a simple linear function of 7; say M.

After introducing the SB and HZ approaches in Section[8.2] we show their equivalence
in Section [8.3] In Section [8.4] the inference problem under different codings is expressed
in simple terms as a function of 7. In Section [8.5] with respect to the A-criterion, we
discuss how different codings may be interpreted. We also propose a related coding which
is appropriate for test-control discrete choice experiments wherein some new test levels
of an attribute are compared with an existing control level. Finally, in Section we

summarize the results along with a short discussion.

8.2 The SB and HZ approaches

We now discuss the two approaches, SB and HZ, which have generally been used in the
theory of choice experiments.

In a choice design, we denote the nth choice set by 15, = (t(n1); t(n2): - - - » L(nm)), Where
L(nj) 1s the jth option in the nth choice set, n = 1,...,N, j = 1,...,m. Each option
t(nj) = tw for some w € {1,..., L}, where w, as mentioned before, is the lexicographic

number of the option. Corresponding to the jth option in the N choice sets, let A; =
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(zf%r1 i t%; o t(TN j))T be a N x k matrix representing the levels of the k attributes.

8.2.1 SB approach

Let S, be the set of m lexicographic numbers w corresponding to T,, = (t(;)),7 =
1,...,m. Thus, a respondent « assigns some utility U,, to t,, w € S,,n = 1,..., N.
In a choice experiment, it is assumed that each respondent chooses the option having
maximum utility among the other options in a choice set. The respondent chooses t,, in T},
if Uya > Uyra, ty being the other options in 7). The systematic component of the utility
that can be captured, is denoted by the utility parameter 7, and that Uy,e = Twa + €wa-
If €44 is independently and identically Gumbel distributed, then the choice model is the
MNL model. In this chapter, as is generally the case in the literature, we assume that the
respondents are alike and this assumption allows us to drop the subscript «. Following
Street and Burgess| (2007)), the probability of choosing (,;) (which is say, ¢,,) from T}, is
then given by,

T

ew
T
Zw’ESnew

Let Z(MT) denote the Fisher information matrix for a linear function M7 in the

P.,j=P,=P(U, > Uy,forallw #w e S,) =

MNL model with utility parameter vector 7 = (71 ---77)%. |Street and Burgess (2007),
using the approach of El-Helbawy and Bradley| (1978), gives the Fisher information matrix
for estimating p parameters of interest Bo7 (= (o, say), where Bg is a p X L orthonormal
contrast matrix corresponding to the p parameters of interest. The Fisher information

matrix for BoT, as obtained by them, is
Z(BoT) = BoAB}, (8.1)

where A is the information matrix for 7. For a choice design with N choice sets each
containing m options, under the MNL model, the L x L information matrix for 7 is

(Street and Burgess, 2007, p. 81) A = (A.,)), where

% Z —( l7ﬁr€s:2), T:T’,T:l,...,L,
netr (Zies, €)
Apprry = (8.2)
—~ e r# e =1, L,

’I’LETTTI (ZZESn eTl)2
with 7" being the subset of indices of choice sets containing ¢,, and 7" being the subset

of indices of choice sets containing both ¢, and t,.. Here, the set of indices of choice set
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is {1,..., N} and note that A,y = 0 when T is an empty set and Agyy = 0 when T7
is an empty set. Under the utility-neutral MNL model assumption of all options being
equally attractive, A, reduces to

/
Qs r 7é r,

/

8.3
(m—1Da,, r=r, (8.3)

mQNA(W/) = {

where a, is the number of times ¢, appears in the choice design and a,,s is the number of
times options ¢, and t,» appear together in the design. In what follows, unless otherwise

stated, A will refer to A as in (8.2]).

8.2.1.1 Coding under SB approach

The choice designs are studied by Street and Burgess (2007) under orthonormal coding.
The columns of the p x L matrix By correspond to the orthonormal coding for the L
options arranged in lexicographic order. We are interested in estimating BoT = o under
this approach.

As an example, for main effects, the py; X L matrix Bp with py, = Zle(vi —1) s,

(1) 1 1T 1 1T
By’ ® =1, ® - ® =1,

(2) 5
1 17T 1 1T
=1, ®B7 @ @ =1

oy
Q
Il

1 1T 1 1T (k)
\/ﬁlv1®\/_r21vz®"'®30

where BY is a (v; — 1) X v; matrix, the v; columns of which define an orthonormal coding
for the v; levels of the ith attribute, that is, Bgi)By)T =1, and B((,i)lvi = (. Here, 1, is
a s x 1 vector of all ones, I, is an identity matrix of order s, and ® denotes the Kronecker
product.

The subscript O in By and (o implies the orthonormal coding.

8.2.2 HZ approach

In the marketing literature, under the MNL model, usually a different approach of Huber
and Zwerina| (1996), following the seminal work of [McFadden| (1974)), is followed. In this
approach, the utilities corresponding to t(,; are modelled as U,,; = h,,; By + €5, where h,,;

is a general coded row vector of order p characterizing ¢(,; based on a general coding of the
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k attributes and (g is a column vector of order p representing the estimable parameters
of interest. Then, the probability of choosing the jth option from the nth choice set is

given by,
ehnj BH

m h_ . °
Zj’:l e n]/BH

The information matrix for Sy, as given in Huber and Zwerina| (1996)), is

Py = (8.5)

m

Z(hn] - Z hnj’Pnj/)TPnj(hnj - Z hnj’Pnj/)' (86)
Jj=1 J'=1

=] =
M-

Also, under the utility-neutral MNL model (that is, taking Sy = 0, or equivalently
by assuming P,; = 1/m for all n and j), the information matrix reduces to the sum of

m(m — 1)/2 matrices corresponding to all possible pairs of options, that is,

I H(]j )XH (33")- (87)

where Xy ;) = H; — Hjr, is the N x p difference matrix for the jth and j'th options; the
N x p matrix H; = (h{; hi; --- hy;)" corresponds to the A;, j =1,...,m and is coded

with a general coding.

8.2.2.1 Coding under HZ approach: General coding

The derivation of the information matrix in [McFadden| (1974) and subsequently used by
Huber and Zwerinal (1996) is based on a general coding. Rows of the matrix H; consists
of general coded vectors h,,; having a one-to-one correspondence with the choice sets ).
Each of the L options can be coded according to the general coding. We now define
the p x L general coded matrix By, columns of which correspond to the general coding
corresponding to the L options arranged in lexicographic order. Corresponding to A;
involving t(,;), n = 1,..., N, the nth row of H; is the wth column of By, with w being
the lexicographic number of the option ().

As an example, for main effects, the py; x L general coded matrix By is
(1) T T
Bh ®102®®11}k
T (2) T
1v1®Bh ®'”®1vk
T T (k)
el @ 0B,
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where B}(f) is a (v; — 1) x v; matrix having full row rank, v; columns of which define a
general coding for the v; levels of the ith attribute. For an attribute, the v; columns of
B,(j) represent a general coding for the respective v; levels labeled 0, ..., v; — 1.

In what follows, the subscript H in By and By implies the general coding.

8.2.2.2 Coding under HZ approach: Effects coding

The coding that is generally used in the marketing literature for describing attributes is
more formally known as effects coding (see,|Groimann and Schwabe (2015))). Correspond-
ing to each option t(,;), we denote the effects coded vector by e,;. For effects coding, we
also use Bg and e,; to denote By and h,; respectively. The L columns in B represent
the effects coding for the L lexicographically arranged options. This simply means that,
the wth column of Bp is the effects coding for ¢,,. Under effects coding, the information

matrix for the parameter of interest g is
m

N m
= % Z (€nj — Z enjr Prjr) " Prj(enj — Z enj Pnjr), (8.9)

n=1 j=1 j'=1 Jj'=1

m

where ¢e,; is the effects coded vector corresponding to £,;).

As an example, for main effects, the effects coding for level labeled [ is represented
by a unit row vector of length v; — 1 with 1 in the (I + 1)th position for { =0, ...,v; — 2,
and the effects coding for level labeled v; — 1 is represented by —15;71, i=1,...,k. For
example, the effects coded vectors for one factor at three levels [ = 0,1,2 are (1 0),(0 1)
and (—1 — 1), respectively. Now for estimation of the main effects, Bg is of the same

form By given in (8.8) with B,(f) replaced by BY. For obtaining Béi), effects coding

corresponding to level [ is put as the ({ + 1)th column of BY. For example, for v; = 3,

01 -1
(—1 — 1), respectively.

; 1 0 -1
BY = ( ) since the effects coded vectors for [ = 0,1,2 are (1 0),(0 1) and

In what follows, the subscript £ in Bg and Sg implies the effect coding.

8.3 Equivalence of SB and HZ approaches

The mathematical derivations used while obtaining the information matrices under the SB

approach and under the HZ approach appears to be somewhat different. This difference in
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the mathematical derivations of the variance-covariance matrix has resulted in significant
confusion within the literature (see, for example Rose and Bliemer| (2014)). The major
differences in the two approaches are: (a) the expressions for the information matrices
under the two approaches appear to be different, and (b) coding of levels in the two
approaches are different.

Under the utility-neutral effects coding setup, the similarity of the two approaches
for a D-optimal paired (m = 2) choice design was first addressed by |Grofmann and
Schwabe| (2015) (pp. 793). We now show how for any general coded matrix By and
under a general setup, the two seemingly different structures of the information matrices

are related. Below is the equivalence result, a proof of which is in the Appendix

Theorem 8.1. For a general coded matriz By, the information matriz Z(By), un-
der the MNL model, satisfies Z(fy) = %Zgﬂ Do (g = D20y e P )T Prj(hiy —
2?21 hnjrPnjr) = BuABYL, where A and P,; are as defined in and , respec-
tively.

Theorem [8.1| shows that once the coded matrix By is decided, the two expressions
of the information matrix, which appear different, are in fact the same. This also implies
that the two seemingly independent derivations result in the same information matrix.

In what follows, Var(@ 1) represents the asymptotic covariance matrix of the maxi-
mum likelihood estimator of Sy and is inverse of the information matrix Z(f3g). Similar
statement holds for Sp and S when By = Bp and By = Bp respectively. The following
are two special cases of Theorem [8.1]

Corollary 8.2. Under the MNL model,

(i) For orthonormally coded matriz Bo, the information matriz Z(30) = BoABL =
I(Bot). In other words, the variance Var(8o) = (BoABL)™' = Var(Bot).

(ii) For effects coded matriz Bg, the information matriz Z(Bg) = BeABL. In other
words, the variance Var(Bg) = (BgABL)™!.

Proof. For orthonormal coding Bp, Street-Burgess derived that Z(BoTr) = BoABY.
Additionally, from Theorem m, BoAB} = Z(Bo). Therefore, for orthonormal coding,
Corollary [8.2(i) holds. It is easy to see that (ii) is just a special case of Theorem [8.1] for
effects coding. O
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Note that in Corollary (i), we indicate that Var(8o) = Var(Bo7). However, in
Corollary (ii), we mention the variance only of 3z, not mentioning it in terms of 7. We

elaborate on the same in the next section.

8.4 Inference problem in terms of utility parameters

In the previous section, we have established that for any general coded matrix By, the
information matrix of By is Z(8y) = By AB}. This shows the equivalence of the SB and
the HZ approaches. For the SB approach, where S5 has been taken as Sp with By = Bo,
the parameter [ is expressible in terms of the utility parameter vector 7 through BoT.
However, in the effects coded HZ approach, Sy = (g is the parameter of interest. Under
such an effects coding setup Bg, we need to understand what (g is in terms of utility
parameter vector 7. In this section, we express the general inference problem [y in terms
of utility parameter vector 7.

In comparative experiments, like the choice experiments, the problem of estimation
for inferring M7 may be specified as Il : Sy = M7, where M is a p X L matrix with
M1, = 0, 7 is a utility parameter vector and 1, is a column vector of size L having all
1s. Thus [y contains p parametric contrasts. With reference to II, we call a design d
as acceptable if all components of Sy are estimable using d. Let Dy be the class of all
acceptable designs with reference to the problem II. The problem II is referred to as (i)
non-singularly estimable if and only if rank(M) = p < > (v; — 1), and, more explicitly as
(i) non-singularly estimable full-rank problem if and only if rank(M) =p = > (v; — 1).
Furthermore, when rank(M) = > (v; — 1) < p, we refer to Il as singularly estimable
full-rank problem.

We first examine the two different functions of 7 that are available in the literature,
one given by (Groimann and Schwabe (2015 and the other by [Street and Burgess| (2007)).
For notational clarity, as and when required, A corresponding to a design d is denoted
by Ag. A generalized inverse of a matrix A is denoted by A~, while the MoorePenrose
inverse is denoted by A™.

Grofimann and Schwabe| (2015) have indicated that under the utility-neutral setup,

for D-optimal balanced paired choice designs d*, the information matrix for g is,

Z(Bg) = Z(SG7) = (S(GA&GT)~ST)~. (8.10)
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Here, GG is obtained from 1) by replacing every (v; — 1) X v; matrix BY with the v X U;
centering matrix K,, = I,, — %Jvi and S is a rectangular block diagonal matrix with the

ith (v; — 1) x v; diagonal block being Dy, = (/% 1y,—1,00,-1x1), i = 1,... k.

Remark 8.3. From the proof of the expression for the information matriz in
(Grofimann and Schwabe, |2015, pp. 798), it follows that the Moore-Penrose inverse of
GA4-GT should be used rather than a generalized inverse. Therefore, the correct version of
their expression (as , above) for the information matriz of the estimable parameter

vector Pg is

Z(Bg) = Z(SGT) = (S(GAGT)T ST~ (8.11)

Contrary to Grofmann and Schwabe’s identification of the matrix SG for the in-
ference problem (g expressed as a function of 7, [Street and Burgess| (2007) (pp. 77-78)

gives an impression, through an example, that under the utility-neutral setup,
T(Bg) = I(BgT) = BpAg BY. (8.12)

We now study an example of a D-optimal paired choice design.
Example 8.4. For k = 2,v; = vy = 3 and N =9, consider a D-optimal paired choice
design d*

d* = {(00, 11), (10, 21),(20, 01), (01, 12), (11, 22), (21, 02), (02, 10), (12, 20), (22, 00)}.
Then, from (8.11)),

0.50 0.25 0 0

0.25 050 O 0
T(SGT) = (S(GA&-GT)TST) ™ = = A, say.
0 0 050 0.25

0 0 0.25 0.50
Again, from (8.12)), it is easy to see that

Therefore, here it follows that Z(SGT) = (S(GAxGT)*ST)™t = BgAy4BEL. From the
impression created by Street and Burgess (2007), it follows that BgMAg- BL = Z(BgT) and
therefore Z(SGT) = Z(BgT). Also from Theorem we have that BpAg-BL = Z(Bg).
Therefore, it seems that the inference problem Bg expressed in terms of T is SGT as well

as BgT. However, Bg # SG since
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101 1
0o 0 o
Bg=
B 10
0

1 -1

-1 1 0 -1 -1 -1 2 —1 —1 2 —1 —1
-1 0 1 -1 -1 2 -1 -1 2 -1 -1 2 -1

o R R O
= O = O

0 —1 —1 —1 2 2 2 —1 —1 —1 —1 —1 —1
1 —1 —1 —1 1 —1 —1 —1 2 2 2 —1 —1 —1
and SG =3 :

In the above example, though we have taken a specific D-optimal design, we are
able to highlight the lack of clarity on what g is in terms of 7. Is it that g = BgT or
Be = SGT or is it something else?

In the result that follows, for a general coded matrix By, we obtain the corresponding
inference problem for inferring on Sy in terms of the utility parameter vector 7. The result
has been obtained under a more general unrestricted setup for any design d with m > 2

and no restriction of utility-neutrality. Proof of the following result is in the Appendix [D]

Theorem 8.5. Under the MNL model, for a general coded matriz By,
(i) Var(By7) = (BgBL)(BgABL) Y (By BYL), and
(i) Var(Bu B) "' But) = (BuABp) ™ = Var(Bp).

As a consequence of Theorem[8.5], we have Z(ByT) = (ByBY) " (ByABY)(By BY)™
and Z((ByB}) 'Byt) = ByAB}, = Z(By). We now have the following Corollary as
special cases when (i) By = Bo, (ii) By = Bg and (iii) By = (BgBL) 'Bg.

Corollary 8.6. Under the MNL model, the following holds.

(i) Var(Bot) = (BoABL) ™' = Var(Bo); and Z(Bot) = BoABL = (o).

(ZZ) VGT((BEBg)_lBE%) = (BEABg)_l = VCLT(BE); and I((BEBg)_lBET) = BEABT =
Z(Be),

Under orthonormal coding (Corollary [8.6[(i)), the inference problem is Bo7 with
Z(Bot) = BoABY. Corollary (ii) shows that under the usual effects coding setup, the
inference problem is not Bg7 (as illustrated by Street and Burgess (2007), pp. 77-78)
but the correct inference problem is (BpBL) 'Bpr with Z((BgBL) 'Bpr) = BgABL.
Finally, the inference problem Bp7 (Corollary [8.6iii)) implies test-control setup with
Z(Bgt) = (BpBL) Y (BgABL)(BgBL)~'. We discuss more on the test-control setup in
Section [R.5

It is also easy to establish directly from the definition of the matrices Bg, S and

G that (BpBL)™'Bp = SG (proof in Appendix D)), and thus, Bp = (SGGTST)"1SG.
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Thus, another form of the inference problem SGT as in (8.11]), when written as a function
of effects coded matrix, is (BpB%L) 'Brt. However, referring to (8.11]), we see that
I(Br) = Z(SGT) = (S(GAy=GT)TST)~! holds only for D-optimal paired choice designs
d* of GraBhoff et al.| (2004)), while Z(8g) = Z(SGT) = Z((BgBL) ' BgT) = BgABZL holds
for any arbitrary choice design. Using the identity Bg = (SGGTST)~1SG, it thus follows
that for any arbitrary choice design, Z(8g) = Z(SG7) = Z((BgBE)'Bg7) = BpABL =
(SGGTST)LSGAGT ST (SGGTST)~L.

The most commonly studied optimal designs under the choice experiments are the D-
optimal designs. For a general full-rank inference problem M7, the D-optimality criterion
is invariant to the choice of M. However, for some other criterion, different M may lead to
different optimal designs (see, [Morgan and Stallings| (2014))). For example, the A-optimal
designs are generally different for the two non-singular full-rank inference problems (o =
Bot and B = (BEBg)_lBET. When our interest lies in the estimation of main effects,
it is important to understand the preferred inference problem. Recently, Sun and Dean
(2016) and Sun and Dean (2017) have obtained A-optimal designs under orthonormal
coding, while (Chai et al.,| (2017) have obtained three-level A-optimal designs both under
effects coding as well as under orthonormal coding. (Chai et al.| (2017)) show that the A-
optimal designs under the effects coding are different than those under the orthonormal
coding. Their non-singular full-rank inference problem for the A-optimal designs under
effects coding is (BgBL)™'Bpr, whereas the non-singular full-rank inference problem
under the orthonormal coding is Bo7. We discuss more on this in Section [8.5

Before we conclude this section, as an application to the equivalence of the SB and
the HZ approaches, we generalize the paired choice D-optimality results of |(Graihoff et al.
(2004) for m > 2. |Street and Burgess| (2007) have provided sufficiency conditions to
obtain D-optimal choice designs for m > 2 under the utility-neutral setup. Since D-
optimality criterion is invariant with respect to reparameterizations, we now provide the
corresponding D-optimality results for estimating g = (BgBL) ' Bg7 and Bgt. Proof

of the following result is in the Appendix D]

Theorem 8.7. Let d* be a D-optimal choice design, under the utility-neutral setup,

for estimating the main effects Bot and Lg(BoT) = diag(ayly,—1,...,axl,, 1), where
a; = #511) and S; is as in |Street and Burgess (2007)[Theorem 6.53.1]. Then, d* is

also D-optimal under the HZ approach for inferring on Bg and Bgt. Furthermore, the
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respective information matrices for inferring on Bg and BgT are:
(i) Iy (Bg) = Zg-((Bg BL) ' Bpt) = diag(ai Vi, . . ., ax Vi), and
(ii) Zp-(Bpr) = diag(aa Vi, ... Vi),

where V; = £(I, 1 + J,, 1) and V; ' = %(Ui-[vi—l — Jy-1).

U

8.5 Inference problem under A-optimality

In this section, we consider different inference problems for optimal estimation of k£ main
effects corresponding to the k attributes with the ¢th attribute at v; levels. For the ease
of understanding, we first discuss the result for one attribute (the ith attribute) and then
generalize it for k attributes.

Let Ziu = (—=1u 1y Oux(u—u-1)) for u=1,...,v; —1. Then, the (”21) x v; coefficient

matrix of all normalized elementary comparisons between the v; levels of the ith attribute

1 { Zs
z— L[ %0
V2 \ Z,

2))T and Z(i) = Z(iw;—1)- Note that Z(i) is a contrast

18

... 7T

(7;,’[}7;7

where Z;) = (Z(j;l) Z(j;z)
matrix for comparing level labeled v; — 1 of ith attribute to each of the remaining v; — 1
levels labeled 0,1, ..., v; —2. Similarly, Z;) is a contrast matrix for pairwise comparisons
of the levels labeled 0,1, ...,v; — 2 of attribute .

For the inference problem Z;7, the matrix Z; represents all normalized elementary
comparisons between levels of the ith attribute. Then, as a consolidated measure of

goodness of a choice design, the sum of the variances of the estimates of all normalized

elementary comparisons is given by
triVar(Z;7)). (8.13)

For measuring goodness of a choice design, (8.13]) ensures that equal importance is
provided to each of the (”22) elementary comparisons of which only v; — 1 comparisons
are independent. We now show the relationship between the sum of the variances of

the estimates of all normalized elementary comparisons and the sum of variances of the
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estimates under different inference problems. We first have the following theorem whose

proof we discuss later.
Theorem 8.8. Under the main effects model, for attribute 7,

tr[Var(BW7)) = ztr[Var(Zi%)].

Uy

It follows from Theorem [8.8|that under orthonormal coding, for attribute 4, the aver-
age variance of B{# is proportional to the average variance of (”2) elementary comparisons
among the levels of the attribute.

Huber and Zwerinal (1996) (pp. 309), for minimizing errors around the estimated
parameter B 1, considered the A-criterion under the non-singular full-rank setup. Accord-
ingly, we first focus on the non-singular full-rank inference problem. As in Theorem [8.8]
we first consider a single attribute setup, keeping the general result and its proof for a

later theorem.

Theorem 8.9. For attribute i, under a non-singular full-rank inference problem,

(i) tr[VaT((Béi)Béi)T)AB&')%)] = Ztr[Var(Z7)] + v%_tr[Var(Z(i)f')},

2
vi

(ii) tr[Var(BY'#)] = tr[Var(Zu 7).

For the inference problem under effects coding, from Theorem [8.9(i) we find that for
A-optimality of the ith attribute, there is a disproportionately higher weight (importance)
attached for the estimation of the main effect components representing comparisons among
the first v; — 1 levels labeled 0,1, ..., v; — 2. To compare A-optimal designs under effects

coding and under orthonormal coding, we consider the following example.

Example 8.10. Let k = 2, N = 6,v; = vy = 3. Under the utility-neutral setup, for the

estimation of main effects, we consider two designs di and dy (Chat et al., |2017), where
dy = and do =

The design dy is A-optimal under effects coding (the non-singular full-rank inference
problem (BgBL)™'Bpt) whereas dy is A-optimal under orthonormal coding (the non-
singular full-rank inference problem BoT) .

A closer look at dy shows an unequal number of paired comparisons of attribute levels

for each attribute. For example, for each of the two attributes in dy, the unordered pair
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(2,0) occurs once, (2,1) occurs twice and (1,0) occurs thrice. However dy, which is A-
optimal under orthonormal coding, gives equal importance to the pairwise comparisons
between the three attribute levels, i.e., comparing levels labeled {0 and 1}, {0 and 2}, and
{1 and 2} for each attribute.

Exampleshows that for the non-singular full-rank inference problem (B BL) ' BgT,
A-optimal design is such that it gives more importance to comparsions of the levels (0,1) as
against the other comparsions, whereas under the orthonormal coding with non-singular
full-rank inference problem Bo7, equal importance is attached to all the three elementary
comparisons (0,1), (0,2) and (1,2).

We now give a generalization of Theorem and Theorem for k attributes, proof
(and a mathematical version of the same) is given in the Appendix [D] In order to use
effects coding for the purpose of identifying A-optimal designs, parity is achieved among
the attributes with different number of levels by considering rows of M, of the inference

problem M, in its normal form.

Theorem 8.11. In a choice experiment having k attributes with the ith attribute at v;

levels, under the A-criterion, in the main effects model,

(1) all elementary comparisons among the levels of each attribute are given equal impor-

tance for the inference problem BoT,

(11) (”"2_1) elementary comparisons among the levels 0, ... ,v; — 2 of each attribute are

given more importance for the normalized inference problem (BpBL) 'Bgr,

(111) v; — 1 elementary comparisons of levels 0, ..., v; — 2 with level v; — 1 of each attribute

are given more importance for the normalized inference problem BgT.

It seems reasonable that one would want to attach equal importance to all elementary
comparisons of the attribute levels for finding a good design for estimating each of the
main effects. Restricting to a non-singular full-rank inference problem, this suggests that
for conducting search of good choice designs under the A-criterion, it is more appropriate
to use orthonormal coding than the effects coding.

The inference problem Bg7, that came up in Theorem [8.9(ii) (and Theorem [8.11]

(iii)), addresses situations where the primary interest lies in making test-control com-
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parisons. In test versus control comparisons, some new levels (called test levels) of an

attribute are compared with an existing control level.

Optimal designs under the single attribute setup have been amply provided by sev-
eral researchers; we refer the readers to the review papers by Hedayat et al. (1988)) and
Majumdar| (1996). Under the multi-attribute setup, designs for test-control experiments
have been obtained by Guptal (1995) and Gupta (1998)). In discrete choice experiments,
when manufacturers/service providers or policymakers want to study the effect of few
potential attribute-levels on the utility of a product/service, test-control discrete choice

experiments would be more practical.

Our primary goal in a test-control discrete choice experiment is to determine which
level among the test levels has a significantly more impact on the utility when compared
against the control level. Thus, for the ith attribute, we make elementary comparisons
between control level labeled v; — 1 and each of the remaining v; — 1 test levels (labeled
0,1,...,v; —2) with as much precision as possible. There is a need for more work for
finding A-efficient or A-optimal test-control choice designs.

As indicated in GroBmann and Schwabe| (2015), the inference problem (BgBE) ' BpT
has more appeal than the inference problem BoT since the inference problem under effects
coding has a clearer interpretation. This is so because the v; — 1 independent comparisons

under effects coding are representing the difference between the true unknown latent

utility value of a level [; (where [; is considered only for v; — 1 levels, i.e., 0,1,...,v; — 2),
of an attribute i, and the average (over all levels [;, where [; = 0,1,...,v; — 1) of the true
unknown latent utility values, for each i =1,... k.

Moreover, as also indicated in (Gra3hoff et al.| (2003) (pp. 379) and also in |Grafihoff:
et al.| (2004) (pp. 375), to consider A-optimality under effects coding, one needs to resort
to the singular full-rank inference problem by additionally considering, for each attribute,
the left out comparison of one of the level effects (corresponding to level v; —1) as deviates
from the average of all level effects of attribute i. Accordingly, the revised inference
problem would be singular with M of order (> v;) x L rather than (> (v; — 1)) x L. The
corresponding information matrix for such an inference problem M7 would be of order
(>-v;) x (O] v;) having rank > (v; — 1). For A-optimality considerations, we now show
the equivalence of such a singular full-rank inference problem to that of the non-singular

full-rank orthonormal inference problem.
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It is easy to see that the normalized form of (BgB%L)™' By is Yg(BrBL) !B where
Yp = diag(y/ 251y 1, ...,/ =251,1). We define a matrix A of order (3 v;) X puy

v1—1 v —1
such that A = diag(Bél)T, e Bék)T). Also, let B, = AYg(BpBL) 'Bg. The weighted

sum of variances of the ) v; normalized comparisons is given by

S U Ly Var(BO#) = tr[D,Var(B,#)), (8.14)

i=1 '

%

where Bg) is B, corresponding to the ith attribute, and I';, = diag(I's1, Tpe, - .., Tng) with
Lpi = ((vs — 1) /vi) 1,

While obtaining ¢r[I',Var(B,7)] in (8.14)), for each attribute i, we account for the
contribution of Var(BT(f)f') through Wv—:ltr[Var(B,(f)f')]. This ensures providing equal im-
portance to each of the k sets of v; comparisons of which only v; — 1 comparisons are

independent, : = 1,2,..., k. We now have the following result, proof of which is in the

Appendix D]
Theorem 8.12. Under the main effects model,
tr[Var(Bo?)] = tr[l,Var(AY g(BgBE) ' Bp?)] = tr[[,Var(B,7)).

It follows from Theorem that while considering a full set of ) v; normalized
contrasts under effects coding, one would get the same A-optimal designs as one would

get under orthonormal coding.

8.6 Discussion

In the theory of discrete choice experiments, we show the equivalence of two seemingly
different approaches (the SB and the HZ approaches) for deriving the information matrices
under the MNL model. Under the utility-neutral effects coding setup, the similarity of
the two approaches for a D-optimal paired (m = 2) choice design was first addressed
by |Groimann and Schwabe| (2015). We have shown how for any general coded matrix
By and under a general setup, the two seemingly different structures of the information
matrices are related.

We have obtained a simple linear function of 7 that is being inferred upon under

different inference problems. This allows us to establish that the inference problem being
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addressed under effects coding is not Bg7, but (BgBZ%L) 'Bg7r. This helps us in estab-
lishing that the information matrix under the SB approach for the inference problem
(BeBL)™'Bpt is BgABL, which is same as the information matrix for effects coding

under the HZ approach.

Most design criteria are sensitive to the coding of the attributes. As discussed, an
exception is the D-optimality criterion because the criterion is not affected by reparame-
terizations. That is why most optimality results for choice and paired comparison designs
have been derived for the D-criterion. For the non-singular full-rank setup, [Sun and
Dean| (2016) and [Sun and Deanl (2017) obtained A-optimal designs under orthonormal
coding, while Chai et al.| (2017) have obtained three-level A-optimal paired choice designs,
both under effects coding and orthonormal coding. Since A-optimal designs usually differ
depending on the inference problem being addressed and the corresponding codings of
the attributes, it is pertinent to understand which coding is more appropriate for defin-
ing main effects. In this connection, under the non-singular full-rank inference problem,
the followers of the HZ approach have been usually adopting the effects coding of the
attributes. Although, the orthonormal coding may be technically convenient, the con-
trast represented by the matrix Bp usually have no natural interpretation for qualitative

attributes (see, |(Grofmann and Schwabe| (2015))).

To obtain A-optimal designs under a non-singular full-rank main-effects problem, we

CH)

2) elementary comparisons of

show that BoT attaches equal importance to each of the (

the 7th main effect, « = 1,...,k. On the contrary, the non-singular full-rank inference

’Ui—l

5 ) of the overall (”2) elemen-

problem (BpBE)™'Bpt attaches more importance to (
tary comparisons, for the ith main effect, s = 1,..., k. However, to consider A-optimality
under effects coding, one needs to resort to the singular full-rank inference problem by ad-
ditionally considering the left out comparison of one of the level effects for each attribute.
We have shown that from the point of obtaining a good A-optimal designs for choice
experiments, one can equivalently use either orthonormal coding for the non-singular full-

rank inference problem or normalized effects coding for the singular full-rank inference

problem.

In situations where the primary interest lies in making test-control comparisons, test-
control discrete choice experiments are conducted. The inference problem then, would

be to estimate Bgr7. The issue of construction of A-efficient and A-optimal designs for
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estimating Bg7 will be discussed in a future work.
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Chapter 9

E(s%)- and UE(s?)-Optimal

Supersaturated Designs

This chapter is based on the following work:

Cheng et al.|(2018): Cheng, Ching-Shui; Das, Ashish; Singh Rakhi; Tsai, Pi-Wen; F(s?)-
and UE(s?)-Optimal Supersaturated Designs. J. Statist. Plann. Inference 196 (2018),
105-114.

9.1 Introduction

In an n-run factorial experiment involving m two-level factors, for the general mean
and all the main effects to be estimable, we must have n > m + 1. A design is called
supersaturated if n < m + 1. Under the assumption of factor sparsity that only a small
number of factors are active, a supersaturated design can provide considerable cost saving
in factor screening.

Each two-level supersaturated design d can be represented by an n x m matrix Xy
having entries 1s and —1s, with each column of X, corresponding to one factor and each
row representing a factor-level combination. Let Z; = [1 X4], where 1 is the n x 1 column
of 1s, be the model matrix of the main-effects model for d. Two columns u and v of Zy
such that u = v or u = —v are said to be aliased. We require that no two columns of Z;
are aliased.

A factor is said to be level-balanced if the corresponding column of X; has the same

numbers of 1s and —1s. This is possible only if n is even. For an odd n, a factor is said to
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be nearly level-balanced if in the corresponding column the numbers of times 1 and —1
appear differ by one. Without loss of generality, we require that 1 appears (n—1)/2 times
and —1 appears (n+1)/2 times. A design is said to be level-balanced (respectively, nearly
level-balanced) if all the factors are level-balanced (respectively, nearly level-balanced).
Later in Section [9.3] we provide a motivation behind level-balanced and nearly level-
balanced designs.

Ideally one would want the columns of Z; to be mutually orthogonal, which clearly is
not possible for supersaturated designs. Under level-balanced designs, columns of X, are
orthogonal to 1. In this case, a simple measure (Booth and Cox,|1962) of nonorthogonality

among the columns of X is
Eo(s”) = D, (alz), (9.1)
( ) 1<t

where z; is the ith column of X;. The popular E(s?)-criterion (Lin, [19930) is to minimize
(9.1) among the level-balanced designs. For the case when n is odd, [Nguyen and Cheng
(2008) suggested minimizing among nearly level-balanced designs.

Prima facie it appears that there is no need to impose the restriction of level-balance
or near-level-balance while identifying a good supersaturated design so long as it mini-
mizes the overall nonorthogonality among the columns of Z;. |Marley and Woods| (2010))
extended the definition of Ey(s?) to include the inner products of 1 and the columns of

Xg4. Jones and Majumdar| (2014) also introduced the criterion

m

UB(s2) = (m1+1) STm+ S (@l 9.2)

2 i=1 1<i<j<m

For given m and n, let Dy(m,n) be the class of all supersaturated designs without the
restriction of level-balance or near-level-balance, and let Dgr(m,n) be the subclass of
level-balanced or nearly level-balanced supersaturated designs. A supersaturated design
d* € Dy(m,n) is said to be UE(s?)-optimal if UEg(s?) < UE,(s?) for all d € Dy(m,n).
It is clear that an E(s?)-optimal design is UE(s?)-optimal over the subclass Dg(m,n),
but may not be UE(s?)-optimal over the entire class Dy(m,n).

Removing the constraint of level-balance or near-level-balance makes the construc-
tion of UE(s?)-optimal designs very easy, and produces a smaller sum of squares of the

entries of the information matrix Z1Z,;, which is twice the sum of the two quantities
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inside the brackets in . While the former is an advantage because in general F(s?)-
optimal designs are difficult to construct, a consequence is that usually there are many
UE(s*)-optimal designs with diverse characteristics and performances. Additional criteria
are needed to choose among UFE(s?)-optimal designs. Among possible secondary criteria,
Jones and Majumdar| (2014)) mentioned the maximization of the number of level-balanced
factors among the UFE(s?)-optimal designs. Regarding the reduction of the sum of squares
of the entries of the information matrix, since Y ;- (17z;)? is minimized by level-balanced
or nearly level-balanced designs, the difference in the F(s?)- and UFE(s?)-criteria, when
both are considered as criteria over the entire Dyr(m,n), is that an UE(s?)-optimal design
minimizes the sum of ", (172;)* and 3, ;.. (#]2;)?, while an E(s®)-optimal design
minimizes the former followed by the minimization of the latter. In other words, the
E(s*)-criterion places a heavier weight on Y ;" (172;)%. We denote this quantity by SS
in the rest of the chapter.

Since only a small number of factors is expected to be active, one way to evaluate
the performance of a supersaturated design is to consider its average efficiency over lower
dimensional projections. Such an approach based on average D-efficiencies was proposed
in Wu/ (1993)). A comparison in Section [9.2| of the E(s?)- and UE(s?)-optimal designs for
n = 12 and m = 14 discussed in Example 2 of Jones and Majumdar| (2014) shows that
the UE(s?)-optimal design has worse projection properties than the F(s?)-optimal design.
Also, this UE(s?)-optimal design, with 11 level-balanced factors, has worse projection
properties than some other UFE(s?)-optimal designs with fewer level-balanced factors. This
indicates that maximizing the number of level-balanced factors is not an appropriate

secondary criterion.

In Section we show that the traditional E(s?)-criterion is a good surrogate for
maximizing the average D-efficiency over f-factor projections for small f (relative to m).
A similar argument leads to the minimization of SS as a good secondary criterion for
selecting UE(s?)-optimal designs with good lower-dimensional projections. In Section
we present simple and systematic methods of constructing designs that minimize
5SS among the UFE(s?)-optimal designs constructed by using the method of |Jones and
Majumdar| (2014)). Our examples show that, for lower dimensional projections, the best
UE(s*)-optimal designs have nearly as good average D-efficiencies as the E(s?)-optimal

designs. We also provide UE(s?)-optimal design construction for the case n = m = 1 (mod
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4), which is missing in [Jones and Majumdar| (2014). In Section [0.5] we derive conditions
under which F(s?)-optimal designs are also UFE(s?)-optimal and identify several families

of designs that are optimal under both criteria.

9.2 An example

The basis of using a supersaturated design is the inherent assumption that there are very
few active factors. The identification of the active factors is usually based on a forward
selection method of model building involving projections onto various subsets of factors.
Thus it is desirable to use a supersaturated design with good projection properties in the
sense that on average the model parameters can be efficiently estimated during the model
building process.

Suppose among the m factors, only those in a set F' of f factors are active, f < n—1.
Let X, r be the design matrix of d consisting of the f corresponding columns of Xj.
Here d¥ is the projected design of d onto the factors in F. Consider the model matrix
Zgr = [1 X4r] and let Myr be the information matrix of d¥’. Then

M = ZgFZdF _ [ n 17X ¢ ] .
X1 X Xgr

Suppose we measure the performance of the projected design by the D-criterion
D(Xyr) = {(det[Myr])"/+D} /n. Then the overall D-efficiency of f-factor projections of
a supersaturated design d can be measured by the average D-efficiency

Df<d>=% S D(Xar),
f

FiFI=f

where the sum is over all the subsets F' consisting of f factors, and the objective is to
maximize D¢(d), f =1,2,...,(n—1). Another quantity of interest is the number of non-
estimable f-factor projective main-effects models, denoted by NE;. Note that D; and
NEy are related to, respectively, information capacity and estimation capacity proposed
by Sun| (1993).

In Example|9.1], we compare the performances of several E(s?)- and UF(s*)-optimal
designs with m = 14 and n = 12 with respective to Dy and NEy for all f < 11. For each
design, we also report the values of the following three characteristics which, as demon-
strated later, are useful for helping identify UFE(s?)-optimal designs with good projection

properties:
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LB = the number of level-balanced (nearly level-balanced) factors for n even (odd);

OF = the number of orthogonal (nearly orthogonal) pairs of factors among the (’;) pairs
for n even (odd);

Q) = LB+ OF.

Here two factors are said to be orthogonal (nearly orthogonal) if the inner product of

their corresponding columns in the model matrix is zero (£1).

Example 9.1. For m = 14 and n = 12, a UE(s?)-optimal design, say dg, and an F(s?)-
optimal design, say d;, are displayed in Table[9.2] and Table respectively, of |Jones and
Majumdar| (2014)). Here dg has 11 level-balanced factors. We construct four additional
UE(s?)-optimal designs dy, ds, ds, and ds with 6, 12, 6, and 5 level-balanced factors,
respectively. All the six designs can be found in the Appendix [E] Table shows that
d; > dg for all i = 1,...,5, where d; > d; (d; dominates d;) means that d; is at least as
good as d; under both Dy and NE; for every f =1,...,n — 1, and d; is better than d;
in some cases. In particular, the E(s?)-optimal design d; dominates the UF(s*)-optimal
design dg. We also note that dy > d;, j = 3,4,5,6. This indicates that, at least in
terms of projection properties, maximizing the number of level-balanced factors is not
an appropriate secondary criterion. Design dy is the best among the five UE(s?)-optimal
designs in the table. In fact, based on an exhaustive search, it is the best design among
UE(s*)-optimal designs constructed using the method of [Jones and Majumdar| (2014)
with respect to Dy and NEy. Between dy and di, d; is better than dy under Dy for f < 5
(but ds is at least 99% efficient as d; in all these cases, where the efficiency is measured
by the ratio of Dy values), the two designs are tied under NE; for f < 6, and d; is better
than d; for 6 < f < 11. Thus dy can be recommended. However, it takes additional work

to identify it among many UE(s?)-optimal designs.

9.3 Projection justification

It is well-known that a good surrogate for maximizing D(Xyr) is the (M.S)-criterion
proposed by [Eccleston and Hedayat| (1974): maximizing tr[Mzr] and minimizing tr[Mr]>
among those that maximize tr[Myr]. This goes back to the result of Kiefer| (1958, 19750)

that a design is optimal with respect to many criteria if it maximizes the trace of the
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Table 9.1: Comparison of six designs with m = 14 and n = 12

dy da ds ds ds de
S8 0 32 32 44 48 48
LB 14 6 12 6 5 11
OF 67 36 72 36 37 73
Q 81 42 84 42 42 84
(D1, NE1) | (1, 0) (0.9920, 0) | (0.9918, 0) | (0.9889, 0) | (0.9879, 0) | (0.9877, 0)
(D2, NEp) |(0.9898, 0) | (0.9809, 0) | (0.9805, 0) | (0.9765, 0) | (0.9751, 0) | (0.9744, 0)
(Ds, NE3) |(0.9759, 0) | (0.9679, 0) | (0.9671, 0) | (0.9626, 0) | (0.9609, 0) | (0.9579, 1)
(D4, NE4) |(0.9590, 0) | (0.9530, 0) | (0.9498, 3) | (0.9470, 0) | (0.9449, 0) | (0.9341, 13)
(Ds, NE5) |(0.9391, 0) |(0.9360, 0) | (0.9235, 30) | (0.9291, 0) | (0.9268, 0) | (0.8972, 75)
(Ds, NEg) | (0.9157, 0) | (0.9162, 0) | (0.8808, 135) | (0.9084, 0) | (0.9058, 0) | (0.8400, 255)
(D7, NE;) |(0.8869, 3) | (0.8928, 0) | (0.8116, 360) | (0.8832, 3) | (0.8801, 4) | (0.7540, 568)
(Dg, NEg) |(0.8476, 25) | (0.8630, 6) | (0.7048, 627) | (0.8484, 24) | (0.8439, 30) | (0.6323, 867)
(Dg, NEo) |(0.7831, 82) | (0.8163, 36) | (0.5522, 738) | (0.7876, 84) | (0.7799, 97) | (0.4731, 918)
(D10, NE1o) | (0.6614, 143) | (0.7189, 93) | (0.3565, 585) | (0.6566, 165) | (0.6455, 177) | (0.2879, 665)
(D11, NE11) | (0.4060, 161) | (0.4790, 132) | (0.1477, 300) | (0.3803, 180) | (0.3710, 184) | (0.1108, 316)

information matrix and all the eigenvalues of the information matrix are equal. Since

tr[Myr] = n(f + 1) is a constant, a good surrogate for maximizing D(d) is to minimize

LS M = S (25 2]
(f) FiF|=f (f> Fi|F|=f

Using the fact that the first- and second-order inclusion probabilities under simple random

(9.3)

sampling of size f without replacement from a population of size m are, respectively, f/m
and f(f —1)/[m(m — 1)], it is easy to see that
1
(%)

Due to factor sparsity, f/m is small; thus f(f —1)/[m(m —1)] is much smaller than f/m.

fF=1

oy 1)tr[(X§’Xd)2].

2
Z tr[Zr Zgr]* = constant + —f[lTXngl] + (9.4)
m

FiF|=f

It follows that a good surrogate for minimizing is the two-step procedure of first min-
imizing 17 X;XT1(= 99), and then minimizing tr[(X} X,)?]. The first step is achieved by
level-balanced or nearly level-balanced designs. The second step is equivalent to minimiz-
ing E,4(s%). This justifies the traditional E(s?)-criterion and shows why it is important
to restrict to level-balanced or nearly level-balanced designs for achieving good lower-
dimensional projection properties. Earlier, |Lin (1993a) and (Tsai and Gilmour| (2016])
studied two-level saturated main effects screening designs under factor sparsity. They
found that those with good lower-dimensional projections are to be found among level-

balanced or nearly level-balanced ones.
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For each design d € Dy(m,n), let UEJZi(SQ) be the average of the UEyr(s?) values
over all F' involving f factors; that is,

UE{(s Z UEyr (s
) el

Since Z1.Z,r has constant diagonals n, minimizing UEf( %) is equivalent to minimizing
(9.3), and thus is also a good surrogate for maximizing D(d).
The following can easily be established:

m+1
(f+1)(m—

A possible secondary criterion for discriminating UE(s?)-optimal designs is to minimize

UE{(s*) among the UE(s?)-optimal designs. By (9.5), this is to minimize 17X,X]'1

2(m — f)

m(m + 1)

UE{(s%) = 0 {(f — 1) UEy(s*) + 1TXng1} . (9.5)

among the UE(s?)-optimal designs. The resulting designs do not depend on f.

The traditional E(s?)-criterion is equivalent to the two-step procedure of minimizing
SS and then minimizing UFEy(s*) among those that minimize SS. Thus using the mini-
mization of SS as a secondary criterion for UE(s?) amounts to reversing the two steps of
the traditional E(s?)-criterion as formulated above: when the minimization of SS is not
done before minimizing UFE,(s?), it should be done afterwards. Let Dg(m, n) be the class
of all UE(s?)-optimal designs constructed from a Hadamard matrix using the method of
Jones and Majumdar (2014). A design that minimizes SS over Dy(m,n) is said to be
superior UE(s*)-optimal.

Usually superior UE(s?)-optimal designs are not unique. In fact, the E(s?)-criterion
also suffers from this problem. The issue of choosing better E(s?)-optimal designs arises
naturally, but it has not received much attention in the literature, perhaps because F(s?)-
optimal designs are difficult to construct. The easy construction of superior UFE(s?®)-
optimal designs makes it possible to further choose better designs from them.

An interesting observation in Table[9.1]is that for the two designs with SS = 32 (and
also those with SS = 48), the one with more level-balanced factors has worse projection
properties. We offer the following explanation. It is desirable to make the columns of
the model matrix as nearly orthogonal as possible, that is, to make the absolute values
(or, equivalently, the squares) of the off-diagonal entries of the information matrix as
uniformly small as possible. For this purpose, we do not want to have too many pairs of

orthogonal z; and z; once UE,(s?) has been minimized, where z; and z; are columns of
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Zg. After the minimization of UFy(s?), the sum of squares of all pairwise inner products
2120 # j, is fixed. If there are too many zeros among these inner products, then the
overall distribution of the squared pairwise inner products is likely to be more dispersed.
Thus, subject to the minimization of UFE,(s?), it is better not to have too many orthogonal
pairs (z;, zj), ¢ # j. Since the number of such pairs is equal to Q = LB+ OF, it is preferable
to have a small ). In particular, we do not want to have too many level-balanced factors
among the designs with the same values of UE,(s?) and SS.

The discussion above can be linked to the concept of majorization (Marshall and
Olkin, 1979). Given two vectors z = (z1,...,2;)" and y = (y1,...,yx)’, we say that z is

majorized by y if

k k
i=1 1=1

and
t t
me > Zym forall 1 <t < k-1, (9.7)
i=1 i=1
where z(;) < -+ <y and yp) < - -+ < ypy are ordered values of 4, ..., 2, and yi, ..., Yy,

respectively. Under and , the entries in x can be regarded as less dispersed than
those in y. For example, the vector with 1 = - - - = x;, is majorized by all the y’s satisfying
. Majorization is a strong property that requires all the k£ — 1 inequalities in to
hold. Suppose all the components of x and y are nonnegative, is satisfied, = has @,
zero components, and y has @), zero components. If @, < @,, then is satisfied for
all 1 <t < Q. In this case (9.7)) partially holds for a subset of the inequalities.

Table exhibits the patterns that (i) designs with smaller SS and @ tend to have
better projection properties and (ii) those with smaller SS but larger ) may have better
lower-dimensional and worse higher-dimensional projection properties. For example, ds
has smaller SS and @ than the other UE(s?)-optimal designs in the table; at the same
time it dominates all these designs. At the other extreme, dg has larger 5SS and () than
the other UE(s?)-optimal designs in the table, and it is dominated by all of them. Design
d3 has the same value of SS as dy, but has a larger (); we see that it is dominated by ds.
Design d4 has the same value of () as ds5, but has a smaller SS; we also have that d; domi-
nates ds. Even though d3 has a smaller SS than d4 and d5, it has a much larger ). We see
that ds has better lower-dimensional, but worse higher-dimensional projection properties

than these two other designs. A similar observation applies to the comparison of d; and ds.
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Example 9.2. Consider m = 16 and n = 10. Seven designs are listed in Table [9.2]
Design d; is E(s?)-optimal, while dy,ds,dy,ds,ds, and d; are UE(s*)-optimal. These
designs can be found in the Appendix [El The six UE(s?)-optimal designs in the table
have the same values of SS, and are labeled according to increasing values of ). We

haved1>d2>d3>d4>d6>d5>d7.
than dg (53 vs.

Note that ds has a very slightly smaller SS
54), but is very slightly dominated by the latter. The F(s*)-optimal
design d; dominates all the UE(s?)-optimal designs in the table, but a carefully chosen
UE(s?)-optimal design such as ds is at least 96% efficient as d; under the D -criterion for

f<T

Table 9.2: Comparison of seven designs with m = 16 and n = 10

di da ds3 dy ds ds d7

SS 0 60 60 60 60 60 60

LB 16 1 1 7 7 7 9

OF 0 5 8 43 46 47 58

Q 16 6 9 50 53 54 67
(D1, NE)|(1, 0) (0.9811,0)  |(0.9811,0)  |(0.9807,0)  |(0.9807, 0)  [(0.9807, 0)  |(0.9799, 0)
(Da, NE»)|(0.9792, 0)  |(0.9562, 0)  |(0.9556, 0) (09552, 0)  |(0.9546, 0)  [(0.9550, 0)  |(0.9521, 0)
(D3, NE3)|(0.9504, 0)  [(0.9276, 0)  [(0.9262,0)  [(0.9247, 1)  [(0.9232,1)  |(0.9243, 1)  |(0.9165, 3)
(D4, NE4)|(0.9157, 0)  |(0.8951, 0)  |(0.8927, 0)  |(0.8866, 16) [(0.8841, 16) |(0.8861, 16) [(0.8663, 48)
(Ds, NEs)|(0.8748, 0)  |(0.8568, 6)  |(0.8529, 10) |(0.8367, 114) |(0.8326, 118) |(0.8357, 116) |(0.7914, 336)
(Ds, NEg)|(0.8261, 4)  |(0.8075, 76) |(0.8000, 126) |(0.7693, 486) |(0.7614, 534) |(0.7664, 513) |(0.6817, 1376)
(D7, NE7)|(0.7652, 46) |(0.7354, 451) [(0.7181, 725) |(0.6762, 1427)|(0.6597, 1661)[(0.6679, 1568)|(0.5326, 3680)
(Ds, NEs)|(0.6791, 311) |(0.6141, 1684)|(0.5759, 2526)|(0.5396, 3205)|(0.5111, 3767)|(0.5227, 3562)|(0.3522, 6732)
(Do, NEy)|(0.5149, 1679)|(0.3908, 4410)((0.3316, 5710)|(0.3222, 5835)((0.2923, 6421)[(0.3009, 6264)((0.1649, 8648)

The empirical studies we have carried out indicate that a design is likely to dominate
those with larger SS and larger (or similar) @, two designs with about the same S5 and @
are expected to perform similarly, and one with smaller §S but a much larger () may have
better lower-dimensional projections and worse higher-dimensional projections. There is
no guarantee that a simple surrogate criterion such as what we propose here will produce
the best design, but minimizing S5 followed by minimizing @) is an effective way of getting
UE(s?)-optimal designs with good projection properties. We are interested in using a

computationally cheap criterion to identify good designs (such as dy in both Example
and Example [0.2), rather than to rank the UE(s?)-optimal designs.

103



In certain cases E(s?)-optimal designs are easy to construct; then the strategy of
minimizing () can be used to find better designs. For example, |[Lin| (19934) proposed a
simple method of using a Hadamard matrix of order 4t to construct a supersaturated
design with m = 4t — 2 and n = 2t. |[Nguyen (1996) showed that such half-Hadamard
matrices achieve the lower bound on E(s?) derived by Nguyen| (1996) and Tang and Wu
(1997), and hence are F(s?)-optimal. They are also UE(s?)-optimal (see Theorem [9.6] in
Section . Furthermore, with SS = 0, they minimize SS among the UE(s?)-optimal
designs. Projection properties of several half-Hadamard matrices and UF(s®)-optimal
designs for the case m = 22 and n = 12 are summarized in Table [9.3] All the designs in
this table are UFE(s?)-optimal and can be found in the Appendix . Designs d; and d, are
half-Hadamard matrices constructed by using Hadamard matrices of order 24 available
in http://neilsloane.com/hadamard/. Designs ds, ds, and ds are obtained by deleting
rows and columns of a Hadamard matrix without the restriction of level-balance. We can
see that for the two E/(s?)-optimal designs, d; has smaller @ and dominates dy. Design d3
dominates dy and ds. The better E(s?)-optimal design d; is better than dz with respect to

Dy for all f <10, but has more nonestimable models when f > 7. Overall, d3 performs

quite well.
Table 9.3: Comparison of five designs with m = 22 and n = 12
dy ds ds dy ds

SS 0 0 44 80 140

LB 22 22 11 8 8

OF 132 138 66 67 78

Q 154 160 7 75 86
(D1, NE)) | (1,0) (1, 0) (0.9930, 0) (0.9872, 0) (0.9774, 0)
(Ds, NE;) | (0.9835, 0) (0.9833, 0) (0.9741, 0) (0.9663, 0) (0.9529, 0)
(D3, NE3) | (0.9611, 0) (0.9606, 0) (0.9505, 0) (0.9416, 0) (0.9263, 0)
(Ds, NEy) | (0.9347, 0) (0.9338, 0) (0.9234, 0) (0.9138, 0) (0.8972, 0)
(Ds, NE5) | (0.9044, 0) (0.9032, 0) (0.8927, 0) (0.8827, 0) (0.8651, 0)
(Ds, NEg) | (0.8699, 0) (0.8684, 0) (0.8580, 0) (0.8477, 0) (0.8294, 0)
(D7, NE:) | (0.8302, 10) (0.8284, 12) (0.8183, 0) (0.8077, 0) (0.7890, 0))
(Ds, NEg) | (0.7836,159) | (0.7816, 212) | (0.7719, 0) (0.7613, 8) (0.7424, 0)
(Do, NEy) | (0.7264, 1445) | (0.7238, 1884) | (0.7159, 0) (0.7053, 151) | (0.6867, 0)
(D10, NEio) | (0.6486, 10403) | (0.6448, 12478) | (0.6438, 88) | (0.6328, 1669) | (0.6157, 216)
(D11, NEip) | (0.5089, 72727) | (0.5013, 81856) | (0.5337, 5401) | (0.5171, 22181) | (0.5078, 8463)
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Remark 9.3. |Jones and Majumdar| (2014) argued that although insisting on level-balance
achieves the highest efficiency for the intercept, “estimation of the intercept... is not
a goal for most experiments”, and “it comes at the expense of precision of main effect
estimation.” Suppose the intercept is treated as a nuisance parameter; then for any subset
Fof{1,...,m}, the information matrix for the f main effects is Xgp([n—%llT)XdF, where
I, denotes the identity matrix of order a. Similar to earlier discussions in this section, a
good surrogate for maximizing the average D-efficiency of the main-effect estimates over

all f-factor projections is to maximize (%f) > ppiey r[X e (I, — 7 117) Xyr], and subject to

that, minimize @ Yo pypiep X Gr (I — 5 117) Xgr]?. A similar derivation as before shows
that this is equivalent to minimizing SS9, and subject to that, minimizing tr[( X1 X;)?], i.e.
the traditional E(s?)-optimality. Therefore the E(s?)-optimality is also a good surrogate
for maximizing the average D-efficiency even when the mean is treated as a nuisance

parameter and only the main effects are of interest. In this case, for the average D-

efficiencies of the designs in Table [0.1] and Table the pattern remains the same.

9.4 Construction of superior UE(s?)-optimal designs

There is no simple general construction of E(s?)-optimal designs and, except for some
limited values of m and n, they are not readily available. This section is devoted to
the construction of UE(s®)-optimal designs that minimize SS among the UE(s®)-optimal
designs in Dg(m,n). There is no guarantee that such superior UFE(s?)-optimal designs
minimize SS among all the UE(s?)-optimal designs since the method given by |Jones
and Majumdar| (2014) does not produce all the UFE(s?)-optimal designs. However, our
construction method is simple, systematic, and can be applied to all cases. We need the

following result:

Lemma 9.4. A design minimizes SS among the UE(s?)-optimal designs if and only if it

mazimizes tr{(XqX71)?].
Proof. We have
tr[(Z3 Z4)%] = n® 4+ 2 - 17X, X1 + tr[(X T X)) (9.8)

Since all the UE(s?)-optimal designs have the same value of tr[(ZZ Z4)%], by (9.8), 17 X, X1
is minimized if and only if tr[(X} X;)?] = tr[(X;XT)?] is maximized. O
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In |Jones and Majumdar| (2014), the construction of UE(s?)-optimal designs considers
four cases depending on whether m is of the form 4¢ — 1, 4¢ — 2, 4¢, or 4t + 1, where t is

a positive integer.
(a) Construction for m = 4t — 1.

Let H be a 4t x 4t (normalized) Hadamard matrix with all the entries in the first
row and first column equal to 1. To construct a UE(s?)-optimal design, we delete the
first column and 4t — n rows of H. Then the resulting matrix O is UE(s?)-optimal with
m = 4t — 1, provided that Y = [1 O] has no aliased columns. Note that Y is an n x 4¢
matrix in which any two rows are orthogonal.

We first address the existence of a Y with no aliased columns, an issue not considered
in Jones and Majumdar| (2014). Without loss of generality, let HT = [YT GT] . Also, let
YTY = [u;;] and GTG = [w;;]. Then since H' H = (4t) 1y, for all 4, j,

wij| = wil, |ui] < n, and |wg;| < 4t —n. (9.9)

If Y has two aliased columns, say the ipth and joth columns, then |u;,;,| = n. Then it
follows from that n < 4t — n. This shows that as long as n > 2¢, any matrix Y
obtained by deleting 4t — n rows from H does not contain aliased columns.

On the other hand, if n is too small, then the aliasing of some columns in Y cannot
be avoided. This can be seen as follows. There are at most 2"~! columns of 1s and —1s
of size n that are not mutually aliased. Thus in order for Y to have no aliased columns,
we must have 2”71 > 4¢, or n > [log,t| + 3, where [2] is the smallest integer greater than
or equal to z.

When 4t is a power of 2, say 4t = 2%, let H be a Hadamard matrix of order 4¢ that
is the Kronecker product of w normalized Hadamard matrices of order 2. In this case,
[logyt]+3 = w+1. For any n > w+1, let Y be the n x 4¢ submatrix of H consisting of the
w+1rows @2, (1,1), (1, —1) ®L, (1,1), @, (1, )@ (1, 1) ®L, , (1,1),j =1,..,w—2,
®¥ H1,1) ® (1,—1), and any n — w — 1 additional rows of H if n > w + 1. Then it can
be seen that Y has no aliased columns.

When 4t is not a power of 2, for Hadamard matrices of order 4, 2 < t < 25 and
n > [logyt]| + 4, we have enumerated and found that there exists at least one set of 4t —n

rows that can be deleted to get a Y without aliased columns.
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Theorem 9.5. If m is of the form 4t — 1, then all the UE(s?)-optimal designs have the

same value of SS.

Proof. When m is of the form 4t — 1, each UE(s®)-optimal X is such that any two
rows of the n x (4t) matrix Z; = [1 X, are orthogonal. Then Z;ZI = (4t)I, and hence
tr[(ZYZ4)%) = tr[(Z42F)?] = (4t)>n. On the other hand, X; X1 is a matrix with all the
diagonal entries equal to 4t — 1 and all the off-diagonal entries equal to —1. This implies
that tr[(X7 X,)?] = tr[(X4X7T)?] is a constant. It follows from that 17X, X71 is

also a constant. O

Note that Theorem is not restricted to designs constructed by the method of
Jones and Majumdar| (2014).

(b) Construction for m = 4t — 2.

For m = 4t — 2, according to the construction of |Jones and Majumdar (2014)), a
UE(s*)-optimal X, can be obtained by deleting 1 and another column o = (a, ..., a,)7
from Y, where Y is as described above. To construct a superior UE(s?)-optimal design,
we have to ensure that 17aa”'1 is maximized. This is achieved if o is a least level-balanced
column; that is, one such that the difference of the numbers of times 1 and —1 appear is

the largest.
(c) Construction for m = 4t.

For m = 4t, we need to add a column « to O such that 17 aa?1 is minimized; that is,
add a level-balanced or nearly level-balanced column that is not aliased with any column

of O.
(d) Construction for m =4t + 1,n < m.

For m = 4t + 1, the construction of [Jones and Majumdar (2014) adds to O two
columns o and [ such that the resulting design has no aliased columns. However, since

n < 4t, we have n < m.
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Suppose in the n x 2 matrix [« 3], (1,1), (=1,—1), (1,—1), and (-1, 1) appear a, b,
¢, and d times as row vectors, respectively. Then in order for X, to be UE(s?)-optimal,
a + b and ¢ + d differ by at most one; see Jones and Majumdar| (2014). Since Y has
orthogonal rows and X, is obtained by deleting 1 and adding o and S to Y, by suitably

rearranging the rows of X,, we have

(m - 1)Ia + Ja,a _3Ja,b _Ja,c —Ja,d
3 DI+, —J _J
X, XT = ba (m =11, + Jup be b.d  (9.10)
—Jea —Jeb (m—1)Ie+ Jee ~3Jed
i —Jda —Jap —3Jd.c (m—1)1a+ Jad]

where J,; is the a x b matrix of 1s. By Lemma we need to maximize tr[(X;X7T)?,
the sum of squares of all the entries of the matrix in . By direct computation, this
is achieved if ab + cd is maximized. It follows that for given a + b and ¢ + d, a and b
should differ by at most 1, and ¢ and d also should differ by at most 1. Combining this
with that a + b and ¢ + d differ by at most 1, we conclude that

(i) forn=4s,a=b=c=d =s;
(i) forn =4s+1, {a,b} ={s,s+1},c=d=sora=b=s,{c,d} = {s,s+ 1};
(iii) for n =4s+2, {a,b} = {c,d} = {s,s + 1};

(iv) forn =4s+3, {a,b} = {s,s+1},c=d=s+1lora=b=s+1,{c,d} ={s,s+1}.

(e) Construction for m = 4t + 1,n = m.

For the case m = 4t + 1, as noted earlier, the method of |Jones and Majumdar| (2014))
cannot be applied to the construction of UE(s?)-optimal designs with n = m. In this
case, instead of adding two columns to O, one can start with a larger Hadamard matrix
H' of order 4t + 4 and delete from H' three rows, a column of 1s, and two other columns
in which the number of rows that are (1,1) or (=1, —1) and the number of rows that are
(1,—1) or (—1,1) differ by at most 1. Two such columns exist because there must be two
columns such that the corresponding 1 x 2 rows in the first two deleted rows are (1,1)
and (—1,1). Then no matter what entries in the third row are, the required condition

holds. In order to maximize tr(X;X?%) among the UE(s?)-optimal designs so constructed,
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we need to maximize the sum of squares of the inner products of the 3 x 1 vector of 1s
and the two 3 X 1 columns corresponding to the two deleted columns and three deleted
rows. Theoretically, such a maximum is achieved when the two columns are (1,1,1)7
or (—1,—1,—1)T. This is not possible since otherwise the design would not be UFE(s?)-
optimal. The next best is to delete two columns with the corresponding column sums in
the deleted rows being +3 and +1. The existence of such columns can be seen as follows.
The last 4t 4+ 3 rows of H form an orthogonal array of size 4t + 4 and strength two. It
follows from Theorem 2.1 of |Cheng (1995) that, for any three of the 4t + 3 rows, either
each of the eight possible 3 x 1 columns of 1s and —1s appears at least once or one of the
three rows is aliased with the component-wise product of the other two rows. Using this,

one can easily establish the existence of the required columns.

9.5 Cases where traditional F(s?)-optimal designs are
also UE(s?)-optimal

Several families of supersaturated designs are known to be E(s?)-optimal:

(a) As mentioned in the paragraph before Remark [9.3] half Hadamad matrices are E(s%)-
optimal. Such designs have n = 2t,m = 4t — 2.

(b) |Cheng (1997) showed that a design obtained by deleting an arbitrary factor from any
design in (a) is E(s?)-optimal. Such designs have n = 2t,m = 4t — 3.

(c¢) Extending the result in (a) to the case of odd n, Nguyen and Cheng| (2008) constructed

E(s*)-optimal designs for n = 2t — 1 and m = 4t — 2.

(d) A design obtained by deleting an arbitrary factor from any design in (c) is F(s?)-
optimal. Such designs have n =2t — 1 and m = 4t — 3.

(e) Let H* be obtained by deleting a column of 1s from a 4¢ x 4t Hadamard matrix,
and let a be a level-balanced column that is not aliased with any column of H*. Let

X4 = [ H*]. Then d* is E(s?)-optimal. Such designs have n = m = 4t.

(f) Let H* be as in part (e) and let o and 8 be 4t x 1 columns of 1s and —1s such
that neither is aliased with any column of H* and each of (1,1),(1,—1),(—1,1), and
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(—1,—1) appears t times as a row of [a 8]. Let X4 = [ 8 H*]. Then d* is E(s?)-

optimal. Such designs have n = 4t, m = 4t + 1.

(g) Let H* be obtained by deleting a column of 1s and a row of 1s from a 4¢ x 4¢ Hadamard
matrix, and Xz« = H*. Then d* is E(s?)-optimal. Such designs have n = m = 4t — 1.

(h) Let H* be asin (g). Then the design obtained by adding to H* a nearly level-balanced
column that is not aliased with any column of H* is F/(s?)-optimal. Such designs have

n=4t —1,m = 4t.

(i) Let H* be as in (g) and let o and 3 be (4t —1) x 1 nearly level-balanced columns of 1s
and —1s such that neither is aliased with any column of H*, each of (1,—1),(—1,1),

and (—1,—1) appears t times and (1,1) appears ¢ — 1 times as a row of [« 3]. Let
Xg = o B H*]. Then d* is E(s*)-optimal. Such designs have n = 4t —1,m = 4t + 1.

Theorem 9.6. All the E(s?)-optimal designs given in (a) — (i) are also UE(s?)-optimal.

Proof. For each of the cases (a), (c), and (e)-(i), the result follows directly from the lower
bound in Theorem 2.1 of | Jones and Majumdar| (2014). Let d* be the E(s?)-optimal design
specified in (b) and (d). We need to show that it minimizes tr{([1, X4]7[1, X4])?} =
tr{([1, X4][1, Xq]T)?} among all the n x m matrices Xy with 1 and —1 entries. We note
that [1,, X4+] can be obtained by deleting a column of 1’s and a level-balanced (or nearly
level-balanced) column from an n x 4¢ matrix in which any two rows are orthogonal. That
d* minimizes tr{([1 X4][1 X4]7)?} among all the n x (4t — 3) matrices X, with 1 and —1
entries follows from the fact that [1, Xg|[1,, Xg:]* is of the form

A0
0 B

Y

where all the diagonal entries of A and B are 4t — 2, all their off-diagonal entries have

absolute values 2, and the orders of A and B differ by at most 1. O]

The UE(s?)- and E(s?)-optimal designs listed in (a)-(i) are very easy to construct
and, since they are level-balanced or nearly level-balanced, SS is automatically minimized.
For example, if we want to construct a UE(s*)-optimal design in case (a) by using the
method of Jones and Majumdar (2014), then we would have to start with a rather large
4t x 4t Hadamard matrix and choose 2t rows from the 4¢ rows. An arbitrary UFE(s?)-

optimal design so constructed may have a large SS and not so good projection properties.
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In contrast, good designs can be obtained very easily by the simple half Hadamard matrix
construction. When ¢ is even, an E(s?)- and UE(s?)-optimal design in this case can also
be constructed by putting together two 2¢ x (2t — 1) matrices, each of which is obtained
by deleting a column of 1’s from a 2¢ x 2t Hadamard matrix. |Jones and Majumdar, (2014)

also observed that such designs are both F(s?)- and UFE(s?)-optimal.

Remark 9.7. It follows from the definition of UE(s*)-optimal designs that level-balanced
or nearly level-balanced UE(s?)-optimal designs, i.e., UE(s?)-optimal designs with SS= 0
(when n is even) or m (when n is odd) are also E(s®)-optimal. This leaves the possibility
of constructing previously unknown FE(s*)-optimal designs through our construction of

superior UE(s*)-optimal designs.

For d € Dgr(m,n), the inner product of each column of X, and 1 is 0 or —1 when
n is even or odd, respectively. Using this, it is easy to see that (m + 1)UEy(s?) =
(m — 1)Eq(s*) + 1+ (=1)"*!. Thus, since mingepy,(mn) UE4(s*) > mingepy, (m,n) UEa(s?),
it follows that

(m + 1)mingepy, (mn) UB4(s?) < (m — 1)mingepy,(mn La(s®) + 1+ (=1)" 1 (9.11)

It follows easily from that a necessary and sufficient condition for F(s?)-
optimal designs over Dr(m, n) to be UE(s?)-optimal over Dy(m,n) is that equality holds
in (9.11). In this case, the E(s?)-optimal designs over Dr(m,n) are also UE(s?)-optimal
over Dy(m,n). In particular, for any m and even n, is the same as (2.11) of
Jones and Majumdar (2014), and if a lower bound on Ey(s?) over Dgr(m,n) multiplied
by (m —1)/(m + 1) is equal to the corresponding lower bound on UFEy(s?) of |Jones and
Majumdar| (2014)), then E(s?)-optimal designs that achieve the lower bound on F(s?) are
also UE(s*)-optimal over Dy;(m,n). The parameter combinations (m,n) for which such
equality holds for the sharpest available lower bounds on F(s?) given by Das et al.| (2008)
can be determined via some tedious arguments. This leads to the following result, a proof

of which is given in the Appendix [E]

Theorem 9.8. For even n, E(s?)-optimal designs achieving the lower bounds on F4(s*)

given in|Das et al| (2008) are also UE(s*)-optimal if and only if one of the following holds:
(1)) n=0 (mod 2), m =2(n—1),
(i) n =0 (mod 4), m = n,
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(i5i)) n =0 (mod 4), m =4h+1, n/4 <h < (n—-2)/2,

(v) n=2 (mod4), m=8h+1, (n+2)/8<h<(n—2)/4

For example, cases (a), (e), and (f) of Theorem [9.6 correspond to (i), (ii), and (iii)
with h = n/4, respectively, in Theorem and case (b) of the former corresponds to
(iil) with h = (n —2)/2 and (iv) with 2 = (n — 2)/4 in Theorem [9.§

Let L(m,n) be the lower bound on E,(s*) over d € Dr(m,n) derived by Das et al.
(2008). Tt is shown in the proof of Theorem that [(m — 1)/(m + 1)]L(m,n) >
MiNgepy (mn) UEa(s?). The four cases in Theorem are when the equality holds. In
particular, if a design d* is F(s?)-optimal over Dg(m,n), then we have [(m — 1)/(m +
D)]Eg(s*) = [(m —1)/(m + 1)]L(m,n) > mingep,,mn) UBs(s?*). If d* is also UE(s?)-
optimal, then we must have [(m — 1)/(m + 1)]L(m, n) = mingep,, omn) UE4(s?). It follows
that m and n must fall in one of the four cases in Theorem [9.8] This yields a neces-

sary condition for E(s?)-optimal designs over Dg(m,n) to be also UE(s?)-optimal over

DU(m, n)

9.6 Concluding Remarks

The UE(s?)-criterion skips the step of minimizing nonorthogonality between the intercept
and the main effects. |Jones and Majumdar (2014)) argued that a consequence of this
step is that “the intercept is estimated with the highest efficiency”, but “an unintended
consequence of the high efficiency of intercept estimation is that it comes at the expense
of precision of main effect estimation.” It is our opinion that minimizing nonorthogonality
between the intercept and the main effects also helps the estimation of main effects and
is an important step for achieving good projection properties. Also, minimizing UEy(s?)
alone produces a large class of UFE(s*)-optimal designs that requires secondary criteria to
discriminate. An arbitrary UE(s?)-optimal design may have poor projection properties.
We have proposed secondary criteria to identify good UE(s?)-optimal designs. A smaller
value of SS along with minimum @Q are common features of many UE(s?)-optimal designs
with good projection properties. Although no simple surrogate criterion is expected to
always produce the best design, minimizing SS followed by minimizing () is an effective

way of getting UE(s?)-optimal designs with good projection properties.
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There is no simple general method of constructing E/(s?)-optimal designs. We provide
easy construction of superior UE(s?)-optimal designs that are almost as efficient as E(s?)-

optimal designs (where available) with respect to the Dj-criteria.
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Chapter 10

Lower bounds on the sizes of

t-(v, k, A\) coverings

This chapter is based on the following work:
Horsley and Singh| (2018)): Horsley, Daniel; Singh, Rakhi. New lower bounds for ¢-
coverings. J. Combin. Des 26 (2018), no. 8, 369-386.

10.1 Introduction

For our purposes, an incidence structure is a pair (V, B) where V' is a set of points and B is
a multiset of subsets of V' called blocks. For positive integers ¢, v, k and A with ¢t < k < v,
a t-(v, k,\) covering is an incidence structure (V,B) such that |V| = v, |B| = k for all
B € B, and each t-subset of V' is contained in at least A blocks in B. If each t-subset of V
is contained in exactly A blocks in B, then (V,B) is a t-(v, k, ) design. For an incidence
structure (V,B) and a subset X C V, define b(X) to be the number of blocks in B that
contain X. Coverings were introduced for ¢ = 2 by Erdos and Rényi (1956) and then
generalised to arbitrary ¢ by Erdés and Hanani| (1963)).

Usually we are interested in finding coverings with as few blocks as possible. The
covering number Cy(v, k,t) is the minimum number of blocks in any t-(v, k, A) covering,.
When A = 1 we omit the subscript. It is convenient to set Cy(v, k,0) = A for all v, k and
A. In Rodl (1985) introduced the famous nibble method to show that C'(v, k,t) ~ (7;)/(];)

as v — Q.

Observe that if (V,B) is a t-(v, k, \) covering and X is a subset of V' with |X| < ¢,
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then (V'\ X,B’), where B ={B\ X : B e B,X C B}, isa (t —|X|)-(v—|X|,k—|X],\)
covering and hence

b(X) = Ca(v— |X|,k — |X],t — |X]). (10.1)

Using this fact with |X| = 1 and some simple counting gives

Cguhﬂ>[%cxv—Lk—Lt—U] (10.2)

Iterating this inequality yields the Schonheim bound (Schonheim| 1964) which states that
Cx(v,k,t) = Ly(v, k,t) where

vv—1 v—t+2[ANv—t+1)
L . . .
A, k1) hj%—l ’?—t+2[k—t+1ww WW
Furthermore, [Mills and Mullin (1992) have shown that if vCy\(v — 1,k —1,t — 1) #

0 (mod k) and Cy(v — 1,k — 1,t — 1) = ((:j)/(fj))C’,\(v — 1k —r,t —r) for some
r€{2,...,t}, then

v

C)\(Uv kyt) P ’71{:

@Mv—Lk—Lt—D+¢ﬂ. (10.3)

This result is easiest to apply in the case r = t = 2, when it states that if \(v — 1) =
0 (mod k£ —1) and Av(v — 1) = 1 (mod k), then Cy(v,k,t) > Ly(v,k,t) + 1. A result
(Theorem 6.5) of Keevash| (2014) implies that, for a fixed ¢, k and A and for all sufficiently
large v, Cy(v,k,t) = h,\(v,k,t)/(’:) where hy (v, k,t) is the size of a smallest t-(v,t,\)
covering (V, B) with the property that (’HX |) divides b(X) for each subset X of V' with

t—|X|
| X| < t. In the case t = 2, this establishes that the Schonheim bound with the Mills and
Mullin improvement is tight for all sufficiently large v. |Glock et al.| (2016) have recently
extended Keevash’s main result.

Our interest here is principally in establishing lower bounds for covering numbers
Cx(v,k,t) when k is a significant fraction of v. Exact values for Cy(v, k,t) have been
determined when (k,¢) € {(3,2),(4,2)}, when (t,\) = (2,1) and v < 4k, and for most
cases when (£,A) = (3,1) and v < 2k (see Gordon and Stinson| (2007)). In the case
t = 2, a number of results have been proved which improve on the Schonheim bound in
various cases where k is a significant fraction of v Bluskov et al.| (2000); Bose and Connor
(1952); Bryant et al| (2011); [Firedi (1990)); [Todorov; (1984, 1989). A number of other

lower bounds for specific parameter sets, which have been mostly obtained by computer

searches, are available in literature (see |Gordon (n.d.); |Gordon and Stinson (2007))). For
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surveys on coverings see |Gordon and Stinson| (2007)); [Mills and Mullin| (1992). Gordon
maintains a repository for small coverings |Gordon, (n.d.).

Fisher’s inequality (Fisher, 1940) famously states that every 2-(v, k, A) design with
v > k has at least v blocks. Ray-Chaudhuri and Wilson| (1975) generalised this result to
higher ¢ by showing that every t-(v, k, \) design with v > k + s has at least (Z) blocks
for any positive integer s < L%J Subsequently |Wilson| (1982)) gave an alternate proof
of this generalised result using so-called higher incidence matrices. In this chapter we
demonstrate how an approach based on these matrices can be used to obtain improved
lower bounds on covering numbers C) (v, k,t). Our results generalise both the results of
Ray-Chaudhuri and Wilson (1975) and the more recent results of Horsley| (2017)) which
established lower bounds for C (v, k, 2).

To avoid triviality, we often consider only t-(v, k, A) coverings with 2 < k < v. The
bounds we prove in this chapter apply to covering numbers C, (v, k,t) for arbitrary A.
However in our discussions, as in most of the literature concerning coverings with ¢ > 3,
we will concentrate on the case A = 1. The methods in this chapter should also be

applicable to packings, but we do not pursue this here.

In the next section we discuss our proof strategy and prove some preliminary results.

In Sections[10.3][10.5|and [10.6] we then prove and discuss bounds that generalise Theorems

1, 11 and 14 of Horsley]| (2017) respectively. The results in Sections and make use

of a result of |Caro and Tuza| (1991)) which guarantees an m-independent set of a certain
size in a multigraph with a specified degree sequence. In Section we exhibit infinite
families of parameter sets t-(v, k, A) for which our results improve on the best bounds

previously known.

10.2 Strategy and preliminary results

To prove our results we will combine ideas from Horsley| (2017) with those from a proof
by Wilson| (1982) of the generalisation of Fisher’s inequality to higher ¢. The methods in
Horsley| (2017) were, in turn, inspired by a proof by Bose (1949) of Fisher’s inequality.
Following |Wilson| (1982)), we make use of higher incidence matrices. For a nonnegative
integer s, the s-incidence matriz of an incidence structure (V, B) is the matrix whose rows

are indexed by the s-subsets of V', whose columns are indexed by the blocks in B, and
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where the entry in row X and column B is 1 if X C B and 0 otherwise. For a set V' and
a nonnegative integer ¢, let (‘Z/) denote the set of all i-subsets of V.

We will make use of standard facts about positive definite matrices (see (Hogben,
2013, §9.4)). If A is a square matrix whose rows and columns are indexed by the elements
of a set Z, then a principal submatriz of A is a square submatrix whose rows and columns
are both indexed by the same subset Z’ of Z. We say a real matrix is diagonally dominant
if, in each of its rows, the magnitude of the diagonal entry is strictly greater than the sum
of the magnitudes of the other entries in that row. It follows easily from the well-known
Gershgorin circle theorem (see (Hogben, 2013, pl6-6)) that real diagonally dominant

matrices are positive definite. Our bounds rest on the following simple observations.

Lemma 10.1. Let (V,B) be an incidence structure and let A be the s-incidence matriz

of (V,B) for some positive integer s. Then

(i) AAT is the symmetric matriz whose row and columns are indexed by (‘S/) and where

the entry in row X and column'Y is (X UY'); and
(ii) |B| > rank(AAT).

Proof. Part (i) follows from the definition of matrix multiplication. Because A has only

|B| columns, rank(A) < |B|. Thus |B| > rank(A) > rank(AAT), proving part (ii). O

By Lemma [10.1] we can bound the number of blocks in a covering by bounding
rank(AA”). Our strategy to bound this rank is as follows. We first write AAT = P+ M
where P is positive semidefinite. We then find a diagonally dominant, and hence positive
definite, principal submatrix M’ of M. Because every principal submatrix of P is positive
semidefinite, the submatrix of AAT with row and column indices corresponding to those
of M’ is positive definite and hence full rank. Thus the rank of AA” is at least the order
of M'.

We choose P so that the entry in row X and column Y for X # Y is bjxyuy|, where
bsi1, - .., bos are positive integers chosen so that each i-subset of V' is in at least b; blocks
in Bforie {s+1,...,2s}. The entries on the lead diagonal of P are chosen to be small
as possible, given that P must be positive semidefinite. We establish that P is indeed
positive semidefinite using an approach from Wilson! (1982) in which P is written as a
nonnegative linear combination of Gram matrices.

We will require the following simple identity for binomial coefficients.
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Lemma 10.2. Let i and ¢ be nonegative integers with i < £. Then

¢ o
" , 0, of1<¥;
Yo7
e , ifi= 1.

Proof. The multinomial theorem implies that the coefficient of z* in the expansion of

(x—1+1)is

S (LY = 000,

where the equality is obtained by substituting j = i + j. So because (x — 1 + 1)¢ = 2,

the result now follows by equating the coefficients of . m

The next lemma establishes that if A is the higher incidence matrix of a t-(v, k, \)
covering, then AA” has a specific form that we can exploit. Subsequent results in this

chapter will often explicitly assume the hypotheses of Lemma [10.3| and use its notation.

Lemma 10.3. Lett, v, k, A and s be positive integers such thatt < k < v and s < L%j

Let by, bas_1, ..., bs be positive integers such that
(i) Ly(v—2s,k—2s,t —2s) < bys < Cy\(v— 25,k —2s,t — 25);

(it) [%=2bip] <b; < Ca(v—i,k—i,t —1i) fori=2s—1,2s—2,...,s; and

(iii) a; =0 for j € {0,...,s}, where a; = >7_ (—1)*7 () boss.
If (V,B) is a t-(v, k, X) covering and A is the s-incidence matriz of (V,B), then b(Z) = bjy|
for any Z CV with |Z] € {s,...,2s} and AAT = P+ M for matrices P = (pxy) and
M = (mxy) such that

bxuy| X #Y b(XUY) =bxuy f X#Y

Pxy = . mxy = . .

by —a, if X =Y as + b(X) — bs if X =Y

Furthermore, the following hold.

(a) P = Zj;(l) an;FQj, where Q; is the j-incidence matriz of the incidence structure

v, (V)) Hence P is positive semidefinite.

(b) For any X € (Z)?
Yoo omxy = > (MXUY)=bxuy) = (6(X) = bo) ((5) = 1) +d
ve(V)\{X} ve(U)\{X}

where d = bs((’;) —1)— Zf;ol (3) (5= bas—; is a nonnegative integer.

(2
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Proof. Let Z C V with |Z] € {s,...,2s}. That b(Z) > by follows because bz <
C,\(v —|Z|,k = |Z|,t —|Z|) by (i) and (ii) and C\(v — |Z],k — |Z|,t — |Z]) < b(Z) by
. That AAT = P+ M follows immediately from Lemma 1| (i) and the definitions
of Pand M. Let V = (V) and Vy = {X € V: b(X) = b}

We prove (a). Observe that for j € {0,...,s}, Q?Qj is the matrix whose rows and
columns are indexed by (V) and whose (X,Y) entry is (‘Xﬂw) for all X,Y € (V). In
particular, QTQ, = I. Let

S s—1
Q= a;QIQ;=a,]+> a,Q]Q;.
j=0 j=0

It suffices to show that Q' = a,I + P.
Let X,Y € ( ), let £ =|X NY], and note that ¢ < s. For j € {0,...,s}, the (X,Y)
entry of QJTQJ is (]) Thus the (X,Y) entry of @' is

S S

> ay( i ) (4 (9) bas i = ZZ 1) (%) () bas .

=0 =0 i=0 i=0 j=i
So it follows from Lemma that the (X,Y) entry of Q" is bys—y = bxuy|- Thus
Q' =a,l + P.
Now we prove (b). For each X € V,
Y X uY)=bX)((*)-1)
YeV\{X}

because each block that contains X contributes (’:) — 1 to this sum. Also for each X € V,

s—1
> v = () ()b
YeV\{X} =0

because, for each i € {0,...,s — 1}, {Y : [ X NY| =14} = () ('_]). Together, these facts
imply that (b) holds provided d is nonnegative. By (ii), b;11 < k—_?bi for i =2s —1,2s —
2,...,s and so it can be seen that by,_; < ((k_s)/(;’ Z))b fori=s—1,s—2,...,0. Thus,

S—1

v
—_
—_

S—

() CoDbaes <0 3 () (5 = bo((5) = 1),

1

EM

Il
o

and it follows that d > 0. OJ

WV

Remark 10.4. In many cases condition (ii) of Lemmal[10.3 implies condition (iii). Specif-
ically, we claim that if condition (ii) is satisfied then a; > 0 for j € {0,...,min(|7],s)}.
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This means that we can ignore condition (iii) whenever v > sk. Certainly, ag = bas > 1.
To see that the rest of our claim is true, fiv j € {1,...,min(|}],s)}, and let 6 = 2 if j is
even and 6 = 1 if j is odd. Then, pairing consecutive terms in the definition of a;, we see

that
aj = Z ((g)b%ﬂ‘ — (iﬁl)bzsfm) .
i€{6,642,....5}

Forie€ {6,0+2,...,j}, using condition (ii),

(1) ==2(7) = %(,11) and  bys—; = [};:giiﬁbzsfiﬂ 2 1bas—iy1 2 Jbas—it1,

and hence (z)bgs,i > (ifl)bgs,iﬂ. Thus a; = 0.

It follows from Lemma [10.3(a) that the diagonal entries by — a5 of P are at least
ag = bys > 0. Hence b, > a,. This fact will be used several times in later sections. We
are now ready to prove Lemma [10.5, which forms the basis of all the lower bounds that

we establish in this chapter.

Lemma 10.5. Suppose the hypotheses of Lemmam hold. If there is a subset S of (‘8/)
such that, for each X € S,

> (WX UY) = bxuy) < as+b(X) = b,
YeS\{X}

then |B| = |S|.

Proof. By Lemmam (ii), it suffices to show that the principal submatrix of AAT whose
rows and columns are indexed by S is positive definite and hence full rank.

By Lemma AAT can be written as the sum of a positive semidefinite matrix
P and a matrix M whose (X,Y) entry is the nonnegative integer b(X UY') — bjxuy for
all distinct X, Y € () and whose (X, X) entry is the nonnegative integer a, + b(X) — b,
for all X € (‘S/) Because every principal submatrix of P is positive semidefinite, it in
fact suffices to show that the principal submatrix M’ of M whose rows and columns are

indexed by § is positive definite. Given the hypothesis of the lemma that

> (MXUY) = bxuy) < as+b(X) = b,
YeS\{X}

M’ is diagonally dominant and hence it is positive definite by the Gershgorin circle theo-

rem (see (Hogben, 2013, p.16-6)). O
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10.3 Basic bound

Here we use Lemma to prove the simplest and most easily stated of our results, and

then discuss when it can be usefully applied.

Theorem 10.6. Suppose the hypotheses of Lemma[10.5 hold and that d < as. Then

() (bs + 1)
C)\(U,k},t) 2 |7—(];) 1 —‘ .

Proof. Let (V,B) be a t-(v, k, A) covering. Let V = (Z) and Vo = {X € V: b(X) = bs}.
Because d < a,, it follows from Lemma [10.3|b) that we can apply Lemma with

S =V, and hence conclude that |B| > |Vy|.
Since each block in B covers (’Z) sets in VV, we have that ) ., b(X) = |B| (l:) Thus

{X € Vib(x) > b < IBI() - ()b,

because b(X) > b, for each X € V. It follows that |B| > [Vo| = (%) — (I1B|(Y) — (V)bs). A

simple calculation now establishes that

() (bs + 1)
SN

It is useless to apply Theorem [10.6| with bs chosen to be less than the best known
lower bound for C\(v — s,k — s,t — s), because the bound of Theorem is always
inferior to the bound given by s iterated applications of ((10.2)) to bs + 1 (note this latter

O

bound is at least [b,(")/ (*)1). Furthermore, from the definitions of d and a, we have that

s—1
a; —d= (Z () + <—1>S—Z’>bzs_i> = (() =2 bs, (10.4)

i=0
which is increasing in by, for each i € {0,...,s — 1}. Thus, in the absence of condition
(iii) of Lemma m it can be seen that when attempting to apply Theorem we only
need consider choosing b; to be the best known lower bound on C\(v — i,k — i,t — 7)
for i € {s,...,2s}. Throughout the rest of the chapter, we shall refer to this as the
natural choice for the b;. Condition (iii) complicates the picture somewhat, but in view
of Remark this is only of concern when v < (s — 1)k (note that as > d > 0 by our
hypotheses and Lemma . In many cases the best known lower bounds are all given
by the Schonheim bound and in these cases the natural choice of the b; amounts to taking

b =Ly(v—ik—i,t—1)forie{s,...,2s}.
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For each of the subsequent lower bounds we establish in this chapter (see Theo-

rems [10.15( and [10.18)), we will also show that we only need consider the natural choice

for b,. With this choice fixed, the natural choice for the remaining b; will minimise d and
maximise as; — d, by the definition of d and (|10.4]). Considering this and Remark [10.4}
we believe that taking the natural choice for the b; in our theorems will almost always

produce the best results.

For the Theorem bound to exceed the bound obtained by s iterated applications
of (10.2) to bs, it must be the case that by < (’;) (again note the latter bound is at
least [bs(?)/ (kﬂ) Furthermore, the other lower bounds we establish in this chapter will

S
ks

s!

and by > Ly(v—s,k—s,t—s) > )\(”*5)/(’“75) > A(#)'*. So none of the lower bounds of

t—s t—s

explicitly require by < (’;) We have b, < (];) only when v < (%)1/(75—5) because (1;) <

this chapter are of use when v > (%)1/(15_5).

Theorem implies [Ray-Chaudhuri and Wilson! (1975)) generalisation of Fisher’s
inequality. If there exists a t-(v, k, A) design (V, B) with v > k+ s for some positive integer
s < |£], then applying Theoremwith by =Lyx(v—ik—it—i)= A(;’:Z’)/(fj) fori e
{s,...,2s} we have C\(v, k,t) > (?) (bs+1)/((§) +1) (the hypotheses are satisfied because
d=0and a; = A(kgjij)/(zzi) for 5 € {0,...,s}). But, because (V, B) is a design, it has

exactly (“)bs/(¥) blocks. So we can conclude that (*)bs/(*) = (*)(bs+1)/((*) + 1) which
implies b, > (lz) and hence that (V,B) has at least (¥) blocks.

10.4 Infinite families of improvements

In this section we first give, in Lemma [10.7, an infinite family of parameter sets for
which applying Theorem [10.6] with s = 2 yields an improvement over the Schénheim
bound. Then we exhibit, in Theorem [10.10} an infinite family of parameter sets for which
applying Theorem [10.6| with s = 1 establishes exact covering numbers. In this section we
will often use the simple observation that, for given t, k and X\, Cy\(v, k,t) < C\(V', k,t)
when v < v'.

Lemma 10.7. Let m > 6 be an integer, and let v = m?*(m —2)+4 and k = m(m—1)+2.
An application of Theorem with s = 2 establishes that C(v, k,5) > L(v, k,5)+m(m—
4) — 10.
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Proof. Let ¢; = L(v —i,k —i,t — i) for i = 4,3,2. We can successively calculate

We will apply Theorem [10.6| with s = 2 and b; = ¢; for i = 4,3,2. Routine cal-
culations show that, in the terminology of Lemma [10.3, ay = m, a3 = m(m — 2),
as = m> —4m? + 3m + 2, and d = 0. Using this, and recalling that m > 6, it can

be seen that the hypotheses of Theorem [10.6| are satisfied and hence
Cv,k,5) > [+ 1))

This implies that C(v, k,5) = m® — 4m* + 21m? — 14m — 55.
On the other hand,

L(v,k,5) = [{[{=6]]
and for m > 14 we can calculate that this is equal to m® — 4m* +20m? — 10m — 45. Thus

it can be seen that the lemma holds for m > 14, and it is routine to check it holds for

6 <m<13. ]

Further routine calculations establish that, for v and k as in Lemma [10.7] neither
the result of Mills and Mullin| (1992)) nor the results of this chapter (including those in
Sections and give improvements over the Schénheim bound for the parameter
sets C(v—1,k—1,4), C(v—2,k—2,3) or C(v—3,k—3,2). We believe that, in general,
no bound better than the Schonheim bound was previously known for this family of
parameter sets. Since d = 0 in our application of Theorem [10.6] we could make a slight
further improvement to this result by instead applying Theorem [10.18{(a) below.

We now move on to show that Theorem with s = 1 can be applied to establish
that certain coverings constructed from affine planes are optimal, and thus obtain a family
of exact covering numbers.

Let ¢ be a prime power. It is well known (see Gordon et al.| (1995)), for example)
that if we take V' to be the ¢' points of the affine geometry AG(¢,q) and B to be the set
of its (t — 1)-flats, then (V, B) is a t-(¢*, ¢"*, 1) covering with q(%) blocks. Further, it is
straightforward to calculate that L(q",¢"~!,t) = q(%) and hence C(q¢', ¢ 1,t) = q(%).

The following lemma is based on a well-known “blow up” construction for coverings.
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Lemma 10.8. Let m, t and q be positive integers such that q is a prime power. Then

C(v,mqg"™ 1 t) < q(‘f;_—_ll) for each v < mq'.

Proof. Let (U, A) be the t-(¢',¢""*,1) covering with q( 1) blocks obtained from the
(t — 1)-flats of AG(t,q). Let M be a set of m elements, let V= U x M and let B =
{AXx M : A€ A}. Then (V,B) is an (mgq', mq'™*, 1)-covering with q( 1) blocks. The
result now follows because C(v — 1, k,t) < C(v, k,t) for any parameter set (v, k,t). O

Next we determine the value of the Schonheim bound in the cases we are concerned

with.

Lemma 10.9. Let v, m, q and t be positive integers such that q is a prime power,
m > 2¢+2 2<t<mg?t and mq¢t —2¢+3 < v < mqgt. Let by = 1 and let
li=Llv—imqg~' —it—i) fori=t—1,t—2,...,0. Then

(i) =S fori=t—1t-2,.,0;
-1 : t t
— ifmg" —q+2<v<mg

.. o qg—1

(ii) 4 = .

QL) ifme'—20+3<v<mg —q+1;

(i)  ifmg —g+2<v<mg

(i) o = 20¢i -1y t t
¢*(Y—) ifmg —2¢+3<v<mg —q+1

Proof. Let ¢ be the integer such that v = mq' — ¢ + 1 + c¢. By definition, for ¢ =
t—1,t—2,...,0,

gi:

(mg" —q+1+c— )&H-‘ (105)

mqt—1 —i

(6= Yo+ o]

=qliy1 + .
qtit1 [ mg—1 — i

Since ¢ € {—q + 2,...,q — 1}, (10.5) implies that ¢; = ¢f;11 + 1 for i > 2, provided

livq < %. Using this fact, it is easy to prove (i) by induction on 4. In particular,

t—1_

we have (y = q — 1, and applying ([10.5)) once more establishes (ii). Applying (10.5]) one
final time using (11) and the hypothesis m > 2¢g + 2 establishes (iii). O

Together, Lemmas [10.8 and [10.9| establish the known result that, under the hy-

potheses of Lemma [10.9, C'(v, mg"~!,t) = q( ) for v € {m¢" — ¢+ 2,...,mq¢'}. By

applying Theorem [10.6] with s = 1 we can strengthen this result to cover some cases

where v < mq' —q + 1.
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Theorem 10.10. Let m, q and t be positive integers such that q is a prime power,
m > 2¢+2 and 2 <t < mq™. Then C(v,mq"™',t) = q( L) for each integer v such
that

-1 t—1

mq¢' —q+1—2<v<mqg" where Z:min(q—Q, {MJ —2q+1).

q —
Proof. Note that z > 0 because m > 2¢+2. Let v' = mq' — g+ 1 — 2. It suffices to show
that C(v',mg"™1,t) > q( - ) because then, for each integer v such that v" < v < mgt,

we have

t_l t_l
! (qq - 1) < C(,mg™ 1) < Clo,mg™, 8) < Clmg',mg™ 1) < q ((iz - 1) :

where the final inequality follows from Lemma [10.8|

tll

For i € {0,1,2}, let £; = L(v' —i,mq"" —i,t —i). By Lemma|10.9} £, = q(*,

)
and ly = qq "~ To bound C(v',;mq'=1,t) below, we will apply Theorem [10.6{ with s = 1,
by = {1 and by = (5. Obviously this choice satisfies hypotheses (i) and (ii) of Lemma [10.3]

Because v’ > mq' —2q+ 3, a simple calculation establishes that ¢;(mg'™ —2) < lo(v' —2)
and thus d < a; (because d > 0, this also implies that a; > 0 and that hypothesis (iii) of
Lemma holds). So, by Theorem [10.6] we have

Clos k) > [%w N {(Qq +W,th—_11)+<zi +1)J |

A routine calculation shows that the second upper bound on z in our hypotheses is
equivalent to (2¢ + z — 1)(¢; + 1) < mqg"™! and hence C(v,k,t) > q(¢; + 1). Observing
that (¢, +1) = q( 1) completes the proof. O

Corollary 10.11. Let m, q and t be positive mtegers such that q is a prime power,
> 3¢ and 2 <t < mqg"™t. Then C(v,mq""',t) = q( ) for each integer v such that
mqt —2q + 3 < v < mgt.

Proof. This follows by observing that, in Theorem [10.10] z = ¢ — 2 if m > 3q. O]

10.5 Bounds for the case d > a

Using the terminology of Lemma [10.3] Theorem [10.6| applies only when d < a,. In this
section we will establish a bound that can be applied when d > a,. For a multigraph

G and a subset S of V(G), let G[S] denote the sub-multigraph of G induced by S. In
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this section and the next, we will make use of the notion of an n-independent set in a
multigraph G, which is defined as a subset S of V(G) such that G[S] has maximum degree
strictly less than n. Setting n = 1 recovers the usual notion of an independent set. Let
tg(zy) denote the number of edges between vertices x and y in a multigraph G.

If M is the matrix defined in Lemma and G is the multigraph whose adjacency
matrix agrees with M in its off-diagonal entries, then an n-independent set in G corre-
sponds to a principal submatrix of M in which the off-diagonal entries in each row sum
to less than n. This allows us to use results that guarantee an n-independent set in a
multigraph to find the diagonally dominant principal submatrix of M that we require. In

particular we will use the following result of |Caro and Tuza| (1991)).

Theorem 10.12 (Caro and Tuza| (1991)). Let n be a positive integer and let G be a

multigraph. There is an n-independent set in G of size at least [} ey (q) fa(dega(w))]

fn(l’):{ 1_%7 if

<
n+1 :
m, fo 2 n.

where

We next prove a technical lemma that enables us to deduce bounds of a specific form
that we denote by CBy ks (@, 3). We will state the bounds in this section and the next
in terms of this notation. Observe that the bound of Theorem is C By (1,0).

Lemma 10.13. Let s and by be positive integers and let o and 3 be monnegative real
numbers such that o > 25. Suppose that any t-(v,k,\) covering (V,B) has b(X) > bs
for each X € (V), and |B| = a|Vo| + BVi| where V; = {X € (V) : b(X) = b, + i} for
i €{0,1}. Then
bula = B)(2) + a2
(=) +1
Proof. Let (V,B) be a t-(v, k, \) covering. Let V = (V), z = |B|(]§) —bs(?) and v; = |V}
for i € {0,1}. Note that v; +2 ((%) — vo — v1) < x because b(X) = by + i for each X € V;
for i € {0,1}, b(X) > by + 2 for each X € V\ (Vo U V), and Yoy, b(X) = |B|(). It

C)\ (U> ka t) = IVCB(’U,k,)\;s) (Oé, Bﬂ where CB(v,k,)\;s) (Oé, B) =

follows that vy > 1(2(?) — v — ) and so from our hypotheses we have

|B| > %oz (2(”) — v — x) + Buy = a(”) — %ozx — %(oz — 2fB)v;.

S S

Thus, because o > 20, it follows from v; < |V \ Vy| < z that
|B| > a(z) — %aaz — %(a —20)x = a(z) — (= fB)x.
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Since x = ]B](I;) — b(?), we can deduce |B| = CB, s (@, B). O

Remark 10.14. A routine calculation shows that if by + 1 > 6(];), then the bound
[C B kxs) (0, B)] is inferior to the bound given by s iterated applications of (10.2) to
bs + 1.

Theorem 10.15. Suppose the hypotheses of Lemma hold, that bs < (';), and that

d>as>=1. Then

C)\('U, k? t) 2

as+ 1 as +1
CB knis) <2(d+ 1)’ 2<d+ (i)))i‘ |

Proof. Let (V,B) be a t-(v, k, \) covering. Let V; = {X € (Z) :b(X) =bs+i} fori €
{0,1}. Let G be the multigraph with vertex set (Z) such that puq(XY) = b(XUY)—bxuy|
for each pair of distinct vertices X and Y.

By the definition of G, for a positive integer n, an n-independent set S in the
multigraph G is a subset of (‘S/) with the property that, for all X € S,

> (M(XUY)=bxuy) <n.
YeS\{X}
Consequently, if n < a,, then S satisfies the hypotheses of Lemma and |B| > |S|.
So, by Lemma [10.13] it suffices to show that G has an as-independent set of size at least
as+ 1

2+ ()

By Lemma [10.3(b), degg(X) = d for all X € V), and deg(X) = d + (1;;) — 1 for all

as +1

2d+2| 0

X € V,. Thus, because d > a;, G has an as-independent set of the required size by
Theorem [10.12 O

We only need consider the natural choice of b, in Theorem [10.15] This follows by
Remark [10.14] because

(as + 1)(]:) _ as+ 1

s+ 1 <b,+1.
2+ () 2 T

10.6 Improved bounds for the case d < a

In this section we will show that, by using techniques similar to those of the last section in
the case d < a,, we can sometimes improve on Theorem [10.6, We require a slight variant

of Lemma [10.5]
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Lemma 10.16. Suppose the hypotheses of Lemma hold and there exists a subset S

of (Z) and positive real numbers (cx)xes such that, for each X € S,

> oy (X UY) = bixiyy) < ex (as +b(X) = by) |
YeS\{X}

then |B| = |S|.

Proof. The proof of Lemma [10.5 applies, except that our hypotheses here imply via the
Gershgorin circle theorem (see (Hogben, 2013, p.16-6)) that the matrix M” rather than
M’ is positive definite, where M” is obtained from M’ by multiplying the entries in column
X by cx for each X € S. However, it is easy to see (using Sylvester’s criterion (Hogben,

2013, p.9-7), for example) that M’ is positive definite if and only if M” is. O

In Section [10.5| we employed multigraphs, but in this section we will work in a more
general setting of edge-weighted graphs. An edge-weighted graph G is a complete (simple)
graph in which each edge has been assigned a nonnegative real weight. We denote the
weight of an edge uw in such a graph G by wtg(uw) and we define the weight of a vertex
uof G as wtg(u) = 3, cv(anpuy Whe(uw). For S C V(G), let G[S] denote the edge-
weighted subgraph of GG induced by S. We generalise our notion of an n-independent set
by saying, for a positive integer n, that a subset S of the vertices of an edge-weighted
graph G is n-independent in G if wtgrg(u) < n for each u € S.

We will require a technical result which guarantees the existence of an n-independent

set of a certain size in an edge-weighted graph of a specific form. This result was effectively

proved in |Horsley| (2017)).

Lemma 10.17. Let n, d and d' be nonnegative integers such that d < n < d' —d, and
let G be a multigraph on some vertex set Vo UV, such that dego(X) =d for X € Vy and
dego(X) = d for X € V1. Let ¢ be a real number such that ¢ > ¢ and let G* be the
edge-weighted graph on verter set Vo U Vy such that, for all distinct X, Y € Vo UV,

0, ifX,Y € W;
wtas (XY) = ¢ ug(XY), if X,Y € Vy;
cug(XY), otherwise.

Let o and B be real numbers such that one of the following holds.

d? n+2
(@) (0,8) = (1= 5oy, ity ).
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() (a,f) = (1,1 . %) d> 12 anddd <n(n+1).

(c) <a,5):<1, dnt2) __d(d 1) ),d<@ and d(d'+1)? < 4(n+1)(n+2)(n—d).

(n+1)(n—d)  2(n+1)(n—d) 27

Then o = 23 > 0 and, if ¢ is sufficiently close to %, G* has an (n+ 1)-independent set S
such that Vo C S and |S| = a|Vy| + SIV1].

Proof. When (a) holds we obviously have 8 > 0 and

(d—n—d—1)2n(n+1) —d) + (n—d)(2d(n+ 1) + d?)

a=25= 2n(n + 1)(d + 1)

is nonnegative because d > n + d and n > d. When (b) holds we have 5 > 0 because

dd < n(n+1) and
2dd' — n(n+1)
n(n+1)

is nonnegative because d’ > n +d and d > §. When (c) holds we have § > 0 because

d(d+1)> <4(n+1)(n+2)(n—d) and (ni(f)/(ti)d) > (ni(g?fzd) because d’ > n. Thus, since

a—20 =

2\/x — x < 1 for each nonnegative real number x, we have a > 20.
In the course of the proof of (Horsley, 2017, Theorem 14), the remainder of this
result is proved for the case d = d+ k — 1. It is a routine exercise to show that the proof

given there applies here for any d' > n + d. O]
We can now establish our improvements on Theorem [10.6|

Theorem 10.18. Suppose the hypotheses of Lemma m hold, that by < (';), and that
d < as. Letd =d+ (];) — 1. Then Cx(v,k,t) > [CBgxs (a,8)] when one of the
following holds.

_ d? as+2
(a) (o, B) = (1 T 2a.(ast1)’ 2(d’j—1)>'

() (a, ) = (1,1_ L) d> % and dd' < a.(a,+ 1).

as(as+1)
d(as d(d’ as
(e) (08) = (L\/Giiets — waiaa)> 4 < § and d(d +1)° < Ao+ D(as +
2)(as — d).

Proof. Let (V,B) be a t-(v,k, A) covering. Let V; = {X € (V) : b(X) = b, +1} for i €
{0,1}. Let G be the multigraph with vertex set (V) such that ue(XY) = b(XUY)—bxuy|
for each pair of distinct vertices X and Y. Note that, by Lemma [10.3] deg,(X) = d for
each X € Vy and degn(X) = d for each X € V,. Also, d < a5 < d — d because
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d—d= (];) —1land as, < by < (1;) Thus, by Lemma , there is a real number ¢ > a%
such that the edge-weighted graph G* obtained from G|V, U V] as in Lemma has
an (as+ 1)-independent set S such that Vy C S and |S| = a|Vo|+ B|V1|. We show that we
can apply Lemma [I0.16to S choosing cx = ¢ for X € SNV, and cx =1 for X € SNV;.
By Lemma this will suffice to complete the proof.
If X € SNV, then cx = ¢, b(X) = b, and
> oy (X UY) = bixuy)) <d < cag = cx (as+ b(X) = b)
YeS\{X}
where the first inequality follows from Lemma m(b) If X €e SNV, then cx = 1,
b(X) =0bs+1, and
Y ey (X UY) = bixuy|) = Whers)(X) < a, + 1 = ex (as + b(X) — b,)
YeS\{X}
where the first equality follows from the definition of G* and our choice of cy for Y € S

and the inequality follows from the fact that S is an (as + 1)-independent set in G*. [

Again, we only need consider the natural choice of by in Theorem [10.18, To establish
this it suffices, by Remark [10.14] and the fact that b, > ag, to show that a, + 2 — 6(';) is

positive. When (a) holds this is the case because

(as+2) (lz) as + 2
<
2d + 1) 2

< as+ 2.

When (b) or (¢) holds, as+2 — 6(’:) is a quadratic in (’;) (note that d' = d + (I;) —1) and
we can compute its global minimum in terms of a, and d. When (b) holds this minimum

is equal to

1

m((2d—as)(a§’+2a§+ad+as)+d(2a§_d3+7a§+4as)+dz<2a§+2d_1))

which is positive since % < d < a. When (c) holds this minimum is equal to

L 2
8(as + 1)(as — d) (4d\/d(as + 1)(as + 2)(as — d) + (as — 2d)(2aZ + 6a, + 12)

+ (2a2 — &* + 16d) + 2a,(3as — 2))

which is positive since 0 < d < %
There are situations in which each of the Theorem [10.18 bounds is superior to both
of the others. In the special case when d = 0, Theorem [10.18((a) is the best of our bounds.
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10.7 Improvements for small parameter sets

We conclude with some tables which detail small parameter sets for which the results
in this chapter produce an improvement over the previously best known lower bound on
C(v,k,t). For t = 2 similar tables appear in [Horsley| (2017)), so we concentrate here on
the case t > 3. Our methodology in producing these tables is as follows.

To determine whether we see an improvement for C (v, k', t') we successively evaluate
a “best known” bound b, x4 for C(v, k,t) for (v, k,t) = (v =t + LE =t +1,1), (v —
U+ 2,k —t'+2,2),..., (v, K t). This “best known” bound incorporates the following.

o C(v,k,1)=[7].
L C(Uak7t) 2 I_%b(vfl,kfl,tfl)-l by "
e The Mills and Mullin result stated in ({10.3]).

e Results for a fixed number of blocks from Mills| (1979); Greig et al. (2006); Todorov
(1985); [Todorov and Tonchev| (1982)). These include results for ¢ = 2, for ¢t = 3,
and for general t. (The ¢t € {2,3} results are summarised in Gordon and Stinson

(2007).)
e Theorems 2.1, 3.1 and 4.4 of Todorov| (1989).
e The lower bound of |de Caen| (1983).

e The lower bounds listed for ¢t < 8, v < 99, £ < 25 at the La Jolla Covering

Repository |Gordon| (n.d.).

e Theorems |10.6|, |10.15| and |10.18| of this chapter, applied with s € {1,...,[%]} and

with b; chosen as b k—it—s for i € {s,...,2s} (note that these theorems with

s = 1 specialise to the results in Horsley| (2017))).

If the bound provided for C(v',k’,t') by one of the theorems of this chapter (using a
particular choice of s) strictly exceeds the bound provided by any of the other results,
then we include v" in the appropriate location in the tables. If, moreover, the bound
provided for C(v', k', t') by Theorem or Theorem strictly exceeds the bound
provided by Theorem [10.6, then the table entry is set in italic or bold font, respectively.
All improvements for £ < 40 when ¢ = 3, when ¢t € {4,5} and when t € {6, 7,8} are given
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in Tables [10.1] [10.2} and [10.3| respectively (recall from the discussion after Theorem [10.6|

that we obtain no improvements for sufficiently large v). Of course the listed improvements
will, via (10.2)), imply many further improvements for higher values of ¢, but we do not

include these subsequent improvements in our tables.
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Table 10.1: v’s with an improved lower bound on C(v, k,t) when ¢t = 3

k s=1

9 |19
10 | 21,22

12 | 26

13 | 29

15 | 33,4245

16 | 35,36,45,46,48,49

17 | 33,48,49,51,52,53

18 | 35,40,51,59

19 | 87,42,43,54,55,58,62

20 | 39,44,57,61,62,66

21 | 41,47,60,61,64,65,66,69

22 | 43,49,50,63,64,73,88,89

23 | 45,51,66,71,76,87,88,89,92,93,95,96,97

24 | 47,53,54,69,74,75,80,91,92,93,96,97,99,101

25 | 49,56,57,72,73,77,78,79,83,95,96,97,100,101

26 | 51,58,75,87,100,101,104,105,106

27 | 53,60,61,78,84,90,103,104,105,108,109,110,114,115

28 | 55,62,63,64,81,82,87,88,94,107,108,109,112,113,114,117,118,119

29 | 57,64,65,84,85,90,91,92,97,111,112,113,116,117,118,121,122,123,124

30 | 59,67,68,87,101,115,116,117,120,121,122,126,127,128

31 | 61,69,70,71,90,91,97,104,119,120,121,124,125,126,127,130,131,132,133

32 | 63,71,72,93,100,101,107,108,123,124,125,129,130,131,135,136,137,160,161
33 | 65,73,74,75,96,97,103,104,105,111,127,128,129,133,134,135,139,140,141,
158,159,160,161,165,166,168,169,170,171

34 | 67,76,77,78,99,100,106,114,115,131,132,133,137,138,139,143,144,145,146,
163,164,165,166,170,171,173,174,175,176,177

35 | 69,78,79,102,109,110,117,118,135,136,137,141,142,143,148,149,150,168,169,
170,171,175,176,179,180,181,182

36 | 71,80,81,82,105,113,114,122,139,140,141,145,146,147,148,152,153,154,155,
174,175,176,180,181,184,186,187

37 | 73,82,83,84,85,108,109,116,117,118,124,125,143,144,145,150,151,152,157,
158,159,178,179,180,181,183,185,186,187,189,192,193,195,196

38 | 75,85,86,111,119,128,129,147,148,149,154,155,156,161,162,163,183,184,185,
186,189,190,191,192,197,198,201

39 | 77,87,88,89,114,122,123,132,151,152,153,158,159,160,165,166,167,168,188,
189,190,191,194,195,196,197,201,202,203,206

40 | 79,89,90,91,92,117,118,125,126,127,134,135,136,155,156,157,162,163,164,
170,171,172,193,194,195,196,199,200,201,202,205,206,207,208,209,212
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Table 10.2: v’s with an improved lower bound on C(v, k,t) when t = 4,5

t=4 t=5
s=1 s=1 s =2
17

11 29
14 47
15 42
16 || 33 55
17 || 30,35 59
18 || 32,37 66
19 || 34,39 70
20 || 39,41
21 || 37,41,43 75,93
22 || 39,43,45,46 36 79,98
23 || 41,45,48,52 87,123
24 || 43,47,50
25 || 37,45,49,52.59 41 113,135,141
26 || 51,54 118
27 || 47,48,53 44 127,147
28 || 50,55,64,66,68,70 46,52 132,153
29 || 43,52,57,61,69 54
30 || 54,59,63,73,75,76 49,54,56 138,147,161,192
31 || 54,56,61,65,71,73,74,80 51,56 143,171,199,206
32 || 56,567,63,67,74,78,81 65 148,177,206,213
33 || 49,59,65,69,76,78,79,80,81,85,88 54,67 158
34 || 61,67,71,81,86 56,61,69 216
35 || 61,63,69,73,81,83,84,85,86,90,93 63,66,71 227.231,235,259
36 || 63,65,71,75,76,83,86,91,92,93,96,97 59,65,68,73 | 201
37 || 55,65,66,67,73,78,88,89,90,91 61,67,70,75 | 207,275
38 || 68,75,80,88,91,93,96,97,101,105 7 218,248,283
39 || 68,70,77.,82,90,93,95,96,99,104 64,70,79 224,255,264,287,299
40 || 70,72,79,84,95,96,98,101,102,103,106,107,113,114 || 66,72,81 230,299,307
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Table 10.3: v’s with an improved lower bound on C(v, k,t) when t = 6,7,8

t=26 t="17 t=38
k s=1 s=2 s=3|s=1|s=2 s=3|s=1|s=2]|s=3
25
12 23
16 29
17 33,38 31
18 43
19 75
20 39
21 || 30 57
22 || 33
23 58 51,53
24 || 36 33
25 58 125
26 || 36,39
27 63,75 97
28 68,78 68 166
29 83,94 40 68
30 86 57
31 || 43,49 89 41
32 82 61,77 221
33 || 52,55 117,127 45 65,82,85 63
34 || 47 86,92 45
35 || 55,58 91,143
36 || 50,57,60 | 124 102,105,107 71
37 122,139,156 49 170,181
38 || 60,63 108,122,136,143 52 102 52
39 || 54,65 111 58
40 || 61,63 114,179 53 96
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Chapter 11

Pseudo Generalized Youden Designs

This chapter is based on the following work:
Das et al. (2018): Das, Ashish; Horsley, Daniel; Singh, Rakhi. Pseudo Generalized Youden
Designs. J. Combin. Des 26 (2018), no. 9, 439-454

11.1 Introduction

This chapter deals with designs on some set of treatments. Unless we specify otherwise
we will always take this set of treatments to be the set {1,...,v} where v is a positive
integer called the order of the design.

A balanced block design (BBD) with order v, block size k and index A consists of a
multiset B of blocks such that

e cach block is a multiset of £ treatments from {1,...,v};

e cach treatment appears in blocks an equal number of times in total, and each treat-

ment appears in each block |k/v] times or |k/v| + 1 times;

e cach pair of distinct treatments is covered a total of exactly A times by blocks, where
the number of times a block B covers a pair {i,j} is given by the product of the

number of times ¢ appears in B and the number of times j appears in B.

A balanced incomplete block design (BIBD) is simply a BBD whose block size is less than
its order. The incidence matriz of a BBD with b blocks is a v x b matrix whose (i, £) entry

is the number of times that treatment i appears in the ¢th block of the design. A BBD can
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be equivalently defined by demanding that the matrix NN7T be completely symmetric,
where N is the incidence matrix of the design and completely symmetric means that all
of the diagonal entries are equal and all of the off-diagonal entries are equal. It is easily
seen that for any BBD with block size £ > v and incidence matrix N there is a BIBD
with incidence matrix N — |k/v].J, where J is an all-ones matrix, and that the converse
also holds.

In this chapter we are principally concerned with row-column designs which are
rectangular arrays, each cell of which contains a treatment from {1, ..., v}. Three varieties

of row-column designs are of particular significance here.

Youden square designs. Also known as Youden rectangles, these are classical objects
in design theory. A Youden rectangle can be defined as a k x v row-column design
such that each treatment appears once in each row of the design and the columns

of the design form the blocks of a BIBD.

Generalized Youden designs (GYDs). These were introduced by Kiefer| (1958)) (al-
though he originally called them generalized Youden squares). A GYD is a k x b
row-column design such that the rows of the design form the blocks of a BBD and,
separately, the columns of the design do likewise. Results on the existence and con-
struction of GYDs can be found in Kiefer| (19758, Ruiz and Seiden| (1974)), [Seiden
and Wu| (1978)), |Ash| (1981) and Kunert and Sailer| (2007). We give an example of
a GYD with v = 6,k = 10,b = 15 obtained in |Ash| (1981).

GYD for v =6,k =10,b=15
6 1 5

N
S~

= oN O W O Ot W N
N = W Ol = O Ol R W N
N T TS RS« SRS B It}
N B = O W N RO O
H O N O R W N R O Ot
W = Ot s O R W N =
DR E WO Ot R W N
LW RN R O Ol W
O O =N O O W
T W kO W NN = Oy Ut
W N O R A WD O
S Ut W N Ut R W N = O
w O Ul = Ot O =R N W
SN RO Nt O E W
B = D WO W ok Ot =N

Pseudo Youden designs (PYDs). These were introduced by (Cheng| (19814). A PYD
is a k X k row-column design such that the rows and columns of the design, taken

together as blocks, form a BBD. The existence and properties of PYDs have been
investigated in (Cheng (19810), |Cheng (19814d)), |Ashl (1981), McSorley and Phillips
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(2007)) and |Nilson (2011). We give an example of a PYD with v = 9, k = 6 provided
in (Cheng (19816). This PYD can also be obtained through Theorem of the

current chapter.

PYD forv=9,k=6

4 7 8 6 9 5
3 1 2 8 7 9
2 5 1 3 6 4
9 3 6 2 5 8
7T 6 9 4 1 3
5 8 4 7 2 1

These three kinds of row-column designs share the properties that they are optimal in
various statistically-desirable senses under the most common set of assumptions for eval-
uating experimental designs. More formally, under the usual additive and homoscedastic
fixed effects two-way heterogeneity model, they are A- and E-optimal and, when v # 4,
they are also D-optimal. (The optimality is among all k X b row-column designs on v
treatments that allow estimation of all treatment contrasts.) We refer the reader to [Shah
and Sinha| (1989) for an introduction to these concepts along with the appropriate defini-
tions. Kiefer established this optimality for GYDs in Kiefer| (19758), and |Cheng (1981b)
observed that his proof can be generalized to the case of PYDs. It is crucial to this proof
that a particular matrix associated with the relevant design, called the information ma-
trix or C'-matriz of the design, is completely symmetric. The information matrix for a

row-column design is given by
C=R—-b'MM" — k" 'NNT + (kb)~'r, (11.1)
where

e R =diag(ry,72,...,7) and r = (ry,rs,...,r,) where r; is the number of times that

treatment ¢ occurs in the design;

e M is the v X k treatment-row incidence matriz of the design whose (i,¢) entry is

the number of times treatment ¢ appears in ¢th row of the design;

e N is the v X b treatment-column incidence matriz of the design whose (i, ) entry is

the number of times treatment ¢ appears in th column of the design.

Note that the different coefficients of M M7T and NN in (11.1)) mean that if we allowed

a k x b design for b # k in the definition of PYD, then the information matrix would no

139



longer necessarily be completely symmetric and the design would not be guaranteed to

be optimal.

Here we introduce pseudo generalized Youden designs, which generalize both GYDs
and PYDs. A pseudo generalized Youden design (PGYD) is a k X b row-column design
such that

(A1) each treatment appears exactly kb/v times in total;

(A2) each treatment appears |b/v]| or |b/v|+1 times in each row, and |k/v| or |k/v]+1

times in each column;

(A3) kMM?T +bNNT is completely symmetric, where M is the treatment-row incidence

matrix and N is the treatment-column incidence matrix.

In statistical terminology, a PGYD is a row-column design satisfying (A1) and (A2)
and where the k rows and b columns, considered together as blocks, form a variance
balanced design. For an introduction to variance-balanced block designs with different

block sizes, one can refer to Hedayat and Stufken (1989) and references therein.

In view of our comments on the incidence matrix of BBDs it can be seen that
every GYD is a PGYD and every PYD is a PGYD. We will show, however, that there
are parameter sets (v, k,b) for which a PGYD exists, but neither a GYD nor a PYD
does. For some examples of PGYDs, which are non-GYD and non-PYD, one can refer
to appendix [F| Using the techniques of Kiefer| (19750), it can be seen that PGYDs share
the optimality properties of GYDs and PYDs that we discussed. This fact means that,
from the perspective of experimental design, our definition of PGYDs is more natural and

useful than simply allowing k& # b in the PYD definition.

In Section [11.2] we obtain necessary conditions, in terms of v, k and b, for the
existence of a PGYD. In Section [11.3] we construct families of PGYDs using patchwork
methods based on affine planes. Using our necessary conditions, we also provide an
exhaustive list of admissible parameter sets satisfying v < 25,k < 50,b < 50. For each,

we establish that a PGYD exists, except for one where we demonstrate non-existence.
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11.2 Necessary conditions for existence of PGYDs

We first show that condition (A3) of the PGYD definition can be rephrased more combi-
natorially, in terms of the blocks consisting of the treatments that appear more often in

a particular row or column.

Definition 11.1. Let D be a k X b row-column design on v > 2 treatments that obeys
(A1) and (A2). In what follows, let k = K'v+ k" and b = Vv + 0" where k' = |k/v],
b = |b/v] and k" and b are non-negative integers. For u € {1,... k} let R, be the set
of treatments that occur b’ + 1 times in row u and for w € {1,...,b} let C,, be the set of
treatments that occur k' + 1 times in column w. For any two treatments i,j in {1,... v},

we define
b = [{u:{i,j} € Ru}l; and
Aij = [{w :{i, j} C Cu}l-

Let the collection {R1, ..., Ry} be denoted by Dr and the collection {Cy,...,Cp} be denoted
by Dc.

Theorem 11.2. Let D be a k x b row-column design on v > 2 treatments that obeys (A1)
and (A2). Then D is a PGYD if and only if kdo;; + bA;; is identical for any two distinct

treatments i and j.

Proof. Let M and N be the treatment-row and treatment-column incidence matrices of
D, respectively. We first consider the diagonal entries of kM M7T 4+ bNNT. Because each
treatment occurs b’ 4+ 1 times in exactly r — kb’ rows and exactly b’ times in the rest, it
can be seen that the diagonal elements of M M7 are all equal. Similarly, each treatment
occurs k' + 1 times in exactly » — bk’ columns and exactly &’ times in the rest, and the
diagonal elements of NNT are all equal. Thus the diagonal elements of kM M7T +bNNT
are all equal.

We now consider the off-diagonal entries of kM MT +bNNT. Let i and j be distinct
treatments and let v, = [{u : |{i,j} "R.| = 2}| for z € {0,1,2}. The (4,5) entry in M M7
is

(W) 2vy + 0/ (b + Dy + (0 4+ 1) = k()2 + Vv + (20 + 1),
where the equality follows because vy = k — 11 — 5. Because there are exactly r — kb’

rows in which i occurs & + 1 times and r — kb’ rows in which j occurs & + 1 times,
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vy =2(r — kb — 1p). Also, vy = §;;. Thus, the (i, ) entry in MM7 is
2b'r — k(b)) + 0y

Similarly, it can be established that the (4, ) entry in NN7T is
2k'r — b(K')* + Nij.

Thus it can be seen that the off-diagonal elements of kM MT +bNNT are all equal

if and only if kd;; 4 bA;; is identical for any two distinct treatments ¢ and j. O

We can view Theorem [11.2|in terms of edge decompositions of complete multigraphs.
The condition of Theorem [11.2] is equivalent to requiring that the collection consisting
of k-fold complete multigraphs on vertex sets Dy and of b-fold complete multigraphs on
vertex sets D¢ forms a decomposition of an z-fold complete multigraph on vertex set
{1,...,v} for some positive integer z.

Our next result provides necessary conditions for the existence of a PGYD.

Theorem 11.3. If there exists a k x b PGYD on v > 2 treatments, then the following
hold.

(1) k+b>w.

(2) k(r_kb/)(b/l_lgf?(r_bk/)(k//_l) =t is an integer.

(3) There exist p > 1 pairs of non-negative integers (mq,ny), ..., (my,n,) such that, for
(=1,...,p,
(Z) k’mg + bng =t

(11) 2r — 2k — k < my <1 — kb and 2r — 20k — b < ny < r — bk'.
(4) There exist non-negative integers zi, ..., z, such that
(1) 0120 = (12)),
(i) iy 2eme = k().
(iii) Y2y zeme = b(%).

142



Proof. Suppose there exists k£ x b PGYD D on v > 2 treatments. We provide the proofs
for each of the conditions (1) — (4) below.

Condition (1): Let M and N be the treatment-row and treatment-column incidence
matrices of D, respectively. Elementary linear algebra establishes that rank([M : N]) >
rank(kM M7 +bNNT). Since [M : N]is v x (k+b), it has rank at most k + b. Following
Dey| (1975)), since kMMT + bDNNT is v x v and completely symmetric, it has rank wv.
Condition (1) follows. This condition is in fact a necessary condition for the existence of
the corresponding variance balanced design with block sizes k£ and b.

Condition (2): This follows from the requirement that kd;; +b\;; in Theorem is
an integer. Let ¢ = kd;; + bA;;. To find its value, we note that the total number of pairs
of treatments in blocks of D and D¢ are respectively,

I "
;aijzk((’2> and Z;Aij:b(’;). (11.2)
This is so because in Dp there are k£ blocks and each block is of size b”, and in Dy there

are b blocks and each block is of size k”. Therefore, summing over all (g) treatment pairs,
we get D>, i(kdi; +bNij) = >, ; ¢, which using (11.2) gives

R (%) +0(5) _ k(= k)b = 1) + b(r — b') (K" — o)
) v-1
Condition (3): Index the distinct pairsin {(d;5, Aij) 1 1 <4 < j < v}as(mi,ny), ..., (my,ny).
Using Condition (2) above, kmy+bn, =t for ¢ = 1,...,p. From the proof of Theorem m,

since vy = 85, 1 = 2(r—kV' —1n) = 2(r—kb' —6;;) and vy = k—1vy —vp = k—2r+2kV +6;;

must be non-negative, we have 2r — 2kb/ — k < my, < r — kb for £ = 1,...,p. Similarly,
we have 2r — 20K —b<n, <r—0bk' for ¢ =1,...,p.
Condition (4): Let zp = [{(¢,7) : (i, Nij) = (meyme), 1 <i < j <o}, 0=1,...,p.

It is clear that Y, z = (3). Also, from (11.2),
p p
b// k//
;ngg = k:<2) and ;zmg = b<2).

]

A k x b row-column design with v treatments is called reqular if K = 0 (mod v)
or b = 0 (mod v); otherwise it is said to be non-regular. Accordingly, a PGYD with
parameters v,k = kv + k",b = b'v + b is regular exactly when £/ = 0 or " = 0. A
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regular PGYD reduces to a regular GYD, the existence of which depends solely on the
existence of a corresponding BIBD [Agrawal (1966). Thus, we restrict ourselves to non-
regular PGYDs for which v divides neither k& nor b (that is, £” # 0 and b” # 0). Also,
without loss of generality, henceforth assume k& < b. In view of the proof of Theorem [11.3]
we can give additional necessary conditions for the existence of a PGYD that is not a

GYD.

Corollary 11.4. Necessary conditions for the existence of a k x b non-GYD PGYD with

v treatments, in addition to necessary conditions (1) and (2) in Theorem are,
(3") p > 2, in the condition (3), and
(4") at least two of the z;’s are non-zero, in the condition (4).

Theorem [I1.3] also specialises to give well-known necessary conditions for the exis-

tence of a GYD.

Corollary 11.5. Necessary conditions for the existence of a k x b non-reqular GYD with

v treatments are,

(1Y kzvandb> v, and

(2") k;(b;)/(g) and b(k;)/(;) are integers.

The rows of a GYD form a BBD with k blocks and the columns form a BBD with
b blocks. Thus, (1’) follows from Dey’s generalization of Fisher’s inequality Dey| (1975).
Also, (2) follows directly from the condition (4) of Theorem since for a GYD exactly

one of the z,’s should be non-zero.

Remark 11.6. In addition to the necessary conditions for a non-reqular GYD as given
in Corollary[11.5], additional parametric conditions for the existence of the corresponding
BIBDs, as given in Theorem 10.3.1 and Thoerem 16.1.3 of |Hall (1998), must also hold.

11.3 Construction of PGYDs

The constructions presented in this section are patchwork methods which go back to
Kiefer| (1975a). These constructions rely heavily on affine planes. For our purposes an

affine plane of order ¢ is a BIBD with ¢? treatments and ¢(q + 1) blocks of size ¢, where
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any two treatments appear together in exactly one block. The blocks of such a design can
be partitioned into g+ 1 parallel classes each containing ¢ blocks such that any two blocks
from the same parallel class are disjoint and any two blocks from different parallel classes
intersect in exactly one point. We will use this property frequently. An affine plane of
order ¢ is known to exist whenever ¢ is a prime power. We will also sometimes consider
complements of affine planes. For a block B of an affine plane on treatment set V', let

B¢ =V '\ B and for a parallel class P of such a plane, let P¢ = {B°: B € P}.

Lemma 11.7. Let m, n and v be positive integers with n =0 (mod v), let {1,...,v} be
a set of v treatments, and let Sy,...,S, be m-subsets of {1,...,v}. If every treatment
occurs exactly mn/v times in the collection {S1,...,S,}, then there is an m x n matriz
A such that the set of treatments in the wth column of A is S, and each treatment occurs

n/v times in each row of A.

Proof. Let G be the bipartite graph with parts {c;,...,¢,} and {1,... v} such that
the set of vertices adjacent to ¢, is S, for w € {1,...,n}. Then degy(c,) = m for
w € {1,...,n} and, by our hypothesis, degq(i) = mn/v for each i € {1,...,v}. By a
result of de Werra) (1971)) the edges of G can be colored with m colours, say 1,...,m,
such that each vertex in {cy,...,c,} is incident with exactly one edge of each color, and
each vertex in {1,...,v} is incident with exactly n/v edges of each color.

Form A by placing in the (u,w) position the unique element i of {1, ..., v} such that
the edge c,i of G is assigned color u. That the set of treatments in the wth column of
A is S, follows from the definition of G. That each treatment occurs n/v times in each
row of A follows from the fact that each vertex in {1,... v} is incident with exactly n/v
edges of each color.

This lemma can also be proved using the literature on systems of distinct represen-

tatives (see (Ford and Fulkerson, 1958, Theorem 1), for example). O

Lemma 11.8. Let Py,...,P,o1 and Qy, ..., Q1 be parallel classes (not necessarily dis-
tinct) of an affine plane of order q such that P, # Q, for x,y € {1,...,q — 1}.

(i) Foranyx,y € {1,...,q—1} there is a ¢ X q¢ matriz A such that the sets of treatments
in the rows of A are the elements of P, and the sets of treatments in the columns

of A are the elements of Q,.
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(ii) For any v € {1,...,q — 1} there is a q x (¢* — q) matriz A such that the sets of
treatments in the rows of A are the elements of PS and the sets of treatments in the

columns of A are the elements of Q1,..., Q4.

(iii) There is a (¢*> — q) X (¢* — q) matriz A such that the sets of treatments in the rows
of A are the elements of Pi,...,P;_y and the sels of treatments in the columns of

A are the elements of Qf,..., Q¢ ;.

Proof. For z,y € {1,...,q— 1}, let P, ={P,1,..., Poyt and let Q, = {Qy1,...,Qyq}
Case (i): We will show that there exists a ¢ x ¢ matrix A such that the set of
treatments in the uth row of A is P, , and the set of treatments in the wth column of A
is Qyw. Because v # vy, |Ppy N Qyw| =1 for all u,w € {1,...,q}. So A can be obtained
by placing the unique element of P, , N @, in the (u,w) position.
Case (ii): As in the proof of (i) there is, for each y € {1,...,¢—1}, a ¢ x ¢ matrix A4,
such that the set of treatments in the uth row of A, is P, ,, and the set of treatments in

the wth column of A, is @, (Where the subscripts are considered modulo ¢). We take
A= 1A Ay -+ Ajq].

The set of treatments in the uth row of A'is Py .

Case (iii): As in the proof of (i) there is, for each z,y € {1,...,q — 1}, a ¢ X ¢
matrix A, , such that the set of treatments in the uth row of A, , is P, .4, and the set
of treatments in the wth column of A, , is Qyw+, (where the subscripts are considered

modulo ¢). We take

Al,l A1,2 e Al,q—l
A2 1 AQ 2 e A2
) ) 7q_1
A - . . .
_Aq—l,l Aq—1,2 e Aq—l.q—l_

The set of treatments in the uth row of Ais P; , where u = (z—1)¢+u and v’ € {1,...,q}.
Similarly the set of treatments in the wth column of A is Q5 ,, where w = (y — 1)g + w’

and w' € {1,...,q}. O

The following theorem gives us four families of PGYDs based on the residues of k

and b modulo ¢.
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Theorem 11.9. Let q be a prime power. There exists a k x b PGYD with v = ¢*

treatments if
(i) k = +q (mod ¢*);
(11) b= +q (mod ¢?);

(i) k = k*q(q + 1) + mq(q +1—n)and b = b*q(q +1) + mnq for some

n €40,...,q} and non-negative integers k* and b*.

Proof. From (i) and (ii) we have k = K'¢* + k" and b = V/¢q*> + 1" where k", V" € {q,¢* —q}
and k' and 0’ are non-negative integers. Let Pi,...,P,11 be the parallel classes of an
affine plane of order q. Let g = ged(b, k).

Let @1, ..., 24 be the unique non-decreasing sequence of indices from {1,...,¢+1}
such that each index in {1,2,...,n} occurs k* times in the sequence and each index
in {n+1,...,9+ 1} occurs k* 4+ b/g times in the sequence. For u € {1,... k/q}, let
Ry =Py, if b =qand R, =P if V" = ¢* —q. Let yi,..., 4, be the unique non-
increasing sequence of indices from {1,...,q + 1} such that each index in {1,2,...,n}
occurs b* + k/g times in the sequence and each index in {n+1,...,¢+ 1} occurs b* times
in the sequence. For w € {1,...,b/q}, let C,, = P,, if k" = gand C, = P}, if k" = ¢* —q.

We will form the required design as

W X
Y Z

where

e Wisa (k—E") x (b—b") matrix such that each treatment occurs the same number

of times in each row of W and the same number of times in each column of W.

e X isa (k—£k") xb" matrix such that the sets of treatments in the rows of X are the

elements of Ry, ..., R—ky/q and each treatment occurs &’ times in each column of

X.

e Yisak” x (b—10") matrix such that the sets of treatments in the columns of Y are

the elements of Cy,...,Cp—pr)/y and each treatment occurs b’ times in each row of

Y.
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o 7 is a k" x V" matrix such that the sets of treatments in the rows of Z are the
elements of Ry /q+1, - - -, Ri/q and the sets of treatments in the columns of Z are

the elements of Cy—pr)/q41, - - -, Cpyq-

We will first show that such a design is a PGYD and then show that we can construct
matrices W, X, Y and Z with the required properties.

It is clear that such a design obeys (A1) and (A2). So to show the design is a PGYD
it suffices, by Theorem to show that kd;; + bA;; is identical for each pair of distinct

treatments (4, 7). Let (4,7) be a pair of distinct treatments. Define

1, if 72 and j occur together in a block in Py U---UPy;
Yij =
’ 0, if ¢ and j occur together in a block in Py U--- U Pyq;.

Note that 7 and j occur together in 1 — «;; blocks in P,,41 U --- U Pyy;1. Note also that i
and j occur together in ¢ — 1 blocks of Pf if ¢ and j occur together in a block of P, and
and j occur together in ¢ — 2 blocks of P¢ otherwise. Then from our construction we can

calculate that \;; and d;; are as given below.

iy — .
b*(qQ—q—1)+§(n(q—2)+’yij), it k" =¢*—q.

%:{ B+ 21— ), it = g;

(@ —qg—1)+2((g+1-n)(g—2)+ (1 =), ifd'=¢—q
Considering four cases according to the values of £” and 0, it is easy to check that the
value of kd;; + b\;; is independent of +;;. Hence kd;; + bA;; is identical for each pair of
distinct treatments (7, 7) and the design is a PGYD.

We now show that we can construct matrices W, X, Y and Z with the required prop-
erties. It is easy to form W by tiling ¢ x ¢* latin squares. Because each treatment appears
once in each parallel class and appears ¢ — 2 times in the complement of each parallel
class, and because b — b’ = 0 (mod ¢?), Lemma can be used to construct a matrix Y’
with the required properties. Similarly, by applying Lemma [11.7] and taking a transpose,
a matrix X with the required properties can be constructed. Finally, Lemma yields
a matrix Z with the required properties provided that the sets {x_r)/g41; - - -, Tr/q} and
{Yo-v7)/q+1, - - > Yp/q} are disjoint. We complete the proof by establishing this claim.

When k" =" = q, {yp)q} = {1} and {z}q} = {¢+1}. When 0" = gand k" = ¢*—q,
{upse} = {1} and {@g—rr) /g1, - - Trsg} S {3,...,q¢+1}. When b’ = ¢* — g and k" = g,
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{zr)q} = {a + 1} and {yp-vr)/g+15- - Wq} S {1,...,¢ — 1}. In each of these cases the
claim is true, so we may assume that b” = k” = ¢*> — ¢ and q # 2. We consider two cases
according to whether b = k.

Suppose first that & # b. We are assuming k < b without loss of generality, so k < b.
Then

g=qged(V'q+q—1,kKq+q—1)=qged(V'qg+q— 1,0 —F)q) < qt/ = k) <Vq,

where the last equality follows because (V' —k')qg = (V'q+q—1)— (K'¢q+q—1) and the first
inequality follows because ged(b'q+q—1,q) = 1. Sowe have b/g > (V'¢*+q¢*—q)/(Vq) > q.
Thus {Tk—k")/q+15 - - Tr/qp = {q + 1} Obviously {yw—p)/g+1s- - Yosq} S {1,...,q— 1},
and the claim follows.

Now suppose that k = b. Then it follows from (iii) that £ = b = b*q(q+1)+ng where
n € {0, (qg+1)/2}. So, because b = —q (mod ¢?), b* =q—n —1 (mod ¢). Thus, it must
be the case that n = 0 and b* > 2 or that n = (¢+1)/2 and b* > 1 or that n = (¢+1)/2,

b* = 0 and ¢ = 3. In each of these cases it can be verified that {yp—v7)/q41,---sYp/q} C
{1,..., [(¢+1)/2]} and {Z@w—rmy/q+1,- - Trsqt S {[(¢+3)/2],..., ¢+ 1}. O

Theorem [11.9| produces a PYD when k& = b. In this case it must be that n = 0 or
n = (¢+1)/2. Cheng’s construction in Theorem 2.2 of |Cheng (19815) necessarily requires
that b = ¢ (mod ¢?) and produces designs for parameter sets covered by Theorem [11.9]
However, Theorem [11.9] also produces PYDs for parameter sets not covered by Theorem
2.2 of [Cheng| (19818). In particular, it does so when b = —¢ (mod ¢?), as stated in the

following corollary.

Corollary 11.10. Let q be a prime power and a be a positive integer. Then an (aq® —

q) X (aq* — q) PYD with ¢* treatments exists
(i) when q is odd and a = —1 (mod £); and
(i) when q is even and a = —1 (mod ¢ + 1).

Remark 11.11. Theorem giwes a GYD when n = 0 and Corollary |11.10 gives a
GYD when a = —1 (mod ¢+ 1).

It appears harder to analyze when Theorem can be applied with n # 0 and b # k
so as to produce a PGYD which is not a GYD or PYD. Instead we present Table
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which, for ¢ < 8, lists the parameter sets of such designs obeying k < b < v? (there are
no such parameter sets for ¢ € {2,3,8}). For ¢ = 9 such a listing would be too lengthy
and we instead list those obeying k& < b < v?/3. Tt appears we obtain a wider variety of

parameter sets when ¢ is a perfect square.

Table 11.1: Parameter sets of non-GYD non-PYD PGYDs given by Theorem for
g<8and k<b<v?and forg=9and k <b<v?/3

qg=4,v=16 | ¢q=5,v=25 q="T7,v=49 q=9,v=2_81
k b n k b n k b n k b n
12 36 4 | 405 495 3| 924 1428 4 | 234 1872 8
28 196 4 924 2100 4 | 396 2178 6
36 108 2 1428 2100 4 | 819 1287 9
44 132 3 1820 2100 4 | 819 1953 9
52 156 4 882 1386 2
68 204 1 1224 1368 6
76 228 2 1368 2016 6
84 132 4 1386 2178 6
84 252 3 1449 1953 9
108 204 4 1872 2016 8
156 228 4

196 252 4

We now present a simple method of obtaining a non-GYD PYD from a PYD that is
a GYD and has a particular additional property.

Theorem 11.12. Let D be a k x k GYD with v treatments, of the form

w X
Y 7

where W is vk’ x vk' and is formed by tiling latin squares of order v, Z is k" x k", and
each treatment occurs k' times in each column of X and k' times in each row of Y. If
there is a pair of treatments that occur together in the columns of Z a different number of
times from in the rows of Z, then the design D* formed from D by replacing Z with Z*
1s a PYD that is not a GYD.

Proof. Using the logic of Theorem[11.2] it follows that in the GYD D each pair of distinct
treatments (7,7) appears u times in the rows of [XT : ZT]T and p times in the columns

of [Y : Z] for some positive integer .
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Let (4,7) be a pair of distinct treatments. Say (i, j) appears 55 times in the rows of
Z and A7 times in the columns of Z. So (i, ) appears (u — 67;) times in the rows of X
and (1 — A}) times in the columns of Y. Then D* has the form

w X
y 77

and (i, j) appears p — 07 + A7, times in the rows of [X” : Z]" and p — A + 67 times in
the columns of [Y : ZT]. So, in D*, kAij + kdy; = k(p — X + 07 + pn— 07 + AJ) = 2kp.
Thus, in D*, kA;;+kd;; is identical for any pair (7, j) of distinct treatments, and D* is
a PYD by Theorem m However, by our hypotheses, there is some pair (7, j) of distinct
treatments that appears 6;; times in the rows of Z and A7, times in the columns of Z where
55 + /\ZZJ So, using our arguments above, \;; # J;; in D* because u—éé—i—/\fj #+ ,u—)\iquL(%.
Therefore, D* is not a GYD. m
Remark 11.13. Any GYD with k = b constructed according to the proof of Theorem|11.9
will satisfy the conditions of Theorem [11.14. To see this, note that in the proof of The-
orem L € {Y—rr)/gr1s - - Uksqy dut 1 & {2 )15 Toyq}- 1t follows that any

pair of treatments that appears in a block in Py will appear more often in the columns of

Z than in the rows of Z.

Ash| (1981) gave constructions of GYDs for all parameter sets satisfying v < 25,k <
b < 50 and the conditions of Corollary , with two exceptions. For (v,k,b) =
(15,21,35) a GYD is known not to exist by Remark [11.6] For (v, k,b) = (25,40, 40)
it is not known whether a GYD exists, but Ash provides a PYD. Consequently a PGYD
exists trivially for all of Ash’s parameter sets except (15,21,35), and in these cases we turn
our attention to whether there exists a non-GYD PGYD. Table lists these parameter
sets together with whether a non-GYD PGYD is known to exist or not exist. The param-
eters in Table [1.2l where a non-GYD PGYD exists can be obtained from Theorem [11.9]
and Theorem (see Remark [11.13)), except for (8,14,28), (8,28,28), (9,24,48) and
(10, 36,45). However, a non-GYD PGYD for (8,28, 28) can be obtained by applying The-
orem to the GYD for (8,28, 28) provided in |Ash| (1981)) and a non-GYD PGYD for
(9,24,48) is provided in the appendix The special statuses of (15,21, 35) and (25, 40, 40)
are marked in Table by an asterisk (*) and an exclamation (!), respectively.

There are seven parameter sets in the range v < 25,k < b < 50 that satisfy the
conditions of Theorem but not those of Corollary [I1.5 For all of these a PGYD
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exists. These parameter sets are listed in Table together with the condition of
Corollary they violate and references to constructions of corresponding PGYDs.
Other than two non-GYD PGYDs for (8,20, 50) and (18,12, 48) provided in the appendix
[E] the constructions for the non-GYD PGYDs follow from Theorem [I1.9]

Table 11.2: Existence of non-GYD PGYDs for parameter sets satisfying v < 25,k < b <
50 and the conditions of Corollary [11.5

kb Non-GYD PGYD? v kb Non-GYD PGYD?

6 6 Yes: Theorem|11.12 8 28 28 Yes: Theorem [11.12

6 18 No: Corollary |11.4{(3) | 8 28 42 No: Corollary[11.4] (4')

6 30 No: Corollary(11.4/(3') | 9 12 12 Yes: Theorem|11.12

6 42 No: Corollary(11.4/(3') | 9 12 24 No: Corollary(11.4] (4

18 18 Yes: Theorem [11.12 9 12 48 No: Corollary(11.4] (3"

18 30 No: Corollary[11.4{(4) | 9 24 24 Yes: Theorem [11.12

18 42 No: Corollary [11.4/(3") | 9 24 48 Yes: appendix [F

30 30 Yes: Theorem|11.12 9 48 48 Yes: Theorem [11.12

30 42 No: Corollary|11.4{(4') | 10 15 36 No: Corollary|11.4{(3")
42 Yes: Theorem [11.12 10 18 45 No: Corollary |11.4{ (3"

36 45 Unknown
33 44 No: Corollary [11.4 (
15* 21 35 No: Corollary|11.4] (4)
15 35 42 No: Corollary [11.4(

10 15 No: Corollary [11.4{ (3')
)
)
)
Y1 16 20 20 Yes: Theorem |11.12
)
)
)

(
10 45 No: Corollary [11.4] (
15 20 No: Corollary [11.4](
15 40 No: Corollary [11.4] (
15 50 No: Corollary [11.4] (
(

(

(

—
o

—_
[\

20 45 No: Corollary|11.4
40 45 No: Corollary|11.4
45 50 No: Corollary(11.4
14 28 Unknown

21 30 35 No: Corollary|11.4{(4)
25 30 30 Yes: Theorem|11.12
25' 40 40 Yes: Ash

O O O O O DY DY OO ke s R R R R R R R R
W
[N}
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Table 11.3: Existence of non-GYD PGYDs for parameter sets satisfying v < 25,k < b

50 but failing the conditions of Corollary [11.5

v kb GYD? Non-GYD PGYD?

8 20 50 No: Corollary [11.5/(2") Yes: appendixH

9 6 6 No: Corollary [11.5/(1")  Yes: Cheng, Theorem [11.9
9 30 30 No: Corollary [11.5[(2) Yes: Cheng, Theorem |11.9
9 42 42 No: Corollary [11.5(2")  Yes: Theorem [11.9

16 12 36 No: Corollary [11.5((1") Yes: Theoerm [11.9

18 12 48 No: Corollary [11.5((1") Yes: appendix [F

25 45 45 No: Corollary [11.5(2")  Yes: Theorem |11.9
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Chapter 12

Summary and future work

In this thesis, we have worked on solving important problems in the areas of optimal
design theory, discrete choice experiments, supersaturated designs, coverings and Youden
designs. In what follows, we provide concluding remarks and discuss possible future work

in these areas.

12.1 Summary

12.1.1 Discrete Choice Experiments

Discrete choice experiments have gained importance over the last few years because of
their use in studying people’s preferences in a wide range of industries such as marketing,
transportation economics, health economics, environmental economics and public eco-
nomics. The responses in these studies are usually discrete or qualitative choices. Being a
relatively new area of study from a statistical perspective, there are a lot of open problems
in the area. Several authors have worked in this area and fantastic surveys are available
by Street-Burgess and Grofimann-Schwabe (Street and Burgess, [2007; |GroSmann and
Schwabe, 2015)). One of the biggest challenges is to keep the number of choice sets as
small as possible while still being able to achieve the best possible results. For a major
part of this thesis, we have worked on choice experiments. Throughout the thesis, we
have worked on solving this problem of reducing the number of choice sets under various
choice experiment setups including the estimation of either main-effects or main-effects

plus two-factor interaction effects. We now give a chapter-wise summary for the work
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done in this thesis.

12.1.1.1 Chapter

For two-level paired choice experiments, we have obtained a simple form of the information
matrix of a choice design for estimating the main effects, and provided D- and MS-optimal
paired choice designs with distinct choice sets under the main effects model for any number
of choice sets. The D- and MS-optimal two-level paired choice designs found in this
chapter provide solutions in situations where, for every N # 0 (mod 4), the information
matrix of an optimal exact design is different from the information matrix of the optimal
approximate design, for which the corresponding exact optimal design was not previously
available. This work complements previous work giving optimal exact designs only for
N = 0 (mod 4). Thus experimenters can now use optimal designs for any number of
choice sets N. It is also shown that the optimal designs under the main effects model are
also optimal under the broader main effects model. From a statistical perspective we have
established that one should prefer optimal paired choice designs to choice designs with
m = 3 or m = 5. This also assists in achieving the desired quality of response through

reduced choice set size.

12.1.1.2 Chapter

Traditionally, while using designs for discrete choice experiments, every respondent is
shown the same collection of choice pairs (that is, the choice design). Also, as the at-
tributes and/or the number of levels under each attribute increases, the number of choice
pairs in an optimal paired choice design increases rapidly. Moreover, in the literature
under the utility-neutral setup, random subsets of the theoretically obtained optimal de-
signs are often allocated to respondents. The question therefore is whether one can do
better than a random allocation of subsets. To address these concerns, in the linear paired
comparison model (or, equivalently the multinomial logit model), we first incorporate the
fixed respondent effects (also referred to as the block effects) and then obtain optimal
designs for the parameters of interest. Our approach is simple and theoretically tractable,
unlike other approaches which are algorithmic in nature. We present several constructions
of optimal block designs for estimating main effects or main plus two-factor interaction

effects. Our results show when and how an optimal design for the model without blocks
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can be split into blocks so as to retain the optimality properties under the block model.

12.1.1.3 Chapter

In this chapter, for paired choice designs, two new construction methods are also proposed
for the estimation of the main effects. These designs require about 30-50% fewer choice
pairs than the existing designs and at the same time have reasonably high D-efficiencies for
the estimation of the main effects. Since, for v = 2, 3, the number of choice pairs involved
is not very large, it may be preferable to use optimal designs for such cases. However, as
the number of levels increases, the number of choice pairs in an optimal design increases
rapidly, and thus, it is preferable to use efficient designs with fewer choice pairs. The
significant gain through the reduced number of choice pairs compensates for the marginal

loss in D-efficiency.

12.1.1.4 Chapter

In this chapter, for paired choice designs with all factors having 3 levels, we have obtained
a sharper lower bound to the A- and D-values for estimating the main effects under the
utility-neutral multinomial logit model in the cases where number of choice pairs N is
not necessarily a multiple of 3. New A- and D-optimal (and efficient) designs are also
provided. The D-optimal designs under effects coding are also A- and D-optimal under
orthonormal contrasts. However, under effects coding, A-optimal designs are usually not
D-optimal, even if N is a multiple of three; for example the design a(z6). The example
a(2,6) illustrates the need for more work to understand whether one should recommend
A-optimal designs for orthonormal contrasts or one should recommend A-optimal designs

under effects coding.

12.1.1.5 Chapter [g]

Considering three-level paired choice designs for estimating all the main effects and two-
factor interaction effects under the utility-neutral multinomial logit model, we have pro-
vided a general technique involving generators to reduce the number of choice pairs in
a D-optimal design. Generators are identified allowing significant reduction in the total
number of choice pairs for D-optimal designs. We have also given several examples of

generators for the practical k’s.
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12.1.1.6 Chapter

For two-level choice experiments with &k factors, we consider a model involving the main
plus all two-factor interaction effects with our interest lying in the estimation of the main
effects and a specified set of two-factor interaction effects. The two-factor interaction
effects of interest are either (i) one factor interacting with each of the remaining n —
1 factors or (ii) each of the two factors interacting with each of the remaining n — 2
factors. There are no general results on the optimal choice designs for estimating main plus
specified two-factor interaction effects in the choice design literature, though [Street and
Burgess| (2007)) highlighted the problem by giving a few examples. One could argue that
the optimal designs available for estimating main effects and all two-factor interactions
could be used for this specific problem because of a lack of theoretical results. However,
when one increases the number of parameters of interest (especially 2-factor interactions),
theoretically obtained optimal designs usually have a large number of choice sets. Under
our model, we have provided theoretical results characterizing optimal designs for any
m. However, we provide optimal design constructions for more practical values of m, i.e.,
m = 3 and m = 4. The case for m = 2 still remains a relevant open problem unless one
uses large designs that are optimal for estimating main and all two-factor interactions as
obtained by Street and Burgess (2007). As a way forward, one can possibly extend this
work to factors with asymmetric levels. One could also consider other sets of specified

two-factor interaction effects as indicated in |Dey and Suen| (2002)).

12.1.1.7 Chapter

The author-groups Street—Burgess and Huber—Zwerina have adopted different approaches
and used seemingly different information matrices under the multinomial logit model. The
information matrix plays a crucial role for finding optimal designs in both approaches.
Since the expressions for the relevant matrices look very different and it is not obvious
how the two approaches are related, this has given rise to some confusion in the litera-
ture. We resolved this confusion by showing, in general, how the information matrices
under the two approaches are related. There had also been some confusion regarding the
inference parameters expressed as linear functions of the utility parameter vector 7. We
theoretically established a unified approach to discrete choice experiments and introduce

the general inference problem in terms of a simple linear function of 7. This allowed us
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to show that the commonly used effects coding under the A-criterion for the non-singular
full-rank inference problem inherently attaches unequal importance to the elementary
contrasts of attribute levels. On the contrary, we see that the orthonormal coding leads
to attaching equal importance to the elementary contrasts of attribute levels. However,
for a singular full-rank inference problem involving the full set of effects-coded parame-
ters, we showed that the orthonormal coding provides an equivalent approach to obtain

A-optimal designs.

12.1.2 Supersaturated Designs

In supersaturated designs, the F(s?) optimality criterion was proposed by Booth and Cox
(1962). Jones and Majumdar| (2014) proposed the UE(s?) optimality criterion. In this
thesis (Chapter @, we have compared the advantages of the two criteria and proposed
methods for compromising between the two. Minimizing UE,(s*) alone produces a large
class of UE(s?)-optimal designs that require secondary criteria to discriminate. An ar-
bitrary UE(s?)-optimal design may have poor projection properties. We have proposed
secondary criteria to identify good UFE(s?)-optimal designs. A smaller value of SS along
with minimum @ are common features of many UFE(s?)-optimal designs with good pro-
jection properties. Although no simple surrogate criterion is expected to always produce
the best design, we have seen that minimizing SS followed by minimizing () is an effective
way of getting UE(s?)-optimal designs with good projection properties. We have also pro-
vided easy constructions of superior UE(s?)-optimal designs that are almost as efficient

as F(s?)-optimal designs. Alongside, we have also identified several families of designs

that are both F(s?)- and UE(s?)-optimal.

12.1.3 Coverings

We have seen the definition of a coverings in Chapter [10] To recall, for positive integers ¢,
v, k and A with t < k < v, a t-(v, k,\) covering is an incidence structure (V,3) such that
V| =wv, |B] =k for all B € B, and each t-subset of V' is contained in at least A blocks
in B. The covering number Cy(v, k,t) is the minimum number of blocks in any t-(v, k, A)
covering. In the area of coverings, it is of crucial importance to find a lower bound on

the covering number. We have obtained an improved lower bound for ¢-coverings and
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we have also obtained infinite families of coverings attaining our lower bounds (Horsley
and Singhl, [2018)). For these families, our lower bound is an improvement over the best
available lower bounds. We also found an infinite family where our bound is tight, that

is, there exists a t-(v, k, A) covering attaining our bound.

12.1.4 Pseudo generalized Youden designs

In Chapter , we have seen that in the area of row column designs, [Kiefer (1958) intro-
duced generalized Youden designs (GYDs) for eliminating heterogeneity in two directions.
A GYD is a row-column design whose k rows form a balanced block design (BBD) and
whose b columns do likewise. Later Chengl (19818) introduced pseudo Youden designs
(PYDs) in which k£ = b and where the k rows and the b columns, considered together as
blocks, form a BBD. In our work (Das et all, [2018) (Chapter [L1]), we have introduced and
investigated pseudo generalized Youden designs (PGYDs) which generalise both GYDs
and PYDs. We have obtained necessary conditions for the existence of a PGYD and
have constructed families of PGYDs based on affine planes. We have also provided an
exhaustive list of parameter sets satisfying v < 25,k < 50,b < 50 for which a PGYD

exists.

12.2 Future work

Discrete choice experiments are studied under a generalized linear model where the re-
sponses are non-normal and therefore, the designs are dependent on the unknown param-
eters of the fitted model. In this thesis, we have mostly obtained theoretically D-optimal
designs under the indifference assumption wherein designs are not dependent on the un-
known parameters. This has been done to obtain theoretical results in the area. However,
another important and interesting sub-area of research in choice experiments forgoes this
indifference assumption. This is usually done with the help of Bayesian experiments.
My future research will not only involve generalizing the results in this thesis to other
well known optimality criteria but will also include obtaining Bayesian optimal designs
for many of the practical situations inspired by the work carried out by Peter Goos,

Roselinde Kessels, etc. (Kessels et al., 2006; Kessels, Goos and Vandebroek, [2008). A few

open problems are also mentioned in Section [12.1.1.4] [12.1.1.6 and [12.1.1.7}
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In the area of supersaturated designs, we will work on finding a lower bound for
the SS criterion we defined for UE(s?)- optimal designs (Chapter [9)), and on constructing
designs achieving this lower bound. We have already been working on this front and we
will soon be able to present it in a manuscript form. Further works in this area will also
be discussed in the said manuscript.

In the area of coverings, we have worked on improving the lower bounds for ¢-
coverings using lessons learned from the lower bounds for 2-coverings. Whether these
methods can be extended to generalized covering designs is an area for future work.
There are several other problems posed in Bailey et al.| (2011)) on generalized covering
designs. Therefore, in future work, we would like to generalize the results in this thesis
to generalized covering designs and solve some of the problems posed in the paper.

In future research on PGYDs, we may try to obtain PGYDs for the parameter
sets (given in Chapter for which a non-GYD PGYD is unknown, for example for
parameters v = 8,k = 14,b = 28. This will help in closing the gaps of the unavailable
designs for a larger range of parameter sets. We can also try to construct tables as in
Chapter [L1] for a larger range of v so as to understand the missing designs and to obtain

a general construction for the same, if possible.
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Appendix A

Additional Material for Chapter

This appendix provides some additional details for the Chapter [3]
Design for Example k=3v=21v=3v3=4b=1,N=s=T2.

(000,111) | (000,222) | (000,333) | (100,211) | (100,322) | (100,033) | (020,131) | (020,313) | (120,302)
(001,112) | (001,223) | (001,330) | (101,212) | (101,323) | (101,030) | (021,132) | (021,310) | (121,303)
(002,113) | (002,220) | (002,331) | (102,213) | (102,320) | (102,031) | (022,133) | (022,311) | (122,300)
(003,110) | (003,221) | (003,332) | (103,210) | (103,321) | (103,032) | (023,130) | (023,312) | (123,301)
(010,121) | (010,232) | (010,303) | (110,221) | (110,332) | (110,003) | (020,202) | (120,231) | (120,013)
(011,122) | (011,233) | (011,300) | (111,222) | (111,333) | (111,000) | (021,203) | (121,232) | (121,010)
(012,123) | (012,230) | (012,301) | (112,223) | (112,330) | (112,001) | (022,200) | (122,233) | (122,011)
(013,120) | (013,231) | (013,302) | (113,220) | (113,331) | (113,002) | (023,201) | (123,230) | (123,012)

Lemma A.1. A necessary and sufficient condition for Cyy = Chyy to hold is that for each
block and each attribute, the frequency distribution of the levels of the attribute are same

for the two options.

Proof. Let Py = ((P)} -+ (P}); - - (P));) where (P;), represents Py; for the ¢th block.
Then the condition W’ Py, = 0 is equivalent to the condition 1'(Py); = 1'(P)s, t = 1,...,b.
Let (P); = ((P;); - (Py)¥ -+ (P;)F) where (P;)¥ is of order s x (v,, — 1) and represents
(P;); for the wth attribute. Therefore for ¢t =1,...,0b, if 1'(P), = 1'(P);, then 1'(P)} =
1'(P,)} for every w and t. Now, since the ¢th column of (P;)}’ provides frequency of
level ¢ and level v,, in the wth attribute of the jth option in the tth block, therefore,
(P} = 1'(Py)y implies that the frequency of each of the levels of attribute w is same
in the two options among the s choice pairs in block .

The converse follows by noting that if for each block and each attribute, the frequency

distribution of the levels of the attribute are same for the two options, then 1'(P;); =
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1'(Py); for every t. O
Proof of Theorem [B.1l. The proof follows as a special case of Lemma [A.1] O

Proof of Theorem [3.2l Under the linear paired comparison model, a design d optimally
estimates the main effects if Cyy = diag(Cpy,...,Ck)) (see (GroBmann and Schwabe
(2015))) where Cyy = 2i(Ly,—1 + Jy,—1) with 2, = 2N/(v; — 1), ¢ = 1,..., k. This implies
that Cj; normalized by number of pairs would attain an optimal structure if C) =
2i(Ly,—1 + Jy,—1) with z; =2/(v; — 1), i =1,... k.

Since the O A+ G method of construction entails adding generators to the orthogonal
array of strength ¢, (¢t > 2), the off-diagonal elements of P}, Py, corresponding to two
different attributes is zero since under each level of the first attribute, all the levels of
the second attribute occur equally often. Also, since in an orthogonal array, under each
column (attribute) the levels are equally replicated, to establish that each C(; attains
an optimal structure of the form z;(I,,_; + J,,_1), it is enough to show that normalized
P}, Py corresponding to a paired choice design with one attribute, say at v levels, attains
the structure z(I,_1 + J,_1), where z = 2/(v — 1).

Without loss of generality, we consider only v choice pairs for a typical attribute since
under each column, the n rows of the orthogonal array involves v symbols each replicated
n/v times. While using the generator g;, let P?, PJ be the v x (v— 1) effects-coded matrix
for the main effects for the first and second options, respectively, corresponding to any
one attribute at v levels. When h > 1, note that P, is the collection of different matrices
generated out of the corresponding {P?, P2j },7 = 1...,h of choice pairs. For notational
simplicity, we denote PP by Py and P2j by P;, j =1,...,v—1. Also, note that 1'P; =0
and Z;’;é P; =0.

Consider the information matrix P, Py normalized for v even. v(v — 1)Py, Py =
ST (Py— ) (Py— Py) = Y021 (ByPo+ PPy — PyPy — PiRy) = Y0 H2(1my + Jur)} —
PYSTE P — (S0 PPy = (20 — 1)(Tos + Jo)} — PY—Po) — (— PPy = 2{(u -
V) (Ly—1+ Jy1)} + 2P Py = 2v(1y—1 + Jy—1). Thus, for v even, h = v — 1 generators of the
type g; = 1,...,v — 1 leads to the optimal structure of normalized P;;Py;.

For v odd, we note that, if say, mth row of F, corresponds to the level ¢, then
the mth row of P,_; corresponds to the level i — j (mod v). Similarly, if say, {th row

of P; corresponds to the level 7, then the ith row of F, corresponds to the level 7 — j
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(mod v). This makes the /th row of P; and F, same as the mth row of P and P,_;
for every two rows [ # m = 1,...,v. Therefore, for v odd, P/Py = PP, ;. Now,
v(v—1)/2P} Pay = S VP (Py— Py (Py— Py) = SV V(P Py + PIP — PyPy — PIRy) =
Z(v 1/2{2( I+ Jy ) — ZU 1/2(P’P +P’P0) _ (U—l)(fv_1+Jv—1)—Z(-v_ 1)/2(P’P'+
PiP.y) = (v=1)(Ia+Ju 1) =Py 552 (P4Posy) = (v=1)(Toa T a) =Py 0521 Py =
(v=1)Iy—1+ Jy—1) — P{(—=Fo) = v(Ly—1 + Jp—1). Thus, for v odd, h = (v—1)/2 generators

of the type g; = 1,..., (v —1)/2 leads to the optimal structure of normalized Py, Py;. O

Proof of Theorem B.5l For a given OA(ny, k+1,v; X - X vy X §,2), corresponding to
the k attributes at levels v;,i = 1, ..., k, let d; be the design constructed through OA+G
method using h = lem(vy,...,v;) generators. Then d; with parameters k, vy, ..., vy,
b =1, s = hn; is an optimal paired choice design. From d;, the choice pairs obtained
through each of the h generators constitute a block of size ny. This is true since n; rows
of a block form the orthogonal array in the first option and, with labels re-coded through
the generator, in the second option and hence the conditions in Theorem are satisfied.

Finally, we use the § symbols of the (k + 1)th column of the orthogonal array for
further blocking giving a paired choice block design dy with parameters k, vy,..., v,
b = hd, s = ny/d. This is true since for every attribute in each of the blocks so formed,
each of the v; levels occurs equally often under ith attribute and hence by Theorem [3.1],
dy is optimal in Dy . O

Proofs for Theorem and Theorem require a result from Dey| (2009)) that is

given below.

Lemma A.2 (Dey (2009)). Consider v(v — 1)/2 combinations involving v levels taken
two at a time. Then, for v odd, the combinations can be grouped into (v —1)/2 replicates
each comprising v combinations. The groups are {(i,v—2—1),(i+1L,v—1—14),..., (i +

v—1,v—2—(i— (v—1)))} and the levels are reduced modulo v; i =0,..., (v —3)/2.

Proof of Theorem [3.7. Theorem 3 of |GraBhoff et al| (2004) states that from m(> k)
rows of a Hadamard matrix H,, of order m, an optimal paired choice design dz with
parameters k,v,b = 1,5 = mv(v — 1)/2 is constructed using the v(v — 1)/2 combinations
of v levels taken two at a time. From every row of {H,,, —H,,}, v(v — 1)/2 choice pairs

are obtained by replacing ‘1’ in the row by the first column of the combinations and ‘—1

in the row by the second column of the combinations. If v is odd, then (v — 1)/2 is an
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integer and the v(v—1)/2 combinations can be arranged in rows such that each of the two
columns have every level appearing equally often. Such an arrangement is always possible
and follows from systems of distinct representatives. Therefore, corresponding to each of
the rows of {H,,, —H,,}, using v(v — 1)/2 choice pairs as a block, a paired choice block
design with parameters k,v,b = m,s = v(v — 1)/2 is obtained which, following Theorem
is optimal. Now for v odd, from Dey| (2009), v(v — 1)/2 combinations involving v
levels taken two at a time can be grouped into (v — 1)/2 replicates each comprising v
combinations. Therefore, the blocks generated by each row of H,, can be further broken

into (v — 1)/2 blocks each of size v, which gives us dy. O

Proof of Theorem [3.9. Construction 3.2 of Demirkale, Donovan and Street| (2013)) uses
an OA(ng, k + 1,v% x vpy1,2) with vpy; = ny/v and forms vy, parallel sets each having
v rows. Then, an optimal paired choice design with parameters k,v,b = 1,s = vkﬂ(g)
is constructed using the v(v — 1)/2 combinations of v numbers {1,...,v} taken two at
a time. Let {i,j} be a typical row. Then, for each such row of size two, corresponding
rows ¢ and j from each of the vy, parallel sets are chosen to form the choice pairs of the
optimal paired choice design dg. Again as earlier, for v odd, the v(v — 1)/2 combinations
can be arranged in rows such that each of the two columns have every number appearing
equally often. Considering the v(v — 1)/2 choice pairs, obtained from a parallel set, as a
block, we get the paired choice block design with parameters k,v,b = vg11,s = v(v—1)/2
which is optimal in Dy, ;. Further proof follows on the same lines as the proof of Theorem

by treating the pairs generated by each parallel set as blocks. O

Proof of Theorem B.10L Theorem 4 of GraBhoff et al.| (2004) uses an O A(ns, k+1, m; X
<o X omy, X 0,2) with m; = v;(v; — 1)/2 for some odd v; to construct an optimal paired
choice design d; with parameters k,v;,...,v;, b =1,s = n3. This method involves a one-
one mapping between m; levels of orthogonal array to the v;(v; — 1)/2 combinations on
v; symbols. For a combination {i,j} corresponding to a symbol of an orthogonal array,
the first option in a pair is obtained by replacing 7 in place of that symbol and the second
option has j in the corresponding position. Then, similar to construction of Theorem [3.9]
using the § (> 1) symbols of the (k+1)th column of the orthogonal array for blocking gives
us an optimal paired choice block design dg with parameters k, v;, ..., vg, b = 4§, s = n3/0.

Note that this method is applicable only for odd v; since for even v;, it is not possible to
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arrange v;(v; — 1)/2 combinations in a position-balanced manner. ]

Proof of Theorem [3.11l From Theorem [3.1], for each of the h generators, a paired
choice design using the OA + G method of construction is optimal under the broader
main effects block model if Py, P; = 0.

For a given generator, to show that P;,P; = 0, it suffices to show that the inner
product of the columns of Pj; corresponding to the mth main effect and the columns
of P; corresponding to the two-factor interaction effect of ith and jth attribute is zero.
Using an OA(ny, k,vq X -+ X v, 3) in the OA + G method of construction, we establish

the result through the following two cases.

Case (i) m =i: In an orthogonal array of strength 2, each of the v;v; combinations
occur equally often n;/(v;v;) times as rows. Therefore, since the paired choice design
is based on the orthogonal array, for showing that P, P; = 0, it suffices to show that
Py Pr = 0 for one of the ny/(v;v;) sets of v;u; rows of the type (i,7);¢ = 0,...,v; —
1;j =0,...,v;, — 1. For such vv; rows, note that Py, (y = 1,2), corresponding to
the jth attribute, can be partitioned into v; sets Py ;) each of v; distinct rows. Then,
' Prry(j) = 0. Let P, corresponding to the ith attribute fixed at level ¢; (4; = 0,...,v;—1)
and the jth attribute taking v; distinct levels be represented by Py ;). Then, the columns
of Pry,;) are multiples of either Py ;) or 0,. Therefore, 1'Pry;,;) = 0 for y = 1,2.

Let Py corresponding to the ¢th attribute at level 7; be represented by X;. Then,
X;, = 1oy, where xj is a row vector of size v; — 1. Therefore, Py, P; = Zfll_ol Xi (Priig) —
Pragg)) = ZZ;(} 23, (VP — 1 Prag,j)) = 0.

Case (ii) m # ¢: In an orthogonal array of strength 3, each of the v;v;v,, combinations
occur equally often n; /(vy,v;v;) times as rows. Therefore, as in Case (i), for showing that
Py P = 0, it suffices to show that P;,P; = 0 for one of the ny/(v,vv;) sets of v, v;v;
rows of the type (m,i,j);m=0,...,v, —1;i=0,...,v;, = 1;7=0,...,v; — L.

For such v,,v;v; rows, note that P, (y = 1,2), corresponding to the ith and jth
attribute, can be partitioned into v, sets Ppy; each of vv; distinct rows. Therefore,
1'Pryij) = 0 for y = 1,2, since from Case (i), 1'Pry(;,;) = 0 for the ith attribute at level i;.

Finally, since for the mth attribute at level m; (m; =0, ..., v,,—1), the v;v; combina-
tions under attributes i and j occur equally often, therefore Py, Py = va;é X, (Priij) —

my

Pragis)) = anﬂ;;é Zm, (1" Pri(i) = 1'Pragij)) = 0. -
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Proof of Theorem B.14l From Lemmal[A.1l W’Py; = 0 if and only if for each attribute
under the choice pairs having foldover in the second option of a choice pair, the level [
(I =0, 1) appears equally often in both the options in every block and thus, the frequency
of the pair (1,0) is same as the frequency of the pair (0, 1) under every attribute in each
block.

Let Pr = (Y{---Y/---Y/) where Y; is the s x k(k — 1)/2 matrix corresponding
to the tth block. With (P;); representing Pp; for the tth block, Y; = (Pr1): — (Pra)e.
Then, the condition W’ P; = 0 is equivalent to the condition 1'(Ppy); = 1'(Pya); for every
t=1,...,b. Consider (P;); = (Py;)12--- (P)tm - (P;)* V%) where (Py;)™ is of order
s x 1 and represents (Pp;); for the two-factor interaction between the [th and the mth
attribute. Therefore, the necessary and sufficient condition for 1'(Ppy); = 1'(Pyo), is that
1'(Ppp)im = 1(Ppp)i™ for every [ and m.

In the tth block, for the choice pairs where either both the attributes have a foldover
in the second option or both do not have a foldover in the second option, the corresponding
rows in (Ppp)™ are same as the corresponding rows in (Pp)™.

However, for the pairs in which one attribute has a foldover in the second option and
another does not have foldover in the second option, the corresponding rows in (Ppy)i™
are negative of the corresponding rows in (Pr;)!™. In such a case, 1/(Pp)™ = 1/(Ppp)l™ if
and only if 1'(Pr)i™ = —1'(Pp)™ = 0. Now, 1'(Pr)™ = 0 if and only if the frequency
of the pairs from the set {(01,00), (01,11), (10,00),(10,11)} is same as the frequency of
the pairs from the set {(00,01), (00,10), (11,01), (11,10)} under the Ith and the mth
attribute. 0

Proof of Theorem [B.15l In steps (iii)-(iv), corresponding to an element f of F, make
the first set of 20712F=a=2 = 2*=3 hlocks having choice pairs (ab, a’b), (al/,d't'), (d'c, ac),
(a'd,ac’). Similarly, following the steps (iii)-(iv), we make an additional set of 2*~3
blocks having choice pairs (ac,d’c), (ac,d'd), (a'b,ab), (a't/,ab’). Note that each of the
constructed blocks satisfy conditions (i) and (ii) of Theorem [3.14 This gives rise to a
total of 282 sets of blocks each of size 4. The way we have constructed the choice pairs in
steps (iii)-(iv), it follows that the collection of first option in the 2* choice pairs forms a
complete factorial having 2¥ combinations. Furthermore, the additional set of 2¥~3 blocks,
in the construction, is identical to the first set of 283 blocks. Accordingly, we retain only

the first set of 2¥=3 blocks. This gives rise to a total of 2¥~1 choice pairs divided into 2+~3
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blocks each of size 4. Therefore, step (v) gives an optimal paired choice block design d
with parameters k,v = 2,s = 4,b where b = 2F3 (l;) for k odd and b = 2F3 (’;ﬁ) for k

even.
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Appendix B

Additional Material for Chapter

This appendix contains some extra details about Chapter [5

Proof of Theorem 5.3 First we give a proof of trace(M;') > 22:1 trace(Md_p;).

My Mo

My Moy
(Myy — Myp My May) ™ — M3 Myo (Mo — Moy My M) ™

— M35 Moy (Myy — Mys Moy May) ™ (Mo — Moy My Mys) ™

is non-negative definite, (M, — Mo My, Myy) < My and therefore (M, — Mo Myy' My )™t >

M;'. Similarly, (May — Moy M;,' Mi9)~™t > My,'. Therefore, trace(M ') = trace(M;; —

Mo Myt Moy )™t 4 trace(May — Moy M* Mio) ™ > trace( M) + trace(Myy').

Let for k = 2, the 2 x 2 partitioned matrix M is M = [ . Then M~! =

] . Since M12M231M21

Using the principle of induction, let the relationship holds for ¢ = k£ — 1 or that
trace(M~') > 37 trace(M,,").

Now, the relation for ¢ = k can be proved considering one block matrix (say, M)
consisting of k — 1 blocks and My, being the last block and proceeding in the similar way
as for 2 x 2 partitioned matrices.

Finally, using Lemma the proof follows. O

Proof of Theorem [5.5. First, we give a proof of det(M;') > HI;:1 det(Md_p;) by in-
My Mo
My Mo
det(M) = det(Myy)det(Myy — Moy M* Myo) < det(Myy)det(Mays) since My M My, is
non-negative definite. Therefore, det(M~') > det(M;;")det(My"). Let the relationship

hold for t = k — 1 or that det(M 1) > H;:l det(M,,").

duction. Let for £ = 2, the 2 x 2 partitioned matrix M is M = [ . Then
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Now, the relation for ¢ = k can be proved considering one block matrix (say, M)
consisting of k — 1 blocks and Mss being the last block and proceeding in the similar way

as for 2 x 2 partitioned matrices.

Finally, using Lemma the proof follows. O

Designs as discussed in Chapter

21, 02
00, 22
20, 01 20, 11
01, 10
21, 10 22. 10
adzq) = adegs = | 02, 11 (2,6) =
12, 00 11, 00
11, 20
02, 11 12, 01
12, 21
01, 10
21, 00
211, 022
01, 22
222, 000
10, 21
202, 121
12, 20
ad@zy =1 220, 112 dog)y = 00 11
101, 010 ’
01, 12
110, 001
02, 11
011, 100
10, 02
22, 01 00, 11
20, 02 00, 12
21, 12 00, 21
22,10 01, 12
a@e = | 11, 00 abe = | 01, 20
11, 00 02, 10
10, 01 02, 20
11, 00 10, 21
01, 10 11, 22
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Appendix C

Additional Material for Chapter 6]

This appendix contains some extra details about Chapter [6]

Proof of Theorem [6.1l. The proof of Theorem is immediate from the following
Lemma [C.1] [C.2] and [C.3] Lemma talks about the off-diagonal entries of the in-
formation matrix. Lemma and talks about the diagonal blocks for main effects

matrix and the two-factor interaction effects matrix, respectively. n

Lemma C.1. If a paired choice design is constructed by adding generators to orthogonal

array OA(n, 3%, 4), then

(1) XTX and Y'Y are block diagonal matrices with blocks of size two and four, respec-

tively;
(i) XTY =0.

Proof. Note that for an factor with three levels, the only possible generators are 0, 1 or
2. Now, for a design with one factor sum of the rows of the main effects matrix X is zero
as long as 0,1 and 2 appear equally often in the first part of a paired choice design and
that the generators are either G; = 0, G; = 1 or G; = 2. Similarly, for a design with
two factors, sum of the rows of the two-factor interaction effects matrix Y is zero as long
as each of the 9 pairs 00,01, 01, 10, 11, 12, 20, 21 and 22 appear equally often in the
first part of a paired choice design and that the generators are either of the following 9
generators, G; = 00, G; =01, G, =02, G, =10, G; =11, G; =12, G; = 20, Gy = 21
or G = 22.

173



Since a strength four orthogonal array is a strength 2 orthogonal array as well, our
construction method implies that for any two factors, each of the 9 combinations appear
equally often. Therefore, for each 0 in one factor of the first part of the pair, each of 0, 1
and 2 appear in another factor of the first part of the pair. Then, whatever the generator
maybe, the sum of three rows of X for second factor is 0. Similar thing hold for 1 and 2 in
that factor of the first part of the pair. Therefore, the off-diagonal blocks corresponding
to XTX are zero matrices. Similarly, for Y7V, since for each of the 9 combinations for
two factors, the other two factors would have all 9 combinations appearing equally often
making the sum of the rows of corresponding Y as 0. Since these will happen for any set
of 4 factors of Y, we get off-diagonal blocks of Y7Y as 0.

Case (ii) can also be proved on the similar lines by using strength 3 properties of an

the staring orthogonal array. ]

The construction methods given in Chapter [l are OA + G methods and the starting
orthogonal array is OA(n,3%,4). Therefore, from Lemma (i), one can write X7 X as
a block diagonal matrix with k& blocks corresponding to each of the k factors, such that
XTX = diag((XTX)y,...,(XTX),, ..., (XTX)) where ¢th block (X7 X), corresponds
to (th factor. Similarly, Y7V is a block diagonal matrix with (g) blocks such that YTY =
diag(YTY )12, oo, YIY Yoy -, (YY) (o)) where ¢mth block (X7 X),, corresponds

to a two-factor interaction between ¢th and mth factors.

Lemma C.2. In an OA + G method, starting from an OA(n,3* 4), let a paired choice
design be constructed using (l:) distinct generators such that each of the generators has

non 0s in all possible t positions and O0s in remaining k — t positions. Then each block in

XTX has the structure hy(t)Ms,.

Proof. Firstly, note that a paired choice design using (';) distinct generators along with

an orthogonal array of size n has a total of N = n(’:) choice pairs. It is easy to see that

k—1

for each of the factor, ( .

) generators are Os and remaining generators (’z)- (kzl) = %(’z)

are non 0s. Therefore, the number of contributing generators is %(IZ)

It is easy to see that for /th factor, paired choice design generated using any non 0
generator gives X7 X corresponding to the (th factor as (X7X), = n(ly + J;). To see
this, for ¢th factor, let X; = (X{;, ... X{)T where n = 3u and Xy, w = 1,...,u is

a 3 X 2 matrix with rows being some permutation of the three rows: (1 0),(0 1) and
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1 0
(=1 —1). Without loss of generality we assume that X7, = | 0 1 |. Using g1, = 1,
-1 -1
0 1 -1 -1
we get Xo, = | =1 —1| and using g1y = 2, we get X9, = [ 1 0 |. It is then

1 0 0 1
easy to see that for ith factor XZ X, = 3(Iy + J5) where X,, = X, — Xa,. Therefore,

(XTX)g = n([2 + JQ)
Hence, by counting the total number of generators and their contribution, we get

that (XTX)g:ni(]z)(]Q—f—Jg) :Ni(IQ"f'JQ) ]

Lemma C.3. In an OA + G method, starting from an OA(n,3%,4), let a paired choice
design be constructed using (f) distinct generators such that each of the generators has
non 0s in all possible t positions and 0s in remaining k —t positions. Additionally, for any
two factors, all the generators (rows) with both non 0 entry should be such that they can be
clubbed in several groups of two generators of the type {(11,12), (11,21),(22,21), (22,12)}.
Then, each block in YTY has the structure hy(t) My @ M.

Proof. Firstly, note that a paired choice design using (’z) distinct generators along with
an orthogonal array of size n has a total of N = n(';) choice pairs. It is easy to see that

for any two factors ¢ and m, there are

(a) (i:?) generators such that generators for both ¢th and mth factors are non-zero;

(b) (kzz) generators such that generators for both ¢th and mth factors are zero;

(c) (]Z) — (kf) — (Zj) generators such that generators for ¢th factor is zero and mth

factor is non-zero or vice-versa.

We now see the contribution from each of these types of generators to (Y7Y),,. For
fth and mth factor, note that since Y; will have effects-coding corresponding to each of
the 32 factor-level combinations occurring equally often, we can write Y; = (Y{] ... YVI)T
where n = 9u and Yy, w =1,...,u is a 9 x 4 matrix with rows being some permutation
of the nine rows: (100 0),(0100),(-1 —100),(0010),0001),00 —1 —
1),(=10 —=10),(0 =10 —1),and (1 11 1). Then, without loss of generality if we

use the generators such that generators for fth factor is zero and mth factor is non-zero
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or vice-versa, we get YL Yy, = 3(ly + J3) ® (I + J) for each w. Then, since u = n/9,
we get (YTY)g = >, ViLY1iw = 2(Ia + J2) ® (I + J»). Similarly, when we use two
sets of generators such that it is one among {(11,12), (11, 21), (22,21), (22,12)}, the total
number of pairs are then 2n and since we get YL Vi, = 3(Ir + J2) @ (I, + J5) and u = n/9,
we get (Y'Y ) = >0, Vil Yiw = 2(la + J2) @ (I + Ja).

Now generators of type (a) contribute %(Iy+.J;) ® (Io+J2) to Y'Y, one generator of
type (c) contribute %(Iy+.J2) @ (I, +J2) to Y'Y and one generator of type (b) contributes
nothing to Y7Y.

Since there are a total of ( ) generators of type (a)-(c), we get the total contribution
to YTV as (3 2(L 4+ L) @ (I + ) + ((5) — ("77) = (02 2L + o) @ (Lo + Jo).
Therefore, we get (YY) g, = ho(t)My @ M. O
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Appendix D

Additional Material for Chapter

This appendix provides some additional details for the Chapter [

Proof of Theorem [8.7l Tt is easy to see that

1 & 1 —
LSS Y s

n=1 1=j<j'=m

where

2
__pTr Tyt / [
(Zen) A (rs7") = { ere™ . rZErrr=1,...L,

P +emre™, r=rr=1,...,L,

As per the definition, options are lexicographically arranged in A as well as By. Also,
the row in H; corresponding to an option 7, is given by wth column of By. Let By be
as defined in the Chapter [§

Let By = [By b. Bs by DBs], where By is of order p x (r — 1), By is of order
p X (r' —r —1), and Bjs is of order p x (L —'). Without loss of generality, let hy;
and h,; correspond to the rth and the 7'th lexicographic labels of rth and r'th options
respectively, with 7 < #'. Then, b, = hl; and b = h];,. Here T denotes the transposition.

Therefore,

N m—1 m
1 1
BHAB}S = NBHZ (W Z A7%(]']")(74’71/)) BIZ;
n=1 J=1j'=j+1

Now, by definition,
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T 2 Tr 5Tt
(Zlesn € l) A”(jj') =erer [ OLX(rfl) ngj/ OLx(r’frfl) _w;{jj/ OLX(Lfr’) }7

where Wy = O1xpo1) 1 Oix@r—r—1) —1 Oix(z—p) |- Then,

eTr,»eTT/
Bu A Bir R 6ﬂ)2[ Opxroty (Mg =R Opxqrereny (Wl —hi5) Opxiory 1By
leSy
eTT» 67'7‘/ 67‘7- eTT,
(b = hiyj ) g — (B = Wi hnjr) = —————5 (i = hiyjo) (Bnj = B ).
(Xies, €™) (Xies, €7)

From the definition, we get,

m—1

N m
1 T T,/
BulBy = + > e ) > e (hny = hugt) " (hn — Bnyr)

n=1 (ZIES.,L =1 j'=j+1

N m
> Z i Pt (g = o) (Ping = Toe).

n=1 j=1 j/

m—1

==

Upon simple rearrangement and using the fact that Z;”:l P,j=1foreachn=1,... N,

we get,
N m m
1
BuABj, = N Z Zthhannj(l = Pyj) - Z hz:jhnj’Pannj/
n=1 \j=1 Jj#j'=1
N m m m
= ¥ Z > B (P — 2P + thjh P23 Py =2 S WLk Py Py
n=1 \j=1 Jj'=1 J#j'=1
+ Z hT h7,j2Pn]1PnJ2(Z Pnj’)
J1#ja=1 j'=1
N m m
1
= % 3 p hij = > b Pojr — Z Pnjr Prjr + Z BT by P2,
n=1j=1 i’=1
Z hz;jlh"]fzp'fl]lpnh
J1#j2
N m m
1
= N Z anj n] 7L] Z h /hn]Pn] n] Z hn]’Pn_] + Z hn]/Pn] (Z hnj’Pnj/)
n=1 j=1 S
N m
1
= WZZ hn]\/ VvV n] Zhnj/Pnj (h"j\/Pnjiw/PnjZhnj/Pnj/)
n=1 j=1 7j'=1
Hence,

N m m m
BHAB}; = %ZZ Zhnj’Pn] nj(hnj - Zh”jlpnj/)
=1

n=1 j=1 i'=1

Proof of (BgBg) 'Bg = SG. From (8.4)), G can be written as,
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1 T 1 T
Ky ® 7L, © ®  Zrlu
1 T 1 T
G _ \/_172]"01 ® sz ® ® \/_'Uik Vg
: ® : ® ® :
1 T 1 T
\/—Hlv1 ® \/Elv2 ® - ® K,

Also, from definition, S is a rectangular block diagonal matrix given by,

Dvl O(v1—1)><v2 T O(vl—l)ka
g — L 0(’0271)><’U1 sz T O(vgfl)ka
O(Uk—l)le O(Uk_l)X’UQ Ut D”L)k
Therefore, on multiplication,
T T
Tv1 X 1U2 X X 1'Uk
1| 17 ® T, ® ® 17
SG = = ! . R I (AD.1)
L ® ® ®
T T
1’U1 ® 1’02 ® ® T'Uk

where T, is the (v; — 1) X v; matrix of the first v; — 1 rows of v;K,,. Now, it is easy to
see that

Ullvl—l — Jvl—l 0 tee 0

1 0 Volyy—1 — Jypo1 - 0
(BeBE) " = 7 | e

0 0 cee Uklvk—l - J’Uk—l

and that (v;l,,—1 — Jvi_l)Béi) = T,,. Therefore,

T, ® 1L ® ® 17
1| 12 ©» T, ® ® 17
(BeBE) 'Bp=7| - - (AD.2)
R ©® ®
17 o 11 ® Q@ Ty,

Then the result follows from (AD.1|) and (AD.2)). O

Proof of Theorem [B.5l For every p x L matrix By whose rows are not necessarily
orthogonal but that span the same vector space as the rows of p x L matrix Bp, there

exists a non-singular matrix () of order p such that
By = QBo. (AD.3)
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Now, By = QBo implies Bo = Q' Bp. Also, since Bo B}, = I,,, it follows that By B}, =
QBoBLQT = QQT. Then, from Corollary 3.1 (i),

Var(By?) = Var(QBot)
= QVar(Bo?)Q"
= Q(BoAB) Q"
= {(Q")(BoABS)Q '}
= {(@")Q'BuMQ ' By)")Q '}
= {(QQ") ' (BuABR)(QQT) '}
= {(BuBfh) ' (BuABL)(BuBf) '}

= (BuBj)(BuABg) ' (BuBjp). (AD.4)

Also, from (AD.4)) and Theorem 3.1, it follows that,

Var((ByBY)'By?) = (BgBL) '"Var(By?)(ByBY)™
— (ByAB)™

= Var(BH).

Proof of Theorem B.7l Let By = (Bj ) Bi -+ Bi)", where By = <®§,_:111£/) ®

BY ®F_;1 1L and B is a (v; — 1) x v; effects coded matrix for ith attribute at v; levels.

Now, taking By = Bg in (AD.3)), we have, Bp;) = Q;Bo, where Q = (Q Q3 --- Q{)*

is a non-singular matrix and Q; is of order (v; — 1) x Y% (v; — 1). Also note that
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i =1,..., k. Therefore, for d* € Dy n,

T+ (Be) = Z4(BgBL) 'Bgr)
= BgpAgy B
= QBoAsBEQT
= Q(diag(only, 1, ..., 00y 1))Q"
= diag(a;Q:Q7T,. .. ,akaQf)
= diag(a1 Bea)Biqy, - - - @ Beg Bpg)

= diag(anVh, ..., Vi).

Similarly, since (BpBL)™' = diag((BE(l)Bg(l))*l, e (BE(k)Bg(k))*l) =diag(Vy',..., V'Y,
it follows that Zy-(BpT) = (BpBL) ™ (BgAeBL)(BgBL)™! = diag(an Vi, ..., Vi h).
O

Mathematical version and proof of Theorem [8.11| as Theorem

Let Ziuw = (=1 1y Oux(u—u—1)) for w = 1,...,v; — 1. Then, the (”21) x v; coefficient

matrix of all normalized elementary comparisons between the v; levels of the ith attribute

gL [ %0
V2N 2y )
where Zy) = (2%, Z%

(3,1) #(,2) " Z({,Ui_z))T and ZG) = L(ip—1)-

is

Also, define

» 1 1
W, = (it 17 ) ® —=Zp @h_ | ——17
< 2_1\/’0_2'/ v,/ \/5 (@) +1 ’
W, = (@7 —=17 ) & —Z @by —=17
v Zl:l\/l}_l‘/ oy \/§ (1) Yir=it1 \/U_Z/ v°

Note that W; is the contrast matrix for comparing level labeled v; — 1 of attribute ¢
to each of the remaining v; — 1 levels labeled 0,1, ..., v; — 2. Similarly, W; is the contrast
matrix for pairwise comparisons of the levels labeled 0,1,...,v; — 2 of attribute 7. Let
Y; = (WT W,)T. Then, the t x L matrix Z = (YT Y --- YF)T represents the matrix
of normalized elementary comparisons between levels of each and every attribute, with

t= (0 (5)-
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The weighted sum of the variances of all normalized elementary comparisons is given

by
k k

i — 1 R 2 R .
E U(U—_)tr[Var(Yﬂ)] = E —tr[Var(Y;i7)] = tr[LoVar(Z7)], (AD.5)
K3 /l)
i=1 \2 i=1 "
where I'o = diag(T'01,To2, ..., Tox) and T'p; = (Z/Ui)I(vi).
2
While obtaining tr[I'oVar(Z7)] in (AD.5)), for each attribute i, we account for the

v;—1

contribution of Var(Y;7) through @) tr[Var(Y;7)]. This ensures providing equal impor-
2

tance to each of the k sets of (”2) elementary comparisons of which only v; —1 comparisons
are independent, : = 1,2,..., k.

For A-optimality considerations, to bring in parity between different attributes with
different number of levels, we normalize each of (BpBL) ™! Bp and Bg. It is easy to see that
the normalized form of (BpBL) 'Bg is Y(BgBL) 1B where Ty = diag(\/g]vl_l,
e \/%I_llvk_l). Also, Y1 Bp is the normalized form of Bg where Y7 = diag(y/ 55 Lo, -1, - - -

sl 1)

Finally, we introduce the two notations I'p = diag(I'g1,Tg2, ..., [gx) and Ty =

diag(FWl, FWQ, c. 7FWI<;>7 where FE@ = ﬁj(vﬁ) and FW@ = ﬁ](vlgl)

Theorem D.1. Under the main effects model, (i) tr[Var(Bo7)] = tr[LoVar(Z7)],
(ii) tr[Var (T o(BpBE) ' Bu#)] = (tr[DuVar(Z#)] + 250, tr[DwiVar(Wid))),

(iii) tr[Var(YrBg?)] = S tr[Var(W;7)).
Proof. Since the rows of Z spans the same vector space as the rows of Bp, there exists
a matrix R, of order t X pys such that Z = R,Bp. Now, Z = R,Bo implies ZBg =
R,BoBE = R,. Therefore, Z = ZBLBo. Also, it is easy to see that BoZ'T'vZB} = I,,,,
where pyy = 32 (v; — 1). Then,
trllo Var(Z+#)] = trllo Var(ZBLBo?)]

= tr[lo ZBLVar(Bo?)BoZ"]

= tr[BoZ'To ZBLVar(Bo?)]

= tr[Var(BoT)].

There exists a matrix R, of order ¢ x py; such that Z = R.Yg(BgBL)™'Bg. Now,

7 = R p(BpBL) 'By implies ZBL = R, Y. Also multiplying by T5' on both sides,
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we get ZBLY,! = R,. Therefore, Z = ZBTT_lTE(BEBT)_lBE Also, it is easy to see
that ' BpZ Ty ZBL Y = diag(Vi, ..., Vi) where Vi = L (L, 1 + Jy,—1). Then,

tr[Cg Var(Z#)] = tr[lg Var(ZBEY ' Ye(BeBEL) ' Bet))
= tr[Tp ZBEY,'Var(Ye(BpBE) 'Bet)Y ' BeZ"]
= tr[Y5'BpZ'Tg ZBEY,'Var(Ye(BpBE) ' Bpt))

= tr[diag(Vi,...,Vi)Var(Te(BpBEL) ' Bgt))

k
= Ztr[ViVam(«/L/(vi —1)(BpBL) ' Bp?)]
k

S Ui {trVars(VE/ (o~ 1)(BeBE) " Bst)

=1

[Ty, Vari(vV/I (v — 1)(BEB£)_1BE%)]} , (AD.6)

where Var;(v/L/(v; — 1)(BgBL) ' Bg?), of order (v; — 1) x (v; — 1), is the ith diagonal
sub-matrix of Var(Yg(BrpBL) 'Bg7). Let t; be the ith column of I;,. Then, it is easy to
see that Y' BeW/ Tw:W; B Y5 = tit] @ Gy, where G = - ((v; = 1) I,—1 — Ju,—1). Now,

tr[CwVar(W;7)] = tr[Tw:Var(W;BEY ' Ye(BpBE) ' Bgpt)]
= tr[DwW;BEY 5 ' Var(Yp(BpBE) ' Bep?)Y ' BeW/]
= tr[Y5'BeW!Tw:W:BEY ' Var(Yg(BeBE) ' Bpt)

= tr[Y'(tit] @ G)Y5'Var(Ye(BeBE) ' Bet)

= 21}1_ {(Ui — Ditr[Vary(/L/(v; — 1)(BgBE) "' Bp#)]
~trl s 1Vard(VI/ (o = D(BpBE) " Bp?)] | (AD.7)

Therefore,

k
2 Z r[CwiVar(W;7)]

i=1 =1

£y { — Dr[Vary(v/I(v; — 1)(BpBL) ' Bp#)]

Vi

M;r

— trlJy, 1 Vari(V/L/(vi = 1)(BpBE) ' Bp?)]} (AD.8)

From and -, we get,

tr[CgVar(Z7)] + 2 Ztr [Cw:Var(W;7)] Ztr [Var( —1)/L(BgBL) ' Bp?)],

=1

or

trilgVar(Z1)| + 2 Z tr[Dyw:Var(Wi#)] = tr[Var(Yp((BgBL) ' Bet)).

i=1
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For establishing tr[Var(YrBg?)] = o5, tr[Var(W;7)], it is easy to see that Y7 Bp? =
(W?, WQT, . ,W;‘:)T% and therefore the result follows by taking trace of variance on either

sides. O

The relationship between tr[Var(Bo7)| and tr[l',Var(AY g(BgBL%L) ' Bp7)] is now
established where A = diag(Bél)T, e Bék)T) is a (> v;) Xpar matrix. We also define I';, =
diag(Tp1, Lo, ..o, Tnk), where I'yy; = ((v; — 1)/v;)1,,. Furthermore, for representational

ease, let B, = AT p(BgBE) 'Bg.

Proof of Theorem [8.12l Since the rows of B,, spans the same vector space as the rows
of Bp, there exists a matrix R,, of order (> v;) X py such that B, = R,Bo. Now,
B, = R, Bo implies B, BS = R,BoB} = R,. Therefore, B, = B,B5Bo. Also, it is easy
to see that BoBIT, B,BL = I,,,, where pyr = Zle(vi —1). Then,

pm>o

trlly, Var(B,7)] = tr[l, Var(B,B5Bo?))
= tr[l, B,BSVar(Bo7)BoB!]
= tr[BoBIT, B,B5Var(Bot)

= trlVar(BoT)].
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Appendix E

Additional Material for Chapter 9

This appendix provides some additional details for the Chapter [9] It includes: designs
discussed in Tables , and Table to demonstrate that UE(s?)-optimal designs
with better projection properties tend to have smaller values of S5 and (), and a proof of

Theorem [9.8]

Designs for Tables [9.1], and

(a). Designs for the case m = 14 and n = 12 (Table [9.1):

dy da ds
11111-11-1-111-11-1 11111111111111 11111111111111
i11-1-1-1111-11-1-11 11-1-2-1-11111-1-1-1-1 1111-1-1-1-1-1-1-1-111
-11-1-1111-11-1-2-111 -1-111-2-111-2-111-1-1 -1-1-1-11111-1-1-1-111
1-1111-1-1-1-1-2-11-11 -1-1-1-1111711-1-1-1-111 -1-1-1-1-1-1-1-1111111
1-1-1-1-1-11 1-1-1-111-1 -1-1-12-1711-2-121111-1-1 11-1-111-1-111-1-1-1-1
--r11-1111-11-2-111 -1-111-1-1-12-111-2-111 11-1-1-1-111-1-111-1-1
-11-1111-1 1-1-1 2-1-1-2 1 1-1-1-1-1-1-1-2-11111 -1-11111-1-1-1-1 1 1-1-1
-1-1-111-1-11111111 111111-1-1-1-1-1-1-1-1 -1-111-1-11111-1-1-1-1
-11-11-1-1 -1 11-1 1-1-1 1-r1-11-11-11-11-11-1 1-11-11-11-11-11-11-1
-1-r1-1-11-1-11-12111-1 1-1-11-111-11-2-11-11 1-11-1-11-11-11-111-1
1111111111111 -111-2-111-1-111-1-11 -11-111-11-1-11-111-1
11-1-1-11-1-1-1111-119 -11-111-1-111-11-1-11 -11-11-11-111-11-11-1
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dy ds dg
11111111111111 11111111111111 11111111111111
11-1-1-1-1111-2-1-12-11 1-1-1-2-11111-1-12-1-11 111-1-1-1-1-1-1-1-1111
-1-111-1-11-1-111-1-11 -111-1-211-1-111-1-11 -1-1-11111-1-1-1-1111
-1-1-1-1111-1-1-2-2111 -1-1-1111711-1-1-12-1111 -1-1-1-1-1-1-11111111
-1-1-1-111-11111-1-11 -1-1-111-1-11111-1-11 1-1-111-1-111-1-11-1-1
-1-111-1-1-111-1-12111 -111-1-12-1-1711-1-17111 1-1-1-1-111-1-1111-1-1
11-1-1-1-1-1-1-1111119 1-1-1-12-1-1-1-1-111111 -11111-1-1-1-1111-1-1
111111-1-1-1-2-1-1-11 11111-1-1-1-1-1-12-1-11 -111-1-11111-1-11-1-1
1-11-11-1-1 -1 1-1 1-1-17 -1 1-11-11-1 2-1 1-1 1-1-1 -11-11-11-11-11-1-11-1
1-1-1r 1-11-1 1-1-21-11-1 -1-11-1211-11-1-11-11-1 -11-1-11-11-11-11-11-1
-111-1-11-1-111-1-11-1 11-1-111-1-111-1-111 1-111-11-1-11-11-11-1
-11-111-111-11--11-1 1-1711-1-111-11-1-11-1 1-11-11-1171-11-1-11-1
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(b). Designs for the case m = 16 and n = 10 (Table

dy
1-1-1-11-111-1-111-1-1-11
-11-1111-111-1-1-1-1-1-1-1
1-11111-1-11111-1-111
-111-111-1-1-1-1-1111-11
1-1 1-1 1-1-1 1-1 1-1-1 11 1-1
-111-1-1-1 1-1 1-1-1 1-1-1 1-1
1111-1-11-1-1 1 1-1-1 1-1-1
-1-1-1 1-1-1-11111111-1-1
-1-1-11-111-1-11-1-1 1-1 11
11-1-1-11111-11-11111

dy
111111-1111111111
11-1-1-1-1-1 11 1-1-1-1-1 11
-1-11 1-1-1 1 1-1-1 1 1-1-1 1 1
-1-1-1-11111-1-1-1-1 1111
1-1 1-1 1-1-1-1 1-1 1-1 1-1 1-1
1-1-11-111-11-1-11-111-1
-111-1-1 1-1-1-1 1 1-1-1 1 1-1
-1 1-1 1-1 1-1-1 1-1 1-1 1-1-1 1
-111-11-11-11-1-11-11-11
1-1-1 1 1-1 1-1-1 1 1-1-1 1-1 1

dr
11111111-11111111
-1-1-1-1-1-1-1-1-1 111111 1

do
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-11-11-11-11-11-11-11-11
1-11 1-1-1 1 1-1-1 1 1-1-1 1 1
-1-1-1-11111-1-1-1-11111
11-111-11-1-1 1-1 1 1-1 1-1
1-11111-1-1-1-11111-1-1
1-1-1-1-1-1-1-1 11111111
1-1 1 1-1 1-1 11 1-1-1 1-1 1-1
-11-11-111-11-11-11-1-11
-1 11-111-1-1 1-1-1 1-1-1 1 1

ds
111111-1111111111
11-1-1-1-1-1 11 1-1-1-1-1 1 1
S1-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1
-1-1-1-11111-1-1-1-11 111
1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1
1-1-11-11-1-1 1-1-1 1-1 1 1-1
-111-1-11-1-1-1 1 1-1-1 1 1-1
-1 1-11-1 1 1-1 1-1 1-1 1-1-1 1
-111-11-11-11-1-11-11-11
1-1-1 1 1-1-1-1-1 1 1-1-1 1-1 1

ds
1111111111111111
11111111-1-1-1-1-1-1-1-1
111 1-1-1-1-1 11 1 1-1-1-1-1
1111-1-1-1-1-1-1-1-1 1 1 1 1
11-1-111-1-11 1-1-1 1 1-1-1
11-1-111-1-1-1-1 1 1-1-1 1 1
-1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1
-1-1 1-1-1 1-1 1 1-1 1-1-1 1-1 1
-1-1-111-1-1 1 1-1-1 1 1-1-1 1
-1-1-1 1-1 1 1-1-1 1 1-1 1-1-1 1

de
111111-1111111111
11-1-1-1-1-1 1 1 1-1-1-1-1 1 1
-1-111-1-111-1-11 1-1-1 1 1
“1-1-1-11111-1-1-1-1 111 1
1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1
1-1-1 1-1 1-1-1 1-1-1 1-1 1 1-1
-111-1-1 1 1-1-1 1 1-1-1 1 1-1
-11-11-1 1-1-1 1-1 1-1 1-1-1 1
-111-11-11-11-1-1 1-1 1-1 1
1-1-1 1 1-1-1-1-1 1 1-1-1 1-1 1

1111-1-1-1-1
-1-1-1-11111

11-1-111-1-1-
-1-111-1-111

11-1-1-1-111
-1-11111-1-1

111-1-1-1-11
111-1-1-1-1 1
1-1-11 1-1-1 1
1-1-111-1-11
1-1-1-1-1111
1-1-1-1-1111

1-11-11-11-1-1 1-1 1-1 1-1-1
-11-11-11-11-11-1 1-1 1-1-1

(c). Designs for the case m = 22 and n = 12 (Table

dy
1-1-1-1 1-1 1-1-1-1 1 1 1 1-1-1-1 1 1 1 1 1
1-1r11-1-1-1-1-171-1211111-1-1-1 1 1-1
-1 1-1-1r1-1111-11-1-1-11 1-1 1-1-1-1-1
1-111-11111-1-1-11-1 1-1 11 1 1-1-1
11-1-1-121111111-111-11-1-1-1-11
1111-1-1-1 1 1-1-1-1 1-1-1 1-1 1111 1
-1-111-11-1-1-1-1-1-1 1-1-1-11-1-1 1 1 1
1-11-11111-1-1-1111-111-1-1-1-11
-111-11-1-1-1-111-1-1-1-1 1-1 1-1-1-1 1
1-1-171-11111111-111-1-1-1-1-1 1-1
1-1-1-1 1-1-1 1 1 1-1-1 1-1-1 1-1 1 1 1-1 1
11-111-1-17-1-111-1-111-1 111 1-1-1
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da
1-1-1-1-1 1-1 11111 1-1-1 1-1-1 1-1 1 1
1-111-1-11111-1-1-111-1111-11-1
-11111-1-1-1-111-11-11-111-1 111
1-1-1-1-1 1-1-1-1-1-1-1-1 1 1 1-1-1 1 1 1-1
1-1-11-1-11-111-1-111-11-1 11 1-11
111-1111-11-111-11-11-1-1 1 1-1-1
1-11-111-1111-111-1-1-1 11 1-1-1-1
-1111-1-1111-1-1-1 1-1 1 1 1-1 1-1-1-1
11-11-1111-11-11-1-1-1-11-1 1111
-1 1-11-1-111-1-111-111-1-1 111 1-1
1-1-1-1 11 1-1-1-1 1-1 1 1 1 1-1-1-1-1 1 1
1-1111-11-1-1-1-1-1-1-1-1-1 1-1-1-1-1-1



d3
1-1-11 1 1-1-1-1 1 1-1 1-1 11111111
1-1-11-1-11-1-171-1211-1-1-1-1-1-1 1-1-1
-111-11-1-1-1-11-1-1-1-1 1 1-1 11 1 1-1
-1111-111-1-1-1 1 1-1 1 1-1 1-1-1 1-1 1
1-1111111111-111-11-1-11111
1-1-1-1-1-1-1 1-1-1-1 1-1 1-1-1 1 1 1 1-1-1
-1-111-171111-1-111-1-1-1-1 1 1-1 1-1
-111-11-1-11-11111-1-1 1 1-1 1-1-1-1
11-11-1-1 111 1-11-1-1 1 1 1-1-1-1 1 1
-11-1-11111-1-1-11-1-1 1-1-1 1-1-1 1-1
1-1-1-1-1 1 1-1 1-1 1-1 1 1-1 1-1-1-1-1 1-1
1-1-111-11-1-1-1-1-1111-1 1 1-1-1-1 1

ds
1-1-1111-1-1-1-111-1-1 1 1-1 1 1-1 1-1
1-1-1-1-1-1 1 1-1 1-1-1-1-1-1-1 1-1-1 1 1-1
111-11-1-1-11111-11111-111-1-1
1111-111111-1-11-1-1-1-1-1-1 1-1-1
1-111-111-11-11-1-111-1 111111
-1-1-1-11-1-111-1-1-1-11-1 11 1-1 1 1-1
-11111-111-1-1 1-1 1-1-1-1-1 1-1-1-1-1
1-1-1-1-1-1-11-1-11-11-1 1 1-1-1 1-1 11
-111-111111111-1-1111-1-1-1-11
-11-1111-111-111-1-1-1-1-1 1 1-1 1-1
1-1-1-1-11-1-1-1-11111-11-1-1-1 1 11
1-111-1-11-1 1 1-1 111 1-1 1111 1-1

dy

1-1-1-1-1711-1-1-1 1-1-1-1 1 1-1
1-1-1-11-1-1111-1 1-1-1-1 1-1
1111111111-1-1-111-1-1
11111-1-1-11-1 11 1-1 1-1-1
-1-111-11-1-11-1-1-1-1 1111
-1-1-11-1-1-1-1-11 1 1-1 11 1-1
-111-1-11-11-111-11-1-1-1-1

1-1 1-1-1
-11111
-1 11 1-1
1-1-1-1-1

1

-1-1 1-1

-1-1-1-1 1

1
1
1
1
1

-1 1-11
1-1 1-1
111-1
-1-1-1-1
1-111

11-11-1-1-1 1-1-1 1 1-1-1 1 1-1
1111-111-1-1-1-1 1 1-1-1-11
-1-1-1-1-1711-1-1-1 1-1-1 1 1 1-1
11-11111111111111-1

i1-1-111-1-1211-1-111111-1-1-1 1-11

Proof of Theorem [9.8. We first mention the sharpest available lower bounds for F4(s?)

as per Das et al.| (2008).

When n is even, let m = q(n — 1) 4+ r (g positive,

(1) When n = 0(mod 4),

2(m—n+1) n
B3> L _n (m—mn
als”) 2 Limon) = 0 = = 1)
where
n+2r|—3 for|r| =1 (mod 4)
Do 2n —4 for |r| =2 (mod 4)
n+2r|+1 for |r| =3 (mod 4)
\ 4|r| for |r] =0 (mod 4).
(2) When n = 2 (mod 4),
2tm—n+1) n
B> L _ n*(m—n
als) 2 L{m.n) = max = = T i = 1

where
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—5 <r < %). Then,




(n+2|r|—3—|—x/n for [r| =1
2|r| = 8|r|/n+n—-16/n+9 for |r| =1
2n —4+8/n for |r| =2
A|r| = 8|r|/mn —8/n+8 for |r| =2
n+2/r|+1 for |r| =3
2lr|+n+8/n—3 for |r| =3
4|r| for |r| =0
2n—4+x/n for [r| =0

mod 4) and ¢ even
mod 4) and ¢ odd
mod 4) and ¢ even
mod 4) and ¢q odd
mod 4) and ¢ even
mod 4) and ¢ odd

)

mod 4) and ¢ even

A~~~ I/~~~ I~ —~ N N

\ mod 4) and ¢ odd.
and z = 32 if {m’i’% + Lm+(1+2i)(n_l)J} = (1 — 1) (mod 2), for i = 0 or 1; else

4(n—1)

x = 0. Here | z| denotes the largest integer less than or equal to z.

Jones and Majumdar| (2014)) obtained the attainable lower bounds for UE,(s?) as

below.
MiNgep, (m,n) UE(s?) = n(m +m1 —n) + m(:leii- 0y’ (AE.3)
where
(0 for m +1=0 (mod 4),
B 2(n —2) for m+ 1 =2 (mod 4) and even n,
2{(n—2)+1/n} form+1=2 (mod 4) and odd n,
| n—1 for m+1=1 (mod 4) or m + 1 =3 (mod 4).
We now show that
Z—:L(m,n) — MiNgepy, (mn) UE’d(sz) = m(n = T)I(m gy >0,
where using , and ,

I=A+(n—-1)(D-B) (AE.4)

with A = (m + 1 —n)? — r?. In other words, we shall identify the cases where I = 0 and
show that I > 0 for the remaining cases .
Additionally, we define W = m — (n — 1)[-5], 0 < W < n — 2. Then, since

m=qn—1)+r, —n/2 <r<n/2,

. |44 for 0 <W < 3, or equivalently 0 <r < 3, (AE5)
W—-n+1 for 5 <W <n-2 orequivalently — 4 <r <0
Using (AE.5)), A can also be written in terms of n, ¢, r and W as below,
Ao (n—1)2%(q—1)%42r(n—1)(g — 1), for 0<r <3, (AE.6)
(=2 —1)(n—12+2W(n—1)(g—1), for —2 <7 <0.
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From (AE.6)), it is clear that A > 0 since

a) A >0, for ¢ > 2,
b) A=0, forq=1,0<r <73,

c) A=—(n—1)* forq=1, —5 <1 <0, which is not possible since then m < n.
(AE.7)

We take up the following exhaustive cases to arrive at the required conditions.
For n =0 (mod 4)

Case A. |r| =0 (mod 4)

Case Al. m =0 (mod 4) or m =2 (mod 4)

First note that in this case the situation ¢ = 1 does not arise. Now from (AE.1|) and
(AE.3), we get D — B = 4|r| —n+ 1. Therefore, from (AE.4), I = A+ (n—1)(4|r|—n+1)
which, by (AE.6)), reduces to

]:{<n—1>2<<q—1>2—1>+zr<n_1><q+1> f0<r<n,
(n—1)%((g—22+2) +2W(n —1)(g—3) if —2<r<0.

This implies that for 0 < r < 5, I > 0 when ¢ > 3 and when ¢ = 2,7 # 0.
Furthermore, I = 0 ( equality holds) for r = 0,q = 2, i.e., for m = 2(n — 1). Similarly for
—5<r<0,1>0forq=>2.

Case A2. m =1 (mod 4)

First note that in this case the situations ¢ = 1,2 do not arise. Now from (AE.1]) and
(AE.3), we get D—B = 2(2|r|—n+2). Therefore, from (AE.4), I = A+2(n—1)(2|r|—n+2)
which, by (AE.6)), reduces to

:{(n—U%@—DZ—m+ﬂn—nw@+m+ﬂ) if0<r<?
(n—12(¢—2°-1)+2(n—-1)(W(g—3)+n) if =% <r<0.

This implies that 7 > 0 when ¢ > 3.

Case A3. m =3 (mod 4)

First note that in this case the situation ¢ = 1,7 = 0 does not arise. Now from

(AE.1)) and (AE.3)), we get D — B = 4|r|. Therefore, from (AE.4), I = A+4(n—1)|r| > 0
since from (AE.7) A= 0 only when ¢ =1,0 <r < 3.
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Case B. |r| =1 (mod 4)

Case B1. m =0 (mod 4) or m =2 (mod 4)

First note that in this case the situation ¢ = 1,7 = —1 does not arise. Now from
(AE.1) and (AE.3)), we get D — B = 2(|r| — 1). Therefore, from (AE.4), [ = A+ 2(n —
1)(Jr] = 1) > 0 except when A = 0,r = 1. Thus, from (AE.7)), I = 0 ( equality holds) for

r=14=1,i.e., for m =n.

Case B2. m =1 (mod 4)

First note that in this case the situation ¢ = 1 does not arise. Now from and
(AE.3), we get D—B = 2|r|—(n—1). Therefore, from (AE.4)), I = A+2(n—1)|r|—(n—1)?
which, by , reduces to

(n—12(¢—12-1)+2gr(n—1) f0<r<y,
- { (g—2)P(n—12+2W(n—-1)(¢—2) if —2<r<O0.

This implies that I > 0 when ¢ > 2,0 < r < 5 and when ¢ > 3,—5 <17 < 0.
Furthermore, I = 0 for —% <r < 0,q =2, ie., form =2(n—1)+r,—n/2 <r <0. Let
m = 4s + 1, where s is an integer. Then —n/2 < m —2(n — 1) < —1 and substituting
m = 4s + 1 yields 3(n — 2)/8 < s < (n — 2)/2. Therefore, I = 0 (equality holds) when
m=4s+1,3(n—2)/8<s<(n—2)/2,n> 2.

Case B3. m = 3 (mod 4)

From (AE.1) and (AE.3|), we get D — B = (n + 2|r| — 3). Therefore, from (AE.4)),

I = A+ (n+2|r] —3)(n — 1), which is greater than 0 since the second term is greater
than 0.

Case C. |r| =2 (mod 4)

Case C1. m =0 (mod 4) or m =2 (mod 4)

From (AE.1) and (AE.3), we get D — B = n — 3. Therefore, from (AE.4), I =

A+ (n—1)(n — 3), which is greater than 0 since the second term is greater than 0.

Case C2. m =1 (mod 4)

From (AE.1) and (AE.3)), we get D — B = 0. Therefore, from (AE.4) and (AE.7),

I'=A>0except when ¢ =1,0 <r < 3. Thus, I =0for 0 <r < 5,¢ =1, ie, for
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m=(n—1)+r. Let m =4s+ 1, where s is an integer. Then 2 <m —n+ 1 <n/2 and
substituting m = 4s + 1 yields n/4 < s < (3n —4)/8. Therefore, I = 0 (equality holds)
when n/4 < s < (3n—4)/8,n > 4.

Case C3. m = 3 (mod 4)

From (AE.1) and (AE.3), we get D — B = (2n — 4). Therefore, from (AE.4),

I'=A+2(n—2)(n—1), which is greater than 0 since the second term is greater than 0.
Case D. |r| = 3 (mod 4)

Case D1. m =0 (mod 4) or m = 2 (mod 4)

From (AE.1l)) and (AE.3), we get D — B = 2(|r| + 1). Therefore, from (AE.4),

I'=A+2(n—1)(Jr| +1), which is greater than 0 since the second term is greater than 0.

Case D2. m =1 (mod 4)

First note that in this case the situation ¢ = 1 does not arise. Now from (AE.1|) and
(AE.3), we get D — B = 2|r| — (n — 5). Therefore, from (AE.4), I = A+2(n—1)|r| —
(n —1)(n — 5) which, by (AE.6|), reduces to

[:{(n—1)2q(Q—2)—|—2(n—1)('rq—|—2) to<r<n
(n—12(g—22+2W(n—1)(g—2)+4(n—1) if —2<r<0.

This implies that I > 0 when ¢ > 2.

Case D3. m =3 (mod 4)

From (AE.1) and (AE.3)), we get D — B = (n+ 2|r| + 1). Therefore, from (AE.4)),

I =A+2(n—1)(n+2|r|+ 1), which is greater than 0 since the second term is greater
than 0.

For n =2 (mod 4)
Case A. |r| =0 (mod 4)

Case Al. m =0 (mod 4) or m = 2 (mod 4)

First note that in this case the situation ¢ = 1 does not arise. Now from (AE.2)) and
(AE.3), we get D — B = 4|r| —n+1. Therefore, from (AE.4), I = A+ (n—1)(4|r|—n+1),
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which is the same as the corresponding expression for the case n = 0 (mod 4). Therefore,

I =0 (equality holds) for r = 0,q¢ = 2, i.e., for m = 2(n — 1).

Case A2. m =1 (mod 4)

Now from and (AE.3), we get D — B = z/n. Therefore, from (AE.4)),
I =A+4 (n—1)(z/n). Thus, I = 0 when A = 0 and z = 0 or from (AE.7), I =0
when ¢ = 1,7 > 0,z = 0, ie, m = (n—1)+r,m = 1 (mod 8). Let m = 8s + 1,
where s is an integer. Then 4 < m —n + 1 < n/2 and substituting m = 8s + 1 yields
(n+2)/8 < s < (3n—4)/16. Therefore, I = 0 (equality holds) when m = 8s+1, (n+2)/8 <
s < (3n—4)/16,n > 8.

Case A3. m =3 (mod 4)

From (AE.2)) and (AE.3|), we get D — B = (2n — 4 + x/n). Therefore, from (AE.4)),

I'=A+ (n—1)(2n — 4+ x/n), which is greater than 0 since the second term is greater
than 0.

Case B. |[r| =1 (mod 4)

Case B1. m =0 (mod 4) or m =2 (mod 4)

First note that in this case the situation ¢ = 1, =% < r < 0 does not arise. Now from
(AE.2) and (AE.3|), we get D — B = 2(|r| — 4|r|/n — 8/n + 5). Therefore, from (AE.4)),
I'=A+2(n—1)(|r] —4|r|/n —8/n+5), which is greater than 0 since the second term is

greater than 0.

Case B2. m =1 (mod 4)

First note that in this case the situation ¢ = 1 does not arise. Now from (AE.2)
and (AE.3), we get D — B = 2|r|(n — 1) — (n — 1)® + (z/n)(n — 1). Therefore, from
(AE4), I = A+2Jr|(n—1)— (n— 1)+ (z/n)(n — 1), which is same as the corresponding
expression for the case n = 0 (mod 4) except the addition of the last term. Therefore,
I'=0for -5 <r<0,g=22=0,ie,form=2n—-1)+7r-n/2<r<0m=1
(mod 8). Let m = 8s + 1, where s is an integer. Then —n/2 < m —2(n —1) < —1 and
substituting m = 8s + 1 yields 3(n — 2)/16 < s < (n — 2)/4. Therefore, I = 0 (equality
holds) for m =8s+1,3(n —2)/16 < s < (n — 2)/4,n > 2.
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Case B3. m = 3 (mod 4)

From (AE.2) and (AE.3), we get D — B = (n + 2|r| — 3 4+ x/n). Therefore, from
(AE.4), I = A+ (n—1)(n+2|r| —342/n), which is greater than 0 since the second term

is greater than 0.
Case C. |r| =2 (mod 4)
Case C1. m =0 (mod 4) or m = 2 (mod 4)

From (AE.2) and (AE.3), we get D — B = n — 3 + 8/n. Therefore, from (AE.4),

I'=A+(n—-1)(n—3)+ (8/n)(n— 1), which is greater than 0 since the last two terms

are greater than 0.

Case C2. m =1 (mod 4)

First note that in this case the situations ¢ = 1,2 do not arise. Now from (AE.2)

and (AE.3), we get D — B = 2(2|r| +4 — 4|r|/n — 4/n —n + 2). Therefore, from (AE.4)),
I'=A+(n—1)4|r|+8—8|r|/n—8/n) —2(n — 1)(n — 2) which, by (AE.6)), reduces to

I (n—1)((n=1)(g—1)>=2n)+ (2/n)(n—1)(r(n(g+1) —4) +2(3n—2) f0<r <%,
(g—2)2=1)(n—1)2+2(n—-1)(W((qg—3)+4/n) +n) if —2<r<o.

This implies that I > 0 when ¢ > 3.

Case C3. m = 3 (mod 4)

From (AE.2)) and (AE.3), we get D — B = (4|r| +8 — 8|r|/n — 8/n). Therefore, from
(AE.4), I = A+ (4]r| +8 — 8|r|/n — 8/n), which is greater than 0 since the second term

is greater than 0.
Case D. |r| = 3 (mod 4)

Case D1. m =0 (mod 4) or m =2 (mod 4)

From (AE.2)) and (AE.3), we get D — B = 2(|r| — 1) +8/n. Therefore, from (AE.4)),

I =A+2(|r| — 1) + 8/n, which is greater than 0 since the last term is greater than 0.
Case D2. m =1 (mod 4)

First note that in this case the situation ¢ = 1 does not arise. Now from (AE.2)) and
(AE.3), we get D — B = 2|r| — (n — 5). Therefore, from (AE.4), I = A+ 2|r|(n —1) —
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(n—1)(n+5), which is same as the corresponding expression for the case n = 0 (mod 4).

Therefore, I is greater than 0.

Case D3. m =3 (mod 4)

From (AE.2) and (AE.3|), we get D — B = (n+ 2|r| + 1). Therefore, from (AE.4)),

I =A+2(n—1)(n+2|r|+ 1), which is greater than 0 since the second term is greater
than 0. [
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Appendix F

Additional Material for Chapter (11

This appendix provides extra details for Chapter . Non-GYD PGYD for (v,k,b) =
(8,20,50) is the transpose of the following matrix. The twelve 8 x 8 grids are latin
squares of order 8. The blocks in D¢ cover each pair of treatments eleven times, except
for the pairs {1,4},{2,3},{5,8}, {6, 7} which are covered nine times. The blocks in Dg
cover each of the pairs {1,4},{2, 3}, {5,8}, {6, 7} five times.
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Non-GYD PGYD for (v,k,b) = (9,24,48) is the transpose of the following matrix. The

ten 9 x 9 grids are latin squares of order 9. The blocks in Dg form four copies of one

parallel class of an affine plane of order 9 and two copies of two other parallel classes.

The blocks in D¢ form the complements of five copies of the parallel class not occurring

in Dg, four copies of the parallel classes occurring twice in Dg, and three copies of the

parallel class occurring four times in Dp.

SN OO P~ A <H 00 —

VNN O <FP=-— D

|S R A ia\ aa)inieoferiNeal

IOODONO F r—HOMb~

NelooXaskarh ol b la\ Rl Io]

P rH O 0 MION

YN OO - AN < 00 —

O MNOFI~-— D

A< AN MO0 O

OO ANO<F O M-

Neeoaniariul bl Rl Io]

D= OSHOMION

YN OO P~ O <H 00

ONONOFb-— D

[ R R a fanlInieoleriNal

OSSN0 FH r—O M~

oM == <10

IO 0 MIO AN

WON<HO—I-ANADHO

N<FLO—D~00HON

FLOMI~0—HOND

Y= O 00 — <H

D~ A0 MO — <H 00

AN D=1 O <H 00

MO HO—AND~-©

WVONOI~-— MO <

I~ <fo0 S O MA

OO O D b= <f 00—

LM ANF IO~

HD=— MO DO 0

ooom

OO0

MnNOD

[\ Rieie o]

=AM <F 1O O P~ 00

WO AN M F OO~

I~ =AM <H OO

O~ =AM <F 1O

OO~ 00 O — A <f

FLOO~0D— M

M <FIOOP~0D— N

AN <H O O =00 O

AN <FLOO -0

=AM <F 1O O - 00

VDN F OO~

~00O =AM <F 10O

O~ =AM <H 1O

OO~ =AM <H

OO~ — NN

M FLIOO~0D— N

AN FHLOOP~00O0 —

AN <HLOO~-00 D

DA M F OO P~00

WD AN M HO O~

~00 =AM <H DO

O~0 =AM <f 1O

OO~ 00 O — M <f

FLOO~0D— AN M

N <FLO O~ — N

AN <H O O~ 00

AN <FLOO~00D

=AM <F 1O O P~ 00

VDN F OO~

D~ A M <HLO O

O~ =AM <H 1O

LOO~00 O =AM <K

OO~ =AM

MNFLOO~0D— N

AN <H O O~ 00O

AN <FLOO -0

DA M F OO ~00

WA <HLO O~

~00 O = AN <H OO

O~00— AN M <f10

OO~ =AM <H

OO~ — NN

N<HLOOI~00D—

AN <FLOOP~0 O

—ANM<FLOO~00D

=AM <F 1O O P~ 00

WD AN M F OO~

I~ A M <H OO

O~0D— AN <F 1O

OO~ 00 D — A <f

FLOOI~0— M

MNFLOO~0D— N

AN <HLO O~ 00O

AN <FLOO -0

=AM <F LD O -0

VDN F OO~

~o0O =AM <F 1O O

O~ =AM <HLO

OO~ =AM <H

IO O~ — AN M

M FLIOO~0DD— N

AN FLOOP~00 —

AN <HLOO~-00 D

DA M F OO D~00

WD AN HLO O~

~00 =AM <H OO

O~0N— AN <F 1O

OO~ — AN <f

OO~ — M

N <FLO O~ D — N

AN <H O O~ 00 O

AN <FLOO~00D

=AM <O O -0

VDA F OO~

~0O =AM <F 1O O

O~ —ANM <F 1O

LOO~0D — AN <K

OO~ =AM

N FLOO~0D— N

AN <HLO O D~00 O —

AN <FLOO~-00 D

DN F OO -0

WD AN HLO O~

~00O =AM <F OO

O~00— AN M <10

OO~V — AN <

OO~ — AN M

N<HF OO~ — A

AN <FLOOP~0

AN HLO O~

[l i an]

hule2ial]

oo o <

~AN©

MnNOD

[a\Rinkee]

— <~

[l sl ap]

<FOoON

0 M <H

~AN©

DO

MNOD

[a\Riniee]

— <t~

199



Non-GYD PGYD for (v, k,b) = (18,12, 48) is the transpose of the following matrix. The
blocks in D¢ form the complements of the blocks of a BIBD with order 18, block size 6
and index 5, and with three blocks removed. The blocks in Dy form the complements of

four copies of each of these three removed blocks.

4 5 6 10 11 12 13 14 15 16 17 18
1 2 3 7 8 9 16 17 18 10 11 12
7 8 9 13 14 15 1 2 3 4 5 6
13 14 15 16 17 18 4 5 6 7 8 9
10 11 12 1 2 3 7 8 9 13 14 15
16 17 18 4 5 6 10 11 12 1 2 3
5 6 7 8 9 10 11 12 16 17 18 4
17 18 13 14 15 7 8 9 1 2 3 16
14 15 1 2 3 4 5 6 10 11 12 13
11 12 4 5 6 13 14 15 7 8 9 10
2 3 10 11 12 16 17 18 13 14 15 1
8 9 16 17 18 1 2 3 4 5 6 7
3 4 2 15 7 5 18 10 8 12 13 17
6 10 5 3 1 8 9 13 11 18 16 14
15 1 14 6 4 2 12 16 17 9 7 11
9 13 17 18 10 11 3 7T 14 6 4 2
12 16 8 9 13 17 6 1 2 15 10 5
18 v 11 12 16 14 15 4 5 3 1 8
2 3 5 6 7 § 10 11 13 15 16 18
1 17 3 8 [§ 9 11 12 4 13 14 16
4 1 2 5 15 7 12 10 14 18 9 17
3 2 9 7 5 6 14 16 10 12 17 13
8 5 1 2 4 11 9 13 12 16 18 15
7 8 4 1 3 17 6 18 15 14 10 11
18 16 14 13 12 10 8 9 5 4 3 2
14 9 17 11 10 16 15 7 6 5 1 3
15 13 11 17 2 12 18 8 7 1 6 4
9 11 10 16 17 15 13 4 3 2 8 6
10 18 12 15 16 14 7 5 8 6 2 1
11 12 7 9 14 18 4 3 1 17 13 5
12 7 13 4 11 5 16 17 2 3 15 9
17 10 6 14 13 3 5 1 18 8 12 7
6 14 16 10 18 1 2 15 11 9 4 8
13 4 18 12 8 2 3 6 16 7 11 14
5 6 15 18 9 13 1 2 17 11 7 10
16 15 8 3 1 4 17 14 9 10 5 12
2 3 4 5 7 9 10 11 15 16 18 14
1 6 5 3 11 7 12 8§ 13 15 16 17
4 1 2 6 12 10 8 9 14 13 17 18
3 2 6 4 10 8 7 12 17 14 15 16
6 5 1 2 9 12 11 7 16 18 14 13
5 4 3 1 8 11 9 10 18 17 13 15
§ 12 11 9 14 17 15 18 2 5 3 6
12 8 9 11 17 14 18 15 5 2 6 3
7 9 10 12 15 18 13 16 3 6 1 4
9 7 12 10 18 15 16 13 6 3 4 1
11 10 7 8§ 13 16 14 17 1 4 2 5
10 11 8 7T 16 13 17 14 4 1 5 2
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