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Abstract

This thesis consists of two parts.

In the main part, we will study finite-size effects on high-dimensional physical systems.
It is well-known that models of critical phenomena typically possess an upper critical
dimension, dc, such that in dimensions d ≥ dc, their thermodynamic behaviour is governed
by critical exponents taking simple mean-field values. In contrast to the simplicity of
the thermodynamic behaviour, the theory of finite-size scaling in dimensions above dc
is surprisingly subtle, and remains the subject of ongoing debate. We address this long-
standing debate, by introducing a random-length random walk model, which we then study
rigorously. We prove that this model exhibits the same universal FSS behaviour previously
conjectured for the self-avoiding walk and Ising model on finite boxes in high-dimensional
lattices. Our results show that the mean walk length of the random walk model controls
the scaling behaviour of the corresponding Green’s function. We numerically demonstrate
the universality of our rigorous findings by extensive Monte Carlo simulations of the Ising
model and self-avoiding walk on five-dimensional hypercubic lattices with free and periodic
boundaries.

In the second part, we will numerically compare the efficiency of various Markov-
chain Monte Carlo algorithms for simulating the zero-field ferromagnetic Ising model.
In particular, we will design an irreversible algorithm for the Ising model by using the
lifting technique. Even though lifting is considered as a promising method to speed up
Markov-chain Monte Carlo algorithms, it is an open question how it affects efficiency in
specific examples. We will numerically study the dynamic critical behavior of an energy-
like observable on both the complete graph and toroidal grids, and compare our findings
with reversible worm algorithms. Our results show that the lifted algorithm improves the
dynamic exponent of the energy-like observable on the complete graph, and leads to a
significant constant improvement on high-dimensional toroidal grids.
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Finite-size Scaling above the upper
critical dimension
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CHAPTER 1
Introduction

1.1 Literature Overview

In critical phenomena, continuous phase transitions are characterized by a singular
behaviour of the correlation length in the thermodynamic limit. Close to a critical
point, physical observables exhibit a power-law behaviour with corresponding critical
exponents. Important examples are the scaling of the correlation length ξ ' |T−Tc|−ν ,
the two-point function g(x) ' ‖x‖2−d+η, and the susceptibility χ ' |T − Tc|−γ.

Finite-size scaling (FSS) is a fundamental physical theory within statistical
mechanics describing the asymptotic approach to the thermodynamic limit of finite
systems in the neighbourhood of a critical phase transition [1, 2, 3]. Finite systems
are characterized by three length scales; ξ, the linear system size L of the underlying
lattice, and the microscopic length a which quantifies the range of interactions in the
lattice. Close to a critical point, the finite-size scaling hypothesis [2] assumes that
the microscopic length a can be neglected, and ξ ≈ L. Within this framework, FSS
allows the extraction of critical exponents from finite size data. As an illustration,
the leading scaling behaviour of the susceptibility is given by χ ' |T − Tc|−γ ' Lγ/ν .

It is well-known [4] that models of critical phenomena typically possess an upper
critical dimension, dc, such that in dimensions d ≥ dc, their thermodynamic behaviour
is governed by critical exponents taking simple mean-field values. Important examples
with dc = 4 are the Ising model [5, 6, 7, 8, 9], the self-avoiding walk [10, 11] and the
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CHAPTER 1. INTRODUCTION

Loop-Erased Random Walk [12].

In contrast to the simplicity of the thermodynamic behaviour, the theory of
FSS on high-dimensional hypercubic lattices with either free and periodic boundary
conditions is surprisingly subtle, and remains the subject of ongoing debate, see
e.g. [34, 35, 30, 29, 32, 33] for the most recent work.

We first consider the debate on periodic boundaries. In 1982, Brezin [13] argued
via renormalization group arguments that standard FSS fails above dc by studying the
lattice φ4 Hamiltonian on a d-dimensional hypercubic lattice with periodic boundaries.
This breakdown was explained in 1983 by Fisher and Privman [14, 15] by dangerous
irrelevant variables in the renormalization group. In 1985, Binder et al. [16, 17] in-
vestigated the consequence of dangerous irrelevant variables on the scaling behaviour
of the free energy for the Ising model, and numerically investigated the critical FSS
behaviour of the renormalized coupling constant and the susceptibility. It was nu-
merically observed that the susceptibility scales as Ld/2, in contrast to the standard
mean-field scaling L2. This conjecture was supported by studying linear systems up to
L = 7. In the same year Brezin and Zinn-Justin [18] theoretically studied the contin-
uous φ4 field Hamiltonian via renormalization group on a d-dimensional hypercubic
lattice with periodic boundaries, and calculated the renormalized coupling constant
at criticality. The value for the renormalized coupling constant in [18] deviated sig-
nificantly from both the numerical result in [16, 17] and another numerical study by
Rickwardt et al. [19] who were able to study linear system sizes up to L = 17. It
was debated whether these discrepancies were caused by large finite-size effects in the
Monte Carlo studies, or if the continuous φ4 field Hamiltonian in [18] was insufficient
to describe the behaviour of the Ising model above dc. In 1996, Luijten and Blöte [20]
reinvestigated the value of the renormalized coupling constant at criticality. Instead of
studying the short-range Ising model in high dimensions, where it is computationally
difficult to simulate large systems, Luijten and Blöte simulated models with ferromag-
netic long-range interactions decaying with ‖x‖−d−σ. It is known rigorously [21] that
these long range Ising models have upper critical dimension dc = 2σ. The numerical
observations in [20] were in excellent agreement with the calculated value of g in [18].
It was concluded that the discrepancy with the former Monte Carlo results was caused
by corrections to scaling.

In 1998, Chen and Dohm [22, 23, 24] provided new theoretical insights for the
finite-size scaling theory on periodic boundaries above dc. Chen and Dohm reinvesti-
gated the theoretical predictions in [18] by comparing the scaling behaviour for the
continuous φ4 field Hamiltonian with the lattice φ4 Hamiltonian of the O(n) model

3



1.1. LITERATURE OVERVIEW

in the large n limit. It was theoretically argued, without using renormalization group
arguments, that the susceptibility scales as Ld−2 in the case of the continuous φ4

field Hamiltonian, while it scales as Ld/2 in the case of the lattice φ4 Hamiltonian.
The latter result is in agreement with the theoretical predictions for the spherical
model [13], the mean-spherical model [25] and also matches with the numerical ob-
servation for the susceptibility of the Ising model [17, 26]. It was concluded that the
leading finite-size effects of spin systems on high-dimensional lattices with periodic
boundaries are not correctly described by the continuous φ4 field Hamiltonian studied
in [18], and that the recent interpretations of Monte Carlo results in [16, 17, 19, 20]
are therefore inconclusive. In [27], Binder et al. summarized the situation as follows
‘Thus we arrive at a rather disappointing state of affairs. Although for the φ4 theory
in d = 5 dimensions all exponents are known, including those of the corrections to
scaling, and in principle very complete analytical calculations are possible, the existing
theories clearly are not so good’.

In 2006, Papathanakos [28] reinvestigated the finite-size effects of the Ising model
above dc by using a geometric representation. As opposed to former studies, the
results in [28] are mathematically rigorous. Instead of studying the Ising model as
an interacting spin model, Papathanakos used so-called random-current and random-
path representations [7, 8] which represent physical observables in terms of weighted
averages over geometric objects. Using these representations, it was proved that the
Ising two-point function satisfies

g(x) ≥

c1‖x‖−(d−2), ‖x‖ ≤ c2L
d/[2(d−2)]

c3L
−d/2, ‖x‖ ≥ c2L

d/[2(d−2)]

where c1, c2, c3 are constants, and as a direct consequence that the susceptibility scales
as

χ ≥ const× Ld/2. (1.1)

Moreover, it was conjectured that these equations also govern the correct asymptotic
behaviour for g(x) and χ. In recent years, the correct scaling of the two-point function
has been reinvestigated [29, 30]. In contrast to the conjecture of Papathanakos, Kenna
and Berche [29] argued by using a renormalization group argument that g(x) �
‖x‖−d+2+ηQ above dc. Here, ηQ is a new critical exponent different to the standard
exponent η. The need for a new exponent was refuted by Wittmann and Young [30]
by analyzing the Fourier modes in the Ising model.

In recent years, the FSS behaviour of the Ising model on hypercubic lattices with
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CHAPTER 1. INTRODUCTION

free boundaries has been the subject of ongoing debate. The debate primarily concerns
the connection to the observed scaling behaviour on periodic boundaries at both the
infinite-volume critical point and at pseudo-critical points. First, we consider the
critical case. Lundow and Markström [31] numerically investigated the FSS behaviour
of the susceptibility on five-dimensional hypercubic lattices by studying linear system
sizes up to L = 20. It was numerically observed that χ � L2, in agreement with
the expected mean-field critical behaviour of the susceptibility, but in contrast to the
FSS behaviour on hypercubic lattices with periodic boundaries. The scaling χ � L2

on free boundaries was refuted by Berche et al. [32] who argued that the numerical
observations in [31] are inconclusive since the effect of the boundary for the systems
sizes simulated is too large. In particular, it was heuristically argued that χ does not
exhibit the standard mean-field expectation χ � L2 at criticality. This argument was
numerically supported by studying linear system sizes up to L = 51. In a response,
Lundow and Markström [33] reinvestigated the FSS behaviour of the susceptibility
on free boundaries at criticality. In agreement with their former result in [31] and in
contrast to [32], it was numerically observed that χ � L2 by studying linear systems up
to L = 160. This susceptibility scaling has been numerically confirmed by Wittmann
and Young [30], and has been accepted as the correct scaling behaviour at criticality
by Flores-Sola et al. in [35].

We now consider the scaling behaviour at pseudo-critical points. Berche et al. [32]
numerically observed the anomalous scaling behaviour χ � Ld/2 on free boundaries at
the pseudo-critical point TL, defined to be the temperature which maximizes χ(TL, L)1

in finite boxes with side length L. Moreover, it was numerically investigated how TL

scales with L (“shifting”), and how the width of χ at half height scales with L (“round-
ing”). It was numerically observed that the shift exponent is equal to 2 while the
rounding exponent equals d/2. It was heuristically argued that this observation leads
to different scaling behaviours of χ at criticality and at TL. The scaling behaviour of
χ(TL, L) was re-investigated by Wittmann and Young in [30], and, more recently, by
Lundow and Markström in [34]. Wittmann and Young [30] investigated the Fourier
modes of the Ising model. It was theoretically argued that the anomalous FSS be-
haviour χ � Ld/2 originates from the k = 0 mode, while χ � L2 for k 6= 0. This
argument was supported by a numerical study with linear system sizes up to L = 36,
and their results were in agreement with the finding χ � Ld/2 at TL from [32]. In
contrast to [32] and [30], Lundow and Markström [34] proposed a different scaling
of the susceptibility by numerically studying the Ising model up to L = 79. It was
numerically observed that χ(TL, L) scales as L2, in agreement with the critical case

1Strictly speaking, the modulus susceptibility χ̄, defined in Chap. 4, was maximized in [32].
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1.2. OUTLINE OF PART 1

on free boundaries.

In Part 1 of the thesis, we introduce a random-length random walk model (RLRW)
to address the debate regarding the FSS behaviour of the Ising model on finite boxes
with periodic and free boundary conditions above dc. We prove that the mean walk
length 〈N〉 of this random walk model controls the scaling behaviour of the corre-
sponding Green’s function. Informed by this observation, we numerically investigate
self-avoiding walks (SAW) which are in the same universality class as the Ising model
above dc = 4. We establish the FSS behaviour of the SAW mean walk length 〈NSAW〉
at both the infinite-volume critical point and at pseudo-critical points, and investi-
gate the FSS behaviour of the SAW two-point function. Our central result is that if
〈NRLRW〉 is chosen to scale as 〈NSAW〉, then the SAW two-point function displays the
same behaviour as the RLRW Green’s function. This strongly suggests that the FSS
behaviour of the SAW two-point function only depends on the boundary conditions
through their effect on 〈N〉. We numerically verify the universality of our observations
for the two-point function of the Ising model.

1.2 Outline of Part 1

We now present an outline of Part 1.

• In Chapter 2, we define the investigated models and observables. We, moreover,
introduce the algorithms used, and present our numerical methodology.

• In Chapter 3, we investigate finite-size effects on hypercubic lattices with periodic
boundaries (PBC). Chapter 3 consists of the following sections:

– In 3.2, we rigorously establish the FSS behaviour of the Green’s function
of a random-length random walk on both tori and on the infinite-lattice
Zd. Our theorem shows that the mean walk length of the random-length
random walk controls the scaling behaviour of its Green’s function.

– In 3.3, we numerically study the critical PBC behaviour of the two-point
function and susceptibility of the self-avoiding walk and the Ising model.
We establish the geometric reason for anomalous FSS behaviour on tori,
and show that anomalous effects can be removed by defining an alternative
two-point function on the torus.

– In 3.4, we numerically study the FSS behaviour of the two-point function
and susceptibility of the self-avoiding walk and the Ising model at pseudo-
critical points. In particular, we establish a pseudo-critical point where the

6



CHAPTER 1. INTRODUCTION

two-point functions and susceptibility exhibit standard mean-field scaling.

• In Chapter 4, we investigate finite-size effects on hypercubic lattices with reflec-
tive (RBC), holding (HBC) and free boundaries (FBC). Chapter 4 consists of
the following sections:

– In 4.1, we rigorously study the Green’s function behaviour of a random-
length random walk model on hypercubic lattices with reflective and hold-
ing boundary conditions.

– In 4.2, we numerically investigate the critical FBC behaviour of the two-
point functions and susceptibility of the self-avoiding walk and Ising model.

– In 4.3, we numerically study the two-point function and susceptibility of
the SAW and Ising model at a specific pseudo-critical point. At this pseudo-
critical point, we numerically verify the anomalous FSS behaviour of the
two-point functions, as observed with periodic boundaries at criticality.

• Finally, in Chapter 5, we discuss our results, and give an outlook for future
work.
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CHAPTER 2
Models

In this Chapter, we define the investigated models and observables. We study the
FSS behaviour of the investigated models on the following graphs:

• on the hypercubic lattice with periodic boundary conditions (PBC), i.e. GPBC =

CL�CL�..., see Chap. 3

• on the hypercubic lattice GBox = PL�PL�... with free (FBC), reflective (RBC)
and holding (HBC) boundary conditions, see Chap. 4

where the corresponding vertex sets are subsets of Zd (Details will be presented
in the following sections). � denotes the graph cartesian product, and CL (PL) is the
cycle graph (path graph) with size L.

2.1 Random-length Models

2.1.1 Why study Random-length Models?

The long-standing debate regarding the correct FSS behaviour on periodic and free
boundaries above dc is caused by two key problems. One problem is the computational
difficulty of simulating large systems in high dimensions, the other is the general lack of
theory which explains the FSS behaviour of high-dimensional Ising models. Therefore,
it is of significant interest to investigate models in the appropriate universality class,
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CHAPTER 2. MODELS

which can be studied rigorously.

On an infinite hypercubic lattice for sufficiently high dimensions, it is well-
known [36, 37] that the two-point functions of the Self-avoiding Walk (SAW) and
Ising model exhibit the same scaling behaviour as the Green’s function of the Simple
Random Walk (SRW). On finite lattices this connection breaks down, since SRW is
recurrent implying that the corresponding Green’s function does not exist.

In Chap. 3 and 4, we repair this broken connection, and rigorously establish
the FSS behaviour of the Green’s function for an appropriate random walk model
on finite lattices; the Random-length Random Walk. We argue that if one considers
random walks with an appropriately distributed random (finite) length, then the
Green’s function displays the same asymptotics as the two-point functions of the
Ising and SAW models.

2.1.2 Random-length Random Walk (RLRW)

Consider a simple random walk (St)t∈N on a finite box, and define its corresponding
vertex set by either

Bl := [−l, l]d ∩ Zd, L = 2l + 1 (2.1)

or
B̃l := (−l, l]d ∩ Zd, L = 2l (2.2)

where l ∈ N, and L is the side length. We fix the starting point S0 of the walk to be
at the origin 0 of the corresponding box. For each x ∈ Bl or x ∈ B̃l, we denote the
Euclidean norm by ‖x‖ :=

√
x · x. Specifically, we consider the SRW on Bl or B̃l with

reflective, holding and periodic boundary conditions. Let (Ct)t∈N be an i.i.d. sequence
of uniform random variables on {±e1, ...,±ed} where ei is the (cartesian) unit vector
in the ith dimension. Define

• reflective boundary conditions (RBC) by

St+1 :=

St + Ct+1 if St + Ct+1 ∈ Bl (or B̃l)

St − Ct+1 if St + Ct+1 /∈ Bl (or B̃l)
(2.3)

• holding boundary conditions (HBC) by

St+1 :=

St + Ct+1 if St + Ct+1 ∈ Bl (or B̃l)

St if St + Ct+1 /∈ Bl (or B̃l)
(2.4)
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2.1. RANDOM-LENGTH MODELS

• periodic boundary conditions (PBC) by

St+1 :=

St + Ct+1 if St + Ct+1 ∈ Bl (or B̃l)

St + Ct+1(1− L) if St + Ct+1 /∈ Bl (or B̃l)
(2.5)

Note that Bl and B̃l with periodic boundary conditions can be naturally viewed
as tori. We illustrate a SRW on a two-dimensional box with reflective and holding
boundaries in Fig. 2.1 and with periodic boundaries in Fig. 2.2.

Let N be an N-valued random variable. We study (St)
N
t=0 where the choice of

each step is independent of N . In words, we stop the SRW process after N (random)
steps. We call this model the Random-length Random Walk (RLRW). We study the
Green’s function

GRLRW(x) := E

(
N∑
t=0

P(St = x)

)
(2.6)

which is the expected number of visits to x ∈ Bl or x ∈ B̃l. Here, P(St = x) denotes
the probability that the RLRW ends at x after t steps. If N is chosen to be (almost
surely) infinite, then Eq. (2.6) is simply the usual definition of the Green’s function
of the random walk. Note that

∑
xGRLRW(x) = 〈N〉.

Intuitively, the mean walk length 〈N〉 of a RLRW can be viewed as a surrogate
of temperature of the Ising model and the fugacity for SAWs, respectively. For small
fugacities, for instance, SAWs are short, in agreement with small mean walk lengths
of a RLRW, while for large fugacities long SAWs are apparent, in agreement with
large mean walk lengths.

2.1.3 Random-length Loop-erased Random Walk (RLLERW)

Let ω be a simple random walk on Bl. The corresponding Loop-erased Random Walk
LERW(ω) can be obtained by erasing the loops of ω in chronological order. Let N
be an N-valued random variable. Consider the loop-erased random walk (S̃t)

N
t=0 with

S̃0 = 0 on Bl with periodic and free boundaries where the choice of each step of
the underlying random walk ω is uniform in the number of adjacent vertices and
independent of N .

In analogy with the definition in the RLRW model, we study the RLLERW
Green’s function

gRLLERW(x) := E

(
N∑
t=0

P(S̃t = x)

)
(2.7)

10



CHAPTER 2. MODELS

1/2

1/4

1/4

1/4

1/4

1/4

1/4

Figure 2.1: Illustration of a simple random walk, and the corresponding transition probabilities on
reflective and holding boundary conditions on a square lattice. The blue arrows illustrate the possible
transitions for the random walker. The numbers in grey correspond to the transition probabilities for
holding boundaries, while the black numbers are the transition probabilities for reflective boundaries.

0

x

Figure 2.2: Illustration of a simple random walk on a two-dimensional box with periodic boundaries.
The red lines illustrate the edges the walker visited (The dashed line illustrates the boundary edge).
The walker started at the origin 0 of the box, and ended at the vertex x. Each move is uniform
among the four neighbours.
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0

Figure 2.3: Illustration of a RLLERW with walk length N = 10 on a two-dimensional box with
periodic boundaries. The dashed line illustrates the boundary edge. The unwrapped length is
U = (U1,U2) = (7,−1).

where P̃(S̃t = x) is the probability that the RLLERW ends at x after t steps.

2.2 n-vector models

We study two special cases of the n-vector model; the Ising model corresponding to
n = 1 and the SAW corresponding to n→ 0.

2.2.1 Ising model in a loop representation

We study the zero-field ferromagnetic Ising model with Hamiltonian

H = −
∑
ij∈E

sisj (2.8)

on Bl where si ∈ {−1,+1} denotes the spin at position i ∈ Bl, and E is the edge set
of Bl with either FBC or PBC (see [44] for a detailed definition). We investigate the
two-point function 1

gIsing(x) := 〈s0sx〉 (2.9)

where 〈·〉 denotes the expectation value with respect to the Gibbs measure.

Let C0 ⊂ 2E be the subset where all vertices in the spanning subgraph have
even degree, and define C0x ⊂ 2E as the subset in the spanning subgraph where all
vertices except the origin 0 ∈ Bl and x ∈ BL have even degree. As is well-known, the

1For the ease of notation, we write gIsing(x) instead of gIsing(0,x).
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high-temperature expansion [38] provides a natural graphical representation of the
two-point function, i.e.

gIsing(x) =

∑
A∈C0x z

|A|∑
A∈C0 z

|A| (2.10)

where z := tanh(1/T ), T is the Ising temperature. We numerically studied this loop
representation via the worm algorithm introduced in [39]2.

2.2.2 Self-avoiding Walk in the variable length ensemble

We study the Self-avoiding Walk (SAW) on Bl in the grand canonical ensemble where
walks can have various lengths. The two-point function is given by

gSAW(x) :=
∑

ω : 0→x

z|ω| (2.11)

where z is the fugacity, and the sum is over all SAWs starting at the origin 0 and
ending at x. We simulated this ensemble using a recently introduced irreversible
version of the Beretti-Sokal algorithm [40, 41].

2.3 Observables

In addition to the Green’s functions of the RLRW/RLLERW, and the two-point
functions of the SAW and Ising models, we investigate the following observables:

• The walk length N for the SAW and its mean value 〈N〉.
• The susceptibility χ := |V |−1

∑
x,y g(x,y) of the SAW and the Ising model,

estimated via χ = 1/〈D0〉 in the worm and B-S algorithm. Here, D0 is the
indicator function for the event that the actual configuration is an element of C0

in the Ising model, and is the empty walk (N = 0) for the SAW, respectively.

• On Bl with periodic boundaries, we study the unwrapped SAW two-point function
g̃SAW : [0,∞)→ [0,∞) defined by

g̃SAW(u) :=
∑

ω : ‖U(ω)‖=u

z|ω|. (2.12)

The unwrapped length U(ω) := (U1,U2, ...,Ud) ∈ Zd is defined algorithmically
as follows. For each walk ω, traverse ω from the origin to its endpoint, adding +1

2In Sec. 2.1 of Part 2, we present details of the worm algorithm
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(−1) to Ui for each step of the walk along ei (−ei). The unwrapped length U(ω)

simply corresponds to the length the walk would have in the infinite lattice, if
the torus was unwrapped, so that periodic images are considered distinct.

Moreover, we study the unwrapped RLLERW Green’s function g̃RLLERW : [0,∞)→
[0,∞) defined by

g̃RLLERW(u) :=
P(‖U‖ = u)

P(‖U‖ = 0)
(2.13)

where P(·) is the probability to generate a RLLERW. Note that the unwrapped
SAW two-point function from Eq. (2.12) can be defined analogously. We illus-
trate a RLLERW on a two-dimensional square lattice with periodic boundaries
in Fig. 2.3.

• On Bl with periodic boundaries, we study the winding number W along the
first coordinate axis, defined by W :=

⌊U1
L

⌋
where b·c denotes the floor function

and L is the side-length of the lattice. In the Ising model, we define U1 as the
unwrapped length of the largest incontractible loop where measurements were
taken in C0

3. We emphasize that W does not distinguish between windings in
the positive or negative directions, so that W > 0.

2.4 Numerical details

Our simulations for the Ising model were performed at the exact infinite-volume
critical point in two dimensions [43], and at the estimated location of the infinite-
volume critical point zc,Ising,5d = 0.113 424 8(5) [33] in five dimensions. The SAW
model was simulated at the estimated location of the infinite-volume critical points,
zc,SAW,2d = 0.379 052 277 758(4) [45], zc,SAW,5d = 0.113 140 84(1) [41] and zc,SAW,6d =

0.091 927 86(4) [46]. The simulations for the RLLERW were performed by sampling
from the half-normal walk length distribution

P (N ) =
2θ

π
exp

(
− θ2N 2

π

)
(2.14)

with θ := 1/〈N〉. In line with general expectations, our numerical simulations sug-
gest that the walk length distribution of SAWs on high-dimensional tori is ‘similar’
to the corresponding distribution on the complete graph Kn. One can rigorously

3Finding Hamiltonian circuits in an undirected graph is NP complete [42]. Instead, we perform
a Depth-First search to estimate the winding number of the largest cluster. This approach leads
only to a lower bound of the winding number. Regardless, as presented in Sec. 3.3, we still observe
the expected scaling behaviour in five dimensions.
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establish [47] that the walk length distribution of SAWs on Kn is a conditional Pois-
son distribution. In practice, for large n, this distribution can be approximated by
the half-normal distribution from Eq. (2.14). This motivates using the half-normal
distribution for generating RLLERWs.

For the Ising model, we simulated linear system sizes up to L = 71 in five dimen-
sions. For SAW, we simulated linear system sizes up to L = 221 in five dimensions,
and L = 57 in six dimensions. Finally, we simulated linear system sizes up to L = 301

for the RLLERW. A detailed analysis of integrated autocorrelation times is presented
in [48] for the worm algorithm and in [41] for the irreversible B-S algorithm. Our
fitting methodology and corresponding error estimation follow standard procedures,
see for instance [49, 50]. To estimate the exponent value for a generic observable Y
we performed least-squares fits to the ansatz Y = aYL

bY + cY .
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CHAPTER 3
FSS on hypercubic lattices with

periodic boundaries

3.1 Random-length Random Walk

In this Section, we rigorously establish the FSS behaviour of the RLRW Green’s
function on the infinite-lattice Zd, and on boxes with periodic boundaries d ≥ 3; see
Sec. 2.1 for precise definitions.

On d ≥ 3 dimensional boxes with periodic boundaries, Theorem 3.2.2 implies the
following result. Consider a RLRW with mean walk length scaling as 〈N〉 � Lµ with
µ > 0. Then, under certain conditions regarding the distribution of N , the RLRW
Green’s function displays the following piecewise asymptotic behaviour

GRLRW(x) �

‖x‖2−d, ‖x‖ ≤ cL(d−µ)/(d−2)

Lµ−d, ‖x‖ ≥ cL(d−µ)/(d−2).
(3.1)

where c ∈ R+. In words, GRLRW(x) exhibits the standard infinite-lattice asymptotic
decay ‖x‖2−d at moderate values of x, but then enters, if µ > 2, a plateau of order
Lµ−d which persists to the boundary. For µ < 2, it follows from Eq. (3.1) that this
plateau is absent, while the case µ = 2 is marginal. Since a typical RLRW will explore
distances of order

√
〈N〉 from the origin, the absence of a plateau for µ < 2 is simply
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because typical walks will be too short to feel the boundary. As a direct consequence
of Eq. (3.1), the susceptibility scales as

χRLRW � Lµ. (3.2)

In Secs. 3.3 and 3.4 we explain the connection of our theorem to the FSS behaviour
of the two-point functions of the SAW and Ising model.

The behaviour of RLRWs on tori and Zd can be related in the following way. For
each L ∈ N, we can define an equivalence relation on Zd such that, for each x ∈ Zd,

[x]L := {x + Lz : z ∈ Zd}. (3.3)

Let (St)
N
t=0 be a RLRW on Zd. Then, for any l ∈ N, ([St]2l+1 ∩ Bl)Nt=0 is a RLRW on

Bl with periodic boundary conditions, and its Green’s function satisfies:

GPBC,Bl(x) = E

(
N∑
j=0

P([Sj]2l+1 ∩ Bl = x)

)

= E

(
N∑
j=0

P(Sj ∈ [x]2l+1)

)

= E

(
N∑
j=0

∑
x′∈[x]2l+1

P(Sj = x′)

)
=

∑
x′∈[x]2l+1

GZd(x
′)

=
∑
z∈Zd

GZd(x + Lz)

for all x ∈ Bl, and where L = 2l + 1. Similarly, ([St]2l ∩ B̃l)Nt=0 is a RLRW on B̃l with
periodic boundary conditions, and its Greens’ function satisfies:

GPBC,B̃l(x) = E

(
N∑
j=0

P
(
[Sj]2l ∩ B̃l = x

)
=

∑
z∈Zd

GZd(x + Lz)

for all x ∈ B̃l, and where L = 2l. Therefore, defining

GPBC,L(x) :=
∑
z∈Zd

GZd(x + Lz), (3.4)
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we have

GPBC,L(x) =

GPBC,B̃L/2(x), for L even and x ∈ B̃L/2
GPBC,B(L−1)/2

(x), for L odd and x ∈ B(L−1)/2

(3.5)

To reduce notational clutter, we will generally omit the subscript L on GPBC,L(·) and
[·]L in what follows.

In Theorem 3.2.1, we prove, for distances ‖x‖ ≤ c
√
〈N〉 with fixed c ∈ R+, that

the Green’s function of a RLRW on Zd scales as

GRLRW(x) � ‖x‖2−d. (3.6)

In Subsec. 3.3.2 we numerically establish the same FSS behaviour for the unwrapped
two-point functions of the SAW and Ising model on high-dimensional tori, defined in
Eq. (2.12). In the case of a SRW, we note that one immediately recovers the SRW
behaviour on Zd when unwrapping the walk from the torus.

3.1.1 Preliminaries

Consider a RLRW (St)
N
t=0 starting from the origin 0. Define

pn(x) := P(Sn = x) . (3.7)

We say n has the same parity as x (denoted by n ↔ x) if n +
∑d

i=1 xi is even. It
follows immediately that pn(x) = 0 if n= x. Moreover, define

p̄n(x) :=

[
d

2πn

]d/2
exp

(
−d‖x‖

2

2n

)
. (3.8)

3.2 Random-length Random Walk

3.2.1 Preliminaries

Consider a RLRW (St)
N
t=0 starting from the origin 0. Define

pn(x) := P(Sn = x) . (3.9)
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We say n has the same parity as x (denoted by n ↔ x) if n +
∑d

i=1 xi is even. It
follows immediately that pn(x) = 0 if n= x. Moreover, define

p̄n(x) :=

[
d

2πn

]d/2
exp

(
−d‖x‖

2

2n

)
. (3.10)

3.2.2 RLRW Green’s function on Zd

Theorem 3.2.1. (RLRW Green’s function on Zd) Let d ≥ 3. For any c ∈ R+, if
0 < ‖x‖ ≤ c

√
〈N〉, then there exists α1(c) > 0 and α2 > 0 such that

α1(c)P
(
N ≥ d〈N〉e

)
‖x‖2−d ≤ GZd(x) ≤ α2‖x‖2−d (3.11)

with lim
c→∞

α1(c) = 0.

Remark. If ‖x‖ ≤ c
√
〈N〉, Eq. (3.11) shows that the Green’s function exhibits the

scaling behaviourGZd � ‖x‖2−d, in agreement with the FSS behaviour of the two-point
functions of the Ising and SAW models on Zd.

Proof. Setting α = 2− 2ε1/d with ε1 ∈ (0, d) in Lemma 3.2.11 implies that

∞∑
n=1

[pn(x)− p̄n(x)]P(N ≥ n)1(n↔ x) = O(‖x‖ε1−d) .

So

GZd(x) = p0(x) +
∞∑
n=1

pn(x)P(N ≥ n)1(n↔ x)

= p0(x) +
∞∑
n=1

p̄n(x)P(N ≥ n)1(n↔ x) +
∞∑
n=1

[pn(x)− p̄n(x)]P(N ≥ n)1(n↔ x)

= p0(x) +
∞∑
n=1

p̄n(x)P(N ≥ n)1(n↔ x) +O(‖x‖ε1−d) . (3.12)

where 1(·) is the indicator function.
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Let F (n,x) := p̄n(x)P(N ≥ n). Then,

∞∑
n=1

p̄n(x)P(N ≥ n)1(n↔ x)

=
∞∑
n=1

F (n,x)1(n↔ x)

=
1

2

∞∑
n=1

[F (n,x)1(n↔ x) + F (n,x)1(n= x) + F (n,x)1(n↔ x)− F (n,x)1(n= x)]

=
1

2

∞∑
n=1

F (n,x) + E(x) , (3.13)

where

E(x) =
1

2

∞∑
n=1

[F (n,x)1(n↔ x)− F (n,x)1(n= x)] . (3.14)

We will see that E(x) is a sub-leading term, and will be bounded in Eqs. (3.18)-(3.21).

The term
∑∞

n=1 F (n,x) in (3.13) can be rewritten as

∞∑
n=1

F (n,x) = B(x) + A(x) , (3.15)

where

B(x) :=

∫ ∞
0

(
d

2πt

)d/2
e−‖x‖

2d/(2t)P(N ≥ bt+ 1/2c)dt

and

A(x) = A1(x)− A2(x) .

with

A1(x) :=

(
d

2π

)d/2 ∞∑
n=1

[
n−d/2e−‖x‖

2d/(2n)P(N ≥ n)−
∫ n+1/2

n−1/2

t−d/2e−‖x‖
2d/(2t)P(N ≥ bt+ 1/2c)dt

]

and

A2(x) :=

(
d

2π

)d/2 ∫ 1/2

0

t−d/2e−‖x‖
2d/(2t)P(N ≥ bt+ 1/2c)dt.

We now establish lower and upper bounds for B(x), while the sub-leading term A(x)
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is discussed later. For the upper bound, since P(N ≥ bt+ 1/2c) ≤ 1 , we find

B(x) = ‖x‖2−d
(

1

π

)d/2
d

2

∫ ∞
0

sd/2−2e−sP
(
N ≥

⌊‖x‖2d

2s
+

1

2

⌋)
ds

≤ ‖x‖2−d
(

1

π

)d/2
d

2

∫ ∞
0

e−ssd/2−2ds

= ‖x‖2−d
(

1

π

)d/2
d

2
Γ(d/2− 1) , (3.16)

where we let s = ‖x‖2d/(2t) in the first step, and Γ(b) =
∫∞

0
sb−1e−sds is the Gamma

function.

For the lower bound, we have

B(x) = ‖x‖2−d
(

1

π

)d/2
d

2

∫ ∞
0

sd/2−2e−sP
(
N ≥

⌊‖x‖2d

2s
+ 1/2

⌋)
ds

≥ ‖x‖2−d
(

1

π

)d/2
d

2

∫ ∞
0

sd/2−2e−sP
(
N ≥

⌊c〈N〉d
2s

+ 1/2
⌋)

ds

≥ ‖x‖2−d
(

1

π

)d/2
d

2
P
(
N ≥

⌊
〈N〉+ 1/2

⌋)∫ ∞
cd
2

sd/2−2e−sds

≥ ‖x‖2−d
(

1

π

)d/2
d

2
P (N ≥ d〈N〉e)

∫ ∞
cd
2

sd/2−2e−sds (3.17)

We now bound the term E(x) in Eq. (3.14).

|E(x)| =
1

2

∣∣∣∣∣
∞∑
n=1

(
F (n,x)1(n↔ x)− F (n,x)1(n= x)

)∣∣∣∣∣
=

1

2

∣∣∣∣∣
∞∑
k=1

(
F (2k,x)− F (2k − 1,x)

)∣∣∣∣∣
≤ 1

2

∞∑
k=1

|F (2k,x)− F (2k − 1,x)|

≤ 1

2

∞∑
n=1

|F (n,x)− F (n+ 1,x)| . (3.18)
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We then split the sum
∑∞

n=1 into
∑b‖x‖2−ε2c

n=1 and
∑∞

n=b‖x‖2−ε2c+1 with ε2 ∈ (0, 2). Then,

b‖x‖2−ε2c∑
n=1

|F (n,x)− F (n+ 1,x)| ≤
b‖x‖2−ε2c∑

n=1

[|F (n,x)|+ |F (n+ 1,x)|]

≤
b‖x‖2−ε2c∑

n=1

(
d

2πn

)d/2
exp

(
−‖x‖

2d

2n

)
P(N ≥ n) +

b‖x‖2−ε2c∑
n=1

[
d

2π(n+ 1)

]d/2
exp

[
− ‖x‖

2d

2(n+ 1)

]
P(N ≥ n+ 1)

≤ 2

b‖x‖2−ε2c∑
n=1

( d

2πn

)d/2
exp

[
− ‖x‖

2d

2(n+ 1)

]
≤ 2

( d
2π

)d/2
exp

[
− ‖x‖2d

2(‖x‖2−ε2 + 1)

] ∞∑
n=1

n−d/2

= 2
( d

2π

)d/2
exp

[
− ‖x‖2d

2(‖x‖2−ε2 + 1)

]
ζ(d/2) (3.19)

where ζ(·) is the Riemann-Zeta function, and since P(N ≥ n) = P(N ≥ n+ 1) +

P(N = n),

∞∑
n=b‖x‖2−ε2c+1

|F (n,x)− F (n+ 1,x)|

≤
∞∑

n=b‖x‖2−ε2c+1

∣∣∣∣∣
(

d

2πn

)d/2
exp

(
−‖x‖

2d

2n

)
−
[

d

2π(n+ 1)

]d/2
exp

[
− ‖x‖

2d

2(n+ 1)

]∣∣∣∣∣P(N ≥ n)

+
∞∑

n=b‖x‖2−ε2c+1

[
d

2π(n+ 1)

]d/2
exp

[
− ‖x‖

2d

2(n+ 1)

]
P(N = n)

≤
∞∑

n=b‖x‖2−ε2c+1

c1n
−1−d/2 + c2‖x‖−d+ε2d/2

≤ c3‖x‖−d+ε2d/2 . (3.20)

for c1, c2, c3 ∈ (0,∞), where in the penultimate step we used Lemma 3.2.13, and the
last steps uses Lemma 3.2.15. These observations lead to

E(x) = O(‖x‖ε′2−d) (3.21)

with ε′2 = ε2d/2 ∈ (0, d).
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Finally, we bound the term A(x) which turns out to be sub-leading. Observe
that, for fixed x, pn(x) is an monotonically increasing function of n on the interval
(0, ‖x‖2). So since (0, 1/2) ⊂ (0, ‖x‖2) for x ∈ Zd\{0}, we have

|A2(x)| ≤ c4e−d‖x‖
2

for some c4 ∈ R+. And since bt+ 1/2c = n for all t ∈ (n− 1/2, n+ 1/2), we have

|A1(x)| ≤
(
d

2π

)d/2 ∞∑
n=1

∣∣∣∣∣n−d/2e−‖x‖
2d/(2n) −

∫ n+1/2

n−1/2

t−d/2e−‖x‖
2d/(2t)dt

∣∣∣∣∣P(N ≥ n)

≤
(
d

2π

)d/2 ∞∑
n=1

∣∣∣∣∣n−d/2e−‖x‖
2d/(2n) −

∫ n+1/2

n−1/2

t−d/2e−‖x‖
2d/(2t)dt

∣∣∣∣∣
= O(‖x‖−(2+d)) .

where the last step follows from Lemma 3.2.5.
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3.2.3 RLRW Green’s function on a box with PBC

Theorem 3.2.2. (RLRW Green’s function on a box with periodic boundaries) Let
d ≥ 3. Then there exist α1, α2, α3, α4, α5 ∈ (0,∞) such that for any ε > 0, and all
x ∈ [−L/2, L/2]d ∩ Zd\{0}

GPBC(x) ≤ α1‖x‖2−d + α2

∞∑
n=L2d+1

P(N ≥ n)L−d (3.22)

GPBC(x) ≥ α3P
(
N ≥ L2d

)
‖x‖2−d + α4

∞∑
n=L2d+1

P(N ≥ n)L−d − α5〈N〉L−d−2+ε (3.23)

Corollary 3.2.3. If 〈N〉 � Lµ with µ > 2, then GPBC(x) satisfies Eq. (3.1), i.e.

c1‖x‖2−d + c2L
µ−d ≤ GPBC(x) ≤ c3‖x‖2−d + c4L

µ−d (3.24)

for c1, c2, c3, c4 ∈ (0,∞).

Proof. Let m ∈ N. Since P(N ≥ n) ≤ 1, we have
∑m

n=1 P(N ≥ n) ≤ m. Thus

∞∑
n=dL2

P(N ≥ n) =
∞∑
n=1

P(N ≥ n)−
dL2−1∑
n=1

P(N ≥ n)

= 〈N〉 −
dL2−1∑
n=1

P(N ≥ n)

≥ 〈N〉 − dL2 (3.25)

It follows that if 〈N〉 � Lµ with µ > 2, then

∞∑
n=dL2

P(N ≥ n) � Lµ

Since −α5〈N〉L−d−2+ε = O(Lµ−d−(2−ε)), Eq. (3.24) follows.

We now prove Theorem 3.2.2.
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Proof. Let x ∈ [−L/2, L/2]d ∩ Zd\{0}. We have

GPBC(x) =
∑
z∈Zd

∞∑
n=0

pn(x + zL)P(N ≥ n)

=
∑
z∈Zd

p0(x + zL) +
∑
z∈Zd

∞∑
n=1

pn(x + zL)P(N ≥ n)1(n↔ x + zL)

=: p0(x) + A(x, L) +B(x, L) . (3.26)

where

A(x, L) :=
∑
z∈Zd

∞∑
n=1

[pn(x + zL)− p̄n(x + zL)]P(N ≥ n)1(n↔ x + zL)

and

B(x, L) :=
∑
z∈Zd

∞∑
n=1

p̄n(x + zL)P(N ≥ n)1(n↔ x + zL).

We now consider the leading term B(x, L), while A(x, L), which turns out to be a
sub-leading term, is discussed later. We first consider an upper bound for B(x, L)

B(x, L) ≤
∑
z∈Zd

∞∑
n=1

p̄n(x + zL)P(N ≥ n)

=
∑
z∈Zd

∞∑
n=1

(
d

2πn

)d/2
exp

(
−‖x + zL‖2d

2n

)
P(N ≥ n)

(3.27)

We split the sum
∑∞

n=1 into
∑M

n=1 and
∑∞

n=M+1, where M ∈ N will be chosen later.
For the sum

∑M
n=1, Lemma 3.2.8 leads to

∑
z∈Zd

M∑
n=1

(
d

2πn

)d/2
exp

(
−‖x + zL‖2d

2n

)
P(N ≥ n)

=
M∑
n=1

(
d

2πn

)d/2
P(N ≥ n)

d∏
i=1

[∑
zi∈Z

exp

(
−(xi + ziL)2d

2n

)]

≤
M∑
n=1

e−‖x‖
2d/(2n)

[
1 +

∑
z∈Z

e−z
2L2d/(4n)

]d(
d

2πn

)d/2
P(N ≥ n) . (3.28)
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Lemma 3.2.7 implies that
∑

z∈Z e−z
2L2d/(4n) ≤

√
4πn/(dL2)− 1, which tends to

∞ as L → ∞ whenever n = ω(L2). Therefore, to obtain a non-trivial upper bound
as L→∞, we demand M = O(L2).

For the sum
∑∞

n=M+1, using Lemma 3.2.7 and Lemma 3.2.9, we obtain

∑
z∈Zd

∞∑
n=M+1

(
d

2πn

)d/2
exp

(
−‖x + zL‖2d

2n

)
P(N ≥ n)

=
∞∑

n=M+1

d∏
i=1

[∑
zi∈Z

exp

(
−(xi + ziL)2d

2n

)](
d

2πn

)d/2
P(N ≥ n)

≤
∞∑

n=M+1

(
1 +

∑
z∈Z

e−z
2L2d/(2n)

)d(
d

2πn

)d/2
P(N ≥ n)

≤
∞∑

n=M+1

(
2 +

√
2πn/(dL2)

)d( d

2πn

)d/2
P(N ≥ n)

= L−d
∞∑

n=M+1

(√
2d

π

L√
n

+ 1

)d

P(N ≥ n) . (3.29)

Since the ratio L2/n → +∞ as L → ∞ whenever n = o(L2), in order to obtain a
non-trivial upper bound as L→∞, we choose M = Ω(L2). Combining this with the
requirement O(L2) from above, then motivates setting M = bcL2c with c ∈ R+.

Substituting M = bcL2c into (3.28), and applying Lemma 3.2.10 leads to

bcL2c∑
n=1

d∏
i=1

[∑
zi∈Z

exp

(
−(xi + ziL)2d

2n

)](
d

2πn

)d/2
P(N ≥ n)

≤
[

1 +
∑
z∈Z

e−z
2d/(4c)

]d bcL2c∑
n=1

e−x
2d/(2n)

(
d

2πn

)d/2

≤ d

2

(
1

π

)d/2 [
1 +

∑
z∈Z

e−z
2d/(4c)

]d
‖x‖2−d

∫ ∞
x2d/[(2bcL2c+1)]

sd/2−2e−sds+O(‖x‖−2−d)

≤ ‖x‖2−dd

2

(
1

π

)d/2 [
1 + θ3

(
0, e−d/(4c)

)]d
Γ(d/2− 1) +O(‖x‖−2−d) (3.30)

where θ3(u, q) := 1 + 2
∑∞

n=1 q
n2

cos(2nu) is an elliptic theta function. Substituting
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M = bcL2c+ 1 into (3.29) leads to

∞∑
n=bcL2c+1

d∏
i=1

[∑
zi∈Z

exp

(
−(xi + ziL)2d

2n

)](
d

2πn

)d/2
P(N ≥ n)

≤ L−d

(√
2d

πc
+ 1

)d ∞∑
n=bcL2c+1

P(N ≥ n) (3.31)

Thus, Eqs. (3.30) and (3.31) leads to an upper bound for B(x).

We next consider a lower bound for B(x, L). Let

B(x, L) =
∑
z∈Zd

∞∑
n=1

p̄n(x + zL)P(N ≥ n)1(n↔ x + zL)

= B1(x, L) + E(x, L)

where

B1(x, L) :=
1

2

∑
z∈Zd

[
∞∑
n=1

p̄n(x + zL)P(N ≥ n)1(n↔ x + zL)

+
∞∑
n=1

p̄n(x + zL)P(N ≥ n− 1)1(n= x + zL)

]

and

E(x, L) :=
1

2

∑
z∈Zd

[
∞∑
n=1

p̄n(x + zL)P(N ≥ n)1(n↔ x + zL)

−
∞∑
n=1

p̄n(x + zL)P(N ≥ n− 1)1(n= x + zL)

]
(3.32)

Since P(N ≥ n) ≤ P(N ≥ n− 1), it follows that

B1(x, L) ≥ 1

2

∑
z∈Zd

[
∞∑
n=1

p̄n(x + zL)P(N ≥ n)1(n↔ x + zL)

+
∞∑
n=1

p̄n(x + zL)P(N ≥ n)1(n= x + zL)

]

=
1

2

∑
z∈Zd

∞∑
n=1

p̄n(x + zL)P(N ≥ n) (3.33)
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We again split the
∑∞

n=1 into
∑bcL2c

n=1 and
∑∞

n=bcL2c+1. For the sum
∑bcL2c

n=1 , it follows
from Lemma 3.2.8 and Lemma 3.2.10 that

bcL2c∑
n=1

(
d∏
i=1

∑
zi∈Z

e−(xi+ziL)2d/(2n)

)(
d

2πn

)d/2
P(N ≥ n)

≥
bcL2c∑
n=1

e−‖x‖
2d/(2n)

(
d

2πn

)d/2
P(N ≥ n)

≥ P(N ≥ cL2)

bcL2c∑
n=1

e−‖x‖
2d/(2n)

(
d

2πn

)d/2
≥ P(N ≥ cL2)

d

2

(
1

π

)d/2(
‖x‖2−d

∫ ∞
x2d/[(2bcL2c+1)]

sd/2−2e−sds+O(‖x‖−2−d)

)
≥ ‖x‖2−dP(N ≥ cL2)

d

2

(
1

π

)d/2 ∫ ∞
d2L2/[(2bcL2c+1)]

sd/2−2e−sds+O(‖x‖−2−d)

≥ ‖x‖2−dP(N ≥ cL2)
d

2

(
1

π

)d/2 ∫ ∞
d2/(2c−1)

sd/2−2e−sds+O(‖x‖−2−d) (3.34)

The penultimate step uses ‖x‖2 ≤ dL2, and the last step assumed c > 1/2.

For the sum
∑∞

n=bcL2c+1, using Lemma 3.2.9 and 3.2.7, we have

∞∑
n=bcL2c+1

(
d∏
i=1

∑
zi∈Z

e−(xi+ziL)2d/(2n)

)(
d

2πn

)d/2
P(N ≥ n)

≥
∞∑

n=bcL2c+1

(∑
z∈Z

e−z
2L2d/(2n) − 1

)d(
d

2πn

)d/2
P(N ≥ n)

≥
∞∑

n=bcL2c+1

(√
2πn

dL2
− 2

)d(
d

2πn

)d/2
P(N ≥ n)

= L−d
∞∑

n=bcL2c+1

(
1−

√
2d

π

L√
n

)d

P(N ≥ n)

≥ L−d

(
1−

√
2d

πc

)d ∞∑
n=bcL2c+1

P(N ≥ n)

= L−d
(

1−
√

2/π
)d ∞∑

n=dL2+1

P(N ≥ n) . (3.35)

In the last step, to guarantee a non-negative lower bound, we set c = d. The lower
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bound for B1(x, L) follows by combining Eqs. (3.34) and (3.35). It remains to bound
|E(x, L)| and |A(x, L)|.

We first consider E(x, L). A change of variables in the second term of the RHS
of Eq. (3.32) shows that

E(x, L) =
1

2

∑
z∈Zd

∞∑
n=1

(
p̄n(x + zL)− p̄n+1(x + zL)

)
P(N ≥ n)1(n↔ x + zL)

− 1

2

∑
z∈Zd

p̄1(x + zL)1(n↔ x + zL) . (3.36)

We therefore have

|E(x, L)| ≤ 1

2

∑
z∈Zd

∞∑
n=1

|p̄n(x + zL)− p̄n+1(x + zL)|P(N ≥ n) (3.37)

+
∑
z∈Zd

p̄1(x + zL) .

where ∑
z∈Zd

p̄1(x + zL) = p̄1(x) +
∑

z∈Zd\{0}

p̄1(x + zL)

=

(
d

2π

)d/2 e−d‖x‖
2/2 +

∑
z∈Zd\{0}

e−d‖x+zL‖2/2

 . (3.38)

Since −1/2 ≤ xi/L ≤ 1/2, we have (xi/L+ zi)
2 ≥ z2

i /4, for all i ∈ {1, ..., d}. Therefore

‖x/L+ z‖ ≥ ‖z‖/2 (3.39)

Combining Eqs. (3.38) and (3.39), and using Lemma 3.2.20 gives

∑
z∈Zd

p̄1(x + zL) ≤
(
d

2π

)d/2 e−d‖x‖
2/2 +

∑
z∈Zd\{0}

e−dL
2‖z‖2/8


≤

(
d

2π

)d/2 (
e−d‖x‖

2/2 + c1e−dL
2/8
)

(3.40)

with c1 ∈ (0,∞) where the last step follows from Lemma 3.2.20.

We now split the sum from Eq. (3.37) into
∑b‖x+zL‖2−ε1c

n=1 and
∑∞

n=b‖x+zL‖2−ε1c+1.
Using Lemma 3.2.19 leads to
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∑
z∈Zd

b‖x+z‖2−εc∑
n=1

|p̄n(x + zL)− p̄n+1(x + zL)|

≤ c2

∑
z∈Zd

e−
d
8
‖x+zL‖ε

= c2e−
d
8
‖x‖ε + c2

∑
z∈Zd\{0}

e−
d
8
‖x+zL‖ε

≤ c2e−
d
8
‖x‖ε + c2

∑
z∈Zd\{0}

e−
d

23+ε
‖z‖εLε

≤ c2e−
d
8
‖x‖ε + c3e−

d
23+ε

Lε (3.41)

where c2, c3 ∈ (0,∞), and the penultimate step uses Eq. (3.39) and the last step
follows by Lemma 3.2.20.

Now by Lemma 3.2.13

∑
z∈Zd

∞∑
n=b‖x+z‖2−εc+1

|p̄n(x + zL)− p̄n+1(x + zL)|P(N ≥ n)

≤ c4

∑
z∈Zd

∞∑
n=b‖x+z‖2−εc+1

n−d/2−1P(N ≥ n)

≤ c4

∞∑
n=b‖x+z‖2−εc+1

n−d/2−1 + c4〈N〉
∑

z∈Zd\{0}

∞∑
n=b‖x+z‖2−εc+1

n−d/2−1

by using Markov’s inequality in the last step, and c4 ∈ (0,∞). Lemma 3.2.15
then implies

∑
z∈Zd

∞∑
n=b‖x+z‖2−εc+1

|p̄n(x + zL)− p̄n+1(x + zL)|P(N ≥ n)

≤ c5b‖x‖2−εc−d/2 + c6〈N〉
∑

z∈Zd\{0}

(
b‖x + zL‖2−εc

)−d/2−1

≤ c5‖x‖−d+dε/2 + c6〈N〉
∑

z∈Zd\{0}

(
b‖x + zL‖2−εc

)−d/2−1

where c5, c6 ∈ (0,∞).

30



CHAPTER 3. FSS ON HYPERCUBIC LATTICES WITH PBC

From Eq. (3.39), it follows that ‖x+zL‖2−ε ≥
(
L/2

)2−ε‖z‖2−ε whenever ε ∈ (0, 2).
Thus

b‖x + zL‖2−εc ≥ b
(
L/2)2−ε‖z‖2−εc ≥

(
L/2

)2−ε‖z‖2−ε
[
1−

(
L/2

)−(2−ε)‖z‖−(2−ε)
]

.

Since ‖z‖ ≥ 1 when z 6= 0, under the assumption L ≥ 3, we have

L‖z‖/2 ≥ 3/2

⇒
(
L‖z‖/2

)−(2−ε) ≤
(
2/3
)2−ε

⇒
[
1−

(
L‖z‖/2

)−(2−ε)
]
≥ 1−

(
2/ε
)2−ε

> 0 ∀ ε ∈ (0, 2)

⇒ b‖x + zL‖2−εc ≥ L2−ε‖z‖2−ε
[(

1/2
)2−ε −

(
2/3
)2−ε

]
⇒ b‖x + zL‖2−εc−d/2−1 ≤ L−d−2+ε(1+d/2)

[(
1/2
)3−ε −

(
2/3
)2−ε

]−d/2−1

‖z‖−d−2+ε(1+d/2)

It follows that

∑
z∈Zd

∞∑
n=b‖x+z‖2−εc+1

|p̄n(x + zL)− p̄n+1(x + zL)|P(N ≥ n)

≤ c5‖x‖−d+dε/2 + c7〈N〉L−d−2+ε(1+d/2)
∑

z∈Zd\{0}

‖z‖−d−2+ε(1+d/2)

Lemma 3.2.12 implies that the series converges provided

2− ε(1 + d/2) > 0⇒ 2 > ε(1 + d/2)⇒ ε <
2

1 + d/2

So taking ε ∈
(
0, 2

1+d/2

)
we have

∑
z∈Zd

∞∑
n=b‖x+z‖2−εc+1

|p̄n(x + zL)− p̄n+1(x + zL)|P(N ≥ n)

≤ c5‖x‖−d+dε/2 + c8〈N〉L−d−2+ε(1+d/2) (3.42)
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Combining Eq. (3.40) with Eqs. (3.41) and (3.42) and using Lemma 3.2.18, then
shows

|E(x, L)| ≤ a1‖x‖−d+dε/2 + a2
〈N〉

Ld+2−ε(1+d/2)

for any ε ∈
(
0, 2

1+d/2

)
, where a1, a2 ∈ (0,∞) may depend on ε and d. Fixing a

choice of ε ∈
(
0, 2

1+d/2

)
, it then follows that for any ε1 ≥ dε

2
and ε2 ≥ ε

(
1 + d

2

)
|E(x, L)| ≤ c1

‖x‖d−ε + c2
〈N〉

Ld+2−ε2

Finally, we consider the term A(x, L), which satisfies

|A(x, L)| ≤
∑
z∈Zd

∞∑
n=1

|pn(x + zL)− p̄n(x + zL)|P(N ≥ n)1(n↔ x + zL)

=
∞∑
n=1

|pn(x)− p̄n(x)|P(N ≥ n)1(n↔ x) (3.43)

+
∑

z∈Zd\{0}

∞∑
n=1

|pn(x + zL)− p̄n(x + zL)|P(N ≥ n)1(n↔ x + zL) .

We bound the two terms in the RHS of (3.43) separately. For the first term,
using Lemma 3.2.11 with α = 2− 2ε2/d and ε2 ∈ (0, d) leads to

∞∑
n=1

|pn(x)− p̄n(x)|P(N ≥ n)1(n↔ x) ≤ c‖x‖−d+ε2 . (3.44)

with c ∈ (0,∞).

For the second term, we split the n sum into two parts. If n ≤ ‖x+ zL‖2−ε1 with
ε1 ∈ (0, 2), then Lemma 3.2.6 implies that there exist β, c1 ∈ (0,∞) such that

pn(x + zL) ≤ P
(

max
0≤i≤n

|Si| ≥ ‖x + zL‖
)
≤ c1e−β(‖x+zL‖/

√
n)2 ≤ c1e−β‖x+zL‖ε1 . (3.45)

Furthermore, we have p̄n(x+zL) ≤ c2e
−‖x+zL‖ε1d/2 from Eq. (3.10) where c2 ∈ (0,∞).
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So,

∑
z∈Zd\{0}

b‖x+zL‖2−ε1c∑
n=1

|pn(x + zL)− p̄n(x + zL)|P(N ≥ n)

≤
∑

z∈Zd\{0}

b‖x+zL‖2−ε1c∑
n=1

[pn(x + zL) + p̄n(x + zL)]

≤
∑

z∈Zd\{0}

b‖x+zL‖2−ε1c∑
n=1

c3e
−β′‖x+zL‖ε1

≤
∑

z∈Zd\{0}

c3‖x + zL‖2−ε1e−β
′‖x+zL‖ε1

=
∑

z∈Zd\{0}

c3

(
‖x + zL‖2−ε1e−

β′
2
‖x+zL‖ε1

)
e−

β′
2
‖x+zL‖ε1

≤
∑

z∈Zd\{0}

c4e
−β
′
2
‖x+zL‖ε1

≤
∑

z∈Zd\{0}

c5e
−β
′
2
‖Lz/2‖ε1

≤ c6 exp

(
−β′Lε1
2ε1+1

)
(3.46)

where c3, c4, c5, c6 ∈ (0∞), and β′ = min{β, d/2}. The third last inequality follows by
Lemma 3.2.18, while the last inequality follows by Lemma 3.2.20.

We now consider the region n > ‖x + zL‖2−ε1 . Using the Markov inequality leads to

∑
z∈Zd\{0}

∞∑
n=b‖x+zL‖2−ε1c+1

|pn(x + zL)− p̄n(x + zL)|P(N ≥ n)1(n↔ x + zL)

≤
∑

z∈Zd\{0}

∞∑
n=b‖x+zL‖2−ε1c+1

|pn(x + zL)− p̄n(x + zL)|〈N 〉
n

1(n↔ x + zL)

≤ 〈N〉
∑

z∈Zd\{0}

∞∑
n=b‖x+zL‖2−ε1c+1

c7

nd/2+1

1

n

≤ 〈N〉
∑

z∈Zd\{0}

c8‖x + zL‖−d−2+ε1(1+d/2)

=
〈N〉

Ld+2−ε1(1+d/2)

∑
z∈Zd\{0}

c9

‖x/L+ z‖d+2−ε1(1+d/2)
(3.47)
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where the second inequality uses Lemma 3.2.4, the penultimate step uses Lemma 3.2.15,
and c7, c8, c9 ∈ (0,∞). Using Eq. (3.39) and Lemma 3.2.12 leads to

∑
z∈Zd\{0}

∞∑
n=‖x+zL‖2−ε1

|pn(x + zL)− p̄n(x + zL)|P(N ≥ n)1(n↔ x + zL)

≤ c9〈N〉
Ld+2−ε1(1+d/2)

∑
z∈Zd\{0}

1

‖z‖d+2−ε1(1+d/2)

≤ c10〈N〉
Ld+2−ε1(1+d/2)

(3.48)

where c9, c10 ∈ (0,∞).

Combining Eqs. (3.44), (3.46) and (3.48) leads to

|A(x, L)| ≤ a1‖x‖−d+ε2 + a2
〈N〉

Ld+2−ε1(1+d/2)
(3.49)

with a1, a2 ∈ (0,∞).

3.2.4 Lemmas

Lemma 3.2.4. Consider a simple random walk (St)t∈N on Zd starting at the origin.
For d ≥ 3, there exists c ∈ R+ such that for all n ∈ N\{0} and x ∈ Zd,

|pn(x)− p̄n(x)|1(n↔ x) ≤ c

n(d+2)/2
.

Proof. See [51, Theorem 1.2.1].

Lemma 3.2.5. Let b > 0. Then as r →∞,

∞∑
n=1

∣∣∣∣∣n−be−r/n −
∫ n+1/2

n−1/2

t−be−r/tdt

∣∣∣∣∣ = O(r−1−b) .

Proof. This lemma was extracted from the proof in [52, Lemma 4.3.2].

Lemma 3.2.6. Consider a simple random walk (St)t∈N on Zd starting at the origin.
There exist β, c ∈ R+ such that for all s, n ∈ R+,

P
(

max
0≤j≤n

|Sj| ≥ s
√
n
)
≤ ce−βs

2

(3.50)

Proof. See [52, Proposition 2.1.2].
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Lemma 3.2.7. If c > 0 then√
π/c− 1 ≤

∑
z∈Z

e−cz
2 ≤

√
π/c+ 1

Proof. Since e−cz
2 ≤ e−c(t−1/2)2 for t ∈ [z − 1/2, z + 1/2] and z ∈ N\{0}, we have

e−cz
2

=

∫ z+1/2

z−1/2

e−cz
2

dt ≤
∫ z+1/2

z−1/2

e−c(t−1/2)2dt .

Similarly, for all z ∈ N,

e−cz
2 ≥

∫ z+1/2

z−1/2

e−c(t+1/2)2dt .

For the upper bound, we have

∞∑
z=1

e−cz
2 ≤

∞∑
z=1

∫ z+1/2

z−1/2

e−c(t−1/2)2dt =

∫ ∞
1/2

e−c(t−1/2)2dt =
1√
c

∫ ∞
0

e−s
2

ds =
1

2

√
π/c

Thus, the upper bound of this lemma follows since

∑
z∈Z

e−cz
2

= 2
∞∑
z=1

e−cz
2

+ 1 ≤
√
π/c+ 1

Similarly, for the lower bound, we first have

∞∑
z=0

e−cz
2 ≥

∞∑
z=0

∫ z+1/2

z−1/2

e−c(t+1/2)2dt =
1√
c

∫ ∞
0

e−s
2

ds =
1

2

√
π/c

Then, ∑
z∈Z

e−cz
2

= 2
∞∑
z=0

e−cz
2 − 1 ≥

√
π/c− 1

Lemma 3.2.8. Let c, L ∈ R+, and −L/2 ≤ x ≤ L/2. Then

e−cx
2 ≤

∑
z∈Z

e−c(x+zL)2 ≤ e−cx
2

(
1 +

∑
z∈Z

e−cz
2L2/2

)

Proof. Since
∑

z∈Z e−c(x+zL)2 is an even function of x, it suffices to consider 0 ≤ x ≤
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L/2. We have

∑
z∈Z

e−c(x+zL)2 = e−cx
2

+
∑

z∈Z\{0}

e−c(x+zL)2 = e−cx
2

1 +
∑

z∈Z\{0}

e−c(2zxL+z2L2)


The lower bound then follows. For the upper bound, since∑

z∈Z\{0}

e−c(2zxL+z2L2)

=
∑
z∈Z+

e−c(2zxL+z2L2) +
∑
z∈Z−

e−c(2zxL+z2L2)

≤
∑
z∈Z+

e−cz
2L2

+
∑
z∈Z−

e−c(z
2+z)L2

=
∑
z∈Z+

e−cz
2L2

+ 1 +
∑

z∈Z−\{−1}

e−c(z
2+z)L2

≤
∑
z∈Z+

e−cz
2L2/2 + 1 +

∑
z∈Z−\{−1}

e−cz
2L2/2

≤
∑
z∈Z

e−cz
2L2/2

the upper bound then follows.

Lemma 3.2.9. Let c, L ∈ R+, and −L ≤ x ≤ L. Then,

− 1 +
∑
z∈Z

e−cz
2L2 ≤

∑
z∈Z

e−c(x+zL)2 ≤ 1 +
∑
z∈Z

e−cz
2L2

Proof. Since
∑

z∈Z e−c(x+zL)2 is an even function of x, it suffices to consider 0 ≤ x ≤ L.
For the upper bound,∑

z∈Z

e−c(x+zL)2 ≤
∑
z∈Z+

e−cz
2L2

+ e−cx
2

+
∑
z∈Z−

e−c(z+1)2L2

≤
∑
z∈Z+

e−cz
2L2

+ 1 +
∑
z∈Z−

e−cz
2L2

+ 1

= 1 +
∑
z∈Z

e−cz
2L2
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For the lower bound,∑
z∈Z

e−c(x+zL)2 ≥
∑
z∈Z+

e−c(z+1)2L2

+ e−cL
2

+
∑
z∈Z−

e−cz
2L2

=
∑
z∈Z+

e−cz
2L2

+
∑
z∈Z−

e−cz
2L2

= −1 +
∑
z∈Z

e−cz
2L2

Lemma 3.2.10. Let b > 1, β > 0 and a ∈ N\{0}. As r →∞,

a∑
n=1

n−be−βr/n = β1−br1−b
∫ ∞

2βr/(2a+1)

sb−2e−sds+O(r−1−b) ,

Proof. We note that

a∑
n=1

n−be−βr/n =

∫ a+1/2

0

t−be−βr/tdt−
∫ 1/2

0

t−be−βr/tdt+

a∑
n=1

[
n−be−βr/n −

∫ n+1/2

n−1/2

t−be−βr/tdt

]
. (3.51)

The second term in the RHS of (3.51) is O(e−2rβ) as r → ∞. The third term is
O(r−1−b), from Lemma 3.2.5. But a simple change of variables shows the first term
satisfies ∫ a+1/2

0

t−be−βr/tdt = β1−br1−b
∫ ∞

2βr/(2a+1)

sb−2e−sds . (3.52)

Lemma 3.2.11. Consider a simple random walk (St)t∈N on Zd starting at the origin.
For any α ∈ (0, 2) and d ≥ 3,

∞∑
n=1

|pn(x)− p̄n(x)|1(n↔ x) ≤ c‖x‖−αd/2 , (3.53)

with c ∈ (0,∞).

Proof. If n ≤ ‖x‖α with 0 < α < 2, it is immediate that p̄n(x) ≤
(
d

2π

)d/2
e−

d
2
‖x‖2−α ,
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and moreover we have

pn(x) ≤ P
(

max
0≤i≤n

|Si| ≥ ‖x‖
)
≤ c1e−β(‖x‖/

√
n)2 ≤ c1e−β‖x‖

2−α
,

where c1 ∈ (0,∞), and the last inequality follows from Lemma 3.2.6 with β ∈ (0,∞).
So, if n ≤ ‖x‖α, then by Lemma 3.2.18

b‖x‖αc∑
n=1

|pn(x)− p̄n(x)| ≤ c2e−β
′‖x‖α . (3.54)

with c2 ∈ (0,∞), and β′ < β.

If n > ‖x‖α, then applying Lemma 3.2.4 leads to∑
n>‖x‖α

|pn(x)− p̄n(x)|1(n↔ x) ≤
∑

n>‖x‖α

c3

n(d+2)/2
≤ c4‖x‖−αd/2 . (3.55)

with c3, c4 ∈ (0,∞). The Lemma follows by combining Eqs. (3.54) and (3.55).

Lemma 3.2.12. If δ > 0, then ∑
z∈Zd\{0}

1

‖z‖d+δ
<∞ .

Proof. Let ∂Bx = Bx \Bx−1 be the set of vertices on the surface of the d-dimensional
box Bx = [−x, x]d ∩ Zd. Since Bx−1 ⊂ Bx, we have

|∂Bx| = |Bx| − |Bx−1| = (2x+ 1)d − (2x− 1)d ≤ (2x)d

[(
1 +

1

2x

)d
−
(

1− 1

2x

)d]
≤ d

(
2d−1 + 1

)
(2x)d−1 (3.56)

The last step uses Lemma 3.2.16 and Lemma 3.2.17. Then,

∑
z∈Zd\{0}

1

‖z‖d+δ
=
∞∑
x=1

∑
z∈∂Bx

1

‖z‖d+δ
≤

∞∑
x=1

d2d−1
(
2d−1 + 1

)
x−1−δ <∞ . (3.57)

Lemma 3.2.13. Fix γ, λ ∈ R+ and define f : R+ → R via f(x) = x−γe−λ/x. Then
there exists cγ ∈ R+ such that for all x ∈ R+

|f(x)− f(x+ 1)| ≤ cγx
−1−γ .
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Proof. It follows by the triangle inequality that

|f(x)− f(x+ 1)| =
∣∣x−γe−λ/x − (x+ 1)−γe−λ/x + (x+ 1)−γe−λ/x − (x+ 1)−γe−λ/(x+1)

∣∣
≤

∣∣x−γ − (x+ 1)−γ
∣∣ e−λ/x + (x+ 1)−γ

∣∣e−λ/x − e−λ/(x+1)
∣∣

≤ x−γ

∣∣∣∣∣1−
(

1 +
1

x

)−γ∣∣∣∣∣+ x−γ
∣∣e−λ/x − e−λ/(x+1)

∣∣
Lemma 3.2.14 implies that

∣∣e−λ/x − e−λ/(x+1)
∣∣ ≤ 1

x
. Lemma 3.2.16 gives (1+1/x)−γ ≥

1− γ/x . So,
|f(x)− f(x+ 1)| ≤ (1 + γ)x−1−γ . (3.58)

Setting cγ = 1 + γ completes the proof.

Lemma 3.2.14. Let λ ∈ R+. Then, for all x ∈ R+

∣∣e−λ/x − e−λ/(x+1)
∣∣ ≤ 1

x

Proof. Define h : R+ → R via h(x) = e−λ/x, and let x ∈ R+. Since h(x) is differen-
tiable on [x, x + 1], the mean value theorem implies that there exists ξ ∈ (x, x + 1)

such that
h(x+ 1)− h(x) = h′(ξ) =

λ

ξ2
e−λ/ξ

Therefore,

|h(x+ 1)− h(x)| ≤ 1

x

λ

ξ
e−λ/ξ ≤ 1

x

where the last step uses the fact that xe−x ≤ 1 for all x > 0.

Lemma 3.2.15. Let a ∈ N \ {0}. Then, for all γ > 1,

∞∑
n=a

n−γ ≤ (a− 1)1−γ

γ − 1
.

Proof. Fix a positive integer n. Since (t− 1/2)−γ > n−γ for all t ∈ (n− 1/2, n+ 1/2)

39



3.2. RANDOM-LENGTH RANDOM WALK

we have

∞∑
n=a

n−γ =
∞∑
n=a

∫ n+1/2

n−1/2

n−γdt

≤
∞∑
n=a

∫ n+1/2

n−1/2

(t− 1/2)−γdt

≤
∫ ∞
a−1/2

(t− 1/2)−γdt

=
1

γ − 1
(a− 1)1−γ . (3.59)

Lemma 3.2.16. Let α ∈ R. Then, for all x ∈ [0, 1],

1 + c2x ≤ (1 + x)α ≤ 1 + c1x (3.60)

where c1 = max{α, α2α−1} and c2 = min{α, α2α−1}.

Proof. Define f : (−1, 2)→ R by f(x) = (1 + x)α. Since f is differentiable, Taylor’s
theorem implies that for any x ∈ (0, 1] there exists ξ ∈ (0, x) such that

f(x) = f(0) + f ′(ξ)x = 1 + f ′(ξ)x.

Since f ′(x) = α(1+x)α−1 is monotonic, it follows that c2 ≤ f ′(x) ≤ c1 for all x ∈ [0, 1]

where c1 = max{f ′(0), f ′(1)} and c2 = min{f ′(0), f ′(1)}. The lemma follows by noting
that f ′(0) = α and f ′(1) = α2α−1.

Lemma 3.2.17. Let α > 1. Then, for all x ∈ [0, 1],

(1− x)α ≥ 1− αx.

Proof. Define f : [0, 1] → R by f(x) = (1 − x)α. Since f is differentiable, Taylor’s
theorem implies that for any x ∈ (0, 1] there exists ξ ∈ (0, x) such that

f(x) = f(0) + f ′(ξ)x = 1− α(1− ξ)α−1x ≥ 1− αx. (3.61)

Lemma 3.2.18. Let β > 0. For any α, γ ∈ (0,∞), there exists c = c(α, β, γ) ∈ (0,∞)

such that
e−βx

α ≤ cx−γ .
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for all x ≥ 0.

Proof. The case x = 0 is immediate. For x > 0, we define f(x) := xγe−βx
α and the

first derivative is
f ′(x) = xγ−1e−βx

α

(γ − αβxα) . (3.62)

So f ′(x) > 0 if x ∈ (0, ( γ
αβ

)1/α) and f ′(x) < 0 if x ∈ (( γ
αβ

)1/α,∞). The maximum is
at x = γ

αβ
. Choosing c = f(( γ

αβ
)1/α) gives f(x) ≤ c which proves the lemma.

Lemma 3.2.19. Let y ∈ Zd\{0}. For any ε > 0, there exists c(ε, d) ∈ (0,∞) such
that

b‖y‖2−εc∑
n=1

|p̄n(y)− p̄n+1(y)| ≤ c exp
(
− d

8
‖y‖ε

)
Proof. Let M ∈ N and y ∈ Zd. Then

M∑
n=1

|p̄n(y)− p̄n+1(y)|

≤
M∑
n=1

(
p̄n(y) + p̄n+1(y)

)
=

M∑
n=1

(
d

2πn

)d/2
e−
‖y‖2d
2n +

(
d

2π(n+ 1)

)d/2
e−
‖y‖2d
2(n+1)

≤
(
d

2π

)d/2 M∑
n=1

(
e−
‖y‖2d
2n + e−

‖y‖2d
2(n+1)

)

But since n+ 1 ≤ 2n for all n ∈ N, it follows that

M∑
n=1

|p̄n(y)− p̄n+1(y)|

≤ 2
( d

2π

)d/2 M∑
n=1

e−
d‖y‖2
4n

≤ 2
( d

2π

)d/2
Me−

d‖y‖2
4M

= 2
( d

2π

)d/2(
Me−

d‖y‖2
8M

)
e−

d‖y‖2
8M

≤ ce−
d‖y‖2
8M

41



3.2. RANDOM-LENGTH RANDOM WALK

by Lemma 3.2.18 with c ∈ (0,∞).

Now demand y 6= 0 and choose M = b‖y‖2−εc, so that

‖y‖2

M
=

‖y‖2

b‖y‖2−εc ≥
‖y‖2

‖y‖2−ε = ‖y‖ε

and we obtain
b‖y‖2−εc∑
n=1

|p̄n(y)− p̄n+1(y)| ≤ ce−
d‖y‖ε
8M

Lemma 3.2.20. Let d ∈ N and β ≥ 1. For any ε > 0, there exists c(d, ε) ∈ (0,∞)

such that ∑
z∈Zd\{0}

e−β‖z‖
ε ≤ c(d, ε)e−β

Proof. ∑
z∈Zd\{0}

e−β‖z‖
ε

= 2de−β +
∑
z∈Zd
‖z‖>1

e−β‖z‖
ε

≤ 2de−β

[
1 +

1

2d

∑
z∈Zd
‖z‖>1

e−β(‖z‖ε−1)

]

But β(‖z‖ε − 1) ≥ ‖z‖ε − 1 for all z ∈ Zd with ‖z‖ > 1, since β ≥ 1 and
‖z‖ε − 1 > 0, so
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∑
z∈Zd\{0}

e−β‖z‖
ε

≤ 2de−β

[
1 +

1

2d

∑
z∈Zd
‖z‖>1

e−(‖z‖ε−1)

]

≤ 2d

[
1 +

∑
z∈Zd
‖z‖>1

e−‖z‖
ε

]
e−β

≤ 2d

(∑
z∈Zd

e−‖z‖
ε

)
e−β

since the series e−‖z‖
ε converges (combining Lemma 3.2.12 and 3.2.18 suffice to estab-

lish this), we have

∑
z∈Zd
‖z‖>1

e−β‖z‖
ε ≤ c(d, ε)e−β (3.63)

with c(d, ε) ∈ (0,∞).

3.3 SAW and Ising model at criticality

We now focus on the FSS behaviour of the two-point functions and susceptibility of
the SAW and Ising models at the infinite-volume critical point zc. Our main results
in this section can be summarized as follows:

• We argue that the two-point functions of the SAW and Ising model exhibit the
scaling behaviour in Eq. (3.1) with µ = d/2. We numerically confirm that the
Green’s function of a RLLERW with mean walk length Ld/2 exhibits the same
FSS behaviour.

• We study unwrapped two-point functions for the RLLERW and SAW, defined
in Eq. (2.12). In contrast to the two-point functions on the Euclidean scale,
the unwrapped two-point function accounts for windings on the torus. We
numerically show that the unwrapped two-point functions for systems with
PBC display standard mean-field behaviour, in agreement with the (Euclidean)
two-point functions on the infinite-lattice.
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3.3.1 Two-point functions and susceptibility

On the complete graphKn at criticality, it is rigorously established [47] that 〈NSAW〉 �
n1/2. Therefore, it is natural to expect the critical PBC behaviour 〈NSAW〉 � Ld/2 for
d > dc. Figure 3.1 shows the scaling of 〈NSAW〉 on five-dimensional tori at criticality.
Our fit leads to the exponent value 2.50(1) by discarding L < 41, in agreement with

〈N〉 � Ld/2. (3.64)

We now numerically verify that Eq. (3.1) with µ = d/2 correctly predicts the be-
haviour of the two-point functions of the SAW and Ising models. Figure 3.2 (a) shows
gSAW,Ising(x) on five-dimensional toroidal grids. At moderate values of x, the two-point
functions exhibit the standard infinite-lattice asymptotic decay ‖x‖2−d, but then en-
ter a plateau of order Lµ−d which persists to the boundary. Figure 3.2 (b) shows an
appropriately scaled version of the two-point functions of the Ising and SAW models
against the dimensionless variable y := ‖x‖/L(d−µ)/(d−2) with µ = d/2. For small
values of y, one observes a constant region which corresponds to mean-field scaling,
while at larger values the two-point functions exhibit a power-law, in agreement with
the spatially independent background term Lµ−d. The excellent data collapse in both
regions provides strong evidence that the two-point functions exhibit the scaling from
Eq. (3.1) with µ = d/2. Moreover, Figures 3.2 (a) and 3.2 (b) show that the Green’s
function of a RLLERW with mean walk length Ld/2 display the same FSS behaviour
as the critical Ising and SAW two-point functions. We note that our conjectured
critical PBC behaviour of the Ising two-point function is in contrast to [29], and in
agreement with the conjectured scaling in [28, 30].

Finally, we investigated the FSS behaviour of the susceptibility χSAW,Ising. In-
formed by Eq. (3.2), we expect that the susceptibility scales as χSAW,Ising � Ld/2 since
〈NSAW〉 � Ld/2. Fig. 3.1 verifies this prediction for both models. Our fits lead to the
exponent values 2.50(1) for the SAW by discarding L < 41, and 2.51(2) for the Ising
model by discarding L < 21, in agreement with χSAW,Ising � Ld/2. This FSS behaviour
for the Ising susceptibility is in broad agreement with the numerical observations
in [17, 32, 30].

3.3.2 Windings and unwrapped two-point functions

In order to explain the physical mechanism behind the anomalous bulk behaviour
of the two-point functions on hypercubic lattices with periodic boundaries above dc,
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16 32 64 128
L
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〈 N〉 ,χ

≍L5/2〈
N
〉
, SAW

χ, Ising

χ, SAW

Figure 3.1: Critical PBC scaling of the mean walk length 〈NSAW〉 and susceptibility χIsing,SAW in five
dimensions. Our results show that 〈NSAW〉 � Ld/2. In agreement with the prediction from Eq. (3.2),
the susceptibility of the SAW and Ising models displays the scaling χSAW,Ising � Ld/2. To emphasize
the universal scaling, the data for Ising and SAW susceptibility were translated onto a single curve.

it proves useful to investigate geometric quantities such as the average number of
windings 〈W〉.

We first present a heuristic scaling argument which characterizes the proliferation
of windings in the SAW model in terms of the exponent d/dc. Consider a uniformly
random SAW of fixed length N in Zd, with d > dc. The second virial coefficient BN,N

2

provides a measure of the excluded volume between a pair of such SAWs, and is
believed to scale like BN,N

2 � N2 (see e.g. [54]). This suggests that in order to wrap
such a walk onto a torus ZdL, without introducing intersections, would require N2 . Ld.
Considering now a variable length ensemble at zc, we expect the mean of NSAW to
be of the order of its maximum, which implies 〈NSAW〉 � Ld/2. Figure 3.1 verifies
this prediction. Furthermore, if one were to take a typical SAW on the torus ZdL, and
unwrap it into Zd, it would have root-mean-square displacement of order 〈WSAW〉L.
But for a uniformly-random fixed-length SAW in Zd with d > dc, the mean-square
displacement scales like the walk length. Combining this with the above observation
shows that 〈WSAW〉 � Ld/dc−1.

We now numerically confirm this predicted FSS behaviour for the average winding
number of SAWs in five and six dimensions, and extend our results to the Ising model
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CHAPTER 3. FSS ON HYPERCUBIC LATTICES WITH PBC

and RLLERW. Fig. 3.3 shows the average winding number against L. In dimensions
below dc, we find that 〈W〉 is bounded as L → ∞. In contrast, we observe that
windings proliferate for d > dc. For d = 5, our fits lead to the exponent value 0.24(3)

for 〈WIsing〉 by discarding L < 9, and 0.27(4) for 〈WSAW〉 by discarding L < 81. We
also studied the average winding number of a RLLERW with mean walk length Ld/2

where our fits lead to the exponent value 0.24(2) by discarding L < 31. For d = 6,
our fits for 〈WSAW〉 lead to the exponent value 0.54(7) by discarding L < 15.

We emphasize that the exponent value d/dc − 1 appeared in a recent rigorous
study on critical bond percolation on high dimensional tori [53]. It was proved there
that, with high probability, large clusters contain long cycles, i.e. cycles with linear
extension L, which wind around the torus at least Ld/dc−1 times.

Finally, we show that the anomalous FSS behaviour of the two-point functions
in Eq. (3.1) can be removed by considering unwrapped two-point functions which
correctly account for the proliferation of windings above dc. Figure 3.4 shows the
unwrapped two-point function of the SAW. Moreover, we plot the unwrapped Green’s
function of a RLLERW with mean walk length Ld/2. We find that both unwrapped
two-point functions display the scaling g(u) � u2−d at distances in the bulk. This
observation is consistent with the scaling behaviour for the RLRW Green’s function
on Zd, established in Theorem 3.2.1.

3.4 SAW and Ising model at pseudo-critical points

Recently, there has been debate [32, 30, 34] concerning FSS behaviour of physical
observables at pseudo-critical points zL with limL→∞ zL = zc. In particular, we in-
vestigate the question of whether it is possible to observe the standard mean-field
scaling χ � L2, as established for FBC at criticality (see Sec. 4.2).

The main results in this section can be summarized as follows:

• We establish the FSS behaviour of the Ising/SAW two-point functions and
susceptibility at various pseudo-critical points; see Eqs. (3.66) and (3.67). In
particular, by contrast to the critical PBC behaviour, we numerically show that
χ � L2 at an appropriate pseudo-critical point.

• We numerically show that the FSS behaviour of the SAW two-point function is
controlled by the corresponding mean walk length. In particular, we numerically
verify that Eq. (3.1) correctly describes the FSS behaviour of the SAW and Ising
two-point functions.
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16 32 64 128 256 512
L

10-1

100

101

102

〈 W〉

SAW, d=2

Ising, d=2

SAW, d=5

Ising, d=5

RLLERW, d=5

SAW, d=6

Figure 3.3: Average winding number, 〈W〉, for Ising and SAW models, and for a RLLERW with mean
walk length Ld/2 on periodic boundaries at criticality. The number of windings is asymptotically
constant in L for d < dc. Above dc, windings proliferate with increasing L. To emphasize the universal
scaling, the data for Ising, SAW and RLLERW were translated onto a single curve for both d = 2
and d = 5.
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Figure 3.4: Unwrapped critical two-point function of SAW, and unwrapped Green’s function of
a RLLERW with mean walk length Ld/2 on five-dimensional lattices with periodic boundaries.
In agreement with the well-known behaviour of the (standard Euclidean) two-point functions on
the infinite-lattice, these unwrapped two-point functions display the standard mean-field scaling
g(u) � u2−d on the torus. For clarity, the data for RLLERW were translated downwards.
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3.4. SAW AND ISING MODEL AT PSEUDO-CRITICAL POINTS

We first investigate the scaling behaviour of the mean walk length of a SAW
at zL = zc − aL−λ where a ∈ R+ is a constant, and λ ∈ R+ denotes the speed of
convergence to zc. We choose a > 0 (i.e. shifting to high temperature), since we aim
to establish a pseudo-critical point where we observe 〈NSAW〉 � L2 instead of the
larger critical mean walk length scaling 〈NSAW〉 � Ld/2. Informed by Eq. (3.2), we
expect that the susceptibility of a SAW with mean walk length 〈NSAW〉 � L2 scales
as χSAW � L2 which we numerically confirm below. We note that our simulations
are performed at the fixed value a = 0.1. However, as suggested by several numerical
tests, our results in this section hold regardless of the specific choice of a.

Figure 3.7 (a) shows the scaling of the mean walk length of a SAW for λ =

1, 3/2 , 2 , 5/2 , 3. Our fits lead to the exponent values 0.998(2) for λ = 1 by discarding
L < 81, 1.499(2) for λ = 3/2 by discarding L < 41, 2.01(1) for λ = 2 by discarding
L < 31, 2.46(3) for λ = 5/2 by discarding L < 41, and 2.51(3) for λ = 3 by discarding
L < 41. From these observations, we conjecture the FSS behaviour

〈NSAW〉 �

Ld/2, λ ≥ d/2 ,

Lλ, λ < d/2 .
(3.65)

We now investigate the two-point functions and susceptibility of the Ising and
SAW models at zL. Informed by (3.1) and (3.65), we conjecture the following piecewise
asymptotics:

• If λ ≥ d/2:

g(x) �

‖x‖2−d, ‖x‖ ≤ c1L
d/[2(d−2)],

L−d/2, ‖x‖ ≥ c1L
d/[2(d−2)]

(3.66)

where c1 ∈ R+.

• If λ < d/2:

g(x) �

‖x‖2−d, ‖x‖ ≤ c2L
(d−λ)/(d−2),

Lλ−d, ‖x‖ ≥ c2L
(d−λ)/(d−2)

(3.67)

where c2 ∈ R+.

This implies the following scaling for the susceptibility:

• If λ ≥ d/2:
χ � Ld/2 (3.68)
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CHAPTER 3. FSS ON HYPERCUBIC LATTICES WITH PBC

• If λ < d/2:
χ � Lλ (3.69)

We now numerically confirm these conjectures. Figures 3.5 and 3.6 show the FSS
behaviour of the two-point functions of the Ising and SAW models for λ = 1, 3/2, 2.
The corresponding FSS behaviour of the two-point functions is in excellent agreement
with Eq. (3.67). For λ = 1, 3/2, Fig. 3.5 verifies the predicted absence of a plateau for
the SAW and Ising two-point functions. For λ = 2, the rescaled version of the two-point
functions in Fig. 3.6 (b) show an excellent data collapse onto the ansatz in Eq. (3.67)
with λ = 2, corresponding to standard mean-field behaviour. Furthermore, Figs. 3.5
and 3.6 show the RLLERW Green’s function with mean walk lengths Lµ where
µ = 1, 3/2, 2. Each case displays the same FSS behaviour as the corresponding two-
point functions of the Ising and SAW models. We note that our numerical simulations
suggest that the Ising and SAW two-point functions display the critical FSS behaviour
from Fig. 3.2, when λ ≥ d/2. I.e. the pseudo-critical point zL lies in the critical scaling
window in this case.

We now turn to the FSS behaviour of the susceptibility. Figure 3.7 (b) shows
the scaling behaviour of the susceptibility for λ = 1, 3/2, 2, 5/2, 3. Our fits for the
Ising susceptibility lead to exponent estimates 1.00(1) for λ = 1 by discarding L < 41,
1.51(2) for λ = 3/2 by discarding L < 31, 2.05(7) for λ = 2 by discarding L < 31,
2.5(2) for λ = 5/2 by discarding L < 31, and 2.5(2) for λ = 3 by discarding L < 31.
For SAW, our fits lead to the exponent value 1.005(6) for λ = 1 by discarding L < 61,
1.503(5) for λ = 3/2 by discarding L < 61, 2.00(1) for λ = 2 by discarding L < 31,
2.46(5) for λ = 5/2 by discarding L < 31, and 2.48(5) for λ = 3 by discarding L < 31.
These observations are in agreement with Eqs. (3.69) and (3.68).
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CHAPTER 4
FSS on hypercubic lattices with free,

reflective and holding boundaries

With free boundary conditions (FBC), the possible existence of the FSS behaviour
χ � Ld/2 at appropriate pseudo-critical points is the subject of ongoing debate [32,
30, 34]. Specifically, denoting by TL the temperature which maximizes the (modulus)
susceptibility χ̄(T, L) := Var(|∑i si|)1 on a box with linear size L, it was observed
numerically in [32] that χ̄(TL, L) scales as Ld/2, as observed at criticality for periodic
systems. The results in [30] are in agreement with this observation, however, the
more recent work [34] refuted this claim, and numerically observed only the standard
mean-field scaling L2.

Our main results can be summarized as follows:

• We rigorously establish that Eq. (3.1) also correctly describes the FSS behaviour
of the Green’s function of a RLRW on hypercubic lattices with holding and
reflective boundaries.

• Informed by this observation, we argue that one can observe χ � Ld/2 at a
pseudo-critical point where the mean walk length scales as Ld/2. We support
this claim by establishing an appropriate pseudo-critical point for the Ising
model where the susceptibility exhibits this FSS behaviour.

1Both χ̄ and χ = V ar(
∑
i si) are expected to display the same FSS behaviour, supported by

numerical observations in [34]
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4.1. RLRW ON A BOX WITH RBC AND HBC
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Figure 4.1: Illustration of the mapping from a SRW on a cycle with linear size 2l (l is an even integer)
to a SRW on a path graph with reflective boundary conditions. The lines illustrate the equivalences
0 ≡ l, 1 ≡ l − 1 etc.

4.1 RLRW on boxes with reflective and holding bound-
ary conditions

We rigorously study a random-length random walk on a box with reflective and
holding boundary conditions boundary conditions, defined in Sec. 2.1. The minor
difference compared with free boundaries, which we impose for the Ising and SAW
models in Secs. 4.2 and 4.3, is that the transition probabilities on the boundary of
the box are not uniform in the number of adjacent vertices2.

To study RLRW on boxes with reflective or holding boundary conditions, we
use the rigorous results on the torus from the last chapter, and define an appropriate
mapping between the RLRW behaviour on the torus and the box with reflective and
holding boundary conditions. We rigorously establish this mapping in Lemma 4.1.8.
As an illustration, we present the main idea of the mapping in Figs. 4.1 and 4.2 for a
RLRW on the cycle Z2l (i.e. for d = 1). We emphasize that if l is chosen to be odd,
then the torus maps to a box with holding boundary conditions, while if l is chosen
to be even, then the torus maps to a box with reflective boundaries.

2A numerical study of a RLRW on hypercubic lattices with reflective and holding boundaries
strongly suggests that its Green’s function displays the same FSS behaviour as on free boundaries
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Figure 4.2: Illustration of the mapping from a SRW on a cycle with linear size 2l (l is an odd integer)
to a SRW on a path graph with holding boundary conditions. The lines illustrate the equivalences
0 ≡ l, 1 ≡ l − 1 etc.

4.1.1 Preliminaries

Definition 4.1.1. Let (Xt)t∈N be a Markov chain on a finite set S with transition
matrix P . Let N be an N-valued random variable with 〈N〉 <∞ and tail distribution
F (t). The corresponding Green’s function is

G(x, y) :=
∞∑
t=0

P t(x, y)F (t) , ∀ x, y ∈ S .

Definition 4.1.2. Let (Xt)t∈N be a Markov chain on a finite set S. Let ≡ denote an
equivalence relation on S. For each x ∈ S, define its equivalence class by [x] := {x′ ∈
S : x′ ≡ x}. Moreover, define S# := {[x] : x ∈ S}.
Lemma 4.1.3. Let (Xt)t∈N be a Markov chain on a finite set S with transition matrix
P . If P (x, [y]) = P (x′, [y]) for all x′ ≡ x, then ([Xt])t∈N is a Markov chain on S#

with transition matrix P#.

Proof. This is proved in [55, Lemma 2.5]; see also [56].

Lemma 4.1.4. Let (Xt)t∈N be a Markov Chain on a finite set S with transition
matrix P satisfying

P (x, [y]) = P (x′, [y])

for all x′ ≡ x. Let G and G# be the Green’s functions of (Xt)t∈N and ([Xt])t∈N,
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respectively. Then
G#([x], [y]) =

∑
y′∈[y]

G(x′, y′) , ∀ x′ ∈ [x]

Proof. The key step is to prove (P#)t([x], [y]) = P t(x′, [y]) for all integers t ≥ 0 and
all x′ ∈ [x]. The t = 0 case is immediate. Assume the statement holds for t ≥ 0. Then,
if x′ ∈ [x] (

P#
)t+1

([x], [y]) =
∑

[z]∈S#

(
P#
)t

([x], [z])P#([z], [y])

=
∑

[z]∈S#

P t(x′, [z])P#([z], [y])

=
∑

[z]∈S#

∑
z′∈[z]

P t(x′, z′)P#([z], [y])

=
∑

[z]∈S#

∑
z′∈[z]

P t(x′, z′)P (z′, [y])

=
∑
y′∈[y]

∑
z′∈S

P t(x′, z′)P (z′, y′)

=
∑
y′∈[y]

P t+1(x′, y′)

= P t+1(x′, [y]) .

The initial claim then follows by induction. Therefore if x′ ∈ [x], it follows that

G#([x], [y]) =
∞∑
t=0

P t(x′, [y])F (t) =
∑
y′∈[y]

∞∑
t=0

P t(x′, y′)F (t) =
∑
y′∈[y]

G(x′, y′) . (4.1)

4.1.2 RLRW Green’s function on a box with reflective and
holding boundary conditions

Definition 4.1.5. Let l ∈ N\{0}, and define Z2l := {1 − l, 2 − l, · · · , l}. For each
x ∈ Z2l, define the equivalence class [x] := {x, l − x}. For each x,y ∈ Zd2l, define
x ≡ y if and only if yi ∈ [xi] for all i ∈ {1, ..., d}.
Remark. Note that the vertex set of Zd2l can be taken to be the box B̃l, which is
endowed with the Euclidean norm ‖ · ‖, as defined in Sec. 2.1.
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Theorem 4.1.6 (RLRW Green’s function on the box with RBC and HBC). Let b ∈ N.
Consider a RLRW on a d ≥ 3 dimensional box Bb with either reflective or holding
boundary conditions. If 〈N〉 � bµ with µ > 2, then there exists c1, c2, c3, c4 ∈ R+ such
that the Green’s function satisfies:

c1‖x‖2−d + c2b
µ−d ≤ GHBC,RBC(x) ≤ c3‖x‖2−d + c4b

µ−d (4.2)

Remark. This FSS behaviour coincides with Eq. (3.1) which we established on a box
with periodic boundaries in Corollary 3.24.

Proof. Let b ∈ N, and consider Bb and B̃b, defined in Sec. 2.1. Let PHBC,b and PRBC,b

denote the transition matrices of a SRW on Bb with holding and reflecting boundary
conditions, respectively. Let PPBC,b denote the transition matrix of a SRW on B̃b with
periodic boundary conditions. Let x,y ∈ Bb. Then by Lemma 4.1.8 it follows that

PHBC,b = P#
PBC,2b+1([x], [y]) (4.3)

PRBC,b = P#
PBC,2b([x], [y]) (4.4)

But by Lemma 4.1.7 we know that for any l ∈ N PPBC,l satisfies the conditions of
Lemma 4.1.4. We thus have

G#([0], [x]) =
∑
x′∈[x]

GPBC(0,x′) = GPBC(0,x) +
∑

x′∈[x]\x

GPBC(0,x′) .

Let l be 2b or 2b + 1, and let x ∈ Bb ⊂ Bl. Consider the equivalence relation on Bl
given in Definition 4.1.5. For all x′ ∈ [x]\x, there must exist an i ∈ {1, ..., d} such
that x′i = l − xi. So,

‖x′‖ ≥ |l − xi| ≥ l/2 .

But since x′ ∈ B̃b, we also have ‖x′‖ ≤
√
dl. From Corollary 3.24 we know that if

〈N〉 � lµ with µ > 2, then

α1‖x′‖2−d + α2l
µ−d ≤ GPBC(0,x′) ≤ β1‖x′‖2−d + β2l

µ−d , (4.5)

where α1, α2, β1, β2 ∈ R+. Combining these observations, we find

α̃1l
2−d + α̃2l

µ−d ≤
∑

x′∈[x]\x

GPBC(0,x′) ≤ β̃1l
2−d + β̃2l

µ−d . (4.6)
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for α̃1, α̃2, β̃1, β̃2 ∈ R+. It then follows that

c1‖x‖2−d + c2l
µ−d ≤ G#

PBC,l([0], [x]) ≤ c3‖x‖2−d + c4l
µ−d. (4.7)

Combining this with Eqs. (4.3) and (4.4) yields the stated result.

Lemma 4.1.7. Let P be the transition matrix of the simple random walk on Zd2l. If
x,y ∈ Zd2l, then P (x, [y]) = P (x′, [y]) for all x′ ≡ x.

Proof. Let x,y ∈ Zd2l and let x′ ≡ x. Then

P (x, [y]) =
∑
y′∈[y]

P (x,y) =
1

2d
|N(x) ∩ [y]| (4.8)

where N(x) := {y ∈ Zd2l : x ∼ y} is the set of neighbours of x. Define f : N(x)∩[y]→
N(x′) ∩ [y] via

f(x + δek) =

x′ + δek, x′k = xk

x′ − δek, x′k 6= xk
(4.9)

for all x + δek ∈ N(x) ∩ [y].

Let z′ ∈ N(x′) ∩ [y]. Then z′ = x′ + δek for some δ ∈ {−1, 1} and 1 ≤ k ≤ d.
Consider

z =

x + δek, x′k = xk

x− δek, x′k 6= xk
(4.10)

Clearly, z ∈ N(x). Moreover, for all i 6= k we have zi = xi ≡ x′i = z′i ≡ yi since
z′ ∈ [y], so that zi ≡ yi. Furthermore, if xk = x′k then zk = xk + δ = x′k + δ = z′k ≡ yk,
while if xk 6= x′k then zk = xk − δ = (l− x′k)− δ = l− (x′k + δ) ≡ x′k + δ = z′k ≡ yk, so
that in either case zk ≡ yk. It then follows that z ≡ y and so z ∈ N(x) ∩ [y]. But

f(z) =

f(x + δek), x′k = xk

f(x− δek), x′k 6= xk
(4.11)

= x′ + δek

= z′

Since this holds for all z′ ∈ N(x) ∩ [y], f is surjective.

Now suppose z, z′ ∈ N(x) ∩ [y] satisfy f(z) = f(z′). Suppose z = x + δek, so
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that

(
f(z)

)
k

=

x′k + δ, x′k = xk

x′k − δ, x′k 6= xk
(4.12)

If z′ = x + δ′ek′ with k′ 6= k, then
(
f(z′)

)
k

= x′k 6= x′k ± δ. So f(z) = f(z′) ⇒
k′ = k, and it follows that

(
f(z′)

)
k

=

x′k + δ′, x′k = xk

x′k − δ′, x′k 6= xk
(4.13)

and
(
f(z)

)
k

=
(
f(z′)

)
k
implies δ = δ′. Therefore, z′ = x + δek = z, which implies f

is injective. We conclude that since f bijective, |N(x) ∩ [y]| = |N(x′) ∩ [y]|.

Lemma 4.1.8. Let b ∈ N, and let PHBC,b and PRBC,b denote the transition matrices of
a SRW on Bb with holding and reflective boundary conditions, respectively. Let PPBC,b

denote the transition matrix of a SRW on B̃b = (−b, b] ∩ Zd with periodic boundary
conditions. Then

PHBC,b = P#
PBC,2b+1([x], [y])

PRBC,b = P#
PBC,2b([x], [y])

for all x,y ∈ Bb.

Proof. Let l = 2b. According to our definitions, Zd2l coincides with B̃l with addition
in each coordinate interpreted mod 2l. It follows that Bb ⊂ B̃2b = Zd2l. Let S

#
2b denote

the set of equivalence classes on Zd2l corresponding to Definition 4.1.5. Since, by
Lemma 4.1.9, the map Bb → S#

2b defined by x 7→ [x] is a bijection, and since both
PRBC,b and P#

PBC,2b are stochastic, in order to show that PRBC,b = P#
PBC,2b([x], [y]) for

all x,y ∈ Bb, it suffices to consider only pairs (x,y) ∈ B2
b with PRBC,b(x,y) > 0. By

definition, PRBC,b(x,y) > 0 only if y = x+δek for some δ ∈ {−1, 1} and k ∈ {1, ..., d}.
Let l = 2b, and let x ∈ Zd2l with −l/2 ≤ xi ≤ l/2 for all i ∈ {1, .., d}. Suppose

y = x + δek for δ ∈ {−1, 1} and k ∈ {1, ..., d}. Clearly, y ∈ N(x) ∩ [y]. Suppose
y′ ∈ [y]. Then either y′k = yk = xk+δ or y′k = l−yk = l−(xk+δ). Clearly xk+δ 6= xk,
and l − (xk + δ) = xk if and only if l − δ = 2xk, but the latter cannot hold when l is
even (since the LHS is odd and the RHS is even). We therefore see that y′k 6= xk. In
order for y′ to be in N(x), it is therefore necessary that y′i = xi for all i 6= k. Defining
ỹ via ỹi = xi and ỹk = l − (xk + δ) we conclude that {y} ⊂ N(x) ∩ [y] ⊂ {y, ỹ}.
Since ỹ ∈ [y] by construction we have
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N(x) ∩ [y] =

{y, ỹ}, ỹ ∈ N(x)

{y}, ỹ /∈ N(x)
(4.14)

But ỹ ∈ N(x) if and only if ỹk = xk + ε for some ε ∈ {−1, 1}. And ỹ 6= y if and
only if y′k 6= yk. So |N(x) ∩ [y]| = 2 if and only if ỹk = xk − δ ⇐⇒ l − (xk + δ) =

xk − δ ⇐⇒ l − xk = xk ⇐⇒ xk ∈ {−l/2, l/2}. It follows that if y = x + δek then

P#
PBC,2b([x], [y]) = PPBC,2b(x, [y]) =

1

2d
|N(x)∩[y]| =

1/(2d), xk 6= ±l/2
1/d, xk = ±l/2

= PRBC,b(x,y)

(4.15)

Now let l = 2b+ 1, and note that Bb ⊂ B̃2b+1 = Zd2l. Let S
#
2b+1 denote the set of

equivalence classes on Zd2l corresponding to Definition 4.1.5. Since, by Lemma 4.1.9,
the map Bb → S#

2b+1 defined by x 7→ [x] is a bijection, and since both PHBC,b and
P#

PBC,2b+1 are stochastic, in order to show that PHBC,b(x,y) = P#
PBC,2b+1([x], [y]) for

all x,y ∈ Bb, it suffices to consider only pairs (x,y) ∈ B2
b with PHBC,b(x,y) > 0. By

definition, PHBC,b(x,y) > 0 only if y = x+δek for some δ ∈ {−1, 1} and k ∈ {1, ..., d}
or if y = x.

Let x ∈ Bb. It is straightforward to show that x + δek ≡ x if and only if

xk = δ(l−1)
2

which implies |N(x) ∩ [x]| =
d∑
i=1

1
(
|xi| = l−1

2

)
where 1(·) denotes the

indicator function, and so

P#
PBC,2b+1([x], [x]) = PPBC(x, [x]) =

1

2d

d∑
i=1

1

(
|xi| =

l − 1

2

)
= PHBC(x,x). (4.16)

Suppose instead that y = x + δek with xk 6= δ(l − 1)/2. Then y 6≡ x and so if
y′ ∈ [y] then y′ 6= x. If y′ ∈ [y] then either y′k = yk = xk + δ or y′k = l − yk.
But xk ∈ {−(l − 3)/2, ..., (l − 3)/2} ⇒ xk + δ ∈ {−(l − 1)/2, ..., (l − 1)/2} and
l − (xk + δ) ∈ {−(l + 1)/2, ..., (l + 1)/2} so l − (xk + δ) 6= xk + δ ⇐⇒ l − yk 6= y′k.
It follows that y′k = yk = xk + δ. Then, since y′k = xk + δ, in order for y′ to be in
N(x) it is necessary that y′i = xi = yi for all i 6= k, so that y′ = y. We have therefore
established that N(x) ∩ [y] = {y} when y = x + δek with xk 6= δ(l − 1)/2, and it
follows that

P#
PBC,2b+1([x], [y]) = PPBC,2b+1(x, [y]) = 1/(2d) = PHBC(x,y). (4.17)
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Lemma 4.1.9. The maps

φ : Bb → S#
2b such that φ(x) = [x] ∀ x ∈ Bb (4.18)

ψ : Bb → S#
2b+1 such that ψ(x) = [x] ∀ x ∈ Bb (4.19)

are bijections.

Proof. Let [x′] ∈ S#
2b. Let l = 2b. If x′ /∈ Bb then there must be indices i1, i2, ..., im

such that x′ij /∈ [−b, b] = [−l/2, l/2]. But, by definition, x′ij ∈ (−l, l] ∩ Z so we must
have x′ij ∈ (−l,−l/2 − 1] ∪ [l/2 + 1, l]. If x′ij ∈ {−l, ...,−l/2 − 1} then l − x′ij ∈
{0,−1, ...,−l/2 + 1}. Defining x so that xi = l− x′i for all i ∈ {i1, ..., im}, and xi = x′i
otherwise, we then have x ∈ Bb and x ≡ x′. It follows that [x] = [x′] and so φ(x) = [x′].
This shows that φ is surjective.

Now suppose x,x′ ∈ Bb and φ(x) = φ(x′) ⇐⇒ [x] = [x′] ⇐⇒ x ≡ x′ ⇐⇒
∀ 1 ≤ i ≤ d we have xi = x′i or xi = l − x′i. If x′i = δl/2 then l − x′i = δl/2 = x′i
so xi = x′i. If x′i ∈ {−l/2 + 1, ..., l/2 − 1} then l − x′i ∈ {−l/2, ..., l/2} and since
xi ∈ {−l/2, ..., l/2} it follows that xi 6= l − x′i, and thus we have xi = x′i. It follows
that x = x′ and so φ is injective, and therefore bijective.

Now let [x′] ∈ S#
2b+1, and let l = 2b + 1. If x′ /∈ Bb then there must be indices

i1, i2, ..., im such that x′ij /∈ [−b, b] = [−(l − 1)/2, (l − 1)/2]. But, by definition, x′ij ∈
(−l, l]∩Z so we must have x′ij ∈ (−l,−l/2− 1]∪ [l/2 + 1, l]. If x′ij ∈ {−l, ...,−l/2− 1}
then l−x′ij ∈ {0,−1, ...,−l/2+1}. Defining x so that xi = l−x′i for all i ∈ {i1, ..., im},
and xi = x′i otherwise, we then have x ∈ Bb and x ≡ x′. It follows that [x] = [x′] and
so ψ(x) = [x′]. This shows that ψ is surjective.

Now suppose x,x′ ∈ Bb and ψ(x) = ψ(x′) ⇐⇒ [x] = [x′] ⇐⇒ x ≡ x′ ⇐⇒
∀ 1 ≤ i ≤ d we have xi = x′i or xi = l− x′i. Since x′i ∈ {−l/2 + 1, ..., l/2− 1} we have
l − x′i /∈ {−l/2 + 1, ..., l/2− 1} and since xi ∈ {−l/2 + 1, ..., l/2− 1} it follows that
xi 6= l−x′i, and thus we have xi = x′i. It follows that x = x′ and so ψ is injective, and
therefore bijective.

4.2 SAW and Ising model at criticality

Figure 4.3 shows the scaling of the mean walk length of a SAW on five-dimensional
hypercubic lattices with free boundaries. Our fits lead to the exponent value 2.00(1)

by discarding L < 125, in agreement with 〈NSAW〉 � L2. Figure 4.4 shows that the
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Figure 4.3: Critical FBC scaling of the mean walk length 〈NSAW〉 and susceptibility χIsing,SAW in five
dimensions. Our numerics show that 〈NSAW〉 � L2. In agreement with the prediction from Eq. (3.2),
the susceptibility of the SAW and Ising models diplays the same FSS behaviour. To emphasize the
universal scaling, the data for Ising and SAW susceptibility were translated onto a single curve.

two-point function of the Ising and SAW models exhibit the standard mean-field
scaling ‖x‖2−d, in agreement with the FSS behaviour of the Green’s function of a
RLRW with mean walk length 〈NRLRW〉 � L2.

Furthermore, we investigated the FSS behaviour of the susceptibility for the SAW
and the Ising model in Fig 4.3. Our fits lead to the exponent value 1.99(1) for χSAW

by discarding L < 125, and 2.01(8) for χIsing by discarding L < 31. These exponent
values are in agreement with the standard mean-field expectation χ � L2 which has
been numerically observed in [31, 33] for the Ising model.

4.3 SAW and Ising model at pseudo-criticality

We numerically demonstrate the universality of Eq. (3.1) by showing that the RLLERW
Green’s function displays the same FSS behaviour as on PBC, if the mean walk length
on free boundaries is chosen to scale in the same way as on periodic boundaries. Fig-
ures 4.5, 4.6, 4.7 show the (rescaled) Green’s function of a RLLERW with mean walk
length Lµ for µ = 3/2, 2, 5/2. The simulations for RLLERW were performed with the
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Figure 4.4: Critical FBC scaling of the two-point functions of the SAW and Ising model on five-
dimensional lattices. Both cases display the standard mean-field behaviour gIsing,SAW(x) � ‖x‖2−d.

conjectured asymptotic distribution on tori3, and we tested our claims with various
other distributions such as the exponential, uniform and geometric distribution.

We now turn to the SAW and Ising models. There has been considerable de-
bate [32, 30, 34] concerning the FSS behaviour of the susceptibility at the pseudo-
critical point zL, defined to be the location of the maximum of the (modulus) suscep-
tibility in a finite box with side length L. It has been numerically established that this
pseudo-critical point has shift exponent λ = 2 [32, 30, 34]. Our RLRW results predict
that we need 〈NSAW〉 � Ld/2 to observe the critical PBC behaviour of the two-point
functions. Since, for FBC, the mean walk length of SAW scales as 〈NSAW〉 � L2 at
criticality, we consider the pseudo-critical point zL = zc− aL−2 with a < 0 where the
average walk length of SAW is larger than at zc.

A simple methodology to determine if it is possible to have χ � Ld/2 at zL is to
first determine a sequence a(L) such that χPBC,zc = χFBC,zc−a(L)L−2 , and then show
that a(L) converges. If such a convergent sequence exists with lima→∞ a(L) = a∞, this
approach forces χzc−a(L)L−2 to scale as Ld/2. The inset of Fig. 4.9 shows the sequence
a(L) in the Ising and SAW models. Even though the system sizes are too small to
extract a decent estimator in the Ising case, we observe that both sequences converge.

3A numerical study suggests that this is the half-normal distribution from Eq. (2.14)
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Figure 4.5: Green’s function of a RLLERWwith mean walk lengthL1.5 on five-dimensional hypercubic
lattices with free boundaries. As predicted by Eq. (3.1), the plateau region is absent.

For SAW, our fits lead to aSAW,∞ = 0.824(2).

Figure 4.8 (a) shows the two-point functions of the Ising and SAW models at
zL. Moreover, Figure 4.8 (b) shows an appropriately scaled version onto the ansatz
from Eq. (3.1) with µ = d/2. We identify three regions. At moderate values of x, the
two-point functions exhibit the standard mean-field scaling ‖x‖2−d, and then enter
a plateau for longer distances in the bulk. At distances close to the boundary, we
observe that the two-point functions decay faster than ‖x‖2−d. Figure 4.8 (b) shows
an excellent data collapse except at distances close to the boundary. This strong
boundary effect may explain the apparent discrepancies [32, 30, 34] in determining
the correct scaling behaviour for free boundaries. Regardless, we conclude from Fig. 4.8
(b) that the anomalous FSS behaviour, observed on periodic boundaries at criticality,
can be observed on free boundaries. We also numerically extracted the exponent value
2.48(6) for 〈NSAW〉 in Fig. 4.9 by discarding L < 101, in agreement with the critical
PBC behaviour.
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Figure 4.6: Appropriately scaled Green’s function of a RLLERW with mean walk length L2 on
five-dimensional hypercubic lattices with free boundaries. The Green’s function displays the FSS
behaviour of Eq. (3.1) with µ = 2.
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five-dimensional hypercubic lattices with free boundaries. The Green’s function displays the FSS
behaviour of Eq. (3.1) with µ = d/2.
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4.3. SAW AND ISING MODEL AT PSEUDO-CRITICALITY
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Figure 4.9: FBC behaviour of the mean walk length 〈NSAW〉 at zL = zc+a(L)L−2 where we observe
〈NSAW〉 � Ld/2. The inset shows the convergent sequence a(L) for the SAW (circles) and the Ising
model (stars).
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CHAPTER 5
Discussion

In this part, we have introduced a random-length random walk model which we
rigorously studied on hypercubic lattices with periodic (see Theorem 3.2.2), and
reflective/holding boundary conditions (see Theorem 4.1.6). We established that
the FSS behaviour of the RLRW Green’s function is controlled by the mean walk
length 〈NRLRW〉. This result holds independently of the boundary conditions imposed.
Informed by this observation, we numerically established the FSS behaviour of 〈NSAW〉
at both critical and pseudo-critical points, and investigated the corresponding FSS
behaviour of the SAW two-point function. Our central result is that if 〈NRLRW〉 is
chosen to scale as 〈NSAW〉, then the FSS behaviour of the SAW two-point function
displays the scaling behaviour from Eq. (3.1). We numerically verified the universality
of our observations by computing the two-point function of the Ising model.

More precisely, these results shed light on the following questions regarding the
FSS behaviour of the Ising model above dc.

• On the complete graph Kn at criticality, it is rigorously established [47] that
〈NSAW〉 � n1/2. We numerically verified that this scaling behaviour correctly
predicts the FSS behaviour on high dimensional tori. Informed by Eq. (3.1), we
numerically confirmed that the critical PBC behaviour of the Ising two-point
function is naturally embedded in Eq. (3.1) for µ = d/2, in agreement with the
conjectures in [28, 30], and in contrast to [29]. Moreover, we established the PBC
behaviour at various pseudo-critical points zL(λ) = zc − aL−λ. In particular, at
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zL(2), we argued that the Ising two-point function displays standard mean-field
behaviour, in contrast to the anomalous PBC behaviour at criticality.

• On five-dimensional boxes with free boundaries, we numerically established that
〈NSAW〉 � L2. Informed by Theorem 3.2.2, we argued that the critical Ising
two-point function displays the predicted scaling behaviour from Eq. (3.1) with
µ = 2. This result implies that the susceptibility scales as L2, in agreement
with the numerical observation in [33]. We also studied the actively debated
FSS behaviour at the pseudo-critical point zL = zc + aL−2. We established that
there exists an a > 0 such that the Ising two-point function displays the same
FSS behaviour as on periodic boundaries at criticality. This result is consistent
with the numerical observations in [32, 30].

Finally, we present some open points for discussion and possible future work.

• We established that the essential reason for anomalous finite-size scaling on tori
above dc is manifested in the proliferation of windings, absent for dimensions
below dc. We investigated an alternative two-point function, the unwrapped
two-point function, which accounts for these windings. We numerically verified
for the SAW and RLLERW that these unwrapped versions display the same
scaling limit as the corresponding two-point functions on the infinite-lattice.
It would be interesting to define an appropriate candidate for the unwrapped
length in the Ising model.

• For the Ising and SAW models with periodic boundaries, we studied the FSS
behaviour of physical observables at pseudo-critical fugacities z(L) = zc− aL−λ.
For free boundaries, we investigated the FSS behaviour at z(L) = zc + aL−2. In
both cases we chose a ∈ R+. It would be of interest to study the FSS behaviour
at z(L) = zc + aL−λ for PBC. For FBC, it would be interesting to investigate
both the FSS behaviour at z(L) = zc + aL−λ and z(L) = zc − aL−λ for various
λ. We note that a recent study [34] investigated the FBC behaviour of χ and χ̄
at various pseudo-critical points in the Ising model.
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CHAPTER 1
Introduction

Markov-chain Monte Carlo (MCMC) algorithms are a powerful and widely-used tool
in various areas of physics and other disciplines, such as in machine learning [1] and
statistics [2]. In many practical applications MCMC algorithms are constructed via
the Metropolis [3] or heat bath update scheme [4]. Such algorithms are necessarily
reversible.

One important example of a Metropolis algorithm is the Prokof’ev-Svistunov
Worm Algorithm (P-S worm algorithm) which has widespread application for both
classical and quantum systems [5, 6]. As opposed to cluster algorithms like the Wolff [7]
or Swendsen-Wang algorithm [8], the updates of the worm algorithm are purely local.
On the simple-cubic lattice with periodic boundaries, it was numerically observed
that the P-S worm algorithm for the zero-field ferromagnetic Ising model outperforms
the Swendsen-Wang algorithm for simulating both the magnetic susceptibility and
the second-moment correlation length [9]. Another numerical work suggested that the
spin-spin correlation function can also be simulated efficiently [10]. Recently, it was
rigorously established [11] that the P-S worm algorithm for the Ising model is rapidly
mixing on any finite graph for the whole temperature range.

In recent years, various irreversible MCMC algorithms have also been studied [13,
14, 12, 16, 17, 15, 18, 19, 20, 21, 22]. Many of these algorithms are based on the lifting
technique introduced in [23]. The general idea of lifting is to enlarge the original state
space and define transition probabilities such that the lifted chain projects down to
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1.1. OUTLINE

the original one. The intuition underlying a potential efficiency improvement is the
reduction of diffusive behavior, compared with the original Markov-chain. Rather
than exploring states via random walk in the reversible chain one introduces directed
flows in the lifted chain to move between relevant states significantly faster.

Even though lifting is considered as a promising method to speed up MCMC
algorithms, it is an open question how it affects efficiency in specific examples [24].
For the Ising model on the complete graph, it was numerically observed that the lifted
single-spin flip Metropolis algorithm improves the scaling (with volume) of the rate
of decay of the autocorrelation function of the magnetization [14]. Another study [13]
proved that a lifted MCMC algorithm for uniformly sampling leaves from a given tree
reduces the mixing time. In other examples [20, 16, 22] it was numerically observed
that lifting speeds up reversible MCMC algorithms by a possibly large constant factor
but does not asymptotically affect the scaling with the system size.

In Part 2 of the thesis, we investigate how lifting affects worm algorithms. More
precisely, we design a lifted worm algorithm for the zero-field ferromagnetic Ising
model, and numerically study the dynamic critical behavior of the number of oc-
cupied edges N , which is related to the energy of the Ising system (see Chap. 3).
Our simulations were performed on both the complete graph and toroidal grids in
dimensions 2 ≤ d ≤ 5 at the (estimated, when d ≥ 3) infinite-volume critical point.

On the complete graph we find that the lifted worm algorithm significantly
improves the dynamic critical exponent zint of N . In particular, we show that N
exhibits critical speeding-up [26, 27] in the lifted process (zint ≈ −0.5), while we
observe zint ≈ 0 for the corresponding reversible counterpart. On toroidal grids we
find that the lifted worm algorithm does not affect the scaling with the system size.
We emphasize, however, that the lifted process still reduces the variance of N by a
significant constant. This constant improvement becomes more pronounced for larger
dimensions with up to a factor of approximately 141 for d = 5.

1.1 Outline

We will now present the outline of Part 2

• In Chapter 2, we introduce the investigated algorithms, and explain how to
construct an irreversible worm algorithm for the Ising model.

• In Chapter 3, we present the details of our numerical setup.

• In Chapter 4, we study the dynamic properties of the lifted worm algorithm on
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CHAPTER 1. INTRODUCTION

toroidal grids and the complete graph, and compare our findings with reversible
worm algorithms.

• Finally, in Chapter 5, we summarize our findings, and give an outlook for future
work.
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CHAPTER 2
Worm algorithms

2.1 P-S Worm Algorithm

As is well known [28], the zero-field ferromagnetic Ising model can be mapped to an
ensemble of high-temperature graphs. Let G = (V,E) be a finite graph with vertex
set V and edge set E. Define the closed loop space C0 as the set of all configurations
ω ⊆ E such that every vertex has even degree, and C2 as the set of all ω ⊆ E where
exactly two vertices have odd degree. We call the subgraph (V, ω) Eulerian whenever
ω ∈ C0. In the high-temperature expansion the partition function of the Ising model
can be written as the sum over all Eulerian subgraphs [28], i.e.

Z = 2|V | cosh|E|(β)
∑
ω∈C0

tanh|ω|(β), (2.1)

where β denotes the inverse Ising temperature.

The P-S worm algorithm samples these high-temperature graphs via elementary
local moves. The main idea is to enlarge the state space C0 to W := C0 ∪ C2 by
introducing two vertices with odd degree (defects). These defects are moved through
W via random walk. Whenever the two defects meet, the subgraph becomes Eulerian
and one reaches a state of the original configuration space C0.

In the original algorithm [5] only one of the defects is mobile and can be moved
through W . In this work, we use a slightly different worm version where we flip a fair
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CHAPTER 2. WORM ALGORITHMS

coin to select the mobile defect in C2. The transition probabilities

q(ω, ω′) = p(ω, ω′)a(ω, ω′) (2.2)

from an initial state ω to a target state ω′ can be calculated by metropolizing [3] the
proposals p(ω, ω′) with respect to the stationary measure π(ω) = 1

Z tanh|ω|(β)Ψ(ω).
Here, Z is an appropriate normalization on W , Ψ(ω) := |V | if ω ∈ C0, and Ψ(ω) := 2

if ω ∈ C2, respectively. Furthermore, p(ω, ω′) denotes the proposal probability and
a(ω, ω′) the acceptance probability. See [11] for explicit expressions for the transition
matrix (2.2).

The algorithm is presented in Alg. 1 with ω∆xx′ denoting the symmetric dif-
ference of ω and the edge xx′; i.e. xx′ ∈ ω∆xx′ if and only if xx′ /∈ ω. In words, if
xx′ ∈ ω we propose to delete xx′, while if xx′ /∈ ω we propose to add it.

Algorithm 1 P-S Worm Algorithm
if ω ∈ C0 then

Choose a uniformly random vertex x
else

Choose a uniformly random odd vertex x
end if
Choose a uniformly random edge xx′ among the set of edges incident to x. With
probability aP-S(ω, ω∆xx′), let ω → ω∆xx′. Otherwise ω → ω

2.2 Irreversible Worm Algorithm

We construct the irreversible worm algorithm in two steps. In Sec. 2.2.1 we first define
an alternative reversible worm algorithm. This worm algorithm will be an appropriate
starting point to apply lifting. In Sec. 2.2.2 we use lifting to construct the irreversible
counterpart.

2.2.1 B-S type Worm Algorithm

Since it is not obvious how to apply the lifting technique to the P-S process in a
natural way, we first construct an alternative reversible worm algorithm with slightly
different proposals. This algorithm can be seen as the Ising analogue of the Berretti-
Sokal algorithm [29] for simulating self-avoiding walks in the grand canonical ensemble.
We thus call it the B-S type worm algorithm.
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2.2. IRREVERSIBLE WORM ALGORITHM

The proposals are as follows: We first decide to either increase (+) or decrease (−)

the number of occupied edges by flipping a fair coin. Then, if the current state belongs
to C2, we flip a fair coin to select one of the two defects as the mobile vertex. Otherwise,
if the current state is an element of C0, we choose a uniformly random vertex as the
mobile vertex. If we decide to add (delete) an edge, we select the next position of
the mobile vertex uniformly at random among the set of vacant (occupied) edges
incident to the current mobile vertex. We now construct the transition probabilities
by metropolizing the proposals with respect to the same measure as in Sec. 2.1.

For ω ∈ W , v ∈ V and λ ∈ {−1, 1}, define

Nω(x, λ) =

{
{uv 6∈ ω : u = x or v = x}, if λ = +1
{uv ∈ ω : u = x or v = x}, if λ = −1

(2.3)

Note that, for any ω ∈ W , |Nω(x,+1) +Nω(x,−1)| equals the degree of x.

Fix z := tanh(β), and let ω, ω∆xx′ ∈ W . The proposal and acceptance probabil-
ities for the transition ω → ω∆xx′ are as follows

(i) If ω ∈ C0:

pB-S(ω, ω∆xx′) =
1

2

1

|V |

[
1

|Nω(x, |ω∆xx′| − |ω|)| +
1

|Nω(x′, |ω∆xx′| − |ω|)|

]
(2.4)

aB-S(ω, ω∆xx′) = min

[
1,
z|ω∆xx′|

z|ω|
|Nω∆xx′(x, |ω| − |ω∆xx′|)|−1 + |Nω∆xx′(x

′, |ω| − |ω∆xx′|)|−1

|Nω(x, |ω∆xx′| − |ω|)|−1 + |Nω(x′, |ω∆xx′| − |ω|)|−1

]
(2.5)

(ii) If ω ∈ C2, ω∆xx′ ∈ C2 and x is a defect in ω:

pB-S(ω, ω∆xx′) =
1

2

1

2

1

|Nω(x, |ω∆xx′| − |ω|)| (2.6)

aB-S(ω, ω∆xx′) = min

[
1,
z|ω∆xx′|

z|ω|
|Nω(x, |ω∆xx′| − |ω|)|
|Nω∆xx′(x′, |ω| − |ω∆xx′|)|

]
(2.7)

(iii) If ω ∈ C2, ω∆xx′ ∈ C0:

pB-S(ω, ω∆xx′) =
1

2

1

2

[
1

|Nω(x, |ω∆xx′| − |ω|)| +
1

|Nω(x′, |ω∆xx′| − |ω|)|

]
(2.8)
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Figure 2.1: Worm configuration ω ∈ C2 where x, y are the vertices with odd degree, Nω(x,−) =
{xo1, xo2, xo3}, and Nω(x,+) = {xv1}. If x is selected as the mobile vertex and one proposes
to increase the number of edges in the B-S type worm algorithm, the only possible transition is
ω → ω∆xv1 where ω∆xv1 ∈ C2. The corresponding proposal and acceptance probabilities are stated
in Eq. (2.6) and (2.7).

aB-S(ω, ω∆xx′) = min

[
1,
z|ω∆xx′|

z|ω|
|Nω∆xx′(x, |ω| − |ω∆xx′|)|−1 + |Nω∆xx′(x

′, |ω| − |ω∆xx′|)|−1

|Nω(x, |ω∆xx′| − |ω|)|−1 + |Nω(x′, |ω∆xx′| − |ω|)|−1

]
(2.9)

We give an example for case (ii) in Fig. 2.1. All other off-diagonal transition
probabilities are zero. The full algorithmic description is presented in Alg. 2. We
remark that the choice to allow both defects to move in Alg. 2 is not actually necessary,
and one can construct a modification of Alg. 2 in which only one defect is mobile.

Algorithm 2 B-S type Worm Algorithm
Choose λ = {+,−} uniformly at random
if ω ∈ C0 then

Choose a uniformly random vertex x
else

Choose a uniformly random odd vertex x
end if

if Nω(x, λ) = ∅ then
Set ω → ω and skip all following steps

else
Choose a uniformly random edge xx′ ∈ Nω(x, λ). With probability

aB-S(ω, ω∆xx′), let ω → ω∆xx′. Otherwise ω → ω.
end if
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2.2. IRREVERSIBLE WORM ALGORITHM

2.2.2 Irreversible Worm Algorithm

In the following, we construct the irreversible counterpart of the B-S type worm
algorithm. Consider the enlarged state space W ′ := W × {−,+} where {−,+} is a
set to indicate to either choose to increase (+) or decrease (−) the number of edges.
Our aim is to define a Markov-chain on W ′ such that we never propose to delete an
edge if a state belongs to W × {+}, while we never propose to add edges as long
as the chain belongs to W × {−}. If a move (ω, λ) → (ω∆xx′, λ) is rejected, we
make the transition (ω, λ)→ (ω,−λ). Note that this process does not allow diagonal
transitions.

For (ω, λ) ∈ W ′, let π̃(ω, λ) = 1
2
π(ω). For xx′ ∈ E, let

q̃((ω,+), (ω ∪ xx′,+)) = qB-S(ω, ω ∪ xx′) if xx′ /∈ ω (2.10)

q̃((ω,−), (ω \ xx′,−)) = qB-S(ω, ω \ xx′) if xx′ ∈ ω (2.11)

All other entries in row q̃((ω, λ), (·, ·)) are zero except q̃((ω, λ), (ω,−λ)) which is
fixed by stochasticity. Observe that skew-detailed balance [14, 25] between q̃ and π̃
follows immediately from detailed balance between q and π, and so q̃ has stationary
distribution π̃.

The full algorithmic description of the lifted worm algorithm is given in Alg. 3.
From a practical perspective, we emphasize that only minor code changes to the B-S
type worm algorithm are needed to construct the irreversible counterpart.

Algorithm 3 Irreversible Worm Algorithm
if ω̃ = (ω, λ) where ω ∈ C0 then

Choose a uniformly random vertex x
else

Choose a uniformly random odd vertex x
end if

if Nω(x, λ) = ∅ then
Set (ω, λ)→ (ω,−λ) and skip all following steps

else
Choose a uniform random edge xx′ ∈ Nω(x, λ). With probability

aB-S
(
ω, ω∆xx′

)
, let (ω, λ)→ (ω∆xx′, λ). Otherwise (ω, λ)→ (ω,−λ)

end if
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CHAPTER 3
Time scales and numerical setup

3.1 Time Scales in MCMC algorithms

To compare the efficiency of competing Markov-chain Monte Carlo algorithms, a
number of relevant time scales exist. These fall into two main types; quantities
that characterise how long the chain takes to reach stationarity, and quantities that
characterise the strength of autocorrelations at stationarity. The main quantities of
the latter type are the integrated autocorrelation times, as defined in Eq. (3.2). The
integrated autocorrelation time for a particular observable provides an important
measure of efficiency, since the error bar of the corresponding estimator is controlled
by the product of the integrated autocorrelation time and the static variance of the
observable; see Eq. (3.1). We emphasize that Eq. (3.1) holds regardless of whether
the process is reversible or irreversible.

With regard to quantities describing the approach to stationarity, the most
fundamental example is the mixing time, which describes the time scale required
for the distribution at time t to reach a prescribed distance (e.g. in total variation)
from the stationary distribution. For reversible processes, the mixing time is closely
related to the exponential autocorrelation time. Therefore, in the reversible setting,
an understanding of the exponential autocorrelation time gives information on how
long a process takes to reach approximate stationarity. For irreversible processes,
however, no such relationship exists in general. Consequently, there is no reason to
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3.2. NUMERICAL SETUP

expect that the exponential autocorrelation time should characterise the time to reach
approximate stationarity for the lifted worm process. We therefore focus on studying
the integrated autocorrelation time which holds for both lifted and unlifted processes.

3.2 Numerical Setup

Let ω ∈ W. We numerically study dynamic properties of the number of occupied
edges N := |ω|. We note that the mean energy of the Ising system is given by
〈E〉 = − tanh(β)

[
|E|+ 〈N |C0〉 sinh2(β)

]
, where 〈N |C0〉 denotes the expectation of N

conditioned on being in C0. The conditional variance of N is similarly related to the
specific heat [5]. We emphasize that in what follows, 〈·〉 denotes the expectation with
respect to the stationary distribution of the worm algorithm on the full space W (or
W ′ in the lifted case). Such expectations are then estimated via the sample mean; e.g.
〈N〉 is estimated via N̄ = 1

M

∑M
i=1Ni where M is total number of measurements, and

Ni the value of the random variable at the i-th Monte Carlo step after a sufficiently
long burn-in sequence has been discarded.

In Chap. 4 we compare the variance of N̄ (in the limit of M →∞) by using

Var(N̄ ) ∼ 2τ
(N )
int

Var(N1)

M
M →∞ (3.1)

among the P-S, B-S type and irreversible worm algorithms. Here, τ (N )
int is the integrated

autocorrelation time

τ
(N )
int :=

1

2
+
∞∑
t=1

ρ(N )(t). (3.2)

where ρ(N )(t) denotes the normalized autocorrelation function

ρ(N )(t) :=
〈N1Nt〉 − 〈N1〉2

Var(N1)
. (3.3)

Our simulations for the Ising model were performed on the complete graph Kn on n
vertices, and on toroidal grids GPBC in dimensions 2 ≤ d ≤ 5. On the complete graph,
we simulated at the critical point βcrit = 1/n. On the torus, our simulations were
performed at the exact critical point in two dimensions [30], and at the estimated
critical points βcrit,3d = 0.22165455(3) [31], βcrit,4d = 0.1496947(5) [32], and βcrit,5d =

0.1139150(4) [35] for d ≥ 3.

In each time series, we truncated the summation in Eq. (3.2) self-consistently
by using the windowing method [34]. We emphasize that particular care has to be
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CHAPTER 3. TIME SCALES AND NUMERICAL SETUP

taken when choosing the windowing parameter c for the irreversible worm algorithm,
see Chap. 4 and Appendix A.1. For fitting and error estimations we follow standard
procedures, see e.g. [34, 33].
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CHAPTER 4
Results

4.1 Toroidal grids

We will now study the dynamic properties of N on d dimensional toroidal grids.
Note that Var(N0) in Eq. (3.1) coincides among all studied algorithms, since it is
a property of the stationary measure and does not depend on the details of the

underlying Markov-chain. Therefore, in the limit M → ∞, we have Vari(N̄ )

Varj(N̄ )
=

τ
(N )
int,i

τ
(N )
int,j

where i, j ∈ {P-S, B-S type, irre}.
In Fig. 4.1 we compare the integrated autocorrelation time among the B-S type

and lifted worm algorithm (resp. B-S type and P-S worm algorithm). We perform
least square fits of the form A + BL−∆ where A,B,∆ are free parameters. Our
conclusion will be that both ratios are approaching constants for L → ∞, with
larger improvements for higher dimensions, see Table 4.1. In two dimensions, our
fits lead to the constant improvement AB-S→irre = 1.7(2), and AP-S→B-S = 1.4(1) by
discarding L < 40. For d = 3, we find AB-S→irre = 8.2(4) by discarding L < 40,
and AP-S→B-S = 2.68(9) by discarding L < 20. In four dimensions our fits lead to
AB-S→irre = 24(1), and AP-S→B-S = 3.79(3) by discarding L < 10. For d = 5 we find
AB-S→irre = 30(1), and AP-S→B-S = 4.7(1). In order to obtain stable fits we fixed ∆ = 1

for fitting the ratios of the integrated autocorrelation time of the B-S type and lifted
worm algorithm for d > 2, and for fitting the ratios of the P-S and B-S type worm
algorithm in four and five dimensions.
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P-S → B-S B-S → irre P-S → irre
d = 2 1.4(1) 1.7(2) 2.4(4)
d = 3 2.68(9) 8.2(4) 22(2)
d = 4 3.79(3) 24(1) 91(4)
d = 5 4.7(1) 30(1) 141(6)

Table 4.1: Improvement factors τ (N )
int,i/τ

(N )
int,j by changing from the P-S to the B-S type worm algorithm,

B-S type to the irreversible worm algorithm, and P-S to the irreversible worm algorithm on the d
dimensional torus

For estimating τ (N )
int,irre in four and five dimensions we had to choose very large

c values outside the common range c ∈ [6, 10] in the windowing algorithm [34] (see
Appendix A.1 for details). In order to understand this, it proves useful to study the
autocorrelation function ρ(N )

irre (t) where t is measured in MC hits. For clarity, we will
only focus on the five dimensional case. Figure 4.2 shows ρ(N )

irre (t) in the lifted worm
algorithm for d = 5. ρ(N )

irre (t) exhibits a two-time scaling: For small t, ρ(N )
irre (t) shows

a quick exponential decay to a small but bounded value while we observe a much
slower decay with a different (larger) exponential scale for larger t. We note that this
two-time scaling is absent for d ≤ 3. Our data suggests that ρ(N )

irre (t) can be described
by the ansatz

ρ
(N )
irre (t) = α1 exp(−t/τ1) + α2 exp(−t/τ2) (4.1)

where α1 +α2 = 1, τ1 ≥ τ2 > 0. In order to estimate the optimal least-squares param-
eters for this ansatz we used an improved procedure described in the Appendix A.2.
We find that both the ratio α1/α2 and τ2/τ1 remain bounded as L→∞. We estimate
the corresponding asymptotic constants using a least squares fitting procedure with
a constant and obtain

α2

α1

L→∞∼ 40.6(4) &
τ1

τ2

L→∞∼ 32.4(6).

Our numerical observation that α1 (τ2) is significantly smaller than α2 (τ1) impacts
the required choice of parameters in windowing algorithm [34].

4.2 Complete graph

We will now study the integrated autocorrelation time of the B-S type and lifted
worm algorithm on the complete graph with n vertices. Our main finding is that N
exhibits critical speeding-up for the lifted process. Figure 4.3 shows τ (N )

int /n for both
algorithms where τ (N )

int is measured in MC hits. The fitting ansatz Anz +B for τ (N )
int,irre

where A,B, z are free parameters leads to z = 0.51(1) by discarding n < 2 ·105. Thus,
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4.2. COMPLETE GRAPH
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Figure 4.1: Comparison of the integrated autocorrelation time among the P-S, B-S type and lifted
worm algorithm. The black diamonds show the ratio of the integrated autocorrelation time of the
P-S and B-S type algorithm, while the blue circles compare τ (N )

int among the lifted and the B-S
type worm algorithm. The asymptotic improvement factors can be found in Table 4.1. The lines
correspond to the fits in Sec. 4.1.

we have τ (N )
int,irre/n ∼ n−1/2. Note that we had to choose large windowing parameters in

agreement to our findings on high-dimensional tori. For the corresponding reversible
counterpart (B-S type worm algorithm), it follows immediately from general argu-
ments [36, Cor. 9.2.3] that the integrated autocorrelation time satisfies a Li-Sokal
type bound τ (N )

int,B-S ≥ const × Var(N0) where const > 0. One can, furthermore, cal-
culate [37] that limn→∞

Var(N0)
n

= 9
4
− 24Γ(5/4)4

π2 leading to τ (N )
int,B-S/n ≥ const. Thus,

lifting improves the dynamic critical exponent on the complete graph. Our numerics
suggest that this bound is sharp, i.e. τ (N )

int,B-S/n ∼ const. More precisely, our fitting
ansatz Anz +B for τ (N )

int,B-S leads to z = 1.00(2) by discarding n < 3000.

Figure 4.4 shows the autocorrelation function ρ(N )
irre (t) for the lifted process where

t is measured in MC hits. Our data suggests that ρ(N )
irre (t) is well described by the

following equation:

ρ
(N )
irre (t) = (1− α) exp(−t/τ1) + α cos(ωt+ φ) exp(−t/τ2). (4.2)

Similar ansätze were used in other studies on lifting, see [14, 25]. Our fits lead to
τ1 ∝ n2/3, τ2 ∝ n1/2, and ω ∝ n−1/2. Moreover, we find that the amplitude of the first
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Figure 4.2: Normalized autocorrelation function ρ
(N )
irre (t) (t in MC hits) for the irreversible worm

algorithm in five dimensions. As stated in Sec. 4.1, ρ(N )
irre (t) is well described by the ansatz in Eq. (4.1).

term vanishes as n → ∞. We note that the cosine in Eq. (4.2) is motivated by the
fact that the eigenvalues of the transition matrix in the lifted process need not be
real, unlike the spectrum of reversible chains.

Finally, we numerically observe that the average number of consecutive steps the
chain spends in each replica, τintra, scales as n1/2. More precisely, the ansatz Anz +B

leads to z = 0.49(1) by discarding n < 25. It is interesting to observe that we have
thus identified three time scales, i.e. τ (N )

int,irre, τ2, τintra, which scale as n1/2.
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to the fits in Sec. 4.2.
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Figure 4.4: Normalized autocorrelation function ρ(N )
irre (t) (t in MC hits) for the lifted worm algorithm

on the complete graph with n vertices. The blue (left) curve corresponds to n = 10 · 103, the green
(middle) curve corresponds n = 30 · 103, and the red (right) curve corresponds to n = 100 · 103. As
stated in Sec. 4.2, ρ(N )

irre (t) is well described by the ansatz in Eq. (4.2).

92



CHAPTER 5
Outlook

We constructed an irreversible MCMC worm algorithm for the zero-field ferromagnetic
Ising model via the lifting technique. Since it is not obvious how to lift the standard
P-S worm algorithm to generate ballistic motion for the number of occupied edges, we
first constructed an alternative worm algorithm with different proposals (B-S type)
and lifted this chain. We emphasize that this construction can also be used to design
lifted worm algorithms for other important models in statistical mechanics such as the
XY model. The XY model shares many universal properties of the Bose-Hubbard
model [38] which is actively studied in ultracold atom physics. We also emphasize
that the lifted worm algorithm for the Ising model can be implemented by changing
only a few code lines in the B-S type worm algorithm.

We studied the dynamical critical behavior of the number of occupied edges
N on both the complete graph and toroidal grids in various dimensions. On the
complete graph we numerically established zint,irre,N ≈ −0.5 for the lifted worm
algorithm, while we found zint,B-S,N ≈ 0 for the corresponding reversible counterpart.
It is interesting to observe that the mixing time of the Swendsen-Wang algorithm
scales as tmix/n ∼ n1/4 [39]. On the torus we numerically established that the lifted
chain leads to a constant improvement with larger improvements for higher dimensions.
Even though we did not find a dynamic improvement for d ≤ 5, it is an open question
if N exhibits critical speeding-up on higher dimensional tori.

We also studied the return time to the Eulerian subspace C0. We find that while
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the mean is the same in both the lifted and unlifted processes, the variance is a
constant factor smaller in the lifted version.

Finally, we note that a recent study [40] constructed an alternative irreversible
worm algorithm which is based on the so-called geometric allocation approach [12].
Similar to our findings, this irreversible worm algorithm does not improve the dynam-
ical critical exponent for N on the three-dimensional torus, but leads to a significant
constant improvement.
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APPENDIX A
Appendix

A.1 Estimation with the Madras-Sokal automatic
windowing algorithm and suppressed slow modes

A widely used numerical method to estimate the integrated autocorrelation time of a
weakly stationary time series [42] is to consider a truncated version of (3.2), i.e.

τ̂
(N )
int (n) :=

1

2
+

n∑
t=1

ρ(N )(t). (A.1)

The reason for truncating the time series is well known [42, 34]: The standard deviation
of (A.1) is O(

√
n/M), and, hence, (for fixed M) grows with n. The choice of n is,

thus, a compromise between bias and standard-error. The Madras-Sokal automatic
windowing method determines n self-consistently as the smallest positive integer n
that fulfils (numerically)

cτ
(N )
int (n) ≤ n

where c is a free real parameter, typically manually chosen to lie in [6, 10], c.f. [34]
for a justification of this particular choice of c.
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A.2. LEAST SQUARE FITTING A WEIGHTED EXPONENTIAL ANSATZ

While analysing the time series for N for the lifted worm algorithm in d ≥ 4 we
made the observation that the choice c ∈ [6, 10] significantly underestimates the
integrated autocorrelation time. Intuitively, what we implement with (A.1) is a ‘dis-
crete integration’ which we utilise to extract the decay constant (the analogue of the
relation

∫∞
0
dx e−x/τ = τ in a continuous setting). However, in our setting we only

obtain a significant contribution from α1e
−t/τ1 to (A.1) when including lags for which

the contribution of α2e
−t/τ2 to ρ(N )(t) is too small to be separated from noise. The

combination of small amplitude and large time scale, thus, requires adjusting c. In
Figure A.1 we illustrate this for the particular choice of L = 56 of the lifted worm
algorithm in d=5.
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Figure A.1: Dependence on the cut-off time n of the truncated integration autocorrelation time
τ̂
(N )
int (n) defined in A.1 for the lifted worm algorithm in five dimensions and L = 56 at criticality. The
thick red line shows τ̂ (N )

int (n) averaged over 100 independent runs, whereas the surrounding region
corresponds to ±1σ. The thin lines correspond to the curves n/c with increasing c from left (c = 6)
to right (c = 200). One clearly sees how n < 100 underestimates τ̂ (N )

int (n) and much larger n are
required to capture contributions corresponding to the suppressed mode.

A.2 Least square fitting a weighted exponential ansatz

While fitting the normalised autocorrelation function for N in dimensions four and
five we made the observation that it is numerically very hard to obtain reliable
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estimates of the parameters involved in a functional model of the two-time scale
behavior using the method of least squares. We, therefore, manually analysed the
least square conditions. As result of this we were able to reduce the free parameters
which we need to numerically minimise from 4 to 2. This significantly improved the
numerical precision and stability of the fitting procedure. To this end, our model has
free parameters α1 > 0, α2 > 0, 1 > λ1 > 0, 1 > λ2 > 0 and we would like to minimise
the sum of the first Tmax squared residuals

r2
k ≡

[
α1λ

k
1 + α2λ

k
2 − ρN (k)

]2

,

that is our goal is to minimise the function Θ defined as

Θ(α1, α2, λ1, λ2) ≡
Tmax−1∑
k=0

r2
k

A necessary condition for the minimum is

∂Θ

∂α1

=
∂Θ

∂α2

=
∂Θ

∂λ1

=
∂Θ

∂λ2

= 0

We start by evaluating the partial derivatives w.r.t. α1 and α2 and a consequence of
this obtain the following set of two linear equations

α1P (λ1) + α2S(λ1, λ2) = Q(λ1),

α1S(λ1, λ2) + α2P (λ2) = Q(λ2).

Here we defined the following three polynomials over (0, 1) or (0, 1)2:

P (λ) ≡
Tmax−1∑
k=0

λ2k =
λ2Tmax − 1

λ2 − 1

Q(λ) ≡
Tmax−1∑
k=0

λkρN (k)

S(λ1, λ2) ≡
Tmax−1∑
k=0

λk1λ
k
2

Note that S is symmetric in λ1, λ2. The above set of linear equations has the unique
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solution:
α1(λ1, λ2) =

S(λ1, λ2)Q(λ2)−Q(λ1)P (λ2)

S(λ1, λ2)2 − P (λ1)P (λ2)

and α2(λ1, λ2) is obtained by replacing 1 → 2, 2 → 1 in the r.h.s. above. Thus, this
allows us to substitute α1, α2 as a function of λ1, λ2 in Θ and minimise Θ only w.r.t. to
λ1, λ2, with the constraints that λ1, λ2 ∈ (0, 1). We remark, that completely analogous
arguments can be used to show that a similar improvement can be achieved for a
general ansatz

∑n
j=1 αjλ

t
j, where one reduces the parameters to numerically minimise

from 2n to n. The calculations done here generalise the method very recently proposed
in [41] for a single exponential ansatz.
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Glossary

L: Side length of a box.

χ: Susceptibility.

R+: = {x ∈ R : x > 0}.
Z+: = {x ∈ Z : x > 0}.
Z−: = {x ∈ Z : x < 0}.
N : Walk length (part 1), Number of occupied edges (part 2).

W: Winding number (part 1), lifted state space (part 2).

ρ: autocorrelation function.

τexp: exponential autocorrelation time.

τint: integrated autocorrelation time.

g̃: unwrapped Green’s / unwrapped two-point function.

f(x) = O(g(x)): Let f, g be real valued functions such that g(x) is strictly positive
for large enough values of x. Then, f(x) = O(g(x)) if there exists c > 0 and
x0 ∈ R such that |f(x)| ≤ cg(x) for all x > x0.

f(x) = Ω(g(x)): Let f, g be real valued functions such that g(x) is strictly positive
for large enough values of x. Then, f(x) = Ω(g(x)) if there exists a c > 0 and
x0 ∈ R such that f(x) ≥ cg(x) for all x > x0.

f(x) = Θ(g(x)): Let f, g be real valued functions such that g(x) is strictly positive for
large enough values of x. Then, f(x) = Θ(g(x)) if there exists positive constants
c1, c2 > 0 and x0 ∈ R such that c1g(x) ≤ f(x) ≤ c2g(x) for all x > x0.

f(x) = ω(g(x)): Let f, g be real valued functions such that g(x) is strictly positive
for large enough values of x. Then, f(x) = ω(g(x)) if for all c > 0 there exists
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Glossary

x0 ∈ R such that |f(x)| ≥ c|g(x)| for all x > x0.

f(x) � g(x): f(x) � g(x) if there exists constants c1, c2, x0 ∈ R such that c1g(x) ≤
f(x) ≤ c2g(x) for all x > x0.

f(x) ∼ g(x): f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.

f(x) = o(g(x)): Let f, g be real valued functions such that g(x) is strictly positive
for large enough values of x. Then, f(x) = o(g(x)) if for every constant c > 0

there exists a constant x0 ∈ R such that |f(x)| ≤ cg(x) for all x > x0.

g: Green’s / two-point function.

z: fugacity (part 1), dynamic critical exponent (part 2).

B-S algorithm: Berretti-Sokal algorithm.

FBC: Free boundary conditions.

FSS: Finite-size Scaling.

HBC: Holding boundary conditions.

MCMC: Markov-chain Monte Carlo.

P-S worm algorithm: Prokof’ev-Svistunov worm algorithm.

PBC: Periodic boundary conditions.

RBC: Reflective boundary conditions.

RLLERW: Random-length Loop-erased Random Walk.

RLRW: Random-length Random Walk.

SAW: Self-avoiding Walk.
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