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Abstract 

This thesis presents analyses of the historic wintertime (May-October) precipitation 

obtained from seven high-elevation gauges across the Snowy Mountains for a 21-yr period 

from 1995 to 2015. The Snowy Mountains, with peaks in excess of 2000m, are the tallest 

mountains in the Australian Alps and feed some of the major river systems of the Murray-

Darling Basin. The frequency of rainy days (>0.25 mm) is seen to follow a seasonal cycle 

with peaks being present in July and August. There is also a negative trend in the wintertime 

precipitation amount, with the value of -22.69 mm yr-1, amounting to 476 mm over the 

analysis period. 

A K-means clustering algorithm was employed to classify the daily meteorology. Cluster 

analysis of six synoptic indicators and the low-level stability (as measured non-dimensional 

mountain height 𝐻𝐻�2 ) from the nearest upwind sounding site of the BoM to the Snowy 

Mountains (Wagga Wagga) has identified four synoptic classes associated with 

precipitation in the Snowy Mountains during the cold seasons. The first cluster, C1, is the 

wettest cluster containing the majority of the heavy precipitation days, while the last cluster, 

C4, is the driest cluster containing the majority of the low precipitation days. The mean 

values of 𝐻𝐻�2 for the four clusters are increasing from C1 to C4, where higher values of 𝐻𝐻�2 

indicate stronger blocking and, accordingly, less orographic precipitation. A deeper 

analysis of these data found that the relationship was primarily driven by extreme values 

with very large values of 𝐻𝐻�2  (>7.8) being associated with suppressed rainfall and very 

heavy rainfalls (>28 mm day-1) being associated with low values of 𝐻𝐻�2. The frequency of 

rainy days and unblocked days (𝐻𝐻�2 < 1) are decreasing from C1 to C4. These results, along 

with physical interpretation of composite maps for each synoptic indicator obtained from 

the ERA-Interim reanalysis dataset, show that each of the four clusters represents specific 

synoptic types. C1 was associated with frontal passages.  C2 was also a wet cluster, being 

associated with post-frontal conditions. C3 and C4 were associated with suppressed (stable) 

conditions and being under the influence of anticyclone systems.  

Building on these historical relationships, model output statistics (MOS) from a moderate 

resolution (12-km spatial resolution) operational forecast were used to develop stepwise 

regression models designed to improve the 24-h forecast of precipitation over the Snowy 
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Mountains. A single regression model for all days was found to reduce the RMSE by 7% 

and the bias by 75%. A class-based regression model was found to reduce the overall RMSE 

by 30% and the bias by 85%. 

High-resolution numerical simulations with the WRF model have been used to better 

understand a typical wintertime storm associated with a cold frontal passage and its 

sensitivity to the dynamical and microphysical processes using weather station data and 

satellite observations in the Snowy Mountains. It is found that the maximum precipitation 

decreases, up to 70% over the mountains, leading to a reduction of about 27% on average, 

by reducing the elevation above 1000 m by 75%. Changing the microphysics schemes from 

the Thompson semi-double-moment 6-class scheme to the single-moment 5-class scheme 

(WSM5) leads to a change of spatial distribution of precipitation with a reduction of 

precipitation over the mountain peaks and enhanced precipitation over the windward and 

lee slopes. The domain-averaged precipitation accumulation is less sensitive to the choice 

of microphysics (about 6% increase) compared with its clear impact on the precipitation 

pattern. Orographic precipitation, however, shows much less sensitivity (only a slight 

reduction of about 4% in the area-average of the accumulated precipitation) to upscaling 

the horizontal resolution of the topography (1 km grid spacing replaced with 3 km).  
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Chapter 1 
 

Introduction 
 

Water is one of the world's most vital resources; over seven billion people across the planet 

rely on it daily. Ever increasing demands make the world leaders increasingly concerned 

about water scarcity and the potential of a global water crisis. Efficient drought mitigation 

planning and development of more effective management plans of available water resources 

are keys to aid water suppliers in survival under extreme conditions. Water availability and 

management have also become a serious challenge in Australia due to its large variability 

and an increasing demand with the rise in population. 

The Murray-Darling Basin contains the longest river system in Australia with the large 

inland river basin (Figure 1.1). The basin covers 1,061,469 km2 land mass (13.8% of the 

continent) including most of New South Wales, Victoria, and parts of Queensland and South 

Australia, and all of the Australian Capital Territory. This Basin is named after its two major 

water courses, the Murray and Darling rivers, and is mostly arid or semi-arid, with great 

variability in annual rainfall. It is home to over 2 million people and best known as the food 

bowl of Australia. This region produces around one-third of the national food supply (Pittock 

and Connell 2010) with an annual value exceeding A$14 billion (Pittock and Connell 2010). 

The irrigated land (only 2%) uses 90% of the diverted waters. The irrigated agricultural land 

in the Basin produces around 70% of the continent irrigated agricultural yield, contributing 

AUD$7 billion per year to the total value of Australian agricultural production (ABS et al. 

2009). The critical role of the Murray-Darling Basin in the Australian economy gives rise to 

the higher demand for better water resources management and an in-depth investigation of 

the nature of wintertime precipitation, which plays a decisive role in the water cycle over 

the region. 
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Figure 1.1 Australian map of topography (color shaded), showing the Murray-Darling Basin 

(hatched area).  

The Australian Alps are the highest part of the continental divide along the eastern seaboard, 

known as the Great Dividing Range, and play a crucial role in the weather across the densely 

populated southeastern seaboard. The Great Dividing Range forms the headwaters of many 

of the major rivers in the Murray–Darling basin and underpin many unique natural 

ecosystems of the high mountain catchments (e.g. the Snowy, Murray and Murrumbidgee 

Rivers) with some of the richest biodiversity areas on the mainland. The Alpine water 

account for 29% of the annual average inflow yield of the Murray-Darling Basin (Worboys 

and Good 2011). The Snowy Mountains, with peaks in excess of 2000m, are the tallest 

mountains in the Australian Alps and feed some of the major river systems of the Murray-

Darling Basin. Precipitation to the west and north of these Mountains naturally flows inland 

into the Murray and Murrumbidgee Rivers, ultimately reaching the Great Australian Bight, 

while precipitation to the east naturally flows into the Snowy River reaching the Tasman 

Sea. This water is of immediate economic value for the generation of hydroelectric power 

and is of further value for downstream consumption, particularly for agriculture across the 
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semi-arid Murray–Darling Basin. For this reason, water is routinely diverted through a series 

of tunnels, aqueducts, and pumps from the Snowy River basin across the divide into the 

inland catchments by the Snowy Mountains scheme. The construction of the scheme, the 

largest hydro-electric scheme in Australia consisting of 16 major dams (to better capture, 

store and divert the water and also improve flood resilience) and 7 power plants, began in 

late 1940’s following a series of intense droughts in the region.  

The day-to-day management of this water resource requires accurate quantitative 

precipitation estimates and reliable short-term quantitative precipitation forecasts (QPF) 

over the mountains. These QPFs have a strong impact on day-to-day decisions in 

governmental and business activities (e.g., agricultural operations, utility companies, 

snowpack-augmentation in ski resorts, transportation companies and even the efficiency of 

commodities markets, etc.) (Fritsch et al. 1998). Reliable QPF of hydrologic extreme events 

(such as flash flooding) is also central to water resources management. 

The importance of the water resources over the Snowy Mountains region justified the 

operational and experimental winter orographic cloud seeding projects. The Snowy 

Precipitation Enhancement Research Project (SPERP) proposed by Snowy Hydro Limited 

and was initiated from May 2005 to June 2009 by dispersing silver iodide from ground-

based generators and statistical analysis showed a positive impact of seeding (Manton and 

Warren 2011). The operation cloud seeding program offers yet another reason to study the 

orographic precipitation over the Snowy Mountains. 

 

1.1 Climatology of southeast Australia 

Two prolonged periods of dry conditions (major droughts) were experienced in south-

eastern Australia (south of 33.5 °S and east of 135.5 °E) in the past 100 years. An 11-year 

(1935-1945) and an 13-year (1997-2009) period both had rainfall deficits of above 10%. 

Figure 1.2 shows that much of southwest and southeast Australia underwent below-average 

to record-low rainfall during the peak of the Millennium Drought, which is defined by van 

Dijk et al. (2013) as the period 2001–2009: the longest consecutive series of years with 

below median rainfall in southeast Australia since at least 1900. The Millennium drought 
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had a significant impact on the Australian economy and led to the largest declines in 

agricultural employment (about 100,000 jobs were lost) and rural exports (around 13% fall) 

during 2002-03 (Lu and Hedlry 2004).  Nicholls (2005) reported a decreasing trend in both 

maximum and spring snow depth in the Snowy Mountains over a 40-year period beginning 

in 1962. A decline of about 10% was observed in the maximum snow depth. A much 

stronger decrease in spring snow depth (about 40%) was found, mostly attributed to the 

melting of the snow due to the strong warming during July-September.  

 

 

Figure 1.2 Rainfall decile at the peak of the Millennium Drought (2001 to 2009). Copyright of the 

Australian Bureau of Meteorology. 

Australia's climate is generally driven by several large-scale atmospheric features with 

varying levels of spatial and temporal impact. Figure 1.3 represents the main drivers of 

rainfall variability in the Australian region. Previous studies suggest that precipitation in 

southeast Australia is generally governed by large-scale climate drivers, such as the ENSO 

Index (Wang and Hendon 2007), Southern Annular Mode (SAM; Meneghini et al. 2007), 

Indian Ocean Dipole (IOD; Saji et al. 1999), the Atmospheric Blocking Index at the location 
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of 140oE (Risbey et al. 2009), and the Subtropical Ridge position and intensity (Timbal and 

Drosdowsky 2013). 

Precipitation across southeast Australia has been directly related to the strength and latitude 

of the subtropical ridge (STR), which is defined by a belt of high pressure that encircles the 

globe in the middle latitudes. In Australia, the STR is positioned to the southern part of the 

mainland during the summer months and is often associated with stable high pressures over 

southern Australia. During the winter months, the STR moves northward. The strong decline 

in wintertime rainfall peaked during the Millennium Drought and is possibly associated with 

the observed trends in the STR, which has been intensifying and moving further south 

(Timbal and Drosdowsky 2013), presumably as part of a changing climate (Williams and 

Stone 2008). Variations in the SAM, as another synoptic-scale regulator, appear to be linked 

to the variations in winter rainfall over southern Australia (Meneghini et al. 2007). The 

decline in cool season (April–October) rainfall has been also been linked to the positive 

phase of SAM, which shifted the belt of strong westerly winds poleward, whereby 

diminishing the mid-latitude westerly (hence cold fronts) on the western slopes of the Alps 

(Hendon et al. 2007). A similar relationship is also suggested by Nicholls (2010), causing a 

decline of about 15% over the period 1958–2007 in cool season precipitation over south-

east Australia. The IOD, defined as the difference in SST anomaly between the tropical 

western Indian Ocean and the tropical southeastern Indian Ocean has also been shown to 

modulate rainfall in southeastern Australia (Ashok et al. 2003). This phenomenon is 

negatively correlated to rainfall in this region and tends to peak in June–October (Risbey et 

al. 2009). The Southern Oscillation Index (SOI), the difference between the anomalous 

pressures at Tahiti and Darwin, is commonly used to characterize ENSO. The negative SOI 

values (El Nino conditions) are found to generally decline the mean rainfall in this region in 

the winter and spring months (Murphy and Timbal 2008; Nicholls 2010).  
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Figure 1.3 Schematic representation of the dominant Australian climate influences. SOURCE: 

Risbey et al 2008 

1.2 Synoptic Meteorology of Wintertime Precipitation in southeast Australia 

The Australian Alpine water resource has experienced a decline in high-elevation wintertime 

precipitation in excess of the general decline in southeastern Australia during 1990–2009 

(Chubb et al. 2011; Fiddes et al. 2015)  This decline was stronger  to the west of the divide 

and in the high elevations. This decline has driven interest into understanding the cool-

season synoptic circulation and the broader meteorology that underpins it. Different synoptic 

classifications of wintertime precipitation in this region have been developed, suggesting 

that this precipitation is mostly sourced from mid-latitude, cyclonic large-scale weather 

systems (cutoff and embedded lows) and their associated westerly cold fronts and to a lesser 

extent from cloudbands stretching from northwestern Australia (Pook et al. 2006;  Landvogt 

et al. 2008; Risbey et al. 2009; Chubb et al. 2011; Dai et al. 2014; Murphy and Timbal 2008). 

Chubb et al. (2011) also discussed a northern moisture corridor from the coast of Queensland 

accounts for heavy precipitation events. Cutoff lows are isolated low pressure systems which 

have detached from the midlatitude westerly airstream (Low centred between longitudes 



7 

 

135oE-150oE, and north of 45oS). A climatology of daily wintertime precipitation has been 

categorized into distinct three and five synoptic types based on different methods and 

variables. The cool-season synoptic circulation (June–September, 1971-1982) over the state 

of Victoria has been classified into five major synoptic types (interacting and non-interacting 

fronts, cold and warm cyclonic lows, and post-frontal) by Wright (1989). Later, Landvogt 

et al. (2008) categorized daily precipitation over northeast Victoria into three synoptic 

classes (prefrontal, postfrontal, and cutoff). Pook et al. (2006) documented three different 

synoptic weather types (cutoff lows, Cold-frontal systems, and others) associated with daily 

rainfall throughout the growing season (April–October, 1970–2002) in Western Victoria. 

They found that about half of precipitation cutoff lows found to contribute to at least 50% 

of all precipitation. Synoptic weather systems are the dominant mechanisms responsible to 

force moist air parcels to ascend and eventually generate precipitation, particularly during 

the cold seasons in the mid-latitudes. Chubb et al. (2011) performed a synoptic 

decomposition of wintertime precipitation (a 20-yr period beginning in 1990) over the 

Snowy Mountains region. This analysis found that cutoff lows (with and without fronts) are 

responsible for 57% of total precipitation and 79% of precipitation were associated with the 

passage of a cold front over the region. They also performed a back-trajectory analysis and 

found two dominant moisture corridors, arriving from the west-northwest and northeast, 

responsible for heavy precipitation events across this region. Dai et al. (2014) defined four 

distinct synoptic regimes as observed by the physical soundings from the Wagga Wagga 

station that is the nearest radiosonde site to the Snowy Mountains during the cold seasons. 

Their wettest regime, the least frequent one (only 10%), made up 40% of winter precipitation 

and was associated with a frontal passage with a dominant north-westerly flow which 

brought deep moisture fluxes. In contrast, the driest regime was under the influence of high-

pressure systems and responsible for only 5% of total wintertime precipitation. 

1.3 Orographic Clouds and Precipitation 

Apart from the nature of storms, precipitation is commonly influenced by surface orography. 

The orographic influences on precipitation are clearly visible when a pre-existing weather 

disturbance moves into alpine areas. Precipitation is commonly amplified (reduced) on the 

windward slopes (lee-side) with elevation, leading to strong gradients in alpine regions (Roe 

2005). Orographic precipitation, commonly defined as precipitation arising from the lifting 
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of moist air in response to the presence of mountains, is known to be sensitive to small 

variations in ambient conditions, the evolution of the moisture fields, and the geometry of 

the barrier (e.g. Smith 1989; Colle 2004; Watson and Lane 2014). The impact of orography 

on precipitation intensity and distribution has been widely studied. Smith (1979) reviewed 

the complex interaction between precipitation and the terrain, noting the differences in 

orographic precipitation mechanisms over small hills and mountains as well as the 

distribution of moisture and static stability in the lower atmosphere. 

From a dynamical viewpoint, the precipitation distribution is found to be sensitive to a 

variety of parameters. Sinclair et al. (1997) noted enhanced spillover effect is linked to 

strong wind speed and low static stability, temperature, and freezing level. The response of 

the approaching airflow to a barrier can be determined by the ratio of a buoyancy force to 

fluid’s inertia, commonly referred to as the nondimensional mountain height (𝐻𝐻�) 

(Pierrehumbert and Wyman 1985; Baines 1987). Smith (1989) developed a regime diagram 

for hydrostatic flow over a mountain to illustrate the stagnation onset as a function of the 

spanwise-to-streamwise horizontal aspect ratio of the topography and  𝐻𝐻� . Two common 

scenarios are defined by the value of 𝐻𝐻�: blocked and unblocked. In a blocked scenario (i.e. 

large nondimensional mountain height) the approaching airflow is unable to ascend over the 

terrain and is dammed or diverted laterally around the barrier. Such blocking mechanisms 

can have an impact on both convective storms and frontal systems. In contrast, in an 

unblocked scenario (i.e. small nondimensional mountain height) the oncoming airflow has 

enough kinetic energy to rise over the terrain (Durran 1990; Hughes et al. 2009). An 

unblocked scenario is commonly featured by heavier precipitation events as a consequence 

of getting more uplift which cools the air to saturation, leading to water vapour condensation 

and ultimately precipitation. (e.g., Colle 2004; Wang et al. 2016). This effect is also captured 

in a study over the Australian Snowy Mountain region by Huang et al. (2018), where the 

less frequent unblocked scenario (31% of the time for the two year, 2014–2015; May–

September), contributed 50–70% of the relative precipitation to the total amount over the 

high elevations ( >1400 m). 

Twelve different mechanisms of orographic effects on precipitation are detailed by Houze 

(2012), ranging from the dynamics (e.g. blocking) to thermodynamics (e.g. diurnal heating 

driven convection), to microphysics (e.g. a seeder-feeder mechanism). Misrepresentation of 
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these various mechanisms in the model by which precipitation forms in mountainous regions 

may give rise to errors in precipitation forecast (Jiang 2003; Richard et al. 2007; Huang et 

al. 2018).  

1.3.1 Dynamics over the Snowy Mountains: 

Much of the interest in precipitation and clouds across the Snowy Mountains has focused on 

the climatology, but relatively little has focused on the actual dynamic processes of 

orographic enhancement in comparison to other mountainous regions in the US (e.g. 

Stoelinga et al. 2003; Liu et al. 2011), and Europe (e.g. Panziera 2010; Smith et al. 2015). 

Chubb et al. (2011) found that the precipitation over the Great Dividing Range was at least 

a factor of four times that for the upwind plains of western Victoria in wintertime. Watson 

and Lane (2012, 2014) investigated the underlying dynamics of the important orographic 

precipitation events in the Australian Alps to examine the influence of ridge geometry 

(straight, concave and convex ridge) along with upstream thermodynamic and wind 

conditions variations. They showed that the distribution of precipitation is strongly 

influenced by the shape of the mountain ranges and environmental parameters (especially 

the Froude number) in idealized conditions. Chubb et al. (2012) detailed two typical 

wintertime precipitation events featured by a strongly dynamic cut-off low and a weaker, 

less well-organised system with a complex of frontal bands over the Brindabella Ranges. 

The Brindabella Ranges are located on the western border of New South Wales and the 

Australian Capital Territory and the north east of the Snowy Mountains, where a clear 

orographic signal was detected. In both case studies, orographic precipitation was observed 

over the 24-h period after the frontal passage and found to have SLW. More in-depth 

research is needed to better resolve the interactions between the orography and the flow 

associated with the passage of winter fronts.  

1.3.2 Microphysical Structures of cold Cloud over the Snowy Mountains 

A saturated air parcel will not necessarily glaciate when the temperature drops below 

freezing. Cloud droplets that remain as liquid even at temperature below 0˚C are called 

“supercooled liquid water”. One of the unique factors of wintertime precipitation across the 

Snowy Mountains is the common occurrence of clouds composed of supercooled liquid 
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water (SLW) (Morrison et al. 2013; Osburn et al. 2016). This unique environment of this 

region, distinguishes itself from other mountainous regions of the world such as the Sierra 

Nevada in the western United States (Morrison et al. 2013) in terms of the associated 

microphysical processes, the precipitation type and efficiency. 

Osburn et al. (2016) reported a high frequency of occurrence of SLW (53% of the time 

between April and September) over the Snowy Mountains from a surface-based radiometer 

located on the upwind slope (Cabramurra, 1480 m). These observations were qualitatively 

consistent with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellite product (both Aqua and Terra).  

Ice crystal formation can occur through both homogeneous nucleation (the phase change 

occurs spontaneously from a pure water droplet in the absence of nuclei) and heterogeneous 

nucleation (the phase change requires an ice nucleus). For homogeneous nucleation to occur 

a drop with a radius of 1µm (100µm) requires a temperature of -41˚C (-35˚C) (Pruppacher 

and Klett 1997), which indicates that this process commonly occurs in high clouds in which 

some SLW exist. Heterogeneous ice nucleation processes take place at much warmer 

temperatures (between -40 and 0°C) through four distinct modes of ice formation 

(deposition, condensation freezing, contact freezing and immersion freezing).  

 As ice nuclei are scarce (several orders of magnitude less abundant than cloud condensation 

nuclei), a secondary process can amplify the amount of precipitation. For example, after ice 

crystal formation, ice multiplication can happen through the Hallett–Mossop process as a 

secondary ice production during riming in the range of temperature -3° to -8°C (Mossop and 

Hallett 1974). Rogers and Vali (1987) showed that ice crystals may also be generated from 

interaction with snow-covered terrain in clouds composed of supercooled liquid water. They 

found over 100 time higher ice crystal concertation at the surface than the main body of the 

clouds in the range of temperature -5° to -23°C.  

The unstable composition of supercooled clouds initiates the rapid phase change to mixed 

or ice crystal clouds. In mixed-phase clouds SLW interacts with ice crystals and as a result, 

ice crystals grow while SLW droplets shrink. This preferential growth of ice crystals in the 

expense of SLW droplets is called Wegner-Bergeron-Findeisen process (Bergeron, 1935; 

Findeisen, 1938), which has been suggested to tend to be faster in higher concentration of 
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ice particles. Cloud thermodynamic phase has an immediate impact on the microphysical 

processes (Pruppacher and Klett 1997) and  the precipitation type and efficiency (e.g. 

Storelvmo et al. 2011), where smaller water droplets in liquid-phase clouds could have 

delayed freezing process, leading to longer cloud lifetime and lower precipitation rates, 

compared to ice clouds (Rauber and Grant 1987). 

1.4 State of the Art Research on Orographic Precipitation 

Objective forecasting method is typically carried out using either numerical or statistical 

solution techniques (Glahn and Lowry 1972). Numerical methods that are much more 

computationally demanding might have their own limitations. The possible inherent 

limitations of numerical methods in representing some variables have led scientists to 

employ some combination of both approaches in practical forecasting to reach a better result 

(e.g. Garric et al. 2002; Dai et al. 2014).  

1.4.1 Numerical Simulations 

Forecasting orographic precipitation with a numerical weather prediction (NWP) model 

remains challenging due not only to the difficulties of representing the variety of complex 

physical mechanisms but also to the limited resolution of a simulation to resolve the complex 

surface geometry (e.g., Panziera 2010). Despite the significant progress in the 

implementation of increasingly sophisticated numerical models, it continues to be a 

challenge. These forecasts are vital for extreme weather event prediction and hydrological 

applications (e.g. Dai et al. 2014; Fritsch et al. 1998).  

The evaluation of precipitation forecasts is a further challenge given the high spatial 

variability of precipitation across a complex terrain and the limited number of surface sites 

available that can be used to rigorously evaluate the simulations. The Murray River 

catchment and the Snowy River catchment received an estimated 18% (419 GL) and 9% 

(146 GL) less precipitation in the Australian Water Availability Project (AWAP, Jones et al. 

2009) analyses than in a Barnes successive correction scheme (Koch et al. 1983), 

respectively, (Chubb et al. 2016) based on an independent network of high-elevation surface 

sites. Chubb et al. (2015) showed that Bureau of Meteorology (BoM) underestimates the 

winter precipitation in high elevations by 15% due to the lack of heated tipping-bucket 



12 

 

gauges and wind fences. Recently, Huang et al. (2018) evaluated the estimation-forecast 

skill of Australian Community Climate and Earth-System Simulator (ACCESS) over the 

region of interest (2014-15), using the high-density precipitation gauge network of Chubb 

et al. (2016). They showed that the main shortcomings of the model are likely rooted in 

mispresenting the fine-resolution dynamics and microphysical processes in the large-scale 

precipitation parameterization. 

Over the past decade, there has been a sharp improvement in the understanding of orographic 

precipitation and physical/dynamical processes in atmospheric models. Progress has been 

made through the application of higher resolution mesoscale NWP and selection of subgrid 

parameterizations (e.g., cloud microphysics, land surface models, planetary boundary layer 

(PBL), and radiation transfer schemes), and as a consequence, more accurate and reliable 

quantitative precipitation estimates and forecasts have been demonstrated (e.g., Hong et al. 

2004; Thompson et al. 2008; Morrison et al. 2009; Liu et al. 2011; Rasmussen et al. 2011; 

Huang et al. 2014; Morrison and Milbrandt 2015). 

Microphysical processes that are not fully resolved in most of the NWP models continue to 

be a bottleneck issue. Spectral (bin) microphysics models predict particle size distributions 

explicitly and therefore provide more comprehensive solutions, but they are much too 

expensive for operational use. Bulk microphysical parameterizations are less 

computationally demanding, but they represent particle size distributions of a given 

hydrometeor class with an empirical function. Bin schemes make no prior assumption about 

the shape of the particle size distribution but are computationally expensive. Due to the 

inherent limitations, detailed in situ observations are often required to rigorously evaluate 

the microphysical parameterizations and to better understand the orographic processes. 

Further, an accurate representation of processes in SLW favorable environments, such as 

the Snowy Mountains, in NWP models remains challenging. In response to this need, a 

number of field campaigns designed to better understand mesoscale orographic flows over 

complex terrain (e.g. Stoelinga et al. 2003; Woods et al. 2005) provide a basis for evaluating 

the widely used bulk microphysical parameterizations and to reduce the uncertainties and 

deficiencies related to the complexity of orographic precipitation.  

Several studies have documented the sensitivity of simulated orographic precipitation to 

model horizontal resolution (e.g. Colle and Mass 2000; Grubišić et al. 2005; Colle et al. 
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2005; Rasmussen et al. 2011; Smith et al. 2015; Pontoppidan et al. 2017). It is found that 

finer horizontal resolution orography generally improves model skill until the orographic 

features are satisfactorily resolved. Any further increase in horizontal resolution does not 

necessarily cause major additional enhancement in model skill; however, this sensitivity is 

also subject to the detailed orography characteristics of the area being studied.  These 

findings suggest that the fine model resolution alone is not adequate to acquire skillful 

simulations of topographic precipitation. 

1.4.2 Statistical Approaches: 

Statistical approaches are widely used to improve aspects of NWP forecasts, which are far 

more computationally demanding. Two types of classical statistical methods can generally 

be utilized to either estimate of parameters or improve the NWP outputs: the Perfect Prog 

(Klein et al. 1959) and Model Output Statistics (MOS). The perfect prognosis (“perfect 

prog”) approach is a simultaneous statistical relationship built between observed 

atmospheric variables and observations of the predictand without NWP information (Klein 

et al. 1959).   The predictand will be then forecast by inserting the NWP information of 

predictors into the built statistical relationship (Wilks 2006). The perfect prog systems take 

NWP model forecasts for a future atmosphere, assuming them to be perfect. Since the 

potential predictors used in regression equations are not always well forecasted by the NWP 

models, the basic assumption does not account for model biases and this is a major drawback 

of the perfect prog scheme. On the other hand, as the built regression in the perfect prog 

scheme is not dependent of the NWP information, it is not required to be updated by any 

changes in the NWP, which can be considered as the major advantage of this method. 

Following the stability of the built equations in the perfect prog scheme, Shafer and Fuelberg 

(2008) applied this scheme to improve  forecasts of Cloud-to-ground warm-season lightning 

over Florida. 

An alternative to the perfect prog is a MOS method, which is an objective postprocessing 

technique in which a statistical relationship is developed to relate a single or an ensemble 

NWP model output to different projections into the future (Glahn and Lowry 1972). Since 

the MOS equations are built with NWP information, redevelopment is required to take into 

account changes in the NWP model. In this method, systematic errors in the NWP and local 
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climatology are accounted (Brunet et al. 1988). This postprocessing method is widely used 

on results from a NWP model to test the potential for improving the accuracy of forecasts 

such as precipitation (Sokol and Řezáčová 2000, Dai et al. 2014 ) , wind speed over complex 

terrain (Schicker et al. 2017), global horizontal irradiance and clear-sky index (Mejia et al. 

2018).  

1.5 Summary of Aims of the Thesis  

The aims of the thesis follow: 

1. Investigate interactions between the large-scale environment and the low-level 

atmospheric stability to daily winter precipitation across the Snowy. 

 

2. Examine the sensitivity of the wintertime precipitation over the Snowy Mountains 

of southeast Australia to changes in the low-level atmospheric stability as seen 

through the non-dimensional mountain height index and understand the relationship 

between the low-level stability and the synoptic meteorology, if any. 

 

3. Evaluate the skill of cluster analysis coupled with a MOS methodology to develop 

stepwise regression models to improve the accuracy of ACCESS_R daily wintertime 

precipitation forecast. 

 

4. Use the Weather Research and Forecasting Model (WRF) to understand the impact 

of the dynamical, microphysical processes and model resolution on precipitation 

over the Snowy Mountains. 

 

 

Aims of this study are summarized by the following listed chapters in this dissertation: 

Chapter 2: Characteristics of Wintertime Daily Precipitation over the Australian Snowy 

Mountains  
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The relationship between orographic precipitation, low-level thermodynamic stability, and 

the synoptic meteorology is explored for the Snowy Mountains of southeast Australia. A 21-

yr dataset (May–October, 1995–2015) of upper-air soundings from an upwind site is used 

to define synoptic indicators and the low-level stability. A K-means clustering algorithm 

was employed to classify the daily meteorology into four synoptic classes. 

 

Chapter 3: Prediction of wintertime daily precipitation over the Snowy Mountains 

Building on these historical relationships, model output statistics (MOS) from a moderate 

resolution (12-km spatial resolution) operational forecast were used to develop stepwise 

regression models designed to improve the 24-h forecast of precipitation over the Snowy 

Mountains. A single regression model for all days was found to reduce the RMSE by 7% 

and the bias by 75%. A class-based regression model was found to reduce the overall RMSE 

by 30% and the bias by 85%. 

 

Chapter 4: Simulations of orographic precipitation in the Snowy Mountains of Southeastern 

Australia  

In Chapter 4 we evaluate the Weather Research and Forecasting (WRFV3.8.1) NWP model 

in simulating the precipitation and clouds using high density ground based and satellite 

observations. A case study of a heavy precipitation event in late autumn (May 2016) is 

presented to better understand a typical wintertime storm associated with a cold frontal 

passage in the Snowy Mountains of southeastern Australia. A suite of carefully designed 

sensitivity simulations are undertaken to investigate the impact of the dynamical and 

microphysical processes on orographic precipitation over the Snowy Mountains.  

 

Chapter 5: Conclusions  
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2.1 Introduction  

Distinct from daily forecasts and estimates, the climatology of precipitation in southeastern 

Australia has been of great interest, particularly over the last decade. For instance, Landvogt 

et al. (2008) produced a climatology of wintertime precipitation in the Australian Alpine 

regions, in which daily precipitation was categorized into synoptic clusters consisting of 

‘‘prefrontal’’, ‘‘postfrontal’’, and ‘‘cutoff’’ classes. Chubb et al. (2011) studied a 20-yr 

period beginning in 1990, which included most of the ‘‘millennium drought’’, one of the 

most severe droughts in the past century (Timbal 2009). Through this period, a 43% decline 

in wintertime precipitation at high elevations (greater than 1000m) was observed. Local 

weather systems were classified into three major synoptic types (embedded lows, cutoff 

lows, and other) based on the synoptic mean sea level pressure (MSLP) and the 500-hPa 

geopotential height. Fiddes et al. (2015) employed a set of circulation dynamics indices to 

show that there has been a continuing decline in western high-elevation wintertime 

precipitation of the Australian Alps and a relatively stable rainfall trend in eastern parts of 

this region. These distinct phenomena are hypothesized to be caused by the likely presence 

of complex relationships between the amount of precipitation and large-scale climate 

patterns over this region, especially for extreme events (Theobald et al. 2015). 

K-means cluster analyses have been widely used on a variety of meteorological observations 

to generate the main synoptic types. For example, Wilson et al. (2013) employed k-means 

clustering method on upper-air data in south-eastern Queensland and found eight dominant 

weather regimes. Half of the identified weather regimes were associated with moist 

conditions, contributing 77% of the annual rainfall while occurring only 35% of the time 

and more frequently during the summer. The remaining four regimes, were associated with 

less than 23% of the mean total annual rainfall, despite of their high frequency of occurrence 

(65%). Dai et al. (2014, hereafter D14) assigned the daily synoptic meteorology into one of 

four classes over the Australian Snowy Mountains, using a K-means clustering algorithm 

with the upwind upper-air sounding. They found that the two wet clusters accounted for 30% 

of all days and 70% of the total wintertime precipitation. These two wet classes were 

associated with fronts (both embedded and cutoff) and postfrontal conditions, respectively. 

Theobald et al. (2015) provided eleven distinct synoptic circulation types that brought 

greater than 10 mm surface precipitation to the Snowy Mountains, using k-means clustering 
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method. Synoptic circulation was developed by combining 21, equally-weighted 

meteorological variables throughout the tropospheric column. 

 

2.2 Winter precipitation characteristics 

Following Chubb et al. (2011), a rainy day is defined at precipitation (including solid 

precipitation) threshold of 0.25 mm day-1 for the average Snowy Hydro Ltd. (SHL) surface 

observations (see details in section 2.3).  A basic summary of the winter precipitation is 

provided in Table 2.1. The frequency of rainy days is seen to follow a seasonal cycle with 

peaks being present in July and August. The intensity, however, is not found to present such 

a cycle; an overall mean intensity of 10.4 mm day-1 is observed for rainy days, with a 

standard deviation of 13 mm day-1. The mean intensity can be broken down into quartiles, 

which again do not display any strong seasonal cycle over the course of winter; however 

this seasonal cycle is apparent in the boxplot of the mean monthly accumulated precipitation 

(Figure 2.1, top plot). Average monthly accumulated precipitation over 21-yr on rain days 

indicates lower values in the transition months of May and October with an overall 

wintertime mean precipitation (the winter mean monthly precipitation) of about 167 mm. 

There is also high interannual variability; for example, the June monthly precipitation has 

varied from 42 mm in 2015 to 300 mm in the next year. Looking at the May-Oct accumulated 

precipitation, we can see winter precipitation in this region, as one of Australia’s wettest 

regions, seems to be highly variable from about 400 to 1400 mm in 2006 and 1996 

respectively (Figure 2.1). There is also a negative trend in the wintertime precipitation 

amount, with the value of -22.69 mm yr-1, amounting to 476 mm over the analysis period 

(1995-2015). Chubb et al. (2011) found slightly stronger negative trend (-26 mm yr-1) in the 

May–September precipitation amount for the period 1990–2009 over the high elevations of 

the Snowy Mountain. 
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Table 2.1 Main statistical characteristics of daily winter precipitation in mm for rainy days 

(>0.25mm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 May–Oct total monthly precipitation for the period 1995–2015 (top plot). May–Oct total 

precipitation in the high elevations of the Snowy Mountains. The linear fit has slope of -22.69 mm 

yr-1 (bottom plot). 

 Observations for 1995-2015 

Month 
Rainy 
days’  
Frequency  

Average 
Monthly 
(mm) 

Mean 
Intensity 
(mm/day) 

1st  
Quartile 
(mm/day)  

2nd  
Quartile  
(mm/day) 

3rd  
Quartile  
(mm/day) 

May 41% 122.5 9.5 6.7 9.8 12.8 

June 56% 171.5 10.6 5.7 10.6 14.2 

July 63% 179.6 9.7 8.3 9.5 11.7 

August 60% 193.1 10.9 9.0 10.6 13.4 

September 53% 192.1 11.6 10.0 11.7 13.0 

October 44% 143.3 10.0 6.4 9.1 13.1 

May-Oct 52% 166.7 10.4 7.7 10.2 13 
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Previous studies suggest that precipitation in southeast Australia is generally governed by 

large-scale climate drivers (Risbey et al. 2009). Risbey et al. (2009) showed that the 

relationships between the remote drivers and the Australian rainfall, vary spatially and with 

season and are not sensitive to the choice of index representing the drivers. For example, 

they reported the IOD was mostly related to rainfall in the south and west of the continent 

during June–October, while a correlation between the SAM and rainfall existed in all 

seasons in southwest and southeast parts of the continent. Here the relationships between 

the wintertime precipitation in the high elevations of the Snowy Mountains and the main 

climate drivers are also explored. Table 2.2 illustrates the correlations between monthly 

wintertime precipitation in the Snowy Mountains and the climate drivers over the period of 

1995-2015.  

The SOI index, measuring the anomaly of pressure difference between Tahiti and Darwin, 

indicates the atmospheric circulation across the Pacific which has significant positive 

correlation with rainfall over the southern Australia during the late winter and early spring 

(Risbey et al. 2009). This driver is found to be significantly strongly correlated (r ≈ -0.5) 

with precipitation in the high elevations of the Snowy Mountains in early spring (Sep-Oct, 

see Table 2.2). The Indian Ocean Dipole (IOD) shows the sea surface temperature anomaly 

difference between the tropical western and southeastern Indian Ocean reflects a negative 

relationship with values r = -0.74; showing a consistent interannual variability with the 

southeast Australia (Risbey et al. 2009).  

Negative correlations are found between rainfall and the two components of the subtropical 

ridge, position of the subtropical ridge (STR_P) and the intensity of the subtropical ridge 

(STR_I), over the winter. These correlations tends to peak in August. No statistically 

significant relationships are shown during the transition months (May and Oct). STR_I and 

STR_P are found to have the highest correlations with precipitation in July-Sep (r = -0.68 

on average) and in June-Sep (r = -0.60 on average), respectively (see Table 2.2). In addition, 

there is a stronger relationship between STR_P and the rainfall (r = -0.54 for the whole 

winter) than with STR_I (r = -0.29 for the whole winter), implying that the ridge position 

may suppress the rainfall over the Snowy Mountains more efficiently than the intensity. The 

May-Oct cycle of the STR_P (x-axis) and STR_I (y-axis) averaged across the periods of this 

study (1995-2015) is compared with the long-term (1890–2015) climatology of Timbal and 
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Drosdowsky (2013) in Figure 2.2. The monthly mean subtropical ridge over the 21-yr period 

from 1995 to 2015 shows a very noticeable anomaly towards greater intensity and more 

southerly location.  This feature can also be seen from the positive slope of the linear trend 

of these data over 21-yr (see Figure 2.2). 

The Southern Annular Mode (SAM) reflects the poleward contraction of the westerly belt 

that circles Antarctica and is found to be a dominant mode of atmospheric variability in the 

mid/high latitudes in the Southern Hemisphere (Thompson and Solomon 2002). Marshall 

(2003) calculated this index using the mean MSLP observations from six stations as a proxy 

of zonal mean at both 40˚ and 65 ˚S from 1958 to present. Looking at Table 2.2, for the 

entire winter period (May-Oct, 1995-2015), statistically significant correlations are found 

between mean rainfall and all the climate drivers except SAM. The positive phase of SAM 

shifts the belt of strong westerly poleward, whereby diminishing westerly over the southeast 

Australia during winter (Hendon et al. 2007). The observed significant negative correlations 

between SAM and the rainfall during June and July may be a result of poleward shift of the 

mid-latitude westerly (hence cold fronts) due to the positive SAM, which leads to the 

suppression of the orographic precipitation over the Snowy Mountains. Chubb et al. (2011) 

also reported about 30% less wintertime precipitation amount during a positive phase of 

SAM in the high-elevation gauges over the Snowy Mountains. 

The Atmospheric Blocking Index is also another regional synoptic feature of the winter 

circulation in the southern hemisphere. It depends on the zonal components of the mean 500-

hPa wind at several latitudes. The mathematical expression of this index is  

𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑠𝑠𝐴𝐴ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵𝐵𝐵𝐴𝐴𝑒𝑒𝐵𝐵𝑒𝑒𝑛𝑛𝑔𝑔 𝐼𝐼𝑛𝑛𝐼𝐼𝑒𝑒𝐼𝐼 = 0.5(𝑈𝑈25 + 𝑈𝑈30 + 𝑈𝑈55 + 𝑈𝑈60 − 𝑈𝑈40 − 𝑈𝑈50 − 2𝑈𝑈45)              (2) 

where UL represents the zonal component of the mean 500-hPa wind at latitude L (Pook and 

Gibson 1999). Following Risbey et al. (2009), wind data from the National Centers 

Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR 

reanalysis dataset) are utilized at 140˚E (a typical longitude for Atmospheric Blocking in the 

Australian). The relationship is not statistically significant for the Atmospheric Blocking 

index at 140oE for the entire winter period average (May-Oct, 1995-2015, see Table 2.2). 

Atmospheric Blocking at 140oE is often linked to extended dry periods in southern Australia 

during winters; however, the resulting cut-off low systems moving equatorward neutralize 
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the influence of Blocking; and consequently favor rainfall events across southeast Australia 

(Pook et al. 2006), leading to the significant positive correlation (r = 0.29) between 

precipitation and the Atmospheric Blocking Index in July (Table 2.2).  

 

Table 2.2 The Pearson correlation coefficients of monthly winter precipitation and large-scale drivers 

of rainfall across the Snowy over the period 1995-2015. Statistical significant at the 0.05 confidence 

level (2-tailed) is indicated by one asterisk. ABI: Atmospheric Blocking Index 

 

 

 

 

 

 

 

Figure 2.2 May-Oct cycle of monthly mean intensity (hPa) and subtropical ridge position (°S) for 

the long-term 1890–2015 climatology (blue curve) with its six month average (blue dot) and for the 

period 1995-2015 (red curve) with its six month average (red diamond). 
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Month SOI IOD SRT_I STR_P SAM ABI 
May 0.11 -0.15 -0.11 -0.36 0.16 0.12 

June 0.02 -0.44* -0.27 -0.42* -0.55* 0.18 

July 0.33 -0.26 -0.52* -0.63* -0.63* 0.29* 

August 0.27 -0.29 -0.81* -0.68* -0.21 0.23 

Sep. 0.5* -0.44* -0.70* -0.67* 0.29 0.22 

October 0.51* -0.74* -0.39 -0.17 0.40 0.24 

Winter  0.31* -0.36* -0.29* -0.54* -0.15 0.15 
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Table 2.3 illustrates the cross-correlations between these large-scale climate drivers at the 

0.01 significant level, showing that the drivers are dependent of one another. The strongest 

significant correlations are between SAM-STR_P (0.38) and SOI-IOD (-0.36); while, the 

lowest significance is for SOI-STR_I (-0.28). STR_P-STR_I (0.34) and STR_I-SAM (0.33) 

also indicate significant linear correlations. Timbal and Drosdowsky (2013), also found 

significant correlation between the two STR series from April to December (1890–2009). 

Due to the observed interaction between drivers, characterizing their impact on rainfall 

independently of one another is hard to detect and caution is needed to interpret such 

relationships. Risbey et al. (2009) used partial correlation techniques to account for this 

influence. 

Table 2.3 Cross-correlation coefficients between six large-scale drivers of rainfall across the Snowy 

over the period 1995-2015. Statistical significant at the 0.01 confidence level (2-tailed) is indicated 

in bold. ABI: Atmospheric Blocking Index 

 SOI IOD SRT_I STR_P SAM ABI 
SOI  -0.36 -0.28 -0.14 0.03 0.09 

IOD   0.08 0.07 -0.06 0.11 

SRT_I    0.34 0.33 0.11 

STR_P     0.38 0.01 

SAM      0.13 

ABI       

 

 

Figure 2.3 and 2.4 show the time series of accumulated monthly precipitation in the high 

elevations of the Snowy Mountains, along with the time series of large-scale drives. There 

is also a negative trend in the total monthly precipitation amount, with the value of -0.58 

mm month-1, over the analysis period (1995-2015). The two STR series show an increasing 

trend over the analysis period toward higher intensity and a more southerly location, while 

the Atmospheric Blocking Index and SAM show a very weak linear trend that is consistent 

with their weak relationship with precipitation (Table 2.2). The sea surface temperature 

anomaly difference between the tropical western and southeastern Indian Ocean (IOD) 

exhibits positive trend, indicating negative correlation with precipitation.   
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Figure 2.3 Time series of monthly-mean precipitation in the Snowy Mountains (blue barbs), with 
time series (red line) of climate drivers (top) STR_I, (middle) STR_P and (bottom) Atmospheric 
blocking Index (ABI). 
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Figure 2.4 Time series of monthly-mean precipitation in the Snowy Mountains (blue barbs), with 

time series (red line) of climate drivers (top) IOD, (middle) SOI and (bottom) SAM. 
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2.3 Datasets: 

 Ground-based wintertime precipitation dataset  

Half-hourly precipitation is obtained from seven weather stations above 1100m across the 

Snowy Mountains for a 21-yr period from 1995 to 2015. These high-elevation gauges, 

operated by Snowy Hydro Ltd. (SHL), utilize well-maintained heated tipping buckets for 

precipitation measurements. For consistency with the soundings, daily precipitation is 

obtained by aggregating the half-hourly precipitation from 1000 local time (0000 UTC) to 

the same time of the next day. Chubb et al. (2011, 2016) have evaluated the quality of the 

precipitation gauge data, finding appropriate accuracy and reliability of these measurements 

for climatological studies. The locations, elevations, operating year of the gauges and their 

fairly uniform long-term mean wintertime precipitation (May–October) are shown in 

Figure 2.5  and Table 2.4, respectively. For the 21-yr period considered, a full daily record 

(no missing data) of all stations was available for approximately 60% of the time. When data 

from one or more sites was either completely missing or its quality was flagged, the area-

average daily precipitation was taken to be the mean of the remaining valid observations. 

No systematic bias in missing or flagged data has previously been noted. For the winter 

period 2014–15, 92% of all days have at least five stations that had valid data contributing 

to the mean value. 

 
Figure 2.5 a) Map of the Snowy Mountains analysis region (red box) in southeastern Australia 

showing the closest upper-wind site of the BoM to the Snowy Mountains (Wagga Wagga). b) 

Location of the seven alpine rain gauges used in this study (enlarged red box). 
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Table 2.4 Properties of precipitation gauges sites at high altitudes in the Snowy Mountains. The 

mean winter precipitation values are calculated over the period 1995-2015. 

Site Start Year Longitude 
(o) 

Latitude 
(o) 

Elevation 
(m) 

Mean winter 
Precipitation (mm) 

Tooma Dam 1992 148.28 -36.05 1221 1156.96 

Geehi Dam 1992 148.31 -36.30 1175 1054.92 

Jagungal 1990 148.39 -36.14 1659 1104.37 

The Kerries 1995 148.38 -36.26 1740 1027.27 

Guthega Dam 1992 148.37 -36.38 1558 881.84 

Guthega Power Station 1994 148.41 -36.35 1320 963.30 

Cabramurra 1955 148.38 -35.94 1482 857.69 

 

 Wagga Wagga sounding dataset 

The nearest upwind sounding site to the Snowy Mountains is at Wagga Wagga, located 

about 180km to the northwest (Figure 2.5). Both Chubb et al. (2011) and D14 successfully 

employed these soundings to define the synoptic meteorology during the cold seasons. For 

the winter period of 1995–2015, the 0000 UTC sounding data were obtained from the 

database of University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html). 

Soundings were available for 75% of the days (2897 out of 3843). Following D14, as a first 

step we employ a cluster analysis with six synoptic indicators calculated from the Wagga 

Wagga soundings to investigate interactions between the large-scale environment and daily 

winter precipitation across the Snowy Mountains. The synoptic indicators chosen are 

detailed in Table 2.5. Briefly, the three indicators TW, QV, and QU represent the available 

amount of water for the formation of precipitation, while TT and SH are considered to be 

simple estimates of the static stability of the atmosphere (e.g. Henry 2000).  

 

 

 

 

 

http://weather.uwyo.edu/upperair/sounding.html


28 

 

 

 Table 2.5 Summary of six synoptic indicators used to represent large-scale environment 
 

Variables Abbreviation Formula Unit 

Surface pressure at Wagga Wagga GP Non-Applicable ℎ𝑃𝑃𝑃𝑃 

Southerly moisture flux up to 250 hP  QV 
1
𝑔𝑔
�𝑞𝑞𝑞𝑞𝐼𝐼𝐴𝐴 Kg s-1 m-1 

Westerly moisture flux up to 250 hPa QU 
1
𝑔𝑔
�𝑞𝑞𝑈𝑈𝐼𝐼𝐴𝐴 Kg s-1 m-1 

Total moisture up to 250 hPa TW 
1
𝑔𝑔
�𝑞𝑞𝐼𝐼𝐴𝐴 ℎ𝑃𝑃𝑃𝑃. 𝑠𝑠2.𝑚𝑚−1 

Root-mean-square wind shear  
between 850 and 500 hPa SH �(

Δ𝑈𝑈
Δ𝑧𝑧

)2 + (
Δ𝑞𝑞
Δ𝑧𝑧

)2 𝑠𝑠−1 

Total totals index TT 𝑇𝑇(850) − 2𝑇𝑇(500) + 𝑇𝑇𝑑𝑑(850) Co  

 

Expanding on the framework of D14, the low-level atmospheric stability, i.e. the non-

dimensional mountain height (𝐻𝐻�), is added as a seventh predictor. TT and SH are defined 

between the levels of 850 and 500 hPa; whereas 𝐻𝐻�2 is defined to a height of 1000 m. The 

mathematical expression of the non-dimensional mountain height is  

U
Nh

Fr
H ==

1ˆ ,                      (1) 

where U is the cross-mountain wind speed (m/s) and h is the mountain height (h=1 km 

representing the mean elevation of the region (e.g. Chubb et al. 2011). N is the Brunt–Väisälä 

frequency (s-1). Here the average U and N from 200 MSL up to 1200 MSL are used for the 

calculations. The Brunt–Väisälä frequency shows of the strength of the buoyancy force. It 

depends on whether the air impinging on the mountain is saturated. Following Hughes et al. 

(2009), the moist Brunt–Väisälä frequency (Durran and Klemp 1982) is employed when the 

relative humidity is greater than 90% (i.e. saturated conditions), otherwise the dry Brunt–

Väisälä frequency is adopted. As the value of N is imaginary when the atmosphere is 

conditionally unstable, so is the value of 𝐻𝐻�. In order to account for conditionally unstable 

events, which occur about 11% of the time, we employ the square of the 𝐻𝐻�  values (𝐻𝐻�2) for 

all analysis (e.g. Reinecke and Durran 2008). Negative values of 𝐻𝐻�2 indicate conditional 

instability. Hughes et al. (2009) showed that the large square Froude number values have 

similar behaviour as the negative ones (known also as conditionally unstable).  
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For small 𝐻𝐻�2 values, the low-level atmospheric conditions are generally referred to as being 

unstable to orographic lifting, implying that the airflow can readily pass over the terrain and 

mountain waves will be generated. For large  𝐻𝐻�2  values, the flow can be stagnated or 

diverted laterally around the barrier instead of being lifted over the terrain. In this scenario, 

stable or blocked conditions (hereafter “blocked days”) are generally observed (e.g. Watson 

and Lane 2014; Miao and Geerts 2013; Wang et al. 2016). Following the literature, we use 

𝐻𝐻�2 equal to 1 as the threshold to distinguish stable and unstable conditions. In practice, 

however, the transition is not precise, especially as we use only a fixed estimate for the 

mountain height, h. As discussed, the spatial distribution, magnitude and frequency of 

orographic precipitation has commonly been found to be sensitive to 𝐻𝐻�2. When 𝐻𝐻�2 < 1 

(unblocked days here), heavier precipitation events can be expected (e.g. Miglietta and 

Buzzi 2001; Colle 2004; Wang et al. 2016). By inspecting the coastal winds of California, 

Hughes et al. (2009) showed that the spatial distribution of precipitation became more 

homogenous for blocked cases, while for unblocked flows local orographic precipitation 

was strongly dependent on the slope of topography. 

 ERA-Interim reanalysis dataset 

Following Theobald et al. (2015), we employ the ERA-Interim reanalysis products (Dee et 

al. 2011) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) 

to derive composite synoptic charts that correspond to the clusters. The ERA-Interim data 

we employ are from 1995 onwards and at a spatial resolution of 0.75° × 0.75°. As the 

soundings at Wagga Wagga were not available at all time, the six synoptic indicators and 

𝐻𝐻�2 obtained from the ERA-Interim reanalysis dataset are used to fill in missing physical 

soundings for days in 2014-15 (physical soundings were only available for the 154 days 

during the analysis period). Comparisons of the in-situ Wagga Wagga soundings and the 

corresponding ERA-Interim reanalysis soundings for common days over the 21-year winter 

period show strong correlations for all synoptic indicators (GP: 0.99, SH: 0.90, TT: 0.92, 

TW: 0.97, Qv: 0.98, Qu: 0.97). Therefore, we consider using the ERA-Interim reanalysis 

soundings as a surrogate is appropriate. We note that as the Wagga Wagga soundings are 

likely employed in the data assimilation for ERA-Interim, the two sets of soundings may not 

be completely independent. The ERA-Interim soundings may be less skilled when the 

physical soundings are not available.   
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2.4 Methodology of cluster analysis 

The weather systems in southeastern Australia can be classified using a simple clustering 

methodology such as K-means (Hartigan and Wong 1979). This methodology follows an 

iterative refinement approach that assigns each observation to cluster that minimizes the 

overall Euclidean distance to cluster centroids. The number of clusters chosen, ’k’, is 

arbitrary, although numerous criteria have been developed (e.g. Rossow et al. 2005; Pope et 

al. 2009).  

Pope et al. (2009b) examined the variability of 49 wet seasons (September–April) for north 

Australia by performing the k-mean cluster analysis using the mean wind and 

thermodynamic information from sounding data observed at Darwin. The five distinct 

regimes are found to be significantly different in their synoptic environment, cloud patterns, 

and rainfall distributions. The mesoscale convective systems in northern Australia have also 

been grouped into four classes, based on some physical properties (Pope et al. 2009a). 

Recent studies by Wilson et al. (2013) and D14 show that winter days in Australia can be 

categorized into unique synoptic regimes by utilizing six synoptic indicators as independent 

variables for the clustering procedure. Accordingly we have chosen these variables, too. In 

addition to these six indicators, 𝐻𝐻�2  is also employed to account for the low-level local 

atmospheric stability. 

Determining the optimal number of clusters using the K-means algorithm is challenging 

given the opposite relationship between the number of clusters and their variances.  

Following D14, the optimal number of clusters is determined when the probability 

distributions of the daily rainfall for different clusters can be separated distinctively. Given 

that a relationship between orographic precipitation and 𝐻𝐻�2 is expected (Colle 2004), it is 

also worthwhile to appreciate the probability distributions of 𝐻𝐻�2 for each cluster when only 

the original six indicators are employed for the cluster analysis. A two-sample Kolmogorov-

Smirnov (KS) test is applied to insure the distinctiveness of the distributions. 
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2.5 Results of synoptic classification 

2.5.1 Classification using six indicators 

The K-means clustering technique was applied to the Wagga Wagga soundings data 

(complemented with ERA-I soundings for days when the physical soundings were 

unavailable) for winter days for the 21-year period 1995-2015 using the six indicators. When 

employing the original six sounding variables (TT, SH, QU, QV, GP & TW), the new 

analysis was consistent with that of D14; four clusters were the minimum number found to 

produce distinct daily rainfall probability distributions (Figure 2.6), passing the KS test at 

the 5% significance level. Moving from a four-cluster to five-cluster analysis, the KS test 

fails to produce distinct precipitation distributions. Thus, four clusters with significantly 

different distributions are chosen for this analysis. As a major objective of this research is to 

better understand the nature of the low-level stability, 𝐻𝐻�2, over the Snowy Mountains, and 

its value as a predictor of orographic precipitation, daily 𝐻𝐻�2 probability distributions are also 

produced (Figure 2.7). As with the daily precipitation, four clusters lead to distinct 

distributions of 𝐻𝐻�2, suggesting that the low-level stability is reflected in the broader synoptic 

meteorology.   

 
Figure 2.6 Probability distribution of daily winter rainfall over the period 1995-2015 based on six 

large-scale synoptic indicators.  
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Figure 2.7 Probability distribution of for next 24 hours after sounding measurements over the 

period 1995-2015 based on six large-scale synoptic indicators. 

 

A brief summary of the main statistical characteristics of each class is given in Table 2.6. 

The first cluster, C1, is the wettest cluster containing the majority of the heavy precipitation 

days, while the last cluster, C4, is the driest cluster containing the majority of the low 

precipitation days. Clusters C1 (frequency of rainy days: 94%, median: 18.97 mm day-1) and 

C2 (frequency of rainy days: 78%, median: 8.10 mm day-1) represent the wettest groups 

while C3 (frequency of rainy days: 55%, median: 3.79 mm day-1) and C4 (frequency of rainy 

days: 26%, median: 1.46 mm day-1) capture the driest weather. There are fewer days of C1 

and C2 than C3 and C4. The frequency of rainy days and the intensity are decreasing from 

C1 to C4. The mean values of 𝐻𝐻�2 for the four clusters are -1.37, 3.11, 7.08 and 15.77, 

respectively. Higher values of 𝐻𝐻�2  indicate stronger blocking and, accordingly, less 

orographic precipitation. The fraction of unblocked days (𝐻𝐻�2 < 1) is decreasing from 62% 

for C1 to 8% for C4. This fraction is slightly higher on rain days. 

Table 2.6 Main statistical characteristics of daily winter rainfall and 2Ĥ across synoptic clusters 

based on six-variable clustering  

2Ĥ
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 Frequency Mean 1st Quartile 2nd Quartile 3rd Quartile 
All 
days 
% 

Rain
days 
% 

Unblocked* 
All days 
(rainy days) 
% 

Rainfall 
(rainy 
days) 
mm 

 
Rainfall 
mm 

 
2Ĥ  

 
Rainf
all 
mm 

 
2Ĥ  

 
Rainfall 
mm 

 
2Ĥ  

C1 9.8 94 62 (65) 23.14 8.19 0.03 18.97 0.66 30.75 1.58 

C2 19.7 78 48 (57) 11.09 2.47 -0.05 8.10 0.68 15.32 2.34 

C3 37.2 55 22 (32) 6.68 1.24 0.58 3.79 2.19 8.49 4.96 

C4 33.3 26 8 (18) 3.41 0.77 1.52 1.46 3.72 3.91 9.78 

*Unblocked cases: days with 2Ĥ <1. 

In terms of synoptic indicators, Figure 2.8 shows box plots for each clusters. The values and 

trends amongst different groups are similar to the work of Chubb et al. (2011) and D14. The 

C1 has the lowest surface pressure (GP) with a mean value of 988.5 hPa, increasing towards 

C4 to a mean value of 1001.3 hPa. Looking at southerly moisture fluxes (QV), C1 is the 

only class that is mostly under the influence of northerly flux. The amount of westerly 

moisture flux (QU) drops when moving from C1 to C4. Considering QV, GP and QU 

patterns, C1 and C4 can be considered as two extreme classes. The variability of TT and 

TW is to some extent similar, with C1 (C4) having the highest (lowest) values, and C3 is 

slightly larger than C2 for both synoptic indicators. C2 has the highest mean shear with moderate 

static instability (as expressed by TT) 
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Figure 2.8 Box plot of synoptic indicators for four clusters with outliers removed. Upper and lower 

whiskers calculated based on the quartile method. Filled and unfilled dots show the median and mean 

values, respectively. 

2.5.2 Temporal variability of synoptic classes using six indicators 

The frequencies of occurrence for the four clusters are about 10%, 20%, 37% and 33%, 

respectively. The seasonal variability of clusters is found to be consistent with D14, the 

relative frequencies of C1 and C2 increase towards the end of winter. C3 is more frequent 

in early winter and C4 occurs more often in midwinter (Figure 2.9). Further, the synoptic 

meteorology of the wettest cluster C1, is consistent with the analysis of Chubb et al. (2011), 

a strong northwesterly moisture flux and low surface pressure are commonly present. C2 

can also be generally relates to a postfrontal environment, where winds are predominantly 

westerly (Chubb et al. 2012). 

It is also interesting to consider the interannual variability of the frequency of each class. 

The frequency of occurrence of C1, that occurs 10% of the time, varies from 4.7% in 2002 

to 22.1% in 2013, with a 21-yr average of 10.4%. More than 46% of the winter days fall into 

the driest class (C4 that occurs 33% of the time) in 2006, while the frequency of occurrence 
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of C4 in 2013 is only 22.1% (Figure 2.10). This variation is consistent with Figure 2.1, where 

the lowest May-Oct accumulated precipitation found in 2006.  

 

 

Figure 2.9 Seasonal variability of synoptic classes during 1995-2015. 
 

 

Figure 2.10  Interannual variability of synoptic classes during 1995-2015 
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2.5.3 Classification using seven indicators 

Given the observed opposite relationship between orographic precipitation and  𝐻𝐻�2 during 

six-variable clustering, it is worthwhile to explore the sensitivity of the clustering analysis 

to the low-level stability by including   𝐻𝐻�2 as an additional input variable to the clustering 

method. A K-means clustering was then undertaken using the original six synoptic variables 

and  𝐻𝐻�2  (7-variable clustering results are only elaborated hereinafter). As before, four 

clusters were found to be necessary to distinctly represent the daily precipitation distribution 

(Figure 2.11). C1 and C2 were found to be quite stable to this revision with only a handful 

of days swapping between clusters. The two dry clusters, however, were found to be more 

sensitive to this clustering revision. 1037 out of the original 1123 days in C3 remain 

unchanged (5 days shifted to C1, 50 days to C2, and 31 days to C4), while 823 of the original 

1003 days in C4 remain unchanged (35 days shifted to C2, and 145 days to C3). This further 

suggests that for the wet clusters, C1 and C2, that the low-level stability is reflected in the 

synoptic meteorology. 

 

Figure 2.11 Cumulative distribution of precipitation (right) and (left) for next 24 hours after 

sounding measurements over the period 1995-2015 based on seven large-scale synoptic indicators. 

 According to Table 2.7, clusters C71 (frequency of rainy days: 93%, median: 18 mm day-1) 

and C72 (frequency of rainy days: 78%, median: 4.54 mm day-1) represent the wettest groups 

while C73 (frequency of rainy days: 52%, median: 0.32 mm day-1) and C74 (frequency of 

rainy days: 22%, median: 0.03 mm day-1) capture the driest weather. There are fewer days 
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of C71 and C72 than C73 and C74.  The mean values of 𝐻𝐻�2 for the four clusters are -0.45, 

1.97, 6.24 and 20.20, respectively. Higher values of 𝐻𝐻�2  indicate stronger blocking and, 

accordingly, less orographic precipitation. The fraction of unblocked days (𝐻𝐻�2 < 1) for the 

four clusters are 63%, 48%, 20% and 5%, respectively.  

Table 2.7 Main statistical characteristics of daily winter rainfall and 2Ĥ across synoptic clusters 

based on seven-variable clustering 

 Frequency Mean 1st Quartile 2nd Quartile 3rd Quartile 
All 
days 
% 

Rainy 
days 
% 

Unblocked* 
All days 
(rainy days) 
% 

Rainfall 
(rainy 
days) 
mm 

 
Rainfall 
mm 

 
2Ĥ  

 
Rainfall 
mm 

 
2Ĥ  

 
Rainfall 
mm 

 
2Ĥ  

C71 9.9 93 63 (66) 22.94 5.74 0.05 17.48 0.7 29.04 1.7 

C72 22.2 78 48 (53) 10.83 0.63 0.03 4.54 1.11 12.87 3.01 

C73 39.2 52 20 (30) 6.12 0 1.35 0.32 3.33 8.7 3.66 

C74 28.6 22 5 (12) 3.32 0 4.59 0.03 11.1 0.17 27.88 

*Unblocked cases: days with 2Ĥ <1. 

 

The probability density functions (PDF) of 𝐻𝐻�2 are broken down by cluster (Figure 2.12, a-

d) for all days. Distribution of  𝐻𝐻�2 for all days is shown in stacked histogram in Figure 2.12e. 

For rainy days only, the PDF will be shifted to lower (less stable) values of 𝐻𝐻�2, and for no 

rain days shifted to higher ones (more stable) (Figure 2.12f).  



38 

 

 

Figure 2.12 a-d) Distribution of 2Ĥ  for each cluster, e) stacked histograms of 2Ĥ  variable for 
different clusters, f) the 2Ĥ distribution for No-Rain days and Rain days. ( 2Ĥ >25, occurring ~7% 
of the time and mostly in C4 are not shown). Note the different axes in (e and f) compared to (a-d) 

2.5.4 Synoptic conditions associated with each class 

a. Synoptic features for the centroids of C1-C4  

It is worthwhile to determine the synoptic meteorology under which each cluster occurs by 

considering the MSLP charts, obtained from the Bureau of Meteorology, and the associated 

upper-air sounding profile at Wagga Wagga weather station on days closest to the centre of 
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the four clusters. Table 2.8 summarizes the values of seven indicators for the closest day to 

centroid of each cluster. 

The day closest to the centre of the wettest cluster (24 Oct 2011) has the lowest value of 

surface pressure (GP: 986 hPa), while the driest cluster centroid (13 Sep 2000) has the 

highest value of surface pressure (GP: 1001 hPa). The day closest to C71 centroid shows the 

weakest static stability (as expressed by TT, SH and 𝐻𝐻�2). Looking at the fluxes, northerly 

moisture flux that is also greatest in magnitude can only be found in C71. Note that negative 

values of QV indicate moisture flux in the northerly direction. This feature commonly occurs 

in prefrontal conditions. This indicator is relatively weak in the other cluster’s centroids, 

suggesting the dominant northwesterly moisture flux in C71 and westerly moisture flux in 

C72, C73 and C74. The daily precipitation in centroids of each cluster is decreasing from 28.4 

mm in C71 to zero in C74.  The trends in this table are consistent with Figure 2.8. 

Table 2.8 Values of seven indicators along with their daily precipitation for days closest to each 

cluster centroid.  

 Date 
 

GP 
𝒉𝒉𝒉𝒉𝒉𝒉 

SH 
𝒔𝒔−𝟏𝟏 

TT 
Co  

TW 
𝒉𝒉𝒉𝒉𝒉𝒉.𝒔𝒔𝟐𝟐.𝒎𝒎  

QV 
Kg s-1 
m-1 

QU 
Kg s-1 
m-1 

2Ĥ  
Precipitation 
mm/day 

C71 24-Oct-11 986 0.0031 44.8 0.231 -2.148 2.335 0.49 28.40 
C72 15-Sep-05 988 0.0045 39.4 0.118 0.093 1.44 0.99 7.22 
C73 16-Sep-12 996 0.0018 43.6 0.133 0.131 0.427 13.65 0.11 
C74 13-Sep-00 1001 0.0024 28.4 0.086 0.242 0.120 25.17 0.00 

 

To check the consistency of the concluded characteristics of these days, it is beneficial to 

look at their MSLP charts and sounding profiles that are show in Figure 2.13. It can be found 

that two dry clusters (C73 and C74) are mostly under the influence of high pressure system 

over the Snowy Mountains with a very stable and dry sounding for C74. For the MSLP chart 

of the closest day to the centre of C71, a low pressure system, which is cut-off from the main 

belt of low pressure, has developed and centred near the region with a cold front passing the 

region. Looking at the first sounding, it shows strong northwesterly winds associated with 

passage of cold front. In general, high clouds with cold cloud tops are expected as a cold 

front is coming through, while in postfrontal conditions, shallow clouds are expected to be 

dominant. This feature can be seen from the height of the inversion which gradually 

decreases from C1 to C4 in Figure 2.13.  
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Figure 2.13 Upper-air sounding at Wagga Wagga weather station and MSLP chart for the days 

closest to the center of each class. 

b. Composite maps of the large-scale synoptic indicators for each cluster 

To better appreciate the synoptic meteorology of these four clusters (based on 7-variable 

clustering), ERA-Interim data are used to construct composite maps of the large-scale 
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synoptic indicators for each cluster. Following Theobald et al. (2015), the map domain is 

20- 46°S and 120°-140°E in order to capture the dominant synoptic meteorology. For these 

maps, only the top 25% of days of each cluster are employed. Specifically, these are the days 

that have the shortest Euclidean distance to the cluster centre. While this approach is 

commonly used when employing daily observations (e.g. Pook et al. 2006; Theobald et al. 

2015), it has been noted that the daily resolution of composite maps may mask some 

unresolved features within daily systems (e.g. a diurnal cycle), as well as over-represent 

slow-moving synoptic systems (Gallant et al. 2012). 

Starting first with the MSLP and total water (Figure 2.14), general synoptic states can be 

assigned to the four clusters.  The MSLP for C71, suggests that the cluster is associated with 

a frontal passage. It is not possible to distinguish between a cut-off low and an embedded 

low due to the compositing technique and the low number of clusters. Further, C71 is 

associated with a maximum in total water over the mountains, which is seen to extend up 

the Great Dividing Range through New South Wales and Queensland. Chubb et al. (2011) 

employed a back-trajectory analysis to define a ‘moisture corridor’ across this region for 

heavy precipitation events. C72, while less well resolved, suggests that the frontal system 

has passed over mountains. Chubb et al. (2012) detailed a case study of a frontal passage 

over the nearby Brindabella ranges, where orographic precipitation was recorded over the 

24-hour period after the passage of a front. Here air originating from the Southern Ocean 

brings limited moisture and modest precipitation. Skipping to the dry cluster C74, a strong 

high pressure system is evident over the region with very little moisture available. Cluster 

C73 is less easy to classify, most likely including a variety of synoptic settings that ultimately 

lead to little precipitation.  A high-pressure ridge is present across central Australia in the 

composite map, although it is much weaker than that of C74.   
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Figure 2.14 Composite charts of MSLP in hPa (Top) and TW in ℎ𝑃𝑃𝑃𝑃. 𝑠𝑠2 𝑚𝑚⁄  (bottom), showing total 

moisture up to 250-hPa, for the four classes. Era-Interim data (00UTC, May-October, 1995-2015) at 

a spatial resolution of 0.75° × 0.75° used to construct composite maps of only the top 25% of days 

of each cluster with the shortest Euclidean distance to the cluster centre. The corresponding 

maximum and minimum values of the examined variables are shown on top of the individual panels. 
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Turning to the moisture fluxes (Figure 2.15), the strong northerly and westerly moisture 

fluxes of C71 stand out, consistent with a frontal passage.  There is virtually no northerly 

moisture flux over the Snowy Mountains for C72.  It is strictly a westerly flux that is bringing 

the moisture for precipitation, again suggesting a post-frontal environment (Chubb et al. 

2012). Spatially, C73 and C74 are quite similar, with weak fluxes evident over the mountains. 

C74 is drier and has weaker fluxes of the two.   

 

 

Figure 2.15 As in Figure 2.14, but showing QV and QU (westerly and southerly moisture flux up to 

250-hPa) for the four classes. Colour-filled contours shows the magnitude of the moisture fluxes 

(�𝑄𝑄𝑈𝑈2 + 𝑄𝑄𝑞𝑞2 ) in Kg s-1 m-1 and arrows of the same length represent the moisture flux direction. 

 

The synoptic stability composites (TT and SH, Figure 2.16) further complete the general 

classifications of clusters C71 (frontal), C72 (post-frontal) and C74 (high pressure system). 

Over the mountains, the atmosphere is most unstable during a frontal passage and most 

stable under a high-pressure system. Unlike the other composite maps, however, these maps 

for C73 are now quite distinct, especially for the mid-level shear (SH). Very weak shear is 

evident just to the south of the Snowy Mountains, over Bass Straight and extending into the 



44 

 

Tasman Sea. This perhaps suggests that the upper free troposphere may be important in 

defining the synoptic meteorology of this cluster. A more thorough analysis of C73 revealed 

that a number of the days included in the composite included ‘east coast lows’ (e.g. 02 Oct. 

2004 and 18 Sept. 2015; Bureau of Meteorology 2017). 

Figure 2.16 As in Figure 2.14, but showing total totals index (TT) in ℃ and root-mean-square wind 
shear between 850 and 500 hPa (SH) in 1 𝑠𝑠⁄ .   
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A number of studies have diagnosed the principal synoptic types in southeastern Australia 

(e.g. Pook et al. 2006; Chubb et al. 2011). Specifically, Theobald et al. (2015) applied an 

automated approach to generate synoptic types by combining meteorological variables 

throughout the depth of the troposphere across the Snowy Mountains.  It is interesting to 

compare and contrast our four wintertime clusters with their 11 synoptic types. Only a 

limited comparison is possible as Theobald et al. (2015) considered only heavy precipitation 

days (threshold of 10 mm day-1) for the full year.  Further, instead of employing physical 

observations from a sounding site, they employed 13 variables provided from the ERA-

Interim reanalysis. In spite of these substantial differences, it is evident from the composite 

maps that C71 and C72 correspond to Theobald clusters T5 (Prefrontal troughs; approaching 

cold fronts) and T1 (Embedded cold fronts). Not surprisingly, dry clusters C73 and C74 

(occurring ~70% of the time during the cold seasons and most frequently at the start and 

middle of winter) were not represented by any of the Theobald clusters, since their analysis 

was limited to wet conditions throughout the year.   

In summary, C71 includes the heaviest precipitation days and the lowest 𝐻𝐻�2 values (and the 

highest frequency of unblocked cases). It occurs for 10% of the winter days, but accounts 

for 39% of the precipitation. It is associated with frontal passages. C72 is associated with 

post-frontal conditions. It occurs 22% of the time and accounts for 33% of the precipitation.  

C73 is associated with a variety of synoptic conditions.  It is a dry cluster, occurring 40% of 

the time and accounts for 23% of the total precipitation.  Finally, C74 is the driest cluster 

associated with high-pressure system dominating the region over the Snowy Mountains and 

to its north.  This occurs ~30% of the time and accounts for only 5% of the precipitation. It 

has also the strongest low level stability (i.e. highest 𝐻𝐻�2 values).  

 

2.6 Conclusion: 

Bureau of Meteorology station data at a spatial resolution of 0.05° × 0.05° (Jones et al. 2009) 

have been previously used to investigate the relationship between precipitation and large-

scale climate drivers. In the mountains of southeast Australia, this product is often too sparse 

or incapable of recording frozen precipitation rates greater than about 3 mm/hr (Gorman 
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2003). Thus, precipitation obtained from seven high-elevation gauges, operated by Snowy 

Hydro Ltd. (SHL) for a 21-yr period from 1995 to 2015 is used to explore the relationship 

between precipitation and large-scale climate drivers. A much stronger relationship between 

the wintertime precipitation in the Snowy Mountains and the position and intensity of the 

STR is found in comparison with that found across southeastern Australia (e.g. Timbal and 

Drosdowsky 2013). Monthly correlation coefficients (Statistically significant at the 5% 

confidence level) between these two components of the subtropical ridge and precipitation 

tend to peak in August in both the high-elevation gauges (r = -0.81 and -0.68 for STR_I and 

STR_P, respectively) and across southeast Australia (r = -0.69 and -0.51 for STR_I and 

STR_P, respectively; Timbal and Drosdowsky 2013). The SOI and IOD are found to be 

significantly strongly correlated with precipitation in the high elevations of the Snowy 

Mountains in early spring (Sep-Oct), showing a consistent interannual variability with the 

southeast Australia (Risbey et al. 2009). 

A primary aim of this chapter has been to better understand the sensitivity of precipitation 

over the Snowy Mountains of southeast Australia to the low-level stability (as measured by 

the square of the non-dimensional mountain height, 𝐻𝐻�2) and to understand the relationship 

between the low-level stability and the synoptic meteorology, if any. 

Previous research (D14) demonstrated that the precipitation over these mountains is 

sensitive to the large scale synoptic meteorology. Following this methodology, a K-means 

clustering algorithm was applied to the precipitation using six synoptic predictors (GP, TW, 

QU, QV, SH and TT). As before, four clusters were identified as the minimum number of 

clusters necessary to distinguish the precipitation distribution between clusters. Examining 

these more thoroughly with the use of ERA-I reanalysis data, the wet cluster (C1) was 

associated with frontal passages.  C2 was also a wet cluster, being associated with post-

frontal conditions. C4 was a dry cluster associated with suppressed (stable) conditions, and 

C3 was a dry cluster constructed from the remaining observations. Distributions of 𝐻𝐻�2 were 

also distinguished by this clustering, suggesting that 𝐻𝐻�2 was also strongly defined by the 

synoptic meteorology. When repeating the clustering for seven variables (the original six 

predictors plus 𝐻𝐻�2), only minor changes were observed for the two wet clusters, while 

changes were observed in the number and composition of dry clusters, C3 and C4. 
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3.1 Introduction  

Given the many challenges in numerically simulating orographic precipitation, a common 

practice has been to develop statistically based models to forecast precipitation as a function 

of some independent predictors (i.e. a regression between synoptic and/or local indicators to 

forecast precipitation). Statistical models are relatively simpler than NWP models; however, 

they do not consider the various physical processes of precipitation. Therefore, a 

combination of current NWP and statistical models seems to be an appropriate solution to 

address the above-mentioned limitations. Model Output Statistics (MOS) is a commonly 

used, post-processing technique to improve the skill of NWP forecasts, employing a 

statistical method to relate model output to observations (Glahn and Lowry 1972). 

Examining an ensemble NWP precipitation forecast, D14 found a significant 

underestimation of precipitation intensity over the high elevation terrain of the Snowy 

Mountains. Using their synoptic clustering, they applied a linear regression algorithm to 

improve the performance of ensemble precipitation forecasts, reducing the root mean square 

error (RMSE) by over 20% for their two wet clusters. The ensemble model, known as the 

Poor Man’s Ensemble (Ebert 2001), combined the output of seven independent large-scale 

NWP models to forecast precipitation at a coarse spatial scale of 1° × 1° resolution.   

One of the broader aims of the current research is to evaluate the performance of the high-

resolution Australian Community Climate and Earth-System Simulator (ACCESS) NWP 

system (Puri et al. 2013) in forecasting wintertime precipitation across the high elevation 

terrain of the Snowy Mountains. A further aim is to test whether the method developed in 

D14 (based on building a statistical relationship between the variables from a synoptic 

classification and the ensemble forecast of rain to enhance the skill of the model in 

precipitation intensity prediction) is applicable to operational, higher-resolution 

precipitation forecasts (compared to the Poor Man’s Ensemble) provided by the ACCESS 

model. Further, we seek to improve this clustering based MOS methodology by extending 

the analysis to explicitly consider the lower atmosphere stability.  Limiting our analysis to 

the cold seasons (May – October), the main outcomes of this chapter are: i) the investigation 

of inter-dependences between the low-level atmospheric stability and the daily precipitation, 

and ii) the improvement in the accuracy of the daily NWP precipitation forecasts over the 

Snowy Mountains via stepwise regressions coupled with the results of the synoptic 
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categorization (chapter 2). Much of the work in this chapter has been published in Sarmadi 

et al. (2017).  

 

3.2 Datasets: 

ACCESS model dataset: 

In addition to the dataset presented in chapter 2, the model data examined in this study are 

taken from the current operational ACCESS NWP system. The atmospheric component of 

ACCESS is the UK Met Office Unified Model (MetUM), which is a non-hydrostatic model 

using a semi-implicit, semi-Lagrangian numerical scheme  (Davies et al. 2005) to solve 

deep-atmosphere dynamics. This version of the ACCESS NWP system is referred to as the 

“Australian Parallel Suite 1” (APS1), which represents the first major upgrade to the system 

since operational running commenced in August 2010. The ACCESS-R forecasts used in 

our study for the two year (2014-2015) cold months (May-October) is the Australian-wide 

regional domain model, which covers an area of 65°S-16.95°N and 65°E-184.57°E 

(Figure 3.1). This model has a horizontal resolution of ~12km (0.11°) and a vertical 

resolution of 50 levels with the highest level at 37.5 km. Benefiting from the 4-D data 

assimilation, the ACCESS-R forecasts are initialized at 0000, 0600, 1200 and 1800 UTC of 

each day and provides hourly precipitation forecasts up to 72 hours ahead. The forecast 

precipitation is the sum of two components that are computed separately in the model using 

the convective and large-scale (i.e. microphysics) parameterization schemes, respectively. 

More detailed information on the ACCESS-R can be found in Puri et al. (2013). For this 

study, the mean value of 10 grid boxes covering the Snowy rain gauges, bounded by latitudes 

35.85°-36.40°S and longitudes 148.27°-148.49°E, is employed to represent the ACCESS-R 

precipitation forecast over the high elevations of the Snowy Mountains. Given issues related 

to the model spinup, the first few hours of the ACCESS_R simulations are neglected. On 

the other side, the forecast time need to be consistent with the sounding at Wagga Wagga 

and represents forecast for the next 24 h after sounding measurements. To address these two 

issues, the second day (24-48 hr) precipitation forecast is considered as the following day 

forecast.  
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Figure 3.1 ACCESS system APS1 configuration. Source: National Meteorological and 

Oceanographic Centre (NMOC) Operations Bulletin Number 99. 

 

3.3 Winter precipitation characteristics 

Same as chapter 2, a rainy day is defined at a threshold of 0.25 mm day-1 for either the 

average SHL surface observations or ACCESS-R precipitation. A basic summary of the 

winter precipitation is provided in Table 3.1. Focusing on the two-year analysis period 

(2014-2015), the SHL surface observations show a reduction in both the frequency of rainy 

days and the intensity (not significant at the 5% level) compared to the 21-year climatology 

(1995-2015; see Table 2.1). The statistics with ACCESS-R, show that both the frequency 

and intensity are greater than the observed values in comparison to two-year analysis period 

(not significant at the 5% level), while the opposite is true for the 21-year climatology (see 

Table 2.1). 
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Table 3.1. Main statistical characteristics of daily winter precipitation in mm for rainy days 

(>0.25mm) for a 2-yr period (2014-2015). Numbers shown in the brackets are the ACCESS-R results. 

Month May June July August September October May-Oct 

Rainy days  

Frequency 

51% 

(55%) 

50% 

(50%) 

58% 

(64%) 

55% 

(52%) 

35% 

(49%) 

23% 

(40%) 

45% 

(51%) 

Mean 

Intensity 

8.8 

(8.4) 

10.8 

(12.0) 

8.8  

(9.7) 

6.3 

(5.4) 

6.9 

(7.4) 

8.2 

(10.1) 

8.3 

(8.8) 

 

3.4 Methodology of cluster analysis 

The main aim is to improve the daily ACCESS-R precipitation forecasts (Prec_Acc) by 

combining the results of the synoptic classification with a stepwise regression. To this end, 

the averaged high-elevations SHL rain gauge observations are taken as the “ground truth” 

for this analysis. As the aim is to develop an operational MOS algorithm, the six predictors 

and 𝐻𝐻�2  are taken from ACCESS-R instead of the physical soundings. Note that due to 

operational management issues, the number of daily soundings at the Wagga Wagga station 

has been reduced to roughly three per week in recent years. Only 154 days are available 

during the two-winter period of interest at 00:00 UTC (10:00 Local Standard Time). To 

assess the skill of ACCESS-R in representing the synoptic regimes as observed by the 

physical soundings, the six synoptic indicators derived from the Wagga Wagga and 

ACCESS-R soundings are compared for the same time window (2014-15). The pairwise 

Pearson correlations between synoptic indicators showed significant correlations (at the 

level of 0.05) with the values of 66% (for SH), 86% (for TT), 92% (for QV), 93% (for TW), 

94% (for QU) and 99% (for GP), suggesting a good agreement between the model and the 

observations. Based on this, the synoptic classification scheme is applied to the ACCESS_R 

soundings. The results show high consistency in the frequencies of occurrence of the 

observed and model classes, justifying the use of the synoptic classification on the ACCESS-

R soundings for deriving the regression equations. As discussed above, within a forecasting 

context, all variables are taken from the ACCESS_R output, including the definition of a 

rain day. Model 1 is a single regression for all 366 winter days, regardless of cluster.  Model 
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2 first classifies each day into one of the four clusters, with each cluster having its own 

regression.   

The seven predictors and the ACCESS-R precipitation data were normalized before the 

regression models were developed. Model selection/complexity is an obvious problem when 

a large number of predictors are available. A stepwise approach (from a single constant value 

to quadratic combinations, including an intercept, linear terms, products, and squared terms) 

was applied to determine the leading predictors and the optimum regression formulation 

(degree of complexity within equations). Measures of accuracy (e.g. the RMSE or bias) will 

automatically improve as more predictors are included, but this comes at the cost of model 

simplicity. To balance the complexity and accuracy, the number of predictors employed was 

determined by minimizing the Bayesian Information Criterion, BIC, as an objective function 

(Liebscher 2012). The BIC is expressed as: 

                                             𝐵𝐵𝐼𝐼𝐵𝐵 = 𝐵𝐵 ∙ ln(𝑛𝑛) − 2 ∙ ln(𝐿𝐿�)                                                   (2)           

where k is the number of free parameters to be estimated, n is the number of observations 

and 𝐿𝐿�  is the maximized value of the likelihood function of the model. Further, we have 

considered a stepwise procedure that entails a forward selection and backward elimination 

algorithm. This process includes an examination of any linear dependency between 

predictors (also called multicollinearity) with redundant variables removed regardless of the 

goodness-of-fit criterion value (Curtis and Ghosh 2011).  

Both regression models were cross-validated via a bootstrapping methodology with 10000 

simulations to ensure that the results were statistically robust. For each simulation, 80% of 

the data are randomly assigned to the control group (used for deriving the coefficients) and 

the rest for testing. 

3.5. Relationships between independent variables and observed precipitation  

Given that an aim of this chapter is to improve orographic forecasts of precipitation through 

model output statistics, it is worthwhile to examine the correlation of these predictors with 

the precipitation.  Working with the historic data (1995-2015), QV (-0.51), QU (0.46), GP 

(0.46) and TW (0.43) are highly correlated with precipitation, while the stability measures 
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𝐻𝐻�2  (-0.24), TT (0.23) and SH (0.16) are less strongly correlated. All correlations are 

statistically significant, confirming our underlying premise that these variables can be of use 

in forecasting orographic precipitation. Table 3.2 also illustrates the cross-correlations 

between these variables at the 0.01 significance level. The highest significant correlation is 

between TW and QV (-0.55); while, the lowest significance is for SH-TT (-0.136). SH-TW 

and SH-QV did not indicate significant linear correlations.  

 

Table 3.2. Cross-correlation coefficients between seven synoptic indicators. *Bold numbers are 

significant correlation at significance level of 1%. 

 GP SH TT TW QV QU 2Ĥ  

GP  -0.283 -0.361 -0.379 0.223 -0.530 0.338 

SH   -0.136 -0.030 -0.019 0.334 -0.154 

TT    0.516 -0224 0.149 -0.269 

TW     -0.554 0.388 -0.237 

QV      -0.297 0.155 

QU       -0.249 
2Ĥ         

                             

Returning to the correlation between precipitation and the seven predictors, it is worthwhile 

to break down the analysis to the four clusters (Table 3.3). Not surprisingly, the correlation 

between the precipitation and any predictor is reduced within an individual cluster defined 

by these predictors. While greatly reduced, the correlations of QV, QU, GP, and 𝐻𝐻�2 remain 

statistically significant within each of the four clusters. TW remains significantly correlated 

within C1, C2 and C3. SH is only significantly correlated with precipitation in C4. Table 3.3 

also details the rank correlation of these predictors against the precipitation. For the three 

stability predictors (SH, TT, and 𝐻𝐻�2), the rank correlation (measures the degree of similarity 

between two rankings assigned to two members of a set) is greater in magnitude than the 

linear correlation suggesting a non-linear relationship exists between precipitation and 

stability. The rank correlation for 𝐻𝐻�2 is nearly as great in magnitude as that for GP, both of 

which are negative.  
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Table 3.3. Linear (Pearson) and Rank correlation coefficients between seven synoptic indicators and 

observed precipitation over the period of 1995-2015 (Classification results based on 7-variable 

clustering). *Bold numbers are significant correlation at significant level of 5%.  No Class: no 

classification process has been implemented. 

   GP SH TT TW QV QU 2Ĥ  

C1 Linear 

Rank 

-.206  

-.261 

.018 

.019 

-.039 

.010 

.176 

.063 

-.482 

-.460 

.194 

.143 

-.198 

-.296 

C2 Linear 

Rank 

-.370 

-.400 

.032 

-.012 

.219 

.311 

.197 

.166 

-.181 

-.161 

.276 

.308 

-.203 

-.355 

C3 Linear 

Rank 

-.288 

-.360 

.002 

.010 

.052 

.210 

.119 

.124 

-.137 

.002 

.144 

.218 

-.180 

-.344 

C4 Linear 

Rank 

-.199 

-.150 

.114 

.151 

-.061 

-.019 

.041 

-.073 

-.153 

.071 

.194 

.161 

-.098 

-.215 

No Class Linear 

Rank 

-.464 

-.555 

.163 

.186 

.232 

.367 

.428 

.376 

-.509 

-.231 

.465 

.469 

-.237 

-.533 

 

To better appreciate the inter-dependencies between 𝐻𝐻�2 and precipitation, their joint 

probabilities are explored with the use of a copula function (Sklar 1959). Copula functions 

have been widely used (e.g. Drouet-Mari and Kotz 2001; Genest and Plante 2018; 

Nicoloutsopoulos 2005) to detect the probabilistic relationships between variables and to 

show that a set of variables with low correlations (even zero) may still retain complicated 

“tail” dependence structures. Unlike the commonly used correlation measures, copulas are 

invariant under strictly increasing transformations of random variables which are used for 

comprehensively exploring nonparametric measures of interdependence (Schweizer and 

Wolff 1981). Copulas are not restricted to any particular type of parametric functions (e.g. 

Gumbel distribution) for the marginal or the joint probability distributions (Madadgar and 

Hamid 2014). According to Figure 3.2A, the scatter plot and marginal histograms illustrates 

the relationship between precipitation and 𝐻𝐻�2 in which, in overall, large values of 

precipitation are associated with low values of 𝐻𝐻�2 and high values of 𝐻𝐻�2 are associated with 

weak precipitation. The marginal histograms further indicate that the vast majority of data 

are located in the range of 0.25 mm to 10 mm for precipitation and -1 to 5 for 𝐻𝐻�2 , 

overwhelming the “tail” observations outside this range.  
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Figure 3.2B and Figure 3.2C illustrate the marginal CDF distributions of 𝐻𝐻�2 (ranging from 

-5 to 25) and precipitation (ranging from 0 up to 100 mm) for rainy days based on the data 

from 1995-2015. A steep slope implies a higher density of data within a considered range; 

precipitation values less than 10 mm and -1<𝐻𝐻�2 <5 have the highest frequency of 

occurrences (similar to what is concluded from the marginal histograms). Figure 3.2B and 

C are the main input elements used in calculating the joint probability values and copula 

function. The Frank copula (Frank 1979), selected as the best-fitting copula in this study, 

suggests that 𝐻𝐻�2 values greater than 7.8 correspond to precipitation events less than 0.6 mm, 

and 𝐻𝐻�2  values less than -0.3 correspond to precipitation events greater than 28.4 mm 

(Figure 3.2D). Conversely, low frequencies are given to pairwise events when 𝐻𝐻�2  and 

precipitation values are both low (𝐻𝐻�2 < -0.3 & precipitation < 0.6 mm) or high (𝐻𝐻�2 > 7.8 & 

precipitation > 28.4 mm) (Figure 3.2D). In summary, the copula identifies and quantifies the 

tail-end relationship (as previously highlighted by Aghakouchak et al. (2010) between 

𝐻𝐻�2and precipitation that was not evident in the simple correlation coefficient. An inverse, 

non-linear relationship between 𝐻𝐻�2 and precipitation was also suggested by the individual 

probability distributions of Figure 2.6 in Chapter 2. 
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Figure 3.2. A) Histogram and scatter plot of precipitation and 2Ĥ , B & C) the marginal CDF 

distributions of precipitation and 2Ĥ . D) Joint frequency using the Frank PDF copula. All the 

graphs are based on the data from 1995-2015 (for rainy days). 

A

B C

D
Frequency
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3.6. Results of Daily winter precipitation forecasting  

3.6.1 Precipitation estimations by ACCESS-R  

The daily ACCESS-R precipitation forecasts serve as our control forecast for the full two-

year (2014-2015) winter (May-October) period. Table 3.4 summarizes the verification 

scores used to evaluate the ACCESS-R forecasts in this study. When these precipitation 

forecasts were evaluated against Snowy Hydro’s high-elevation surface observations, the 

overall RMSE was 4.20 mm with a bias of 0.3 mm. On average ACCESS-R slightly 

overestimated the surface observations.  Looking at observed rain days only (0.25 mm day-

1 threshold), the hit rate for ACCESS-R was 88% with an RMSE of 6.2 mm day-1 and a bias 

of 0.42 mm day-1.  For no-rain days, the false alarm rate was 20.7% with an RMSE of 0.58 

mm day-1 and a bias of 0.19 mm day-1.  

 

Table 3.4 Summary of verification scores/metrics used to evaluate the ACCESS-R forecasts in 

this study 

 

 

Score/Metric Names Formula 

Root Mean Square Error (RMSE) �1
𝑁𝑁
∑ (𝐹𝐹𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1    where N is the number of observations,  

                                 Fi (Oi) are the forecast (observed) values. 
Bias 1

𝑁𝑁
∑ (𝐹𝐹𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑁𝑁
𝑖𝑖=1                                                        

Hit Rate ℎ𝑒𝑒𝐴𝐴𝑠𝑠
ℎ𝑒𝑒𝐴𝐴𝑠𝑠 + 𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠

 

False Alarm Ratio 
𝑓𝑓𝑃𝑃𝐵𝐵𝑠𝑠𝑒𝑒 𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒𝑚𝑚𝑠𝑠

ℎ𝑒𝑒𝐴𝐴𝑠𝑠 + 𝑓𝑓𝑃𝑃𝐵𝐵𝑠𝑠𝑒𝑒 𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒𝑚𝑚𝑠𝑠
 

Equitable Threat Score (ETS) 
𝐸𝐸𝑇𝑇𝐸𝐸 =

ℎ𝑒𝑒𝐴𝐴𝑠𝑠 − ℎ𝑒𝑒𝐴𝐴𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟
ℎ𝑒𝑒𝐴𝐴𝑠𝑠 + 𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 + 𝑓𝑓𝑃𝑃𝐵𝐵𝑠𝑠𝑒𝑒 𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒𝑚𝑚𝑠𝑠 − ℎ𝑒𝑒𝐴𝐴𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟

 

 ℎ𝑒𝑒𝐴𝐴𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 =
(ℎ𝑒𝑒𝐴𝐴𝑠𝑠 +𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠)(ℎ𝑒𝑒𝐴𝐴𝑠𝑠 + 𝑓𝑓𝑃𝑃𝐵𝐵𝑠𝑠𝑒𝑒 𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒𝑚𝑚𝑠𝑠)

𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐵𝐵
 

Frequency Bias Score (FBS) ℎ𝑒𝑒𝐴𝐴𝑠𝑠 + 𝑓𝑓𝑃𝑃𝐵𝐵𝑠𝑠𝑒𝑒 𝑃𝑃𝐵𝐵𝑃𝑃𝑒𝑒𝑚𝑚𝑠𝑠
ℎ𝑒𝑒𝐴𝐴𝑠𝑠 +𝑚𝑚𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠

 

Accuracy Score ℎ𝑒𝑒𝐴𝐴𝑠𝑠 + 𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴 𝑛𝑛𝑒𝑒𝑔𝑔𝑃𝑃𝐴𝐴𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠
𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐵𝐵
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These basic statistics can readily be broken down into the four clusters (Table 3.5). As 

expected, the wet ‘frontal’ cluster, C1, has the highest percentage of rain days, the greatest 

overall RMSE of 10.17 mm day-1 and bias of 0.76 mm day-1.  For rain days only, the hit rate 

was 97%.  Over the two-years of data (no-rain days), the false alarm rate was calculated to 

be zero for C1.  The relatively wet ‘post-frontal’ cluster, C2, shows the next highest overall 

percentage of hits (69%) and RMSE (5.2 mm day-1). The overall bias for C2 is 0.3 mm day-

1. Most notable for this cluster is the high rate of false alarm (38%) when looking at no-rain 

days. ACCESS-R produces precipitation too readily in these post-frontal conditions. For the 

dry clusters, C3 and C4, the overall RMSE are small. They are less skilled on rain days (hit 

rates of 86 and 72%, respectively) and relatively skilled on no-rain days (false alarm rates 

of 27 and 13%, respectively). 

 

Table 3.5. Performance of ACCESS-R precipitation estimation of observed precipitations over the 

period of 2014-15 with a value of 0.25 mm for the rain-day threshold. (hit, miss, false alarm and 

correct/negative values are in percentage) 
 

Synoptic 

classes 

(No. 

days) 

All days rain days only No-rain days only 

Hit 

 

Miss 

 

False 

alarm 

Correct/ 

negative* 

RMSE 

(mm) 

Bias 

(mm) 

Hit 

rate 

RMSE 

(mm) 

Bias 

(mm) 

False 

alarm 

rate 

RMSE 

(mm) 

Bias 

(mm) 

C1 (34) 88 3 0 9 10.2 0.76 97 10.7 0.83 0  0.03 -0.01 

C2 (51) 69 6 10 16 5.2 0.3 92 6.0 0.15 38 1.50 0.73 

C3 (141) 36 6 16 43 2.1 0.1 86 3.2 -0.04 27 0.41 0.2 

C4 (110) 16 6 10 67 2.0 0.4 72 4.1 1.4 13 0.44 0.10 

All days 

**(336) 
40 6 11 43 4.2 0.3 88 6.2 0.42 21 0.58 0.19 

*  Correct/Negative: model correctly detects no rain days   

** All days: all days without implementing the classification. 

 

More advanced metrics can readily be employed on these observations to assess the skill of 

deterministic precipitation forecasts, following the World Meteorological Organization 

Working Group on Numerical Experimentation (WWRP/WGNE 2008). For example, the 

frequency bias score (FBS, the ratio of the frequency of forecast precipitation events to that 
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of observed; where 1 indicates a perfect score) was calculated to be 1.12, and 0.97, 1.05, 

1.24, 1.16 for the overall time period and then broken down by cluster, respectively. An FBS 

score greater than one suggests that the model generally tends to predict rain days more 

frequently than they are observed. The absence of false alarm in C1 led to an FBS score of 

just under unity, indicating the tendency to less frequently predict precipitation, however the 

opposite occurred in the rest of the classes.  

The equitable threat score (ETS, the fraction of correctly predicted of observed and/or 

forecast events that has a range of -1/3 to 1, where 0 indicates no skill and 1 is a perfect 

score.) was calculated to be 0.49, and 0.73, 0.39, 0.41, 0.39 for the overall time period and 

the four clusters, respectively. The ETS accounts for correct forecasts due to chance when 

computing an index that combines the hit rate and the false alarm ratio. Ebert (2001) finds 

an ETS of around 0.4 for 21 April 1998 from the Poor Man’s Ensemble precipitation 

predictions, suggesting that the present system is especially skilful in identifying heavy-

precipitation events. The accuracy score (The fraction of “correct” forecasts) was also 

calculated to be 0.83, 0.97, 0.84, 0.79, 0.84 for the overall time period and the four clusters, 

respectively, indicating an encouraging result, with the most accurate forecast in C1. 

 

3.6.2 MODEL 1: SINGLE REGRESSION MODEL 

The single regression model (Model 1) is based on only two predictors, a linear combination 

of the ACCESS-R precipitation forecast and QU (Table 3.6), determined by the stepwise 

approach and the BIC. Coefficient of determination (R2) values show that the ACCESS-R 

forecast accounts for about 70% of the variation while QU contributed roughly 14%. Having 

QU as a leading predictor in the single regression model suggests that the model systematic 

error may be rooted in misrepresentation of westerly moisture flux. Four goodness-of-fit 

criteria [RMSE, r2 (the coefficient of determination), the hit rate, and bias (for all days)] are 

calculated to quantify the improvement in using a simple regression formula from the control 

ACCESS-R forecast precipitation (Table 3.7).  
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Table 3.6 Leading predictors in regression equations for different models. ‘‘Int.’’ stands for intercept. 

Model 

Leading Predictors  

using stepwise algorithm 

coupled with BIC criteria 

 on 8 indicators  

Regression equation 

1 QU, Prec_Acc 
Y = Int. +αQU+βPrec_Acc+γQU×Prec_Acc 

Int.= 0.290       α= 0.015      β= 0.857    γ=- 0.075 

2 

C1 TT, Prec_Acc 
Y = Int. +αTT+βPrec_Acc+γTT×Prec_Acc 

Int.= 34.718     α= -0.676     β= 0.77      γ=-0.342 

C2 Prec_Acc 
Y = Intercept +αPrec_Acc 
Int.= 0.495        α= 0.876 

C3 QU, Prec_Acc 
Y =Int.+αQU+β Prec_Acc+γQU×Prec_Acc 

Int.= 0.106        α= 0.723      β= 0.865     γ=0.084 

C4 QV, Prec_Acc 
Y = Int. +αQV+βPrec_Acc+γQV×Prec_Acc 

Int.= 0.206       α= -0.918       β= 0.442    γ=-0.271 

 

When limited to forecast precipitation days, the straight ACCESS-R forecast had an RMSE 

of 6 mm day-1, a bias of 0.68 mm day-1, a hit rate of 76% and r2 at 0.83 for the full two-year 

period (Results in Table 3.7 are different than those previously presented in Table 3.5 as the 

selection of rain day was changed from the surface observations to the ACCESS-R forecast 

to allow for an operational application). When the single regression model is applied, 

forecast precipitation had an RMSE of 5.6 mm day-1, a bias of -0.15 mm day-1, a hit rate of 

78% and r2 at 0.85. The single regression produced a 7% reduction in the RMSE. We can 

examine the forecast rain days by cluster, even when employing a single regression. The 

single regression model improves the RMSE in all four clusters, most strongly in C4. The 

bias is also reduced in each of the four clusters, most strongly in C4 and C1. The coefficient 

of determination remains largely unchanged by cluster. The single regression does not 

strongly improve one or more clusters at the expense of the remaining clusters; the 

improvement is largely across all clusters.  
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3.6.3 Model 2: Cluster-based regression model 

As stated before, Model 2 first classifies each day into one of the four clusters, with each 

cluster having its own regression. Linear combinations are built based on the leading 

predictors within each cluster (Table 3.6).The cluster-based regression (Model 2), produces 

an RMSE of 4.2 mm day-1, a bias of -0.1 mm day-1, an r2 of 0.89 and a hit rate of 84% when 

computed over all days.  The RMSE was reduced by 30% and the bias was reduced by 85% 

in comparison to the control ACCESS-R forecast precipitation.   

When breaking this down into the individual clusters, large improvements are identified in 

C1 (24% reduction in RMSE) and C4 (42% reduction in RMSE). Further r2 increases most 

for these two clusters. It is important to note that all of the tested indicators have already 

been utilized as input variables to the clustering algorithm. For the predicted rain days in C1 

(C4), a linear combination of the ACCESS-R precipitation forecast and TT (QV) is 

determined by the stepwise approach and the BIC. Having TT (QV) as leading predictor in 

C1 (C4) suggests that the model systematic error may be mostly associated with the variation 

of tropospheric stability (northerly moisture flux). While the gains for cluster C2 were more 

modest (C2 has the simplest regression fit with just having the ACCESS-R precipitation 

forecast as leading predictor), improvement is evident for all goodness of fit criteria. The 

cluster based regressions also reduced the false alarm rate (as well as improving the hit rate) 

in all clusters, but more strongly in the two wet ones.    
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Table 3.7. Goodness-of-fit criteria for different models for estimating daily winter precipitations over 

2014-15 based on ACCESS-R rainy days (results are only for the test groups). 

Classes Models Goodness-of-fit criteria Improvement of model 1 and 2 in compare to  
ACCESS forecast for each criterion (%) 

RMSE 
(mm) 

r2 BIAS 
(mm) 

Hit  
rate 

RMSE r2 BIAS Hit 

Overall 

ACCESS 6.0 0.83 0.68 76 NA 

1 5.6 0.85 -0.15 78 6.7 2.4 77.9 3.1 

2 4.2 0.89 -0.10 84 30.1 7.2 85.3 10.8 

 

C1 

 

ACCESS 10.8 0.67 1.10 90 NA 

1 10.3 0.77 -1.30 93 4.0 14.9 -18.2 3.7 

2 8.2 0.81 -0.60 100 23.5 20.9 45.5 11.1 

C2 

ACCESS 5.9 0.82 0.48 90 NA 

1 5.8 0.84 -0.34 93 2.2 2.4 29.2 2.8 

2 5.7 0.88 -0.19 100 3.9 7.3 60.4 11.1 

C3 

ACCESS 3.0 0.89 0.23 67 NA 

1 2.7 0.90 -0.17 68 7.4 1.1 26.1 2.0 

2 2.6 0.91 -0.04 70 13.5 2.2 82.6 4.1 

C4 

ACCESS 3.9 0.62 1.70 62 NA 

1 3.4 0.62 1.40 66 12.9 0.0 17.6 5.6 

2 2.3 0.69 -0.21 79 42.0 11.3 87.6 27.8 

*NA: Not Applicable 

 

Histograms of goodness-of-fit criteria for the cluster-based regression model for C1 (Model 

2 C1) derived from cross-validation analysis are illustrated in Figure 3.3. Due to the presence 

of skewness in histograms of coefficients and goodness-of-fit criteria (Figure 3.3), for all 

models, median of the histograms is considered and reported to reduce the influence of 

outliers. Similar histograms are obtained for other classes but not shown. It should be noted 

that the RMSE and bias histograms are derived from the normalized values of estimations, 

which are converted to mm for the final comparisons between the models.  
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Figure 3.3. Histograms of goodness-of-fit criteria (RMSE, r2, and Bias) based on normalized values 

for Model-2_C1 derived from cross-validations with 10000 simulations. The median of each panel 

is taken to represent the average values in Table 3.6.  

3.7 Conclusion: 

A primary aim of this chapter has been to exploit any uncovered relationship between the 

non-dimensional mountain height and precipitation to improve forecasts of precipitation 

over these mountains for water management purposes. It has long been appreciated that 

orographic precipitation is sensitive to 𝐻𝐻�2  with strong stability (large 𝐻𝐻�2 ) suppressing 

rainfall and, conversely, weak stability enhancing orographic precipitation (e.g. Watson and 

Lane, 2014). An analysis of 21 years of wintertime data confirmed this relationship for the 

Snowy Mountains. Average 𝐻𝐻�2 was significantly greater for no-rain days (14.5) than for 

rain days (3.9). A rain day was defined by a threshold of 0.25 mm day-1.  A deeper analysis 

of these data found that the relationship was primarily driven by extreme values with very 

large values of 𝐻𝐻�2 (>7.8) being associated with suppressed rainfall and very heavy rainfalls 

(>28 mm day-1) being associated with low values of 𝐻𝐻�2. A further investigation on the 
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relationship between the seven predictors (GP, TW, QU, QV, SH, TT and 𝐻𝐻�2) and the 

observed precipitation showed that they are all statistically correlated, justifying their 

application in forecasting orographic precipitation. Higher values in rank correlations of the 

stability indicators (more obviously for 𝐻𝐻�2) suggested a non-linear relationship rather than 

linear relationship. 

D14 noted that over the Snowy Mountains a NWP model demonstrated more skill at 

predicting the synoptic meteorology than the precipitation. Thus, model output statistics 

(MOS) of the synoptic variables was used to improve precipitation forecasts. Two different 

regression models were developed with the aim of improving the precipitation forecasts of 

the ACCESS-R model. Specifically, the goal was to reduce the RMSE and bias. First, a 

single regression model was developed and applied to two-years (2014-2015 wintertime) of 

ACCESS-R precipitation forecasts. This led to a 7% reduction in the RMSE and a 78% 

reduction in the bias. Then, a cluster-based regression was applied leading to a 30% 

reduction in the RMSE and an 85% reduction in the bias. 

The stepwise-based regression method (Curtis and Ghosh 2011) employed initially seeks a 

leading predictor that is able to convey a large portion of the dependent variable information 

(i.e. the ACCESS_R precipitation forecasts). Following on, the regression methodology tries 

to select another leading predictor to further improve the accuracy of forecasts. While 

additional predictors will improve accuracy, they are only added if they avoid redundancy, 

collinearity and complexity. It is important to note that all of the tested indicators have 

already been utilized as input variables to the clustering algorithm. Having TT as a leading 

predictor in C1 suggests that the model systematic error may be mostly associated with the 

variation of large-scale stability. Following this logic, the model precipitation 

overestimation in C4 may be rooted in misrepresentation of northerly moisture flux. 
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4.1  Introduction  

The literature provides well-studied examples of long-term precipitation and the climatology 

of precipitation in the Australian Alpine regions (e.g. Landvogt et al. 2008; Chubb et al. 

2011; Timbal and Drosdowsky 2013; Theobald et al. 2015; Fiddes et al. 2015). However, 

there has been only a limited number of studies on quantitative short-term precipitation 

forecasts from numerical weather prediction (NWP) models, despite the significant progress 

in the implementation of increasingly sophisticated numerical models. Evaluation of the 

regional forecast model (on a 0.1º×0.1º grid) in Chapter 3 showed that ACCESS-R, on 

average, overestimates the daily wintertime precipitation intensity over the high elevations. 

This error is, presumably, a consequence of the limited horizontal resolution in resolving the 

complex surface geometry or the misrepresentation of microphysical processes. Recently, 

Huang et al. (2018) elaborated on the estimation-forecast skill of ACCESS-VT (a higher 

resolution configuration of ACCESS with a horizontal grid length of 4 km over the analysis 

region) precipitation for two winters (May-September 2014–2015), evaluated against a high-

density precipitation gauge network. They showed that the main shortcomings of the model 

are likely rooted in misrepresenting the key dynamical and microphysical processes. The 

orographic clouds of the Snowy Mountains are renowned for the frequent presence of 

supercooled liquid water (SLW, liquid maintained at T ≤0◦C) during winter (Morrison et al. 

2013; Osburn et al. 2016). Clouds composed primarily of SLW may be sensitive to  

processes such as the Wegner-Bergeron-Findeisen process and ice multiplication. In a case 

study of two wintertime frontal precipitation events in the Brindabella Ranges to the north-

east of the analysis region, Chubb et al. (2012) noted the extensive occurrence of SLW in 

the extended post-frontal periods. An accurate representation of such processes in NWP 

models remains challenging. 

Efforts have been made to evaluate the skill of microphysics (MP) parameterizations in 

simulating clouds and precipitation associated with cold fronts (e.g. Han et al. 2013; Huang 

et al. 2014; Ganetis and Colle 2015; Nicholls et al. 2017), terrain-induced ascent (e.g., Lin 

and Colle 2009; Liu et al. 2011) and convection (e.g., Van Weverberg et al. 2013; White et 

al. 2017). Several studies have documented the sensitivity of simulated orographic 

precipitation to model horizontal grid spacing (e.g. Colle and Mass 2000; Colle et al. 2005; 

Smith et al. 2015; Pontoppidan et al. 2017; Grubišić et al. 2005). It has been found that finer 
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horizontal resolution generally improves simulation skill until the principle orographic 

features are satisfactorily resolved. Any further increase in horizontal resolution does not 

necessarily cause significant additional enhancement in model skill; however, this 

sensitivity is also subject to the detailed orography characteristics of the area being studied. 

These findings suggest that the fine model resolution alone is not sufficient to acquire skillful 

simulations of topographic precipitation. 

Distinct from sensitivity studies on model microphysics and resolution, investigating the 

impact of topography on precipitation has been of great interest. Flesch and Reuter (2012) 

examined the sensitivity of a flooding event to the Rocky Mountains topography and 

reported a reduction of about 50% in maximum precipitation by reducing the elevation of 

the higher mountains. In a similar manner, Milrad et al. (2017) employed a series of terrain 

smoothing experiments using the WRF model to quantify the role of the Alberta topography 

in producing an extreme rainfall event as seen through ascent forcing and precipitation. They 

showed the precipitation pattern, intensity and associated physical mechanisms were most 

sensitive to a terrain reduction above 25%. 

In this chapter, we present an analysis of a typical wintertime storm associated with a cold 

frontal passage in the Snowy Mountains of southeastern Australia. The main objectives are 

(1) to evaluate the skill of the simulations of precipitation and the associated meteorology 

over the analysis region, and (2) to explore the impact of changes in the topography, 

horizontal resolution and the microphysics (MP) schemes on the magnitude and spatial 

distribution of precipitation and associated cloud characteristics. A range of simulations are 

conducted address these objectives.  

 

4.2  Datasets: 

4.2.1 High density ground-based observation: 

A well-maintained network of precipitation gauges operated by Snowy Hydro Ltd. (SHL) is 

used in this study for evaluation. These gauges are a combination of ETI Noah-II all-weather 

precipitation gauges (ETI Instrument Systems Inc. 2008) with different configurations of 

wind fences at high elevations and heated and unheated tipping-bucket type gauges at lower 
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elevations. Rain gauge data are archived at half-hourly intervals and quality controlled, 

based on manual corrections and equipment faults. For the model evaluation, forecasts of 

half-hourly precipitation and surface temperature over the study period are directly 

compared with data from 51 gauges across the mountains. The reliability of these data for 

climatological research has been previously investigated by Chubb et al. (2011, 2016). They 

noted the significantly better skill of this dataset in representing the orographic precipitation 

signal over the steep western slopes of the Snowy Mountains, when compared against the 

Australian Water Availability Project (AWAP) precipitation analysis. Still, an underestimate 

is expected for some exposed sites, particularly under snowing, windy conditions because 

the current data set does not take into account the wind-induced losses in observations that 

are common over high-elevation sites (e.g. Chubb et al. 2015). 

4.2.2 Satellite imagery 

Himawari-8 is a geostationary Earth orbit meteorological satellite at 35793 km above the 

Earth, launched by the Japan Meteorological Agency in 2014, using new frequency bands 

for communication. Himawari-8 has a dedicated meteorological mission which began a new 

era in environmental satellites. This spacecraft carries the 16-channel (from the visible to 

infrared wavelength bands, covering the wavelength range between 0.47 and 13.3 mm) 

Advanced Himawari Imager instrument, which provides a better examination of the 

atmosphere characteristics than the previous satellite MTSAT. This instrument provides 

imagery that is finer in spatial resolution (0.5–2 km vs 1–4 km for MTSAT) and precision 

(12–14-bit images vs 10-bit for MTSAT) and higher in temporal resolutions (every ten 

minutes compared to hourly from MTSAT). Himawari-8 includes cloud top characteristics 

such as temperature and phase that are used in this study. 

4.3 The meteorological conditions of the case study  

Built upon the defined climatology in Chapter 2, here we present a case study that is 

characterized by transitioning from cluster C1 on 8 and 9 May, to C2 on 10 May, to C3 on 

11 May 2016. 8 and 9 May are also associated with weak low-level local atmospheric 

stability (non-dimensional mountain height <0.5), indicating that the airflow can readily pass 

over the terrain and mountain waves will be generated. Looking at the mean sea level 
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pressure (MSLP) analysis (Figure 4.1a-d) at 12:00 UTC on the 8th, a well-developed mid-

latitude cyclone is present with the low pressure centre (minimum MSLP of 980 hPa) located 

at approximately 35ºS. There is a relatively slow-moving cold front associated with this 

strong cut-off low, leaving the analysis region in the post-frontal field.  

As shown in the Himawari-8 true color images (Figure 4.1e-f), Southeastern Australia was 

mostly obscured by clouds, as the cold front swept through this region. The cold front is 

associated with a well-defined thick frontal cloud band migrating eastward with a vividly 

illustrated cloud-free band behind the front and a line of convection associated with a trough. 

Satellite observations at 0000UTC 9 May reveal an optically thick, well-defined frontal 

cloud band that is heavily glaciated, which is followed by shallow orographic clouds 

composed primarily of supercooled liquid water in the post-frontal environment (as will be 

discussed later). The prefrontal sounding profile (Figure 4.4a) shows considerable moisture 

up to 200 hPa. The surface temperature drops by 7.5°C (from 18.5 to 11°C) following the 

passage of this system, leaving the analysis region in a post-frontal environment as shown 

by the strict westerly winds (Figure 4.4b).   

 

 

            

(a)

(b)

(c)

(d)
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Figure 4.1 Mean Sea-Level Pressure (MSLP) analyses for May case at (a) 12 UTC 8th, (b) 00 UTC 

9th, (c) 12 UTC 9th and (d) 00 UTC 10th. Himawari-8 true color imagery for (e) 00 UTC on 9th and 

(f) 10th May 2016 are presented at the bottom. Images are provided by the Australian Bureau of 

Meteorology. 

4.4  Model configuration 

The Weather Research and Forecasting (WRF, version 3.8.1) model is used in this study. 

The WRF model is a sophisticated numerical model that solves the non-hydrostatic, 

nonlinear, fully compressible equations with a third-order Runge-Kutta scheme for time 

integration in a terrain-following coordinate system (Skamarock and Klemp 2008). In this 

study, the model is configured with exponentially increasing vertical levels (60 η-levels with 

a 50 mb model top), with a vertical resolution of 20 m at the surface extending to 600 m for 

the upper levels, , allowing 20 levels in the first 1 km. Three nested-domains with Horizontal 

grid spacing of 9 km, 3 km, and 1 km are utilized (Figure 4.2). The innermost domain (d03) 

is set up with 180×240 grid points covering the Snowy Mountains region. This domain was 

chosen given the computational expense of running high resolution simulations. However, 

an adequate distance to the precipitation analysis region is considered. To facilitate 

comparisons between the different resolution domains, feedback between the domains is 

switched off (one-way nesting). The model uses the daily ERA-Interim reanalysis data set 

(0.75º × 0.75º grid, 21 set pressure levels, and every 6 hour updates, Dee et al. 2011) for 

initial and lateral boundary conditions as part of the standard WRF pre-processing system 

(WPS). Three days of simulation are initialized at 0600 UTC 8 May 2016 with the first 3 

hour as the spinup time. The history intervals of prediction outputs are set to be 2 hours for 

d01, 60 min for d02 and 30 min for d03. Simulations were performed with the “Noah” land 

 00:00 UTC  10 May 2016 00:00 UTC  9 May 2016

(e) (f)
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surface model (Chen and Dudhia 2001), Yonsei University planetary boundary layer (PBL) 

scheme (YSU, Hong et al. 2006, first-order nonlocal) and the Goddard (Chou and Suarez 

1994) and RRTM (Mlawer et al. 1997) schemes for shortwave and longwave radiation 

scheme, respectively. The same schemes are used for each domain, with the exception of 

the cumulus scheme. The Betts-Miller-Janjic (Janjic et al. 2000) cumulus parameterization 

was used only for the coarsest domain (d01) to represent sub-grid convection. For the control 

run (CTRL), the microphysics is parameterized using the Thompson semi-double-moment 

bulk microphysics scheme (Thompson et al. 2008), which is double-moment (prognostic 

mass and number concentrations) for ice and rain and single-moment (prognostic mass 

concentration only) for other species (i.e., snow, graupel, cloud water, and vapour). This 

scheme can be used in real-time NWP as it is computationally less expensive than the full 

double-moment schemes (e.g. Morrison et al. 2005; Milbrandt and Yau 2005). The 

Thompson scheme has been shown in previous studies to have promising skill in 

representing both supercooled and glaciated conditions within wintertime storms over 

complex terrains (Stoelinga et al. 2003; Morrison et al. 2010; Chubb et al. 2012). An 

overview of the parameterization schemes used in this study is provided in Table 4.1. 
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Figure 4.2 (Top) Topography map of Australia (color shaded) and the WRF three nested domains 

(red boxes) used in this study. (Bottom) Zoomed-in view of the two inner domains with the location 

of two alpine rain gauges (Cabramurra and Guthega Dam). Other features include waterways (black 

dashed lines), river basins (green lines) and location of the Wagga Wagga weather station. 

 

Table 4.1 A list of configuration settings for numerical study. 

 
Parameterisation 
 

Option No. (d01,d02,d03) Comments 

Microphysics mp_physics = 8,8,8 Thompson (2008) scheme 

Planetary boundary  layer  bl_pbl_physics = 1,1,1 YSU PBL scheme  

Cumulus cu_physics = 2,0,0 Betts-Miller-Janic (d01 only) 

Land/Sea surface sf_surface_physics = 2,2,2 Noah LSM 

Short wave radiation ra_sw_physics = 2,2,2 Goddard Scheme 

Long wave radiation ra_lw_physics = 1,1,1 RRTM 
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4.5 Sensitivity studies 

A suite of carefully designed sensitivity simulations are undertaken to investigate the impact 

of the dynamical and microphysical processes on orographic precipitation over the Snowy 

Mountains.  

4.5.1 Microphysics run (MP) 

Wintertime precipitation simulations in complex terrain are widely reported to be sensitive 

to the choice of the microphysics scheme, which brings many uncertainties to atmospheric 

models despite significant progress during recent years (Liu et al. 2011; Pieri et al. 2015). 

Bulk parameterization of ice-phase microphysics is challenging given the diverse densities, 

complex shapes and several growth processes of ice particles (Morrison and Milbrandt 2015). 

In the current study, we examine the impact of a single-moment scheme versus the CTRL-

run in the prediction of the precipitation and associated cloud properties over the analysis 

region. The single-moment microphysics scheme, implemented into the WRF model 

(WSM5), predicts the mass mixing ratios of five hydrometeors: rain, cloud ice, vapour, snow 

and cloud droplets  (Hong et al. 2004). Huang et al. (2018) hypothesized that errors in the 

distribution of ice/snow occur over the Alps are due to the heavy presence of SLW and the 

single-moment MP scheme employed in the current operational ACCESS model. 

Considering that Thompson MP is particularly designed for SLW favorable environments 

in complex terrain (Stoelinga et al. 2003),  the WSM5 microphysics scheme is chosen to test 

the hypothesis from Huang et al. (2018). The WSM5 microphysics scheme tends to initiate 

ice more rapidly at ice saturation from vapour (deposition growth), limiting the environment 

for cloud water generation. This lesser ability to capture the supercooled liquid clouds is 

mainly arising from misrepresentation of the number of activated crystals in their single-

moment ice nuclei parameterization (Listowski and Lachlan-Cope 2017)  

 

4.5.2 Topography run (TOPO) 

Given the importance of the underlying topography in the modification of orographic 

precipitation, the aim of this experiment is to obtain a quantitative understanding as to how 
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the barrier influences the precipitation amount in the analysis region. A variety of techniques 

can be employed to analyze such sensitivity experiments. A number of studies have 

compared NWP results with the actual terrain to that of eliminated terrain (e.g. Colle and 

Mass 2000; Wang et al. 2016), while others tried to perform experiments with reduced 

terrains only, using different smoothing techniques (e.g. Flesch and Reuter 2012; 

Schumacher et al. 2015; Milrad et al. 2017). In our experiment, we conduct a sensitivity run 

in which the rise above 1000 m is reduced by 75% (see Figure 4.3), as similarly done in 

Flesch and Reuter (2012). A threshold of 1000 m is chosen because it is the mean altitude 

of the Snowy Mountain region hence representing the background geography. A 75% 

reduction is used in order to preserve some of the topographic feature and to avoid drastic 

changes of topography that may induce dramatic changes in the large-scale circulations.  

 
Figure 4.3 The model topography map (CTRL-run, left), the reduced-mountain topography map 

(TOPO-run, Middle) where rise above 1 km is reduced by 75%, and the upscaled topography map 

(RES-run, right) where the orography of d02 (3 km) replaces that d03 (1 km).      

4.5.3 Resolution run (RES)     

The objective of this sensitivity experiment is to examine the influence of the fine-scale 

orographic details on the precipitation enhancement. Smith et al. (2015) found the Met 

Office Unified Model tends to simulate less cloud water and ice mixing ratios over the lower 

hills, leading to a reduction of the modelled rain accumulation of up to 23% by replacing the 

orography with coarser resolution models (1.5 km grid spacing replaced with 40 km). To 

quantify the effect of the resolution, the orography of d01 (3 km) replaces that of d03 (1 km) 
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while everything else remained unchanged. In this way, the highest model peak in d03 is 

slightly reduced, dropping from 2088.04 to 2085.22 meter (see Figure 4.3, right). 

4.6  Evaluation of Control Run 

In this section, the simulated synoptic and the surface features are first evaluated by 

comparing the results of the CTRL-run, against the observations. The CTRL-run is found to 

correctly simulate the transition of synoptic clusters from C1 on 8 and 9 May 2016, to C2 

on 10 May, to C3 on 11 May 2016 as seen through the sounding profiles characteristics. For 

example, the simulated surface pressure at Wagga Wagga station is found to increase from 

C1 on 8 and 9 May 2016, to C3 on 11 May 2016 with a wind shift from northwesterly to 

westerly component. Low-level and tropospheric stability values are also well simulated, 

which suggest the correct transition of synoptic clusters.   

4.6.1 Upper Air Profile 

Figure 4.4 shows the observed soundings (black) from the closest upwind site of the BoM 

to the Snowy Mountains (Wagga Wagga weather station located at 180km to the northwest) 

and the simulated atmospheric profile (red) at the nearest grid point in the 1 km domain. A 

buffer region of 30 grid points along each border was provided between the domain 

boundary and the precipitation analysis region. The simulated sounding (Figure 4.4a), 

roughly coinciding with the passage of the cold frontal system, has a good agreement with 

the Wagga Wagga sounding at 0000 UTC 9 May. With a time adjustment (lead) of half an 

hour, the model well captured both wind speed and direction throughout the profile with an 

exception of the wind direction in the lowest 2km. The simulation does a good job in 

predicting the cloud base height and surface temperature (within ~ 1°C); however, the 

simulation fails to reproduce the inversion and the multilayer structure at lower levels, which 

may partially be attributed to the limited vertical resolution of the simulation. The sonde 

stopped reporting data above 250 hPa. The westerly wind profile during the post-frontal 

environment is well captured by the WRF simulation (Figure 4.4b). The evolution of large-

scale synoptic pattern, as seen through MSLP charts, is well simulated by WRF in terms of 

both the location (e.g.  Approximately 35ºS on 8 May 2016) and the magnitude (both around 

980 hPa on 8 May 2016) of the low surface pressure system (not shown). 



76 

 

 
 

Figure 4.4 Comparison of the observed upper air soundings from the Wagga Wagga weather station 

(black lines) alongside 1 km WRF simulations from the nearest grid point to Wagga Wagga station 

(red lines) on 9 of May, 2016 at 00:00 UTC (a) and 11 of May, 2016 at 00:00 UTC (b). 

(a)

(b)
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4.6.2 Surface Precipitation and Temperature Evaluation: 

Time series of observed precipitation and temperature from two gauges along the main ridge 

line (Cabramurra and Guthega Dam, see Figure 4.2) are directly compared to the WRF 

simulations (9 km, 3 km and 1 km) to confirm the timing, the rate of precipitation and the 

impact of the grid resolution (Figure 4.5, top plots). Different precipitation episodes, 

apparent by the varying slope of the curves, relate to the synoptic situation as illustrated in 

the MSLP charts. The first jump (in light blue shade) in precipitation occurred when the cold 

front passed through in the early hours on the 9th, bringing about 20 mm precipitation during 

a 3-hr period. The second jump (in dark blue shade), separated by a dry period (in yellow 

shade) of about 8 hour, was associated with a trough that brought about 50 mm precipitation 

during 12 hours at Cabramurra and 80 mm during 18 hours at Guthega Dam. Shaded areas 

correspond to different precipitation episodes. The timing of the precipitation onset is 

generally in good agreement with the simulated precipitation, despite the 1-hour lag. 

Comparing precipitation from the three domains with different grid resolutions shows that 

the inner-most domain (d03) agreed best with the observations, particularly towards the end 

of the integration time. However, a slight underestimation was persistent throughout the 

simulation. This result is consistent with the previous studies using different models in other 

mountainous regions (e.g. Colle and Mass 2000; Grubišić et al. 2005; Rögnvaldsson et al. 

2007; Smith et al. 2015) that found only a marginal improvement in the model performance 

by decreasing the grid spacing, once the principal orographic features are resolved. Note 

that, potential biases arising from comparing precipitation observed at individual surface 

sites over complex terrain with “gridded” precipitation cannot be ruled out. 

Looking at a time series of the surface observations of temperature (Figure 4.5, bottom plots), 

a sharp drop (from 12◦C to 6◦C in three hours) is seen at approximately 04:00 UTC, 

suggesting the passage of the main front. The onset of this drop in surface temperature has 

a lag of about 2 hours in the simulations. The simulated temperatures were about 1 to 2◦C 

colder than the observations. It is worth noting that the accuracy of the simulations was 

similar across the other high-elevation SHL sites. The 1-hour difference in lag between the 

observed rainfall and the temperature suggests that there is prefrontal rain. Also noted is a 

difference in timing in the simulated surface temperature at the Wagga Wagga sounding site 

and the SHL observations. The 2-hours lag in the mountains compare with the half an hour 
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lag upwind at Wagga Wagga can potentially show that the mountain is slowing down or 

changing the direction of the actual passage of the front in the model. In other word, it is 

plausible that the simulation shows a greater impact of the mountain ranges than was 

observed. 

Figure 4.5 Time series of the observed surface accumulated precipitation (top panels, solid blue 

lines), 2-m temperature (bottom panels, solid blue lines) measurements of Cabramurra and Guthega 

Dam with the WRF d01 (9 km, dashed red lines), d02 (3 km, dotted brown lines) and d03 (1 km, 

solid green lines) outputs from the nearest grid point to the sites. Shaded areas correspond to different 

precipitation episodes. 

 

 Figure 4.6 shows the spatial distribution of observed and modeled accumulated 

precipitation. The colours show the 69-hr accumulated precipitation from CTRL-run, 

overlaid with that observed by rain gauge stations shown as filled circles using the same 

colour scale; grey lines show the topography used in the simulations. The nearest grid point 

to the SHL rain gauges in WRF simulation is used for the comparison. The orographic 

signature, as seen through the correlation between the precipitation values and topography, 

is detectable in both the observed and simulated precipitation. The overall mean of the 
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accumulated precipitation from the gauges against the CTRL-run forecast agree well (both 

about 62 mm) with a bias of -1.2 mm. Perhaps the most striking feature is the negative bias 

(underestimate) at a number of sites, generally located along the lower slopes and just 

immediately upwind (western) of major peaks. This bias in the upwind can be an 

underestimate of up to 70 mm for the 69-hr accumulated precipitation. In summary, the good 

performance of the CTRL-run justifies consideration of the sensitivity runs. Potential 

reasons for the upwind bias will be explored through the sensitivity runs, particularly the 

MP-run. 

 

Figure 4.6 The 69-hr accumulated simulated precipitation amounts (in mm) from 1km resolution 

with CTRL-run (Thompson MP), overlaid with the model topography (black contours from 400 to 

2400 m by 250m-interval). Filled circles show the SHL observations using the same colour scale. 

Black asterisk and white cross mark the location of two precipitation gauges at Cabramurra and 

Guthega dam, respectively. 

 

Taylor diagram (Taylor 2001) of the 69-hr accumulated precipitation at the 51 SHL rain 

gauge stations (Figure 4.7) illustrates how well the simulations compare with the 

observations, as measured by the Pearson correlation coefficient, the root-mean-square error 
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(RMSE) and the standard deviation. The standard deviation as an indicator of spatial 

variability amongst the stations, for d01 with 9 km grid spacing (about 32 mm) is clearly 

underestimated compared with the observed standard deviation (about 42 mm); however, 

this value is just slightly underestimated in d03 (about 44 mm) and more strongly in d02 

(about 46 mm) compared with the observations.  Looking at the RMSE and the correlation 

values, the 1 km control simulation performs the best (20.8 mm and 0.89, respectively), 

while the other two simulations (3 and 9 km) are comparable (~25 mm and ~0.84, 

respectively). Overall, the high-resolution run, d03, agrees best with the observations, and 

the 3 km simulation is slightly less skillful. This result is similar to the finding of 

Pontoppidan et al. (2017) who found the same response from their three nested WRF 

domains with the same horizontal resolution as this study.  

 

 

Figure 4.7 A Taylor diagram based on the 69-hr precipitation at the 51 stations for d01 (black circle), 

d02 (black square), d03 (black diamond) CTRL-run simulations, along with the observations marked 

as a star for reference. The TOPO-run, MP-run and RES-run from the 1 km simulations marked as 

blue, brown and green diamonds. Correlation coefficients are in blue contours. Dashed-green solid-

black contours indicate the RMSE and standard deviation values, respectively. 
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4.7 Sensitivity Study: 

Figure 4.8a shows the time series of the observed accumulated precipitation averaged over 

all precipitation gauges along with the WRF precipitation forecast for the CTRL-run and the 

three sensitivity runs. Overall, all simulations correctly generate the two periods of heavy 

precipitation as shown in the observations. The MP-run produces similar accumulated 

precipitation to that from CTRL-run until the end of the dry period, where it starts to diverge 

and constantly simulate more precipitation by about 9%. The greater precipitation from the 

MP-run is in better agreement with the observations during this period. Potential reasons for 

this feature will be explored in more details through the MP-run. 

While the accumulated area-averaged precipitation is only slightly changed in the MP-run 

and the RES-run, a strong reduction is apparent in the TOPO-run, indicating the major role 

of terrain in the development of orographic cloud and precipitation during the period of 

simulation. This feature can also be seen from the boxplots of total precipitation at all SHL 

sites over the three days of simulation (Figure 4.8b). This comparison explains the important 

aspect of the terrain in the production of orographic precipitation in this case. In other words, 

it highlights the higher impact of the peak heights in comparison with the valleys and ridges 

that have been smoothed out in the RES-run. 

Time series of accumulated precipitation from an upwind site (west) and a downwind (east) 

site of the main ridge line (Pinnacle Mountains and Island Bend, respectively; for location 

see Figure 4.6) are also compared (Figure 4.8c-d), showing much more precipitation is 

produced by the MP-run on the immediate upwind and downwind sides. Huang et al. (2018) 

suggested that the single-moment three-phase bulk MP scheme in ACCESS (Wilson and 

Ballard 1999) glaciated too quickly, which led to overestimation of precipitation on 

windward of the Snowy Mountains. The opposite feature is true for the CTRL-run, where 

the underestimation of precipitation is occurred in both upwind and downwind sides. This 

underestimation is likely due to higher concentration of SLW in the CTRL-run, which leads 

to longer cloud lifetime and lower precipitation rates, compared to the simulated ice clouds 

in the MP-run (Rauber and Grant 1987). It can be seen that the contrast in the accumulated 

precipitation between the upwind and downwind sites is much weaker in the MP-run, 

compared to the CTRL-run and observation. 
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Figure 4.8 (a) Comparison of total accumulated observed and simulated precipitation averaged at all 

SHL rain gauge sites. (b) Boxplots of the total observed and simulated accumulated precipitation at 

the rain gauge sites for a 69-hour period. The first and third quartiles of the associated data represent 

at the top and bottom of the boxes, respectively. The 5th and 95th percentiles are shown by the start 

and end of the whiskers. The unfilled circles inside the boxes are the mean values. Time series of the 

observed surface accumulated precipitation measurements of (c) an upwind site of Pinnacle 

Mountain and (d) and a downwind site of Island bend. 

 

Comparing the spatial distribution of the observed precipitation to that from the nearest grid 

points of the sensitivity runs shows that, generally speaking, there is a weak sensitivity in 

the broad pattern of the spatial distribution of precipitation accumulations to the 

microphysics scheme employed (Figure 4.9b), except where the terrain is steep and complex. 

This feature can be also seen from the time series of precipitation at both an upwind and 

downwind sites (Figure 4.8c-d). The precipitation average at all sites tends to be 

overestimated by 10% with an overall mean and bias of 68 and of 5.5 mm, respectively. The 

precipitation magnitude and spatial distribution in the TOPO-run differ significantly from 

observations with an overall reduction of 56% from 62 to 27 mm and a bias of -34 mm 
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(Figure 4.9c). By reducing the rise above 1 km, the approaching flow continues to pass over 

the less-impeding ridge and generate more precipitation in a band along the eastern slope, 

which weakens the rain shadow effect far downstream (south-eastern sides) of the ridge. A 

similar finding was reported by Flesch and Reuter (2012) when analyzing the sensitivity of 

the precipitation features of a flooding event to reduction in the Rocky Mountains 

topography. 

They also found that the synoptic feature can also be affected by the reduced mountain 

topography, where weaker pressure perturbation along the windward slopes generated and 

shifted the surface low. Replacing the orography of d03 (1 km) with that used by d02 (3 km) 

does not change the overall spatial distribution associated with the orography; however, the 

average at the gauge sites has decreased by 8% from 62 to 57 mm with a bias of -4.8 mm 

(Fig. 7d).  

The Taylor diagram (Figure 4.7) also shows the basic statistics for the sensitivity runs. 

Comparing the observed statistics marked as a star for reference with that of the sensitivity 

runs reveals that the RES-run (marked as a green diamond; RMSE = 23.6 mm and r = 0.85) 

is in a relatively good agreement with the CTRL-run (marked as a black diamond; RMSE = 

20.8 mm and r=0.89), with a slightly lower correlation coefficient and higher RMSE. The 

MP-run shows a poorer correlation and overestimation of both the RMSE and standard 

deviation by roughly 10 and 4 mm, respectively, in comparison with the CTRL-run. Finally, 

the TOPO-run shows the highest RMSE and a poor correlation with observations. 
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Figure 4.9 The 69-hr accumulated simulated precipitation amounts from 1km resolution with (a) 

CTRL-run (Thompson MP) (b) MP-run (WSM5 MP) c) TOPO-run, and (d) RES-run, overlaid with 

the model topography (black contours from 400 to 2400 m by 250m-interval). Filled circles show 

the SHL observations using the same colour scale. 

 

Figure 4.10 compares the difference in accumulated precipitation between CTRL-run and 

the three sensitivity runs. Looking at the first plot (Figure 4.10a), the precipitation features 

of the single-moment MP run differ from those of the CTRL simulation using the Thompson 

MP scheme. Although the broader pattern is similar in MP run (see Figure 4.9a-b), a much 

stronger influence is evident at high elevations to the choice of MP schemes as seen in 

Figure 4.10a and d. While the domain-average precipitation has just marginally changed 
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(from 31.5 to 33.5 mm, leading to about 6% increase), the precipitation spatial distribution 

has been clearly affected with less precipitation over the mountain peaks and more 

precipitation over the windward and more clearly over lee slopes (with stronger relative 

difference, Figure 4.10d) where topography gradients are sharp. This result can be compared 

with that of Liu et al. (2011), who found that the WSM5 MP scheme generates greater 

precipitation than Thompson MP scheme (~22%) over the 3-month (Dec-Feb) total 

precipitation in the Colorado Rocky Mountains. They further noted that the WSM5 MP 

scheme produced more precipitation in the upslope region (similar to what we found here), 

but less precipitation in the lee-side that is in contrast to our results. They believed that the 

higher precipitation efficiency in this single-moment MP scheme had likely caused the 

western sides differ from the eastern sides of the mountains over the Colorado Headwaters 

Region. Our result is also consistent with the findings of recent model evaluation study of 

two cold seasons (May-Sep, 2014-15) precipitation forecast  that the single-moment scheme 

overestimates the total precipitation over the western slope of the Snowy Mountains (Huang 

et al. 2018).  

Looking at the second plot (Figure 4.10b), the major differences occur at high elevations, 

where the maximum accumulated precipitation dropped from 224 mm to 64 mm with 

relative difference of over 100% (Figure 4.10e), where the topography has been most 

suppressed. The domain-average precipitation dropped from 31.5 to 23 mm, giving a 27% 

reduction in precipitation. This result shows good agreement with Flesch and Reuter (2012), 

who studied the sensitivity of the precipitation features of a flooding event to reduction in 

the Rocky Mountains topography. They found the most (least) sensitivity to topography in 

the precipitation over (outside) the mountains as a consequence of a decrease in orographic 

lifting over the reduced-mountain terrain. 

Much less sensitivity in precipitation is observed by just replacing the orography of d02 by 

that of used in d03 (Figure 4.10c and f). Making the underlying topography three times 

coarser while everything else is kept the same, mostly affects the precipitation on the 

mountain peaks along with the steepest windward slopes which leads to slight reductions of 

about 6% and 4% in the maximum and area-average of the accumulated precipitation, 

respectively. This result is consistent with  Smith et al. (2015) who assessed the skill of the 

Met Office operational weather forecasts. They found that replacing the 1.5 km orography 
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with that used in the 4 km model, only reduces the area-averaged precipitation by 5%. They 

further concluded that the precipitation overestimation of 4 km model (~18%) over the hills 

cannot be related to the representation of the orography. 

 

 
Figure 4.10 Differences in accumulated precipitation (mm, shaded) overlaid with the model 

topography (black contours from 800 to 2200 m by 400m-interval), between the WRF 1-km for a 

69-hour period (0009 UTC 8 May to 0006 UTC 11 May 2016) for (a) CTRL-MP run; (b) CTRL-

TOPO run; (c) CTRL-RES run. The maximum and domain-averaged precipitation differences are 

shown on top of the individual panels. Bottom panels show the ratio of the precipitation amounts 

from the CTRL-run to that from (d) MP-run, (e) TOPO-run and (f) RES-run. 

 

Figure 4.11 shows the Hovmöller-type plots for differences of half-hourly precipitation rate 

for a 72-hr period through latitude 36.4ºS over the southern peak of the Snowy Mountains 

to better appreciate the evolution of the simulated precipitation as the synoptic system 



87 

 

progressed eastwards. Looking at the Figure 4.11b, it can be seen that single-moment MP 

scheme tends to predict more precipitation on the both western and eastern slopes and less 

precipitating over the peak (the peak elevation is located at 148.3ºE), where the topography 

gradient is sharp. Terrain reduction leads to less precipitation over the peak (Figure 4.11c) 

particularly during the second period of the heavy precipitation. Similar but weaker 

reduction features can be seen in RES-run (Figure 4.11d). The onset of two precipitation 

periods (see Figure 4.8a) and the spatial distributions of the heavy frontal precipitation 

(excluding TOPO-run) are generally in good agreement in the CTRL-run during the early 

hours of the 9th of May 2016. This precipitation patterns start to diverge from the second 

period of heavy precipitation during the post-frontal period (the second jump in Figure 4.8a). 

 

 

Figure 4.11 Time-distance diagrams showing half-hourly precipitation for (a) CTRL-run and 

differences rates in mm for a 72-hour period (0006 UTC 8 May to 0006 UTC 11 May 2016) through 

latitude 36.4ºS for (b) CTRL–MP run; (c) CTRL-TOPO run; (d) CTRL-RES run. The vertical cross-

sections are taken at a time during the post-frontal period, as indicated inside the red box. 

 

Given that orographic precipitation is a direct product of the microphysical processes in the 

orographic clouds, it is important to further examine the cloud microphysical structure and 

associated orographic enhancement mechanisms. To do this, a series of vertical cross 

sections along latitude 36.4˚S, showing the mixing ratios of different hydrometeor species, 

are drawn for CTRL-run, MP-run and TOPO-run (Figure 4.12). The focus is given to the 

(a) (b) (c) (d)(b)
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outputs at18:30 UTC 9 May during the post-frontal period, when the largest discrepancies 

are found between the precipitation simulations (see Figure 4.11) and the dominant CTP is 

SLW (see Figure 4.13b). Previous studies have suggested that SLW is frequency observed 

during the post-frontal period in this region (e.g. Long and Huggins 1992; Chubb et al. 2012; 

Osburn et al. 2016). Looking first at cloud water mixing ratio, CTRL experiment  has 

produced greater cloud liquid and maintained much more supercooled liquid water extended 

to higher altitudes (up to 6 km above the surface), where the temperature is as low as -20◦C 

(Figure 4.12a). A comparison of the solid phases (Figure 4.12; right panels) illustrates 

discernible differences between the three runs. A distinctly greater amount of total ice 

(ice+snow) is produced over the upwind slope, the mountain peak, and the immediate 

downwind slope, by the single-moment scheme.  The Thompson scheme is double-moment 

for rain and ice (prognostic mass and number concentrations) and single-moment for other 

variables (snow, graupel, cloud water, and vapour). As the cloud number concentration is 

fixed in both MP schemes (300 cm-3 over land), the effects on the supercooled water contents 

due to the difference in the number concertation is limited. Graupel efficiently lead to 

surface precipitation due to being a large, fast-falling particle. This could partly explain the 

higher production of ice and precipitation on the peaks in the MP-run, which does not predict 

graupel as a prognostic variable. Note the different scale in ice mixing ratio in MP-run (two 

orders of magnitude larger than others). More rain is also produced in the immediate 

downwind slope, too, possibly as a consequence of melting (Figure 4.12d). The presented 

features suggest that the WSM5 MP scheme tends to simulate ice particles as large as snow, 

in contrast to the Thompson scheme. This feature is likely to be arising from the WSM5 

scheme’s tendency to initiate ice more rapidly at ice saturation from vapour (deposition 

growth), limiting the environment for cloud water generation. Several times greater solid 

hydrometeors further suggest that cold cloud precipitation (by riming and aggregation) is a 

dominant process in the WSM5 scheme that leads to less supercooled liquid water in the 

atmosphere (Figure 4.12c). This result is consistent with what Listowski and Lachlan-Cope 

(2017) reported in terms of the simulated thermodynamic phases of the orographic clouds 

over the Antarctic Peninsula. They found that WSM5 MP scheme predicts mostly glaciated 

clouds in the region of interest. They noted that the inverse relationship between the liquid 

water content and solid water content in this scheme suggests a systematic water vapour 

depletion at the expense of the liquid phase. It is also worth noting that in the Thompson 
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scheme, snow is assumed to be non-spherical with density that varies inversely with the 

particle size. This is different from most single-moment schemes where snow is assumed to 

be spherical with a constant bulk density. Accordingly, for a given snow mixing ratio, the 

Thompson scheme tends to produce snow with larger mass-weighted mean size, resulting in 

slower depositional growth, riming and sedimentation, hence maintaining more supercooled 

liquid water (Thompson et al. 2008).  

The terrain-induced gravity waves and the induced wave breaking in the lee-side are 

substantially weakened in TOPO, where the approaching airflow is weakly blocked 

(Figure 4.12f). Smith (1979) noted that the vertical motions of these terrain-forced gravity 

waves can greatly affect the orographic precipitation distribution. Another feature of this 

plot is the limited rain mass production, developed in warm clouds (condensation and then 

collision/coalescence) or supercooled warm rain process in MP-run. More warm rain 

process in CTRL-run than MP-run is due to less abundant solid hydrometeors which sustains 

liquid phase. Vertical cross-sections of different phases of water mixing ratio show that the 

coarse horizontal resolution of the orography often produces slightly lower liquid and ice 

cloud water mixing ratio in comparison with the finer grid spacing (not shown). 
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Figure 4.12 Vertical cross-sections of the simulated (a) liquid (shaded) with rain (red lines with 0.3 

g/kg interval), (b) with small ice particles (shaded) with total big ice hydrometeors (red line with 0.3 

g/kg interval) for (a-b) CTRL-run, (c-d) MP-run, and (e-f) TOPO-run through latitude 36.4˚S at 

18:30 UTC, overlayed with the simulated temperatures (left panels, green contours, thick line 

indicates freezing level with 5˚C interval), potential temperature (right panels, orange contours with 

5˚C interval) and wind vectors (20vertical wind ×N-S wind). 
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Figure 4.13 shows a deeper investigation of the two microphysics parameterizations (at 

18:30 UTC 9 May) compared to Himawari-8 satellite observations (at 17:40 UTC 9 May). 

Cloud-top temperatures (CTTs, left panels) and cloud-top thermodynamic phases (CTPs, 

right panels) are shown. Simulated CTTs and CTPs are defined by Huang et al. (2014) 

diagnostic method based on the relative fraction of liquid water to total water, and cloud top 

defined at 0.5 cloud optical thickness from the top of the model domain. Some high-level 

cold cirrus clouds are evident in the observation, with CTTs colder than −35 °C that are not 

being well simulated. Some convection activities are also detectable over there according to 

the satellite observations. To clarify some uncertainties on the potential ice generation by 

the convective systems across the southern peak, the cross-section of the northern peak of 

the mountain (along latitude 36.1˚S) was also investigated (not shown). A consistent picture 

across both peaks in the simulations was found. The similarity between the observed cloud-

top characteristics and the simulated ones in CTRL experiment is obvious, where 

supercooled liquid water is found to be the dominant phase (Figure 4.13b and d). In contrast, 

CTPs in WSM5 MP scheme that predicts mostly glaciated clouds are less comparable to the 

satellite observations (Figure 4.13f). Similar to our findings, Huang et al. (2018) in a recent 

case study of wintertime precipitation over the Snowy Mountains, configured with a single-

moment microphysical scheme (Wilson and Ballard 1999), noted the ice-dominated cloud 

tops during the post-frontal period, compared to the satellite observations. 
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Figure 4.13 Cloud top temperature (left panels) and cloud top phase (right panels) from Himawari-

8 (a-b) at 1740UTC 9 May 2016, CTRL-run (c-d) and MP-run (e-f) at 1830UTC 9 May 2016. 

(a) (b)

(c) (d)

(e) (f)
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To describe the statistical distribution of CTP, histograms of the relative frequencies of the 

CTP decomposed into 5˚C temperature bins (Figure 4.14). The cloud fraction (CF), defined 

by the ratio of cloudy columns to the total number of columns is shown on each panel. 

Looking at the relative frequencies of the CTP at 1740 UTC 9 May 2016 (Figure 4.14a), the 

Himawari-8 CTP histogram suggests a total cloud fraction of 70%, with an outstanding 

amount (65%) residing between -5˚C and 5˚C, where the  dominant CTP is SLW (54%). 

Histograms for the simulated cloud top for the CTRL-run (Figure 4.14b) display notable 

similarities to that observed in terms of the relative frequencies of SLW, although the cloud 

fraction and the warm clouds (CTT > 0˚C) are over-predicted by 5% and 13%, respectively. 

The CTRL-run does a reasonable job in reproducing the SLW cloud top down to -20˚C, 

whereas too much ice cloud top is produced by the MP-run (Figure 4.14c) for the same 

temperature range, although the MP-run does a better job in producing the mixed-phase 

cloud tops in comparison to the observation.  

Looking at the overall relative frequencies of the CTP for a 69-hour period, the cloud 

fraction is significantly lower in both runs, compared to the Himawari-8 observation 

(Figure 4.14, bottom plots). This underestimation in the simulated cloud fraction is mostly 

arising from the underestimation of the ice clouds in the CTRL-run (18.4%, compared to 

35.5% for Himawari-8) and the SLW clouds in the MP-run (11.06%, compared to 21.23% 

for Himawari-8). However, this discrepancy between the observations and the simulations 

might also be due to the misclassification of cloud top phase products from Himawari-8 

retrievals, in which liquid phases exist at temperatures below freezing (see Figure 4.14a and 

d). The CTRL run (Figure 4.14e) under-predicts the ice clouds below homogeneous freezing 

temperature (-40˚C). While more high clouds are simulated in the MP run, they are produced 

at much colder temperatures (Figure 4.14f). 
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Figure 4.14 Histograms showing the relative frequencies of CTP decomposed into 5˚C temperature 

bins. Top plots: The observation from Himawarri-8 at 1740 UTC 9 May 2016 (left), CTRL-run 

(middle) and MP-run (right) at 1830UTC 9 May 2016. The simulated cloud top is defined at 0.5 

cloud optical thickness from the top of the model domain. Bottom plots: same a top plots, showing 

the relative frequencies of CTP but over a period of 69 hours. 
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4.8  Summary and Conclusion 

Despite the implementation of sophisticated numerical models, precipitation forecast in the 

Alpine area is still an elusive goal as it involves interactions between different types of 

processes, which brings uncertainties to in NWP models. 

A primary aim of this research is to evaluate the performance of the WRF model simulation 

of precipitation against the SHL rain gauge observations for a case study of a heavy 

precipitation event in May 2016. The selected days of simulations are featured by the 

synoptic classes transitioning from C1 on 8 and 9 May 2016, to C2 on 10 May, to C3 on 11 

May 2016. These transitions of synoptic setting show the large-scale synoptic meteorology 

and the low-level atmospheric stability, where C1 is associated with cold frontal passages 

and being unstable to orographic lifting (low values of non-dimensional mountain height) 

and includes the heaviest precipitation days. The selection of this event allows assessing the 

model performance in such synoptic conditions.  

The large-scale meteorology was well simulated in terms of both the location and the 

magnitude of the low surface pressure system. Comparison of upper air atmospheric profiles 

from the Wagga Wagga weather station illustrated good agreement in both wind speed and 

direction with marginal differences in timing. The simulation with the control configuration 

also demonstrated a considerable level of skill in simulating both the spatial distribution and 

the intensity of precipitation over the high elevations as compared to the high-density 

ground-based observations and reproduced the timing of the precipitation phases reasonably 

well with a 1-hour lag. 

Further, the WRF model used to investigate the sensitivity of the dynamical and 

microphysical processes over the Snowy Mountains to changes in the topography, horizontal 

resolution, and the parameterization of microphysics. A range of simulations were 

conducted to investigate the sensitivity of the mentioned factors against the “control” 

simulation (CTRL-run) that is configured with the Thompson double-moment 

microphysical parameterization scheme. Our major findings of the conducted sensitivity 

analysis are summarized as follows: 



96 

 

• Reducing the elevation above 1000 m by 75% decreases the maximum precipitation 

by up to 70% over the mountains, leading to a domain average reduction of about 

27%. From a dynamical point of view, the orographic signal has lessened and hardly 

noticeable in the spatial distribution of the precipitation with the weakened rain 

shadow effect on the downwind side. Moreover, weaker terrain-induced gravity 

waves are generated in the lee-side of the mountains. From a microphysical point of 

view, near zero prediction of solid hydrometeors (ice, snow and graupel) limits rain 

mass production. 

 

• Changing the microphysics schemes from the Thompson semi-double-moment 6-

class scheme to the single-moment 5-class scheme (WSM5) leads to a change of 

spatial distribution of precipitation with a reduction of precipitation over the 

mountain peaks and enhanced precipitation over the windward and lee slopes. The 

domain-averaged rain accumulation is less sensitive to the choice of microphysics 

(about 6% increase) compared with its clear impact on the precipitation spatial 

distribution. In addition to the different classification of hydrometeor species and 

their number of moments, these two MP schemes differ in many other aspects (e.g., 

particle size distributions, particle shapes, mass-diameter relationships, particle fall 

speed assumptions and growth process treatments) that likely cause variations in the 

estimation of precipitation (Han et al. 2013). It is found that the single-moment 

scheme tends to readily transform SLW to ice. The single-moment scheme is not 

optimal for clouds with a substantial amount of supercooled liquid water. It is also 

worth noting that the CTRL-run tends to generally underestimates the precipitation 

that is likely due to higher concentration of SLW, which leads to longer cloud 

lifetime and consequently lower precipitation rates, compared to the simulated ice 

clouds in the MP-run (Rauber and Grant 1987). Comparison with Himawari-8 

satellite shows that the Thompson MP scheme is more capable of simulating CTTs 

and CTPs over the analysis region. 

 

• Replacing the orography of d02 (3 km) by that of was used in d03 (1 km), however, 

shows much less sensitivity in the orographic precipitation (only a slight reduction 

of about 4% in the area-average of the accumulated precipitation); that is, changing 
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the horizontal resolution of topography leads to only a marginal impact on the spatial 

distribution of precipitation. Vertical cross-sections of different phases of water 

mixing ratio show that the coarse horizontal resolution of the orography often 

produces slightly lower liquid and ice cloud water mixing ratio in comparison with 

the finer grid spacing (not shown). Precipitation biases are more likely to arise from 

uncertainties in the physical processes represented in the model rather than the 

resolution of the grid spacing in the orography. 
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The Snowy Mountains are the tallest mountains among a few alpine regions in Australia. 

Precipitation over the Snowy Mountains has been of great interest, given its central role in 

feeding some of the major river systems of the Murray-Darling Basin, as well as providing 

hydroelectric power for much of eastern Australia. This study looked at the climatology and 

predictability of wintertime precipitation in the Snowy Mountains. 

Motivated by the recent drought in southeastern Australia, this study employed a clustering 

analysis to categorize the climatology of daily wintertime precipitation. The algorithm 

employed seven predictors, representing large-scale environment and the low-level 

atmospheric stability. The interactions between the large-scale environment and the low-

level atmospheric stability across the Snowy Mountains were also investigated. Examining 

the sensitivity of the wintertime precipitation over this region to changes in the low-level 

atmospheric stability as seen through the non-dimensional mountain height index was of 

further interest to our study. With the aim of improving the accuracy of the current 

operational ACCESS_R daily wintertime precipitation forecast, model output statistics 

(MOS) were employed. Finally, the performance of the Weather Research and Forecasting 

(WRF) NWP model in simulating precipitation event, featured by the transition of synoptic 

clusters, was evaluated. A suite of carefully designed sensitivity simulations were also 

undertaken, with the aim of gaining insights into the underlying dynamics and microphysics 

of the orographic precipitation events. 

 

5.1 A climatology of wintertime precipitation over the Australian Snowy 

Mountains 

Previous studies have demonstrated that wintertime precipitation across the Australian 

Snowy Mountains is mostly governed by the large-scale synoptic meteorology. (e.g. D14; 

Theobald et al. 2015). Following the D14 methodology, a K-means clustering algorithm is 

employed using six synoptic predictors including moisture fluxes and variables related to 

stability of the atmosphere and shear. These indicators are westerly (QU) and southerly (QV) 

moisture flux up to 250 hPa, total moisture up to 250 hPa (TW), surface pressure at Wagga 
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Wagga (GP), the root-mean-square wind shear between 850 and 500 hPa (SH), and total 

totals index (TT). The standard-level data from the Wagga Wagga sounding profiles is used 

to calculate daily values of these predictor. These clusters define the large-scale environment 

the characteristics of the dominant precipitation regimes. With 21 years winter data (May–

October, 1995–2015), four different precipitation regimes are identified to have distinct 

precipitation distributions. The initial classification also distinctly defines the low-level 

stability by class, suggesting that the low-level stability is reflected in the broader synoptic 

meteorology. Consistent with theory, the wet classes are found to have weak low-level 

stability, and the dry classes have strong low-level stability. In addition to the six indicators, 

the low-level atmospheric stability, as seen through the square of the nondimensional 

mountain height (𝐻𝐻�2), is added as a seventh predictor. By including low-level stability as an 

additional input variable to the clustering method, only minor changes were observed for 

the two wet clusters with only a handful of days swapping between clusters. The two dry 

clusters, however, were found to be more sensitive to this revision. Precipitation is obtained 

from seven weather stations above 1100m across the Snowy Mountains for a 21-yr period 

from 1995 to 2015. 

Based on seven-variable, it is found that there are two classes (C1 and C2) with high intensity 

(23 and 11 mm day-1) but low frequency of occurrence (10% and 22%), one (C3) with 

moderate intensity (6.1 mm day-1) and high frequency (39%), and one (C4) with the lowest 

intensity (3.3 mm day-1) and moderate frequency (28%). The probability of rainy days is 

dropped from 93% for C1 to 22% for C4. In contrast, the mean values of 𝐻𝐻�2 for the four 

clusters are increased from -0.45 for C1 to 20.20 for C4. Higher values of 𝐻𝐻�2indicates stable 

or blocked conditions and, accordingly, less orographic precipitation. The probability 

density functions of 𝐻𝐻�2 for all days show that only 25% of total days are blocked (𝐻𝐻�2>1) 

while their corresponding precipitation intensity is about four times greater than the rest of 

the unblocked days (𝐻𝐻�2<1). The least frequent class (C1) contributes 39% of the winter 

precipitation, while C4 makes up only 5% of the total winter precipitation. C2 and C3 

account for 33% and 23% of the total wintertime precipitation, respectively. 

Composite synoptic charts for each cluster are also derived using the ERA-Interim reanalysis 

products to better understand the synoptic meteorology. C1 is found to be associated with a 

frontal passage with dominant north-westerly flow and deep moisture fluxes extend up the 



101 

 

Great Dividing Range through New South Wales and Queensland. C2 is mainly related to a 

post-frontal environment with strictly westerly flux and moderate static instability (as 

expressed by TT). C3 is a dry cluster and more frequently observed in early winter, and is 

largely constructed from the remaining observations. A very weak midlevel shear (SH), just 

to the south of the Snowy Mountains, over Bass Straight and extending into the Tasman Sea 

is also evident. C4 is the driest class, with the weakest moisture fluxes evident over the 

mountains, associated with the most stable conditions. It occurs more often in midwinter 

and tends to be under the influence of a strong anticyclone systems. 

5.2 Adjustment to the ACCESS_R forecast of daily wintertime precipitation over 

the Australian Snowy Mountains 

Downscaling methods have been widely used to adjust the output of numerical models. Here, 

model output statistics (MOS) was used with/without implementing the classification. The 

goal is to reduce the RMSE and bias in the daily ACCESS-R precipitation forecasts by 

relating model output to observations. The daily ACCESS-R precipitation forecasts 

(Australia-wide regional with 12-km spatial resolution) for the two years (2014–15) of cold 

months (May–October) are found to slightly overestimate the Snowy Hydro’s high-

elevation surface observations (seven weather stations above 1100m) with an overall RMSE 

of 6.20 mm and a bias of 0.42 mm on rain days. Some normalized skill scores are also 

considered for evaluation of precipitation forecasts from the operational ACCESS-r model. 

For the overall time period the frequency bias score (FBS) is calculated to be 1.12, 

suggesting that the model generally tends to predict rain days more frequently than they are 

observed. The equitable threat score (ETS), often used in NWP inter-comparisons, is 

calculated to be 0.49 for the overall time period.  

Sensitivity of precipitation over the Snowy Mountains to the large-scale synoptic 

meteorology and the low- level stability is investigated. Based on analysis on historical data 

(1995–2015), QV, QU, GP, and TW are highly correlated with wintertime precipitation, 

while the stability measures (𝐻𝐻�2 , TT, and SH) are less strongly correlated. Statistically 

significant correlations confirms our underlying premise that these variables can be of use 

in forecasting orographic precipitation. Further examination reveals a highly nonlinear 

relationships between 𝐻𝐻�2 and precipitation; heavy rain was associated with very weak low-
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level stability, and conversely, strong low-level stability was associated with very little 

precipitation. 

MOS is a commonly used, statistical downscaling approach to improve forecast skill which 

depends on a historical relationship between model output and observations. In this study, 

this statistical technique is used to discover whether the daily ACCESS-R precipitation 

forecasts over the high elevations of the Snowy Mountains can be improved using a linear 

regression built on historical relationships that depends upon the large-scale environment 

and the low-level stability. First, a single regression model is developed based on 2 years of 

ACCESS-R precipitation forecasts (MODEL 1). The ACCESS-R precipitation forecast and 

QU are determined to be predictors by the stepwise algorithm coupled with BIC. The model 

reduces the RMSE from 6 to 5.6 mm by (7% improvement) on forecast precipitation days.  

Then, four distinct regression models are developed using the same algorithm for each 

synoptic class (Chapter 2) with the goal of improving the prediction of precipitation intensity 

on forecast rain days (MODEL 2). The overall RMSE is reduced by 30%, dropping from 6 

to 4.2 mm and the bias was reduced from 0.68 to -0.10 mm. Synoptic classification is found 

to sharpen the reliability of the ACCESS-R precipitation forecast. Cross-validation of 

regression models is then undertaken through a bootstrap technique to ensure that the results 

are statistically robust. This process is repeated 10000 times, and each time 80% of the data 

were randomly assigned to the control group for deriving the coefficient and the rest for 

testing. 

 

5.3 Sensitivity Analysis of orographic precipitation using WRF Model  

In spite of the significant progress in the implementation of increasingly sophisticated 

numerical models, forecasting orographic precipitation continues to be a challenge. To reach 

a deeper understanding of the dynamical and physical processes that characterize the 

precipitation characteristics in this region, numerical simulations of the meteorology for the 

case study was performed. Wintertime cold fronts generate much of the precipitation in the 

Snowy Mountains of south eastern Australia where orographic clouds composed primarily 

of supercooled liquid water (SLW) are frequently observed (Morrison et al. 2013; Osburn 
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et al. 2016). A case study of a heavy precipitation event in late autumn (May 2016) is 

presented to better understand this precipitation. A frontal system generated from a strong 

cut-off low passed over the mountains producing up to 145 mm of precipitation over a period 

of 72 hours. The selected days of simulations are featured by the synoptic classes 

transitioning of synoptic setting from C1 on 8 and 9 May 2016, to C2 on 10 May, to C3 on 

11 May 2016. Given the many challenges in short-term quantitative precipitation forecasting, 

the main objectives are: 

• Evaluate the performance of the simulation of precipitation and clouds using high 

density ground based observations.  

A range of simulations are conducted to investigate the sensitivity of the following factors 

on the magnitude and the spatial distribution of precipitation, against the “control” 

simulation (CTRL-run): 

• Explore the impact of changes in the topography (TOPO-run: Reducing the elevation 

above 1000 m by 75%).  

• Explore the role of horizontal resolution of the topography (RES-run: Replacing the 

orography of d02 (3 km) by that of was used in d03). 

• Explore the role of microphysics schemes (MP-run: Changing the microphysics 

schemes from the Thompson semi-double-moment 6-class scheme to the single-

moment 5-class scheme).  

The Weather Research and Forecasting (WRFV3.8.1) NWP model is used to undertake the 

sensitivity experiments. Surface observation operated by Snowy Hydro Ltd. and some cloud 

features detected by Himawari-8 satellite have been used to evaluate the model. The upper-

air soundings from the closet upper-wind site are also compared to assess the broad-scale 

meteorology and the thermodynamical structures. Comparison of sounding profile from the 

Wagga Wagga weather station illustrates good agreement in both wind speed and 

direction .The large-scale meteorology is also found to be well captured in terms of both the 

location and the magnitude of the low surface pressure system. The model shows a 

considerable level of skill in simulating the spatial distribution and the intensity of 

precipitation with an RMSE of 20.8 mm and a bias of -1.2 mm based on the 69-hr 
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accumulated precipitation at the 51 stations. The associated cloud properties, such as cloud-

top temperature and phase as observed by Himawari-8 are also well simulated.  

It is found from the TOPO-run that the maximum precipitation decreases, up to 70% over 

the mountains, leading to a reduction of about 27% on a domain-average. Vertical cross-

sections of different phases of water mixing ratio show that Topo-run predicts near zero 

solid hydrometeors (ice, snow and graupel) which limits rain mass production. Weaker 

terrain-induced gravity waves are generated in the lee-side of the mountains. The 

approaching flow continues to pass over the less-impeding ridge, which weakens the rain 

shadow effect. 

Changing the microphysics schemes from the Thompson semi-double-moment 6-class 

scheme to the single-moment 5-class scheme leads to a change of spatial distribution of 

precipitation with a reduction of precipitation over the mountain peaks and enhanced 

precipitation over the windward and lee slopes. The domain-averaged precipitation 

accumulation is less sensitive to the choice of microphysics (about 6% increase) compared 

with its clear impact on the precipitation pattern. The single-moment scheme tends to 

simulate a larger ice mixing ratio and is less favourable for clouds composed of supercooled 

liquid water.  

Orographic precipitation, however, shows much less sensitivity (only a slight reduction of 

about 4% in the area-average of the accumulated precipitation) to upscaling the horizontal 

resolution of the topography. There is also a marginal impact on the spatial distribution of 

precipitation of replacing the coarse horizontal resolution of the orography data with the 

finer grid spacing. This further suggests that the precipitation biases are more likely to be 

arising from uncertainties in the physical processes rather than the resolution of the grid 

spacing in the orography. 

 

5.4 Future directions 

In this thesis, there are a number of avenues that could benefit from further investigation, 

including: 
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A potential extension of this work could be to consider the application of statistical 

adjustments for forecasts at longer lead times in the climatology studies presented in chapter 

3. The ACCESS-R model only runs for 72 h, preventing such testing on the immediate 

observations and simulations. As the accuracy of the ACCESS system continues to improve, 

the main value of such statistical analysis may be in the identification of the source of 

systematic errors in the system. Forecasts with different resolutions and parameterizations 

worth to be examined. 

More sensitivity experiments are required to undercover the source of potential uncertainties 

in the NWP models. Whilst the Thompson microphysics scheme used in CTRL-run has 

shown promising skills in reproducing the hydrometeors, the model has still some 

difficulties in simulating the temporal, spatial distribution and intensity of the orographic 

precipitation over the Snowy Mountains. For example, undertaking a sensitivity test with a 

new choice of physics (e.g. different boundary layer module) may permit a better insight 

into the details of the orographic forcing processes. Finally, better observations are needed 

to better understand the underlying dynamics and microphysics of the orographic 

precipitation events. This further highlights the need for a dedicated field campaign.  
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