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A B S T R A C T

Hydrodynamic turbulence remains one of the great unsolved prob-
lems of classical physics. The chaotic, swirling dynamics of fluids
are governed by non-linear equations of motion, making direct pre-
dictions near impossible. However, some statistical properties of tur-
bulence are seemingly universal. Quantum fluids, such as atomic
Bose–Einstein condensates (BECs), can also feature turbulent flows.
The quantum nature of these systems results in a simplification of
their dynamics when compared with their classical counterpart: vor-
tices are only allowed to take quantised units of circulation. Despite
this difference, in three dimensions, these quantum fluids have been
shown to exhibit the same universal dynamics as a classical fluid
(on scales large compared with the inter-vortex spacing), such as the
power-law scaling of the kinetic energy spectrum.

In two-dimensional (2D) flows, turbulence can produce counter-
intuitive results. As noted by Lars Onsager, chaotic flows tend to
develop order. Smaller vortices preferentially group with others of
the same sign of circulation, developing large-scale features. Onsager
pointed out that by analysing the kinetic energy of these flows, and
the entropy associated with the vortex configurations, a ‘vortex tem-
perature’ can be assigned. Surprisingly, for such vortices in a bound
system, this absolute temperature can take on negative values!

If a BEC is confined such that its flow is essentially 2D, the quantised
vortices become point-like objects, with either clockwise or counter-
clockwise circulation. A recently developed experimental technique
has allowed the simultaneous measurement of both the sign of circu-
lation, and location of each vortex in these systems. With this informa-
tion, the full incompressible velocity field of the BEC can be calculated,
allowing the kinetic energy spectrum to be measured directly from ex-
perimental data. Statistical measures of the vortex distribution, such
as the degree of clustering of like-signed vortices, can be made, which
in turn allows the assignment of a vortex temperature.

This thesis presents the results of experiments on the distribution
of vortices in a highly oblate, uniform BEC of 87Rb, along with a de-
scription of the apparatus used. Vortices were generated by stirring
with obstacles at various length scales, resulting in distributions span-
ning from positive to negative temperatures. A dynamic increase in
the degree of vortex clustering was observed in some cases, corres-
ponding to heating of the vortices. These results are in agreement
with Onsager’s description of 2D turbulence, and add to the small,
but growing, body of experimental works investigating the dynamics
of these chaotic vortex configurations.
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1
I N T R O D U C T I O N A N D B A C K G R O U N D

Atomic Bose–Einstein condensates (BECs) are macroscopic quantum
systems, typically consisting of a cloud of alkali atoms cooled to be-
low a few hundred nanokelvin [1–3]. In a scalar BEC (with no spin
degree of freedom) the quantum properties of the cloud result in the
quantisation of circulation, meaning that vortices are well defined,
localised objects with known circulation. This is in stark contrast to a
classical fluid, in which circulation can take any value, making it hard
to pinpoint the location and strength of vortices. This thesis describes
experiments observing the behaviour of vortices in a turbulent BEC,
confined in a highly oblate geometry, such that the vortex dynamics
are two-dimensional (2D). In this planar system, the BEC is essentially
pancake shaped, with an in-plane profile that is uniform away from
the boundary.

Turbulence is a phenomenon, which is ubiquitous in nature, charac-
terised by the chaotic flow of a fluid. In three-dimensional (3D) flows,
a cascade process carries energy from the largest length scales to the
smallest, causing large flow patterns due to stirring to break down to
smaller and smaller features. Turbulence can be seen as a hindrance,
for example, restricting the flow of water through a pipe [4] or increas-
ing drag on an object passing through air or a fluid [5]. However, it
can also be beneficial, such as in mixing processes, where it can im-
prove efficiency of industrial chemical mixing [6], or the combining
of gases in an internal combustion engine [7]. Elements of the stat-
istical description of turbulence can also be used to describe other
dynamical systems, such as the inflation of the early universe [8], the
dynamics of quark-gluon plasmas [9] and even financial markets [10].

In flows restricted to 2D, the dynamics of turbulence are remarkably
different to the 3D case. A distinct feature of 2D flows is the common
appearance of large-scale flow features, which can form due to the tur-
bulent dynamics. In contrast to the energy cascade of 3D turbulence,
an inverse energy cascade can transport energy from small to large
scales. Such 2D flows can even be seen in 3D systems that are highly
oblate, such that motion is predominantly in-plane. Natural examples
of this can be seen in ocean currents [11, 12] and atmospheric dynam-
ics on both Earth [13] and Jupiter [14–16], where large-scale features
such as the Great Red Spot are prominent.

Vortices are believed to play an important role in turbulent dynam-
ics, however their role is hard to probe in a classical fluid as they
are not well defined objects. In superfluids, however, the quantisation
of vortices results in flows characterised entirely by the position and

1



2 introduction and background

These introductory

sections aim to

provide enough

background

information to allow

the experimental

results to be

interpreted. I will

provide references in

side notes like this

where the reader can

find much more

detailed coverage of

each topic.

circulation of these particle-like defects. It is hoped that by studying
the role of interactions of these quantum vortices in the superfluid
case, new insights may be translated across to the classical problem.
However, while the flow properties of a superfluid may appear to
be a simplification, experimentally obtaining this information can be
challenging.

In classical fluids, particle image velocimetry (PIV) can be used to
obtain information about the flow field with high spatial and tem-
poral resolution [17, 18]. The positions of particles, such as poly-
styrene microspheres, are tracked from frame to frame as they follow
the motion of the fluid. To apply similar techniques to a superfluid,
the particles must be small enough to resolve the relevant length
scales, and cold so as to not heat the system. In liquid helium, frozen
hydrogen particles have been used to determine the location of vortex
cores [19], and liquid neon has been used for PIV [20]. No such tech-
nique has been applied to BECs, however, as the flow is quantised, by
knowing the circulation and position of every vortex in a system the
velocity field can be calculated. Though this full vortex tomography
is not yet experimentally feasible for a turbulent 3D BECs, it has re-
cently been achieved in 2D [21]. The experiments in this thesis take
advantage of this recently demonstrated experimental technique, us-
ing velocity selective Bragg spectroscopy to measure the sign of every
vortex in a planar BEC.

This Chapter will begin by introducing the problem of classical tur-
bulence in §1.1, which motivates the study of the quantum analogue.
Then, to move to the quantum world, §1.2 will discuss the key fea-
tures of BECs, and the quantised vortices that arise in them. We will
return to turbulence in §1.3, this time in the context of these quantised
vortices in a BEC. The vortex configurations generated in 2D turbu-
lence can be described as having a negative absolute temperature (NAT).
In §1.4 we will compare these configurations with other systems that
have been described using NATs, and discuss the ongoing controversy
over whether this is a useful way of describing physical systems.

In Chapter 2, the apparatus built during my candidature will be de-
scribed, while discussing the experimental procedure for producing
a BEC. Chapter 3 will then focus on the techniques used to form an
oblate BEC, and generating vortices in this geometry. I will then re-
port on our measurements of 2D quantum turbulence (2DQT) in this
system in Chapter 4, where the clustering of vortices was observed.
I will conclude with a summary and some remarks about possible
follow-up experiments in Chapter 5.

1.1 classical turbulence

Despite its ubiquity throughout nature, turbulence is not particularly
well defined. It can, however, be characterised by chaotic fluid flow,
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Figure 1.1: A sketch of turbulent flow by Leonardo da Vinci.
This sketch, circa 1500, depicts the flow of water into a pool. In the accompa-
nying notes, da Vinci noted the role of vortices in the chaotic component of
the fluid motion, which perturbs the underlying current [22]. Reproduced
with permission from detail of RCIN 912660 Verso: Studies of flowing water,
with notes [23]. Royal Collection Trust / © Her Majesty Queen Elizabeth II
2018.

A detailed

introduction to

classical turbulence

can be found in

books by

Davidson [24] and

Frisch [25].

In the discussion of

classical turbulence,

I will use the terms

vortex and eddy

interchangeably,

indicating swirling

fluid motion.

with a proliferation of vortices, across large ranges of length scales.
An early example of an appreciation of the complexity of turbulence
is the depiction of water flowing into a pool by Leonardo da Vinci
(Fig. 1.1). He described how the vortices appear to move randomly
due to the flow produced by other vortices, with the larger scale flows
advecting the smaller vortices [22]. Despite having been studied for
centuries, turbulence has been labelled as one of the last great un-
solved problems of classical physics, as there is no way to infer the
properties of turbulent flow from first principles.

As with most fluid dynamics problems, a theoretical description of
classical turbulence generally begins with the Navier–Stokes equation
for an incompressible Newtonian fluid,

ρ
∂v

∂t
= −ρ(v · ∇)v −∇p+ ρν∇2v + f, (1.1)

which describes the velocity field v(r, t) of a fluid of density ρ, pres-
sure p(r, t) and kinematic viscosity ν, with external forcing f(r, t).
This is essentially Newton’s second law for the velocity of a parcel of
fluid. Most fluids can be approximated as incompressible, in which
case ∇ · v = 0.

Vortices play an important role in turbulence, though they are not
particularly well defined objects in classical fluids. A vortex is char-
acterised as a tube about which a fluid circulates. As vortices can
change strength or merge it is hard to track them individually. We
can, however, define the net vorticity of a fluid as ω = ∇× v. The
line integral of the velocity field around a contour C gives the circula-

https://www.royalcollection.org.uk/collection/search#/1/collection/912660/recto-studies-of-flowing-water-with-notes-verso-studies-of-flowing-water-with
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tion, which is equal to the integral of the vorticity over the enclosed
area A,

Γ =

∮

C

v · dl =

∫

A

ω · dA. (1.2)

While (1.1) describes the full properties of fluid flow, the non-linearity
makes it impossible to find analytic solutions in most cases. Even the
most minute changes to a problem’s initial conditions are amplified,
changing the resulting flow. Numerical solutions are also difficult to
compute for turbulent systems, due to the wide range of length and
time scales involved in such a problem. Therein lies the ‘unsolved’
nature of turbulence.

1.1.1 Statistical properties of turbulence

Despite the highly dynamic, chaotic nature of turbulence, in most
scenarios the time-averaged properties of flows are actually predict-
able. This has lead to the development of statistical descriptions of
turbulence, which have become very powerful tools for both describ-
ing and predicting the properties of these systems.

1.1.1.1 The Reynolds number

While it is generally difficult to compute properties of a fluid directly
from (1.1), for a system with characteristic length scale L and velocity
scale u, one can compute a Reynolds number [26, 27],

Re =
Lu

ν
, (1.3)

which can be used to predict the nature of the flow. This can be
thought of as the ratio of inertial and viscous forces. At low Reynolds
number, the viscous forces dominate, smoothing out perturbations in
the flow, whereas at high Reynolds number, the inertial forces amplify
them.

A classic example of the effect of the Reynolds number on the
nature of a flow is the case of flow past a cylinder, depicted in Fig. 1.2.
For small Re, the flow remains laminar, passing around the obstacle
smoothly with little visible wake. As Re increases, vortex structures
begin to form in the wake, and eventually pairs of vortices are shed
in a von Kármán vortex street. At even higher Re, turbulence begins to
emerge, as the predictable flow breaks down into a chaotic tangle of
vortices. Though the Reynolds number can be thought of as a proxy
for the degree of turbulence, there is no clear critical transition point
characterising the onset of turbulence.

1.1.1.2 Energy cascades

In Fig. 1.1, eddies are shown spanning many length scales, from the
system size, down to small specks. This common feature of turbulent
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(a) (b)

(c)

(d) (e)

Figure 1.2: Flow past a cylinder.
The wake of a cylindrical obstacle is dependent on the Reynolds num-
ber. (a) At Re < 1 the flow is laminar. The streamlines bend around the
obstacle, then return to a uniform flow downstream. (b) As Re increases
(10 . Re . 30) the downstream symmetry is broken by a pair of vortices,
formed directly behind the cylinder. (c) For 40 . Re . 200 the vortices begin
to break away one by one, forming an alternating chain of vorticity, known
as the von Kármán vortex street. (d) Beyond Re ≈ 400 the vortices begin to
break down into turbulent pockets of net circulation, still periodically shed-
ding behind the obstacle. (e) Eventually for Re & 104 the wake becomes
fully turbulent. To the edges of the wake, however, the flow appears almost
laminar again.

Though this result is

generally attributed

to Kolmogorov, it is

also attributed to his

student,

Obukhov [29], and

was later

independently

derived by both

Onsager [30] and

Weizsäecker [31],

and built upon by

Heisenberg [32, 33].

fluids arises due to the local transfer of energy across length scales.
Motion is transferred to the fluid at some large scale, such as that
of the container or a paddle. This forms large-scale eddies, which,
due to inertial instabilities, break down into smaller eddies. These
break down into even smaller scale features, and so on, a process
known as the Richardson cascade [28]. The cascade continues, until a
scale at which the local Reynolds number—that is, Re calculated based
on the scale and velocity of fluid in a particular vortex—approaches
unity, at which point the viscous term begins to dominate the flow. As
Richardson put it, “big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity” [28].
In 1941, Kolmogorov [34] quantified the nature of this cascade pro-

cess, finding a universal scaling law. He proposed that below some
length scale, l, known as the integral scale, turbulence becomes iso-
tropic, with no information remaining about the large scale stirring
motion. Furthermore, above the Kolmogorov scale, η ∼

(

ν3/ǫ
)1/4, where

viscosity begins to dominate, the cascade depends only on the dissip-
ation rate ǫ of the fluid. This range, η < |r| < l, is known as the inertial

range. Remarkably, Kolmogorov showed that the energy spectrum in
this range has a universal form,

E(k) = Cǫ2/3k−5/3, (1.4)
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Figure 1.3: The energy spectrum of classical turbulence.
When viewed on a log-log scale, the energy spectrum has three distinct re-
gions: driving occurs in the integral range (or energy containing range), with
eddies created on the largest scales of the flow; the energy cascade occurs
(indicated by arrows) over the inertial range, with the spectrum featuring a
k−5/3 slope; and dissipation occurs on the Kolmogorov scale, where viscos-
ity damps out remaining energy.

the so called five thirds rule, where k = |2π/r| is the wavenumber, and
C is a universal dimensionless constant.

A representation of the energy spectrum is given in Fig. 1.3, show-
ing the various length scales involved. For the inertial range to exist,
the Reynolds number must satisfy Re3/8 ≫ 1. There have been exper-
imental confirmations of the k−5/3 rule in many types of flow, and
the value of C ≈ 1.5 is consistent across many experiments [24, 25].

1.1.2 Turbulence in two dimensions

In 2D the statistical properties of turbulence change dramatically. In
fact, even in 3D fluids, if there is little flow in one direction, such as
in a highly oblate geometry, the dynamics follow that of a 2D system.
Such systems are seen throughout nature, such as in the large scale
flows of the atmosphere and oceans.

If we take the curl of (1.1) we get an equation for the vorticity of a
fluid:

∂ω

∂t
= (ω · ∇)v − (v · ∇)ω+ ν∇2

ω+
1

ρ
∇× f. (1.5)

The first term on the right hand side relates to the stretching of vor-
tices in 3D. In 2D, this term must vanish, a fact that fundamentally al-
ters the properties of the flow. In the limit of an inviscid 2D fluid, not
only is energy conserved, but also enstrophy, Ω =

∫
ω2dr. When vis-

cosity is present, neither energy or enstrophy are conserved, however,
both are bounded, such that they can only decrease in the absence of
forcing.
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1.1.2.1 The point vortex approximation

Before discussing the statistical properties of 2D turbulence, I will
introduce the point vortex model. This model will be of importance for
both classical and quantum turbulence in 2D. It was first noted by
Helmholtz [35] and Kirchhoff [36] that vortices in 2D fluids can be
approximated as singular points about which a flow field exists. The
flow field of the system is then given by the sum of the contributing
vortices,

ω(r) =
∑

i

Γiδ(r − ri), (1.6)

where the ith vortex is located at ri with circulation Γi.
The dynamics of these point vortices are governed by the equations

Γi
dxi
dt

=
∂H

∂yi
, Γi

dyi
dt

= −
∂H

∂xi
, (1.7)

which resemble Hamilton’s equations in one dimension, with the
fluid’s kinetic energy given by a Hamiltonian H. For an unbounded
system, the energy of each vortex is infinite, however the dynamics
are given by the pair-wise interaction of vortices, given by

H = −
1

4π

∑

i<j

ΓiΓj ln
(

|ri − rj|

R

)

, (1.8)

where R is an arbitrary reference scale (an additive constant is not
relevant to the vortex dynamics).

The more general case of a fluid in a multiply connected region
was considered by Lin [37, 38]. Here, (1.8) must be replaced with a
Kirchhoff–Routh function, derived from a Green’s function. This is
equivalent to including fictitious image vortices beyond the boundary.
For the case of a uniform circular system of radius R, the boundary
conditions are satisfied by introducing one image vortex for each real
vortex, with the same magnitude, but opposite sign, located outside
the boundary. For a vortex at position rv, an image will be located at
rimg = R2rv/|rv|

2.
Of course, a classical fluid can support arbitrary continuous values

of Γ , and the vortices are not always point-like. As pointed out by
Onsager [39], the model is, however, ideally suited to a superfluid,
where the quantised vortices have fixed circulation, and are indeed
almost point-like. We shall return to this point in §1.2.5.2.

The point vortex model is also applicable to systems beyond fluid
dynamics, such as guiding-centre plasmas [40] and self-gravitating
systems [41]. Guiding-centre plasmas are systems containing filaments
of charge, aligned parallel to a magnetic field. It was experiments in
such systems in the 1970’s that sparked much of the research util-
ising the point vortex model. As the equations of motion are identical
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(within a scale transformation), these results have direct applicability
to the original fluid dynamics context.

1.1.2.2 Statistical mechanics of point vortices

A statistical theory of turbulence in 2D was presented by Onsager
in 1949 in his seminal paper titled Statistical Hydrodynamics [39], in
which he discussed the common observation of large-scale vortices
in unsteady flows. Onsager noted that “the formation of large, isolated

vortices is an extremely common, yet spectacular phenomenon in unsteady

flow. Its ubiquity suggests an explanation on statistical grounds.”

For a system of N vortices confined to a finite area A, the spatial
coordinates of the vortices are canonical conjugates. This means that
the configuration-space is also the phase-space, and is finite, with
AN available states. The kinetic energy of the system [given by the
generalised form of (1.8)] can take values from ∞ (corresponding to
vortices of the same sign on top of each other) to −∞ (corresponding
to vortices of opposite sign on top of each other). The number of
vortex configurations leading to a given energy E is known as the
density of states, w(E). Since the phase-space is finite, the integral of
the density of states,

∫∞

−∞

w(E)dE = AN, (1.9)

implies that at the maximum energy states, w(E) must go to zero.
This means that w(E) must have a maximum at some intermediate,
finite energy.

Onsager pointed out that the usual definition of temperature,

1

T
=
∂S

∂E
, (1.10)

where S(E) = kB log [w(E)] is the Boltzmann entropy (and kB is Boltz-
mann’s constant), can be applied to assign a vortex temperature. Fur-
thermore, as S has a maximum value at some finite energy, there ex-
ists a regime in which entropy will decrease as more energy is added to
the system. This corresponds to (1.10) taking a negative value, which is
described, counter-intuitively, as a negative absolute temperature (NAT)
state. These NATs are, in fact, hotter than positive temperatures. It is
most intuitive to consider the inverse temperature, β = 1/kBT , which
spans from β → ∞ as T → 0, through β = ±0 at the maximum
entropy state (where T → ±∞) to β → −∞ as T → −0. Physically,
this means that beyond this maximum entropy state, the system of
vortices will regain order, as like-sign vortices gather together. The
relation between w(E), β and the vortex configuration is shown in
Fig. 1.4.

At positive temperatures, vortices of opposite sign approach each
other, as this minimises their net energy, whereas at NATs the opposite
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Figure 1.4: Point vortex density of states.
A depiction of the typical form of the density of states, w(E), for point vor-
tices in a finite domain. At low energies, w(E) increases as a function of
energy, and so the system has a positive temperature. In this region, the
vortex configuration consists of many vortex–antivortex pairs. Beyond a crit-
ical point E0, w(E) begins to decrease as the system energy is increased, so
the system can be describes with a NAT. The configuration becomes more
ordered as higher energy clusters of like-sign vortices are formed. Insets
show typical vortex configurations (blue and green dots represent vortices
of opposite signs) near the BKT transition, near infinite temperature and near
the EBC transition (these transitions will be discussed in §1.1.2.4).

occurs. Onsager suggested that the strongest vortices of each sign
would arrange themselves together to ‘use up excess energy at the
least possible cost in terms of degrees of freedom.’ This then leaves
these large scale clusters as the dominant features of the flow, with
smaller vortices free to roam at random between them.

It should be noted that the vortex ‘temperature’ is not necessarily
that of the thermodynamic limit. Due to the long-range nature of vor-
tex interactions, the temperature depends on the size and geometry of
the system [43]. It can be shown, however, that as the system size goes
to infinity (with vortex density and energy per vortex held constant)
a thermodynamic limit does exist, with only positive temperatures
supported [44]. This is not surprising, given that the argument for
the existence of NATs was due to the finite phase-space. I will discuss
systems that support NAT states in a more general context in §1.4.

1.1.2.3 Energy cascades in 2D

Given the success of Kolmogorov’s description of the energy spec-
trum of 3D turbulence, it is natural to look for similar universal scal-
ing laws for the 2D case. However, the presence of a conservation law
for enstrophy (in the inviscid limit) complicated the matter, with Lee
showing that it implies that the direct energy cascade is not possible
in 2D [45]. Fjørtoft showed that energy must instead evolve toward
large length scales, while enstrophy moves to small scales [46].
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Figure 1.5: Energy spectra in two dimensional turbulence.
In driven 2D turbulence, the dual cascades of energy and enstrophy lead to
two inertial ranges, with characteristic scaling. At scales larger than the driv-
ing (lower k), the inverse energy cascade (indicated by red arrows) leads to
k−5/3 scaling, whereas at smaller length scales (higher k), a direct enstrophy
cascade (indicated by blue arrows) gives rise to k−3 scaling. At the lowest
wavenumbers, on the scale of the system size, the energy can either decay,
in the presence of large-scale damping, or build up, causing spectral con-
densation. In the absence of a driving force, only the second inertial range
remains, with the enstrophy cascade persisting with k−3 scaling.

Kraichnan showed that this corresponds to a dual cascade of both
energy and enstrophy [47], depicted in Fig. 1.5. If a 2D fluid is driven
at an intermediate length scale lF, energy will undergo an inverse cas-
cade to longer scales (lower wavenumber), while enstrophy will un-
dergo a direct cascade to smaller scales (high wavenumber). Though
the energy cascade has the opposite direction to that of the 3D case,
the scaling is the same, with E(k) ∝ k−5/3 for an inertial range from
the driving scale to scales on the order of the system size. At the
largest scales, one of two things can occur. If there is a large-scale
damping effect, such as friction between the fluid and the 2D con-
finement, this can cause dissipation on the system size scale. In the
absence of such damping, however, energy can build up in the lowest
modes, leading to spectral condensation. We will discuss this in more
detail, and the relation to Onsager’s picture of large-scale clusters in
§1.1.2.4. It is worth noting that the emergence of spectral condensa-
tion is not necessarily evidence of an inverse energy cascade. A relat-
ive increase in long-range energy may also arise if there is preferential
removal of energy at short scales.

The enstrophy cascade, on the other hand, occurs over a second
inertial range, from the driving scale down to the Kolmogorov scale,
and results in the energy spectrum taking the form E(k) ∝ k−3 in this
region. The enstrophy spectrum in this second inertial range takes the
form Ω(k) ∝ k−1. Batchelor independently derived the existence of
this enstrophy cascade, though in the case of decaying turbulence [48].



1.1 classical turbulence 11

We’ll discuss

superfluids in detail

in the next section.

For now, these

systems can be

considered as being

equivalent to a point

vortex model with

finite vortex core

size.

In the case where there is no driving, the inverse energy cascade does
not occur. The enstrophy cascade, however, persists, with the energy
spectrum following the same k−3 scaling.

1.1.2.4 Vortex phase transitions in 2D

At each extreme of the vortex temperature range, there are phase
transitions in the vortex configuration. For point vortices, at positive
temperatures (where vortices like to approach those of opposite sign)
there is a ‘pair collapse’ transition, where every vortex pairs up with
one of the opposite sign, forming bound molecule-like states [49]. For
ideal point vortices this occurs at inverse temperatures above the crit-
ical temperature,

βPC =
4π

ρΓ2
, (1.11)

corresponding to a discontinuity in the mean energy per vortex. How-
ever, if the vortex core size is finite, this transition is no longer sharp,
with the energy varying smoothly with temperature.

The BKT transition [50–52] of the XY model of spins on a 2D lattice
corresponds to the unbinding of vortex pairs in a superfluid. This
causes a proliferation of vortices above a critical temperature [53],
corresponding to the inverse temperature

βBKT =
8π

ρΓ2
. (1.12)

This causes a breakdown of the long-range coherence of the system,
resulting in a sudden loss of superfluidity. It was shown by Vie-
celli [54] that applying a finite vortex core size to the point vortex
model leads to the pair collapse transition temperature (1.11) moving
to coincide with the BKT transition (1.12).

For NATs, there is a phase transition associated with the clustering
of like-sign vortices. This effect is known by several names, including
the supervortex transition, supercondensation, or the Einstein–Bose con-

densate (EBC) transition [49]. Prior to this phase transition, so-called
Onsager vortices form, corresponding to large-scale groupings of like-
sign vortices. It has been suggested by Xu et al. [55] that there is a
clustering transition associated with the symmetry breaking that oc-
curs when vortices separate into two distinct clusters. Once all vor-
tices in the system are clustered, they begin to condense, until the
vortices occupy the minimum possible phase-space area. The trans-
ition temperature associated with this condensation is dependent on
the number of vortices in the system,

βEBC = −
16π

NvρΓ2
. (1.13)

Valani et al. [56] showed that this condensation process bears similar-
ity to the condensation of a one-dimensional Bose gas. They showed
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that a condensate fraction can be defined based on the number of
vortices in the largest cluster, and the average spacing of the vortices.
This condensate fraction begins to grow as the vortex temperature
passes the critical temperature (1.13), analogous to the growth of a
BEC fraction of bosons below a critical temperature (see §1.2.2).

1.1.2.5 Experiments in 2D turbulence

There have been studies of 2D turbulence in both natural and lab-
based systems. On Earth, inverse energy cascades have been observed
in both the oceans [11, 12] and the atmosphere [13]. The atmosphere
of Jupiter is one of the most turbulent features in the Solar System,
with Reynolds numbers on the order of 1013. The atmosphere con-
tains many large-scale features, such as the prominent striped jets,
and the Great Red Spot, shown in Fig. 1.6a [14]. An analysis of im-
ages taken by the Cassini spacecraft revealed that these jets appear to
be driven by an inverse energy cascade at the largest scales, while
at smaller scales the dynamics are more reminiscent of 3D turbu-
lence [15]. Recently, the Juno spacecraft has captured images of lattices
of cyclones at each pole [16], shown here in Fig. 1.6b, reminiscent of
NAT clustered states. The formation and dynamics of these clusters
are not yet understood, though they are reminiscent of ‘vortex crys-
tals’ seen in a magnetised electron column (a type of guiding-centre
plasma) [57], which are thought to arise when several strong vortices
are surrounded by a background of smaller vortices that have maxim-
ised their entropy [58, 59]. The presence of these clusters, combined
with new information about the depth of the atmosphere [60, 61] and
further data from Juno as it completes its mission, will no doubt fuel
much ongoing research into Jupiter’s atmospheric dynamics.

In a laboratory setting, 2D turbulence has been studied in systems
including guiding-centre plasmas, magnetofluids and soap films. Mag-
neofluids consist of a shallow bath containing an electrically conduct-
ive fluid, such as mercury or an electrolyte. A combination of elec-
tric currents and magnetic fields can be used to stir the fluid by the
Lorentz force. This allows stirring patterns to be engineered by the
arrangement of magnets or electrodes under the fluid. There have,
however, been questions as to the degree to which these systems are
truly 2D [64, 66–68]. Motion in the third dimension can be suppressed
by using a strong magnetic field in the shallow direction, and driv-
ing the motion with electric currents [69], or by using a stratified
electrolyte, in which thin layers of solutions of different densities are
used [70]. Stratified layers do, however, have the added complication
of shear forces and other interactions between the layers, which can
introduce 3D motion [66, 70].

Soap films provide a more idealised 2D fluid, where a soapy water
solution is used to form a film across a frame. Early experiments were
performed by dragging combs through these films and observing the
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(a) (b)

Figure 1.6: Turbulent dynamics on Jupiter.
(a) Jupiter, as seen in detail by Cassini on its way to Saturn (NASA image
PIA04866, courtesy NASA/JPL/Space Science Institute). The presence of
large-scale structures, such as the banded jets and the Great Red Spot sug-
gest that 2D dynamics are involved. We have observed the largest features of
Jupiter’s atmosphere from Earth for centuries, but recent close encounters
with spacecraft have provided stunning new resolution of the finer scales.
(b) The most recent mission, Juno, discovered a double-square lattice of
cyclones at the north pole (NASA image PIA22335, courtesy NASA/JPL-
Caltech/SwRI/ASI/INAF/JIRAM). A similar pentagon pattern was also
seen at the south pole. These structures had not been expected, and are not
yet understood, highlighting the need for ongoing research in 2D turbulence.
Images from the NASA/JPL Planetary Photojournal [62].

wake [71]. This technique was further refined by allowing the film
to flow along the frame, using a water jet to pull the film, which was
replenished from a bath [72], or allowing the film to fall under gravity,
using a pump to replenish the soap solution at the top [73]. In these
geometries, the film can pass through a comb with a higher Reynolds
number, with the resulting turbulent state decaying downstream. The
thickness of a soap film does vary, particularly around strong vortices
and boundaries, and the finite thickness may compromise the ideal
2D nature of the flow [63, 74–77].

In the first soap film experiments by Couder, decaying turbulence
was observed after a sweep of a comb [71]. Vortices were seen to
merge, with the typical eddy size increasing over time. Later studies
using flowing films were able to observe an enstrophy cascade [73,
78, 79], with measurements of the kinetic energy spectrum consistent
with k−3 scaling.

Though both cascades should be present in driven turbulence, they
can be suppressed by choosing a driving scale that is too large to
‘leave room’ for the energy cascade, or too small to allow an enstrophy
cascade to be observed. Due to the finite length scales available, most
driven experiments have focussed on observing only one of the two
cascades. The inverse energy cascade, and corresponding k−5/3 scal-
ing of the energy spectrum, was first observed by Sommeria in mer-

http://photojournal.jpl.nasa.gov
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(a) (b)

Figure 1.7: Energy cascades in electrolyte solutions.
The inverse energy cascade, and direct enstrophy cascade, can be seen in-
dependently if the driving scale is chosen such that only one inertial range
can exist. (a) The inverse energy cascade can be seen to form dynamically.
Initially, energy can be seen at the driving scale. Energy cascades to lower
wavenumbers, and once a steady state has been achieved the k−5/3 spec-
trum develops. The solid line is a guide to the eye with k−5/3 scaling. Re-
printed figure with permission from Paret and Tabeling, Physical Review Let-
ters 79, 4162 (1997) [80]. © 1997 American Physical Society. (b) The enstrophy
cascade can be seen when driven at a larger scale (kF), characterised by k−3

scaling (solid line). In this case, the driving scale, kF is too close to the sys-
tem scale for the energy cascade to form. Reprinted figure with permission
from Paret, Jullien and Tabeling, Physical Review Letters 83, 3418 (1999) [81].
© 1999 American Physical Society.
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Figure 1.8: Dual cascade in a soap film.
A simultaneous dual cascade was seen for the first time in a soap film.
(a) Combs were placed along the edges of the soap film channel to provide
continuous forcing. In this photograph, the combs are slightly tilted in an
inverted ‘V’ shape, with a separation of 5 cm at the bottom. (b) Energy spec-
tra taken at various points along the channel (guide to the right) for a pair
of parallel combs spaced 2.5 cm apart in an 8 cm wide channel. Within the
combs, where there is forcing, spectrum A shows both k−5/3 and k−3 scal-
ing ranges. Beyond the forcing region the k−5/3 inertial range vanishes and
the k−3 scaling extends into these lower k scales. This shows evidence for
both a dual cascade in forced turbulence, and an enstrophy cascade for de-
caying turbulence. Reprinted figures with permission from Rutgers, Physical
Review Letters 81, 2244 (1998) [82]. © 1998 American Physical Society.
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cury [69], and subsequently by Paret and Tabeling [80, 83] in an elec-
trolyte solution. In the latter case, the energy spectrum was seen to
begin with a peak at the driving scale, then smooth out to the char-
acteristic inverse energy cascade as the system reached a steady state,
shown in Fig. 1.7a. The enstrophy cascade was seen by Paret et al. [81]
in the same electrolyte apparatus, driven at larger scales, showing a
k−3 scaling range of the energy spectrum, as seen in Fig. 1.7b. The
first experiment to show the presence of a dual cascade was in a soap
film by Rutgers [82]. Here, a soap film flowed past a comb of cyl-
indrical obstacles on its boundary, rather than a single comb at the
top of the frame, which injected energy as the film flowed past over
a finite range, illustrated in Fig. 1.8. The energy spectrum shows the
two distinct power laws as expected.

1.2 bose–einstein condensation and superfluidity

Now that turbulence has been introduced in a classical fluid, I will
discuss the quantum fluid in which we can next consider turbulence.
Bose–Einstein condensation was first theorised by Albert Einstein in
1925 [84], based on the work of Satyendra Nath Bose [85], predict-
ing a phase transition in a gas of non-interacting atoms. Until the
discovery of superfluidity in liquid helium in 1938 [86, 87], it was
assumed that this BEC phase transition—in which particles condense
in a ground state—was not possible in real systems of interacting
particles. It was London who first suggested the connection between
superfluidity and BEC [88], which was built upon to develop a con-
sistent theoretical framework [89–93]. It was not until 1995 that BEC

was realised in dilute atomic gases [94–96], the system in which the
experiments described in this thesis are based. In this section I will
discuss the key features of BECs that make them an ideal system to
use in quantum turbulence (QT) experiments.

1.2.1 A brief introduction to Bose–Einstein condensates

While atomic BECs typically consist of a collection of 104 to 106 particles,
they can be described by a single macroscopic wavefunction, Ψ(r, t),
with the particle density given by n = |Ψ(r, t)|2 and total atom num-
ber N =

∫
|Ψ(r, t)|2 dr. In the mean field approximation—which ap-

plies to the majority of experiments to date—the evolution of Ψ(r, t)
is governed by the Gross–Pitaevskii equation (GPE) [97, 98],

i h
∂

∂t
Ψ(r, t) =

[

−
 h2

2m
∇2 + Vtrap(r, t) + g |Ψ(r, t)|2

]

Ψ(r, t), (1.14)

where m is the particle mass, Vtrap is a trapping potential (usually a
combination of magnetic and optical forces, such as those discussed
in later chapters), and g = 4π h2a/m is an interaction term, set by the
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s-wave scattering length a. Historically, most BEC experiments have
been performed in trapping potentials that can be approximated as
harmonic oscillators of the form V(r) =

∑
i
1
2mω

2
i x

2
i , with character-

istic frequencies ωi along the trap axes xi = x,y, z.
The energy functional of (1.14) is

E(ψ) =

∫ (
 h2

2m
|∇ψ|2 + Vtrap|ψ|

2 +
g

2
|ψ|4

)

dr. (1.15)

This can be broken down into the three terms, which correspond to
the kinetic, potential and interaction energies, respectively. When the
kinetic energy term is small compared with the interaction energy,
as is the case for large atom number condensates, we can use the
Thomas–Fermi (TF) approximation to obtain the ground state solution
to the GPE (1.14)

|Ψ(r, t)|2 =
µ− V(r)

g
= n(r), (1.16)

where µ is the chemical potential, µ ≡ ∂E/∂N. For the harmonic
potential, this gives

n(r) = n0

(

1−
∑

i

x2i
R2i

)

> 0, (1.17)

where n0 = µ/g is the peak density, and Ri are the TF radii, given by
1
2mω

2
iR

2
i = µ. Another key length scale in a BEC is the healing length

ξ =

√

 h2

2mgn
, (1.18)

corresponding to the shortest length over which the density can go to
zero. This is of particular interest in the scale of vortices in a BEC, as
will be discussed in §1.2.5.

1.2.2 Making BECs

To form a BEC, one must increase the phase space density, PSD = nλ3dB,
of a collection of atoms such that they cross the condensation trans-
ition. Here λdB is the thermal de Broglie wavelength of an atom of
mass m at temperature T , given by

λdB =

√

2π h2

mkBT
. (1.19)

The intuitive picture of the onset of BEC is that as a gas is cooled, λdB

increases. Once λdB becomes comparable to the inter-atomic spacing,
the atomic wavefunctions begin to overlap, eventually merging into
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Figure 1.9: The onset of Bose–Einstein condensation.
Three-dimensional false colour representations of atomic density distribu-
tions, taken from optical density images. From left to right, the atoms
have been cooled to progressively lower temperatures. In the first frame,
at around 400nK, the cloud is thermal, with a Gaussian distribution. Bey-
ond the critical temperature, a peak, indicating the condensation of atoms
in a low momentum state, begins to grow, until almost all atoms become
condensed in the last frame. Figure reproduced from the Cornell Group
(JILA, NIST, and the Department of Physics, University of Colorado at
Boulder) [99].

the single quantum wavefunction of a BEC. This occurs as the atoms
condense into the lowest energy state of the confining potential be-
low a critical temperature Tc, corresponding to PSD = ζ(3/2) ≈ 2.61,
where ζ is the Riemann zeta function.

In a harmonic potential, the number of condensed atoms, Nc, is
approximately

Nc

N
= 1−

(

T

Tc

)3

. (1.20)

The presence of both condensed and thermal atoms gives rise to a
bimodal distribution of atoms in momentum space. Releasing a gas
of cold atoms from their confining potential allows them to fly away
with their instantaneous momentum. For sufficiently long time-of-
flight, this is effectively a Fourier transform, converting momentum
space into position space. For a BEC near Tc, this leads to images such
as the iconic Fig. 1.9, with the low-momentum condensed atoms re-
maining spatially localised, and the thermal background gas expand-
ing isotropically at a faster rate.

Chapter 2 will outline the details of the laboratory equipment re-
quired to take room temperature atoms down to the nanokelvin-scale
transition temperature. Briefly, it involves laser cooling, where the mo-
mentum of light is used to slow atoms, and evaporative cooling, where
the hottest atoms are selectively removed from the gas, reducing the
overall average temperature.
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1.2.3 Superfluidity and quantum hydrodynamics

Superfluidity was first observed in liquid helium, and is characterised
by frictionless flow below a critical velocity, vc. This phenomenon is
understood to arise due to the macroscopic phase coherence of inter-
actions between Bose–Einstein condensed particles. There are, how-
ever, subtleties in the link between BEC and superfluidity, as not all
BECs are superfluids, and vice versa. Dilute atomic BECs, however, do
exhibit superfluidity, which will be shown in §1.2.4. To explore the
properties of flow in a superfluid, we will first derive the superfluid
velocity, then use this to write the GPE (1.14) in the so-called hydro-
dynamic form.

The complex superfluid wavefunction, Ψ, can be written in terms of
scalar fields for the amplitude,

√
n, and phase, φ, using the Madelung

transform,

Ψ(r, t) =
√

n(r, t)eiφ(r,t). (1.21)

Substituting this into the probability current,

j(r, t) =
i h

2m
(Ψ∇Ψ∗ −Ψ∗∇Ψ) , (1.22)

gives j = nvs, where

vs(r, t) =
 h

m
∇φ(r, t) (1.23)

is the superfluid velocity.
Substituting (1.21) into the GPE (1.14), results in two coupled equa-

tions; the real part gives the Euler equation,

m
∂vs

∂t
= −∇

[

1

2
mv2

s + Vtrap + gn−
 h2

2m
√
n
∇2

√
n

]

, (1.24)

while the imaginary part gives the continuity equation,

∂n

∂t
+∇ · (nvs) = 0. (1.25)

Note that these equations closely resemble those of a classical incom-
pressible fluid (1.1), with an additional quantum pressure term [the last
term in (1.24)], no kinematic viscosity, and the constraint irrotational
flow.

1.2.4 Excitations

Excitations of a BEC above the ground state can be considered as qua-
siparticles, with energy given by the Bogoliubov dispersion law [91],

ǫ(p) =

[

gn

m
p2 +

(

p2

2m

)2
]1/2

(1.26)
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(for a uniform system). For quasiparticles with small momentum
p ≪ mc, (1.26) reduces to a phonon-like relation, ǫ(p) = cp, where
c =

√

gn/m =
√

µ/m is the speed of sound. These long-wavelength
excitations are commonly referred to as sound waves.

In §1.2.3 we mentioned that superfluids are characterised by fric-
tionless flow below a critical velocity vc. To expand on this point,
Landau’s criteria for superfluidity [90] gives this critical velocity as
corresponding to the fluid’s excitation spectrum, by

vc = min
(

ǫ(p)

p

)

. (1.27)

In the limit p→ 0, (1.26) gives that vc = c. Given that c must be finite
and non-zero if there are interactions (g 6= 0), it holds that atomic
BECs must be superfluids.

The Bogoliubov excitations transition from phonon-like to particle-
like when p ≈ mc, which corresponds to p =  h/ξ. In §1.2.5 we will
see that as well as Bogoliubov excitations, superfluids support topo-
logical excitations, vortices, which will play an important role in the
study of QT.

1.2.5 Quantum vortices

As discussed in §1.1, vortices can be defined as lines about which the
fluid flow circulates. In a classical fluid these vortices can have any
magnitude, and can occur on any length scale. In a superfluid (and
quantum wavefunctions in general), however, vortices are remarkably
different, due to a quantisation condition arising from the underlying
wavefunction.

The quantisation of circulation in quantum wavefunctions arises
from the condition that their phase must be single-valued and con-
tinuous. This was first predicted by Dirac in 1931 [100] in his de-
scription of magnetic monopoles. It was Onsager [39], in a footnote,
no less, who first suggested that vortices in a superfluid would be
quantised, an idea that was later developed further by Feynman in
1955 [101]. Flux quantisation in superconductors was described by
Fritz London [102, 103], and Abrikosov subsequently derived the
presence of vortices in 1957 [104], likening his findings to those of
Onsager and Feynman. Quantised vortices in optical fields were dis-
cussed by Nye & Berry in 1974 [105]. The mathematical equivalence
of optical and superfluid vortices is highlighted by the fact that op-
tical vortices can be used to engineer vortices in BECs, by imprinting
their phase onto the condensate [106]. Optical vortices also have ap-
plications in atom trapping, as will be discussed in §3.2.2.

Here I will focus on the presence of vortices in superfluids. We have
already seen that the superfluid velocity is the gradient of the wave-
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function phase (1.23). Using this, the circulation, Γ , about a closed
contour, C, must satisfy

Γ =

∮

C

vs · dl =
 h

m

∮

C

∇φ · dl =
 h

m
2πs = κs, (1.28)

for integer vortex charge (or winding number) s and quantum of circula-

tion κ = h/m. This implies that any circulation in the fluid must be
quantised in units of κ, with the phase accumulating in multiples of
2π.

These quantum vortices are topological defects in the fluid, as the
phase circulations cannot be removed by local perturbations. The
fluid density must go to zero at a point at the centre of a vortex,
to prevent the wavefunction from becoming multi-valued. Rearran-
ging (1.28), for a circular contour centred on a vortex, gives that the
velocity field due to a vortex is

vs(r) =
 h

m

s

r
θ̂, (1.29)

where θ̂ is the unit vector pointing tangentially to the contour.
The current density is prevented from diverging at the centre of the

vortex since the density drops to zero. For a singly charged (s = ±1)
vortex, the core structure can be approximated [107] as

f(r) =
r

√

r2 +Λ−2ξ2
, (1.30)

where Λ = 0.82475 . . . is the density gradient near the centre of the
core. Since the core size is on the scale of the healing length (1.18), it
depends on the local condensate density. In §1.2.7.2 we will see that
this allows the imaging of vortex cores in time-of-flight, as they rap-
idly grow in size as the density of the expanding condensate drops.

It can be shown that it is energetically unfavourable for vortices
to maintain a charge |s| > 1, instead they tend to break into s single
charged vortices. This has been shown theoretically [108, 109], as well
as observed in experiments [110]. The ground state of a BEC with total
circulation N is a triangular lattice of N vortices with |s| = 1 [111],
as demonstrated in Fig. 1.10. In some circumstances multi-quantum
vortices can be stabilised [108, 112, 113], however, for the remainder of
this thesis, we will assume that all vortices have |s| = 1. Furthermore,
we will often refer to vortices with s = −1 as antivortices, when we
need to distinguish these from vortices with s = 1. There are also a
range of more exotic generalised vortex structures possible in systems
with a spin degree of freedom, such as fractional quantum vortices,
which are beyond the scope of the scalar condensates considered in
this thesis.

1.2.5.1 Vortices in highly oblate condensates

So far I have only discussed BECs in traps which are considered 3D,
that is, the harmonic oscillator length in each dimension, lx =

√

 h/mωx
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Figure 1.10: A vortex lattice in a BEC.
Images from the first experiment reporting the observation of a vortex lattice.
A sodium BEC was rotated using a pair of blue detuned (repulsive) lasers,
rotating about opposite sides of the trap. This generated many vortices of
the same sign, which distributed themselves evenly across the cloud, such
that the total velocity field approximates that of rigid body rotation. The
number of vortices in each image are approximately (A) 16, (B) 32, (C) 80

and (D) 130. Figure from Abo-Shaeer et al., Science 292, 476 (2001) [111].
Reprinted with permission from AAAS.

is large compared with the healing length. If one dimension (we will
use z and call it the axial direction) is confined tightly, with ωz ≫ ω⊥

(ω⊥ ≡ ωx = ωy), the dynamics of the system are essentially 2D.
Vortices will preferentially align in the axial direction, as it is energet-
ically favourable to reduce their total length. If lz ∼ ξ, so that the axial
dimension is comparable to the vortex core size, wave excitations
along vortex lines (Kelvin modes) and vortex reconnection events will
be suppressed. For harmonic traps, Rooney et al. [114] showed that
these are even suppressed for thicker condensates provided the trap
aspect ratio satisfies ω⊥/ωz & 8. In these thicker BECs sound waves,
such as those generated during vortex–antivortex annihilation events
(discussed in the following section), may still excite low order Kelvin
waves, which tilt the vortex causing it to appear as a spinning ellipse.
Examples of this can be seen, e. g., in the supplementary movie of
Simula et al. [115]. Provided that the inter-vortex spacing is larger
than this tilting (i. e., on the order of the BEC thickness), these vortex
excitations will not impact the dynamics, as the far-field vortex flow
will remain the same.

1.2.5.2 Vortex dynamics

Vortices in a uniform BEC will move with the background super-
fluid velocity [116] (in an inhomogeneous BEC the motion depends
on gradients in both the density and phase [117]). Thus, in an oth-
erwise stationary system, the vortex dynamics are governed by the
flow field generated by the vortices themselves. In an infinite 3D sys-
tem containing Nv vortices, the velocity field at any point r is well
approximated by the Biot–Savart law,

vs(r) =
κ

4π

Nv∑

j

∫

Lj

(r ′ − r)× dr ′

|r ′ − r|3
, (1.31)
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where the integral is along positions r ′ along each vortex line Lj cor-
responding to the jth vortex.

If the vortices are all parallel, as is the case in a highly oblate (or
2D) BEC, (1.31) reduces to the sum of the velocity field, (1.29), of each
vortex:

vs(r) =
κ

4π

Nv∑

j

sjẑ×
r − rj
|r − rj|2

, (1.32)

where the jth vortex is located at rj, and has charge sj.
Note that this is the point vortex model, as introduced in the con-

text of classical fluids in §1.1.2.1, with the circulation of each vortex
set to the quantum of circulation, Γ = κs. Unlike the classical case,
quantum vortices in a 2D system can be well approximated as the dis-
crete points used in the model, provided that the mean inter-vortex
spacing lv satisfies lv ≫ ξ. Recalling from §1.1.2.1, for a finite system,
boundary effects must be taken into consideration, with the super-
fluid velocity reducing to zero at the boundary.

In a uniform, circular system of radius R, the point vortex Hamilto-
nian takes the form [54, 115, 118–120]

H0 = Hv +Hi +Hs

= −
ρsκ

2

4π

∑

i<j

sisj log
(

|ri − rj|
2

R2

)

+
ρsκ

2

4π

∑

i<j

sisj log
(

1− 2
ri · rj
R2

+
|ri|

2|rj|
2

R4

)

+
ρsκ

2

4π

∑

i

s2i log
(

1−
|ri|

2

R2

)

,

(1.33)

where ρs is the superfluid density. The first term, Hv, is due to the
interaction between pairs of vortices. For vortices of the same sign,
this interaction is repulsive, and for opposite sign vortices it is attract-
ive. The second term, Hi, is due to the interaction of vortices with the
image of every other vortex (recall that in such a system every vortex
has an image of opposite sign, at rimg = R2rv/|rv|

2). The third term,
Hs, is due to the interaction of vortices with their own image.

1.2.5.3 Vortex loss mechanisms

While we assume that the dynamics of QT is dominated by vortices,
there are still interactions between the vortices and phonons. When
looking at only the vortex dynamics, these interactions tend to appear
as damping in the system, as the energy of the vortices is converted
to sound.

Accelerating vortices will radiate sound waves, just as an accelerat-
ing charged particle will radiate electromagnetic radiation [121]. This
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Figure 1.11: Decay of a Jones–Roberts soliton.
A numerical GPE simulation shows the decay of a Jones–Roberts soliton
(highlighted by dashed white region), interacting with a single vortex (indic-
ated by arrow in (a). Here the grey-scale represents the normalised atomic
density and the location of vortices (antivortices) are highlighted by blue
(green) dots. As the collision occurs in (b) sound waves are generated,
which dissipate quickly, as seen in (c). Reprinted figure with permission
from Groszek et al., Physical Review A 93, 043614 (2016) [129]. © 2016 Amer-
ican Physical Society.

occurs whenever vortices come close to each other or a boundary
(i. e. their image vortex). The effect of this, however, is usually small,
as the emission is proportional to the vortex configuration’s quadru-
pole mode [121]. Vortices can also gain energy by absorbing phon-
ons [122], and sound-mediated interactions between vortices may be
experimentally observable [123].

Sound can also be emitted by vortex line reconnection events in 3D,
or vortex–antivortex annihilations in 2D. Reconnections occur when
two vortex lines cross and break apart, swapping line ends. This
causes the vortices to recoil, inducing Kelvin waves in the vortex lines,
as well as radiating phonons [124, 125]. In 2D these events cannot oc-
cur, however, vortices of the opposite sign can come together and an-
nihilate, releasing sound. Prior to annihilation, the pair will generally
form a bound state known as a Jones–Roberts soliton [126, 127]. Inter-
actions between this soliton and another vortex or soliton can cause
it to decay (shown in Fig. 1.11), or break apart into a pair of vortices
again. As a third vortex, or second soliton is required to catalyse this
annihilation process, the decay is a three- or four-body scattering pro-
cess. These annihilation events can also occur at the system boundary,
where the vortex can interact with its image. Vortex–antivortex pairs
can also be spontaneously generated by strong sound fields, or in 3D,
vortex rings can form [128].

A further source of energy loss is through thermal dissipation. The
thermal component of a BEC (or normal component of liquid helium)
is always present at finite temperatures, though BECs can be made
at very high purity. This thermal component is a thermal bath into
which energy can be lost, acting as friction on the vortices [130].
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1.2.6 The kinetic energy spectrum

In the discussion of classical turbulence, it was clear that the kin-
etic energy spectrum of the fluid played an important role in char-
acterising the flow, and so it makes sense to consider the equivalent
spectrum of a superfluid. Here we will only consider the case of a
(quasi) 2D BEC. In §1.2.1 we saw that the total kinetic energy of a BEC

is given by Ek =
∫

 h2

2m |∇ψ|2dr = 1
2m

∫
|vs|

2dr. As the density is not
uniform, we now write this as Ek = 1

2

∫
|w|2dr, where w =

√
ρsvs

is the density-weighted velocity field. This can be decomposed into
three parts,

Ek = Eik + Eck + Eq

=
1

2

∫

|wi|2dr

+
1

2

∫

|wc|2dr

+
 h2

2m

∫ ∇2
√
n√
n

dr,

(1.34)

corresponding to the incompressible kinetic energy Eik, the compress-
ible kinetic energy Eck and the quantum pressure Eq. The incompress-
ible part corresponds to the parts of the superfluid velocity field that
satisfy ∇ · vi

s = 0, which is due to vortices. The compressible term
corresponds to sound, which satisfies ∇× vc

s = 0.
Taking the Fourier transform of the density-weighted velocity field,

we can obtain the incompressible and compressible kinetic energy
spectra as

Ei(k) =
1

2

∫

k|F(wi)|2dθ, Ec(k) =
1

2

∫

k|F(wc)|2dθ. (1.35)

It is the incompressible kinetic energy spectrum that we will be inter-
ested in when dealing with vortex dynamics. While the compressible
part of the energy plays a role in the vortex dynamics, as discussed in
§1.2.5.3, it is small compared with the incompressible part. This can
be seen by the agreement between numerical results using the point
vortex model (which has no compressible energy) and both experi-
ments and the GPE (which does include compressible energy) when
modelling vortex dynamics (see, e. g., [115, 130–133]).

The incompressible energy spectrum can be calculated for a system
on Nv vortices, each with sign si at location ri, by [107]

Ei(k) =
ρ0κ

2ξ

2π
FΛ(kξ)



Nv +
∑

i 6=j

sisjJ0(k|ri − rj|)



 , (1.36)
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where J0 is the Bessel function of the first kind, and FΛ(kξ) is a func-
tion that incorporates the shape of the vortex core, (1.30). The asymp-
totes of FΛ(kξ) are

FΛ(kξ) =
1

kξ
kξ≪ 1 (1.37a)

and

FΛ(kξ) =
Λ2

(kξ)3
kξ≫ 1. (1.37b)

In these limits, the incompressible energy spectrum behaves as

E(k) ∝ k−1 kξ≪ 1 (1.38a)

and

E(k) ∝ k−3 kξ≫ 1, (1.38b)

which correspond to the far field behaviour of a vortex and the effect
of the vortex core shape respectively.

1.2.7 Creating and observing vortices

While I have now given the theoretical context to move on to talk-
ing about the turbulent dynamics of the quantised vortices of a su-
perfluid, first let us take a moment to consider the experimental
details of actually creating and observing these interesting features.
Quantised vortices have been observed in a wide range of systems,
including light [134, 135] (even at the single photon level [136]), elec-
trons [137–139], neutrons [140], exciton–polariton condensates [141],
superfluid helium [142] and magnetic flux vortices in superconduct-
ors [143]. Some of the helium experiments will be mentioned in the
context of turbulence in §1.3, but for now I will focus on vortex exper-
iments in atomic BECs. The first quantum vortex in a BEC was created
in 1999 by a phase imprinting technique [144]. In this experiment, a
laser was rotated around a BEC, bringing parts of it into resonance
with a microwave transition, coupling atoms to a different internal
state. This coupling was engineered such that the BEC formed in the
second state contained a single phase winding, forming a vortex, with
the core filled by the original component.

Since then, there have been many techniques used to form vor-
tices, including phase imprinting, rotating condensates, stirring and
stochastic processes. A comprehensive list of experiments investigat-
ing vortices in BECs from 1999 to 2010 has been compiled by Brian An-
derson [145], who also maintains an up-to-date version online [146]. I
will focus on the experiments most relevant to this thesis, relating to
the generation of vortices by dragging a barrier through the condens-
ate, as well as techniques used for the imaging of vortices.
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1.2.7.1 Stirring vortices

The primary vortex creation method used in the experiments in this
thesis involves forcing superfluid flow past an obstacle. This method
is analogous to familiar counterparts in classical fluids—you may
have noticed vortices forming as you pulled a canoe paddle through
water, or stirred a spoon through your coffee cup. In a BEC, our ‘spoon’
is formed by a repulsive (far blue detuned) laser beam. Above a crit-
ical velocity, related to the speed of sound in the superfluid, pairs of
vortices of opposite sign will be shed from either side of the potential
barrier.

Vortices are nucleated when the superfluid velocity locally exceeds
the speed of sound. For a large (R ≫ ξ) circular obstacle with an
impenetrable potential barrier, this occurs when the barrier moves
through the condensate at half the speed of sound [147]. However, as
the condensate density must reduce to zero at the potential barrier,
the local speed of sound is reduced, further decreasing the critical
velocity to approximately 0.37 c [148–152]. Geometry arguments can
be used to show that for elliptical shaped barriers, the critical velocity
is lower than that of a symmetric barrier, as the velocity of the local
flow at the vertices must increase relative to the barrier speed [153].

Experimentally, repulsive lasers were first stirred through BECs to
show the presence of a critical velocity [154, 155], and subsequently
the nucleation of vortices was observed [156]. In an oblate condensate
geometry, pairs of vortices of opposite sign were seen to be shed,
forming vortex dipoles [157]. The critical velocity for shedding from a
stiff, round barrier has been measured to be 0.4 c, in good agreement
with theoretical predictions [158].

As the condensate density must go to zero at the centre of a vor-
tex, it is energetically favourable for them to be pinned to regions
of low density. Pinning was first demonstrated in the context of a
vortex lattice pinned to an optical lattice [159]. Persistent flow in
toroidal condensates [160] can be thought of as the pinning of a
multiquantum vortex by the central density hole. More recently, the
pinning and manipulation of individual vortices has been demon-
strated [161, 162]. Here, a pair of tightly focussed pinning potentials
were swept through an oblate BEC together, then separated, resulting
in a single vortex pinned to each beam, each with opposite sign. By
utilising multiple pinning beams, it would be possible to generate
deterministic arrangements of multiple vortices on demand.

1.2.7.2 Imaging vortices

As with most properties of BECs, the usual method of obtaining in-
formation about vortices in a condensate is though taking an image.
A more detailed discussion of imaging BECs in general will be given
in §2.8, but for now it suffices to say that most common imaging
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techniques use light at a wavelength near the atomic resonance to
form an image of either the shadow cast on a probe beam (absorp-
tion imaging), or the light scattered by the atoms (e.g., fluorescence
imaging or phase contrast imaging). Vortices can be seen as ‘holes’
in the density distribution of the condensate when they are aligned
with the imaging axis. Resolving vortices in situ is technically challen-
ging, as the vortex cores are typically on the same length scale as the
wavelength of light.

In the first vortex experiments, the cores were filled with atoms
in a different state, which caused the core to expand to a resolvable
size [144]. The most widely used vortex imaging technique is to al-
low the condensate to expand in time-of-flight—as the condensate
density drops, the local healing length increases, and hence the vor-
tex cores grow [163]. In highly oblate trap configurations, the tightly
confined direction will expand rapidly upon release, with the vortex
cores increasing to a resolvable size before the radial size of the BEC

has changed significantly.
While time-of-flight imaging reveals the location of vortices, it does

not provide any information about their dynamics, and is naturally
destructive. In highly repeatable experiments, sequential runs with
different imaging times can reveal the vortex dynamics [144, 157, 164],
though this is impossible for the random, turbulent configurations
studied in this thesis.

To study the dynamics of vortices within a single experiment, a
small fraction of atoms can be released from the trapping potential,
by outcoupling to an untrapped state [165]. This allows the majority
of the condensate to continue evolving before subsequent images are
taken. However, due to the very low density of atoms in each out-
coupled portion, the imaged vortex cores are much larger than in a
typical time-of-flight image, which may limit the number of vortices
that can be uniquely identified. The density of the remaining condens-
ate is also reduced at a much faster rate than the usual background
loss rates, potentially impacting the vortex dynamics and limiting
the duration of experiments. Additionally, for large numbers of ran-
domly configured vortices, a high frame rate would be required in
order to track the position of each vortex from one frame to the next
to recover the dynamics. Overcoming these limitations would require
a careful choice of atomic states (so that there is an easy way to out-
couple atoms from the trap), expansion times, camera hardware, and
trapping and imaging geometries.

As in the first vortex experiment, in situ imaging of vortex cores is
possible through the expansion of the cores by a ‘filler’ component
of a second atomic state [144, 164]. Techniques such as off-resonant
imaging can then be used to probe these larger cores with minimal
destruction of the BEC, allowing multiple images to be taken. Unfor-
tunately, this technique is of limited use, as the presence of the filler
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state alters the dynamics. Another technique, which may prove use-
ful, would be the imaging of the filler atoms rather than the vortices
themselves, as has been demonstrated for hydrogen particles in liquid
helium [19]. If a different atomic species were trapped in the vortex
cores, then they could be imaged in fluorescence at a wavelength far
from the resonance of the host BEC. A smaller number of filler atoms
may be able to be used, with the location of the fluorescing points
indicating the location of vortices. This may have less of an impact
on the vortex dynamics. Some preliminary simulations of this tracer

particle technique are presented in Chris Billington’s thesis [166].
More recently, dark-field imaging has been used to resolve the po-

sition of vortex cores in situ without any expansion [167]. As this
technique can be used with a large probe beam detuning, multiple
images can be taken before the condensate is destroyed. Higher resol-
ution imaging optics have now allowed the in situ imaging of vortex
cores with bright-field techniques, as well as Faraday imaging [168].
Sequences of up to four images of a single condensate have been
demonstrated with each of these minimally destructive imaging con-
figurations, though the group has had issues implementing the tech-
nique in highly oblate geometries, which they attribute to a higher
atomic density [168].

1.2.7.3 Vortex sign detection

While the techniques discussed so far allow the position of vortices
to be observed, they do not provide any direct information about the
sign of the circulation of the vortices. Observation of the dynamics
of vortices using the partial transfer method, or successive in situ im-
ages of the same condensate could be used to determine the signs of
vortices, though this would become increasingly complex to calculate
for more than a few vortices (unless they are all the same sign, such
as in a vortex lattice). This has lead to the development of techniques
to determine the sign of vortices, directly.

The first method used was the observation of fork patterns in the
interference fringes between two BECs [156, 169]. This technique dates
back to early vortex experiments, and was used to confirm that there
was a phase winding around a vortex core. The interference patterns
observed are analogous to the fringes formed by light fields contain-
ing optical vortices [170]. The phase winding of the vortex causes
a discontinuity in the otherwise linear interference fringes formed
between two condensates with slightly different velocities. This has
been demonstrated with both a uniform reference condensate [156]
and by using a recombined copy of the same condensate [169]. In
the first case, the vortex sign can be determined based on the ori-
entation of the fork relative to the difference in velocity of the two
condensates—the side of the vortex where the flow would, in a sense,
increase the relative velocity between the condensates will have an
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extra fringe compared with the side flowing counter to the velocity
difference. In the latter case, the interference pattern is more com-
plex, featuring a double fork for each vortex. While the presence of a
phase winding is striking, this technique is not suitable for measuring
more than a few vortices, as this would require extremely fine fringe
spacings, and correspondingly high resolution imaging, to be able to
resolve fringes around the closely spaced cores.

Powis et al. [171] proposed that it would be possible to induce a
gyroscope-like Kelvin mode in all vortices in a quasi-2D condensate
by tilting it. This would lead to the precession of tilted vortices and
antivortices in opposite directions about the condensate plane, which,
under the right conditions, would look like spinning ellipses when
imaged in plane. If imaged at an appropriate time (e.g., after 1/8 of
a precession period), the orientation of the elliptical vortex images
would allow their signs to be determined. While this technique has
not been used in the context of detecting the sign of arbitrary vortex
distributions, similar tilting techniques have previously been used to
study the motion of a single vortex [172] and collective oscillations
in a vortex lattice [173]. Though this technique was not ultimately
used in the experiments in this thesis, we did spend time developing
a technique for tilting our optical trap, which I will briefly discuss in
§3.1.3.

The technique used in the experiments in this thesis uses Bragg
spectroscopy [174, 175] to detect the sign of vortices. Spatially re-
solved Bragg spectroscopy was originally proposed in the context of
detecting the presence of vortices [176], and first implemented on a
rotating BEC to probe the velocity field of a vortex lattice [177, 178].
For atoms at rest, (first order) Bragg scattering occurs when a pair of
counter-propagating lasers have a frequency difference δ0 = 2 hk2/m,
where k = 2π/λ is the wavelength of the laser. At this frequency differ-
ence, an atom can absorb a photon from the higher frequency beam,
gaining a momentum kick in the direction of that beam’s propagation,
then emit a photon by stimulated emission into the lower frequency
beam, gaining a second momentum kick in the same direction as the
first. The frequency difference between the beams is equal to the res-
ulting kinetic energy gained by the atom, such that both energy and
momentum are conserved in the process.

The flow around a vortex results in a Doppler shift δd of the local
Bragg resonant frequency, as shown in Fig. 1.12. Depending on the
detuning of a pair of Bragg laser beams, atoms will be preferentially
scattered from one side of each vortex, dependent on its circulation. If
two sets of Bragg beams are generated by counter-propagating beams
with both frequencies, atoms are scattered in one of two directions,
depending on the local direction of the flow. Recently, Seo et al. [21]
used this technique to detect the sign of vortices in random distribu-
tions. A differential signal was generated from the scattered distribu-
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Figure 1.12: Bragg resonance condition around a vortex.
(a) The flow field around a single quantum vortex (QV) in a BEC. A pair
of counterpropagating Bragg laser beams with frequency difference δ =

δ0 + δd are shown along the x ′ axis. (b) The spatial resonance condition
for δd around the vortex core due to its flow field. Figure reproduced from
Seo et al. [21] under the Creative Commons Attribution 4.0 International
License [179].
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Figure 1.13: Differential Bragg signal of turbulent vortices.
(a) In the experiments of Seo et al., counterpropagating lasers containing
two frequencies, separated by δ = δ0 + δd were aligned along the x ′ axis.
(b) Close to δ = δ0 atoms are scattered from a stationary BEC in ±x ′. (c–

e) For a BEC containing a vortex dipole, at δd = 2π× (−1.1)kHz atoms are
scattered in the direction of their initial velocity. The upper (lower) vortex
has positive (negative) circulation. The dashed line indicates the BEC edge,
and dotted lines are parallel to the Bragg lasers. (f) The unscattered part
of a turbulent BEC, taken immediately after stirring the condensate. (g) The
differential Bragg signal corresponding to (f). The signal, SB = n+ − n−, is
generated from the density distributions n± of atoms scattered in the ±x ′
direction (blue [red] sections are positive [negative]). The position of each
vortex identified in (f) is marked in (g), with the sign determined based
on inspecting SB. Positive (negative) vortices are marked as circles (crosses).
Figure adapted from Seo et al. [21] under the Creative Commons Attribution
4.0 International License [179].
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tions in each direction, as shown in Fig. 1.13. This allowed the sign of
each vortex to be identified by locally inspecting the sign of the gradi-
ent of the differential signal transverse to the scattering direction. In
§4.2, this technique will be further developed, using the point vortex
model (1.32) to unambiguously determine the vortex signs.

1.3 quantum turbulence

Now that we have seen that superfluids support quantised vortices,
which are well defined excitations of the system, it is natural to con-
sider their dynamics in configurations reminiscent of turbulence. This
so-called quantum turbulence (QT), was first described in detail by
Feynman [101], though, as mentioned in §1.1.2.2, Onsager had also
remarked in a footnote the applicability of his model for 2D sys-
tems to superfluids [39]. Feynman realised that despite the lack of
viscosity, there are mechanisms for the dissipation of energy from a
quantum vortex tangle. He suggested that vortex reconnections may
play a role, whereby large vortex rings can be broken into smaller and
smaller rings, reminiscent of the energy cascade of classical turbu-
lence. The first experiment associated with such a vortex tangle was
by Vinen [189, 190], who showed that the mutual friction of a heat
current through superfluid 4He could be explained by Feynman’s
description of turbulence [190, 191], though it was not until several
decades later that QT itself was studied in detail.

While the ultimate focus of this thesis is 2DQT, it is useful to discuss
the 3D case too. There is more literature on this topic, as it is the re-
gime accessible by liquid helium systems, in which most experiments
have been performed. Seeing how the 3D case compares with classical
3D turbulence also provides motivation and justification for studying
the 2D case, in search of similar comparisons.

1.3.1 Statistical properties of quantum turbulence

We have already seen in §1.2.3 that superfluids can be described by
equations closely resembling those of a classical fluid. Just as in the
classical case, the non-linear nature of these equations, coupled with
the large range of length scales relevant to a turbulent flow, make it
natural look for statistical properties of the flow.

1.3.1.1 A superfluid Reynolds number

In §1.1.1.1 we introduced the Reynolds number, Re (1.3), which can
be used to characterise a flow and predict the onset of turbulence.
Since Re is inversely proportional to viscosity, which for a superfluid
is zero, the classical Reynolds number is seemingly not useful here.
For superfluid helium systems, where the mutual friction between
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Figure 1.14: A quantum von Kármánn vortex street.
Numerical results show vortices shed in the wake of a cylindrical object
(largest low-density region to the left of each panel) moving through a BEC

at different velocities. The top panels show the density distributions and the
bottom panels show the phase profile. (a) An obstacle with size d = 0.04ζ
moving at velocity ṽ = 2.4 produces vortex dipole pairs. The dipoles ar-
range themselves in a ‘V’ formation, moving in alternating directions, as
marked by the arrows. (b) An obstacle with d = 0.05ζ moving at ṽ = 2.6
produces alternating pairs of same-sign vortices, reminiscent of the classical
von Kármán vortex street. (c) An obstacle with d = 0.05ζ moving at ṽ = 3.0
has a more disordered wake, reminiscent of the onset of turbulence. Here
ζ =

√

2× 103ξ and ṽ = v(103m/gn)1/2/(2π). Figure adapted from Sasaki
et al. [200] under the Creative Commons Attribution 3.0 International Li-
cense [202].

the superfluid and normal components plays a significant role, a di-
mensionless parameter q, relating to this mutual friction, has been
shown to play a similar role to Re [192, 193].

Onsager postulated that the quantum of circulation may play a sim-
ilar role to viscosity in a superfluid, as they have the same units [194].
This naturally leads to a definition of the superfluid Reynolds number
as Res = uLm/h [192, 193, 195], where again u is the characteristic
superfluid velocity and L is the characteristic length scale of the sys-
tem. Using this definition, turbulent flows have been observed with
Res ≫ 1 [196–199], however measurements have not been made in
the low Res regime in the transition to QT.

Recall that in §1.1.1.1, a prototypical example of the effect of the
Reynolds number was the nature of flow past a cylinder. In super-
fluids, early work, discussed in §1.2.7.1, studied the process of gener-
ating vortices via shedding from a repulsive obstacle. More recently,
Sasaki et al. [200] showed that at higher flow rates, a quantum ana-
logue of the von Kármán vortex street should occur, as depicted in
Fig. 1.14. Stagg et al. [153] extended this theory work to elliptical and
3D obstacles. This periodic vortex shedding was recently experiment-
ally achieved by Kwon et al. [201].

Reeves et al. [203] used the wake of a cylinder as motivation to
refine the definition of a superfluid Reynolds number. They found
that using

Res =
(u− vc)Lm

 h
, (1.39)
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gives universal scaling of the shedding frequency of vortices for vary-
ing obstacle size or velocity, as in the classical definition. The use of  h

rather than h in this definition scales the quantity such that the onset
of turbulence occurs at Res ≈ 1.

1.3.1.2 Energy cascades

Another natural comparison to make between quantum and classical
turbulence is the transport of energy. In §1.1.1.2 we discussed how
in 3D turbulence, energy flows from large scales to small scales in the
Richardson cascade, with the energy spectrum following Kolmogorov’s
five thirds law. I have already mentioned Feynman’s description of
vortex rings breaking down to smaller and smaller rings as they un-
dergo reconnections, which provides a mechanism by which a cas-
cade may occur. A requirement for the Richardson cascade is, of
course, dissipation at the smallest length scales, to remove the en-
ergy that has been transported here. It has been proposed that Kelvin
waves form the mechanism for this, with high frequency excitations
radiating phonons [204, 205].

Surprisingly, given the stark differences between classical fluids
and superfluids, experiments in superfluid 4He showed the same
k−5/3 spectral scaling as Kolmogorov’s classical prediction [206–209].
However, it turns out that the superfluid case is more subtle, with
multiple possible turbulent regimes. The filament-like nature of quant-
ised vortices introduces a new length-scale to the system, the total
length of vortices per unit volume, L, and correspondingly, the mean
inter-vortex spacing l = L−1/2. On scales much larger than l, the
flow field approximates that of a classical fluid, and the quantum
nature of the vortices is inconsequential. Large scale structures are
present, in the form of bundles of polarised vortex lines. In this case,
the cascade process is much the same as for a classical fluid, and is
termed quasiclassical turbulence. Here the vortex length decays as
L ∝ t−3/2. Below l, however, the quantum nature of the vortex lines
dominate the dynamics, and the turbulent cascade is facilitated by
Feynman’s reconnections, as well as Kelvin excitations of vortex lines.
When the force driving turbulence occurs on these small scales, the
resulting state is known as ultraquantum turbulence. In this case, the
vortex length decays as L ∝ t−1. There is currently no agreement
as to how the energy spectrum should scale in this ultraquantum
range [181, 188, 210–212], and to date, no experimental measurements
of the spectrum have been made. It is also unclear what happens in
the intermediate regime, where the transition from quasiclassical to
ultraquantum turbulence occurs [181, 188].

Atomic BECs provide different conditions to those of superfluid he-
lium. In helium, the system size is that of the storage dewar, which
can be tens of centimetres, and the vortex thickness is on the order
of Ångström, providing eight or nine decades of scale. Typical BECs,
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however, are up to 100µm, with vortex core sizes around 1µm, res-
ulting in only two decades of length scale. It is for this reason that
much of the focus of 3DQT has been in helium systems. BECs do, how-
ever, offer superior tunability to helium systems. Interactions between
atoms are adjustable via Feshbach resonances [213–218], and indi-
vidual vortices can be created, manipulated and resolved in images
(§1.2.7). There have been numerical studies of 3D QT in the context of
BECs, which show that the Kolmogorov power-law scaling persists in
the semiclassical inertial range of these systems too [219–222]. Exper-
imentally, Henn et al. [223] were able to produce a vortex tangle in a
87Rb BEC, which inhibited the usual aspect ratio inversion in time-of-
flight. More recently, Navon et al. observed a turbulent cascade in a
uniform 3D BEC [224] and have subsequently measured the flux of a
cascade while continuously driving the BEC [225]. In these cases, the
cascade process resembled that of turbulence dominated by waves,
rather than vortices.

1.3.2 2D quantum turbulence

In 2D, vortices in a superfluid become point-like objects. As in the
classical case (§1.1.2), this dramatically alters the turbulent behaviour
of a superfluid when flow is confined to a plane. Just as a classical
fluid need not be truly 2D to achieve strikingly different behaviour
compared with 3D turbulence, the superfluid itself need not be strictly
2D. As discussed in §1.2.5.1, vortices will align themselves with the
shortest path through the BEC to minimise their energy, and provided
that high-order Kelvin modes are not excited, these parallel vortices
will behave identically to zero-length point vortices in 2D. This regime
is not easily accessible by liquid helium, as the Ångström-scale cores
mean that the fluid must be in an extremely thin film to suppress
Kelvin modes. At this scale, impurities and roughness of the substrate
on which the film is deposited provide vortex pinning sites, which
may alter the turbulent dynamics. BECs on the other hand can be
readily trapped in oblate geometries, which restrict the flow to 2D.

1.3.2.1 Cascades in 2D quantum turbulence

It is not immediately obvious whether the dual energy cascade of clas-
sical 2D turbulence should exist in the superfluid case. Numasato et
al. [226, 227] suggested that as compressibility and vortex–antivortex
annihilations provide dissipation mechanisms on small length scales,
a direct energy cascade may be possible, as in the 3D case. On the other
hand, Reeves et al. [228] argued that the clustering of same-sign vor-
tices would suppress dipole annihilation events, removing the pos-
sibility of a direct cascade. While energy spectra have been measured
in many numerical studies [115, 226–238], the scaling appears to de-
pend on the particular configuration, and there has not yet been an
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unambiguous demonstration of a dual cascade. Kobyakov et al. [233]
even saw k−5/3 scaling in a simulation of decaying turbulence, which
goes against the classical theory.

The presence of the long-range k−1 and short-range k−3 energy
scaling, due to the vortex core (§1.2.6, [107]) leads to an intermedi-
ate range which can appear to briefly follow a k−5/3 curve. Zamora-
Zmaora et al. [239] even showed that k−5/3 scaling appears for config-
urations of only two vortices, which can not be considered turbulent!
In typical experimentally realisable BEC geometries, there may not
be a large enough range of scales to allow an energy cascade to ex-
ist across a large enough range for it to be unambiguously measured.
Reeves et al. [231] simulated a much larger condensate, and were able
to see k−5/3 scaling across a larger range, as well as an increase in
energy at the longest scales over time, leading them to conclude that
there was in fact an inverse energy cascade present.

Experimentally, it is much easier to study decaying turbulence,
as continuously driving a condensate will typically generate large
amounts of sound, and heat the system. Based on classical turbu-
lence, the inverse energy cascade should not be present in this case.
On small scales, the enstrophy cascade is obscured by the vortex core
scaling, so observation of the spectral scaling must occur on scales
k < 1/ξ. Reeves et al. [238] examined decaying turbulence, begin-
ning with an extremely large number of vortices to first make the
enstrophy cascade prominent, then scaled back the number to see
if it could be observed for experimentally realisable numbers. They
found that to observe k−3 scaling beyond the vortex core size, an
experiment would require around 500 vortices in a large trap with
R⊥ ≈ 800 ξ. These numbers are quite high compared with current
experiments, which can typically achieve on the order of 100 vortices
in traps with R⊥ ≈ 200 ξ.

1.3.2.2 Detection of vortex clustering

Due to the difficulty in obtaining clear signatures of cascades from the
energy spectrum, it appears as though other metrics must be used to
characterise the dynamics in experimentally realisable configurations.
A characteristic of 2D turbulence is the build up of energy at low
wavenumbers, which has been observed in the energy spectrum of
several numerical studies [115, 231, 234, 235].

As the inverse energy cascade is associated with the clustering
of like-sign vortices, White et al. [240] used statistical measures of
the vortex distribution to determine the degree of clustering. Other
nearest-neighbour correlation functions have been used [231, 234, 241],
which typically take the form of

Cn =
1

nNv

Nv∑

i=1

n∑

j

cij, (1.40)
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where cij = 1 (−1) if the circulation of the jth nearest neighbour of
the ith vortex has the same (opposite) sign, comparing up to the nth

nearest vortices. The simplest of these is the nearest-neighbour correl-
ation function, C1. For a configuration dominated by dipoles, the sign
of C1 is negative, while cluster dominated configurations give pos-
itive values, with C1 vanishing for more disordered configurations
between these two extremes. Higher order correlation functions give
similar responses to C1 in the presence of clusters, due to the group-
ing of large numbers of like-sign vortices. In dipole-dominated config-
urations, however, while there are strong first-order anticorrelations,
the second-nearest neighbour is essentially random, depending on
the relative orientation of the dipoles, leading to a lower magnitude
signal. This makes higher order correlation functions useful for the
detection of vortex clustering, however C1 is more useful for quant-
itatively comparing vortex systems across the full range of possible
configurations.

To further quantify the degree of clustering, Reeves et al. [231] in-
troduced a vortex classification algorithm, which uniquely assigns
each vortex as belonging to a cluster of same-sign vortices, a dipole
pair consisting of a vortex and an antivortex, or as a free vortex. The
prescription for this classification is a recursive algorithm, where first,
opposite sign vortices that are mutual nearest neighbours are identi-
fied as dipole pairs, and ignored in subsequent iterations. Same-sign
vortices that are closer to each other than either is to an opposite
sign vortex are then determined to be in a cluster. These two steps
are repeated until no new classifications are found, at which point
any remaining vortices are said to be free. The initial removal of the
dipole pairs in this algorithm ensures that the presence of a single vor-
tex of the opposite sign does not discount an otherwise strong cluster
of same sign vortices, acknowledging that the short-range field pro-
duced by dipole pairs is less dominant than that of clusters.

Valani et al. [56] proposed an alternative algorithm for classifica-
tion, which uniquely classifies the vortices in a single pass, rather
than in an iterative process. In this algorithm, first, the nearest vortex
of opposite sign is identified for each vortex. Any vortices closer than
the nearest opposite sign vortex (which must therefore be of the same
sign as the vortex under consideration) are labelled as cluster candid-
ates for that vortex, or, if there are none, the nearest opposite vortex
is labelled as a dipole pair candidate. Once these candidates have
been identified, the labels are compared. If two vortices are dipole
pair candidates for each other, and neither are cluster candidates for
other vortices, they are classified as a dipole pair (this means that the
pair must be mutual nearest-neighbours). If two vortices have each
other as cluster candidates, then they are classified as belonging to
the same cluster. Any remaining vortices are again classified as free
vortices.
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Groszek et al. [242] found that the vortex temperature (§1.1.2.2) can
be determined based solely on this vortex classification. Monte Carlo
simulations were run to determine the equilibrium vortex distribu-
tions at fixed vortex temperatures. They found that as the inverse
temperature goes from positive to negative values, the clustered frac-
tion of the classified vortices increases monotonically, while the frac-
tion of dipole pairs decreases monotonically. This is consistent with
the picture that positive temperatures are dipole dominated, while
NATs are cluster dominated. As these populations evolve monotonic-
ally, they can be used to read off the temperature of the vortex con-
figuration. While these so-called thermometry curves depend on the
number of vortices, the general shape remains the same, and small
changes in vortex number do not alter them significantly. This ther-
mometry technique was used to analyse the data in the experiments
described in Chapter 4, where I will go into the details of how we
assigned temperatures.

Other measures of the clustering process that have been used in-
clude the radius and net circulation of the largest classified clusters in
a system [56, 231, 234], and statistics of the resulting velocity fields [236,
243]. A dipole moment of the vortices of sign si at position ri can be
calculated as

d =

∣

∣

∣

∣

∣

∑

i

siκri

∣

∣

∣

∣

∣

, (1.41)

which should be largest in the presence of two distinct clusters of
opposite sign [115, 129]. An increase in the average kinetic energy
per vortex [244], or per number of vortices squared [115, 129] has
also been used as an indicator of the clustering process.

Reeves et al. [243] found that in the presence of strong clusters, the
spectral build up results in a peak in the energy spectrum at a scale
corresponding to the size of the largest cluster. At scales larger than
this, the energy spectrum was seen to scale as k3, steeper than the
E(k) ∝ k scaling expected for a system with no net vorticity [107]. It
was suggested that this scaling occurs due to the stagnation of flow
at points between the clusters. Salman and Maestrini [244] demon-
strated that these signatures should be measurable in the time-of-
flight distribution of atoms released from their trap, which corres-
ponds to the Fourier transform of the number density distribution, or
the momentum distribution.

1.3.2.3 Numerical studies of vortex cluster formation

While Reeves et al. [231] saw an increase in vortex clustering, and
build up of energy at low k, Billam et al. [234] were able to ob-
serve the formation of large-scale clusters, which they called Onsager–
Kraichnan condensation. In these simulations, a high energy, low en-
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tropy initial condition was used in periodic boundary conditions, and
was seen to evolve to the equilibrium clustered state.

Simula et al. [115] examined the decay of turbulence in a uniform
oblate trap from a random initial condition, and found that both the
dipole moment and kinetic energy per number of vortices squared
increased over time. By eye, the distribution of vortices and antivor-
tices could be seen to separate from a random initial condition to a
distinct pair of clusters. It was noted that vortex–antivortex annihil-
ations dominated the vortex dynamics, events which remove only a
small fraction of the incompressible kinetic energy—dipole pairs have
a low energy associated with them, since they effectively cancel each
other’s velocity field. These annihilation events increase the average
energy per vortex, while the total number of vortices decreases, so the
process was described as evaporative heating, in contrast to the process
of evaporative cooling, where the hottest particles are lost, leaving the
average energy per remaining particle lower.

While these clustering results are seemingly inconsistent with past
studies, such as those of Numasato et al. [226, 227], where no clus-
tering was seen, the geometry of the BEC was different. Groszek et
al. [129] found that as the trapping potential is varied from harmonic
to higher order polynomials, approaching a uniform square poten-
tial, the clustering process becomes stronger. While there are some
signs of clustering in harmonic traps, it occurs on much slower time
scales when compared with traps that are essentially uniform, as seen
in Fig. 1.15. These simulations showed that the evaporative heating
mechanism is dominated by three- and four-body vortex interactions.
As noted in §1.2.5.3, annihilation events can require a catalyst, in the
form of a third vortex, or another bound dipole pair. I will discuss
the vortex decay process in more detail in the following section, as it
is the subject of ongoing research.

There are several key differences in the dynamics of vortices in a
harmonically trapped BEC compared with a uniform BEC. In a har-
monic trap, the edges are soft, and the atomic density gradient at-
tracts vortices to the edges, allowing individual vortices to be lost. In
a uniform potential with hard walls, vortices interact with the bound-
ary via their image vortex. This can result in bound pairs of vortices
and their images running around the boundary, and annihilations
catalysed by image vortices. The density gradient in a harmonic trap
also alters the maximum energy state of the vortices, with the highest
energy clusters located much closer together than in the uniform case.
This reduces the difference in measurements such as the dipole mo-
ment or kinetic energy between the clustered state and a random ini-
tial condition, making it much harder to identify the vortex heating
process.

While it is now clear that evaporative heating can drive a vor-
tex distribution to clustered states, it is unlikely that this will allow
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Figure 1.15: Vortex clustering in harmonic and uniform traps.
Numerical GPE results of turbulent dynamics in a 2D BEC. The grey-scale
represents the normalised atomic density and the location of vortices (anti-
vortices) are highlighted by blue (green) dots. (a–c) show the time evolution
in a harmonic trap. No strong clustering occurs, though the distribution ap-
pears to become more ordered. (d–f) show the equivalent evolution in a trap
with an order 100 polynomial radial profile, which is essentially uniform. In
this case, the vortices and antivortices separate into two distinct clusters.
The red lines represent the vortex dipole moment d. While d grows in mag-
nitude in both traps, the increase is much more pronounced in the uniform
trap. Reprinted figure with permission from Groszek et al., Physical Review
A 93, 043614 (2016) [129]. © 2016 American Physical Society.

the EBC transition to be reached. The separation of clusters (denoted
as the clustering transition by Yu et al. [55]) suppresses the vortex–
antivortex annihilation rate, effectively stalling the heating. Valani et
al. [56] suggest that the most convenient experiment to observe the
crossing of the EBC transition would instead be in a system with vor-
tices of only one sign. Beginning with an initial multi-quantum vortex
with high winding number, the system would decay into individual
|s| = 1 vortices in an EBC state, which would eventually become dis-
ordered, cooling below the EBC transition temperature. This would
be observed as a sudden increase in the spatial extent of the vortex
distribution.

1.3.2.4 Vortex decay in 2DQT

The decay process of vortices in a turbulent system is the subject of
ongoing discussion in the literature. There are variations in the ob-
served decay rates, which may be largely due to differences in trap-
ping geometries and finite temperature effects between the different
simulations.
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Schole et al. [241] found that for a homogeneous system (with peri-
odic boundary conditions), the early time dynamics, when the vor-
tex density is high, are dominated by vortex–antivortex annihilations,
which follow a two-body loss rate, dNv/dt = −Γ2N

2
v, where Γ2 is a

decay constant. At later times they observed a change in the dynam-
ics, which they associated with the lower vortex density resulting in
fewer tightly bound vortex pairs, meaning that each vortex tends to
interact with a larger number of vortices. They found that a four-
body rate of dNv/dt = −Γ4N

4
v matches their data well. These two

rates correspond to the vortex population decaying as Nv(t) ∝ t−α,
with α = 1 for the two-body decay, and α = 1/3 for the four-body
decay. In general, α = −1/(1− k) for a k > 1 body process. In their
simulations, they noted that the early time decay was sensitive to the
initial conditions, with measured values of 1 . α . 2, while the later
dynamics were more consistent, with 0.3 . α . 0.4, in agreement
with the four-body process.

An experiment by Kwon et al. [245] measured the vortex loss rate
in a harmonic trap, proposing that their data could be described by
a one- and two-body loss process, dNv/dt = −Γ1Nv − Γ2N

2
v. This

was motivated by the possibility of individual vortices drifting out of
the condensate, and vortex–antivortex annihilations. Stagg et al. [246]
ran simulations based on this experiment, which produced results
consistent with these loss processes.

Groszek et al. [129] found that in zero temperature simulations of
a harmonic trap the process appeared to be dominated by three- and
four-body interactions. A general loss rate equation of the form

dNv

dt
=

∑

k

−ΓkN
k
v (1.42)

was proposed, where Γk are the decay constants associated with inter-
actions between k vortices, and typically 1 6 k 6 4. When damping
was introduced, the one- and two-body terms dominated the dynam-
ics instead, consistent with the previously discussed results, indicat-
ing that damping plays an important role.

Cidrim et al. [247] found that in their simulation of polarised tur-
bulence (i. e. configurations with unequal numbers of vortices and
antivortices), the k ∈ [1, 2] form of (1.42) resulted in a negative first
order decay constant. While the naive interpretation of this would
be vortex formation, this was ruled out, and instead the single vor-
tex loss process was studied in more detail. As the vortices are sub-
ject to the velocity field of every other vortex in the system, it was
suggested that the drift process would not be a simple single-body
process. Instead, the velocity field due to the nearest same-sign vor-
tex (which will act to push the vortex away) was considered. This
adds an additional factor of N1/2

v to the process, resulting in a rate
of dNv/dt = −Γ1N

3/2
v . Due to the polarisation of the system, they
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also argued that vortex–antivortex annihilation would be less com-
mon, scaling as ∝ N+

vN
−
v , where N±

v are the number of positive and
negative vortices, rather than ∝ N2

v. This resulted in a modified loss
rate of the form

dNv

dt
= −Γ1N

3/2
v − Γ2N

4
v. (1.43)

Similarly, Karl and Gasenzer [248] found that a factor of N1/2
v was

necessary to account for the background vortex velocity field. In this
case, they found that in the presence of vortex clustering, losses were
predominantly due to interactions between dipole pairs travelling
between the clusters, and individual vortices on the edge of a cluster.
In these interactions, one vortex would catalyse the collapse of the
pair into a Jones–Roberts soliton, which would then decay due to
interactions with fluctuations in the BEC. When the background velo-
city field was taken into consideration, this three-body process was
modelled as dNv/dt = −Γ3N

7/2
v .

To further investigate the nature of dipole pair annihilation, Bag-
galey and Barenghi [249] studied a uniform system with periodic
boundary conditions, to eliminate losses due to drift. They assumed
a rate equation of the form

dNv

dt
= −ΓNk

v , (1.44)

and sought to find the value of the exponent k in the case of no dis-
sipation, weak dissipation and strong dissipation. In the case of no
dissipation, the number decayed as Nv ∝ t−0.3, close to the t−1/3

scaling expected when k = 4. In the presence of dissipation, how-
ever, the decay process began at a rate consistent with Nv ∝ t−1/2,
associated with k = 3, then transitioned to a faster t−1 decay, asso-
ciated with k = 2. The transient k = 3 behaviour was interpreted as
being due to a higher vortex density at early times, meaning that di-
pole pairs are more likely to encounter other vortices. At later times
when the vortex density is lower, dissipation becomes the dominant
loss mechanism, bringing pairs of vortices and antivortices closer to-
gether.

While it seems clear that the vortex decay process is, in general, due
to a combination of drift and dipole annihilation events, the number
of vortices participating in the dipole annihilations appears to de-
pend on the configuration of vortices, and the level of damping in the
system. It is unclear, however, whether the background velocity field
of other vortices is important for collisions of all orders. In a four-
body process, taking this background into account using a power of
k = 9/2 would result in scaling of t−(2/7≈0.29), which agrees well
with the scaling seen in the case of no dissipation by Baggaley and
Barenghi [249]. In their dissipative cases, the background field does
not appear to be required, with the data matching the integer scaling
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laws well. In his thesis [250], Andrew Groszek notes that when the
results in Ref. [129] are re-analysed with the additional factor of N1/2

v

a good fit to the data is still achieved. Given that these high vortex
number simulations cannot easily determine the precise nature of the
decay process, it is unlikely that the N1/2

v factor will be noticed in
experiments with lower vortex numbers.

Groszek et al. [242] also investigated the evolution of classified vor-
tex populations (in a system with no damping), proposing that the
total number of vortices classified as being either part of a cluster,
a dipole pair or as a free vortex, follow power-law functions of the
total vortex number, Nc ∝ Nα

v , Nd ∝ N
γ
v and Nf ∝ Nδ

v respect-
ively. The measured values, α = 0.79, γ = 1.21 and δ = 1.18 were
considered indicative of rational values α = 4/5 and γ = δ = 6/5,
though no physical interpretation of these laws was suggested. As
these power-laws are effectively re-scaled decay rates (as Nv is con-
stantly decaying), they show that the number of clustered vortices de-
cays at a slower rate than the number of vortices in dipole pairs and
free vortices, which is consistent with the notion that losses are due to
vortex–antivortex annihilations. This further suggests that three-body
losses may be more likely to occur between dipole pairs and a free
vortex than dipoles and a vortex that is part of a cluster. The net res-
ult is that despite the decay in all three populations, the fraction of
vortices in clusters tends to increase throughout the process.

1.3.2.5 Nonthermal fixed points

The evolution of vortices in 2DQT has also been analysed in the context
of nonthermal fixed points (NTFPs) [241, 248, 251, 252]. In this picture,
the vortices are seen to evolve toward a stationary point, such as a pair
of vortex clusters, which does not correspond to the thermal ground
state of the system. Near these NTFPs there is a critical slowing of
the dynamics, and correlation functions of the system exhibit univer-
sal scaling. This universal scaling suggests that examining 2DQT may
provide experimental insight into other dynamical systems, such as
biological systems [253, 254], early universe inflation [8], and quark-
gluon plasma dynamics [9].

Nowak et al. [251, 252] interpreted the momentum occupation spec-
trum n(k) in terms of NTFPs, finding universal k−4 scaling at large
length scales, in agreement with analytic field theory results. In the
work of Schole et al. [241], discussed in §1.3.2.4, the change in scaling
of the vortex decay process was interpreted as a critical slowing of the
process as the system approached a NTFP. The slowing occurred as
the occupation spectrum developed the k−4 scaling associated with
the fixed point. In this work, the vortex configuration was close to
the BKT transition, dominated by bound vortex–antivortex pairs. The
NTFP was described as the non-equilibrium unbinding of several of
these pairs.
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Karl and Gasenzer [248] showed that different fixed points can be
approached depending on the initial conditions. While the dynamics
near a NTFP are universal, without memory of the initial state, there
can be more than one NTFP, with the initial state determining which
will be approached. For an initial condition consisting of a lattice of
vortex clusters, a fixed point was seen to exhibit universal scaling of
the occupation spectrum, with an anomalously high scaling exponent.
In the case of a random initial condition, the scaling is close to Gaus-
sian, corresponding to the scaling expected due to the velocity field
of the vortices.

They found that the evolution of the characteristic inter-vortex spa-
cing scale lv depends on which fixed point the system is close to.
Near the anomalous NTFP, the distance scales as lv ∝ t1/5, whereas
near the Gaussian fixed point the scaling is lv ∝ t1/2. In all cases,
the system was seen to eventually evolve toward the Gaussian fixed
point scaling. This was interpreted as critical slowing of the dynamics
near the anomalous fixed point, before the system moved toward the
equilibrium Gaussian fixed point. The scaling of the vortex spacings
was shown to be consistent with vortex decay as a three-body pro-
cess involving the background velocity field for the anomalous fixed
point, and two-body loss for the Gaussian fixed point.

1.3.2.6 Experiments in 2D quantum turbulence

The BKT transition has been demonstrated in both superfluid 4He [255]
and a 2D atomic gas [256] (note that in this case the trapping was suf-
ficiently 2D that a BEC cannot form, in contrast to the quasi-2D BEC

systems that will be discussed next). These experiments concentrated
on the physics of the phase transition itself, and focussed on the
coherence of the system and breakdown of superfluidity across the
transition, rather than relating the phenomenon to turbulence. While
experiments in helium are able to observe the breakdown of super-
fluidity, it was only in the atomic gas that the microscopic details of
the vortex pair unbinding was able to be seen. I will not go into the
details of these BKT experiments, and instead focus on those explicitly
examining 2DQT.

In addition to our lab at Monash, there are currently three other ex-
perimental groups actively researching 2DQT: Brian Anderson’s group
at the University of Arizona, Yong-il Shin’s group at Seoul National
University and Tyler Neely’s group at the University of Queensland.
To date only a few experiments have directly addressed 2DQT in a
scalar BEC. Many experiments on few-vortex systems, however, have
also contributed to our understanding of turbulence by examining the
creation and dynamics of the vortices themselves. Wilson et al. [257]
(from the Arizona group) also published a compilation of ways that
they have kicked, poked, spun and wobbled their BEC to induce large
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Figure 1.16: Turbulent vortices in a toroidal BEC.
Data is shown from the first experimental investigation of 2DQT. (a–b) Op-
tical density images showing vortices at sequentially longer hold times after
stirring. The optical plug creating the toroidal geometry has been removed
prior to time-of-flight expansion, however, at later times the distribution
maintains a large central hole, indicative of a persistent current. Numerical
simulations of the experiment are shown (c) in situ with the central plug
present, and (d) after ramping off the plugging potential for the correspond-
ing data in (c). Reprinted figure with permission from Neely et al., Physical
Review Letters 111, 235301 (2013) [258]. © 2013 American Physical Society.

numbers of randomly distributed vortices to generate a turbulent
state.

The first experiment to study 2DQT in detail was by Neely et al. [258]
in Arizona. In this experiment, a ring-shaped trapping potential was
formed by passing a repulsive Gaussian laser beam through the centre
of an oblate trap, formed by a combination of magnetic field gradi-
ents and a focussed light sheet. By moving the magnetic field gradi-
ent, which forms the radial confinement, relative to the central laser
beam, a disordered distribution of vortices were shed from the cent-
ral barrier. The vortices were allowed to evolve in the annular trap,
before the central barrier was slowly removed and an image of the
vortex distribution was taken, shown here in Fig. 1.16. Vortices be-
came pinned to the central obstacle during the experiment. As the
vortices decayed, a persistent current formed in the trap, which was
observed as a density depletion persisting in the centre of the trap
once the obstacle had been removed. They were able to distinguish
that the formation of the persistent current was due to the vortex dy-
namics, and not angular momentum injected in the stirring process.

However, as standard absorption imaging was used, only the vor-
tex positions were known, not their signs. This meant that any further
analysis required comparison to numerical simulations of the experi-
ment parameters. These simulations showed that the incompressible
energy spectrum developed a k−5/3 scaling during the stirring pro-
cess, which slowly decayed as the persistent current formed post-stir.
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100 µm  

Figure 1.17: A vortex street in BEC.
Vortices are seen in a zig-zag pattern after an obstacle has been dragged
through a BEC of sodium atoms. Each image was produced with identical
parameters, with an obstacle diameter of D ≈ 29ξ, depth V0 ≈ 1.8µ and
velocity v = 1.39mms−1 ≈ 1.25vc. In some cases, individual vortices are
seen (smaller black holes), though in many cases clusters of two vortices
of the same sign form, merging into a single larger feature in time-of-flight
imaging. Reprinted figure with permission from Kwon et al. Physical Review
Letters 117, 245301 (2016) [201]. © 2016 American Physical Society.

Clustering of same-sign vortices was also seen in the simulations.
While this experiment saw results consistent with the transport of
energy from small scales to large scales, in the form of vortex cluster-
ing, and ultimately the formation of a persistent current, it lacked the
ability to directly infer this from the experimental data, as the signs
of vortices imaged throughout the process was unknown. It is also
likely that the pinning of vortices to the central obstacle played a role
in the vortex dynamics.

Kwon et al. [245] in Seoul investigated the vortex number statistics
of decaying turbulence, as discussed in §1.3.2.4. Around 60 vortices
were injected into a harmonic trap by sweeping a repulsive stirring
beam through the centre of the trap. Many crescent-shaped vortex–
antivortex pairs were seen in their data, indicating that pair anni-
hilations played a significant role in the dynamics. The vortex loss
rate was seen to match (1.42) with k ∈ [1, 2], indicating that the loss
was due to single-body losses (presumably at the boundary) and two-
body losses associated with annihilation events. The behaviour of the
decay rates was investigated as a function of temperature and chem-
ical potential. As the condensate temperature was increased, both de-
cay rates grew, though the two-body rate appeared to increase quad-
ratically, while this one-body rate grew linearly.

As mentioned in §1.3.1.1, the Seoul group has also generated a
von Kármán vortex street [201]. By varying the speed of an obstacle
through their BEC, they were able to observe periodic shedding of vor-
tices, which seemingly injected transient clusters of like-sign vortices,
seen in Fig. 1.17. As this was performed in a harmonic trap the classic
zig-zag structure of many such clusters eventually became deformed
as the vortices began to orbit within the finite area.

The first experiment to achieve full velocity information in 2DQT

was by Seo et al. [21], who implemented the Bragg spectroscopy tech-
nique discussed in §1.2.7.3. This experiment was performed in the
same harmonic trap as the previous work in Seoul, and looked at the
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decay process again, this time focussing on the vortex configuration
since the signs were known. It was seen that the distribution was dom-
inated by vortex–antivortex pairs, which persisted throughout 12 s of
evolution time. They attribute the pairing to dissipation, due to the
considerable thermal fraction (T/Tc ≈ 0.5 in this case), as well as the
harmonic potential. An incompressible kinetic energy spectrum was
generated using (1.36), marking the first such calculation based on ex-
perimental measurements. This spectrum showed the usual k−1 and
k−3 asymptotes, but there was no convincing inertial range between
these.

Most recently, in Queensland, Gauthier et al. [259] observed the
formation of large-scale vortex clusters by sweeping pairs of ‘paddles’
through an oblate BEC with a hard-walled elliptical in-plane profile.
While no vortex sign detection was implemented, the sign of vortices
in each of the two clusters of vortices formed could be inferred based
on the geometry of the sweep. These clusters were seen to persist
with almost no decay over 10 s, indicating that they must be highly
pure, with vortices and antivortices isolated from each other inhib-
iting the annihilation process. For comparison, a similar number of
vortices were injected using a grid of obstacles to form a more ran-
dom distribution, in which case the vortex number decayed to 40%
in the same time. While these clusters were not energetic enough to
be EBC states, they represent a NTFP where the time scaling has been
almost completely frozen.

The decay of the clusters was investigated as a function of BEC tem-
perature, as well as trap size. As the trap was made bigger, residual
harmonic trapping from the light sheet (providing the tight confine-
ment) became non-negligible, which tends to push the pair of clusters
closer to each other, facilitating annihilation events. Similarly, as the
condensate fraction was reduced with increasing BEC temperature,
the added dissipation caused the clusters to relax to larger (lower
energy) configurations, which began to overlap and allow vortex–
antivortex annihilations. While this experiment essentially began at
the ‘end point’ of the expected dynamic evolution of 2DQT, it shows
an ideal example of a NAT state, and confirms the role of trap geo-
metry and dissipation in the stability of these states.

The experiments in Queensland were performed and analysed dur-
ing the same time period as our experiments, which will be described
in Chapter 4. Briefly, our experiment used the sign detection tech-
nique of Seo et al. [21] in a trap similar to Gauthier et al. [259], and
observed the dynamic evolution of vortices to clustered states. Our
clusters, however, were much smaller, typically consisting of multiple
clusters of only a few vortices, though still had NATs. In Chapter 5 I
will discuss some possible follow-up experiments that are now exper-
imentally feasible, that will expand the current knowledge of 2DQT.
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1.4 more on negative absolute temperature systems

The arguments made by Onsager, discussed in §1.1.2.2, have also been
made to assign NATs to other systems with a finite phase-space. Pur-
cell and Pound [260] used a non-adiabatic magnetic field reversal to
initialise a system of nuclear spins in a highly ordered, high energy
state. This state evolved to a higher entropy while losing energy, and
was thus described as a NAT state.

Braun et al. [261] realised a NAT state in the motional degrees of
freedom of atoms in an optical lattice. Here, a Feshbach resonance
was used to tune the inter-atom interactions from positive to negat-
ive values, effectively changing the sign of their Hamiltonian. In this
system, for repulsive (attractive) interactions, only positive (negative)
temperatures are accessible, as the interaction energy only has a lower
(upper) bound.

Both of these NAT systems differ from the point vortex case, as
they are essentially a change of state for single particles. A positive
temperature distribution is taken, and the sign of a parameter is non-
adiabatically swapped, causing the system to suddenly swap to a NAT

state. For point vortices, however, energy is injected into the system
in a continuous manner and it is the interactions of the constituent
particles (vortices) that results in a NAT configuration.

Recently Gartside et al. [262] demonstrated an artificial spin ice
in a NAT state. These are systems of nanomagnets arranged in geo-
metrically frustrated arrays, which arrange themselves to minimise
the net magnetic charge at each vertex of the array. Due to the finite
number of nanomagnets, the total number of microstates (spin con-
figurations) is bounded, and hence NATs are allowed. By using a new
direct spin writing technique, injecting topological defects in mag-
netic nanowires, arbitrary configurations of artificial spin ices were
able to be made, including monopole chains, which are high-energy,
low-entropy states with NATs.

As NATs can result in negative pressures, they have been considered
as a potential source of inflation in cosmology [263]. Saha et al. [264]
recently suggest that ‘dark energy’ may not be required if the cosmic
fluid is an ideal gas with a varying NAT.

1.4.1 Ramsey’s description of negative absolute temperatures

Following the experiment of Purcell and Pound, Ramsey [265] dis-
cussed the properties of systems capable of NATs in general (though
with a focus on spin systems). He claimed that in terms of thermo-
dynamics, NATs can occur when entropy is not a monotonic function
of energy, such that (1.10) takes a negative value. He pointed out
that NATs are hotter than positive temperatures, admitting that the
term seems poorly named, lamenting that the existing definitions of
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temperature, combined with the mathematical description, resulted
in this confusing scenario, where the derivation makes sense, but the
physical description is counter-intuitive.

Ramsey stated that for a system to support NATs, its elements must
be in thermodynamic equilibrium with each other, the system must
have an upper energy bound, and the system must be sufficiently
isolated from other systems that do not meet these criteria. Practically
speaking, this means that the time taken for the system to equilibrate
must be short compared with the time taken for energy to be lost to
or gained from an outside system. He asserted that usual statistical
mechanics approaches are not limited to unbound systems, and so
can readily be applied to bound systems supporting NATs.

1.4.2 Do negative absolute temperature states really exist?

Due to the counter-intuitive nature of NATs, there has been ongoing
debate as to whether they are a meaningful way to describe these
systems. In the case of Onsager’s description of negative temperature
vortices, Berdichevsky et al. [266] considered the presence of NATs

to be a paradox, and showed that this can be ‘resolved’ by using
a different definition of entropy. Instead of the Boltzmann entropy,
SB(E) = kB log [w(E)], they advocate for the use of the Gibbs entropy,
SG(E) = kB log [Ω(E)], where Ω(E) is the number of microstates with
with energy less than E, the integrated density of states. In the limit
of large, classical systems, the two are almost identical, but for finite
sized systems they differ. When the density of states is not monotonic,
the Gibbs entropy remains monotonic, resulting in only positive tem-
peratures.

This suggestion sparked a chain of comment papers, with Mont-
gomery arguing that there was no paradox to be solved in the first
place [267]. It was argued that the negative temperature description is
useful for understanding the different dynamics of the vortices in the
two regimes. This was seen as being more important than redefining
quantities such that these particular finite systems mimic the thermo-
dynamics of macroscopic systems. In response to these comments,
Berdichevsky et al. [268] argued that thermodynamics of finite sys-
tems should only be valid for ergodic systems that are chaotic. They
argue that this rules out a thermodynamic description of the high en-
ergy clustered vortex states. Rather than viewing these high energy
states as a result of a NAT, they view them as loss of ergodicity of the
system.

O’Neil and Campbell [269] argued against these ergodicity claims,
suggesting that the clustering of vortices is not inconsistent with
the system being ergodic. They argued that there is a physical con-
sequence of NATs: at positive temperatures vortices of opposite sign
attract, and vortices of the same sign repel, whereas at negative tem-
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peratures vortices of the same sign statistically attract. Berdichevsky
et al. [270] responded to this comment, suggesting that further re-
search was needed regarding the ergodicity of high energy vortex sys-
tems. They maintained that while negative temperatures make sense
in some physical systems (presumably referring to the experiments
with nuclear spins), the appearance in the vortex system is paradox-
ical, as the average direction of rotation of vortices should change as
the temperature transitions from positive to negative.

Following the atomic lattice experiment there has been a renewed
theoretical interest in NATs. In particular, another debate of Boltzmann
vs. Gibbs entropy has been ongoing, in the context of both this exper-
iment and the earlier nuclear spin experiments.

Romero-Rochín [271] claimed that NATs are not physical, as states
beyond infinite positive temperature are not stable, and hence not in
equilibrium, a requirement of a thermodynamic description. This ar-
gument was based on the fact that if a system with NAT were brought
into thermal contact with any system which did not support NATs,
the system would rethermalise to a positive temperature, no matter
how small the positive temperature system is. This argument ignores
the criteria for NATs set out by Ramsey [265], namely that the system
must be isolated from systems that do not support NATs. The descrip-
tion as a NAT state was only ever meant for isolated systems with an
upper energy bound.

Dunkel and Hilbert [272] wrote that “consistent thermodynamics for-

bids negative absolute temperatures.” They state that it is invalid to use
NATs, because the entropy definition used to obtain such states is in-
consistent both mathematically and thermodynamically. They claim
that the Gibbs entropy produces sensible predictions for thermody-
namic observables where the Boltzmann entropy does not.

Vilar and Rubi [274] rebutted the claim that the Gibbs entropy is
superior. They showed that it results in lost information for bound
systems, as SG levels off beyond the maximum of the density of states.
Furthermore, they showed that using the Gibbs entropy results in in-
consistent temperatures for finite systems, with the measured value
scaling exponentially with system size. Frenkel and Warren [275] also
argued against the use of the Gibbs entropy. They showed that it leads
to situations where two bodies in thermal equilibrium had different
temperatures, which does not agree with the principles of thermody-
namics.

Hilbert et al. [276] retaliated, claiming that temperature-based heat-
flow arguments cannot be used to judge the two entropy formalisms.
Instead, they argued that they should be evaluated based on the laws
of thermodynamics. They found that only the Gibbs entropy can sim-
ultaneously satisfy the zeroth, first and second laws of thermodynam-
ics for a broad range of systems. Campisi [277] used the second law
of thermodynamics and the ideal gas law to build an expression for
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the entropy, finding that this was satisfied by the Gibbs entropy. This
work also showed that the Boltzmann entropy can predict unphysical
phase transitions in the magnetisation of spin systems.

There have many publications since, comparing aspects of thermo-
dynamics with each entropy definition (e. g., [278–283]). These have
shown that the Boltzmann entropy is in fact valid to use, and that
negative temperatures are a valid extension to thermodynamics. Ab-
raham and Penrose [284] recently reviewed the arguments for each
entropy, concluding that NATs make theoretical sense, and should be
used in the descriptions of the experiments.
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B U I L D I N G A B E C A P PA R AT U S

Although the results presented in later chapters use single species
87Rb BECs, the apparatus used was designed to trap and cool both
87Rb and 41K. At the beginning of my PhD, in February 2011, the lab
consisted of little more than optical tables, a few commercial lasers,
and drawers full of optics and vacuum components which were yet
to be assembled. Now, in a laboratory a few hundred meters north
east of the original space, those optical tables are home to the dual-
species ‘KRb’ apparatus. This Chapter will outline the construction
and general operation of this apparatus.

The construction of the KRb lab was a team effort, so first I will
begin with a brief overview of the contributions of everyone involved.
The KRb apparatus was also built in parallel with a second BEC labor-
atory at Monash, the ‘spinor’ lab, headed by Lincoln Turner and Rus-
sell Anderson, and so much of the hardware and software in our lab
was developed alongside theirs.

I will then outline the main hardware components in our lab, namely
the vacuum system, lasers and magnetic coils. The control hardware
and software will be discussed, before an explanation of how it all
goes together to make the experiment work. The experiment sequence
will be outlined in approximately the order in which the stages hap-
pen during a typical run of the machine, though with some asides
where multiple configurations have been used for some stages.

2.1 contributions to the krb lab

The vacuum chamber was bolted together, pumped down and baked
in 2011 by Brad and Chris, while Phil & I began setting up the lasers
required for cooling, trapping and probing the ultracold atoms. Bey-
ond this, the majority of the work in the lab has been a team effort
by Phil & I, with some input from Mikhail, and, of course, guidance
from our supervisor, Kris. The key people who made contributions,
and a brief summary of their main contribution to the KRb apparatus
are as follows:

philip (phil) starkey : Phil started his PhD with me in 2011 and
is currently writing his thesis [285]. Phil’s main contributions
were:

• Building the laser systems for trapping, cooling and prob-
ing 87Rb and 41K (in conjunction with me),
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• Putting together a lot of the electronics in the lab, including
radio frequency (rf) sources and fail-safe interlocks,

• Writing the control system, the labscript suite (in con-
junction with Chris, with contributions from Martijn, Russ
& myself)—I am a co-author on a publication describing
this work [286],

• Constructing and aligning the optics for the magneto-optical
traps (MOTs), and developing and optimising the experi-
ment sequence (in conjunction with me, with later assist-
ance from Mikhail).

christopher (chris) billington : Chris started his PhD with
me in 2011, and recently submitted his thesis [166]. Chris ended
up having a mostly theory based project but made contributions
to the lab, including:

• Helping Brad bolt the vacuum system together, then lead-
ing the bakeout of the system,

• Writing the control system, the labscript suite (in con-
junction with Phil, with contributions from Martijn, Russ
& myself).

dr . mikhail egorov : Mikhail worked in our lab as a post-doctoral
researcher from December 2011 to April 2014. Mikhail’s main
contributions were:

• Assisting Phil & I with the construction and alignment of
the optics for the MOTs, and developing and optimising the
experiment sequence,

• Installation of the first iteration of our optical dipole trap
(in conjunction with me),

• Assisting me with work on the transport of atoms to the
square science chamber.

bradley (brad) murnane : Brad was a student in our lab from
2010–2012, who was subsequently employed as a technician the
mechanical workshop. Brad’s main contributions were:

• Designing and constructing the vacuum chamber,

• Winding the anti-Helmholtz electromagnet coils.

sebastien (seb) tempone-wiltshire : Seb started his PhD in our
lab in 2015. Seb’s main contribution to the KRb machine was
developing methods for generating static holographic elements,
copying a pattern from a spatial light modulator (SLM) to a poly-
mer film (an idea initiated my me)—I am a co-author on a pub-
lication describing this work [287]. Though not related to this
thesis, Seb is currently building the next generation ‘KRb2’ ma-
chine, taking into account the advice of Phil & I based on our
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experiences with the KRb machine. I also assisted Seb in the
development of an experiment in which he generated optical
knots using an SLM, which, on average, contained only a single
photon at a time. I am a co-author on the paper resulting from
this experiment [288].

dr . martijn jasperse Martijn was a PhD student in the spinor lab
from 2010–2015. Several of Martijn’s contributions to the spinor
lab, which are described in his thesis [289], were also used in
our lab, in particular:

• BIAS, the imaging system component of the labscript suite,

• The microwave offset laser lock, which I duplicated with
minor modifications.

dr . alexander (alex) wood : Alex was a PhD student in the spinor
lab from 2011–2015. Several of Alex’s contributions to the spinor
lab, which are described in his thesis [290], were also used in
our lab. In particular, I developed our microwave modulation
equipment in conjunction with Alex. Alex and I also worked to-
gether on the implementation of optical dipole traps, purchas-
ing identical lasers and using a similar optical layout. I also
made use of a Mathematica notebook developed by Alex and
Russ for calculating dipole trap parameters.

Of course my experimental supervisors, Prof. Kristian (Kris) Helmer-
son and Dr. Lincoln Turner, along with Dr. Russell (Russ) Anderson,
also contributed to the development of the lab with plenty of guid-
ance and advice.

2.2 the vacuum system

As BECs are extremely fragile, they must be prepared in an ultra-high
vacuum (UHV) chamber—collisions with only a few room temperat-
ure atoms would be enough to heat and destroy the condensate. Our
apparatus is designed to cool both 87Rb and 41K, and so is inherently
more complicated than most single species designs, which have be-
come quite compact and simple over the last two decades since the
first condensates were made. Our vacuum system, depicted in Fig. 2.1,
was designed and constructed by Brad. The vacuum system consists
of two source regions, one containing around 5 g of elemental rubid-
ium and the other around 5 g of elemental potassium, and a central
UHV chamber, off which there are two high quality glass science cham-

bers.
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Figure 2.1: The vacuum chamber.
The vacuum chamber has a central ultra high vacuum section (yellow), with
two source sections, potassium on the left and rubidium on the right. The
top panel shows a birds eye view of the chamber, with labels to the main
components described in the text. The red section indicates the additions
made when the potassium source developed a leak, while the green section
was added when the rubidium source was limiting the central chamber pres-
sure. The lower panel shows a side view of the chamber to help visualise
the 3D layout.

2.2.1 The atomic sources

The source sections are almost identical. Each contains an ampoule
of the relevant element in the bottom of a 2.75" CF vacuum tube. This
section of tubing has nichrome wire wrapped around its exterior to
form a resistive heater, used to increase the background alkali vapour
pressure in the section. The ampoules were placed in the tube during
construction, along with a small block of steel, which was held at the
top of the tube by a strong magnet on the outside of the tube during
bakeout. Once the vacuum system was pumped down and baked,
the magnet was removed, allowing the block to fall and smash the
ampoule open. In practice, this required dragging the block up and
down with the magnet several times before the glass gave way.

Each oven section is then connected, via a gate valve, to a glass tube
in which a MOT is loaded from the background vapour. The details
of these MOTs will be outlined in §2.6.1. There is also an angle valve
from each oven section, to which a turbo pump was connected during
the initial pump down and bakeout of the system.
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2.2.2 The UHV chamber

Each source section is attached to opposing sides of a Kimball spher-
ical octagon chamber, via a differential pumping tube built into a
custom copper gasket. This central chamber of the system is pumped
by two Gamma 25 L s−1 ion pumps, along with a titanium sublima-
tion pump, as shown in Fig. 2.1. The two larger faces of the central
Kimball chamber, on the top and bottom, have large diameter win-
dows, which are recessed such that there is only ≈25mm between
the internal glass surfaces. This allows us to mount electromagnets,
antennas and lenses as close to the atoms as possible, without having
them in vacuum.

Two glass science chambers are attached to the ‘front’ side of the
central chamber. One science chamber is cylindrical, which was inten-
ded to be used by Brad for experiments with physically rotating op-
tical lattices, but has never been utilised, other than as a window for
the central chamber. The other is a rectangular chamber, with 4mm
thick Borofloat glass walls, where we had planned to conduct ex-
periments requiring good optical access and high resolution imaging.
As I will discuss in §2.7.3.2, this did not go as well as planned, and we
ended up running most experiments in the central chamber, despite
the reduced optical access.

2.2.3 Repairs to the vacuum system

In an ideal world, the vacuum system should never need to be brought
back to atmospheric pressure or modified after the initial bakeout.
Unfortunately, ours has had to have two major repairs during its life.

During construction, the copper-seal valve on the rubidium end
was found to be leaky, and replaced with one with a Viton rubber
seal. Shortly after obtaining our first magnetically trapped atoms in
2012, we noticed that the magnetic trap lifetime in our UHV chamber
was much shorter than expected. Using a residual gas analyser built
in to the UHV section of the chamber, we found that the level of hy-
drogen in the chamber was much higher than expected, but lowered
when the gate valve to the rubidium source was closed. Since the
Viton valve had been kept below 150 ◦C during bakeout to prevent
damaging the seal, it was our primary suspect as the source of the ex-
cess hydrogen. An additional section of vacuum chamber was bolted
on after this valve, consisting of a small 9 L s−1 ion pump and a new
copper sealed angle valve (see green section of Fig. 2.1). We also ad-
ded an ion gauge, as the main chamber did not have any, though
we suspect that this short circuited to the vacuum chamber, as it has
never worked. We believe that readings from the ion pumps in both
the UHV and rubidium source have been accurate enough to mon-
itor the vacuum pressure, with the UHV pump controller readings
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February 2012 (pre-repair), τ = 6.1 ± 0.5 s

April 2012 (post-repair), τ = 18 ± 1 s
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July 2012, τ = 51 ± 4 s

Figure 2.2: Magnetic trap lifetime measurements.
Our first magnetic traps showed poor lifetimes of only 6 s (blue), pointing
to an issue with our vacuum. After adding an ion pump to the rubidium
source section, the lifetime was improved to 18 s (green), which improved
further to 51 s (inset) after a few months.

‘bottoming out’ on their lowest possible reading of 1.00× 10−11 Torr.
The new section was re-pumped and baked without losing vacuum
in the UHV section. After opening the old Viton valve to join the new
section the lifetime measurement in magnetic trap improved, shown
in Fig. 2.2, as did the vacuum pressure readings on the ion pumps.

The potassium end of the system did not have a pump added to
it at the time, as we had no issues with excess hydrogen originating
from here, presumably since the all-metal angle valve on this end
was baked well. However, at 11:55 pm on the 11th of July 2016, there
was a sudden increase in pressure registered by the ion pumps in the
UHV section. This was caused by the failure of the window on the
end of the potassium oven. As can just be made out in Fig. 2.3, the
glass around the rim of the window appears to have shattered. We do
not know what caused this, however we suspect that the potassium
could have weakened either the glass or the glass-to-metal seal. After
unsuccessfully attempting to patch up the window with Torr Seal

(which we happened to have on hand; a less viscous vacuum sealant
may have been more suitable here), we made the decision to break
vacuum and replace the window.

The gate valve between the oven section and the MOT chamber was
closed, however this valve does not seal well (most likely again due
to a Viton seal, which could have been damaged during bakeout),
and nitrogen was used to back-fill the chamber from the angle valve,
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Figure 2.3: The failed vacuum window.
The reflection of my finger (holding my phone while taking the photo) con-
veniently points towards the upper edge of the window where the glass
appears to be crystalline. It is most likely that the reason the Torr Seal did
not work was due to air trapped within this shattered glass, as well as the
proximity to the vacuum bolts, which prevented us from fully sealing the
edge of the window.

taking the whole chamber to a slightly positive pressure. We decided
to add a spare 20 L s−1 ion pump that we had, to assist with pumping
the source end (see red section of Fig. 2.1), as we would not be able to
properly bake the repaired section due to the potassium present. Un-
fortunately, the pump controller stopped working after a few weeks,
however by then the vacuum pressure had more or less recovered,
and did not seem to be severely impacted by leaving this extra pump
turned off. Over a year later, the vacuum pressure seems to be worse
than prior to the incident, but good enough, with a magnetic trap
lifetime of 24 seconds (comparable with the lifetime measured imme-
diately after the rubidium oven repair), shorter than our best recorded
lifetime of 51 seconds (Fig. 2.2).

While writing this thesis, another leak opened up in the system,
this time in a window on the rubidium source end. The window on
top of the rubidium oven section appeared to have a similar crack
to the failed potassium window, though it appeared smaller, and the
central chamber vacuum pressure did not get as high (in fact, it was
only by chance that I noticed it, a week or so later, when checking
on something else in the lab, as it had not reached a high enough
level to set off our alert system). This time I had some Vacseal on
hand, which is less viscous than Torr Seal, and as the window was
mounted flat I was able to pour it into the groove between the win-
dow and the flange. This seems to have stopped the leak, however the
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The Littrow ECDLs

used for 87Rb were

made by students in
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University of

Melbourne, who

kindly gave them to

us on a long term

loan. The Littrow

ECDL used for 41K
was built by Phil

during an

undergraduate

project, originally

for the spinor lab.

pressure reading on the ion pumps is still high (around 1× 10−9 Torr

in the UHV chamber). This does not seem to be a correct reading (the
ion pumps possibly formed ‘filaments’ during the ordeal causing an
increased pumping current), as when the apparatus was turned back
on the lifetime was consistent with previous measurements. The atom
number took a few weeks to recover, since the rubidium source oven
had been off for several months. During this warm up period the mag-
netic trap lifetime was seen to decrease from around 50 s to 20 s, con-
sistent with the best lifetime measurement in Fig. 2.2 and the lifetime
seen more recently after the potassium window repair. A possible
interpretation of these observations is that the background-limited
lifetime is on the order of 50 s, with the reduction to a trap lifetime
of 20 s caused by another effect. This further reduction is most likely
due to a higher background pressure in the central chamber when
the rubidium source is at its optimal operational pressure.

2.3 lasers

In order to trap and cool 87Rb and 41K atoms, we use lasers tuned
close to resonance with the D2 transition in each atomic species. For
each species we need cooling (red detuned from |F = 2〉 → |F ′ = 3〉)
and repumping (|F = 1〉 → |F ′ = 2〉) beams for both the source and
central MOTs, an optical pumping beam (|F = 2〉 → |F ′ = 2〉) and
an imaging beam (|F = 2〉 → |F ′ = 3〉), as well as a push beam for
transferring atoms from the source MOT to the central MOT (close to
|F = 2〉 → |F ′ = 3〉). Here the |F〉 states are 2S1/2 ground states and
|F ′〉 states are 2P3/2 excited states of the D2 line. A summary of the
laser frequencies used for 87Rb are shown in Fig. 2.4, and for 41K in
Fig. 2.5.

The laser light was originally sourced from a pair of lasers from
Sacher LaserTechnik, each consisting of a Littman–Metcalf external
cavity diode laser (ECDL) and a tapered amplifier (TA). An additional
home made Littrow configuration ECDL was used for the rubidium
repump transition. Over the years the diodes in each of the Littman–
Metcalf lasers burnt out, and we found it more convenient to replace
the lasers with home made Littrow ECDLs rather than have the ori-
ginal lasers repaired, as this would have been expensive, and they
proved hard to re-align ourselves. The Sacher TA on the rubidium
laser was replaced with a more powerful, fibre coupled TA from Thor-
labs (TPA780P20) and the Sacher unit was added to the repump laser.
The Sacher TAs are now mounted on heat sinks, with 3D printed cov-
ers so that they take up less room than their original cases, and seem
to be more thermally stable.

The optical layout of the laser table is shown in Fig. 2.6, and mostly
consists of sets of AOMs in front of optical fibres, which take the light
to the optical table on which the vacuum chamber sits. The AOMs al-
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Figure 2.4: Rubidium laser frequencies.
Typical detunings of the laser beams used for 87Rb are shown, relative to
the D2 transitions (not to scale). The central MOT beams are further detuned
for PGC, indicated by darker arrow head. The push and imaging beams are
generated by the same AOM and split on the vacuum table (see Fig. 2.6).
The MOT repump light is generated by separate AOMs for the source and
central MOTs for independent control. The Bragg beam will be discussed in
Chapter 4.

P
3/2

S
1/2

|F’ = 3〉

|F’ = 2〉

|F’ = 1〉
|F’ = 0〉

|F = 1〉

|F = 2〉

|F = 1×2〉

39K

∆
F’
 = -87 MHz

P
3/2

S
1/2

41K

|F = 1〉

|F = 2〉

|F’ = 3〉

|F’ = 2〉
|F’ = 0,1〉

∆
3
 =

 -
2
5
 M

H
z

∆ ≈ -10 MHz

M
a
s
te

r 
la

s
e
r

∆
2
 =

 -
9
 M

H
z

∆
3
 =

 -
2
0
 M

H
z

M
O

T

Im
a
g
in

g

P
u
s
h

O
p
ti
c
a
l 
p
u
m

p
in

g

P
u
s
h
 r

e
p
u
m

p

M
O

T
 r

e
p
u
m

p

O
p
ti
c
a
l 
p
u
m

p
in

g
 r

e
p
u
m

p

|F’〉

∆
3
 = 8 MHz

∆
2
 =

 -
2
0
 M

H
z

∆
2
 =

 -
1
3
 M

H
z

Figure 2.5: Potassium laser frequencies.
Typical detunings of the laser beams used for 41K are shown, relative to
the D2 transition (not to scale). The laser is locked relative to a crossover
between the ground states of 39K. The same beam is used for optical pump-
ing and imaging (as with their repump counterparts), and the same AOM

also generates the push beam, which is split off on the vacuum table. The
darker arrow heads on the MOT frequencies indicate the values used during
a compressed MOT stage (see Fig. 2.10).
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Figure 2.6: Schematic of the laser table.
The laser table is divided into three regions, corresponding to optical ele-
ments after each of three lasers: (a) the potassium laser, (b) the rubidium
master laser and (c) the rubidium repump laser. Each laser, before being
amplified by a TA, has a small amount of light picked off for locking (blue
shaded regions, note in (b) the locking occurs post-amplification). The amp-
lified beam is then split between a series of AOMs to generate the frequencies
required during the experiment, before being coupled into an optical fibre
to take the light to the apparatus on the vacuum table. Figure adapted with
permission from the thesis of Philip Starkey [285].
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low the frequency of the light to be shifted, as well as providing fast
shuttering. The majority of the AOMs are in a cat-eye double-pass con-
figuration, which has the advantage of allowing the frequency to be
tuned over a wide range without the output beam changing direction,
hence maintaining its coupling into the fibre. This is especially im-
portant for the central MOT light, which has its frequency ramped over
a wide range during the polarisation gradient cooling (PGC) stage of
the experiment.

The rubidium and potassium master lasers are locked to atomic
transitions using the built in locking circuits of the MOGLabs diode
control box (DLC-202 revision 7). We use current modulation on the
laser diodes to build up the error signal to lock to. For potassium, we
lock to the crossover between the two ground states of 39K, since this
is the most prominent feature in the saturated absorption spectrum.
We offset the lock point by 87MHz by passing the light through a
single passed AOM before it reaches the potassium vapour cell. There
is also an anomalous 10MHz shift, which is most likely due to the
shape and offset of the locking error signal. For the rubidium master
laser, we lock to the |F = 2〉 → |F ′ = 2〉 × |F ′ = 3〉 crossover signal,
again, offset by an AOM, this time by 47MHz. These lock points were
chosen to make the transitions we needed to address accessible by
the AOMs we had available, which have resonances centred at 80MHz,
110MHz or 200MHz (see Figs. 2.4 and 2.5).

The rubidium repump laser is locked by referencing it to the master
laser, using a beat-note signal. We use a fast photodiode (Hamamatsu

G4176) and microwave amplifiers to collect the microwave-frequency
signal, and feed it into a phase-locked loop circuit. The design of this
locking scheme is almost identical to that implemented by Martijn
for the spinor lab [289]. In our lock, we couple light from both lasers
into a fibre, which enters the rack-mount box holding the electronics
via a fibre port mounted to the back panel. The photodiode is then
held inside the box on a small x-y translation stage, attached to the
fibre mount via a miniature cage-rod system. This reduces the ampli-
fication requirements, since the signal does not have to pass through
such a long, lossy microwave cable. It also makes it easy to re-align
the beat-note by fibre-coupling, rather than having to check that the
two beams are perfectly overlapped and looking at the beat-note on a
spectrum analyser. The repump laser is locked 6.59GHz off the mas-
ter laser’s lock point, which is 160MHz red detuned from the repump
transition, allowing easy access via a double-passed 80MHz AOM.

We also use lasers for trapping the atoms via the dipole force,
which will be detailed in §2.7, as well as Chapter 3.
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2.4 electromagnets

Besides lasers, the other main tool used to interact with the atoms
is magnetic fields. We use a range of magnetic field gradients for im-
parting forces on atoms, e.g., for trapping (§2.6.2) or levitating (§3.1.2),
and uniform bias fields for producing quantisation axes, e.g., for ab-
sorption imaging (§2.8). The majority of these fields are produced by
four pairs of electromagnet coils around the central vacuum chamber
(one quadrupole pair and a pair of bias coils in each dimension), as
well as the source MOT coils.

Our quadrupole trapping coils, which are used in both a MOT and
pure magnetic trap stage, are a pair of coils wired in anti-Helmholtz
configuration. These are wound using copper tubing with a square
profile. The profile allows the winding density to be high, while the
hollow core is used to run cooling water through the coils. These
coils sit within the recessed viewports on the top and bottom of the
central chamber. Each has a diameter of approximately 120mm, with
an internal bore of 60mm, and consists of 30 turns of wire. In anti-
Helmholtz configuration, they produce approximately 0.8Gcm−1A−1.
The rubidium source MOT uses a pair of anti-Helmholtz coils, consist-
ing of 46 turns of the same hollow wire (though we do not actually
water cool these), with a diameter of 150mm and internal bore of
60mm. The potassium source MOT coils have been replaced by four
rectangular coils consisting of 20 turns of thinner wire each, to form
a 2D MOT, discussed in §2.6.1.

We have a set of coils close to Helmholtz configuration sitting
between the quadrupole coils, with similar radial dimensions, con-
sisting of 56 turns of 2mm square profile wire. These coils provide
roughly homogeneous magnetic fields in the vertical (z) direction of
7.9GA−1. For the horizontal (x,y) directions, we use coils made from
computer ribbon cables. This was due to the ‘long’ x axis not having
coils pre-installed while the vacuum system was being built. While
we could have wound coils in situ, it seemed easier at the time to use
ribbon cables. I wired the cables into connectors such that current
would flow to consecutive cores, forming a 50 turn coil, which can be
wrapped around the vacuum chamber and clipped together. These
were also used for the side imaging (y) axis, though here it would
have been easy to fit a more traditional rigid coil.

The ribbon cable coils have quite a high resistance, due to the large
number of turns of quite fine wire, meaning that we can only run
≈1.5A through them, at about 20V . Due to the flexible nature of
the coils, they must be secured well (by cable ties) to the vacuum
chamber mounts to prevent them from moving, which would change
the magnetic field profiles produced. While rudimentary, the coils do
their job, and I have been able to use them to fine-tune the position
of the quadrupole field zero for use in our flat traps (§3.2.1).
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The apparatus also contains a large pair of racetrack-shaped coils,
which run almost the full length of the vacuum system, from the
41K source MOT to the 87Rb source MOT. These were planned to be
used for a magnetic transport scheme devised by Brad, which, as
briefly mentioned in §2.6.2 was never successful. These coils contain
280 turns of wire, with a resistance of 2Ω and inductance of 25mH,
making it hard to switch them quickly.

2.5 control of the experiment

So far, I have described the vacuum system, the lasers, and the mag-
netic coils, which are the primary pieces of equipment required to
trap and cool atoms. Before running through the details of how the
experimental sequence proceeds, it is worth mentioning the hardware
and software used to control these. We require precise timing and con-
trol of a variety of laser beams, magnetic fields and rf fields during
each run of the experiment. This is achieved via a mix of commercial
and in-house hardware, all controlled by our own custom software
suite.

2.5.1 Hardware

Most of our control hardware is one of three types of output devices:
digital outputs, which can switch between off and on states (typic-
ally being 0V and either 3.3V [LVTTL] or 5V [TTL] respectively), ana-

logue voltage outputs, which can be varied, and radio frequency (rf) out-

puts, which can have their frequency, amplitude and phase set. The rf

sources are used for both driving AOMs, as well as rf coils to address
the atoms directly, the analogue outputs are mostly used for setting
the current in magnetic coils (via home-made current control circuits)
and the digital lines are used for switching the state of laser shutters,
rf switches on AOMs and triggering other devices.

We use two National Instruments (NI) boards (PCI-6733 and
PCIe-6363) for analogue and digital outputs. The PCIe-6363 also has
analogue inputs which can be used to monitor signals, such as the
current through magnetic coils or photodiode signals. Three Spin-
Core PulseBlaster DDS-300-AWG boards are used for further digital
outputs along with rf outputs. Four Novatech DDS9ms are used for
further rf sources, each having two channels that can be loaded with
a table of data to step through during an experiment and two static
channels that we can only control the on/off status of via an rf switch.
We also utilise two RfBlasters, devices developed by Vladimir Neg-
nevitski in the spinor lab, which each provide two dynamic rf chan-
nels. A LightCrafter digital micromirror device (DMD) is used to
shape laser beams to form trapping potentials, which will be dis-
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cussed in §3.2.3. This device displays sequences of binary images on
an array of mirrors.

In order to keep each of the devices in the lab synchronised dur-
ing a run of the experiment, we use one of the PulseBlaster boards
as a master pseudoclock, from which all other devices in the lab are
referenced. This is achieved using its digital outputs to either trig-
ger devices to start their own internal clock (for the other Pulse-
Blasters and the RfBlasters) or step them through their instruc-
tions (in the case of the NI and Novatech boards), though sometimes
these triggers come via an intermediate PulseBlaster or NI device.
The pseudoclock only sends triggers to devices when they need to
update, rather than providing a constant rate clock, limiting the num-
ber of superfluous instructions that need to be programmed into each
device. Every device used during the experiment is pre-loaded with
a set of instructions, then stepped through by hardware, not relying
on the timing of the host computer. All clocking devices are refer-
enced to a 10MHz signal produced by a GPS disciplined atomic clock
(Quartzlock E8010). Figure 2.7 shows an overview of how the differ-
ent devices in the lab are wired and interact with each other.

2.5.2 Software

To program the instructions for each experiment into the hardware,
as well as analyse data, we wrote an extensive software suite, mostly
in python. The majority of the software was developed by Phil and
Chris, though I was heavily involved in the planning and testing
stages, and implemented interfaces for several devices in our lab. An
overview of the software, known as ‘the labscript suite’, has been
published [286], and the source code is freely available online [291,
292]. The software is now in use in many institutions around the
world, and is developing an active community of contributors who
are constantly improving the code and implementing new features.

To control hardware during a run of the experiment (which we
sometimes refer to as a shot), the user writes a simple python script
in which each device is represented by an object, with relevant meth-
ods to control its state, such as DDS.setfreq(time,frequency). This
script can contain variables, which are modified via a graphical inter-
face, runmanager. The script is compiled into hardware instructions
specific to each device, which are saved in a single hierarchical data
format (HDF) file, and queued up in the control program, BLACS, to
run. Communication for each device in BLACS is sand-boxed in its
own process, to protect against hardware issues freezing the whole
program. At the start of an experiment, the hardware instructions
are read from the HDF file and programmed into the devices. A start
command is sent to the master clock, which then triggers subsequent
devices (see §2.5.1). At the end of an experiment, any analogue inputs
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Figure 2.7: Overview of the lab control hardware.
We use a PulseBlaster DDS-300-AWG as our master pseudoclock
(PulseBlaster 0), which is triggered by software to begin the experiment
sequence. The master pseudoclock then sends hardware triggers and clock
lines to other devices in the lab, including secondary clock devices. This en-
sures that every device remains perfectly synchronised throughout each
run of the experiment. Here, devices shaded in grey are referenced to a
10MHz signal from an atomic clock, and keep track of time themselves
(clock devices), while white devices are sent triggers each time their output
needs updating. Green lines indicate digital triggers (either signalling for a
secondary clock to start, or switching the state of a piece of hardware such
as an rf switch on an AOM or a shutter). Yellow lines indicate clock lines.
These are simply digital lines that tell connected devices to update their
output. Note that the NI PCIe-6363 feeds the clock line from the master
pseudoclock to the NI PCI-6733. Red lines are rf outputs, which are usually
amplified before being fed to an AOM or antenna. The blue line indicates
analogue outputs, which are used to set the current through each electro-
magnet. Dashed boxes indicate groups of output devices.

acquired are saved to the same HDF file, as are the images from the
camera (via the camera control program, BIAS). The file is then sent
on to the analysis program, lyse, where python scripts are run in se-
quence over both individual runs of the experiment and sequences
of multiple runs. Analysis results are also saved to the original file
containing the hardware instructions, such that this file contains a
comprehensive record of the experiment. This workflow is summar-
ised in Fig. 2.8.

One key feature of BLACS, which I implemented, is smart program-

ming of the Novatech boards, which was subsequently implemented
on other devices in varying forms. These Novatech devices are pro-
grammed over an RS232 serial connection, with one command sent
for each instruction in their table of data to be stepped through. This
can be a slow process, taking up to three minutes to program a full
table of 32 768 time points. Since large sections of the experiment
do not change from shot to shot once they have been optimised, we
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Figure 2.8: An overview of the labscript suite workflow.
Each experiment shot comprises three stages: preparation, execution, and
analysis. Arrows indicate how the HDF file for an experiment shot passes
between software components of the labscript suite. Only the shot execu-
tion stage is coupled to hardware timing, allowing new shots to be created
and queued while others are running. Similarly, analysis can be performed
on executed shots at any time. Reprinted from Starkey et al. Review of Sci-
entific Instruments 84, 085111 (2013) [286], with the permission of AIP Pub-
lishing.

only re-program the points in the table that have changed since the
last time the device was programmed. This is possible, since each
instruction is programmed to a specific memory address correspond-
ing to its position in the table. It does not matter what order these
addresses are programmed in, the table is always stepped through
the memory addresses sequentially. This cuts the programming time
for most experiments in our lab from minutes down to seconds, with
full programming only required after hardware restarts.

I was also responsible for implementing the code to program our
LightCrafter DMD with a table of images. This built on an incom-
plete code base that Phil had previously begun writing for a static
SLM device. I wrote two interfaces for controlling Zaber motorised
translation stages too, one which directly programmed stages via
their RS232 serial connection, which could only set a fixed location
for each run of the experiment (as there was no way of hardware trig-
gering the programming of these stages) and one to allow hardware
timed moves of a pair of translation stages, briefly described in the
following subsection.

2.5.3 Hardware timed serial commands

One of the main principles of the labscript suite is that the timing
of every event during a shot is determined by the master clock. For
some devices, this is simply not possible, if, for example, they can
only be controlled by sending them a command over a serial con-
nection, with no memory buffer or triggering mechanism. For most
devices, we deliberately ensured that we purchased hardware which
could be pre-loaded with instructions, and triggered with a TTL signal.
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Some devices, such as the Novatech boards, had further capabilities
(programming the second two outputs) which we chose to leave as
‘static’ values throughout the experiment. In one particular case, how-
ever, we required a work around, to allow pseudo-hardware timing
of an otherwise static serial device.

We have several Zaber motorised linear translation stages, which
we inherited from an old lab in the school. In order to set up a retract-
ing mirror and objective lens, described in §2.8.4, we needed to syn-
chronise the movement of a pair of translation stages mid-experiment.
Rather than purchase new stages, I came up with a scheme to achieve
this with what we had. The two stages were connected (via a USB
to serial converter) to a Raspberry Pi microcomputer, which ran a
simple python program. This looked for a signal on one of the Rasp-
berry Pi digital input pins to know when to move the stages, using
the following basic logic:

• The program was set to experiment mode by a message from
BLACS over the network, sending the desired position of the
stage holding the imaging objective lens.

• It then waits for a signal on one of the Raspberry Pi digital
inputs to go high, indicating the time in the experiment when
the stages should move.

• On this signal, the stage holding a mirror above the vacuum
chamber window is retracted.

• Once a command to the mirror stage has confirmed that it is in
the retracted position, the second stage, with the objective lens,
is lowered into the recessed window, previously blocked by the
mirror, to the requested focus position.

• The program then waits for the digital input signal to go low
again, indicating that the experiment is over, retracting the lens
before restoring the mirror position.

In this configuration, the stages can be moved during the experi-
ment with reasonable temporal precision (there is presumably some
jitter on the timing due to processor cycles in both the Raspberry Pi

and the Zaber stages’ internal controllers). This is sufficient for our
application, as the stages can be moved at times when their positions
are not relevant to the experiment, such that they are ready for when
they are needed later.

2.6 laser cooling and trapping

Now that I have discussed the main hardware and software in the lab,
I will describe how we use this to initially trap and cool atoms as they
begin their journey from hot thermal sources to BEC. In nearly every
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cold atom apparatus, including this one, this begins with a magneto-
optical trap (MOT).

The 3D MOT uses a combination of optical and magnetic fields, con-
sisting of three orthogonal pairs of counterpropagating, circularly po-
larised laser beams, overlapped with a quadrupole magnetic field
gradient. The laser beams are red-detuned from the zero-field res-
onance condition, such that photons will preferentially be absorbed
by atoms moving towards a counterpropagating laser beam (due to
the Doppler effect), or at a spatial position where the field gradient
Zeeman shifts the atom onto resonance with the laser beam of appro-
priate circular polarisation. In these conditions, the absorbed photon
transfers its momentum onto the atom, and the corresponding spon-
taneous emission gives the atom a second momentum kick, in a ran-
dom direction. After many of these scattering events, the net result
is to remove kinetic energy (due to Doppler shifted absorptions), and
push atoms towards the quadrupole centre (due to Zeeman shifted
absorptions). Thus the MOT produces a spatially localised, cold cloud
of atoms.

Temperatures in a MOT are typically limited by the linewidth of
the atomic transition being driven. Once the atoms are cooler than
the so-called Doppler limit, the absorption is no longer velocity se-
lective, as the finite transition linewidth allows photons from all dir-
ections to be absorbed. To get colder, we use polarisation gradient
cooling (PGC), which takes advantage of polarisation dependent light
shifts of the atomic energy levels. Here, the magnetic field gradient
is switched off, and the laser beams are detuned further from res-
onance. The configuration of counterpropagating circularly polarised
beams causes polarisation gradients, which produce spatially depend-
ant light shifts. This leads to a process known as Sisyphus cooling,
where atoms give up kinetic energy as they move up a potential hill
formed by the spatially dependant light shifts. The atoms then scat-
ter a photon, optically pumping them to a lower energy state, where
they begin the process of climbing the hill again. This process is still
limited to ≈50µK, well above ≈100nK BEC transition temperatures.
Additionally, the atomic number density achieved is much lower than
that required for condensation (§1.2.2).

To cool beyond this limit, and increase the density, we transfer the
atoms to a purely magnetic trap. We use the same quadrupole config-
uration as in the MOT stage, with a higher field gradient. If the atoms
are spin polarised in a low-field seeking state, then they will exper-
ience a restoring force toward the magnetic field zero at the centre
of the trap. By increasing the magnetic field gradient, the oscillation
frequency of atoms in the trap increases, as does the collision rate.
This allows fast rethermalisation of the cloud, which is important for
the next stage of cooling. In this next stage, evaporative cooling is per-
formed by selectively removing the highest energy atoms, resulting in
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a net reduction of energy, and hence lower temperature. This process
is typically performed by coupling atoms at a given energy, set by
the spatially varying Zeeman splitting, to an anti-trapped (high field
seeking) state by an rf field. The resonance of the rf can be tuned over
time to be closer to the field zero, to continually address the hottest
atoms in the tail of the Gaussian thermal distribution.

The remainder of this section will describe the configurations and
sequences used in our apparatus to take atoms from the ampoules
sitting in each source section of the vacuum chamber, through to a
magnetic trap containing both 87Rb and 41K, and the subsequent
evaporative cooling process.

2.6.1 Cold atomic sources

Each atomic source is heated to around its melting point, resulting in
a partial pressure in the source chambers of around 10−6 Torr. A MOT

is loaded from this background vapour in the glass tube between the
oven and the UHV section for each species. The original design was
to then magnetically transfer atoms from these MOTs into a centrally
located double species MOT in the UHV section, using a large pair
of racetrack-shaped coils in quadrupole configuration. It became ap-
parent that this would be rather complicated to get working, in part
due to the high inductance of the coils, as well as the alignment re-
quirements. This also required magnetic trapping of the atoms in the
source chamber, which, due to the thermal background source, would
have very short lifetimes.

Rather than pursuing this, a simpler solution (taken by many other
groups) was used, which was to push atoms out of the source MOTs

with a near resonance laser beam. To transfer atoms out of the 87Rb
source MOT, we use a pulsed pushing beam, around 10MHz blue
detuned from resonance. We sequentially turn off the MOT light, then
turn on the push light for 1ms. We then turn the MOT light back on
and allow it to reload for 12ms before repeating (see inset of Fig. 2.10).
Although the 87Rb source MOT is in a 3D configuration, the 41K source
MOT is in a 2D configuration due to trouble optimising the alignment
of a 3D MOT.

This 2D MOT configuration involved replacing the quadrupole coils
with four racetrack shaped coils, and using two pairs of counter
propagating beams, orthogonal to the axis of the cell [295]. The res-
ult is a line of laser cooled atoms, free to move along the axis. We
find that the central 41K 3D MOT loads significantly faster when this
source is turned on than it would from background atoms, and faster
still if a push beam is used along the axis. We typically use a con-
tinuous push beam, consisting mostly of light ≈10MHz red detuned
from the repump resonance, with a small amount of light ≈8MHz
blue detuned from the cooling transition resonance.
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The potassium source MOT was initially aligned using 39K, since it
has a much higher natural abundance than 41K, so the fluorescence
signal was stronger. This required swapping the configuration of the
laser lock and MOT AOMs while the alignment was done. Four inde-
pendent beams were used, rather than two retro-reflected beams since
the cell is slightly curved and seemingly birefringent, deforming the
beam by the time it has made a single pass through the cell. Likewise,
the rubidium source consists of six independent beams. The position
of the 2D MOT relative to the differential pumping tube in the vacuum
chamber can be adjusted by tuning the balance between the currents
in opposing coils. We found that to form a MOT centred well on the
chamber, the coils had to be quite miss-matched, most likely due to
the coils not being perfectly centred around the cell, but possibly also
due to stray magnetic fields from the nearby ion pumps.

2.6.2 The dual species central MOT and magnetic trap

The central MOT can trap both rubidium and potassium simultan-
eously. Both wavelengths are overlapped before being split into the
six beams that form the MOT, shown in Fig. 2.9. Since the frequency
spacing between excited states on the D2 transition of 41K is the same
order of magnitude as the natural linewidth of the transitions, we
detune our MOT beams below the entire excited state manifold (see
Fig. 2.5). Since we are driving many transitions, rather than just the
closed cycling transition, the depumping rate to the |F = 1〉 ground
state is much higher. To compensate for this we must use a signific-
ant amount of repump light (around a 2:3 ratio of repump to cooling),
effectively using both transitions for laser cooling. This means that
we must use the correct polarisation in both cooling and repumping
beams, whereas in the rubidium MOT the repump light does not play
a role in the cooling process, so its polarisation is not important.

To achieve this, we combine the potassium cooling and repump
MOT beams on a non-polarising beam splitter, and send one out-
put to the source MOT and one to the central MOT. One major dis-
advantage of this arrangement is that we do not have independent
control over the intensity or frequency of the light for the two MOTs.
An alternative method of combining the beams could be to use two
double passed AOMs in series, with the first generating the correct
frequency for the cooling transition, and the second shifting this by
the 254MHz ground state hyperfine splitting to generate the repump
light, while allowing the zero-order to pass through for cooling light.
Other groups combine their beams on non-polarising beam splitters,
then pass the beam through a TA, meaning that the output of the
second port of the beam splitter does not have a significant amount
of wasted light, though this can lead to wave mixing effects in the TA,
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Figure 2.9: The dual species MOT layout.
Trapping and repump light for potassium are combined on a non-polarising
beam splitter, before being combined with rubidium trap light of opposite
(linear) polarisation on a polarising beam splitter. A dichroic waveplate is
formed by a series of two multi-order λ/4 (green) and one multi-order λ/2
(yellow) waveplates, which rotates the polarisation of the potassium light to
match the rubidium light. Some rubidium repump light is added on a polar-
ising beam splitter, which also acts to clean up the polarisation of the light
which has passed through the dichroic waveplate. The combined light then
passes through a series of polarising beam splitters to form six independent
MOT beams, with zero-order λ/2 waveplates to control each splitting ratio.
Note that many mirrors, as well as the telescopes in each of the six beams,
have been omitted for clarity, and the drawing is not to scale.

creating extra frequencies, reducing the total power available, and in
some cases, accidentally driving atomic transitions in the 87Rb [296].

The potassium light is then combined with the rubidium cooling
light on a polarising beam splitter. We rotate the polarisation of the
potassium light to match the rubidium polarisation by using a home-
made ‘magic’ waveplate. This device consists of two Thorlabs multi-
order quarter waveplates and one multi-order half waveplate, all de-
signed for 780nm. With their fast axes aligned, the combined wave-
plates have a minimal effect on the polarisation of the 780nm rubid-
ium light, while are approximately a half waveplate at 767nm for
potassium. The rubidium repump light is then combined on a second
polarising beam splitter, which also acts to clean up the polarisation
of the other beams following the waveplates.

The combined MOT beams enter an array of polarising beam split-
ter cubes, where zero-order half waveplates are used to control the
split of power between each of the six beams generated, affecting the
potassium and rubidium beams almost equally. Zero-order quarter
waveplates are used to form circularly polarised light before each
beam is expanded and enters the vacuum chamber. To align the MOT
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well, we ensure that each beam comes back through the beam ex-
pander of the opposing beam, and opposing beams are well over-
lapped all the way back to the beam splitters. The balance between
powers in counterpropagating beams were adjusted to maximise the
number of rubidium atoms remaining after a PGC stage, during which
the magnetic field is switched off and the MOT beams are detuned
further from resonance. The potassium beams were then overlapped
with the rubidium beams by coupling one of the rubidium MOT beams
into a fibre, then using mirrors at the output of the potassium fibres,
coupling each potassium beam into the same fibre. Once a potassium
MOT was seen in the central chamber, it was fine tuned by making
small adjustments to the potassium beam position before the combin-
ation with rubidium light, to overlap the MOT with the rubidium MOT

and maximise the fluorescence seen on the camera.
Despite being much better than multi-order waveplates, the zero-

order half waveplates used still have slight differences in their beha-
viour at 767nm compared with 780nm. The polarising beam splitter
cubes may also behave slightly differently for the two wavelengths.
Due to this, the potassium MOT is not as well optimised as the rubid-
ium MOT, and achieves lower atom numbers. This could be improved
by using dichroic waveplates, designed to independently control the
two wavelengths. Typically, we can load in excess of 4× 108 87Rb
atoms (the images are too saturated to get reliable atom number es-
timates in the MOT) in 8 seconds, or ≈105 41K atoms in 20 seconds.
The MOT alignment described here was in place for several years
after first setting up the apparatus, however, more recently, we have
swapped to a retro-reflected configuration, the motivation for which
will be discussed in §2.8.4. This involved replacing the MOT beams
that enter from the top, and the two side windows closest to the ru-
bidium source with retro-reflecting mirrors and a quarter waveplate
to maintain the correct polarisation for the reflected beam.

We find that having the MOTs for both species on at the same time
results in lower atom numbers, particularly for potassium. We sus-
pect that this may be due to light assisted collisions between the two
species. We tried two different approaches to overcoming this prob-
lem. First, we used an additional laser beam to push the rubidium
MOT slightly away from the potassium MOT. We opted to use our op-
tical pumping beam for this—the imaging beam may have worked
better, but it is controlled by the same AOM as the push beam, so
would have required rearranging the optical set-up on the laser table
to allow independent control. The potassium atom number increased
with increasing ‘displacement beam’ power, while the rubidium atom
number only started decreasing when the power was high enough to
start destroying the MOT.

An alternative scheme, which seems to result in better loading of
both species, was to load the MOTs sequentially, following a method
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Figure 2.10: The dual species MOT load sequence.
(a) The potassium MOT is loaded first, with a continuous push beam. This
can take up to 40 s. (b) A compressed MOT stage, and (c) subsequent ramp-
ing of the trapping light frequency, reduces the temperature of the 41K,
improving the transfer to the magnetic trap. (d) An optical pumping pulse
(generated by the same AOM as the push beam, but shuttered to enter the
chamber along the imaging axis) polarises the 41K in |2, 2〉 before (e), the
magnetic trap is turned on and compressed to localise the atoms. (f) The
magnetic trap is reduced to a gradient which holds only 41K atoms in the
|2, 2〉 state against gravity. (g) Rubidium is loaded with a pulsed push beam.
For experiments using only 41K, the 87Rb load is 0.5 s, whereas for experi-
ments using 87Rb the load is around 8 s. (h) The 87Rb MOT is compressed
slightly, to mode-match the cloud with the magnetic trap position. (i) PGC is
performed on the 87Rb, followed by (j) an optical pumping pulse to polarise
the 87Rb in |2, 2〉. (k) The magnetic trap is snapped back on and ramped to
(l) the final compressed magnetic trap, in which evaporative cooling occurs.

used at MIT [297]. This loading sequence is shown graphically in
Fig. 2.10. In this case, 41K is loaded first, since it is lighter than 87Rb.
Sub-Doppler cooling of 41K is hard since the excited states are so
closely spaced. We did not have any success in implementing the
scheme of Landini et al. [298], but a compressed MOT stage cools the
atoms enough to get them into a magnetic trap after an optical pump-
ing pulse to put the atoms in the |F = 2,mF = 2〉 stretched state. The
magnetic field gradient is then reduced to a level such that the ver-
tical gradient is below 14 G/cm, so that only atoms in the |2, 2〉 state
are levitated (providing so-called ‘gravity assisted spin purification’).
The rubidium MOT is then loaded, with the field gradient still high
enough to magnetically trap the potassium. PGC is performed on the
rubidium, followed by an optical pumping pulse to put the atoms in
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the |2, 2〉 state before ramping up the magnetic field gradient to trap
both species.

The |2, 2〉 state is used for magnetic trapping both species as there
are no spin-changing collisions allowed between 87Rb & 41K atoms
in these states [299]. Additionally, the Paschen–Back effect limits the
ability to trap 41K in the |1,−1〉 state [300].

2.6.3 Microwave-induced evaporation

Once the atoms are loaded into the magnetic trap, the field gradi-
ent is increased to around 100Gcm−1, and evaporative cooling is
performed on the rubidium. When loading both species, we choose
to force the evaporation of only the rubidium atoms, since it has a
much higher initial atom number than potassium, and rely on inter-
species collisions to provide sympathetic cooling of the potassium.
Since 87Rb and 41K have the same Zeeman structure, we use the
6.8GHz hyperfine transition between the ground states of rubidium
to avoid transitions in potassium [299].

A half-wave dipole antenna was made using copper from the core
of a coaxial cable, and trimmed to a length that reduced the back re-
flections measured via a microwave circulator at 6.8GHz. Microwaves
were generated by a PhaseMatrix FSW-0010 synthesiser, running at
7.034GHz, modulated by single sideband quadrature amplitude mod-
ulation, allowing the microwave frequency to be tuned around the
6.834GHz resonance of 87Rb. This is achieved using a Polyphase Mi-
crowave am4080n quadrature modulator, driven by two channels of
an RfBlaster direct digital synthesizer (DDS). Our microwave modu-
lation set-up was developed in conjunction with the spinor lab, and
so is almost identical to that described in Alex’s thesis [290].

We linearly sweep the microwave frequency from 53MHz detuning
from the 87Rb resonance to 40MHz detuning in 1.3 s, then to 16MHz
detuning in a further 2.66 s. For a pure rubidium sample this takes
the atom number and temperature from approximately 4× 108 atoms
at 150µK to 8× 107 atoms at 70µK. For dual species loads, we have
found it hard to optimise, with the 41K number appearing to decrease
during the process. We attribute this to imperfect optical pumping of
87Rb, and a low initial 41K atom number. If the 87Rb polarisation is
99% pure, but we have three orders of magnitude less 41K to begin
with, then for every 41K atom there will be ten 87Rb atoms in a state
with which it can undergo spin exchange collisions. This is where my
involvement with 41K ended—Phil attempted to load 41K through
to a pure dipole trap, sacrificing all 87Rb during a faster evaporative
cooling stage, to generate cold samples containing only 41K, however
never managed to achieve more than a few thousand atoms, making
it hard to perform any experiments on them. We have not yet pro-
duced 41K BECs, or trapped cold 41K atoms alongside 87Rb BECs (an
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original goal of the apparatus was to use cold atoms of one species to
interact with a BEC of the other, while being manipulated by lasers at
wavelengths only seen by one species).

2.7 optical dipole traps

Evaporating to temperatures approaching tens of microkelvin in a
quadrupole magnetic trap becomes impossible due to Majorana spin
flip losses [301–303]. To overcome this limitation, we use a red de-
tuned far off resonant optical dipole trap [304], offset from the mag-
netic field zero following a similar technique to Lin et al. [305] to form
a hybrid magnetic and optical trap.

Over the years we have had several different configurations of di-
pole traps. Each of these had common features, such as the way in
which we aligned the optics and the sequence for initially loading
atoms into them. Here I will describe these common aspects first, be-
fore briefly commenting on the various configurations used.

2.7.1 Dipole trap alignment

To pre-align a dipole trap onto the magnetically trapped atoms, we
first use an iris to aperture down the MOT beam that it propagates
along, while watching the MOT on a camera. We move the iris such
that the MOT remains in approximately the same position in the cent-
ral chamber. This results in the smallest possible beam which passes
near the centre of the MOT. We then overlap the dipole beam on top
of this apertured beam on both sides of the vacuum chamber (i.e.,
entrance and exit of the beam). Removing the aperture, and leaving
the dipole beam on at full power, we run experiments through to the
end of PGC, and image the atoms after a short drop time. Provided
that our pre-alignment is close enough, atoms can usually be seen loc-
alised in the beam, revealing its position. It can then be adjusted to
coincide with the centre of the magnetic trap based on the images. We
then swap to looking at atoms that have been evaporatively cooled in
the magnetic trap to get closer to the final desired position, just below
the magnetic field zero.

The final alignment is achieved by manually adjusting the beam
position in one direction at a time, while plotting the atom number
against the position of fits to the cloud after a short time of flight. The
position is optimised by iterating between the horizontal and vertical
directions. Firstly scanning over the horizontal direction, a maximum
in atom number is usually seen when the beam is aligned with the
vertical axis of the magnetic trap, provided that beam is not at the
vertical position of the field zero. Scanning over the vertical direction
then results in a double-peaked distribution of atom number as a
function of dipole trap position. This is due to the loss of atoms when
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Figure 2.11: Alignment of optical dipole traps.
(a) Initially the vertical alignment of each beam is adjusted to maximise the
atom number. This is achieved by plotting the atom number against the
vertical position of the cloud, both extracted from a Gaussian fit to the OD

image. The final position (red point) is chosen to have a position as close to
that with the maximum atom number obtained in the scan, which is typic-
ally around one beam waist below the magnetic field zero (where a sudden
loss of atoms occurs, around −6× 10−4m here). (b) The crossing of two
dipole traps (red and blue) is checked by measuring the centre of sloshing
motion (dashed line) in each beam individually. As the beam is snapped
to a higher amplitude to minimise gravitational sag, the initial motion of
the atoms is upwards, before oscillations develop at the new trapping fre-
quency. Differential drives on the final mirror mounts of each beam can be
used to fine-tune the positions to minimise the difference. Note that vertical
positions in each figure are relative to an arbitrary region of interest (ROI)
chosen around the images in each case.

the dipole trap is too close to the magnetic field zero, increasing the
rate of spin flip loss as it pulls more atoms to the zero region. The
trap is then placed at the local maximum corresponding to a position
below the field zero. Typical data from this process are shown in
Fig. 2.11a.

In crossed beam configurations, a technique was developed to fine
tune the overlap of the beams. Once the crossing was sufficient to
localise atoms without a magnetic field gradient, the power in the
beams are reduced, evaporatively cooling the atoms. In situ side im-
ages can then be used to guide adjustments to the beam positions
to maintain the symmetry of the trap. The final touches are achieved
by then turning off one beam, while switching the remaining beam
to full power. By varying a hold time after this, and looking at in

situ side images, oscillations in the vertical position of the trapped
atoms are revealed. Assuming that the beam power is high enough
to minimise gravitational sag, the centre point of these oscillations
reveals the height of the dipole beam. This ‘sloshing’ measurement
is then repeated for each beam, and fine adjustments are made until
the heights are as close as possible. Typical data from this process are
shown in Fig. 2.11b.
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2.7.2 Loading the dipole trap

The load of atoms into a hybrid trap is achieved by lowering the
magnetic field gradient of the quadrupole trap at the end of the mi-
crowave evaporation ramp. The gradient is lowered over 1.7 s to a
vertical component of around 15Gcm−1, where it just holds 87Rb
atoms in |2, 2〉 against gravity. The microwave field is ramped from
the end point of the microwave evaporation stage (16MHz detuned)
to a detuning of 6MHz over the first half of the field decompression,
then remains at this final value until the field gradient has stopped
ramping. During this process the atoms are cooled further, resulting
in around 2× 107 atoms at 15µK in the hybrid magnetic and optical
trap.

If there are stray magnetic fields present, the quadrupole field zero
will move as the field gradient is ramped down, making the transfer
less efficient (and sometimes even dragging the field zero through the
atoms in the dipole trap). To minimise the movement of the zero, we
scanned the current through bias fields in three orthogonal directions
(one at a time, while the other two directions are held at the latest
‘best’ value), while observing the resulting atomic cloud position for a
range of field gradients. The field that resulted in the least movement
of the trap was chosen for each axis. For the horizontal and vertical
directions in the side imaging plane, this could be achieved using
only the quadrupole trap, without the dipole beam, so long as we
avoided field gradients low enough that the cloud began to sag under
gravity. For the third dimension, along the side imaging axis, we took
advantage of the dipole beam being at 45° to the camera. By loading
the hybrid trap, we were able to see the effect of the atoms being
pushed along the dipole beam by the magnetic trap moving in an
otherwise undetectable direction. The dipole trap was also used to
refine the horizontal direction in the plane of the camera, to enable
lower field gradients to be reached without the atom position sagging,
since this is where the measurement is most sensitive.

2.7.3 Dipole trap configurations

As previously mentioned, we have used several different configura-
tions of dipole beams. Here I will outline the main configurations
used and the reasons for (and against) using each.

2.7.3.1 Original single beam hybrid trap

Our first BEC was formed in a single beam hybrid trap, using an IPG
YLR-10-1064-LP 10W, 1064nm fibre laser, which was passed through
an AOM for amplitude control, then focused to a waist of around
35µm. This beam entered the vacuum system through the window
opposite the square science chamber, overlapped with the MOT beam
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Note that this first

BEC was formed

using a slightly

different procedure

leading up to the

dipole trap than

described in the

previous sections.

Instead of optical

pumping to the

|2, 2〉 state before

magnetic trapping,

we simply turned off

the repump light at

the end of the PGC

stage, to allow the

majority of atoms to

be depumped to the

|1,−1〉 ground state.

We then used rf

evaporation, via an

antenna formed by a

single turn of copper

wire with a diameter

of around 4 cm

placed on the top

window of the

central chamber.

using a short pass dichroic mirror. We forced evaporative cooling in
this hybrid trap by exponentially ramping down the laser power. This
produced samples with around 105 87Rb atoms in the |1,−1〉 ground
state at 200nK, with around 15% of atoms condensed, an example
of which is shown in Fig. 2.12. After switching to the |2, 2〉 state, and
making further optimisations, we were able to create almost pure
condensates of 105 atoms in this trap.

Figure 2.12: The final stages of evaporation to our first BEC.
The dipole power is lowered to successively lower values for a series of
experiments (left to right), resulting in a BEC with about 15% of the 1× 105
remaining atoms condensing.

We performed some preliminary experiments with this |2, 2〉 BEC,
looking at wave mixing. There was an idea that we could extend on
previous work on four wave mixing of BECs [306] to see higher order
mixing, in particular six wave mixing. I installed three Bragg beams,
one coming from each source end through the differential pumping
tubes, and one through the bottom window of the central chamber.
Some preliminary experiments were then performed by Phil, Mikhail,
Chris & I, but we did not see the signature of six wave mixing that
we’d expected (see Fig. 2.13). The experiments were put on hold while
Chris ran further simulations, and in the mean time, we were keen
to move on to make dual species BECs in the science chamber for
other experiments we had planned. Chris found that the results we’d
seen were in fact consistent with his GPE simulations, which he in-
terpreted as an off-resonant four wave mixing process, arising due
to fluctuations in the coupling between momentum states. We are
unsure exactly why we do not see the six wave process, which was
predicted by earlier calculations. It is possible that these calculations
were too idealised, and did not take into consideration density vari-
ations, and that low levels of noise cause the off-resonant mixing to
dominate over the six wave process.

At the time we had not yet fully developed a plan for getting the
atoms to the science chambers, where we planned to carry out exper-
iments, a distance on the order of 30 cm from the central magnetic
trap. We were also awaiting the arrival of a more powerful, narrower
linewidth laser from Keopsys, to use for dipole traps, but wanted
to make a BEC to ensure that our vacuum was sufficient. One early
plan was to use this single beam trap to form a BEC (or cool atoms
very close to BEC), then load the atoms into a travelling optical lattice
formed by the new laser, in a similar fashion to Schmid et al. [307].
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Figure 2.13: Attempt to observe six wave mixing.
We attempted to observe a six wave mixing process by applying two sequen-
tial Bragg pulses to a stationary BEC, with lasers pulsed on the axes represen-
ted by arrows in (a) and (b). Here the time-of-flight distribution shows the
momentum states produced by each pulse. (c) When both pulses are used,
wave mixing occurs, producing states 4 and 5, but not the predicted state 6.

This is

approximately the

point in this

apparatus building

story where we had

to pack up the lab to

move to New

Horizons. We had

made BEC in the first

single beam trap,

and replaced it with

the first iteration of

a beam going

through the tunable

lens. We had even

seen very short (to

the edge of the

camera field of view

and back)

movements of the

atoms in this

transport beam. Due

to initial teething

problems in the new

lab space, it was

almost a year before

we had the machine

up and running to

this stage again.

Once the Keopsys laser arrived, we developed a new plan involving
only a single beam which could be loaded in the central chamber,
then have its focus moved to drag atoms to the science chamber, and
so this IPG trap was dismantled.

2.7.3.2 Transport of atoms to the square science chamber

We formed a new dipole trap—the ‘transport beam’—using the Keopsys

CYFL-MEGA-20-LP-1064-AM0-ST0-OM1-B208-C4 1064nm fibre laser. Ap-
proximately 12W was split from the output of the laser using a po-
larising beam splitter, and passed through an AOM for amplitude con-
trol of the beam. The diffracted order was then passed through a
lens system based on Leonard et al. [308], with a single Optotune

EL-10-30-NIR-LD focus tunable lens. When current is passed through
an internal coil in the Optotune device, the gel lens is deformed,
changing its focal length.

The beam was overlapped with a MOT beam on a short-pass di-
chroic mirror, entering the vacuum system through the end of the
square science chamber, as shown in Fig. 2.14. The system was con-
figured such that when no current was applied, the beam focussed
just behind the magnetic trap, with a waist of 60µm. This allowed a
small current to be applied to fine tune the focus of the beam onto the
magnetic trap for loading atoms. Applying higher currents caused the
focus to shift towards the square cell, while maintaining a constant
waist. The alignment of this system was critical to ensure that the fo-
cus of the dipole trap moved smoothly along the propagation path of
the beam, without forming aberrations or moving off axis. The Opto-
tune lens was mounted such that light passed through it vertically, to
minimise any astigmatism caused by the lens material sagging under
gravity.

It is worth noting that prior to the publication of the work of
Leonard et al. [308] we had been independently attempting to use
the Optotune lens for the transport of our atoms. Our original at-
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Figure 2.14: Layout of the transport dipole trap.
The optical layout of the transport beam is shown, along with the square
cell crossed dipole trap. When current is run through the Optotune lens,
the focus shifts from the central chamber to the centre of the square cell.
The cross beam comes in from close to the round cell, on the same axis as
the square cell side imaging (see Fig. 2.16). Note that several mirrors have
been omitted, with the AOMs and lens systems at different heights to the
vacuum chamber. The Optotune lens is mounted such that the beam comes
up through it, so that the lens does not sag asymmetrically.

tempts involved configurations that tightened the spot size of the fo-
cus throughout the transport, which seemed to result in issues with
increased atomic densities heating the atoms. The shorter focal length
after the initial load of atoms into the dipole beam from the magnetic
trap may however help to keep the atoms localised closer to the focus
of the beam, improving the transfer to a crossed beam trap in the sci-
ence chamber. We adopted the configuration of Leonard et al. due to
its simplicity.

To load this transport beam, we first used the usual hybrid load
technique in §2.7.2, before completely turning off the magnetic con-
finement. After magnetic trap is completely extinguished it was hard
to determine the atom number, since the cloud spreads out along the
dipole beam further than the field of view of our camera. This made
it hard to estimate the transport efficiency. We then transported the
atoms by ramping the current through the Optotune lens using a
smooth sinusoidal function, over two seconds.

When initially attempting to transport the atoms, we came across
a complication. We used return trips, where the atoms were moved
a short distance, then returned to their initial position, to test the
transport process. Performing sequentially longer return trips from
the central chamber, we found a sharp drop off in the surviving atom
number at a certain distance, much shorter than the end of the square
cell. The position appears to correspond to the flange connecting the
science chamber to the central chamber. We believe the problem has
to do with magnetic fields, with one possible source being the bolts
attaching the flange, which were measured with a gauss meter to be
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highly magnetised (presumably due to their proximity to the quad-
rupole coils). Another possible explanation is that the glass-to-metal
seal could contain a material that acts as a mu-metal, creating a region
of almost zero magnetic field, leading to Majorana losses.

We found that transporting the atoms in lower mF states was more
efficient, which further supports the idea that the issue was due to
magnetic fields. An adiabatic rapid passage microwave sweep [301,
309–312] was used to transfer 87Rb from |2, 2〉 to |1, 1〉. While fur-
ther transfers could be performed to place the atoms in |2, 0〉 or |1, 0〉,
where the atoms would be completely insensitive to stray field gradi-
ents, this was found to be unnecessary, as the small loss of each trans-
fer seemed to be comparable to the gain made in efficiency passing
the flange.

2.7.3.3 Square cell crossed dipole trap

The transport beam had only weak trapping in the axial direction,
so atoms were spread out far beyond the field of view of the square
cell imaging systems (discussed in §2.8). Once the atoms were in the
science chamber, a cross dipole beam was turned on to localise them.
The remaining power split off from the output of the Keopsys laser
was passed through a second AOM to produce this beam. To main-
tain optical access through the side of the square cell, this beam was
placed at approximately 45° to the transport beam axis, coming from
close to the round cell, as shown in Fig. 2.14. This beam required
some careful measurements, and a lot of patience to align (plenty of
power in the beam helped too!), as there is no MOT in the square cell
to use for pre-alignment.

A third dipole beam was also used, with an elliptical profile, which
we had planned on using for 2D confinement experiments. The use
of this 2D beam appeared to help to get more atoms into the cross-
ing region, and aided the evaporation. Attempts were also made to
add a quadrupole magnetic trap to assist in the radial confinement,
which was also used for some of the first attempts to create a 2D trap,
discussed in Chapter 3.

When the atoms were evaporated by lowering the intensity of the
dipole beams, less than 104 atoms were left in the BECs that we were
able to form. The shot-to-shot stability was poor in the square cell,
and the position of the transport beam would drift throughout the
day, presumably due to the Optotune lens warming up. While the
lens issues may have been overcome by upgrading to a newer model
with a built-in temperature sensor and a calibrated controller, we felt
that the low atom number, in part due to the anomalous magnetic is-
sues during transport, was a major bottleneck to getting higher atom
numbers in the condensates, and so it was decided that we would
attempt to run our experiments in the central chamber instead.
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We also ran into

trouble with this

crossed dipole trap,

only months after

the potassium source

leak (§2.2.3), when

our Keopsys laser

died. Luckily, once

again, Prof. Robert

Scholten from the

University of

Melbourne saved the

day, loaning us an

identical laser while

ours was repaired.

2.7.3.4 A crossed dipole trap in the central chamber

The primary reason to use the science chamber was the good optical
quality of its walls for imaging. We had a custom objective lens made,
which was designed to correct for the square cell’s glass to achieve a
resolution below 1µm. In the central chamber, it is near impossible
to achieve this resolution, as the closest windows to the atoms, the
top and bottom windows on the central octagon chamber, are around
6mm thick. The windows are recessed though, so sit only 12.5 mm
from the atoms. With these parameters, our objective lens should still
be able to resolve down to around 2µm. We also have a commercial
long working distance objective, which when bench tested through
similar glass to the windows could resolve lines on a USAF 1951

target down to 2µm. We decided that this would be sufficient for
imaging vortices after short expansion times, and so we abandoned
the square cell and swapped to a configuration based entirely in the
central chamber.

The transport dipole beam was removed, and replaced with a crossed
dipole trap with static lenses, shown in Fig. 2.15. Each beam has a
waist of around 70µm, and differ in frequency by 200MHz to pre-
vent forming a standing wave interference pattern, by using opposite
orders of the AOMs used for amplitude control. The dipole beams
were aligned independently, following the procedure as described in
§2.7.1, before the cross was optimised using the sloshing technique.

In this trap, we are able to create 87Rb BECs with around 2× 105
atoms. To achieve this, we ramp the power in both beams together,
exponentially decreasing the power provided to the AOMs over 3 s,
with a time constant of 0.8 s. During the first 0.5 s of this ramp, we
also reduce the remaining magnetic quadrupole field to zero. This
is the final configuration which was used as a starting point for the
creation of uniform BECs discussed in Chapter 3.

2.8 imaging

The primary method for probing BECs, and cold atoms in general, is to
take an image of their spatial distribution. The most common method
for this is absorption imaging, whereby resonant light passes through
the atoms, and their shadow is imaged onto a camera. Other common
methods include fluorescence imaging, where the light scattered off
the atoms is collected, and phase contrast methods, where the phase
shift of off-resonant light passing through the atoms is measured. As
we had several configurations of dipole traps in differing locations
in the vacuum system, we also had several imaging systems, though
all used the basic absorption imaging technique. Here I will briefly
discuss the principles of absorption imaging, before discussing the
specific configurations used.
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Figure 2.15: Layout of the crossed dipole trap.
The optical layout of the crossed dipole trap in the central chamber is shown.
Note that several mirrors have been omitted, with the laser output and AOMs

on the table, and beams passing under the potassium source section before
rising up to the vacuum chamber height. The retro-reflectors for the MOT

used with this trap configuration are also shown. Flipper mirrors redirect
the dipole beams into dumps before they are turned on, after the MOT has
loaded.

When resonant light at a low intensity, I0, passes through a cloud
of atoms, it is absorbed according to Beer’s law,

I(x,y) = I0e−OD(x,y), (2.1)

where the optical density is OD(x,y) =
∫
n(r)σ0dz for a given atomic

distribution n(r) and optical scattering cross-section σ0. We can meas-
ure the atomic cloud’s OD as

OD(x,y) = ln
(

Ir − Id
Ia − Id

)

, (2.2)

where Ia is the (spatially resolved) intensity of the probe after it has
passed through the atoms, Ir is the intensity of a reference image,
taken with no atoms present, and Id is a dark frame taken with the
probe beam turned off, to account for any stray light, electronic noise,
or other offsets. The total atom number, N, can then be calculated
from the OD by

N =
1

σ0

∫

OD(x,y)dxdy. (2.3)

In practice, the optical transition in the atoms becomes saturated
due to the linewidth of the transition, limiting the rate at which
photons can be absorbed and re-emitted. This causes the measured
OD to appear lower, as proportionally more photons make it through
the atoms unabsorbed. We can correct for this by using a generalised
Beer’s law,

dI ′

dz
= −n(r)σ0

I ′

1+ I ′
, (2.4)
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where I ′ = I/Is, for the transition’s saturation intensity Is. This leads
to correction to (2.2) to give the saturation corrected OD as

OD(x,y) = ln
(

Ir − Id
Ia − Id

)

+
Ir − Ia

Is
. (2.5)

To measure Is in terms of the light level recorded by the camera,
we substitute (2.5) into (2.3), using a discrete sum over the pixels of
the camera, which gives

1

σ0

∑

x,y

Ir

(

1− e−OD0(x,y)
)

= Is

(

N−
1

σ0

∑

x,y

OD0(x,y)

)

, (2.6)

where OD0(x,y) is the uncorrected OD given by (2.2). By running ex-
periments where the total number of atoms is assumed to be constant,
but with varying imaging probe power, a graph of

∑
x,y Ir(1− e

−OD0) =
∑

x,y (Ir − Ia) against
∑

x,y OD0 can be generated, which has gradient
of −Is.

Typically, before using absorption imaging, the atoms are released
from their trap, and allowed to expand freely. The in trap distribution
is often too optically dense to image directly, and, depending on the
optics used, is often at the limits of the imaging resolution, making it
hard to extract useful information such as the number of atoms. For
long time of flight, the spatial distribution becomes that of the mo-
mentum distribution, as atoms in motion will continue at a constant
momentum when there is no potential to confine them.

2.8.1 Side imaging in the central chamber

The longest standing of our imaging systems is the central chamber
side camera, which has been virtually unchanged since we made our
first central chamber MOT. This is our main diagnostic tool, as it can
measure atom distributions at each stage from a MOT to a BEC. The
system, shown in Fig. 2.16, is a simple two lens configuration, with an
f = 150mm achromat against the ‘back’ window of the central cham-
ber (opposite the round cell), focussed on the atoms in the central
chamber, followed by an f = 100mm achromat, which refocuses the
image onto a Photonfocus MV1-D1312(I) cmos camera. Each pixel
on this camera corresponds to approximately 5.9µm in the images
formed. With this imaging system, we can measure atoms dropped
for close to 30ms (dependent on the vertical alignment of the cam-
era).

2.8.2 High resolution imaging in the square cell

The primary reason for moving atoms to the square cell was to en-
able high resolution imaging. We had a custom objective lens made
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Figure 2.16: Side imaging systems.
Side imaging in the square cell used the same camera as for central chamber
side imaging, with the two able to be used interchangeably without altera-
tions to the optics. The shaded areas show the approximate path of the probe
light, solid red rays show the imaging of a point in the central chamber, and
dashed red rays show the imaging of a point in the square cell. Note that the
mirrors labelled UP and DOWN in the square cell beam path are actually
pairs of mirrors forming periscopes, passing the beam over the central sec-
tion of the vacuum chamber. A dipole trap was also focussed into the square
cell through the same lens as used for imaging (see Fig. 2.14), injected on
top of the imaging axis by a short-pass dichroic mirror in the vertical section
immediately prior to the lens (not shown here). The polarisation of the two
imaging beams is converted to linear by a λ/4 waveplate just before they
reach a polarising beam splitter to ensure that the full probe power reaches
the camera. At one point in time, optical pumping light was also sent into
the central chamber via this beam splitter (not shown here).

by Special Optics, designed to image with both 780nm and 767nm
light through the 4mm Borofloat glass of the cell. The lens was de-
signed to be pressed up against the outside of the cell, with a working
distance of around 150mm inside the cell. The numerical aperture is
0.53, giving a diffraction limited spot size of d = λ/2NA = 740nm

for λ = 780nm.
We used this objective lens with an Andor iXon electron multiply-

ing charge-coupled device (EMCCD) camera, with 512 × 512 pixels,
each of which is 16µm× 16µm. To achieve the best resolving power,
each diffraction limited spot should be spread over a few pixels,
which in our case would require just over 50× total magnification.
Given the objective’s effective focal length of 31mm, using a single
refocusing lens would require a very long optical path. Instead, we
opted for a multi-stage system, with a virtual image formed by a
pair of f = 250mm achromats, which was then re-imaged by a mi-
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Figure 2.17: High resolution imaging in the square cell.
The custom objective is corrected for imaging through the 4mm Borofloat

walls of the square cell. Dark red lines show an indication of the approx-
imate image ray path, while light red shaded areas are an indication of the
probe beam path. (e) shows the layout of a USAF 1951 resolution target,
which was used for bench testing the imaging system in the four configura-
tions shown in (a–d). Configuration (a) was used for initial alignment of the
imaging system and the dipole beams, while (b) was used for most other
work. In the test image for (d) the lines of group 9 element 2 (0.87µm width)
are just distinguishable, limited by fringing on the illuminating beam.

croscope objective, followed by an f = 125mm lens focussed on the
camera. The optical layout is shown in Fig. 2.17.

By swapping the secondary objective lens, we could change the
system magnification. Using a 20× objective lens in the system results
in an overall magnification of 53.7×, which limits the field of view to
only 150µm, but provides the best possible resolution (Fig. 2.17d).
Swapping to a 10× objective increases the field of view by a factor of
2 while maintaining reasonable resolution (Fig. 2.17c). In order to get
the traps in the square cell set up, however, we required an even larger
field of view, which was achieved by replacing both the objective and
the camera lens with a pair of f = 50mm lenses (Fig. 2.17a). For most
day-to-day work, I used an f = 50mm lens in place of the objective
(Fig. 2.17b), with the f = 125mm camera lens, which provides around
twice the field of view of the 10× objective.

When we first transported atoms to the square cell, one of the
biggest challenges was to measure them at the end of their journey.
To achieve this, we pre-aligned this imaging system as best as we
could (with the f = 50mm lenses), using a probe beam propagating
from the centre of the glass cell through to the camera. We then used
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fluorescence imaging, using the MOT beams as our probe, with a high
EMCCD gain, to look for signs of scattered photons as we varied the
final focus position of the transport beam. Once we saw a very weak
signal, we were able to then adjust the position of the objective in the
direction perpendicular to the transport beam, again maximising the
fluorescence signal, before adjusting the focus by altering the height
of the objective lens. After iterating through all three dimensions we
were able to see a stripe of atoms corresponding to the dipole trap,
and switch to absorption imaging.

2.8.3 Side imaging in the square cell

Imaging from the side is much easier for time of flight measurements,
required for diagnostics such as atom number and temperature meas-
urements, so once we had atoms localised in a crossed dipole trap in
the square cell, we needed a way of seeing them from the side. As
we had a limited amount of space around the square cell, we decided
to use the same lens as the crossing dipole beam for the imaging
lens. We inserted a dichroic mirror, and then directed the imaged
probe beam up over the vacuum chamber to the other side, where
the central chamber side imaging camera is located (see Fig. 2.16). A
polarising beam splitter was added to the side camera, with a λ/4
waveplate converting the circular polarised probe beam into the ap-
propriate linear polarisation to reflect onto the camera. At the time,
we also moved the optical pumping beam to be projected into the
central chamber via the side imaging lenses, injected using this same
beam splitter. Due to the angles of mirrors, the images produced were
rotated by close to 45°.

2.8.4 High resolution imaging in the central chamber

When the decision was made to attempt our experiments in the cent-
ral chamber rather than the square cell, a new challenge had to be
overcome to allow high resolution imaging of vortices. The micro-
scope lens needs to be up against one of the recessed central chamber
windows, as close to the atoms as possible, however, the MOT beams
need to go through these windows too. We attempted to use the ob-
jective lens in a telescope configuration to pass a MOT beam through
into the chamber, however the diameter of the beam coming out was
severely limited by the objective, with aberrations appearing if it was
bigger than around 5mm diameter.

While we may have been able to get away with a defocused beam
coming from an objective for a rubidium MOT, we still wanted to be
able to trap both rubidium and potassium, which proved difficult,
since the light for each species would have to have exactly the same
divergence to balance each MOT. Instead, as discussed in §2.6.2, we
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switched to a retro-reflecting MOT configuration. To achieve this, we
placed a retro-reflector for the top MOT beam on a motorised trans-
lation stage, and the objective lens on a second stage, as mentioned
in §2.5.3. During the MOT loading stage, the objective is held in the
retracted position, with the retro-reflecting mirror inserted above the
window. During evaporation in the magnetic trap, the mirror is re-
tracted and the objective is inserted, in time for imaging the cooled
atoms. We also re-built the side MOT beams in a retro-reflecting con-
figuration, with beams entering the same windows as the crossed di-
pole trap, with the dipole beams dumped by flipper mirrors to avoid
attenuating the returning MOT beam.

The imaging system is shown in Fig. 2.18, and has a field of view
of around 0.5mm. We use the same Andor iXon electron multiplied
camera as previously used in the square cell. Instead of using the cus-
tom objective lens, we use a tech-specialities, Inc. M Plan APO 20x

metallurgical near-infrared objective, as it has a shorter effective fo-
cal length, for similar resolving power through the thicker glass. This
lens has a numerical aperture of 0.35, working distance of 20.2mm,
and is corrected for 3mm glass. We are not sure of the exact thickness
of the top vacuum window, however believe that it is on the order of
6mm, limiting the resolution of this lens to around 2µm, compared
with the diffraction limit of 1.1µm.

To initially align the objective, since we cannot use the MOT (as
the up-down beam is unavailable when the lens in inserted), I in-
stead ran a sequence where the source MOT was being pushed into
the central chamber, where the side MOT beams and the quadrupole
coils were on. This resulted in a strong fluorescence signal, which got
brighter as the objective lens got closer to the centre of the quadrupole
field. After this pre-alignment, evaporatively cooled atoms in mag-
netic traps were used, looking at brightness of the in situ fluorescence
signal (the whole fluorescence distribution was still much bigger than
the field of view). I evaporated magnetically trapped atoms much fur-
ther than the usual parameters (microwaves to 2MHz off resonance),
which produced a smaller cloud of atoms to align to and focus on.
Since the objective lens is mounted to a motorised translation stage,
the focus adjustment could be automated.

To insert the imaging probe beam on top of the bottom MOT beam,
a motorised flipper mirror is mounted above the final MOT mirror. We
could have used the MOT beam as the probe, however it was easier
to use a separate probe, particularly due to the fringes on the beam,
which I will discuss in §2.8.5. This flipper mirror was also used to in-
sert a blue detuned beam for generating vortices, overlapped with the
probe beam on a non-polarising beam splitter, discussed in §3.3.1. Ab-
sorption imaging of BECs in the crossed dipole trap, and subsequently
vortices, were used to fine-tune the focus.



2.8 imaging 89

Andor iXon

camera

f=120mm

Bottom MOT beam

a
b

c

EFL=10mm

Figure 2.18: Central chamber top imaging.
To image through the top window of the central chamber, first, the top MOT

retro-reflector and λ/4 waveplate (a) are moved out of the way, and the
objective lens (b) is lowered into the bore of the electromagnet coils (orange).
A flipper mirror (c) allows the imaging probe beam (light red) to be inserted
through the bottom window along the MOT beam path. An indication of the
image ray path is shown in darker red. The inset shows group 7 of a USAF
1951 resolution target taken during initial bench testing, which is resolved
down to element 6 (2.19µm line thickness).

2.8.5 Fringe suppression

Our high resolution imaging systems suffer from fringes in the probe
beam, which move on millisecond time-scales, such that the refer-
ence image does not match the atoms image well. We suspect that
these arise due to reflections between the surfaces of the vacuum win-
dows, which in the central chamber, are only ≈25mm apart (this also
happened in the square cell, which has close, parallel walls). As the
laser beam path changes slightly (possibly due to small air currents
or vibrations), the phase of these fringes changes.

Our first approach to suppress these fringes in absorption images
was to use the frame transfer capability of the iXon camera to achieve
extremely fast back-to-back images. The EMCCD chip is actually twice
the reported size, with half masked. Two frames can be taken with
very short inter-frame times, by moving the first image to the masked
section, then reading it out during the second exposure. To imple-
ment this, we set the probe beam pulse for the atoms frame to coin-
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cide with the very end of the first exposure, and the reference pulse
at the very start of the second exposure.

The reference image should not have any atoms in it, however, with
the short (170µs) inter-frame times, there is no time for the atoms to
go anywhere. We found that the probe beam was heating the atoms
significantly, and possibly pushing them upwards, out of focus, with
the atoms remaining in the second frame having a wider distribution.
By shifting the imaging beam frequency by −20MHz, the signal from
these atoms was insignificant, and could be used as a reference (the
fringes did not visibly move when changing the probe frequency over
this range). The downside to this mode of imaging, is that the expos-
ure time for each frame must be 30ms, matching the time taken to
read out of the previous frame. This means that any stray light hitting
the camera prior to imaging (such as trapping light for time of flight
times less than the exposure time) will spoil the image.

As most of our imaging of vortices requires expansion times less
than this (see §4.2), we had to take a different approach. Instead of
attempting to stabilise the fringes for a pair of atom and reference im-
ages, we implemented a technique which computes an ideal reference
frame from a collection of frames taken in the past [313, 314]. Frames
from prior experiments are used to form an eigenbasis of reference
image components. For each experiment, we then project a masked
copy of the atom frame onto the masked eigenbasis, to compute a ref-
erence image that best matches the atoms image outside the masked
area (where the atoms are). The unmasked version of this computed
frame is then used as the reference frame for that experiment. This
results in the suppression of fringe features caused by the movement
of the fringe pattern, as seen in Fig. 2.19, though we still find that
images where the ‘raw’ OD image has few fringes seem to have the
best images of vortices.

Finally, it was found that adjusting the size and collimation of the
probe beam helped to reduce the number and spatial frequency of
fringes. Focussing the beam onto the atoms, with a waist just larger
than the spread of the atoms, almost completely removes all fringes,
however, also restricts the field of view. In order to perform Bragg ex-
periments, we found that setting the beam to focus past the atoms, so
that in the imaging plane the beam covered approximately three trap
diameters (to allow the separation of Bragg scattered components),
reduced the fringing enough that the eigenbasis fringe removal was
almost always sufficient.



2.8 imaging 91

a b

Figure 2.19: Eigenbasis image processing.
A comparison of optical density images (a) using a regular reference frame
and (b) using a reference frame computed to best match the absorption
image. Note that the area outside the aperture of the imaging system has
been masked in (b), as there is no light hitting the camera here.





3
C R E AT I N G A U N I F O R M O B L AT E B E C

In the previous Chapter, I described the KRb apparatus, and the pro-
cedure for making and imaging a BEC of 87Rb atoms. So far, I have
only mentioned trapping configurations that produce 3D BECs, how-
ever, as mentioned in Chapter 1, we are particularly interested in
studying vortices in condensates where the dynamics can be con-
sidered 2D. In this Chapter I will discuss the ways in which we trapped
the BECs produced in this apparatus in oblate geometries, with either
harmonic or uniform radial profiles. I will then cover the various
methods we used to create vortices in these oblate condensates.

3.1 axial confinement

First I will discuss the configurations used to confine the atoms in
the tight or axial dimension, effectively squashing the BEC into a pan-
cake shape. It should be noted that our experiments use an oblate
geometry, but are not strictly 2D (as discussed in §1.2.5.1, the vor-
tices will still behave as 2D point vortices provided the BEC is highly
oblate). The BEC is still technically 3D in the sense that there is still
more than one energy mode in the tight direction. The most com-
mon method for confining atoms to a 2D sheet is with an optical
dipole trap, shaping the beam to the desired geometry. This can be
achieved in several ways, using either attractive (red-detuned) or re-
pulsive (blue-detuned) traps.

3.1.1 Red-detuned light sheets

The simplest method is to focus an attractive dipole trap through
a cylindrical lens, forming a light sheet in which the atoms can be
confined [315]. Provided that the beam waist in the wide direction is
large compared with the BEC size, as is the Rayleigh range through
the tight focus, a light sheet can be superimposed on an existing 3D

trap, such as a magnetic trap, to provide additional confinement in
one direction.

This was the initial method used in our apparatus, though we ran
into issues with the beam profile. We observed a striped pattern in
the distribution of thermal atoms loaded into the sheet, an example
of which is shown in Fig. 3.1. The position of these stripes appeared
to move when the position of the beam was adjusted horizontally,
leading us to believe that the pattern was due to intensity variations
in the laser beam itself. We suspect that they must have originated
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Figure 3.1: Fringes in the red-detuned light sheet.
Expansion of atoms into a red-detuned light sheet. Initially, the atoms are
held in a trap formed by superimposing the light sheet with the crossed
dipole trap in the square science chamber. After the crossed dipole trap is
extinguished, the atoms are free to expand. Here, each image from top-left
through to bottom-right is taken after a successively longer expansion time.
Localisation of the atoms is seen, which is attributed to interference fringes
in the light sheet. The light sheet is propagating in the same direction as the
observed fringing.

from multiple reflections in the glass window of the vacuum cham-
ber, which does not have an anti-reflection coating for the 1064nm
wavelength of the trap. We saw this in both the square cell, as well
as the central chamber. In the central chamber case we were inserting
the trap through the round cell, which has similar optical properties
to the square cell glass, so perhaps we would have had better luck
using a different window.

3.1.2 Blue-detuned Hermite–Gaussian mode

To overcome this issue, we switched to a blue-detuned trapping con-
figuration, using a Hermite–Gaussian (HG) mode to confine the atoms
between two light sheets [316]. We used an SLM to produce a HG0,1

mode (a Gaussian with a single horizontal nodal line), which was re-
corded onto a piece of Bayfol HX photopolymer. This process is the
same as that for creating a hologram using an object and a reference
beam, except that in this case the object beam is generated by the SLM

rather than by reflecting off a physical object. We have published our
work on this technique [287], which is depicted here in Fig. 3.2.

The use of the photopolymer based hologram removes several is-
sues encountered when using an SLM directly. When using an SLM,
light is not only diffracted by the computer generated pattern, but
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Figure 3.2: Recording transmission holograms.
The laser beam is split in two on a non-polarising beam splitter, forming
the object and reference beams. A polariser and λ/2 waveplate are used to
control the polarisation and intensity of the beam passing through the SLM.
Both beams pass through spatial filters formed by a pair of lenses and a
pinhole. These are configured as telescopes to magnify the beams. The ref-
erence beam is chosen to match the size of the beam used to play back the
hologram, while the object beam is expanded to overfill the SLM, producing
almost uniform illumination across the device. A computer generated holo-
gram is displayed on the SLM, and the first diffracted order is selected by a
1:1 spatial filter. The resulting object and reference beams are then combined
onto the photopolymer film (mounted on a thin glass substrate) at an angle
of 49°. The holograms are typically exposed with 10mW of light at 532nm
for 0.2 s. Figure adapted from Tempone-Wiltshire et al. [287].

also by the grid structure of the pixels themselves. This generally
results in a loss of around 50% of the optical power. The overall ef-
ficiency of diffraction into the desired mode is further reduced by
the 2D nature of the device, resulting in multiple diffraction orders.
Furthermore, the optical power diffracted by most SLMs exhibit fast
intensity fluctuations due to phase flicker in the SLM pixels. This oc-
curs in most consumer-grade devices due to pulse-width modulation
used to adjust the value of each pixel [317, 318].

By selecting a single diffraction order of a desired pattern from an
SLM, and recording it to a static hologram, we spatially filter out in-
formation about the SLM pixel structure. Recording this beam on a
photopolymer with finite thickness forms a volume hologram, which
can theoretically achieve unity playback efficiency into a single dif-
fraction order. The Bayfol HX photopolymer used here has been
shown to achieve efficiencies up to 98% [319]. However, this assumes
perfect spatial overlap between the input and output modes of a holo-
graphic grating. In our case, a HG0,1 mode has around 50% overlap
with a Gaussian mode of the same dimensions. Indeed, we see almost
50% diffraction efficiency when using the collimated output from an



96 creating a uniform oblate bec

HG Hologram

f=
-5

0
m

m
 (

V
)

f=
1
0
0
m

m
 (

H
)

f=250mm

Long-pass

dichroic

Figure 3.3: Hermite–Gaussian mode hologram optics.
The HG mode is generated by passing a 1mm diameter collimated beam
through the hologram. The vertical direction is focussed onto the atoms by
first expanding it with an f = −50mm cylindrical lens, with the virtual
focus re-imaged by an f = 250mm spherical lens in approximately 2 f con-
figuration (drawing is not to scale). The mode is resized in the horizontal
direction by an f = 100mm cylindrical lens, which, in combination with the
relay lens, defocuses the mode in this direction, changing the spatial extent
at the atoms. Note that the nodal line shown is for illustrative purposes only,
it is actually in the horizontal direction.

optical fibre to ‘play back’ the hologram mode on the apparatus. We
have been using the same hologram for our HG mode for over two
years now with no noticeable degradation.

Once generated, the HG mode passes through a pair of crossed
cylindrical lenses, as shown in Fig. 3.3. The lens in the horizontal
direction is used to alter the collimation in this ‘long’ dimension, to
adjust the effective beam width at the atoms. The vertical lens on the
other hand focuses the mode tightly. This focus is relayed onto the
atoms by a single spherical lens in 2 f configuration.

To load atoms into the HG mode, we typically evaporate until just
before a BEC forms in the crossed dipole trap described in §2.7.3.4.
We then ramp the quadrupole field over 300ms, back on to the point
where it cancels the effect of gravity, since the HG mode alone cannot
hold atoms against gravity. Once the levitation field is on, the HG

mode is ramped on over 300ms. The crossed dipole trap is smoothly
extinguished during the first half of the HG mode ramp. The bias
fields in the trap plane are carefully tuned to minimise the movement
of the atoms from the original crossed dipole position. The resulting
radial confinement due to the quadrupole field will be discussed in
§3.2.1.
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Figure 3.4: The Hermite–Gaussian mode trap.
(a) An image of the HG mode, taken on the side imaging camera. While a
dichroic mirror blocks most of the trapping light from reaching the camera,
there is enough leakage to take an image. The white line (right) shows the
intensity profile along a line vertically through the centre of the mode, and
the blue dotted line shows a fitted HG profile with σz = 16µm. (b) An
optical density image of a BEC taken after 1ms time-of-flight after release
from a trap formed by the HG mode and a 42µm radius disc projected from
the DMD (this will be discussed in §3.2.3). The white line (right) shows the OD

along a vertical line through the centre of the cloud, and the blue dotted line
shows a Gaussian fit with σz = 5.7µm (limited by the camera resolution).

The intensity profile of an ideal HG mode in the focal plane is given
by

I(x, z) =
8I0z

2

πσ2z
e(−2z2/σ2

z)e(−2x2/σ2
x), (3.1)

where I0 is the peak intensity of a Gaussian beam of size, σx,σzare the
horizontal and vertical beam waists respectively. The peak intensity
of the two lobes are positioned at ±σz from the nodal line through the
centre of the mode. We typically operate with around 100mW of light
in the HG mode, focussed with σz = 16µm and σx = 250µm, shown
in Fig. 3.4. This provides an axial trap frequency of ωz ≈ 2π× 100Hz.

3.1.3 Tilting 2D traps

As mentioned in §1.2.7.3, our Monash BEC theory group proposed a
method of vortex sign detection based on observing the gyroscopic
motion of vortices after a flat BEC has been tilted. We attempted to im-
plement this method in the lab by physically rotating the cylindrical
focussing lens forming either the red- or blue-detuned trap. In the
case of a red-detuned trap, it is obvious that rotating the cylindrical
element about a round beam will cause the focal line to rotate. For the
HG mode, the phase singularity associated with the nodal line should
be rotated. As it would be difficult to rotate the hologram itself, we
instead investigated the effect of simply rotating the cylindrical lens.
For small angles, the two lobes of the HG mode appear to skew, with
one shifting to the left slightly, while the other shifts to the right, with
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Figure 3.5: Photograph of the rotating lens.
The lens (left) is held in a piece of lens tube, glued to a commercial rotational
bearing. A 3D printed sleeve in the shape of a 72 tooth timing belt pulley
surrounds the lens tube. A rubber GT2 timing belt connects the lens mount
to a 36 tooth pulley on the shaft of the stepper motor. Tensioning clips are
used to remove slack from the belt.

the pair of lines rotating with the lens. Within the range of angles re-
quired, the nodal line tilts, though the intensity either side of it does
vary slightly.

We attempted to implement this by building a custom rotation
mount for the cylindrical lens. This consisted of a piece of lens tube at-
tached to a rotational bearing, with a large 3D printed pulley around it.
A stepper motor (Sanyo Denki 103H5205-5240) was then used with a
smaller pulley attached, with a ‘timing belt’ style band connecting the
two (the pulleys had notches appropriate for the belt’s teeth), shown
in Fig. 3.5. The ratio of teeth on the pulleys was 72:36, and the step-
per motor has 200 steps per revolution, which can be ‘microstepped’
in 1/16 increments using the BigEasyDriver control board by Brian
Schmalz. This results in a theoretical resolution of 0.056 25° of lens
rotation per microstep. As the vortex gyroscope imaging technique
requires around 20° (π/9) of trap tilt, this gave us 355 discrete steps
during the rotation.

Control of the lens was then achieved by pre-generating the rel-
ative timing of pulses required to ramp the rotation with the form
θ(t) = θ0

(

1− t
T +

sin (2πt/T)
2π

)

numerically, using the Python code
in Listing 3.1. The timings for movement pulses generated here was
saved (due to the slow method for producing the sequence) to be
loaded during the compilation of each experiment. These generated
times are in the range t ∈ (0, 1], allowing the ramp duration to be set
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Listing 3.1: Python code used to calculate the times at which pulses should
be sent to the stepper motor controller to achieve the desired smooth rota-
tion.

1 from pylab import *

2 pulses_per_rev = 200*16*2 # 200 steps per revolution, 16

microsteps, gear ratio 2.

3 d_theta = 2*pi/pulses_per_rev # rotation angle in radians, per

microstep.

4 theta_0 = round((pi/9)/d_theta)*d_theta # desired rotation angle,

rounded to the nearest microstep resolution.

5 T = 1 # Set time constant to unity, will rescale by multiplying

time sequence later.

6 step_fn = lambda t: theta_0 * (1-t/T + sin(2*pi*t/T)/(2*pi))

7 ts = [] # A list to keep step times in.

8 dt = 1.64e-4 # Minimum time between steps.

9 thetas = linspace(theta_0,0,1+theta_0/d_theta)

10 for step in thetas:

11 i = 0

12 while step_fn(i*dt) > step:

13 i+=1

14 ts.append(i*dt)

15 ts = ts[1:] # We don’t need to pulse to get to zero angle.
✆

by multiplying the sequence by the desired duration. Ramp times as
short as 20ms could be achieved, limited by the motor.

While we managed to load atoms into the rotatable trap, and saw
them follow the trap angle, we had difficulty tilting the atoms quickly
enough to induce gyroscopic motion of vortices. Instead, the atoms
tended to slip out of the trap for the fastest rotation times. It is likely
that the potential was not deep enough to prevent the atoms from
going through it as it pushed them. There was also significant heating
of the atoms, indicating that the ramp may not have been smooth
enough.

A video of the motion of the trap could be taken by taking a se-
quence of images at subsequently later times of repeated rotations.
At the end of the motion, the trap appeared to ‘bounce’ slightly, with
small oscillations in the angle. This was most likely due to the rubber
drive belt stretching. As the gyroscope experiment would require re-
leasing the atoms from the trap at the end of the ramp (or even part
way through it) this was not seen as a significant issue.

These issues may have been overcome by using a different gearing
on the motor to improve the step resolution during the rotation, and
using more power in the HG mode. Ultimately, we did not spend a
significant amount of time investigating solutions to the rotation is-
sues, as an early version of the work by Seo et al. [21] appeared on the
arXiv preprint server. We decided that this Bragg method would be
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faster to implement, and that we should focus on looking for vortex
clustering in uniform potentials with this, rather than pursuing the
gyroscope technique.

3.2 radial confinement

The axial confinement methods do not significantly effect the motion
of atoms in the plane of the trap, though the red-detuned light sheet
will add some slight harmonic component, and the blue-detuned
mode tends to slightly repel atoms from the centre. The majority of
the trapping in this plane is instead provided by a second trapping
component.

3.2.1 Harmonic confinement

The simplest radial confinement to implement is provided by the
quadrupole magnetic field gradient. When the vertical component
of the quadrupole field is tuned to cancel gravity, the radial compon-
ent will provide trapping. The strength of this trap depends on how
close the magnetic field zero is to the atoms. The further away the
zero, the smaller the radial component is, and the weaker the radial
confinement (in fact, once the field produced by the bias coil which
is opposing the nearest quadrupole coil is stronger than that quadru-
pole coil’s field, the radial field profile should become anti-trapping).
With the field zero centred around 1mm above the atoms, the radial
trap frequency is around ω⊥ ≈ 2π× 8Hz. The radial confinement be-
comes too low to measure once the bias field is approximately 30G,
corresponding to a shift of around 2 cm (assuming that the vertical
component is linear in this range).

We have fine control over this parameter by tuning a bias field in
the vertical direction. Due to stray magnetic fields, and imperfections
in the coils, the in-plane bias fields also need tuning to keep the trap
centred in the desired position (and stop the atoms from sloshing due
to movements). We have also added a single coil of 20 turns around
the flange of the square science cell, as this seems to be the main axis
along which the trap moves. This coil is used to cancel the majority
of the motion, limiting the currents needed on the ribbon cable bias
coils.

3.2.2 Holographic blue-detuned potentials

As discussed in §1.3.2.3, it is easiest to observe signs of vortex clus-
tering in a flat-bottomed potential. This requires an optical potential,
rather than the magnetic trap. Such a potential was first demonstrated
in 3D by Gaunt et al. [320], where atoms were trapped in the dark
region of a hollow laser mode, capped with light sheets. A similar
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We also found that

this conical shaped

beam, combined

with gravity, could

actually confine

atoms in 3D, with

only a few

milliwatts of power.

arrangement was used by Chomaz et al. [321] to produce a quasi-
2D BEC, with atoms trapped radially in a disk shape formed by the
shadow of a mask, and axially between the lobes of a HG mode. Sub-
sequently Ville et al. [322] used a DMD to provide an adjustable mask
for uniform radial confinement, and a tunable optical lattice for axial
confinement, to allow the loading of a truly 2D Bose gas.

Our first approach was to generate holograms of high order Laguerre–
Gaussian (LG) modes, such as those we had tested in Tempone-Wiltshire
et al. [287]. LG modes contain an optical vortex at their centre due to
the phase winding of their profile. Unfortunately, we ran into issues
generating an appropriately sized LG mode to trap atoms with.

We desired a mode on the order of 50µm to 100µm diameter, with
a diameter-to-wall thickness ratio of at least 10. To obtain such nar-
row walls, we needed to focus the mode with a high resolution lens,
meaning that the mode had to be focussed by the central chamber top
imaging objective (§2.8.4). High order LG modes become significantly
wider than their Gaussian counterparts, to the extent that we were
limited to orders with winding numbers of around 5 or 6 due to the
aperture size of the objective lens. Additionally, we found that any
aberrations or other imperfections in the lens system tended to res-
ult in the mode breaking down into a set of discrete optical vortices,
ruining the clean, flat central region desired for a trap.

Having read similar complaints in the thesis of Alex Gaunt [323],
we instead tried generating an axicon-like hologram. Through its fo-
cus, the axicon mode goes from a broad walled ring shaped beam, to
a sharp, narrow ring, then to a smaller diameter broad wall shape, un-
til focussing to a point, shown in Fig. 3.6. This was tuned to provide
the desired trap size, and inserted into the objective lens via a pair of
relay lenses and a dichroic mirror. By adjusting the relay lenses, and
the output collimation of the optical fibre supplying light to the holo-
gram, we were able to both focus the mode, and make small adjust-
ments to its overall size. The focussing and adjustment was achieved
by moving the objective lens so that it focussed on the reflection of
the mode in the top vacuum window, such that the small leakage
through the dichroic mirror could be seen on the camera.

To load the atoms into this trap, we first load into the combined
magnetic and HG mode trap. The radial hologram mode is turned on,
then the quadrupole field zero is moved with a 700ms ramp of the
bias field, to the point where the radial component is negligible. As
the radial component of the magnetic trap is lowered, the atoms ex-
pand until they hit the optical barrier. Depending on the size of the
mode and the rate of the expansion, we find that vortices can be spon-
taneously generated, presumably due to sound waves forming as the
condensate bounces off the hard barrier back into itself. This appears
to be minimised by reducing the diameter of the optical mode.
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Figure 3.6: Axicon mode profile.
The beam profile of the axicon mode, taken by imaging the reflection of the
mode off the top window of the vacuum chamber at varying objective lens
positions. The beam propagates from positive to negative z (positive z is up
on the apparatus), with the ideal focus at z = 0. At the focal plane the mode
forms a sharp ring. The conical shape of the mode also makes it possible to
confine atoms in three dimensions.

3.2.3 Digital micromirror device potentials

To provide more flexibility (particularly in terms of vortex creation,
which will be discussed next), we switched from the axicon trap to
one produced by a DMD [322, 324]. We based this trap on that of
Gauthier et al. [324], projecting an image of the DMD chip onto the
atoms. Our DMD is a Texas Instruments DLP LightCrafter evalu-
ation module, with a 0.3 WVGA chipset. We again use the imaging
objective to project the potential onto the atoms, rather than using a
separate lens. The relay lenses previously used for the axicon mode
were replaced to instead form a pair of magnifying telescopes, the fi-
nal lens of which is the objective lens. Shown in Fig. 3.7, this provides
an overall magnification of 0.1×. Each projected DMD pixel is approx-
imately 0.6µm in the plane of the atoms, below the resolution of the
objective.

We illuminate the DMD with around 150mW of light, of which
only ≈ 30mW is reflected. Due to the pixel layout of our device, one
direction is twice as wide as the other. To produce a round trap, we
must generate an image of a circle, and stretch it by a factor of 2, using
the code in Listing 3.2 The collimation of the light hitting the DMD

was adjusted such that when an 80µm diameter disk is displayed,
the intensity around the edges of it appears the brightest. The traps
formed by the DMD are loaded in the same way as the axicon mode.

While the images displayed on the DMD naturally have hard edges,
with each pixel being on or off, the image of these in the trapping
plane will not be perfect due to the finite resolution of the lenses
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Listing 3.2: Python code used to generate a circular mask on the DMD.

1 import StringIO

2 from PIL import Image, ImageDraw

3

4 # set up the DMD image. Start with a one-bit white canvas half

the size of the DMD frame:

5 img = Image.new( ’1 ’,(608,342), ’white ’)
6

7 # now create a drawing object on it

8 draw = ImageDraw.Draw(img)

9

10 # Draw the ellipse which forms the disc, centred at the known

location of the crossed dipole trap

11 ring_centre = (320,200)

12 draw.ellipse([ring_centre[0]-disc_radius,ring_centre[1]-

disc_radius*ellipse_aspect_ratio,ring_centre[0]+disc_radius,

ring_centre[1]+disc_radius*ellipse_aspect_ratio], ’black ’)
13

14 # The image has been drawn on. Delete the drawing object

15 del draw

16

17 # Stretch to the full DMD frame size

18 img_final = img.resize((608,684))

19

20 # Save the image as a BMP in a memory buffer

21 img_out = StringIO.StringIO()

22 img_final.save(img_out, ’BMP’)
23

24 # Set the DMD to use this image at time t in labscript:

25 imaging_dmd.set_image(t,raw = img_out.getvalue())
✆
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Figure 3.7: Digital micromirror device potentials.
The DMD chip is imaged onto the plane of the BEC confined within the HG

mode trap. A dichroic mirror allows the green light to be overlapped with
the imaging system (c.f. Fig. 2.18). The series of relay lenses has an overall
magnification of approximately 0.1×. The green rays show the imaging of
a pixel from the DMD onto the atoms.

used. Imperfections in the alignment and focus will further distort
the image, and any stray light could add to the overall potential seen
by the atoms. In addition, there are magnetic field gradients present,
due to the quadrupole coils, the bias coils (which are far from perfect
Helmholtz coils) and stray fields (e.g., from the magnets in the ion
pumps).

The most direct way to determine the overall shape of a trapping
potential is to look at the in situ distribution of atoms within it. In eval-
uating the uniformity of the potentials, we are limited by the quality
of the images we are able to take of the BEC—the noise in the images
appears to be greater than any atomic density fluctuations. Looking
at images after a very short time-of-flight shows a hard edge on the
trap, which appears to be consistent with the blurring expected by
both the projection of the potential, and the imaging of the atoms,
given the ≈ 2µm resolution of the objective used for both.

3.3 generating vortices

Once we had the atoms in a 2D geometry, we began investigating
methods for generating vortices on demand. We used slightly differ-
ent techniques to generate vortices for each of the previously men-
tioned radial trapping configurations, though they all featured a re-
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pulsive (532nm) laser passing through the condensate, as discussed
in §1.2.7.1.

3.3.1 Moving the BEC through an obstacle

In the harmonic trap, we made use of the ability to fine-tune the
in-plane trap position using bias fields. Rather than moving a beam
through the BEC, we moved the BEC through a beam, as was done
by Neely et al. [157]. A laser was focussed onto the atoms using a
single lens, relaying the image of the tip of an optical fibre. This was
achieved using a 2" diameter, f = 150mm spherical lens in roughly
2f configuration. A 50/50 non-polarising beam splitter was used to
combine this beam on top of the central chamber top imaging beam,
which enters the vacuum chamber from the bottom window via a
flipper mirror inserted above the final MOT mirror. The size of this
beam was limited to about 10µm by the numerical aperture available
off the flipper mirror.

We were able to generate vortices by ramping this beam up to
≈ 1mW and then off again, while displacing the trap, such that the
beam was swept through the atoms. Despite fine control over the mo-
tion of the atoms, we were unable to systematically produce vortex
dipole pairs. We suspect that this could be due to the lower atom num-
ber in our experiment leading to a lowered speed of sound, making it
easier to stochastically excite vortices, compared with the parameters
of Neely et al. [157]. The stirring beam size was also large relative to
the trap size.

We also produced small vortex lattices by moving the trap on a
circular path around the laser beam, shown in Fig. 3.8. Here we were
able to control the average number of vortices injected by varying
the rotation timing. We also found that the BEC and vortex lifetimes
were extended in these cases, with small lattices observed beyond
30 s hold times. We attributed this to the thermal cloud being pushed
away from the BEC due to the spinning motion.

3.3.2 Moving an obstacle through the BEC

When we swapped to the optical radial potential, we no longer had
the ability to move the trap through the laser beam. Instead, we in-
serted a Thorlabs GVS002 dual-axis galvanometer unit in the vortex
beam path, along with an additional relay lens. With this, we were
able to sweep the position of the beam across or around the trap. We
found that in this case, we were unable to form vortex lattices, pre-
sumably since the single beam stirring around the edge of the trap
was unable to transfer significant angular momentum to the atoms,
compared with moving the atoms themselves.
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25 μm

a b c d

Figure 3.8: A vortex lattice in the harmonic 2D trap.
The BEC was moved on a circular path around the stirring beam by tuning
bias fields to move the quadrupole field zero. The atoms orbited the beam
3 times in 1 s, during which time vortices were created. The BEC was left
stationary for (a) 1 s, (b) 3 s, (c) 7 s and (d) 20 s. During the hold time, the
vortices arrange themselves to be more ordered in the lattice pattern. The
BEC is initially distorted due to the rotation, but regains a round shape over
time, while decaying in size.

3.3.2.1 Multiple obstacles using the DMD

While the scan unit was sufficient for generating vortices, we were
limited by the relatively large beam size. We wanted to be able to
generate as many vortices as possible, in both random and clustered
configurations, and with as little sound as possible. To achieve this,
we instead switched to using a DMD to generate our vortex beam
potentials.

As discussed in §3.2.3, we swapped to using the DMD for both
the trapping and the vortex beam potentials. This was mostly to
avoid having to combine the DMD image with the axicon mode be-
fore passing them through the objective—there was no real need to
have separate sources for trapping and vortex creation (though per-
haps having separate amplitude control could be beneficial). With the
DMD, we are able to project arbitrary (up to the resolution limitations)
shaped binary patterns (each pixel is either on or off) on top of the
round trap. These can be played at rates up to 4000 frames per second,
with up to 96 frames in total.

We typically use traps with a 124 pixel diameter, and allocate 89
frames to motion (we need a couple of spare frames at the start and
end when the trap is static, and the DMD only has certain total frame
counts allowed), which corresponds to 1.4 pixels of motion per frame
for a sweep from one side to the other. A limitation of this method
is that due to the pixellation and limited frame count, slow moving
potentials will have jerky motion. For a typical 0.5 s sweep, the bar-
rier jumps forward once every 5.6ms. We used several different pat-
terns to generate vortices, such as single round or elliptical obstacles,
grids of elliptical obstacles (shown in Fig. 3.9), and pairs of paddles.
Listing 3.3 gives an example of the generation of a single elliptical
obstacle passing across the trap (following on from the code in List-
ing 3.2).

We attempted to generate large clusters of vortices using a paddle
configuration, such as those observed by Gauthier et al. [259], how-
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Listing 3.3: Python code used to move a single elliptical obstacle across the
DMD. This code follows that in Listing 3.2.

1 ## Note, the object "img" already exists here, as the half-DMD

sized drawing of a circle, generated above ##

2

3 dp = (disc_radius * 2 * ellipse_aspect_ratio + vortex_beam_depth

)/ 89

4 dt = vortex_spoon_ramp_period/89

5

6 # loop over steps in the sweep of the obstacle:

7 for i in range(89):

8 # Make a copy of the image containing only the radial trap

9 img_cpy = img.copy()

10

11 # Add a new drawing to the image:

12 draw = ImageDraw.Draw(img_cpy)

13

14 # Calculate the vertical position of the object in this frame

15 pos = (ring_centre[0],ring_centre[1] + 44*dp - i * dp)

16

17 # Draw an ellipse on the frame, then clean up the drawing

object

18 draw.ellipse([pos[0]-vortex_beam_radius,pos[1]-

vortex_beam_depth,pos[0]+vortex_beam_radius,pos[1]+

vortex_beam_depth], ’white ’)
19 del draw

20

21 # Resize, then clean up the temporary image

22 img_final = img_cpy.resize((608,684))

23 del img_cpy

24

25 # Save to buffer then set DMD output

26 img_out = StringIO.StringIO()

27 img_final.save(img_out, ’BMP’)
28 imaging_dmd.set_image(t,raw = img_out.getvalue())

29

30 # Clean up objects ready for next iteration of the loop

31 del img_out

32 del img_final

33

34 # Add to time count and move on to the next frame

35 t += dt
✆
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20μm

Figure 3.9: Grid obstacles passing through a BEC.
A pair of interleaved grid obstacles were generated on the DMD, and swept
approximately one third of the way through the BEC from opposite sides.
The trap was extinguished and an absorption image was taken 100µs later,
effectively imaging the in situ atomic distribution. In this case, the obstacles
had a semi-major axis length of 5 DMD pixels in the direction of motion, and
semi-minor length of 4 pixels in the transverse direction, corresponding to
approximately 3µm by 2.4µm at the atoms.

ever could not find a configuration that worked well. This may have
again been due to a lower atom number in our experiment, lowering
the speed of sound, making it easier to generate vortices of both sign
off imperfections in the obstacle. The experiments performed with the
grids of obstacles will be discussed in detail in the following Chapter.
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The experiment data

and analysis code

used to produce the

results presented in

this Chapter are

available

online [326].

2 D Q U A N T U M T U R B U L E N C E I N A U N I F O R M B E C

This Chapter describes a series of experiments performed in the DMD-
based trap (depicted here in Fig. 4.1B), with vortices injected into
the condensate by sweeping grids of obstacles through the trap. The
subsequent evolution of the vortices was observed, and the statist-
ical properties of the vortex distributions were compared for different
obstacle grid sizes. The results presented in this Chapter are the basis
of a manuscript [325] which is currently in peer review.

The analysis of these experiments was supported by a collabora-
tion with Dr. Andrew Groszek, who recently completed his thesis on
numerical studies of 2DQT [250], and our supervisor, Dr. Tapio Sim-
ula. Andrew’s main contribution to the work in this Chapter was to
generate thermometry curves suited to the vortex numbers measured.
Andrew also helped to develop the code used to generate energy spec-
tra.

4.1 generating grid turbulence

To study the statistical properties of vortices in quantum turbulence,
we wish to generate initial conditions with large numbers of vortices,
and minimal sound waves, such that the superfluid flow is well ap-
proximated as incompressible. Control of the initial distribution of
vortices is also desirable, as it allows the turbulent dynamics to be
started in a dipole pair dominated, vortex cluster dominated or ran-
dom state. A large number of vortices can be injected by sweeping an
array of elliptical obstacles through a BEC. The mechanism is the same
as that for a single obstacle, discussed in §1.2.7.1, repeated at multiple
locations across the cloud. By changing the dimensions of the grids
used, we can effectively alter the initial spatial distribution of vortices
and antivortices. Wider grids generate a more clustered initial con-
dition, as regions where vortices and antivortices are shed are well
separated. Conversely, for finer scale grids, vortices and antivortices
are generated close to each other, producing distributions that tend to
consist of dipole pairs. In the intermediate regime, the vortex distri-
butions are more disordered, as small clusters are generated, which
interact with others to form dipole pairs.

In terms of Onsager’s ‘vortex temperature’ description of point vor-
tices (§1.1.2.2), a fine grid should produce a ‘vortex gas’ with a posit-
ive temperature, and a wide grid should produce a ‘vortex gas’ with
a NAT. For the experiments, we chose to use two counter-propagating
grids of obstacles for two reasons: firstly, this increases the total num-
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ber of obstacles passing through the BEC at once, increasing the num-
ber of vortex nucleation points; secondly, we effectively ‘push’ the
BEC in both directions, minimising any residual centre-of-mass mo-
tion that may be induced during the sweep.

We generate the pair of grids using the code in Listing 4.1, which
is an extended version of Listing 3.3. Note that one grid will have an
odd number of points, centred on the trap, while the opposing grid
has an even number of points, straddling the first. An example of
the motion of the grids is shown in Fig. 4.1A. The grids are arranged
such that all ellipses have the same dimensions, and spaced by three
semi-major axis lengths of the ellipses. This ensures that there is al-
ways space between the grids as they pass (though for very fine grids
this may not be true due to the finite resolution of the objective lens).
We vary the size of the obstacles, using semi-major axis lengths of 7,
10, 13, 16 and 19 DMD pixels, corresponding to approximately 4.2µm,
6.0µm, 7.9µm, 9.7µm and 11.5µm respectively. The obstacle size in
the direction of motion is the same for each case, with a semi-minor
axis length of 5 pixels (≈3µm). For each grid size, we ran experi-
ments for evolution times of 0.5 s to 5.0 s (in 0.5 s increments) after
the completion of the 0.5 s grid sweep. Each point in this parameter
space was repeated 25 times to build up statistics for each data point,
with a total of 250 runs of the experiment for each grid.

4.2 imaging the vortex distribution

We measure the distribution of vortices using the Bragg spectroscopy
technique of Seo et al. [21], which was discussed in §1.2.7.3. For our
Bragg beams, we use light from the 87Rb repump laser, and double-
pass it through a 110MHz AOM (see Figs. 2.4 and 2.6). We drive the
AOM with two frequencies, by feeding two DDS outputs of a Pulse-
Blaster device into ports 1 and 2 of a MiniCircuits ZFSC-2-4-S+

rf splitter/combiner. Both frequencies are then output from port S,
which is fed into an rf amplifier, which drives the AOM. The two rf

frequencies are driven with a difference δrf, which, after the double-
pass, shifts light by frequencies 2f0, 2f0 + 2δrf and 2f0 + δrf, where
f0 = 100MHz is the rf base frequency. Overall this corresponds to
light approximately 6.6GHz blue detuned from resonance for the
atoms. We tune the frequencies such that δrf ≈ δ0/2, where δ0 cor-
responds to the Bragg resonance condition.

The beam is passed through the central vacuum chamber by over-
lapping it with a MOT beam using a polarising beam splitter before
the MOT beam’s expansion telescope. The beam travels perpendicular
to the square cell axis of the vacuum chamber, and is retro-reflected
by the same mirror as the MOT beam (shown in Fig. 4.1B, note that
the Bragg beam is along the MOT beam entering the chamber from the
bottom-left of Fig. 2.15). Naturally, this beam has circular polarisation
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Figure 4.1: DMD trap layout.
(A) Example frames, as displayed on the DMD, for the 4.2µm grid. Here
every 15th frame is shown from the 0.5 s sweep of the grid. The axes to the
right show the orientation of the grid relative to the axes of images (x,y)
and the Bragg beam (x ′,y ′). (B) Schematic of the trapping geometry. The
image of the DMD is projected onto the atoms via an objective lens in the
bore of the top set of electromagnets, and the HG beam propagates along
the x-axis. A magnetic field gradient is produced by a pair of coils in an
approximately anti-Helmholtz configuration (light brown) combined with
a linear bias field produced by a pair of coils in an approximately Helm-
holtz configuration (brown) which pushes the magnetic field zero above the
atoms. The direction of current in each coil is indicated by red arrows. The
Bragg beams propagate along the x ′ axis, at 45° to the imaging axes (de-
termined by the orientation of the EMCCD camara sensor). The Bragg beams
are retro-reflected and contain two frequencies, ωL and ωL + δ, where ωL

is the base frequency (approximately 6.6 GHz blue detuned from resonance
frequency), and δ = δ0 + δd is the sum of δ0, the detuning required for
resonant Bragg scattering of atoms at rest, and δd, the Doppler detuning.
(C) An example optical density image, from the data presented in the top
row of Fig. 4.3, showing all three components after Bragg scattering. Atoms
with a velocity component along the ±x ′ axis close to the detuned Bragg
condition will be given a momentum kick in the direction of ±x ′. After
6 ms time-of-flight, the scattered components (circled in blue [−x ′] and red
[+x ′]) fully separate from the unscattered component (circled in white, see
also Fig. 4.3A). The region of the image containing the −x ′ component is
coloured blue and subtracted from the region containing the +x ′ compon-
ent, which is coloured red, to create a differential signal (bottom of panel C,
see also Fig. 4.3D).
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Listing 4.1: Python code used to produce a pair of grids on the DMD. This
code replaces lines 14 to 18 within the for loop of Listing 3.3

1 # Calculate how many points to use in each grid

2 radial_odd_dots = int(floor((disc_radius - vortex_beam_radius)

/(5.0 * vortex_beam_radius)))

3 radial_even_dots = int(floor((disc_radius - (3.5*

vortex_beam_radius))/(5.0 * vortex_beam_radius)))+1

4

5 # Calculate the vertical position of each grid in this frame

6 # odd dots at y = pos, even at y = pos2

7

8 pos = (ring_centre[0],ring_centre[1] + 44*dp - i * dp)

9 pos2 = (ring_centre[0],ring_centre[1] - 44*dp + i * dp)

10

11 # First, draw the centre dot on the ’odd’ row:

12 draw.ellipse([pos[0]-vortex_beam_radius,pos[1]-vortex_beam_depth,

pos[0]+vortex_beam_radius, pos[1]+vortex_beam_depth], ’white ’)
13

14 # Now the rest of the ’odd’ dots:

15 for dot in range(radial_odd_dots):

16 # draw the +x side

17 draw.ellipse([pos[0] + 4 * vortex_beam_radius + dot * 5 *

vortex_beam_radius,pos[1]-vortex_beam_depth,pos[0] + 6 *

vortex_beam_radius + dot * 5 * vortex_beam_radius, pos

[1]+vortex_beam_depth], ’white ’)
18 # and the -x side

19 draw.ellipse([pos[0] - 6 * vortex_beam_radius - dot * 5 *

vortex_beam_radius,pos[1]-vortex_beam_depth,pos[0] - 4 *

vortex_beam_radius - dot * 5 * vortex_beam_radius, pos

[1]+vortex_beam_depth], ’white ’)
20 # And now the even dots:

21 for dot in range(radial_even_dots):

22 # draw the +x side

23 draw.ellipse([pos2[0] + 1.5 * vortex_beam_radius + dot * 5 *

vortex_beam_radius,pos2[1]-vortex_beam_depth,pos2[0] +

3.5 * vortex_beam_radius + dot * 5 * vortex_beam_radius,

pos2[1]+vortex_beam_depth], ’white ’)
24 # and the -x side

25 draw.ellipse([pos2[0] - 3.5 * vortex_beam_radius - dot * 5 *

vortex_beam_radius,pos2[1]-vortex_beam_depth,pos2[0] -

1.5 * vortex_beam_radius - dot * 5 * vortex_beam_radius,

pos2[1]+vortex_beam_depth], ’white ’)
✆
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of the opposite handedness to the MOT beam, as it passes through the
same λ/4 waveplates with the opposite initial linear polarisation. By
adjusting the detuning, we find the Bragg frequency is centred at
δ0 = 2π× 15.3 kHz, with a width of 2π× 1.8 kHz. This frequency dif-
fers slightly from the expected value of 2π× 15.084 kHz, which we
attribute to mean field effects [175].

We find that the shape of the Bragg-scattered components can be
affected by the density of the BEC. For traps with a smaller radius,
there is an increased s-wave scattering ‘halo’ of atoms due to colli-
sions between the scattered component and the atoms still at rest.
This is suppressed by allowing the cloud to expand for a short time
before applying a Bragg pulse, and by choice of the trap size to re-
duce the atomic density. We allow the cloud to expand for 300µs
before applying the Bragg pulse for 600µs. We find that a detuning
of δ = δ0 + δd produces a good signal in the vicinity of each vortex
for a Doppler detuning δd = 2π× 900Hz. During the expansion and
Bragg separation process we maintain the magnetic field gradient to
levitate the atoms against gravity, preventing them from falling out
of the imaging plane.

The speed at which the Bragg-scattered components separate must
also be considered when choosing a trap size. The three components
need to be spatially separated by the time the image is taken, while
at the same time, the vortex cores in the expanding unscattered com-
ponent will expand. We found that for our trap radius of ≈39µm (62

pixels), the components separate in 6ms, shown in Fig. 4.1C. During
this time, the vortex cores grow to around 2µm, such that they are
resolvable, but not so large that they begin to overlap significantly.

4.2.1 Processing the Bragg images

To obtain the position and sign of each vortex in a run of the experi-
ment, we use the same differential signal as Seo et al. [21], but com-
pute the best matching combination of vortex signs using the point
vortex model, rather than manual inspection. To generate the differ-
ential signal, we begin by selecting three regions of interest (ROIs) of
equal dimensions, centred on the scattered and unscattered compon-
ents of the BEC. To select these we typically run several shots without
generating vortices, with the Bragg beams tuned near resonance, and
fit to the centre of each component. We then generate the differential
signal by subtracting the optical density of one scattered ROI from
the other. We fine-tune the position of the ROIs by again using near-
resonant Bragg pulses, looking at condensates containing a few vor-
tices. In this case, the position of the vortices should be visible in all
three components, and the regions are adjusted to ensure that the re-
lative coordinates in all three ROIs coincide. These regions are then
used to process the images for each experiment, generating the differ-
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ential signal by subtracting one scattered component from the other
(Fig. 4.1C).

4.2.1.1 Vortex location detection

To obtain the position of each vortex, we have implemented a blob

detection algorithm, as used by Rakonjac et al. [327]. The algorithm
consists of a Gaussian blur on the order of the vortex core size, to
smooth out smaller fluctuations in the image, followed by a Lapla-
cian to produce positive features at each vortex core location. An amp-
litude threshold can then be used to form a binary image highlighting
the vortex locations. All groups of pixels above a size threshold are
assigned as vortices, with the location given by the centre of mass of
the group.

Due to the large number of essentially randomly distributed vor-
tices, and presence of sound waves and other image noise in our
experiments, particularly at short hold times, we manually inspect
the results of the vortex detection algorithm, and adjust if required. It
was particularly hard to tune the algorithm to detect pairs of vortices
that are close enough together to appear as a single feature in the
image. This was incorporated into the algorithm by measuring the el-
lipticity of each detected feature. Any features with ellipticity above
a threshold would be treated as a pair of vortices, spaced equally
along the major axis of the feature. The threshold for this was highly
sensitive, and depends on the size of the vortices after expansion.

The algorithm was implemented using functions of the OpenCV
(cv2) package for Python. Once a binary image has been generated
following the Laplacian, we manually set the region outside the con-
densate to zero to suppress any background noise that may lead to
spurious vortices being identified outside the BEC. A contour finding
algorithm is then used, and the moments [328] are calculated for each
resulting feature to determine its location, as well as detect pairs of
vortices.

The moments, Mij of an image, I(x,y), are defined as

Mij =
∑

x

∑

y

xiyjI(x,y). (4.1)

The centroid of an image can be calculated as x̄ = M10

M00
and ȳ = M01

M00
,

which, in general, gives us the location of each vortex. To check the
ellipticity of each feature, we calculate a covariance matrix,

cov =

[

µ ′
20 µ ′

11

µ ′
11 µ ′

02

]

, (4.2)

where µ ′
ij = µij/µ00 are second order central moments, with first

order central moments given by

µij =
∑

x

∑

y

(x− x̄)i(y− ȳ)jI(x,y). (4.3)
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A B

C D
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Figure 4.2: Detection of vortex locations.
To detect the position of vortices, first the OD image (A) is blurred (B) to
reduce noise below the vortex core scale. (C) The Laplacian is taken to high-
light the holes in the image corresponding to vortex cores, and (D) a binary
threshold is performed. (E) A covariance matrix is calculated for each result-
ing group of white pixels containing more than 2 pixels, with the centre-of-
mass determining the location of vortices (centre of blue circles). For features
with high ellipticity (red), pairs of vortices are assigned (red dots).

The expression (4.5)

was used in the code

as it was the version

I came across at the

time. I’m unsure

how it was derived,

but it differs from

the value derived in

Ref. [328] by a

factor of 2
3

√
3,

underestimating the

ellipse dimension by

around 15%.

Overall this does not

significantly impact

the code, as the

placement of the pair

of vortices on the

ellipse was only a

rough

approximation.

The eigenvalues of this covariance matrix are

λi =
1

2

(

µ ′
20 + µ

′
02 ±

√

4µ ′2
11 +

(

µ ′
20 − µ

′
02

)2
)

, (4.4)

and can be used to obtain the semi-major and semi-minor axis lengths
of the region, which are given by li = 2

√
λi [328]. In our implementa-

tion, a slightly modified version of this expression was used, with the
semi-major axis length given by [329]

lsemi−maj =
1

2

√

6

(

µ ′
20 + µ

′
02 +

√

4µ ′2
11 +

(

µ ′
20 − µ

′
02

)2
)

. (4.5)

If the semi-major axis is larger than 1.5 times the width of a typical
vortex, the feature is treated as containing two vortices. The angle of
the ellipse can be calculated by

θ = arctan
(

2µ ′
11

µ ′
20 − µ

′
02

)

, (4.6)

and the vortex locations are set symmetrically on this axis, separated
by the semi-major axis. An example of this vortex detection is shown
in Fig. 4.2.

This pair detection is not particularly robust, as it is highly sensitive
to the size of the vortices, and presence of noise. Typically false neg-
atives occur when a vortex has a slightly lower contrast in the image
(and so the number of pixels in the Laplacian image above the binary
threshold is low) or when a vortex–antivortex pair forms a crescent
shape, which appears as a round blob. False positives arise when
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the noise in an image happens to highlight consecutive pixels, where
there is no obvious characteristic vortex hole in the image. The choice
of threshold for detecting a pair was chosen by trial and error to min-
imise the number of false positive and false negative detections when
compared with manual inspection of the image. Even with these best
parameters, each image was inspected and adjusted where obvious
errors had occurred.

Of the 1250 runs of the experiment (25 repeats of 10 hold times
after 5 different grids), 5% had vortex locations manually added but
none removed (an average of 1.3 vortices were added to each of these
shots), 19% had automatically detected vortex locations removed but
none added (an average of 1.3 vortices were removed from each of
these shots), 2% required minor adjustments to be made to vortex po-
sitions (vortices moved less than a vortex diameter, usually correcting
a vortex dipole pair detection), while 5% required vortices to be both
added and removed. A further 30% of shots were rejected entirely,
in cases where the vortices were too hard to distinguish (this can oc-
cur, for example, if the fringes in the imaging probe are particularly
strong, or if atoms become trapped outside the main nodal line of the
HG mode, obscuring the BEC), or the atom number was significantly
less than the average. After these rejections, the number of shots re-
tained for each grid sweep and hold time varied between a minimum
of 10 and a maximum of 25.

The placement of the pair of vortices within the ellipse is not ne-
cessarily the ideal location, but was chosen as the results appeared
sensible by eye. The double vortex features are not always ellipt-
ical either, with dipole pairs forming a characteristic ‘crescent’ shape.
The ellipse fitted to these crescents generally places the vortices in
sensible (by eye) positions, however more advanced image recogni-
tion could be developed building on this work to better detect these
shapes, and distinguish larger numbers of nearby vortices. This could
be implemented by decomposing each detected region into constitu-
ent ellipses [329] and by tuning the algorithm with numerical data
where the positions of the phase windings can be determined for
comparison.

4.2.1.2 Vortex sign detection

Knowing the location of each vortex, and the direction of flow along
the Bragg axis (from the differential signal), we determine the sign
of each vortex by finding the combination in a point vortex model
that best matches the Bragg signal. For every possible combination of
vortex signs (for Nv vortices there will be 2Nv combinations), we com-
pute a the ideal flow field that would be produced by point vortices
by (1.32), including the appropriate image vortices. We then project
this velocity field onto the axis of the Bragg beams, and compare the
sign of the field with the sign of the differential Bragg signal. We
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make this comparison only within 4 pixels (5µm) of each vortex, to
prevent noise in the far-field signal from dominating over the vor-
tex signals. The configuration with the highest number of matching
pixels is chosen as the matching vortex configuration.

This technique could be further refined by utilizing amplitude (as
well as direction) information, for example by first selecting out only
the velocity components that would be resonant for Bragg scatter-
ing, and then comparing the amplitudes of the constructed and ex-
perimental signals. However, we find that direction information is
sufficient to obtain a unique solution, and hence more sophisticated
analysis is unnecessary. In fact, as the most ambiguous cases are typ-
ically ones where a tightly bound dipole pair results in almost no
Bragg signal, using the amplitude of the signal would further reduce
the weighting in these cases, leading to smaller differences between
the two possible orientations.

Figure 4.3 shows examples of the computed velocity fields, com-
pared with the corresponding Bragg signals. We believe that the solu-
tion to the algorithm is generally unique, with one combination of
signs matching significantly better than any other. As an example,
Fig. 4.4 shows the number of matching pixels for each possible vor-
tex configuration for the same data shown in Fig. 4.2 and the first
row of Fig. 4.3, sorted from worst to best match. The distribution is
anti-symmetric, due to the symmetry of the space of possible vortex
signs—the worst match will have the opposite sign for every vortex
compared with the best match. Typically the best match appears to
stand out from other possible configurations, as changing the sign
of any one vortex will change the match by approximately the same
amount—for low vortex numbers distinct steps of Nv configurations
often appear.

Our algorithm was optimised by recognising that the parameter
space is symmetric: for every configuration of vortex signs, there is
a configuration of signs where every sign is flipped, which will have
a flow field in the opposite direction everywhere. We also split the
parameter space across multiple cores of a computer to compute the
merit functions in parallel. Even so, the algorithm is not viable for
vortex numbers much higher than 20, which take several hours to
compute, with the time doubling for each extra vortex added. We
chose to try every combination of vortices, despite being computa-
tionally expensive, as an algorithm that flipped individual vortices to
optimise the error signal was found to fail, as dipole pairs needed to
be flipped together to find the true global maximum. A more soph-
isticated (perhaps genetic) algorithm may be able to find the global
maximum more efficiently for large vortex numbers.
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Vortex location Projected flow direction
Free:

Cluster:

Vortex Antivortex

Dipole pair

Figure 4.3: Example vortex configurations.
(A–C) The locations of vortices are visible as dark spots in the optical dens-
ity images of the BEC. Here we show example distributions which are di-
pole dominated, random and cluster dominated, respectively. (D–F) The cor-
responding Bragg spectroscopy signals. (G–I) The computed velocity field
projected onto the line defined by the directions of the Bragg spectroscopy
laser beams. Colours in (D–I) indicate projections of the superfluid flow in
the direction indicated by the arrow. (J–L) The classification of the vortices
based on their signs and positions: vortices (antivortices) are indicated by
blue (green) points; clusters by lines of the same colour; dipoles are linked
by red lines. Streamlines of the computed flow are shown in grey.
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Figure 4.4: Determining the vortex sign configuration.
The vortex sign configuration is determined by maximising the number of
pixels (within a 4 pixel radius of a vortex) where the sign of the Bragg signal
matches the sign of the flow calculated by a point vortex model. In this case
(the same shot used in Figs. 4.2 and 4.3A), there are 14 vortices, with 214

possible sign configurations, and the signal has been compared on 606 pixels
(dashed line). The number of matching pixels are shown here, sorted from
worst to best match, resulting in a symmetric signal due to the symmetry of
configurations. The average number of matching pixels across all possible
configurations is 297 (dotted line), just below half of all pixels (solid line),
and the best match (red) was 487, corresponding to the configuration shown
in Fig. 4.3J.

4.3 analysing the vortex distribution

With the knowledge of the location and sign of each vortex in an ex-
periment, we wish to measure several observables, and investigate
the statistics of these over the repeated measurements of each com-
bination of grid size and hold time. For each measurement, we take
the mean value over the repeated measurements, with an uncertainty
given by the standard error of the mean (s.e.m.). The ‘early time’ val-
ues of the key observables are compared for each grid size in Fig. 4.5,
which give insight into the distributions produced by each grid. These
early time values are taken by averaging the results from the three
shortest hold times, 0.5 s, 1.0 s and 1.5 s. Similarly, ‘late time’ averages
over 4.0 s, 4.5 s and 5.0 s hold times are shown for the measurements,
to highlight their evolution. The dynamics of these observables will
be shown later for each grid in Figs. 4.10, 4.11, 4.12, 4.13 and 4.14.
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Figure 4.5: Vortices at positive and negative temperatures.
Vortex configuration data, time-averaged across early (t 6 1.5 s, dark points)
and late (t > 4 s, light points) hold times after the grids have passed through
the BEC, for each grid used. (A) The grid configurations used are shown one
third of the way through the 0.5 s sweep. White areas have high laser intens-
ity, repelling the atoms and move through the BEC in the directions indic-
ated by yellow arrows on the 7.9µm grid (see also Fig. 4.1A). (B) Classified
vortex populations of clustered (blue), dipole (red) and free (green) vortices.
(C) Correlation function C1. (D) Dipole moment, scaled by the trap radius
R⊥. (E) Inverse temperature of the vortices, β. Positive (negative) values are
scaled by the critical temperature |βBKT| (|βEBC|). (F) Incompressible kinetic
energy (in units of ρκ2/4π, where ρ is the superfluid density and κ = h/m

is the unit of circulation). Data in (B), (C), (D) and (F) are the mean ± s.e.m.

calculated from 10 to 25 measurements at each hold time, though most error
bars fall within the points plotted.
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4.3.1 Incompressible kinetic energy

Given that we have computed a reconstruction of the full velocity
field, it is straightforward to calculate the incompressible part of the
kinetic energy, and a spectrum of the incompressible kinetic energy
density (see §1.2.6, [107]). We generate an ideal density profile of the
condensate by estimating it as a uniform disc with a 2µm Gaussian
blur. We imprint vortices using the vortex core ansatz (1.30), with a
healing length ξ = 0.8µm. This is computed on a grid of 2048× 2048
pixels, corresponding to a spatial domain of 800µm× 800µm, ensur-
ing that we capture wavenumbers k = 2π/r ranging from beyond the
trap scale to below the healing length. The one-dimensional spectral
density is then given by the radially averaging the Fourier transform
of the density-weighted velocity field [107] into 1024 k bins and di-
viding by the number of vortices. We calculate the energies in units
of E0 = ρκ2/4π.

To generate spectra of the ensemble average over repeated experi-
ments for each grid, we average the energy per vortex spectra for each
hold time, which are shown for each grid in panel E of Figs. 4.10–4.14.
The averaged spectra typically show a k−3 scaling for wavenumbers
k > 1/ξ, which corresponds to the shape of the vortex core [107],
and so is not necessarily indicative of an enstrophy cascade. At lower
wavenumbers, down to the system size, the spectra appear to scale
as k−1, which is associated with the far-field flow of a vortex. In
the intermediate regime, the spectra curve to join the two power-law-
like regions. If an energy cascade is present, it would be expected
to present itself as k−5/3 scaling in this intermediate region. While
some of our spectra appear to briefly follow this power-law, the re-
gion does not typically span a large range of length scales, and is
hard to distinguish from a smooth curve between the high- and low-
wavenumber regions. As discussed in §1.3.2.1, it is hard to make any
interpretations of cascade processes from these spectra.

In some cases, we also see an increase in energy on the scale of the
trap size. For finer grids, this appears to grow dynamically, while it
is present from early hold times for coarser grids. A comparison of
the early-time spectra is shown in Fig. 4.6, where measurements from
the first three hold times (0.5 s, 1.0 s and 1.5 s) have been averaged for
each grid. The presence of this ‘hump’ is indicative of the presence of
large-scale flows, as produced by clusters of like-signed vortices [115].

To the low-wavenumber side of this energy maxima, the spectrum
is predicted to scale as k in a random configuration, but as k3 for a
clustered configuration due to the ‘hump’ [243]. While we see this
low-k scaling get steeper, from an approximate k scaling in the initial
conditions of the finest grids, it does not appear to exceed k2. This
less extreme scaling is possibly due to the low vortex numbers in
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Figure 4.6: Energy spectra for varying grid spacings.
Energy spectra (in units of ρκ2/4π) are averaged over early times for each
grid size. As the grid becomes larger, an increase in energy is observed on
scales on the order of the system size (2R⊥). This is consistent with the ob-
servations of Fig. 4.5, indicating the clustering of same-sign vortices. Dotted
vertical lines show k = π/RG for each grid used. Power-law scaling pro-
portional to k−1 (solid line), k−5/3 (dashed line) and k−3 (dotted line) are
shown as guides to the eye. These are associated with the far field of an isol-
ated vortex, the inertial range scaling expected in the presence of an energy
cascade, and the shape of the imprinted vortex cores, respectively.

the experiment in comparison to the numerical simulations, and the
small scale of the clusters formed.

The total incompressible kinetic energy can be calculated by integ-
rating the spectrum over k, or, alternatively, integrating the square
of the density-weighted velocity field (both were confirmed to give
the same result). We have also independently computed the incom-
pressible kinetic energy using the point vortex Hamiltonian (1.33). In
this case, a trap-dependent energy shift, ν(Nv), needs to be applied
to obtain the total energy [115]. Simulations performed by Andrew
showed that this offset should be between 2 to 4 times ρκ2/4πNv for
our system. When comparing to the numerically calculated energies,
we find that a value of ν ≈ 3.3 ρκ2/4πNv produces consistent values.

4.3.2 Vortex cluster detection

As it is difficult to interpret energy spectra in 2DQT, we also looked at
the statistical properties of the distribution of vortex signs, to make
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measures of the degree of clustering. We utilise the vortex classific-
ation algorithm in the form described by Valani et al. [56], outlined
in §1.3.2.2, to uniquely assign each vortex as belonging to a cluster,
a dipole pair, or as a free vortex. Using these classifications, we find
that as anticipated in §4.1, vortices generated by a fine grid are pre-
dominantly in dipole pairs, whereas vortices generated by a coarse
grid are predominantly clustered. Figure 4.5 shows that the relative
populations of dipole pairs decreases as the grid size increases, while
the proportion of clustered vortices increases. We also see a slight in-
crease in the clustered fraction over time for 6.0µm grid (Fig. 4.11),
which corresponds to the development of long-wavelength energy
seen in the spectra.

As a secondary measure of clustering, we calculate the nearest-
neighbour vortex correlation function C1, using Eq. (1.40). As dis-
cussed in §1.3.2.2, C1 gives positive values for configurations dom-
inated by clusters, and negative values for configurations dominated
by dipoles. Note that the point at which C1 crosses zero does not
quite coincide with infinite temperature for small vortex numbers,
instead crossing at slightly negative temperatures [234]. As seen in
Figs. 4.5,4.10–4.14, C1 follows a similar trend to the classified vortex
cluster fraction.

We also calculated the dipole moment (1.41) for each run of the
experiment. This was seen to follow a similar trend to the cluster
fraction and correlation function, with the notable exception that it
remains high when these other measures appear to break down at
the longest hold times for the finer grids. The dipole moment appears
to evolve toward a common value for all grids. It is likely that this is
due to the small final vortex numbers, where the large intervortex
spacings dominate this measurement.

4.3.3 Thermometry

To analyse the observed vortex distributions in terms of Onsager’s
thermodynamic framework, we first assign to them a vortex temper-
ature. Since the turbulent BEC is in a highly non-equilibrium state, the
vortex sub-system itself must be well isolated from the embedding
fluid (e. g., the phonon bath), and also be in a state of quasiequilib-
rium, for the temperature to be a valid observable. It is reasonable
to assume that this is the case here, since the timescale on which
vortices move (and redistribute themselves) is much shorter than the
timescales on which vortex–sound interactions become important.

In Ref. [242], vortices were assumed to be in a state of quasiequilib-
rium when the classified vortex populations (in particular the number
of clustered vortices, Nc) began following a power-law as a function
of the total number of vortices, i. e.,Nc ∝ Nα

v . In our data, such power-
law fits are less robust due to the comparably small range of vortex
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numbers. Instead, we have used a criterion based on comparing the
average distance moved by a vortex between each annihilation event.
The time taken for a vortex to move by the mean inter-vortex spacing,
〈l〉 = R⊥/

√
Nv, traveling at an average speed of vavg =  h/ (m 〈l〉) [248]

is given by t〈l〉 = 〈l〉 /vavg. When re-analyzing the data from Ref. [242],
the point at which the mean time between vortex–antivortex annihil-
ations, tann = 2/∂tNv, becomes longer than t〈l〉 always occurs shortly
after the onset of the power-law scaling. We calculate tann for our data
by taking the derivative of a cubic spline fit to the average Nv(t) data
for each grid. We find that t〈l〉 < tann for all grids and hold times, and
therefore conclude that the vortices are in a quasiequilibrium for all
data taken. As such, the vortices should always have a well-defined
temperature in our experimental configurations.

Given the quasiequilibrium condition is met, and we have assigned
vortex classifications, we can now calculate a vortex temperature [242].
Vortex thermometry curves pMC

c (β), pMC
d (β) and pMC

f (β) for the frac-
tional populations of vortices that are in clusters, in dipole pairs and
free, respectively, were generated by Andrew, using the same tech-
niques as in Ref. [242], but for systems with lower vortex numbers,
NMC

v = {4, 6, 8, 10, 14, 20}, shown in Fig. 4.7. We fit to the set of Monte
Carlo (MC) curves with NMC

v closest to the ensemble average Nv for
the experimental data. It should also be noted that the thermometry
curves are generated assuming no net polarisation. In any given shot,
we have polarisations of up to ±6, though the net polarisation aver-
aged across repeated experiments approaches zero.

To assign a temperature, we first smooth the temperature curves
using a Savitzky–Golay filter. We then take the root mean square dif-
ference,

Rc,d(β) =

√

∆c(β)2 +∆d(β)2 (4.7)

between the thermometry curves and the ensemble average measure-
ment of the cluster fraction, ∆c(β) = pMC

c (β) − pc, and dipole frac-
tion, ∆d(β) = pMC

d (β) − pd. The global minimum of (4.7) is taken to
correspond to the measured β for each configuration. Since pMC

c (β)

[pMC
d (β)] monotonically decreases [increases] with increasing β (i.e.

as β becomes more positive—note the inverted scale in our figures,
consistent with Ramsey’s convention [265]), we estimate the uncer-
tainty in the measurement of β by recalculating it with the extremes
of the uncertainties in pc and pd, calculating β± with p∓c and p±d ,
where superscripts represent the upper (+) and lower (−) bounds of
uncertainty (given by the s.e.m. for pc and pd). This uncertainty estim-
ate is shown graphically in Fig. 4.8. Fits to the thermometry curves
for each hold time after each grid are shown in Fig. 4.9. While we fit
to only the dipole and cluster fractions, the fraction of free vortices
generally lies close to the theoretical curve too. Note that we have
scaled all positive inverse temperatures by the critical temperature
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Figure 4.7: Thermometry curves.
Vortex thermometry curves pc(β) (blue), pd(β) (red) and pf(β) (green) are
shown for NMC

v = {4, 6, 8, 10, 14, 20} (lightest to darkest, corresponding to
Fig. 4.9). The positive (negative) temperature axis is scaled by the critical
temperature |βBKT| (|βEBC|). The curves are qualitatively similar, though the
crossing of the populations is seen to shift slightly to more negative temper-
atures for lower vortex number.
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Figure 4.8: Uncertainty in temperature measurements.
An example temperature fit, including uncertainty estimate, for the en-
semble averaged data for the 9.7µm grid at 1.5 s hold time. The mean cluster
and dipole fractions (blue and red dots respectively) are used to place the
data on the temperature axis by finding the best fit to the corresponding
thermometry curves. The uncertainty is then taken based on the s.e.m. of the
cluster and dipole populations (vertical error bars). The upper bound of β is
taken using the lower bound of the cluster fraction (light blue square) and
the upper bound of the dipole fraction (light red square), while the opposite
extremes are used to find the lower bound of β (light coloured diamonds).
While the free vortex fraction (green dot) is not used in fitting, the data
typically agrees well with the theoretical curve.
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|βBKT| (1.12) corresponding to the BKT transition, and negative temper-
atures by |βEBC| (1.13) corresponding to the EBC (supercondensation)
transition (see §1.1.2.4).

4.3.4 Vortex decay process

To investigate the vortex decay process, it would be ideal to fit the de-
cay ansatz (1.42), with the optional addition of the extra factor ofN1/2

due to a background velocity correction (as discussed in §1.3.2.4), to
the experimental data. Unfortunately there are no analytic solutions
to (1.42) when all one- to four-body terms are included, and the low
vortex numbers and temporal resolution of the data make it essen-
tially meaningless to take a numerical derivative of the decay curves.
However, generally one term in (1.42) will dominate at a given point
in time, and when plotted on log-log axes in Fig. 4.15 (also shown
in panel G of Figs. 4.10–4.14), the vortex decay curves do appear to
follow linear segments.

Lines in Fig. 4.15 show guides to the eye at the power-laws expected
for two- to four-body loss processes (black), as well as the correspond-
ing adjusted laws taking into account the background velocity field
of the vortices (grey). The initial decay rates appear to be consistent
with a three-body loss process for all but the coarsest grid, which ap-
pears to involve a four-body process. With the limited data it is hard
to determine if the velocity correction is required, though the 9.7µm
grid appears to be closer to this curve (if not four-body for t < 1 s).
The 4.2µm and 6.0µm grids transition to a slope consistent with a
two-body process with the velocity correction within the first second
(in fact, the earlier three-body rate is not particularly convincing, as
it only holds for 2 and 3 data points respectively), while the coarser
grids transition to this rate after around 2 s (though they could be
transitioning to a three-body curve without the velocity correction).

In the picture of NTFPs, the decay data are suggestive of an ini-
tial condition that has critically slowed dynamics, close to a NTFP,
followed by a shift to faster evolution, possibly toward thermal equi-
librium. To further investigate this, we inspected the dynamics of the
mean nearest-neighbour inter-vortex spacing, shown in panel H of
Figs. 4.10–4.14. The data for all grids appear to begin with a t1/5

scaling, which matches the anomalous fixed point found by Karl and
Gasenzer [248]. The vortices produced by finer grids transition to a
t1/2 scaling, associated with a Gaussian fixed point, while the vor-
tices produced by the coarse grid remain close to the anomalous fixed
point throughout the 5 s evolution.
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Figure 4.9: Temperature assignment.
Thermometry curves generated by MC simulations (solid lines) for NMC

v =

(A) 4, (B) 6, (C) 8, (D) 10, (E) 14 and (F) 20 vortices. The curves are used
to assign a temperature to the ensemble averaged vortex configuration at
each hold time after the sweep of each obstacle grid, by a least squares
fit of the mean fractional populations of clustered (blue) and dipole (red)
vortices to the corresponding thermometry curves with NMC

v closest to Nv.
Free vortices (green) are not used in the fit, but typically fall close to the MC

curve.
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Figure 4.10: 4.2µm grid dynamical evolution.
(A) Evolution of the classified vortex populations of clustered (blue), dipole
(red) and free (green) vortices over 5 s. (B) Nearest neighbour correlation
function. (C) Dipole moment, scaled by R⊥. (D) Inverse temperature of the
vortices, β. Note that the lower error bar on the t = 5 s data point extends
to β = 0.6. (E) Total incompressible kinetic energy per vortex (in units of
ρκ2/4π). (F) Incompressible kinetic energy spectrum (in units of ρκ2/4π).
For wavenumbers kξ > 1 (dotted grey vertical line) the spectrum appears
to scale as k−3 (dotted black line) corresponding to the shape of a vortex
core, while k−1 (solid black line) corresponds to the far field of an isolated
vortex [107]. A k−5/3 scaling (dashed black line), shown for comparison,
would be expected for an energy cascade in a driven classical system [34,
47]. Note that the power-laws are shown as a guide to the eye. The grid scale
k = π/RG is indicated by the dashed grey vertical line, where RG = 4.2µm is
the semi-major axis of the grid. The system size k = π/R⊥ is indicated by the
solid grey vertical line. The inset shows the difference ∆E(k)/Nv from the
0.5 s hold time spectrum. (G) Vortex number decay. Lines show t−2/5 (solid)
and t−1 (dotted) power-laws for reference. (H) Mean inter-vortex separation.
Lines show t1/5 (solid) and t1/2 (dotted) power-laws for reference. Points
in (A–C), (E), (G) and (H) are the mean ± s.e.m. Lines in (F) join the mean
k-binned values. The s.e.m. is on the order of the separation between lines.
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Figure 4.11: 6.0µm grid dynamical evolution.
The same measurements as Fig. 4.10, taken for RG = 6.0µm. Here the con-
figuration is seen to begin with an equal weighting of dipoles and clusters,
and evolves to a more clustered configuration.
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Figure 4.12: 7.9µm grid dynamical evolution.
The same measurements as Fig. 4.10, taken for RG = 7.9µm. In this case,
very little overall evolution occurs across the measurements, though the en-
ergy per vortex does increase slightly at low wavenumbers.
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Figure 4.13: 9.7µm grid dynamical evolution.
The same measurements as Fig. 4.10, taken for RG = 9.7µm. Here all meas-
urements show a slight decrease over time, indicating that damping effects
play a significant role.
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Figure 4.14: 11.5µm grid dynamical evolution.
The same measurements as Fig. 4.10, taken for RG = 11.5µm. This con-
figuration shows a decrease in energy per vortex and correlation function,
though the cluster fraction does not reduce significantly.



4.3 analysing the vortex distribution 131

100

101

N
v

A

100

101

B

100

101

N
v

C

100

101

D

100

Hold time (s)

101

N
v

E

100

Hold time (s)

101

F

Figure 4.15: Vortex number decay.
The mean vortex number plotted as a function of hold time for each grid size.
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4.4 discussion

Figure 4.5 shows that as the grid size is increased, the vortex distri-
bution swaps from being dominated by dipole pairs to clusters of
same-sign vortices. This increase in cluster fraction produces a corres-
ponding increase in the correlation function, temperature and energy
per vortex. The increase in energy is seen in Fig. 4.6 to correspond to
an increase in long-range (low k) energy.

The dynamics generally depend on the initial condition. For the
6.0µm grid (Fig. 4.11), the distribution begins with approximately
equal weightings of clusters, dipoles and free vortices, corresponding
to an inverse temperature close to zero [242]. During the hold time
after the grid sweep, the vortex distribution evolves to a state with a
higher clustered fraction (Fig. 4.11A), and to a negative temperature
(Fig. 4.11D). The correlation function evolves from negative to pos-
itive values (Fig. 4.11B), and the dipole moment grows (Fig. 4.11C).
The incompressible kinetic energy spectrum shows a buildup of en-
ergy at scales on the order of the system size (Fig. 4.11F), leading
to an increase in the mean energy per vortex over time (Fig. 4.11E).
These observations point towards the existence of an inverse energy
cascade in decaying turbulence, driving the system toward ordered
Onsager vortex states. Similar behaviour is observed for the finest
grid (4.2µm, Fig. 4.10), though the consistently lower vortex number
leads to higher fluctuations in the classified populations and hence
vortex temperature.

For both of these fine grids, at the latest hold times the cluster frac-
tion and correlation fraction both drop. We associate this with the
breakdown of evaporative heating, as the total number of dipoles re-
maining becomes too low. In the 6µm case, the vortex number does
not appear to change for the last three hold times, and so it is likely
that as these small remaining clusters lose energy to phonons and
thermal friction their configuration becomes slightly more dipole-like
than cluster-like (consider a configuration of two vortices and two an-
tivortices spread evenly across a BEC in two clusters—it would not
take a significant change in positions for the classification to swap
from a pair of clusters to a pair of dipoles). The observation that the
dipole moment and energy per vortex (including the height of the
low-wavenumber bump) do not change significantly in these cases
adds weight to this argument, as the large-scale structure of the flow
will not be impacted by these small vortex position changes whereas
the correlation function and classification algorithm will be. This pro-
cess is consistent with the system evolution being slowed as it ap-
proaches a NTFP, before rapidly moving to thermal equilibrium as the
remaining vortices in the system decay (see, e. g., Fig. 1 in Ref. [241]).

For the 7.9µm grid, very little dynamic evolution is observed. In
this case, around half the vortices are clustered. There is still a slight
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increase in energy per vortex and dipole moment over time, how-
ever this is not significant, compared with the finer grids. The 9.7µm
and 11.5µm grids show similar evolution to the 7.9µm, however in
these cases there is a decrease in energy per vortex. We believe that
evaporative heating is suppressed in such configurations due to the
small number of dipole pairs and free vortices available to annihil-
ate. As there is no significant evaporative heating in this regime, the
cooling effects of phonons and the thermal background dominate the
vortex thermodynamics. We expect that for higher vortex numbers,
with a similar cluster fraction, evaporative heating would in fact play
a significant role, as the correspondingly higher number of vortices
remaining in dipole pairs would allow for annihilations, as seen in
numerical studies [115, 129].

The vortex decay rates seen in Fig. 4.15 are somewhat surpris-
ing. Numerical results with finite temperature considerations tend
to show decay dominated by two-body losses [129, 246], though Bag-
galey and Barenghi [249] saw three-body loss at early times with dis-
sipation. It is worth noting, however, that the numerical results that
found only two-body loss rates were performed in a harmonic trap,
whereas the results that showed three-body loss were performed in
periodic boundary conditions, neither of which match the bounded
uniform trap used here. These numerical results were also performed
with a random initial condition. As it is likely that the vortex decay
process is determined by the vortex configuration, it is not appropri-
ate to compare these with the coarser grid data, which has a large
cluster fraction.

The vortex decay data could be interpreted as follows: For configur-
ations with many dipole pairs, at finite (BEC) temperatures, the decay
is predominantly due to two-body losses, with the background velo-
city field of the system’s vortices affecting the process. For configura-
tions with higher cluster fractions, the decay is slowed due to the spa-
tial separation of vortices and antivortices. The three-body rate seen
in this case may be, as suggested by Karl and Gasenzer [248], due to
the small number of dipole pairs in the system interacting with other
vortices as they travel around the clusters. For even higher cluster
fractions, the vortices and antivortices are further separated, and so
the decay is even slower. The apparent loss rate may actually be due
to this separation rather than a true four-body process. To highlight
this, in the highly clustered state formed by Gauthier et al. [259], in
which every vortex is a member of one of two giant clusters, there
was almost no vortex loss at all over 10 s. The speed-up of the loss in
our clustered data at later times may be due to the decay of the BEC,
increasing the level of damping in the system over time.

In summary, we have generated two-dimensional grid turbulence
using a range of grid barriers of different dimensions. The absolute
temperature of the resulting vortex distributions was measured to
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range from positive through to negative values, with evidence of
evaporative heating in their time evolution. Along with simultaneous
observations by Gauthier et al. [259], this is the first experimental ob-
servation of NATs in the context of Onsager’s statistical description of
two-dimensional turbulence.



5
C O N C L U S I O N S

5.1 summary

In this thesis, I have presented a brief introduction to the field of
quantum turbulence (QT), a description of an apparatus for perform-
ing 2DQT experiments, and the results of one such set of experiments.
Direct predictions of QT dynamics, as with the classical case, are
hampered by the non-linear nature of the fluid motion. A statist-
ical approach can be taken, however analysis of the kinetic energy
spectrum, which has proved extremely powerful in classical systems,
can be difficult in the quantum case. In 2DQT, due to the quantised
nature of vortices, statistics of their configuration, such as the degree
of clustering of same-sign vortices, or the decay rate of the total vortex
number, provide alternative measures of the dynamical processes.

Bose–Einstein condensates (BECs) are well suited to studying 2DQT,
as their confinement can readily be tuned such that vortex motion
in one dimension is effectively frozen out. In Chapter 2 I introduced
the Monash University ‘KRb’ BEC apparatus, which was constructed
during my candidature. This apparatus involves a vacuum chamber,
to isolate the BEC from room temperature atoms, and lasers and mag-
netic fields to cool, trap, manipulate and probe the atoms. We can
trap and cool both 87Rb and 41K, though the experiments presented
in this thesis used only 87Rb. Chapter 3 discussed the ways in which
we can provide the 2D confinement, and generate vortices in the res-
ulting planar BECs. Ultimately, we used a holographically generated
Hermite–Gaussian (HG) mode to provide the tight confinement, and
a digital micromirror device (DMD) to provide a hard-walled radial
trap. This DMD was also used to project moving obstacles onto the
trap to generate vortices.

In Chapter 4 I presented the results of experiments probing the de-
gree of vortex clustering as the geometry of the stirring obstacles was
changed. To allow the clustering to be probed, a recently developed
vortex sign detection technique was implemented. A ‘vortex temper-
ature’ was assigned to the resulting configurations, revealing dynam-
ical heating of the vortices, and configurations with negative absolute
temperatures (NATs). These results confirmed Onsager’s description
of vortex clustering, and the presence of NAT states in a confined 2D

vortex system.
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5.2 outlook

The experimental investigation of 2DQT is still in its infancy. Vortex
generation, manipulation, imaging and sign detection techniques are
constantly improving, enabling more complex and detailed experi-
ments. Here I will discuss ways in which I believe future experiments
could build on the work of this thesis.

Repeating the experiments of Chapter 4 with larger numbers of
vortices may enhance the effect of the evaporative heating mechan-
ism, providing further evidence for the role it plays in the turbulent
dynamics. To achieve this, higher density BECs may be required, to re-
duce the vortex core size, and larger trapping areas, to allow a higher
total vortex number. This in turn presents new challenges, balancing
imaging resolution with a wide field of view, to allow the vortex cores
to be imaged across the whole trap, as well as the Bragg-scattered
components for sign detection. As the trap size is increased, the time
taken for the scattered components to separate will also increase, and
may result in vortex cores expanding and overlapping, reducing the
ability to identify them. Higher densities also tend to result in colli-
sions between the scattered and unscattered components, distorting
both distributions. Perhaps with a careful choice of time-of-flight ex-
pansion, and higher order Bragg scattering, these could be overcome,
allowing the technique to be used in larger, denser traps. Transferring
the scattered atoms to a different internal state via a Raman transfer
could also allow their imaging without requiring spatial separation
of the components. Alternatively, the vortex gyroscope imaging tech-
nique may prove to be a more appropriate approach to vortex sign
detection in such conditions, or the development of high frame-rate
non-destructive imaging may allow vortex signs to be determined by
tracking their trajectories.

The use of a DMD to provide both a uniform radial potential, and
the generation of dynamic obstacles for vortex generation, coupled
with vortex sign detection techniques, opens the way for the invest-
igation of new trapping geometries and vortex generation and ma-
nipulation techniques. Novel stirring and pinning potentials could be
generated, allowing ‘designer’ vortex configurations. This may allow
highly repeatable initial vortex configurations to be generated on de-
mand. This will enable more detailed probing of vortex interactions,
and the generation of turbulent states with initial conditions that can
be matched in simulations.

One such possibility could be the study of the thermalisation pro-
cess of vortex temperatures. In a sufficiently large trap, it is conceiv-
able that a differential temperature could be generated, by preferen-
tially generating vortex dipole pairs in one region, and clusters in
another. Defining a ‘local’ temperature, based on the vortex config-
uration within a finite range, could help to answer questions such
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as what happens when negative temperature vortices interact with posit-

ive temperature vortices? Of course the expectation would be that the
resulting thermal state will have a temperature somewhere between
the two initial states, however, could the infinite temperatures separ-
ating the two impact the result? Evaporative heating in the dipole-
dominated side would also complicate the process, leading to a hot-
ter equilibrium temperature (it may not be clear when the system
has finished mixing between the hot and cold sides, as it would con-
tinue to evolve, though there may be characteristic timescales that
can be observed to identify the two processes). This would serve as
an interesting system to study heat conduction and particle transport
(of the vortices). Other interesting configurations to study could be
other ordered states beside dipole pairs and giant clusters—arrays of
clusters (or similarly, dipoles of multiquantum vortices) have been a
popular initial condition for numerical studies.

While it seems clear that uniform traps support vortex clustering,
and harmonic potentials inhibit it, there is a need for further exper-
imental probing of the transition between these two cases. Further-
more, the role of the boundary conditions could be investigated by
generating potentials with uniform interiors, surrounded by walls of
varying steepness and profile. The nature of vortex loss mechanisms
is an open question, and likely depends on both the geometry and the
degree of clustering or pairing of the vortices. With DMD-generated
potentials, both of these degrees of freedom could be systematically
varied to observe the resulting vortex number decay rates.

Another 2D vortex phenomena that is yet to be experimentally real-
ised is the EBC transition. While it is unlikely that the evaporative
heating of vortices will lead to the crossing of this transition from a
turbulent system, it should be possible to observe the crossing from
the cooling of a condensed initial condition. This could be achieved
by observing the intervortex spacing during the breakdown of a large
multiquantum vortex.

Beyond 2D, the world of 3DQT awaits. While liquid helium features
a more favourable range of length scales than atomic BECs, it is inter-
esting to probe the universality of turbulence by looking at different
types of systems. The tunability of BECs also allows more flexibility
than helium, and could, for example, allow an investigation of the
role of the vortex core size. In 3D, the detection of tangled vortex
cores will be the biggest challenge. Tomographic imaging of basic
vortex configurations has been demonstrated, using thin sheets of re-
pump light to allow imaging of particular planes of a BEC [168]. While
only relatively coarse slices have been used to date, these could be
narrowed, allowing greater resolution in this third dimension. This
could possibly be achieved beyond the scale of a focussed light sheet
(which would become limited by the Rayleigh range), e. g., by using
a two-photon process to pump atoms into the imaging state, with a
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pair of partially overlapped, appropriately shaped beams, or other
methods that are highly sensitive to a laser intensity (perhaps recent
work on super-resolved imaging of optical lattices [330, 331] could be
adapted to this geometry).

It may also be possible to extend this technique to resolve the in-
plane superfluid flow by implementing velocity-selective Bragg spec-
troscopy of the whole cloud, before rapidly imaging slices. Correl-
ating this one dimensional flow direction with vortex core locations
may be enough to uniquely determine the circulation of each vortex,
allowing full vortex circulation tomography. A second pair of Bragg
beams, in the imaging plane, orthogonal to the first, may help this
identification process by providing 2D flow direction information.

BECs also offer the ability to smoothly cross from 2D to 3D. This
raises the interesting question of when does the cascade process change
direction? The intermediate ‘thick’ 2D regime may have similarities to
atmospheric dynamics, where both forward and inverse cascades can
be seen depending on what length scale is being integrated over.

While the scalar condensates considered in this thesis have vortices
with quantised flow, the additional degrees of freedom of spinor BECs

facilitate more exotic features. Spin quantum turbulence has been
studied theoretically in spin-1 systems [182], and the first experi-
ments have recently been performed [332, 333]. For spin-2 systems,
non-Abelian vortices have been predicted, which could lead to non-
Abelian quantum turbulence [334, 335]. Experiments in these systems
would presumably be complex, requiring both state- and velocity-
selective imaging, preferably simultaneously, however with the con-
tinual improvements to imaging techniques this may be within the
realm of possibility.

Ultimately, the work in this thesis is a stepping stone toward these
more detailed experiments, which may lead to refinements of numer-
ical and analytic descriptions of QT. It is hoped that this may in turn
guide the description of the dynamical processes involved in classical
fluids, leading to a better understanding of one of the greatest un-
solved problems in classical physics, and the world around us.
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