
 

 

 

Framework for real time control 

and operational optimisation of 

stormwater biofilters 

 

 

 

 

 

Pengfei Shen 
 
 
 

 

 

 

A thesis submitted for the degree of  

Doctor of Philosophy  

 

Department of Civil Engineering 

Monash University  

March 2019



 

i 
 

Copyright notice 

 

 

© Pengfei Shen (2019).  

 

Under the Copyright Act 1968, this thesis must be used only under the normal 

conditions of scholarly fair dealing. In particular, no results or conclusions 

should be extracted from it, nor should it be copied or closely paraphrased in 

whole or in part without the written consent of the author. Properly written 

acknowledgement should be made for any assistance obtained from this thesis. 

 

 

I, Pengfei Shen, certify that I have made all reasonable efforts to secure 

copyright permissions for third-party content included in this thesis and have 

not knowingly added copyright content to my work without the owner’s 

permission. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

ii 
 

Abstract 

Stormwater is an alternative water resource for local communities. However, it 

needs to be treated before harvesting and reuse, as the faecal microbes 

contained in stormwater could pose considerable risks to human health. 

Stormwater biofilters are widely applied as a water sensitive urban design 

system for stormwater treatment, but their performance is inconsistent, 

although much effort has been placed in optimising their design features. The 

operational conditions in biofilters (e.g., retention time and inflow volume) are 

also crucial and are a major driver of the net export of faecal organisms which 

is often observed. To achieve operational optimisation, Real time control (RTC) 

is a potential technique, and this study aims to develop a framework for RTC 

and the operational optimisation of biofilters. 

 

A process-based model was first developed to simulate long-term microbial 

removal in stormwater biofilters. The model employs one-dimensional 

advection-dispersion equations to represent microbial transport and fate under 

different design and operational conditions. By testing the model with the 

laboratory data collected from five biofilter configurations, the prediction 

showed good agreement with observation.  

 

In the second part of this study, the developed model was validated with the 

results of extensive laboratory experiments and field tests. Although the lab-

scale and field-scale systems used for validation have various designs and 

operational conditions, the model could consistently provide good prediction of 

faecal microbial removal. More importantly, this model is highly transferable, 

providing accurate prediction with generally low uncertainty when calibrated 

with one dataset (e.g., a laboratory dataset) and applied to another independent 

dataset (e.g., a field dataset).  

 

In the third part, this study provides the first evidence that RTC of stormwater 

biofilters can regulate the operational characteristics that result in poor 

microbial removal. Two RTC strategies were developed and tested via 
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laboratory experiments, and they were both found to be effective in reducing 

the risks posed by faecal microbes. However, competing needs were found in 

stormwater harvesting and reuse, including the harvested water volume, 

harvested water quality, and environmental protection.  

 

As such, additional RTC strategies and scenarios were explored in the last part 

of this study to balance the competing needs. In this part, a new model, BioRTC, 

was developed for RTC simulation by modifying the model introduced in the 

first part of this study. It was found that BioRTC could reflect the outcome of 

RTC implementation well when being calibrated with the data collected in the 

third part of this study. With the help of this modelling tool, two additional RTC 

strategies were conceptualised and assessed in modelling scenarios, and both 

were found to be effective in balancing the competing needs in stormwater 

harvesting and reuse.  

 

This study presents the first stepping stone toward RTC of stormwater biofilters, 

demonstrating that RTC can help to deliver safe water for harvesting and reuse, 

and for active recreational uses. Moreover, an efficient modelling framework 

tool, BioRTC, was developed for stormwater biofiltration RTC strategy 

evaluation and selection, enabling a broad exploration in this new field. 
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1.1   Introduction  

Stormwater runoff may cause flooding, degradation of urban streams, and 

public health risks (Wong, 2006). However, it could serve as an alternative 

water resource, especially considering that more than half of the high-quality 

water supply is used only for lower quality purposes (Wood et al., 2002). 

Importantly, the amount of stormwater runoff from Australian cities is about 

equal to the amount of drinking water use (Wood et al., 2002). However, the 

wide range of pollutants contained in stormwater impede its harvesting and 

reuse (Fletcher et al., 2008). In particular, faecal microbes are a major concern, 

as they pose health risks when contacting with human bodies (NHMRC, 2009). 

To control the risks caused by faecal microbes, stormwater needs to be treated 

before harvesting and reuse. 

 

To treat faecal microbes and other pollutants in stormwater runoff, water 

sensitive urban design (WSUD) systems have been widely employed. Among 

them, stormwater biofilters are especially promising and have been commonly 

adopted (FAWB, 2009). Stormwater biofilters are soil-plant based systems with 

enhanced infiltration and evapotranspiration (FAWB, 2009). The major 

processes for microbial removal in stormwater biofilters include adsorption, 

desorption, straining, and die-off (Stevik et al., 2004). These processes are also 

governed by various design and operational factors, such as plant type, media 

type, temperature, and moisture content (Chandrasena et al., 2014a; Ferguson 

et al., 2003; Stevik et al., 2004). However, the microbial removal rate of 

stormwater biofilters under different conditions is inconsistent (Chandrasena et 

al., 2014b; Li et al., 2012; Zhang et al., 2010; Zhang et al., 2011).  

 

To enhance the microbial removal in stormwater biofilters, much effort has been 

placed in optimising the design of biofilters, such as testing the influences of 

different plants, various filter media, and the existence of submerged zone 

(Chandrasena et al., 2014b; Li et al., 2016; Li et al., 2012). Unfortunately, the 

optimisation of design could not mitigate impact of some extreme weather 

conditions, such as the events with a large amount of inflow volume, long 

antecedent dry period, or short antecedent dry period.  
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Importantly, very little has been done to control the operational conditions that 

are experienced by biofilters (e.g., infiltration rate and retention time), even 

though they are found to govern the microbial removal in stormwater biofilters 

(Chandrasena et al., 2014a). Moreover, operational optimisation would be a 

solution to enable biofilters being adjustable to various weather conditions. 

However, the operational conditions of biofilters, unlike the design, are difficult 

to control, as stormwater biofilters have been traditionally designed as passive 

treatment systems. 

 

Real time control (RTC) is a potential technology to make stormwater biofilters 

“active” for the optimisation of their performance by controlling operational 

conditions. The general concept of RTC is monitoring of the functioning of a 

system in real time and using this data to optimise performance through the 

control of the certain aspects of the system (Schütze et al., 2004). RTC has 

been widely used and proved to be effective in other studies in environmental 

field, such as flooding control, capacity enlargement of sewer systems, and 

wastewater treatment optimisation (Hsu et al., 2015; Leon et al., 2014; Schilling 

et al., 1996; Schütze et al., 2004). However, no publication have been found on 

the study of applying RTC in stormwater biofilters. Therefore, it is necessary to 

develop a framework for RTC of stormwater biofilters. 

 

1.2   Overall aim and tasks 

The overall aim of this study is to develop a framework for RTC and operational 

optimisation of stormwater biofilters, in order to provide better outflow quality of 

biofilters and reduce the risks posed by faecal microbes in stormwater 

harvesting and reuse. To achieve the aim of this study, three tasks are specified 

and need to be fulfilled:  

(1) Develop and validate a process-based model for the prediction of 

microbial removal in stormwater biofilters; 

(2) Develop RTC strategies to optimise microbial removal in biofilters for 

stormwater harvesting and reuse, and test the developed strategies with 

laboratory column studies; 
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(3) Create a new model for RTC by modifying the developed model, validate 

the new model using the data collected from RTC experiments, and 

explore additional RTC strategies and scenarios. 

 

1.3   Scope of the research 

In this study, the major purpose of adopting RTC is to optimise the removal of 

microbial concentration in stormwater biofilters’ outflow, as faecal microbes are 

considered as one of the most risky pollutants in stormwater harvesting and 

reuse. Although other pollutants that contained in stormwater runoff, such as 

suspended solids, nitrogen and phosphorous, have also been tested during 

some events in laboratory experiments, the removal effects on these pollutants 

are not the primary criteria in RTC evaluation and selection in this study.  

 

Various types of faecal microbes have been detected in stormwater runoff; 

however, Escherichia coli (E. coli), is selected as the indicator of faecal 

microbes in this study. The reasons include: (1) E. coli is one of the most widely 

used indicators and has been selected as a target pollutant in various water 

quality guidelines; and (2) the governing processes for E. coli removal (e.g., 

adsorption, desorption, straining and die-off) are also applicable to other types 

of microbes (although the importance of each individual process may vary for 

different types of microbes), therefore, the optimisation of E. coli removal is 

assumed to be effective for the removal other microbes. 

 

The study integrates both modelling and experiments. For the experiments part, 

only laboratory-scale column studies are conducted, as compared to field tests, 

(a) the operational conditions in the laboratory are much easier to control, (b) 

the implementation of RTC in the laboratory is considerably more repeatable, 

and (c) the monitoring uncertainty in the laboratory is much lower.  

 

The implementation of one of the RTC strategies developed in this study 

(named as Harvesting-Environment RTC) incorporates rainfall forecast 

information; however, since the historical data of rainfall prediction are not 

available, this study only focuses on the “pure” benefits of RTC by assuming 
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that only perfect rainfall forecast information is obtained; the extra uncertainties 

caused by inaccurate rainfall forecasting are out of the scope of this study, but 

are expected to be investigated in the future work.  

 

1.4   Outline of the thesis  

The thesis will consist of seven chapters. An overview of each chapter is 

provided below. 

 

Chapter 1: Introduction 

This chapter introduces the background and purpose of this study, overall 

research aim and objectives, scope of the research, and culminates in providing 

the outline of the thesis. 

 

Chapter 2: Literature review 

A detailed review of literature on the research topic will form the content of this 

chapter. The major structure of this chapter is:  

1. Introduction 

2. Microorganisms in stormwater runoff 

3. Water sensitive urban design systems for stormwater treatment  

4. Governing processes and factors for microbial removal in stormwater 

biofilters  

5. Real time control of stormwater biofilters 

6. Predictive models for microbial removal in stormwater biofilters 

7. Conclusions of literature review and key knowledge gaps 

8. Research questions and hypotheses 

9. References 

 

Chapter 3: Development and testing of stormwater biofilter treatment 

model for faecal microorganisms  

This chapter presents the development of a model for the prediction of microbial 

removal in stormwater biofilters. The equations and parameters of this model 

are described in detail. This chapter also explained the model testing 

procedure, including how the experimental data that used for calibration are 
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collected, as well as the calibration, parameter selection, and sensitivity 

analysis processes. This chapter also reports the results of model validation 

attempts when using the same data sets for model development.  

 

Chapter 4: Model validation, parameter transferability analysis, and 

uncertainty analysis  

Since in Chapter 3, the model has not been successfully validated due to data 

paucity and more data are suggested to be included in sensitivity analysis and 

model validation, this chapter presents the process of a more comprehensive 

validation of the model that developed in Chapter 3. In this chapter, additional 

two data sets, one is collected from laboratory experiments and the other is 

collected from field testing, are utilised to validate the model. Calibration and 

sensitivity analysis results are presented in this chapter. In addition, this chapter 

includes parameter transferability and prediction uncertainty analyses, to 

assess the performance of adopting the parameter sets calibrated in one 

system for the prediction of another system with a similar design. 

 

Chapter 5: Development and laboratory testing of real time control 

strategies for stormwater biofilters  

This chapter introduces the development of two RTC strategies for stormwater 

biofilters, Harvesting RTC and Harvesting-Environment RTC. The rules and 

control processes of each strategy are explained in detail. In addition, this 

chapter reports the set-up, conduction process, and the results of the laboratory 

column experiments for the testing of these two RTC strategies, to reveal the 

benefits of each strategy. 

 

Chapter 6: Model modification and validation for real time control, and 

further exploration of control strategies 

The chapter presents the study of modifying the model developed in Chapter 3 

for RTC simulation, and validating the modified model with the data collected 

from the laboratory experiments that presented in Chapter 5, to evaluate the 

feasibility of employ the model for RTC assessment and selection. In addition, 

to balance the competing needs in stormwater harvesting and reuse, two 

additional RTC strategies are conceptualised based on the two strategies 
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developed and tested in Chapter 5. Moreover, this chapter shows the results of 

simulating the two newly conceptualised strategies and the two previously 

developed strategies in the scenarios that have a modelled representation of 

reality as inputs.  

 

Chapter 7: Conclusions and future work 

This chapter summarises the key findings in modelling and experiments. 

Conclusions and practical implications, and strengths and limitations of this 

study are highlighted. Recommendations for future work are also provided.  
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2.1   Introduction 

This chapter starts with introducing different types of microorganisms in 

stormwater runoff and the indicators of them, with a connection to the 

corresponding treatment requirements in guidelines in Australia. Afterwards, 

the design and performance of different water sensitive urban design (WSUD) 

systems in stormwater treatment are analysed, with a special focus on 

stormwater biofilters. These are followed by the description of governing 

processes and factors for microbial removal in stormwater biofilters. The next 

section of this chapter introduces the concept of real time control (RTC), and 

the benefits and lessons of implementing RTC in other areas of environmental 

field, with a summary of the control categorisation. Based these discussions, a 

framework for the application of RTC in stormwater biofilters is proposed, with 

the key points in implementation being outlined. Since predictive models serve 

as the fundamental part of RTC, current models for microbial removal in 

stormwater biofilters are also discussed, highlighted the necessity of 

developing a microbial removal model to achieve RTC in stormwater biofilters. 

After summarising the conclusions of literature review and key knowledge gaps, 

this chapter culminates with research questions and hypotheses. 

 

2.2   Microorganisms in stormwater runoff 

Numerous types of contaminants have been detected in urban stormwater 

runoff, including nitrogen, phosphorous, heavy metals, suspended solids, 

micropollutants, and microorganisms (also named as microbes) (Duncan, 

1999; Makepeace et al., 1995). Among them, microorganisms are especially 

risky to human health (NHMRC, 2004). In particular, faecal microorganisms, 

which are sourced from the faeces of animals and humans, are considered as 

the cause of waterborne diseases and present a higher degree of risk to end 

uses compared to non-faecal microorganisms (i.e., the microorganisms are not 

from the intestines of animals) (Meng et al., 2018; Murphy et al., 2017). As such, 

in this study, the target pollutant is faecal microorganisms. 

 

There are three main types of microorganisms: bacteria, protozoa and viruses. 

Bacteria are single-celled organisms with a number of shapes, which can exist 
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either as a free phase or associated with other particles; protozoa are also 

single-celled but generally have a larger size (2 ~ 100 m) compared to 

bacteria; viruses can only reproduce within their host and have the smallest 

size (0.02 ~ 0.09 m) among the three types (Perdek et al., 2003). Table 2.1 

lists the typical microorganisms in stormwater with their negative effects to 

health and reported concentrations. 

 

Table 2.1 Typical microorganisms in stormwater with their negative effects to 

health and reported concentrations (adapted from Chandrasena (2014)). 

 Microorganism Negative effect to health Reported concentration 

in stormwater (cells/L) 

Bacteria Campylobacter  Campylobacteriosis (1)  10 ~ 7.0 × 102 (4) 

 Escherichia coli 

(OH157:H7)  

Gastroenteritis (1)  1.2 × 102 ~ 1.3 × 106 (2) 

 Klebsiella  Infections and 

pneumonia(2)  

4.0 × 104 ~ 1.9 × 106 (3) 

 Psedomonas aeruginosa  Eye irritations (2), ear 

and skin rashes (3)  

10 ~ 1.2 × 104 (3,5) 

 Salmonella  Salmonellosis (1)  1.7 × 10-1 ~ 4.5 × 105 

(3,6) 

 Staphylococcus aureus  Skin rashes, boils, 

impetigo (3)  

10 ~ 1.8×105 (3,5) 

Protozoa Cryptosporidium  Cryptosporiduosis (1)  8.0 × 10-2 ~ 2.9 × 10-1 (7) 

 Giardia  Giardiasis (1)  8.0 × 10-2 ~ 3.0 × 10-1 (7) 

Virus Adenovirus  Respiratory disease, 

gastroenteritis (1)  

< 1.0 × 10-1 (4) 

 Coxsackie virus B  Gastroenteritis (1)  18 (3) 

 Enterovirus  Gastroenteritis, heart 

anomalies, meningitis (1)  

6.9 × 10-1 ~ 28 (3,6) 

 Reovirus  Gastroenteritis (1)  61 (3) 

Sources: (1)Arnone and Walling (2007); (2)NHMRC (2004); (3)Makepeace et al. 

(1995); (4)NHMRC (2009); (5)WERF (2007); (6)Oliveri et al. (1977); (7) Ecowise 

(2010). 

 

2.2.1   Indicator microorganisms  

Considering the large number of microorganism types (Duncan, 1999; 

Makepeace et al., 1995), the relatively low concentration of each 
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microorganism type (Duncan, 1999; Makepeace et al., 1995), and the high cost 

for measurement (Brookes et al., 2005; Horan, 2003), detecting all the types of 

microbes in stormwater is unpractical. Therefore, indicators for microorganisms 

are normally used to indicate the level of faecal contamination in water (Brookes 

et al., 2005; Horan, 2003). An ideal indicator should: (1) present in water when 

microorganisms are present, (2) present with a higher number compared to 

microorganisms, (3) have similar persistence to environmental conditions with 

microorganisms, and (4) multiply in environment (Cizek et al., 2008; Horan, 

2003; Schijven and Hassanizadeh, 2000).  

 

It is noted that, no indicator microorganism could have all these properties and 

be considered as “ideal”, and each indicator microorganism may have both 

advantages and disadvantages. Therefore, different indicator microorganisms 

were selected in different studies. The most widely used ones include the 

coliform group, such as Escherichia coli, enterococci, Bacteroides spp., 

Bifidobacterium spp., Clostridium perfringens and Bacteriophages. (Brookes et 

al., 2005; Horan, 2003; NHMRC, 2004; Schijven and Hassanizadeh, 2000). 

Especially, E. coli (Escherichia coli) that from the coliform group, is widely 

selected as an indicator for faecal microorganism due to several advantageous 

characteristics: exclusively associated with a faecal source, inability to multiply 

in different environments, and easy and cheap to be detected with enzymatic 

methods (Edberg et al., 2000). Table 2.2 lists some common indicator 

microorganisms and their concentrations in stormwater. 
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Table 2.2 Types and concentrations of indicator microorganisms reported in 

stormwater (adopted from Chandrasena (2014)). 

 Indicator Reported concentration in stormwater (cells/L) 

Bacteria Total coliforms 7.0 × 10-1 ~ 1.8 × 108 (1) 

 Faecal coliforms 2.0 ~ 3.0 × 107 (1, 2) 

 E. coli 1.0 ~ 1.4 × 106 (3) 

 Faecal Streptococci 30 ~ 3.8×107 (1,4) 

 enterococci 1.0 × 103  ~ 3.4 × 106 (1, 2) 

 Clostridium perfringens 1.7 × 10-1 ~ 4.5 × 105 (3, 6) 

Virus Somatic coliphage 10 ~ 5.5 × 105 (4,5) 

 FRNA coliphage 10 ~ 2.1 × 103 (4) 

Sources: (1) Makepeace et al. (1995); (2) WERF (2007); (3) Ecowise (2010); (4) Oliveri et al. 

(1977); (5) NHMRC (2009);(6) Davies et al. (2003). 

 

2.2.2   Treatment Requirements in Australia  

To reduce the risks of pathogens posed on humans, Australia established 

several guidelines for microorganisms control in stormwater harvesting, 

drinking water and recreational water bodies (Table 2.3). These guidelines all 

base on indicator microorganisms, and E. coli is the most commonly used 

indicator for stormwater harvesting. 
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Table 2.3 Requirements for microbial concentrations in water in Australian 

guidelines (adopted from Chandrasena (2014)). 

Guideline End use Requirement 

Australian guidelines 

for stormwater 

harvesting and reuse 

(NHMRC, 2009) 

Municipal use, with unrestricted 

access (open spaces, sports 

grounds, golf courses, and non-

potable construction uses) or 

irrigation of non-food crops 

 

< 10 E. coli/100 mL 

Dual reticulation with indoor or 

outdoor use or irrigation of 

commercial food crops 

< 1 E. coli/100 mL 

Australian Drinking 

Water Guidelines 

(NHMRC, 2004) 

Drinking water (potable water) no E. coli detected 

Australian Guidelines 

for Managing Risks in 

Recreational Water 

(NHMRC, 2008) 

Primary contact (swimming, 

bathing and other direct water-

contact sports) 

 

< 150 faecal coliform/100 mL 

< 35 enterococci/100 mL 

0 Pathogenic free-living 

protozoan 

Secondary contact (boating and 

fishing) 

< 1000 faecal coliform/100 mL 

< 230 enterococci/100 m 

 

By comparing the microbial concentrations report in stormwater with the 

treatment requirements in guidelines, it can be concluded that the treatment of 

stormwater for microbial removal is essential. 

 

2.3   Water sensitive urban design systems for stormwater 

treatment 

To fulfil the requirements in aforementioned guidelines that listed in Section 

2.2.2, several types of water sensitive urban design (WSUD) systems have 

been developed. WSUD is a concept that integrates holistic management of 

urban water cycle (i.e., potable water, wastewater, and stormwater) into design, 

and one objective is to treat urban stormwater to meet the water quality 

requirements for harvesting and waterbody protection (Wong, 2006).  
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There are various types of end uses of WSUD systems (Figure 2.1) (Hatt et al., 

2006). In Figure 2.1, “other outdoor use” includes domestic use like car washing 

and window washing, whilst “other use” includes industrial reuse, commercial 

bus washing, and groundwater recharge. Figure 2.1 shows that, irrigation of 

public spaces and gardens is the most common type of end use (44 %), and 72 

% stormwater is used for irrigation, toilet flushing, and other outdoor uses. 

 

Figure 2.1 Stormwater end use types and the volume percentage of each use 

(adopted from Hatt et al. (2006)). 

 

2.3.1   WSUD systems in faecal microbial removal 

To meet the requirements for the end uses listed in Figure 2.1, different types 

of WSUD systems have been adopted, including stormwater biofilters, 

wetlands, vegetated swales, and stormwater retention ponds.  

 

Stormwater biofilters, also known as biorentention systems or rain gardens, are 

one of the most widely used WSUD systems in Australia and other countries 

for stormwater treatment (FAWB, 2009). Stormwater biofilters are soil-plant, 

natural based systems with the enhancement of infiltration and 

evapotranspiration of stormwater. Therefore, they are low-energy treatment 

systems with the potential to provide both water quantity and quality benefits 

(FAWB, 2009). The treatment of stormwater in biofilters is a combination of 

physical, (e.g. mechanical straining), chemical (e.g. adsorption) and biological 

(e.g. plant uptake) processes (FAWB, 2009). Biofilters have been proved to be 

effective in the removal of various pollutants: e.g., 57 ~ 93 % for total suspended 

solids (TSS), 30 ~ 55 % total nitrogen (TN) and 5 ~ 80 % for total phosphorus 

(TP) (CWSC, 2010). For microbial removal, stormwater biofilters are often 



Chapter 3. Development and testing of stormwater biofilter treatment model for faecal microorganisms 

16 
 

effective in laboratory studies, as the removal rate for E. coli ranged from 73% 

to 99.9% (Chandrasena et al., 2014b; Li et al., 2012; Zhang et al., 2010; Zhang 

et al., 2011). However, in field studies, the E. coli removal rate was found to be 

far more variable - it could range from 99% to even leaching (< 0) under 

challenging operational conditions (Chandrasena et al., 2016; Hathaway et al., 

2011; Hathaway et al., 2009; Zinger et al., 2011). Further examples existed for 

other reference pathogens such as Campylobacter spp.: e.g., Chandrasena et 

al. (2016) reported its removal rate ranged from -90.5 % to 99.1 %. 

 

Wetlands are also utilised for stormwater treatment as a WUSD system. It is 

operated either as standalone facilities or in the combination with other WSUD 

systems (e.g., stormwater retention ponds). Wetlands have been reported to 

be effective in promoting oxygen recovery, and trapping sediment, nutrients, 

bacteria, and toxins (Malaviya and Singh, 2012). The major elements of a 

wetland include pre-treatment, inlet pond, ephemeral zone, and wetland zone; 

stormwater could be treated in these elements with a combination of 

sedimentation, filtration, and biological nutrient uptake. The key factors for 

treatment effects include wetland shape, storage volume/residence time, soil 

type, species type and number of aquatic plants (Kadlec and Wallace, 2008). 

Studies suggested that the removal rate of TSS varies between 58 ~ 85%; the 

removal of TN is 16 ~ 30% and the removal of TP is 46 ~ 60% (Carleton et al., 

2000; Wadzuk et al., 2010). In addition, the microbial removal efficiency of 

wetlands reported in previous studies varied significantly: take E. coli removal 

for example, Díaz et al. (2010) and Stenstrom and Carlander (2001) 

respectively indicated a removal efficiency of 80 ~ 95% and 99%. However, 

some other studies even found an increase of E. coli concentration after 

treatment (Hathaway and Hunt, 2010).  

 

Vegetated swales are open, grassed surfaces that aim to reduce runoff velocity 

and retain coarse sediments (Hatt et al., 2004). Vegetated swales collect and 

treat stormwater by filtration; they can also serve as a pre-treatment process 

for other WSUD technologies. They are effective in removal of suspended 

solids, but the performance in nutrients and heavy metals removal is lower and 

unstable (Fletcher et al., 2007). In particular, some studies reported that a 
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consistent increase of pathogen concentrations was observed, even when the 

access of faecal bacteria to the swales was limited (CWSC, 2010). 

 

Stormwater retention ponds are designed for stormwater runoff interception 

before runoff reaches water bodies. They are usually deeper than 1.5 m and 

treat stormwater through sedimentation, detention, and nutrients uptake from 

the vegetation along the margin (Wong, 2006). According to some previous 

studies, when the hydraulic loading rate is 0.02 ~ 0.1 m/h, the removals of TSS, 

TN and TP are 47 ~ 80%, 22 ~ 25% and 19 ~ 51%, respectively (Mallin et al., 

2002). In stormwater retention ponds, sedimentation and re-suspension mare 

the major processes for microbial removal (Pachepsky and Shelton, 2011). 

According to Krometis et al. (2009), the removal rates of E. coli in two 

stormwater retention ponds were 0% and 48% respectively; however, in some 

cases, an increase of pathogen indicators concentration in ponds has been 

reported (Davies and Bavor, 2000). 

 

Previous sections discussed the performance of different types of WSUD 

systems in faecal microbial removal. A summary of indicator microbial removal 

rates in WSUD systems is provided in Table 2.4: 
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Table 2.4 Summary of indicator microbial removal rates in WSUD systems. 

WSUD system Reference 

Indicator microorganism 

E. coli Faecal coliform 

Removal rate (%) Removal rate (%) 

Field-scale biofilters  Hathaway et al. 

(2009) 
92 89 

Hathaway et al. 

(2011) 
-119 ~ 70 -119 ~ 70 

Zinger et al. (2011) 96 ~ 99.98 99.26 ~ 99.98 

Chandrasena et al. 

(2016) 
60.19 ~ 98.55  

Laboratory-scale 

biofilters 

Zhang et al. (2010) 84  

Zhang et al. (2011) 81.1 ~ 99.9  

Li et al. (2012) 94.7 ~ 99.7  

Chandrasena et al. 

(2014b) 
> 73  

Wetlands Díaz et al. (2010) -554 ~ 95  

Stenstrom and 

Carlander (2001) 
99  

Hathaway et al. 

(2009) 
33 ~ 96  

Vegetated swales CWSC (2010)  < 0  

Stormwater 

retention ponds 

Krometis et al. 

(2009) 
0 and 48  

Davies and Bavor 

(2000) 
< 0  

 

Table 2.4 indicates that, compared to other WSUD systems, stormwater 

biofilters are the most promising system for stable in faecal microorganism 

removal, as they could achieve higher and more stable performance than other 

systems (e.g., wetlands). Therefore, the following literature reviews will mainly 

focus on stormwater biofilters. However, considering the inconsistency in 

microbial removal under field conditions, and the strict requirements in 

Australian guidelines (see Section 2.2.2), the optimisation of stormwater 

biofilters is necessary. To have a better understanding of how biofilters perform 

in microbial removal, the next section will discuss the major processes and 

governing factors of microbial removal in stormwater biofilters.  
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2.3.2   Stormwater biofilters 

A typical biofilter (Figure 2.2) consists of filter media with a generally high sand 

content, a gravel layer at the bottom, and a sand transition layer in between 

(FAWB, 2009). Plants are cultivated on the top of filter media, and a small 

portion of water is normally kept in the gravel layer by elevating the outflow pipe 

to create a submerged zone (SZ). 

 

Figure 2.2 Schematic of typical stormwater biofilters with (the right figure) and 

without (the left figure) submerged zone (adopted from FAWB (2009)). 

 

The importance of SZ was revealed by many studies, and the inclusion of SZ 

is highly recommended under any possible situation (Chandrasena et al., 

2014b; FAWB, 2009). There are at least three functions of SZ: (1) the existence 

of SZ could decrease hydraulic head to increase retention times; under the 

same hydraulic conductivity, a biofilter column without SZ have a 60% higher 

infiltration rate compared to that with SZ; therefore, the biofilters with SZ could 

provide more retention time and accordingly lead to better removal performance 

(Chandrasena et al., 2014b); (2) SZ water after dry days is normally with high 

quality and could make contributions to dilute the final composite outflow; SZ 

could retain water from previous events; this water has a high retention time as 

it stays in SZ for the whole dry period between rainfall events; therefore, SZ 

water will experience enhanced removal by different processes; as a result, the 

retained water could be of low concentration of pollutants; during the 

subsequent wet weather events, this retained water could contribute to a lower 

composite pollutant concentration by diluting the newly treated water (which 

has shorter retention time) (Chandrasena et al., 2014b); and (3) the water 
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retained in SZ could keep plants survive during extended dry weather periods 

by providing sufficient water for plant uptake (FAWB, 2009; Payne et al., 2014). 

 

Biofilters have been employed for the removal of total suspended solids, 

nitrogen, phosphorous, heavy metals, microorganisms, and micropollutants 

(Bratieres et al., 2008; Chandrasena et al., 2017; Chandrasena et al., 2016; 

Feng et al., 2012; Fowdar et al., 2017; Hathaway et al., 2011; Hatt et al., 2007; 

Li et al., 2016). It should be noted that, for different target pollutants, the design 

of a certain part of biofilters might be different. The key design features of 

stormwater biofilters are listed in Table 2.5.  
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Table 2.5 Key design features of stormwater biofilters (adopted from FAWB 

(2009) and Chandrasena (2014)). 

Design Criteria 

Filter media  

 Composition High sand content with < 3 % clay and silt fraction to maintain 

structural stability and permeability (FAWB, 2009). 

Total nitrogen < 1000 mg/kg, PO4-3 < 80 mg/kg for high to avoid 

leaching of nitrogen and phosphorous from the media (FAWB, 

2009). 

Higher organic content for heavy metal removal (Feng et al., 2012). 

  Depth Minimum of 300 mm to support plant growth and heavy metal 

removal (Feng et al., 2012); normally 400 ~ 600 mm (FAWB, 2009). 

  Hydraulic 

  conductivity 
100 ~ 300 mm/hour (FAWB, 2009). 

  Surface area At least 2 % of catchment imperviousness for high nutrient removal 

(Bratieres et al., 2008). 

At least 4 % of catchment imperviousness for high heavy metal 

removal (Feng et al., 2012). 

Submerged zone  

  Composition Medium to coarse sand or fine gravel with a mixture of carbon 

source (mulch/woodchips) (10 % by volume) to promote 

denitrification  (Bratieres et al., 2008; FAWB, 2009). 

  Depth Minimum of 300 mm to be effective (FAWB, 2009). 

450 mm is optimal for nitrogen removal (Zinger et al., 2013). 

Vegetation Carex appressa for both high nutrient and heavy metal removal 

(Bratieres et al., 2008; Feng et al., 2012). 

Melaleuca ericifolia, Goodemia ovate, Ficinia nodosa, Juncus 

amabilis, Juncus flavidus for high nutrient removal (FAWB, 2009). 

L. continentale, M. incana and Palmetto Soft Leaf buffalo for E. coli 

removal (Chandrasena et al., 2014b). 

 

In addition to design, the maintenance of biofilters is also crucial to ensure the 

effectiveness of a system. Many studies and practical experiences have 

reported that lacking of maintenance (e.g., clogging) could lead to the failure of 

biofilters (Brown and Hunt, 2012; FAWB, 2009).  

 

Regarding to microbial removal, at least three types of weather 

conditions/rainfall events could negatively impact biofilters’ performance: (1) 
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events with a large amount of inflow volume, as excessive inflow will exceed 

the treatment capacity of biofilters – after biofilters reach to the breakthrough 

point, the removal efficiency will gradually decrease (Chandrasena et al., 

2014b); (2) events with long antecedent dry period (e.g., ≥ 14 days), as 

extensive dry days between two rainfall events will result in the wilt or death of 

plants, and accordingly reduce the plants’ effects in microbial removal such as 

adsorption (Li et al., 2012); in addition, after plants consume most of the water 

kept in submerged zone during dry days for survival, the “clean” submerged 

zone water that experienced long-time die-off is not of a  sufficient volume to 

dilute the newly entered water (which is less clean due to insufficient die-off), 

hence the composite outflow in current event is of high concentration 

(Chandrasena et al., 2014b); (3) events with short antecedent dry period – if a 

new rainfall event occurs after only a short dry period, the microbes attached 

onto the filter media from the previous event could not experience sufficient die-

off and will be flushed off after remobilisation (Chandrasena et al., 2012); in 

addition, the submerged zone water is also not clean enough to dilute the newly 

entered water due to the insufficient retention time.  

 

In summary, the consistency of microbial removal in stormwater biofilters need 

to be improved by enabling biofilters adjustable to those extreme conditions. 

 

2.4   Governing processes and factors for microbial removal 

in stormwater biofilters 

Adsorption, desorption, straining, and die-off are reported as the major 

processes for faecal microbial removal in stormwater biofilters (Bradford et al., 

2006; Hathaway et al., 2011; Li et al., 2012; Zhang et al., 2011). In the 

meantime, these processes are governed by various design and operational 

factors. The major processes and the corresponding governing factors for 

microbial removal in stormwater biofilters is summarised in Figure 2.3. In this 

section, the theories of these processes, and how design and operational 

factors govern these processes, will be discussed. 
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Figure 2.3 Major processes and corresponding governing factors for microbial 

removal in stormwater biofilters. 

 

2.4.1   Adsorption 

Adsorption is one of the most important governing processes for faecal 

microorganisms removal in stormwater biofilters (Chandrasena et al., 2013; 

Hathaway et al., 2011; Li et al., 2012; Zhang et al., 2010), and it is the dominant 

mechanism in porous media when the pores are larger than the bacteria (Stevik 

et al., 2004). It was explained by the double layer theory, which describes the 

repulsive and attractive forces between the bacteria and the substratum (Stevik 

et al., 2004). Adsorption is influenced by many conditions, such as media 

characteristics, plants characteristics, and solution and flow conditions.  

 

(1) Media characteristics 

A good adsorption effect could be achieved when the media size is small, as 

smaller media size result in larger surface area per unit volume to be provided 

for adhesion. In contrast, if filter media has macropores, the adsorption effect 

would be reduced due to insufficient contact time and increased distance 

between the microbes and the filter media (Stevik et al., 2004). It should be 

noted that, the media size or the pore spaces between media may change 
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during operation. For example, after a long time operation of biofilters, clogging 

may occur due to the accumulation of stable solid materials between or on the 

surface of media, and hence the adsorption would be enhanced (Kandra et al., 

2014). However, during a long dry period, cracks may occur, which could result 

in a diminished microbial removal effect in the next rainfall event (Li et al., 2012). 

 

Media type also governs the adsorption effect due to different cation exchange 

capacity: clay particles could improve adhesion due to their small size, platy 

shapes, and their large cation exchange capacity (Stevik et al., 2004). In 

addition, adsorption could be enhanced in the solid surfaces that are positively 

charged due to aluminium, iron, or manganese oxide coatings and in situ 

precipitation of metallic salts (Zhang et al., 2010).  

 

Furthermore, the presence of biofilms in the filter media could reinforce 

adsorption (Stevik et al., 2004). This effect was found to be more effective in 

matured stormwater biofilters (i.e., biofilters that have been operated after a 

long time) than in newly established ones (Zhang et al., 2011).  

 

(2) Plants characteristics 

The presence of plants may have both positive and negative effects for 

adsorption. In some studies, a large amount of microorganisms near plant roots 

were reported, which indicated that plant roots might provide additional 

adsorption sites and an environment preferred by some microorganisms 

(Mukerji et al., 2006). However, long and thick plant roots may also cause 

macropores, and therefore the adhesion sites are reduced (Rusciano and 

Obropta, 2007); in addition, the presence of plant roots may also cause 

preferential flow paths, which would reduce the contact time and increase flow 

rates, so that the adsorption effect would be attenuated (Hathaway et al., 2011). 

Therefore, a comprehensive evaluation of these effects should be considered 

when selecting plants for biofilters. 

 

(3) Solution and flow conditions 

pH is a major factor for adsorption in solution conditions, especially for the 

adsorption of virus (Ferguson et al., 2003). Adsorption is reversible in pH range 
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of 7 ~ 8 (Schijven and Hassanizadeh, 2000). Since the pH of stormwater was 

reported within the neutral pH range (Duncan, 1999; NHMRC, 2009), microbial 

adsorption in biofilters would be reversible, and desorption may occur. The ionic 

strength of solution is another major factor: higher ionic strength of the carrying 

solution reduces repulsive forces, and adsorption is therefore reinforced (Stevik 

et al., 2004). Furthermore, the presence of dissolved organic matter could 

decrease the attachment of pathogens to the soil because adsorbed organic 

matter increases hydrophobic binding sites (Schijven and Hassanizadeh, 

2000). Considering the various nutrients contained in stormwater, the 

concentration of organic matters would be an important factor for microbial 

removal in biofilters. In addition, adsorption could be enhanced in higher 

temperatures (Stevik et al., 2004). During the long time operation, the weather 

conditions may fluctuate frequently; hence, temperature is also a crucial factor 

that should be considered for microbial removal in stormwater biofilters.  

 

Infiltration rate is also an extremely important factor, as it determines the 

treatment time of microbial in biofilters. Low infiltration rate has proved to be 

favourable for microbial removal, because lower infiltration rate provides longer 

time for all the governing processes to take place (not only for adsorption but 

also for other processes that will be discussed later). Therefore, high flow rates 

and preferential flow caused by macropores would result in the diminishment 

of microbial adsorption (Stevik et al., 2004). It is noted that, the infiltration rate 

is determined not only by inflow rate, but also the size and shape of plant roots, 

the inherent characteristics of filter media (e.g., media type and size), and 

cracks and clogging (Coustumer et al., 2012). 

 

2.4.2   Desorption 

As mentioned in Section 2.4.1, desorption of microbes normally occurs after 

adsorption due to the neutral pH of stormwater. The presence of microbial 

concentration tailing in the outflow breakthrough curves demonstrated the 

contribution of desorption in subsurface transport (Bales et al., 1991; Harter et 

al., 2000). It has been found that the changes of physical and chemical 

characteristics in the solutions could result in desorption: Bales et al. (1991) 

reported an increase in bacteriophage desorption from a silica beads filter 
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media when the pH of solution was increased; Redman et al. (2004) found that 

using a carrying solution with low ionic strength could increase the E. coli 

desorption from quartz sand. In addition, the presence of organic matter in the 

carrying solution might decrease adsorption and increase desorption (Franchi 

and O'Melia, 2003). Furthermore, microbes in fresh carrying solution could also 

lead to desorption due to their hydrodynamic interaction with previous retained 

microorganisms, especially under high flow rates (Tong and Johnson, 2006).  

Therefore, for faecal microbial removal in biofilters, the water quality of inflow 

and inflow rate are extremely important and dominate the effect of desorption. 

 

2.4.3   Straining 

Straining is a physical process that the microbe are trapped by pore sizes that 

are smaller than the microbial size. Therefore, the size and shape of microbes 

and filter media, the presence of cracks and macropores, and the clogging of 

filter media play an important role in straining (Ferguson et al., 2003; Stevik et 

al., 2004). Indeed, when the average cell size of microbes is greater than the 

size of 5% of filter media, straining becomes an important removal mechanism 

(Stevik et al., 2004). The presence of macropores in filter media cause 

substantial microbial movement and reduce straining, whilst the microbes with 

larger sizes are easier to be strained (Stevik et al., 2004); similarly, the clogging 

of filter media increases the straining effectiveness (Bright et al., 2010).  

 

Although several studies have reported the importance of straining for microbial 

removal in porous media (e.g., as per Bradford et al. (2006) and Gargiulo et al. 

(2007)), whether these findings could be transferred to stormwater biofilters is 

questionable. Chandrasena et al. (2014a) indicated that in stormwater biofilters, 

straining is only important in the top sediment (i.e., a few centimetres of 

accumulated sediment layer that on the top of biofilters). Actually, 

microorganisms in biofilters exist either as free entities with a size that mostly 

ranges from 0.2 to 2 µm (Tortora et al., 1998), or associated with fine particulate 

matter (e.g. < 6 μm according to Brown et al. (2013)); compared to these sizes, 

the 5th percentile media size in biofilters could be much greater (e.g, > 50 µm 

as per FAWB (2009)). As Updegraff (1983) reported that straining only 

becomes an important removal mechanism when the average microbial size is 
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greater than the 5th percentile media size, the effect of straining might be 

negligible in some circumstances. 

 

2.4.4   Die-off  

While adsorption, desorption and straining are the main processes for microbial 

capture during wet weather, die-off is the process that takes place in both wet 

and dry weather (Chandrasena et al., 2013; Chandrasena et al., 2014a). More 

importantly, die-off is the most crucial process that governs microbial survival 

during dry days (Chandrasena et al., 2014a; Zhang et al., 2011). The effect of 

die-off is influenced by two types of conditions: abiotic conditions and biotic 

conditions. Abiotic conditions include temperature, moisture content, sunlight 

exposure, pH, organic matter and salinity; whist biotic conditions include 

microorganism spices, predation and competition.  

 

(1) Temperature  

Temperature is reported as one of the most significant factors that govern 

microbial die-off (Bitton and Gerba, 1984; Chandrasena et al., 2014a; Ferguson 

et al., 2003; Schijven and Hassanizadeh, 2000). Generally, die-off rate 

increases with the increase of temperature: Chandrasena et al. (2014a) tested 

the die-off rates of E. coli under 2.5, 15 and 32.5°C, and found that the E. coli 

concentration increased over time under 15 or 32.5°C, and decreased when 

the average incubation temperature is 2.5°C; in addition, Chandrasena et al. 

(2014a) reported that the in situ average E. coli die-off rate increased from 1.32 

day−1 to 2.58 day−1 when the average incubation temperature increased from 

15 to 32.5°C. Similarly, Zhang et al. (2012) found that the E. coli die-off rate 

increased from 0.11 to 1.87 per day when the temperature in the conventional 

filter media increased from 5 to 37°C. In addition, Vandenhove et al. (1991) 

found that for the die-off rates of Pseudomonas sp. in soil, there was no 

difference between 5 and 15°C, but a significant increment at 25°C. 

 

Importantly, Zhang et al. (2012) found that the microbial growth rate decreased 

when the temperature increased from 25 to 37°C. However, these protozoa 

were native in the biofilter rather than introduced by newly entered stormwater. 

Therefore, the effect of temperature on die-off would be various for different 
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types of microorganisms. Moreover, Garzio-Hadzick et al. (2010) found that the 

increase of nutrient contents and fine particles resulted in a decrease of the 

sensitivity of E. coli survival towards the soil temperature. This finding indicated 

that different governing factors might interact with each other.  

 

Furthermore, in stormwater biofilters, various temperatures have already been 

detected in different locations and under different weather conditions. For 

example, Hathaway et al. (2011) reported that the soil temperature in 

stormwater biofilters could vary from 7 to 34 °C. In addition, the effect of 

temperature on microbial survival in biofilters would be more prominent in upper 

soil layers compared to deeper soil layers, as upper layers undergo relatively 

large, daily temperature variations (Jones and Hunt, 2009). 

 

(2) Moisture content  

Moisture content (water potential) is another factor that reported crucial to 

microbial die-off, especially for bacteria (Bitton and Gerba, 1984). Generally, 

under lower water potential the stress on microorganisms in increased because 

of the increased effects of matric and osmotic potentials (Ferguson et al., 2003). 

Therefore, the majority of literatures suggested that the bacterial survival was 

diminished in dry soils compared to that observed in moist soils (Stevik et al., 

2004; Yates and Yates, 1987). Accordingly, the lower moisture content may 

result in better microbial removal in biofilters. 

 

Nonetheless, some studies reported the opposite results: as per Bitton and 

Gerba (1984), there was a better protection from predators in dry soils, leading 

to a longer microbial survival. Zhang et al. (2011) also suggested a logarithmic 

decrease of trapped E. coli with increasing depth in biofilter columns, where a 

steady increase in soil moisture content was observed and might result in 

increased predator mobility.  

 

(3) Other abiotic conditions 

Other abiotic conditions include sunlight exposure, pH, and organic matter. It is  

well documented that sunlight could induce pathogens die-off (Brookes et al., 

2004; Chandrasena et al., 2014a; Ferguson et al., 2003; Hipsey et al., 2008). 
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According to Brookes et al. (2004), solar radiation mainly causes two types of 

damage to microorganisms: photo-biological (direct damage induced UV 

bandwidth) and photo-oxidative (indirect damage caused by the visible 

bandwidth of incoming solar radiation). However, it should be noted that, in 

biofilters, the effect of radiation would only be significant in the topmost part of 

the system (e.g., in the ponding zone and top sediments), sunlight could hardly 

penetrate into deeper soil layers and might be blocked by vegetation. 

Chandrasena et al. (2014a) reported that the exposure to sunlight is one of the 

most important factors for the E. coli retained in the top sediments. 

 

The survival of most bacteria decreases with both low and high pH values, while 

the survival may be prolonged at neutral pH values (Stevik et al., 2004; Yates 

and Yates, 1987). However, the recorded pH values for both stormwater 

(Duncan, 1999; NHMRC, 2009) and biofilter media (FAWB, 2009; Hathaway et 

al., 2011) are in the neutral range. Therefore, pH would not play an important 

role in microbial die-off in stormwater biofilters.  

 

It has been reported that pathogens could survive longer in soils containing 

organic matter (Stevik et al., 2004) and even grow with sufficient amounts of 

organic matter (Yates and Yates, 1987). The reason is, high levels of organic 

matter could provide essential nutrients for microbial metabolism, and attenuate 

the effects of competition for nutrients with indigenous microorganisms (Crane 

and Moore, 1986; Willey et al., 2011). In stormwater biofilters, filter media 

generally contains low organic matter content; therefore, the organic matter 

mainly depends on inflow (FAWB, 2009). To improve this, loamy sand filter 

media (with relatively high fine fraction) was applied in some studies, and it is 

proved to be more favourable for microbial survival compared with pure sand 

filter media due to its high efficiency in retaining nutrients and organic matter 

(Bratieres et al., 2008). The organic matter content is especially important 

during dry periods when no new organic matter is introduced and the decrease 

of nutrients occurs through the consumption by both enteric and indigenous 

microbial populations (Chandrasena et al., 2014a).  
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To summarise, in stormwater biofilters, the organic matters contended in inflow 

are crucial for microbial removal, whilst sunlight exposure and pH are not 

playing important roles. 

 

(4) Microorganism types 

The survival of microorganisms differs between types. Compared to E. coli, 

several Salmonella and Yersinia species have longer survival times, whilst 

Shigella and Campylobacter die more rapidly (Stevik et al., 2004). In addition, 

some Streptococcus species could survive much longer than others (Stevik et 

al., 2004). The reason could be, some bacteria may have better ability to 

compete for nutrients with indigenous microorganisms, some may be less 

vulnerable to antibiotics produced by indigenous bacteria, and some others can 

produce spores to improve survival under unfavourable conditions (Stevik et 

al., 2004). In addition, Schijven and Hassanizadeh (2000) indicated that the 

sensitivities to temperature were varied between different virus types; hence, 

the change of abiotic conditions may have different influences to different types 

of virus. However, according to Chandrasena et al. (2014a), the survival 

patterns of different strains of E. coli are generally similar. 

 

(5) Predation and competition 

The presence of other microorganisms plays a vital role in the survival of 

captured microbes in the biofilters. For example, Chandrasena et al. (2014a) 

reported that a steady decline in E. coli concentration was observed in the 

samples collected from different locations of biofilters, but a general trend of 

increasing concentration of E. coli was observed in sterilized soil samples. The 

presence of other microorganisms may have two types of impacts to faecal 

microbial removal: predation and competition. 

 

From the predation perspective, protozoa are considered as the main predators 

of bacteria (Stevik et al., 2004). They are also the major contributors to E. coli 

die-off within stormwater biofilters (Zhang et al., 2010; Zhang et al., 2011; 

Zhang et al., 2012). In laboratory-scale stormwater biofilters, E. coli only grow 

in the absence of other microorganisms (obtained by γ-irradiating the filter 

media); even a small increase of protozoa into the γ-irradiated filter media could 
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change the growth into die-off (Zhang et al., 2010). The authors also found that 

when the protozoa levels were increased by just one order of magnitude, a 30 

% increase in the E. coli die-off rate was observed. In a later study conducted 

by the same authors (Zhang et al., 2011), it was found that with the maturation 

of indigenous predator protozoa’s population, the effect of predation on E. coli 

die-off was reinforced. 

 

Importantly, it is reported that bacteria might attempt to avoid predation by 

aggregation and attaching to other particles (Ferguson et al., 2003). This is 

because for large predators such as protozoa, it is difficult to locate their prey 

when they are situated in small pores of soil and sediment (Alexander, 1981).  

 

From the competition perspective, microorganisms require nutrients to support 

their metabolic activities and subsequent growth (Willey et al., 2011). 

Indigenous microorganisms in natural environment fulfil their nutrient 

requirements from organic matters in soils and/or water; when enteric 

microorganisms are released into natural environment, they have to compete 

with indigenous microorganism for nutrients, because generally the natural 

environment contains lower level of nutrients compared to enteric 

microorganisms’ primary habitats like guts of warm-blooded animals 

(Alexander, 1981; Burton et al., 1987; Lim and Flint, 1989).  However, it is 

reported that enteric microorganisms are unable to adequately compete with 

indigenous microorganisms; therefore, competition is also considered as a 

factor that contributes to the elimination of enteric species introduced into water 

or soil (Alexander, 1981; Burton et al., 1987; Lim and Flint, 1989).  

 

In stormwater biofilters, the competition for nutrient with indigenous bacteria is 

a factor for E. coli survival (Zhang et al., 2010; Zhang et al., 2011; Zhang et al., 

2012). However, Zhang et al. (2010) observe that E. coli die-off increases with 

increasing indigenous protozoa levels in two laboratory biofilter columns with 

similar levels of heterotrophic bacteria. Therefore, they concluded that the 

significance of competition might be less compared to predation. Nevertheless, 

in another laboratory experiments on biofilter columns, Zhang et al. (2012) 

found that competition can be significant at a high temperature (e.g. 37°C), 
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because with this temperature, the predator protozoa growth is limited due to 

encystment, but this condition is optimum for enteric bacterial growth. 

 

2.4.5   Summary of governing processes and key factors 

To summarise, for faecal microbes removal in stormwater biofilters, adsorption, 

desorption, straining and die-off are the governing processes. Adsorption, 

desorption and straining play a vital role during wet weather events, whilst die-

off is dominant in dry periods between rainfall events. 

 

In the meantime, these governing processes are highly dependent on the 

factors/conditions in biofilters. These key factors could be divided into types: 

design factors, operational factors, and other factors (Table 2.6).  

 

The most important design factors include media size, media type, plants type, 

the existence and depth of SZ, while the key operational factors include 

temperature, moisture content, and infiltration rate (Table 2.6). The effects of 

these two types of factors have been discussed in previous sections.  

 

For other factors, weather conditions and inflow characteristics are the most 

crucial ones (Table 2.6). For weather conditions, the duration and intensity of a 

rainfall and the length of dry period between two wet events are significant, 

since the duration of rainfall determines the hydraulic loading, whilst the length 

of dry period may have impact to the survival of plants and have potential to 

cause cracks (Zinger et al., 2013). For inflow characteristics, the inflow quantity 

and inflow quality are both important. For hydraulic loading, Le Coustumer et 

al. (2012) indicated that larger inflow quantity could cause clogging more easily, 

and clogging could improve infiltration rate and may also result in more 

overflow. For inflow quality, not only the E. coli concentration but also the 

concentrations of organic matters and total suspended solids (TSS) are 

important, since organic matters could influence adsorption as well as die-off, 

and TSS concentration may influence the extent of clogging. 
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Table 2.6 Summary of key factors for microbial removal in stormwater biofilters 

and how some of these factors influence microbial removal processes. “↑” 

stands for “increase”, “↓” means “decrease”, while “–” represents “result in”. 

Design factors Operational factors Other factors 

Media 

Size (↓) – adsorption (↑) 

& straining (↑); cation 

exchange capacity (↑) – 

adsorption (↑); organic 

matters (↑) – die-off (↓) 

Temperature 

Temperature (↑) 

– adsorption (↑) 

& die-off (↑) 

Weather 

Event size; 

length of dry 

periods 

Plant 
Size of roots (↑) –

adsorption (↑ or ↓) 

Moisture 

content 

Moisture content 

(↓) – straining 

(↑) & die-off (↑) 
Inflow 

Inflow rate; 

water quality 

SZ 

The existence of SZ –

infiltration rate (↓) & 

retention time (↑)  

Infiltration 

rate 

infiltration rate 

(↓) – retention 

time (↑) 

 

To enhance microbial removal in stormwater biofilters, much effort has been 

placed in optimising the design factors of biofilters, such as testing the 

influences of different plants, various filter media, and the existence of a 

submerged zone (Chandrasena et al., 2014b; Li et al., 2016; Li et al., 2012). 

Some of the findings have already incorporated into guidelines of biofilters 

design (FAWB, 2009). However, the optimisation of design factors could hardly 

mitigate impact of some extreme weather conditions, such as extended dry 

periods and big size events (Chandrasena et al., 2014b; Li et al., 2012).  

 

However very little has been done to control the operational conditions 

experienced by biofilters (e.g., infiltration rate and retention time), even though 

they are recognised as governing microbial removal (Chandrasena et al., 

2014a) and would be a solution to enable biofilters adapt to various weather 

conditions. That is because, stormwater biofilters are designed as passive 

treatment systems, and there are no facilities on biofilters to control their 

operation. Therefore, it is important to find a method to better control biofilters 

in operational. For instance, if there is a method to transform biofilters from 

passive into active to achieve the operational optimisation, then the findings 

from previous studies could be taken into practice, and accordingly the 

performance in microbial removal of biofilters could be improved. 
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2.5   Real time control of stormwater biofilters 

As discussed in Section 2.4, the optimisation of operational conditions has 

hardly been taken into practice, since biofilters are designed as a passive 

treatment system. To solve this problem, real time control (RTC) is a potential 

technology to transform biofilters from passive to active, and enable biofilters 

adjustable to various weather patterns and inflow conditions. 

 

Very few studies on the application of RTC in stormwater biofilters, if there is 

any, have been published. Therefore, this section will mainly discuss the 

application of RTC in other environmental areas (e.g., flood control, wastewater 

treatment, and sewer systems), to analyse the potential of applying RTC in 

stormwater biofilters. 

 

2.5.1   General concept and components of RTC  

The general concept of RTC is defined as the monitoring of the functioning of 

a system in real time and, at the same time, using the collected data to optimise 

system’s performance through the control (Schütze et al., 2004). 

 

The monitoring and control of a system are implemented by hardware 

components, including sensors (e.g. temperature sensors and moisture 

sensors; to monitor system status), actuators (e.g. pumps, valves, and water 

gates; to implement control), controllers (e.g. programmable logic controllers; 

to adjust actuators to achieve its desired set-point), and data transmission 

systems (to transmit data between the different devices) (Schütze et al., 2004). 

The process of control can be schematised as a control loop, which is shown 

in Figure 2.4 (Schütze et al., 2004): 
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Figure 2.4 Feed-forward (disturbance measurement) and feedback (process 

measurement) control loop of RTC. Simple arrows indicate data flow, double 

arrows indicate hydrodynamic action. Bold letters indicate hardware and italic 

letters indicate variables (adopted from Schütze et al. (2004)). 

 

Normally, the first step of developing a RTC system is to establish a model to 

simulate the key process variables, as the model could serve as a tool to predict 

the outcome of control actions (Schilling et al., 1996). In addition, a control 

strategy is necessary in a RTC system, as it governs the timing of control and 

the set-points of actuators (Schilling et al., 1996; Schütze et al., 2004). The 

control strategies could be in the form of decision matrices, decision trees (with 

a set of if-then-else rules), or optimisation routines (Schilling et al., 1996; 

Schütze et al., 2004). The model must allow for the input of control strategies 

and predict the outcome of strategy implementation.  

 

Mathematical optimisation algorithms have been widely employed to figure out 

suitable control strategies; the most popular mathematical optimisation 

algorithms include non-linear programming algorithm, genetic algorithm, neural 

networks algorithm (Schilling et al., 1996; Schütze et al., 2004). However, 

Schütze et al. (2004) suggested that complex control algorithms are not always 

necessary, since an intelligent and supervised combination of simple single 

input - single output control laws could also be effective and easy to implement. 

 

It is noted that, multi-objective optimisation is often necessary, in a practical 

problem, objectives are normally multiple rather than single. For example, in 
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the majority cases in the environmental field, water quality and water quantity 

should both be taken into consideration; in addition, the cost-effectiveness is 

also a non-negligible criterion when evaluating technical solutions. 

 

In addition, when designing a RTC system, several upmost important 

requirements should be met, including safety (i.e., the worst-case scenario in 

RTC implementation should be no worse than the situation without RTC), 

adaptability (i.e., RTC equipment could provide reliable measurements and 

data processing), flexibility (i.e., system could adapt to various conditions, 

including different weather patterns and equipment failures), and acceptable 

cost-effectiveness (Schütze et al., 2004).  

 

2.5.2   Application of RTC in the environmental field 

Although currently publications about RTC of stormwater biofilters could be 

hardly found (if there is any), RTC has been applied in some other areas in the 

environmental field, such as flood control, sewer systems, and wastewater 

treatment. The purposes of these applications include to route flows, to control 

flooding and overflows, to maximise system’s storage space, to optimise 

system’s treatment capacity, and to protect the quality of receiving waterbodies.  

 

(1) Flood control 

Chang and Chang (2001) developed an approach with the combination of the 

genetic algorithm (GA) and the adaptive network-based fuzzy inference system 

(ANFIS) to improve real time flood-reservoir operation. GA was used to search 

the optimal reservoir operating histogram based on the inflow series, and then 

ANFIS was used to construct the suitable structure and parameters, and to 

estimate the optimal water release according to the reservoir depth and inflow 

conditions. According to the operation of the Shihmen reservoir in Taiwan, the 

authors indicated that the RTC approach had a superior performance regarding 

the prediction of total water deficit and generalized shortage index.  

 

Similarly, in some other cases, sophisticated models and control strategies 

were developed for RTC. For example, Leon et al. (2014) introduced a RTC 

framework based on multi-objective non-dominated sorting genetic algorithm II 
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based on reservoir operation. Hsu et al. (2015) applied an adaptive network-

based fuzzy inference system incorporated real time recurrent learning neural 

network in reservoir optimisation. Tian et al. (2015) employed model predictive 

control (MPC) to operate the structures like dams, dikes and water gates in 

Rhine - Meuse delta. All these studies indicated that fruitful benefits could be 

obtained by the implementation of RTC.  

 

The examples introduced above suggested that the integration of adopting 

predictive models and implementing control strategies with various complexity 

could achieve great benefits in RTC, which could provide lessons in developing 

a framework for RTC of stormwater biofilters. In addition, a sophisticated RTC 

strategy could multi-objective optimisation. 

 

(2) Sewer systems 

The application of RTC in sewer systems started in the late 1960s in the USA 

with implementations in Seattle, Cleveland, Detroit, Minneapolis, etc. (Schilling 

et al., 1996). About 10 years later, the first European system was implemented; 

nowadays, most of the RTC implementation are conducting in the Netherlands 

and Germany (Schilling et al., 1996). The most typical and successful RTC 

systems are outlined as follows. 

 

In the Lundofte catchment in Denmark, where a costly expansion of traditional 

infrastructure is planned, a rule-based RTC strategy was implemented to 

increase storage volume of urban drainage systems (Meneses et al., 2018). 

After implementing RTC, the planned storage volume was reduced by 21%, 

while the combined sewer overflow (CSO) volumes, environmental impacts, 

and utility costs, were all reduced by up to 10%. 

 

Seattle public utilities operated a predictive RTC system to manage 13,120 

acres combined sewers to optimise flow by adjusting the gate position for each 

of the 15 sewer regulators. With RTC, overflow volume was reduced by 60 ~ 

90 % and water quality was also controlled (Stinson, 2005). 
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Milwaukee Metropolitan Sewerage District has been operating a RTC system 

for the control of deep tunnels with a 400 million gallon capacity more than 20 

years (Schultz et al., 2001). The tunnel intercepted both combined and sanitary 

sewer, and remarkable cost-effective savings on storage space volume were 

achieved (Stinson, 2005).  

 

The Urban Drainage Network of Seine St.-Denis County in France has been 

operating a RTC system for sewer systems since 1986. The main objective is 

to reduce combined and separated sewer systems to the Seine River. By 

controlling six hydraulic overflow regulators include a settling and storage 

facility of 52.8 million gallons, the settling efficiency and the sewer capacity 

were increased. The comparison of the performance with two control types (i.e., 

supervisory global predictive control with a radar-based rainfall prediction 

system, and a simulated local reactive control) indicated that the global 

predictive control performed better, particularly in suspended solids removal 

(Stinson, 2005).  

 

The experiences learned from these studies that could be used to guide the 

RTC of stormwater biofilters include: it is crucial to determine the proper 

location of RTC facilities like sensors and regulators; for small-scale systems, 

it might be more effective to implement global predictive control than local 

optimisation; the integration of forecasting or now-casting technology for the 

weather information could be helpful to develop a RTC with high adaptability; 

and the cost-effectiveness of RTC systems is normally satisfying. 

 

(3) Wastewater Treatment 

To improve the performance of wastewater treatment, real time monitoring 

(RTM) and RTC are frequently used for the optimisation of key processes. The 

governing factors include pH, temperature oxidation-reduction potential (ORP), 

dissolved oxygen (DO), and water level are usually monitored and controlled 

as well (Han and Qiao, 2014; Schütze et al., 2004; Yang et al., 2007). Some 

typical cases of RTC application in wastewater treatment plant (WWTP) are 

outlined below. 
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Yang et al. (2007) applied RTC in the sequencing batch reactor (SBR) of a 

WWTP to save energy and carbon source, and to achieve advanced nitrogen 

removal. By controlling the temperature ranging from 11.9 to 26.5 °C under 

normal dissolved oxygen condition (2.5 mg/L), nitrogen removal via nitrite was 

successfully and stably achieved for a long period (180 days) with average 

nitrite accumulation rate above 95%. In addition, in situ fluorescence 

hybridisation results approved that the nitrifying microbial communities were 

also optimised. 

 

Han and Qiao (2014) discussed the design and implementation of a non-linear 

model predictive control (NMPC) system for WWTP operation. A hydraulic 

model and a biochemical model were integrated and utilised to control DO and 

nitrate concentrations. Experimental results revealed that the proposed RTM 

and RTC provided satisfactory tracking of DO and nitrate, and attenuated the 

fluctuation in treatment effects. 

 

Corominas et al. (2006) used an on-line control strategy to optimise the 

operation of the SBR for a WWTP. A calibrated mechanistic model based on 

the Activated Sludge Model No.1 was used to evaluate the control strategy; the 

ORP and DO were monitored to optimise the aerobic and anoxic phases. The 

performance was evaluated with the criteria of the effluent quality, the required 

energy for aeration, and the treated wastewater volume. The results showed 

that by adopting RTC, it was possible to maintain optimal SBR performance 

with minimal costs.  

 

For RTC in stormwater biofilters, it could be learned from these successful 

cases that, when using a predictive model to evaluate RTC strategies, the 

model may include a hydraulic part and a reaction part (for water quality). In 

addition, it is feasible and reliable to monitor some operational factors (e.g., DO 

concentration, temperature, and ORP) and using this information to trigger 

control and keep a system’s performance in a consistently high level.  

 

 

 



Chapter 3. Development and testing of stormwater biofilter treatment model for faecal microorganisms 

40 
 

(4) Combination of sewer systems and wastewater treatment plants 

Since sewer systems and wastewater treatment plants are usually connected, 

sometimes RTC is implemented to control the integration of these two systems.  

 

Schütze et al. (2004) described a wastewater system with RTC of the Québec 

Urban Community, which consists of sewer networks, a wastewater treatment 

plant (WWTP) and retention tunnels. The control objectives include to minimize 

overflows and to maximize the use of the treatment plant capacity. According 

to the need for local or global optimisation, three control levels were set. The 

real time control system is implemented at a central station, based on the 

information of water level, rainfall intensity, radar rainfall images, and two hours 

rainfall prediction that obtained from 17 flow monitoring and weather stations. 

A non-linear programming algorithm was used for optimisation, which ran every 

five minutes as a time step. The performance of this RTC system was 

remarkable: by only optimising two tunnels and the capacity of the WWTP, a 

70% reduction in overflow volume in 2000 was achieved; in addition, the cost 

of this phase was 2.6 million US dollars compared to an estimated 15.5 million 

US dollars to build retention facilities to attain the same benefits.  

 

Schilling et al. (1996) introduced the application of RTC in the Klagshamn 

wastewater system. To solve the problem of sludge loss from the secondary 

clarifiers in Klagshamn WWTP, a sewage system was used for wastewater 

storage to reduce flow variations. Sensors were set to detect the concentration 

of suspended solids in different treatment units, and the sludge blanket level in 

the secondary clarifier. A program package named MOUSE-PILOT was utilised 

to model the system. The authors concluded that approximately 50% of the total 

storage capacity of the system remained unused during wet weather if no 

control was implemented; with the application of RTC, about half of this 

potential might be activated. 

 

Langeveld et al. (2013) analysed the potential of improving the Dommel River 

water quality using integrated RTC of WWTP and combined sewer systems. 

Four types of models were integrated: hydrodynamic sewer model, water 

quality model for sewer, WWTP model, and surface water model for receiving 
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water. The control objectives included minimising ammonium peaks in the river, 

and/or minimising dissolved oxygen dips in the river. The authors indicated that 

with the implementation of only simple and inexpensive RTC strategies, the 

number of exceedances for ammonium and DO decreased significantly. 

 

These studies indicated that the performance of a system could be enhanced 

by even a short time step of optimisation, and a simple RTC strategy with 

generally low cost might already be sufficient to dramatically improve the 

treatment.  

 

(5) Stormwater related application  

Currently, stormwater related application of RTC mainly focuses on stormwater 

ponds or basins. For example, Mullapudi et al. (2018) applied the RTC network 

on two stormwater basins to shape streamflows. The developed strategy could 

stabilize flows, and accordingly mitigate the streambed erosion and reduce 

pollutant loads that discharged into waterbodies in the downstream. In addition, 

Gaborit et al. (2013) reported that by adopting RTC to monitor and adjust a 

stormwater pond’s water height according to the rainfall forecast and detection, 

the total suspended solids removal efficiency could increase by 46 ~ 90 %. 

More importantly, Kerkez et al. (2016) introduced a concept of using cost-

effective sensors and actuators to retrofit existing stormwater infrastructure in 

the watershed scale, exploring the conceptual potential of applying RTC in 

stormwater biofilters.   

 

2.5.3   Summary and categorisation of RTC methods 

In summary, all the successful cases about the application of RTC in other 

environmental areas that presented in Section 2.5.2 highlighted the remarkable 

benefits of RTC implementation, which provided strong encouragement and 

valuable lessons to the development of a framework for RTC of stormwater 

biofilters. Table 2.7 summarises all the methods employed in the studies 

discussed in Section 2.5.2 and some other relevant studies.  
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Table 2.7 Categorisation of RTC methods (adapted and summarised from Lund 

et al. (2018) and Schütze et al. (2002)). 

Category RTC method Description 

Degree of automation Manual Actuators are adjusted by operators. 

 
Supervisory Actuators are automatically adjusted; set-

points of the actuator are specified by 

operators or a supervisory system. 

 
Automatic The entire system is automatically operated. 

Physical extension Local Each actuator performs control independently 

based on instantaneous measurements. 

 
Global All actuators are regulated at the same time, 

based on the observations from a global 

perspective. 

RTC strategy Off-line Operational objectives are specified prior to the 

actual control process (e.g., in the form if- 

then); set-points are normally fixed. 

 
On-line Operational objectives are defined as a 

mathematical function; set-points are variable 

and determined during the control process.  

Timing of input Reactive control Control activities are only determined by 

measurements. 

 

Predictive 

control 

Control activities are determined by 

measurements and the prediction of system’s 

future status. 

 

It is noted that, in the vast majority cases that discussed in Section 2.5.2, RTC 

was implemented in generally much larger scales compared to stormwater 

biofilters. Therefore, RTC in most of these cases integrated advanced facilities 

to achieve fully automatic control, and complicate algorithms to implement on-

line strategies and fulfil global optimisation. Importantly, Schütze et al. (2004) 

pointed out that an intelligent and supervised combination of simple single input 

- single output control laws could also be effective and be implemented easily. 

In addition, complicated systems may have a lower likelihood to achieve cost-

benefits as more facilities are required, and be less flexible facing to facility 

failure. All these experiences and lessons could be referred in developing a 
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framework for RTC in stormwater biofilters. The details of the framework 

development will be presented in the next section. 

 

2.5.4   Framework for the application of RTC in stormwater biofilters 

According to the aforementioned experiences and lessons learned from the 

application of RTM/RTC in other areas of the environmental field, and 

considering the characteristics of faecal microbes in stormwater runoff, the 

components in RTC implementation on stormwater biofilters are 

conceptualised in Figure 2.5. 

 

Figure 2.5 A conceptual schematic for RTC implementation on stormwater 

biofilters. 

 

To implement RTC in stormwater biofilters for microbial removal, two types of 

components are necessary: software and hardware. For the software 

perspective, a predictive model to evaluate potential RTC strategies and to 

simulate different scenarios are indispensable; whilst for the hardware 

perspective, sensors to monitor different information in biofilters, actuators 

(e.g., valves and outflow restrictors), controllers (with set-points) and data 
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transmission systems are the essential components for RTC implementation. 

In addition, since the real time information of weather and/or rainfall forecasting 

could help to generate accurate and timely RTC strategies (Stinson, 2005), 

some advanced technologies such as radar or now-casting technology for 

rainfall prediction might also be incorporated. 

 

One thing should also be noted that, for different end uses, different treatment 

objectives should be achieved; the treatment objectives govern the 

establishment of RTM/RTC facilities and selection of RTM/RTC strategies (i.e. 

what to monitor and what to control). For example, for the protection of 

waterbodies, the total amount of pollutants might be more important than other 

criteria; therefore, one of the criteria for control strategy selection is to ensure 

that, when the infiltration rate is decreased to increase treatment time, the extra 

pollutants reduction in outflow must surpass the additional pollution caused by 

additional overflow. While for recreational uses, the peak and/or 95th percentile 

concentrations should be controlled under an uncertain threshold. In addition, 

different strategies may aim to improve the removal of different pollutants; 

however, the better removal of one pollutant achieved by control strategies 

should not dramatically impact the removal of another pollutant being worse 

than the requirement. 

 

It is also noted that, for RTC of biofilters, complicated algorithms for optimisation 

may not be necessary. Compared to the examples discussed in Section 2.5.2, 

the scale of biofilters is generally smaller, and the requirements for facilities like 

sensors and actuators would be lower. Therefore, it could be expected that 

even a simple RTC system with local optimisation might be sufficient to achieve 

the operational optimisation. In addition, considering the short duration of some 

rainfall events, stormwater biofilter with RTC are required to react rapidly to 

instantaneous inputs and biofilter status; since an off-line strategy normally 

needs less time to trigger control than an on-line strategy by avoiding to re-

determine set-points (Lund et al., 2018), it could ensure RTC being 

implemented timely. Therefore, developing off-line strategies before the 

implementation of RTC might be favoured for stormwater biofilters.  
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Compared to testing all the potential RTC strategies one by one through 

laboratory experiments and/or field tests, modelling is more cost-effective to 

evaluate these strategies. As such, a predictive model for microbial removal 

stormwater biofilters serves as a fundamental part of RTC. The predictive 

model includes the governing processes and factors to sufficiently represent 

accurate microbial behaviours within biofilters; in addition, it should be capable 

of simulating different operational conditions and reflect how these conditions 

would impact the transport and fate of microbes. Moreover, considering the 

large number of potential strategies and scenarios, and the difficulty and 

uncertainty in data collection, the model that could generate accurate 

predictions with minimum data requirements and simulation time are favoured. 

 

Based on all the analyses above, the conceptual framework for RTC of 

stormwater biofilters may include the following processes: (1) develop and 

validate a predictive model to simulate the microbial removal behaviours in 

stormwater biofilters; (2) develop potential RTC strategies to optimise the 

operation of stormwater biofilters; (3) select RTC strategies and implement 

them by integrating RTM, to analyse the benefits of RTC strategies and 

evaluate if/how RTC could help to fulfil different requirements (e.g., for different 

end uses); (4) employ predictive models to simulate the implementation of 

selected RTC, and compare the modelling results to those obtained from 

practical implementation, to evaluate the capability and reliability of using 

predictive model to evaluate RTC; (5) if the predictive model is proved to be a 

reliable tool to evaluate RTC strategies, additional RTC strategies and 

scenarios could be assessed through modelling, and a final decision of strategy 

selection and corresponding set-points could be made based on the modelling 

results (Figure 2.6).  
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Figure 2.6 Schematic of the framework for real time control of stormwater 

biofilters. 

 

Furthermore, according to the general requirements for a RTC system (i.e., 

safety, adaptability, flexibility, and cost-effectiveness; as listed in Section 2.5.1), 

the requirements for RTC of stormwater biofilters are specified as follows: 

(1) safety: RTC is expected to deliver on both stormwater harvesting outcomes 

(i.e., high volume and good quality of the water for harvesting) and 

environmental protection (e.g., minimum pathogens for swimming, and low 

nutrients for ecosystem health). 

(2) adaptability: the biofilters incorporated with RTC should be capable of 

adapting various conditions, such as different rainfall event sizes, different 

inflow concentrations, and different lengths of dry periods;  

(3) flexibility: RTC strategies should be flexible in its implementation, allowing 

for easy system design and facility installation, both for new systems and 

for retrofit scenarios (meaning only surface accessible equipment can be 

installed); and 

(4) cost-effectiveness: RTC that requires low maintenance and low-cost 

equipment (e.g., sensors) are favoured; hence, low-technical solutions are 

preferable. 
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As aforementioned, in this study, the main purpose of adopting RTC is for the 

optimisation of stormwater harvesting and reuse; therefore, faecal microbes are 

the major target pollutants in RTC implementation. 

 

2.6   Predictive models for microbial removal in stormwater 

biofilters 

Section 2.5 indicates that to apply RTC technologies in stormwater biofilters, a 

predictive model is essential for the evaluation of RTC strategies. Therefore, 

this section will discuss the existing models for faecal microbial removal in 

stormwater biofilters, and how to develop an effective predictive model for RTC 

of biofilters.  

 

Generally, an effective predictive model for RTC should provide a better 

understanding of the governing processes, test different control strategies 

efficiently, and generate reliable predictions to help on decision making (Hipsey 

et al., 2008). To meet these requirements and according to the discussion in 

Section 2.5.2, an effective predictive model for faecal microbial removal in 

stormwater biofilters should be able to: 

(1) represent the transport and fate of faecal microorganisms throughout 

biofilters; 

(2) include the governing processes of microbial removal; 

(3) reflect the influences of the key factors for microbial removal; 

(4) represent both wet weather events and dry periods that between wet events; 

and 

(5) generate accurate predictions with minimum data requirements and 

simulation time.  

 

2.6.1   Existing models for microbial removal in stormwater biofilters 

Only few attempts have been made to develop a model for microbial removal 

in stormwater biofilters. Chandrasena et al. (2013) developed a model to 

simulate the outflow concentrations continuously. In this model, adsorption and 

desorption were included as the major processes during wet weather periods, 

whilst die-off was considered to be dominated during dry days. Both adsorption 
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and die-off were described as first order kinetics. This model achieved a good 

level of agreement between the predicted and measured E. coli concentration 

in the outflow. The results also indicated that adsorption is the governing 

process in the model, and vegetation is found to have an impact on adsorption 

and desorption since the calibrated parameters vary significantly with the 

different plant configurations (Chandrasena et al., 2013). However, this model 

only modelled the outflow concentration and incapable of revealing the 

transport of microorganisms throughout the biofilters; in addition, the impact of 

operational factors was not reflected.  

 

Zhang et al. (2010) utilised one-dimensional advection-dispersion equation to 

model the transport of E. coli in bioretention media during 6 hours of 

continuously simulated run-off conditions. This model also achieved a satisfying 

agreement between modelled and measured E. coli breakthrough curves. 

However, in this model only considered the processes of adsorption and die-

off; desorption and straining were neglected. Also, this model did not reflect the 

influence of any operational factors. Moreover, the simulations were only limited 

to a single event rather than a long period of operation with several wet weather 

events and dry periods in between. 

 

Zhang et al. (2012) used the first-order kinetics equation to model the die-off 

process of E. coli in stormwater biofilter media during the dry period, and 

different temperatures were tested as an operational factor. Simple linear 

regression was also employed to represent the dependency of E. coli die-off on 

temperature. Although this model did not incorporate any wet weather event, 

the attempts to include temperature as an operational factor improved the 

capability of this model for die-off simulation during dry periods. 

 

According to the published literature, none of the available models could meet 

all the requirements listed in Section 2.6. Especially, the existing models hardly 

include all the governing processes and the operational factors. These suggest 

that none of the existing models for microbial removal could be applied in RTC 

strategy evaluation and scenario simulation. Therefore, a capable predictive 

model needed to be developed for RTC in stormwater biofilters. 
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2.6.2   Other available models for microbial transport prediction in porous 

media systems 

Although there are only a few models have been developed for the faecal 

microorganisms removal in biofilters, some models developed for other 

filtration/infiltration applications (e.g., wastewater treatment and aquifer 

recharge) are also valuable as references. Therefore, although this kind of 

model might not be directly transferable because of the differences in inflow 

and system design, common approaches used in modelling microbial 

behaviour in porous media will also be discussed below.  

 

The most widely modelling approach used for microbial transport prediction in 

porous media is the adsorption-dispersion equation (Foppen et al., 2007; 

Tufenkji, 2007). This equation models the movement of microbes through 

advection, dispersion, and retention-related processes such as adsorption, 

desorption and straining (Bradford et al., 2006; Gargiulo et al., 2008). In 

addition, the governing processes (i.e., adsorption, desorption, staining, and 

die-off), could be modelled using first-order kinetics equations (Crane and 

Moore, 1986). However, some studies aimed at small laboratory columns 

disregarded the die-off process due to shorter simulation periods (Bradford et 

al., 2006; Foppen et al., 2007).  

 

All of the above processes can be summarised in three generic equations that 

simulate the microbial concentration in the liquid phase (Equation 2.1) and the 

solid phase (Equation 2.2 and Equation 2.3) within a porous medium at any 

given time, as shown below. 
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Where C is the microbial concentration in the liquid phase (cells/mL); S1 

is the microbial concentration in the solid phase due to kinetic attachment 

(cells/g); S2 is the microbial concentration in the solid phase due to straining 
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(cells/g); t is the time (s); x is the downgradient distance from the inlet (cm); D 

is the hydrodynamic dispersion coefficient (cm2/s); v is the pore water velocity 

(cm/s);  ρ is the bulk density of the porous media (g/cm3); n is the porosity (-); 

katt, kdet and kstr, are the adsorption, desorption, and straining rates respectively 

(s-1); μl and μs are the inactivation or die-off rates for liquid and solid phases 

respectively (s-1); and φ is the fitting/reduction coefficient for straining (-). 

 

2.6.3   Modelling of governing processes and impact of key factors 

This section will discuss how to define the key parameters (e.g. katt, kdet, kstr, μl, 

and μs) as well as the coefficients (e.g., φ) in Equations 2.1 ~ 2.3. The 

discussion will be structured according to the governing processes where these 

parameters and coefficients belong to. 

 

(1) Adsorption  

Adsorption, which was named as attachment in some literature, is considered 

as the major governing process for microbial removal. In most of the previous 

studies, adsorption was described with first-order attachment rate coefficient 

katt (Hijnen et al., 2005; Tufenkji, 2007; Zhang et al., 2010).  

 

When calculating katt, a common approach employed in previous studies is the 

colloid filtration theory (Hijnen et al., 2005; Zhang et al., 2010): 
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Where dc is the average media grain size (cm); η0 is the single media 

contact efficiency (-); α is the attachment coefficient (-), which was calculated 

from the bacterial breakthrough curves (Tufenkji and Elimelech, 2004): 
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Equation 2.5 

Where L is the filter media packed length (L); c/c0 is the normalized 

bacterial concentration in the column outlet at the initial stage of the particle 

breakthrough curve. 
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This approach allows reflect the characteristics of filter media, since dc, η0, and 

α are all depend on media properties. In addition, it represents the dependence 

between pore water velocity and attachment rate, which is, a higher pore water 

velocity could result in a higher attachment rate. However, this dependence 

was challenged by the findings of many previous studies, which indicated that 

higher microbial removal is achieved under lower infiltration rates due to 

enhanced adsorption was achieved at the lower infiltration rate (Bradford et al., 

2006; Stevik et al., 2004; Tong and Johnson, 2006). Furthermore, Harter et al. 

(2000) observed a peculiar dependence between α and pore velocity: 

significantly decreases with decreasing pore velocity; however, it is not 

explained by the model colloid filtration theory. Therefore, the colloid filtration 

theory may have its limitations when describing the adsorption process. 

 

(2) Desorption  

Desorption was neglected in most of the previous studies (Bradford et al., 2006; 

Foppen et al., 2007; Zhang et al., 2010). The main reason is: some studies only 

simulated a single event and used extremely high inflow concentrations, as 

such desorption is less important compared to adsorption, especially if this 

single event occurred in a clean laboratory-scale column which is initially free 

of target microorganisms (Zhang et al., 2010). In addition, it was reported that 

the desorption rate is at least two to three orders of magnitude lower than the 

adsorption rate (Bradford et al., 2006). However, the presence of concentration 

tailing in the outflow breakthrough curves cannot be fully described and 

explained by employing the conventional colloid filtration theory when 

disregarding the desorption process. Furthermore, previous studies showed 

that the slow release of microorganisms that found in outflow breakthrough 

curves during subsequent dosing of microbial-free water is due to the 

desorption of microorganisms from porous media (Bales et al., 1991; Harter et 

al., 2000). Therefore, when developing a model for microbial removal in biofilter, 

it might be necessary to take desorption into consideration. 

 

In the models that included desorption, this process was modelled as first-order 

kinetics as shown in Equation 2.3. In this method, desorption is highly 

depended on the adsorbed microbial concentration, and it is a one-site process. 
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However, some authors, like Johnson et al. (1995), modelled desorption as a 

two-site process where one fraction of reversible adsorbed microorganisms 

desorb at a faster rate within a very short time, whilst the other fraction desorbs 

at a relatively slow rate over a long period of time. Johnson et al. (1995) also 

reported that in their experiment, 90 % of the bacteria were desorbed within a 

very short time, and only the minority of slowly desorbed bacteria contributed 

to the tailing in the outflow breakthrough curve. According to these authors, 

desorption was modelled as: 
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Equation 2.6 

Where Mt is the number of microorganisms remaining in solid phase due 

to reversible adsorption at time, t (cells), M0 is the number of microorganisms 

reversibly adsorbed to the filter media initially (cells), A is the weighting factor 

(-) and kdet1 and kdet2 are the fast and slow desorption rate coefficients (s-1).  

 

However, considering the difficulty of defining the exact fractions of fast and 

slow desorption, the two-site desorption model has hardly been applied in the 

microbial removal in biofilters (Tong and Johnson, 2006; Zhang et al., 2010). 

 

As discussed in Section 2.3.1, the faecal microbial attachment in stormwater 

biofilters would be mainly reversible because of the neutral pH and low ionic 

strengths in stormwater (Schijven and Hassanizadeh, 2000). Therefore, 

desorption is a significant process in stormwater biofilters and should be 

included in models related to microbial removal in stormwater biofilters. 

 

(3) Straining 

Like desorption, the significance of straining is often overlooked in previous 

studies (Hathaway et al., 2011; Zhang et al., 2010). However, Bradford et al. 

(2006) found that straining also plays a significant role in E. coli removal in the 

fine sand media. As shown in Equation 2.4, the authors also modelled straining 

as first order kinetics. In addition, the authors hypothesised that the sites 

available for straining decrease with depth, and the straining coefficient also 

dependent on media size. The model was described as Equation 2.7: 
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Equation 2.7  

Where S2
max is the maximum microbial concentration in solid phase due 

to straining (cells/g), d50 is the average grain size (cm) and β is the 

dimensionless parameter that controls the spatial distribution of retained 

microorganisms (-). 

 

However, considering the small value of S2/S2
max, the first term on the left side 

of Equation 2.7 is very close to 1 and was neglected by a later study conducted 

by the same research group (Gargiulo et al., 2008). 

 

Results reported by Bradford et al. (2006) indicated a non-linear decrease in 

straining capacity with depth, but Foppen et al. (2007) found that straining 

occurs throughout the depth with a linearly decreasing trend. Chandrasena 

(2014) also reported that the majority of straining occurs in the top sediments 

in stormwater filters. These studies all proved that the effect of straining is highly 

dependent on the location in a biofilter. 

 

Although some may argue that the straining coefficient also depends on time 

since the straining sites in a biofilter are limited, Haznedaroglu et al. (2009) 

found that filling of straining sites during a wet weather period was only 

observed under very high microbial concentration in inflow such as 108 

cells/mL. Since such a high inflow microbial concentration has not been 

reported in stormwater, it is unlikely that straining will be limited due to the filling 

of available sites in stormwater biofilters during short wet weather periods with 

relatively low microbial concentrations in inflow. 

 

Furthermore, according to Bradford et al. (2006), in sand based biofilter media, 

straining plays a significant role in removing microorganisms with a size larger 

than 0.425 μm. Since the sizes of all free phase protozoa, bacteria and some 

large viruses are larger than that, straining should be included as one of the 

major processes in any predictive model for stormwater biofilters. 
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(4) Die-off 

Microbial die-off is an integral part of the faecal microbial behaviour, and 

typically modelled as first-order kinetics (Equation 2.8) (Crane and Moore, 

1986; Yates and Yates, 1987). As discussed in Section 2.3.1, the die-off rate 

coefficient (μ) is highly dependent on various operational factors like 

temperature and moisture content. To simplify the model, most of the previous 

studies lumped the influence of operational conditions into a single μ value; 

however, some studies represented more complex functional dependencies to 

reveal the effect of each individual operational factor, and the overall die-off rate 

coefficient was be represented as a combination for each functional relationship 

(Equation 2.9) (Reddy et al., 1981; Zhang et al., 2012). According to Zhang et 

al. (2012), the impact of temperature is shown in Equation 2.10. In addition, 

based on the data reported by Boyd et al. (1969), Reddy et al. (1981) suggested 

an equation (Equation 2.11) to describe the impact of moisture content on the 

die-off rate: 
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Where Nt is the current microbial concentration in the media (cells/g or 

cells/mL), N0 is the initial microbial concentration in the media (cells/g or 

cells/mL), μ0 is the reference first order die-off rate coefficient at given reference 

conditions of the system of interest (e.g.: standard temperature, moisture 

content, pH) (s-1), FT, FM and FpH are the factor for temperature, moisture 

content and pH respectively (-), T is the temperature (°C), T0 is the reference 

temperature (e.g. 20 °C) (°C), θ is the Temperature correction coefficient, MC 

is the moisture content (%), α are β the linear regression coefficients (-). 

 

Since the contributions made by die-off during wet weather events are not as 

significant as other processes like adsorption, some studies neglected this 

process when modelling the wet weather events (Chandrasena et al., 2013; 

Zhang et al., 2010). However, die-off has been proved to be the major process 
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for microbial removal during the dry periods between wet weather events. 

Therefore, this process should be included in any predictive model that 

designed for microbial removal in stormwater biofilters. 

 

2.6.4   Summary of existing models 

Although several models have been developed to model the governing 

processes during wet weather events and/or dry periods in between, none of 

them could meet all the requirements listed at the beginning of Section 2.6. In 

other words, none of them is capable of being utilised as a predictive model for 

RTM/RTC of stormwater biofilters. However, it might be possible to incorporate 

the available methodologies for individual event/process/factor modelling, in 

order to develop a comprehensive predictive model for RTM/RTC for microbial 

removal in stormwater biofilters. 

 

2.7    Conclusions of literature review and key knowledge 

gaps 

The existing stormwater biofilters need to be optimised considering the high 

levels of microorganisms in urban stormwater runoff and the high requirements 

in Australia guidelines for stormwater harvesting and reuse as well other 

guidelines. In most previous studies, the optimisation of biofilters in microbial 

removal focused on the design perspective. Although some studies also 

revealed the importance of operational conditions, the optimisation of these 

operational conditions has hardly been applied due to the difficulty of 

implementation. To solve this problem, RTC technology is a potentially effective 

tool. Although RTC has been applied in some other domains in the 

environmental field, currently no publication has been found to discuss the 

application of RTC in stormwater biofilters. Therefore, a framework for RTC of 

stormwater biofilters should be developed.  

 

According to the characteristic of biofilters and faecal microorganisms, the 

framework of RTC in stormwater biofilters may include developing predictive 

models for microbial removal prediction, developing RTC strategies, testing 
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RTC strategies through practical implementation, and use the developed model 

to systematically evaluate RTC strategies.   

 

The key knowledge gaps to for the development of the framework of RTC in 

stormwater biofilters include: 

(1) Lack of a predictive model of microbial removal in biofilters to serve as the 

fundamental part of RTC for strategy evaluation and selection, which should 

include the governing processes and key factors, and represent both wet 

weather events and dry periods; 

(2) Lack of RTC data for model development; 

(3) No RTC strategy for stormwater biofilters has ever been developed; 

(4) The outcomes of adopting different RTC strategies in various systems (i.e., 

with various sizes, locations, and under different weather conditions) are 

unknown; 

(5) Lack of knowledge about if the RTC strategies design for the optimisation 

of faecal microbial removal would worsen the treatment of other pollutants; 

(6) How to balance the competing needs for stormwater harvesting and reuse 

(e.g., high water volume and good water quality) that may exist in RTC 

implementation needs to be studied. 

 

2.8   Research questions and hypotheses 

To address the research gaps listed in Section 2.7, three high-level research 

questions and hypotheses are formulated. 

 

Research Question 1: What components need to be included and what 

equations could be adopted in a model that developed for the prediction of 

faecal microbial removal in stormwater biofilters? 

 It is hypothesised that the governing processes for faecal microbial 

removal in biofilters, adsorption, desorption, straining, and survival/die-

off, need to be included in the model; 

 It is hypothesised that the key operational factors for faecal microbial 

removal in biofilters, such as temperature and moisture content, need to 

be included in the model; 
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 It is hypothesised that advection-dispersion equations can be employed 

to simulate the transport and fate of faecal microbes within biofilters. 

 

Research Question 2: What are the criteria and what information and facilities 

could be adopted in developing an effective RTC strategy for stormwater 

harvesting and reuse?  

 It is hypothesised that the criteria for an effective RTC strategy include 

be capable of providing large volume and good quality of water for 

harvesting, could well protect the environment, be adjustable to various 

design features and operational conditions, be easy to implement, and 

need low cost;  

 It is hypothesised that the forecast and real-time information of weather 

(e.g. rainfall forecast, rainfall duration, and number of dry days), inflow 

characteristics (e.g. inflow rate and concentration), and operational 

conditions of biofilters (e.g. temperature, moisture content, the depth of 

submerged zone) could be adopted to develop an effective RTC strategy; 

 It is hypothesised that different types of sensors, valves in pipes, timers, 

and flowmeters could be adopted to develop an effective RTC strategy. 

 

Research Question 3: What benefits could RTC provide, and how select the 

optimum RTC strategy in a certain case to balance the competing needs that 

may exist in stormwater harvesting and reuse?  

 It is hypothesised that different RTC strategies could provide different 

benefits, e.g., some could provide a large volume of water for harvesting, 

some could provide extremely high water quality for harvesting, while 

some could only provide benefits for harvesting but also protect the 

environment well.  

 It is hypothesised that even a same RTC strategy could provide different 

benefits when being applied in different systems with various design 

features and inflow characteristics (e.g., inflow volume and 

concentration); 

 It is hypothesised that using the modelling tool to explore a large amount 

of RTC strategies and test numerous scenarios, with the consideration 
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of treatment requirements (e.g., for different end uses), could help to 

figure out the optimum RTC strategy and balance the competing needs 

that may exist in stormwater harvesting and reuse. 
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3.1   Introduction 

To achieve real time control (RTC), there are two types of strategies: off-line 

strategy and on-line strategy (Schütze et al., 2002). In off-line strategy, 

operational objectives are specified prior to the actual control process, set-

points are normally fixed; while in on-line strategy, operational objectives are 

defined as a mathematical function, and set-points are variable and determined 

during the control process (Schütze et al., 2002). For RTC in stormwater 

biofilters, off-line strategies are preferred compared to on-line strategies, and 

the reasons include: (1) stormwater biofilters are rather simple low-tech 

systems, and (2) stormwater biofilter with RTC are required to react rapidly 

during rainfall events with short duration, and an off-line strategy normally 

needs less time to trigger control than an on-line strategy by avoiding to re-

determine set-points (Lund et al., 2018). 

 

To explore the potential off-line strategies for stormwater biofilters, using 

laboratory experiments and field tests to test each strategy is impractical, due 

to the large number of strategy, the high cost of experimental tests, and the 

long duration of each test. Another option for the evaluation of RTC strategies 

is modelling, as it is a more cost-effective tool that requires much less time and 

resources. Therefore, a predictive model for RTC serves as a fundamental part 

to achieve RTC in stormwater biofilters. 

 

A capable predictive model is expected to include the governing processes (e.g., 

adsorption, desorption, and die-off) and operational factors (e.g., temperature) 

of microbial removal in biofilters, as without them, the microbial behaviours 

could not be sufficiently represented. In addition, the model should be able to 

simulate different operational conditions (e.g., infiltration rate, inflow volume, 

and inflow concentration) and reflect how these conditions would impact the 

transport and fate of microbes. The reason is, the function of RTC is to optimise 

these operational conditions in stormwater biofilters; if the model is not sensitive 

to these operational conditions, the effects of RTC could not be well predicted. 

Moreover, considering the large amount of potential strategies and scenarios, 

the difficulty in data collection, and the short during of some rainfall events, the 
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model that could generate accurate predictions with minimum data 

requirements and simulation time is favoured. 

 

However, there is no available model that could meet all the above 

requirements. The previously developed models either focused only on one 

single wet event or dry period rather than continuous simulation of wet-dry-wet 

weather patterns (e.g., the models developed by Zhang et al. (2010) and Zhang 

et al. (2012)), or did not include all the governing processes and key factors 

(e.g., the one develop by Chandrasena et al. (2013)). Therefore, a model 

should be developed to fulfil these requirements. 

 

It is also noted that, currently there are no RTC data available for stormwater 

biofilters, while a large amount of data have been collected for typical biofilters 

without RTC (non-RTC). Therefore, the first step of model development for RTC 

is to develop a model for typical biofilters without RTC, and this non-RTC model 

may need to be modified for RTC simulation later when RTC data are available.  

 

As such, the objective of this study is using currently available data to develop 

a model (for non-RTC biofilters) to simulate the microbial removal in biofilters. 

This model should also have the potential to be applied for RTC simulation after 

modification. The research questions include: 

 What components should be included in the model to adequately 

simulate the faecal microbial removal in stormwater biofilters? 

 What equations could be utilised to model the transport and fate of faecal 

microbes within biofilters? 

 How will the model perform when being applied in biofilters with various 

design features (e.g., different plan types and filter media types)? 

 

Corresponding to the research questions, three hypotheses were made: 

 faecal microbial removal in stormwater biofilters can be adequately 

simulated by modelling the governing processes (e.g., adsorption, 

desorption and die-off) that associated with key operational factors (e.g., 

temperature);  
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 the advection-dispersion equations and first-order kinetics equations can 

be employed to simulate the transport and fate of microbes in biofilters; 

 the model is expected to perform generally consistent when being 

applied in different biofilters configurations; however, the differences in 

some design features (e.g., plant root size) may introduce extra 

uncertainties in prediction. 

 

This chapter presents the processes of model development and testing based 

on a set of laboratory-scale column experiments. The results of sensitivity 

analysis and model validation are also included in this chapter to provide a 

comprehensive evaluation of the presented model.  

 

The chapter is reproduced from an article published in Science of the Total 

Environment and presented in the original format of the journal. The citation is: 

 

Pengfei Shen, Ana Deletic, Christian Urich, Gayani I. Chandrasena, 

David T. McCarthy (2018). Stormwater biofilter treatment model for 

faecal microorganisms. Science of the Total Environment, 630, 992 – 

1002. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Development and testing of stormwater biofilter treatment model for faecal microorganisms 

73 
 

3.2   Stormwater biofilter treatment model for faecal 

microorganisms 
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3.3   Discussion and conclusions 

The promising performance of the developed model when being tested with the 

data collected from various biofilter configurations demonstrated that the model 

could be broadly applied in different systems. In addition, the predictive model 

is adjustable under different operational conditions and weather patterns, such 

as various infiltration rates, inflow volumes and concentrations, and dry lengths 

between wet events. These results indicated that the model could reflect the 

effects of operational optimisation; e.g., how the system would perform if the 

infiltration rate or inflow volume is controlled. This is especially important for 

RTC modelling, as the major purpose of adopting RTC is to adjust the 

operational conditions to achieve system optimisation. Therefore, this 

predictive model for non-RTC biofilters has the potential to be employed for 

RTC strategy evaluation after modification.  

 

However, only one set of laboratory experiments have been employed to test 

this model; how the model would perform in other biofilter systems (especially 

field systems) that with various design and operational conditions is still 

unknown. Moreover, whether model parameters that calibrated for one system 

are capable of predicting the performance of another system needs to be tested, 

to ensure the model could still provide reliable prediction when being applied in 

a system that no data are available (e.g., a newly developed system). More 

importantly, whether this model could be modified to fully reveal the benefits of 

RTC remains unseen, as no RTC data are available. 

 

As such, several studies need be conducted: (1) test the model with additional 

data that collected from various systems, especially field systems, (2) analyse 

parameter transferability and prediction uncertainty of this model, (3) collect 

RTC data for model modification, and (4) modify the model and evaluate the 

modified model’s performance in simulating biofilters that implemented with 

RTC strategies. All these studies will be presented and discussed in the 

following chapters. 
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4.1   Introduction 

In Chapter 3, a predictive model for microbial removal in stormwater biofilters 

was developed. This model was tested using a set of laboratory experiments 

that explored the performance of various biofilter designs (i.e., different filter 

media and plant types). The model results indicated that the model prediction 

fitted the observation well for each of the tested biofilter configurations. 

Therefore, there is a potential to apply this model in aiding the design of 

biofilters in the future, and simulating real time control (RTC) for stormwater 

biofilters after modification.  

 

However, how the model would perform when being applied in other biofilter 

systems that have different design features and operated under various 

conditions (especially the field systems that have larger scales and may 

experience extreme operational conditions) is still unknown, impeding a 

broader application of this model. More importantly, we need to analyse 

whether the model parameters that calibrated for one system are transferable 

to another system with similar design, to ensure that even if no data are 

available (e.g., for a newly developed system, or a large-scale field system 

where monitoring is very difficult to fulfil), the model could still provide 

reasonably good prediction by employing the parameter values that were 

calibrated for other systems. Although validation has been attempted by 

splitting the data into calibration part and validation part in Chapter 3, the model 

has not been successfully validated for all the tested biofilter configurations, as 

in some cases the model's performance during validation was never similar or 

better than what was observed during calibration. The main reason was 

proposed to be, 50% of the events were extreme in nature (e.g., of high volume 

and after long dry period), and thereby more data were required to adequately 

represent these events during calibration. 

 

As such, the main objectives of this study are to test the performance of the 

developed model with additional datasets (other than the dataset used from 

model development) that were collected from biofilters with a wide range of 

designs and operational conditions, and analyse the transferability of the 



Chapter 4. Model validation, parameter transferability analysis, and uncertainty analysis 

88 
 

calibrated parameters from one system to another (e.g., from a lab-scale 

system to a field-scale system). The research questions include: 

 Is model capable of predicting microbial removal in various biofilter 

systems with different design and operational conditions? 

 What is the prediction uncertainty when the parameters that calibrated 

with the data that collected from one biofilter system are transferred to 

another system with similar plant type and media type? 

 

Corresponding to the research questions, two hypotheses were made:  

 Since the governing processes and key operational factors for microbial 

removal have been included, this model is adequate to provide 

reasonably good microbial removal prediction in various biofilter systems; 

 The plant type and media type are the most significant design factors 

that govern the microbial removal in stormwater biofilters; therefore, 

parameters that were calibrated with the data that collected from one 

biofilter system, can be transferred to another system with similar plant 

type and media type, with generally low prediction uncertainty.  

 

This chapter presents the processes of model testing based on a set of 

laboratory-scale column experiments and a field system monitoring. The results 

of the sensitivity analysis are included in this chapter. In addition, parameter 

transferability analysis and prediction uncertainty analysis are also conducted, 

to comprehensively evaluate model’s potential of being applied in various 

systems, especially the systems with limited data available (e.g., newly 

developed systems). 

 

This chapter is written as a draft for journal publication and has been submitted 

to Journal of Hydrology. 
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4.2   Validation and uncertainty analysis of the developed 

model for microbial removal in stormwater biofilters 
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Abstract  

Stormwater biofilters, also known as rain gardens or bioretention systems, are 

effective stormwater treatment systems. This paper presents the validation, 

sensitivity and uncertainty analyses of a model for microbial removal in 

stormwater biofilters. The model, previously developed based on a rather 

limited laboratory study, has been fully validated using the data collected in 

extensive laboratory experiments and field tests. The lab-scale and field-scale 

systems used for validation were of various designs (e.g., system size, plant 

type, media type, and the existence of submerged zone), and have been 

operated under a wide range of operational conditions (e.g., length of the 

antecedent dry period, and the inflow volume and concentration). For each 

tested biofilter design, the predicted E. coli concentrations in the biofilters’ 

outflow showed relatively good agreement with the measured ones: e.g., Nash-

Sutcliffe Efficiency (Ec) ranged from 0.50 to 0.60 for the laboratory tests, while 

Ec of 0.55 was obtained for the field system. The results from the sensitivity 
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analysis not only confirmed the significance of adsorption and desorption 

processes, but also revealed the impact of temperature on microbial die-off 

(which was not fully represented in the model development stage). Finally, 

parameter transferability from one system to another with similar design was 

examined, achieving generally promising Ec values (0.04 ~ 0.56 with the best-

fit parameter set for the other system; maximum value: 0.46 ~ 0.63) and 

reasonable uncertainties (intersection percentage between prediction 

uncertainty band and observation with uncertainty intervals: 50  ~ 97 %). Most 

importantly, the prediction of E. coli outflow concentrations from the field system 

was reasonably good when laboratory-determined parameter values were 

adopted: with the best-fit parameter set for the lab-scale system, Ec = 0.39; 

maximum Ec = 0.55; intersection percentage between prediction and 

observation = 83 %. These results suggested that this rare biofilter model for 

microbial removal could provide reliable prediction for large-scale field systems, 

by simply calibrating parameters with limited laboratory-scale experiments. 

 

Keywords 

Stormwater biofilter; modelling; microbial removal; sensitivity analysis; model 

validation; E. coli 

 

 

Introduction 

Faecal microorganisms have been identified as a major pollutant in stormwater 

and reported to degrade waterways all over the world (Burton and Pitt, 2002; 

Ferguson et al., 2003). In addition, they impede stormwater harvesting due to 

the health risks they pose when contacting with humans (Fletcher et al., 2008).  

 

To remove faecal microbes and other pollutants contained in stormwater, 

biofilters (also known as rain gardens or bioretention systems) have been 

widely applied in Australia and other countries. Stormwater biofilters are often 

effective for microbial removal: e.g., the microbial removal rates reported in a 

number of laboratory studies ranged from 73% to 99.9% (Chandrasena et al., 

2014b; Li et al., 2012; Zhang et al., 2010; Zhang et al., 2011). However, in field 

studies, the microbial removal rate was found to be far more variable - it ranged 
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from 99% to even leaching (< 0) under challenging operational conditions 

(Chandrasena et al., 2016; Hathaway et al., 2011; Hathaway et al., 2009; Zinger 

et al., 2011). Unsurprisingly, the biofilter design impacts on microbial removal; 

the significance of filter media type, plant type and the existence of submerged 

zone were emphasized in a number of laboratory investigations (Chandrasena 

et al., 2014b; Li et al., 2016). 

 

There are only a few models developed for the assessment of microbial 

removal by stormwater biofilters to aid the design of systems. These models 

range from very simple black box regressions to rather complex process-based 

models (Chandrasena et al., 2013; Shen et al., 2018b; Zhang et al., 2010; 

Zhang et al., 2012). Among them, the process-based model developed by Shen 

et al. (2018b) could be regarded as rather promising, as it showed good results 

in predicting E. coli concentrations in the outflow of five different biofilter designs 

tested in a controlled laboratory study (Chandrasena et al., 2017). This model, 

although process-based, is still rather simple; it contains a flow module and a 

microbial module that simulates adsorption, desorption, and die-off of microbes 

within stormwater biofilters. 

 

However, before this model could be broadly adopted, its performance has to 

be tested on a wider range of biofiltration designs. Particularly, the model must 

be validated in field conditions, since field systems are often challenged due to 

unpredicted microbial inflows and extreme weather conditions (Daly et al., 2014; 

Göbel et al., 2007). In Australia, full-scale testing of stormwater harvesting 

systems is a must according to current guidelines (DHV, 2013); hence, any 

model that is to be used for designing of such systems must be fully validated 

in field conditions. 

 

Furthermore, the uncertainty of any model outcomes needs to be assessed 

before a model is employed (Uusitalo et al., 2015). Since model parameters are 

often site-specific, accuracy and reliability of a model may be compromised 

when the parameters obtained from one system are transferred to another 

(Zhang et al., 2016). These are more likely to happen when the parameters 

calibrated at laboratory scale were used for field-scale predictions, as in the 
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field, uncertainties are more difficult to control than in a laboratory. However, 

adopting lab-based parameters for field predictions is sometimes the only 

option we have due to the large cost of field-scale monitoring programs (Zhang 

et al., 2016). 

 

The aim of this study is to validate the process-based model developed by Shen 

et al. (2018b) for the prediction of microbial concentrations in stormwater 

biofilters’ outflow. The main objectives include: (1) to test the model for the 

prediction of microbial concentrations under a wide range of biofilter designs 

and operational conditions, including the model testing on a full-scale field 

system; (2) to undertake global parameter sensitivity analysis to understand the 

significance of simulated microbial removal processes and the operational 

factor; (3) to analyse the transferability of the calibrated parameters from one 

system to another (including transferability of the calibrated parameters at 

laboratory scale to a field scale system); and (4) to assess prediction 

uncertainty in model prediction to understand the model’s reliability. The 

presented work gave us confidence that the model can be applied to various 

biofiltration designs. The key finding was that the model calibrated in rather 

limited laboratory conditions could be used without further calibrations for large-

scale field systems with reasonable accuracy. Since stormwater biofilters are 

often large systems that cannot be easily validated, the model could be used 

as a valuable tool for system design and evaluation.  

 

Methods 

2.1 Model description 

The model fully explained in Shen et al. (2018b) consists of two modules: (1) 

water flow module, which describes the flow processes in biofilters; (2) 

microbial quality module, which simulates the microbial behaviours based on 

the results from water flow module. A “three-bucket” approach was applied in 

both modules; the buckets represent the three major parts of a typical biofilter: 

(a) ponding zone – a temporary pond on the top of filter media, (b) unsaturated 

zone – the unsaturated filter media, and (c) submerged zone – the saturated 

filter media created by a raised outflow pipe (Figure 1-left). For the biofilters 

without submerged zone (Figure 1-right), only the first two buckets were applied.  
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The water flow module has two parameters: (1) hydraulic conductivity, Ks, and 

(2) the plant coefficient for evapotranspiration, Kc, which reflects the water 

uptake ability of different plant species. In the microbial quality module, one-

dimensional advection-dispersion equations were employed to simulate 

microbial transport and fate, with four parameters: adsorption rate (katt), 

desorption rate (kdet), the standard die-off rate (μ0) and the temperature 

correction coefficient for die-off (θ). The details of equations and parameters 

were fully presented in Shen et al. (2018b) with a summary in Supplementary 

material A.  

 

Figure 1 Schematic representations of stormwater biofilters with and without 

submerge zone (SZ) (adapted from Shen et al. (2018b)). 

 

2.2 Validation data sets  

The model was validated using two data sets: (1) the results of a number of 

laboratory experiments (different from the experimental data used for model 

development), and (2) the data collected from a field-scale system (Table 1). 

The laboratory experiments (named as Lab in Table 1) on three different 

biofilter designs (with 5 replications of each) were conducted in a greenhouse 

at Monash University in Australia and have been fully published in Li et al. 
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(2016). All of the biofilter designs had identical column size and filter media, but 

each design had different plant type (Table 1). The data collected from a field-

scale biofilter located in the Royal Melbourne Golf Club, Cheltenham (a suburb 

of Melbourne, Australia) were also used (named as Field in Table 1). 

Experiments setup and data collection of this system have been published in 

Chandrasena et al. (2016). 

 

Table 1 Design characteristics of biofilters in the two validation data sets. A 

Biofilter ID is given to each biofilter design according to its plant type: e.g., Lab-

WS represents the unvegetated biofilters (washed sand only) in the Lab data 

set, Field-CP stands for the biofilters in Field data set that planted with Carex 

appressa. 

Data set Plant 
Biofilter 

ID 

No. of 

replicates 
Filter media Biofilter size 

Lab 

(Li et al., 

2016) 

Unvegetated Lab-WS 5 

Washed 

sand, with a 

zeolite layer 

Column diameter: 240 mm 

Ponding zone depth: 280 mm 

Unsaturated zone depth: 400 mm 

(zeolite layer depth: 150 mm) 

Submerged zone depth: 440 mm 

Palmetto buffalo Lab-PB 5 

Leptospermum 

continentale 
Lab-LC 5 

Field 

(Chandrasena 

et al., 2016) 

Carex appressa Field-CP N/A 
Washed 

sand 

Surface area: 860 m2 

Ponding zone depth: 300 mm 

Unsaturated zone depth: 950 mm 

No submerged zone 

 

(1) Monitoring and sampling information of Lab data set 

From 10/2012 to 08/2013, 42 dosing events were implemented (Table 2); each 

column was dosed with semi-natural stormwater (Bratieres et al., 2008; Li et al., 

2016). Among them, 19 events were sampled and analysed. In non-sampling 

events, the dosing volume represents the average rainfall event size in 

Melbourne (equivalent loading: 5.75 mm); in sampling days, three challenging 

events with a dosing volume represents the 1 in 3 months average recurrence 

interval (ARI) (equivalent loading: 17.68 mm) were conducted, and in the other 

16 sampling events the dosing volume represents 1 in 1 month ARI (equivalent 

loading: 8.84 mm). In each dosing event, Escherichia coli (E. coli) was spiked 

into inflow as a faecal microbial indicator, with a typical concentration found in 

stormwater runoff (Duncan, 1999) (Table 2). These events also have various 

lengths of antecedent dry days to represent the natural variability (Table 2). In 



Chapter 4. Model validation, parameter transferability analysis, and uncertainty analysis 

95 
 

sampling days, inflow and outflow samples were collected; for outflow, the 

composited water remained in submerged zone from the previous event (“old” 

water), and composited newly treated outflow (“new” water) were respectively 

sampled. All the samples were transported on ice to the Environmental and 

Public Health Microbiology Laboratory (EPHM Lab) for enumeration of E. coli 

using the Colilert method™ (IDEXX-Laboratories, 2007). In each event, the 

instantaneous water depths in ponding zone after a regular interval and the total 

outflow volume were also recorded for each column.  

 

(2) Monitoring and sampling information of Field data set 

The stormwater runoff that collected from the catchment was pumped from 

temporary underground storage to the biofilters under a controlled inflow rate 

of 20 ~ 23 L/s (see Chandrasena et al. (2016) for full details). Electromagnetic 

flow meters were installed in both the inflow pipe and outflow pipe. Auto-

samplers were utilised to collect inflow and outflow samples using a flow-

weighted strategy: a 1 L water sample was taken after every 100,000 L water 

went through. From 05/2012 and 10/2013, 20 sampling events, with various 

event sizes, inflow concentrations and antecedent dry periods, were conducted 

(Table 2).  All the collected samples were also transported on ice to EPHM Lab 

for E. coli analysis using the Colilert method™ (IDEXX-Laboratories, 2007). 

Due to data collection difficulty, the data of instantaneous water depths in 

ponding zone were not available. 

 

Table 2 Sampling information of the two validation data sets: Lab and Field. 

Data set 
Duration of 

monitoring 

No. of 

sampling 

events 

Antecedent  dry 

days of sampling 

events 

Inflow 

concentration of E. 

coli 

Data of instantaneous 

water depths in 

ponding zone 

Lab 11 months 19 1 day ~ 28 days 
7.25 ~ 3.78×104 

MPN/100mL 
Available 

Field 17 months 20 1 hour ~ 6.75 days 
1 ×104 ~ 1.4 ×107 

MPN/100mL 
N/A 

 

2.3 Calibration and sensitivity analysis  

Water flow module and microbial quality module were calibrated separately. For 

each biofilter design, water flow module was calibrated firstly to obtain the flow 

conditions; afterwards, these flow conditions were used in the microbial quality 
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module for the prediction of microbial concentration. The Nash-Sutcliffe 

Efficiency, E (Nash and Sutcliffe, 1970), was used to evaluate the performance 

of each module.  

 

(1) Calibration of water flow module 

In the calibration of water flow module, each column in Lab data set was 

calibrated individually (i.e., replicate by replicate), as different operational 

conditions might inherently occur in different columns (e.g., clogging, cracks, 

and plant growth rates).        

 

The instantaneous water depths in ponding zone were used to calibrate Ks 

(hydraulic conductivity), and the outflow volumes in each sampling event were 

used to calibrate Kc (plant coefficient for evapotranspiration). An equal-

weighted multi-objective function of ponding water depths and event outflow 

volumes was employed to calculate the overall E of this module, Eq (Caramia 

and Dell'Olmo, 2008):  

𝐸𝑞 = 0.5 × (𝐸𝑑𝑒𝑝𝑡ℎ + 𝐸𝑣𝑜𝑙𝑢𝑚𝑒)             Eq. (1) 

where Edepth is the E value calculated using the observed and predicted ponding 

water depths (for Ks), and Evolume is the E value calculated using the observed 

and predicted outflow volumes (for Kc). 

 

For Field-CP, since no data were available for the calibration of water flow 

module, literature values of Ks and Kc were utilised to simulate water flow for 

the calibration of microbial quality module: Shen et al. (2018b) calibrated Ks and 

Kc for five biofilter columns that planted with Carex appressa and have washed 

sand as filter media; as Field-CP has the same plant type and media type, these 

two biofilter designs were assumed to have similar features regarding water 

flow; therefore, the mean values of calibrated Ks (197 mm/h) and Kc (1.2) in 

Shen et al. (2018b) were employed in this study.   

 

(2) Calibration and sensitivity analysis of microbial quality module 

In the calibration of microbial quality module, for each of the three biofilter 

designs in Lab, parameters were calibrated simultaneously for all five replicates, 
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as the differences of parameter values between replicates were assumed to be 

negligible, and individual column-by-column calibration was not supported by 

the water quality data.  

 

Modified Monte-Carlo method that introduced by Vezzaro et al. (2013) was 

utilised for the calibration of Lab and Field. 100,000 parameter sets were 

randomly generated and tested in each biofilter design: katt - adsorption rate (0.1 

~ 6 h-1), μ0 - standard die-off rate (1 ~ 4 day-1), and θ - temperature correction 

coefficient for die-off (0.9 ~ 1.6) were uniformly distributed; kdet - desorption rate 

was log uniformly distributed (Log10 (kdet): -5 ~ 0.6 h-1). The predicted E. coli 

concentrations in outflow by using each parameter set were recorded and 

compared with the observed data to calculate the E of this module, Ec; the 

parameter set that generated highest Ec was considered as the best-fit 

parameter set. All the E. coli concentration data were log-transformed, to 

represent the lognormal distribution of microbial concentrations (NHMRC, 

2008), and to avoid bias (E favours peaks) (Criss and Winston, 2008). For each 

biofilter design, parameter distributions were generated by adopting the method 

introduced by Vezzaro et al. (2013) for ranking and selecting parameter sets; 

the parameter selection criterion was to ensure that the model prediction could 

cover ≥ 70 % of the observations, and if the number of parameter sets is further 

enlarged, only limited increment in observation coverage can be achieved. 

Parameter distributions of each configuration were plotted for sensitivity 

analysis. 

 

For Lab data set, the model was run with a 1-minute time step (dt), and the 

space step (dz) for was set as 40 mm. For Field data set, the model was run with 

a 6-minute time step (dt), as only 6-minute rainfall data were available for Field, 

and the space step (dz) was set as 56 mm. 

 

2.4 Parameter transferability and prediction uncertainty analyses  

Parameter transferability and prediction uncertainty analyses were conducted 

between biofilters with similar filter media and plant, since media type and plant 

type are utmost crucial for microbial removal (Chandrasena et al., 2014b; Li et 

al., 2016). It is noted that, this study focused on the transferability of parameters 
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in microbial quality module (i.e., katt, kdet, θ, and μ0), as these parameters directly 

govern the microbial removal in biofilters.  

 

In addition to the four biofilter designs in the two validation data sets (i.e., Lab 

and Field) (Table 1), the laboratory data set used to develop the model by Shen 

et al. (2018b) was also included. This data set (named Lab-12Aug, according 

to the system scale and the start date of the experiment) was collected by 

Chandrasena et al. (2017) from 08/2012 to 06/2013 on four biofilter designs 

that had similar filter media (washed sand) and plants (Carex appressa, 

Palmetto buffalo, Leptospermum continentale, and unvegetated) compared to 

the biofilters in Field and Lab. Each biofilter design in Lab-12Aug was also given 

a biofilter ID according to their plant type: e.g., Lab-12Aug-CP presents the 

biofilters planted with Carex appressa in Lab-12Aug data set (similar to the 

biofilter ID for Field and Lab in Table 1). Finally, the three data sets (Lab, Field, 

and Lab-12Aug) were divided into four groups according to the biofilter design, 

as shown Table 3 (each group had similar plant and media types). 

 

Table 3 Four groups of biofilter designs for parameter transferability analysis. 

“Biofilter 1 using Biofilter 2” is short for “predicting Biofilter 1’s E. coli 

concentrations using Biofilter 2’s parameter sets” (e.g., “Field-CP using Lab-

12Aug-CP” in Group CP stands for “predicting Field-CP’s E. coli concentrations 

using Lab-12Aug-CP’s parameter sets”). 

Group Biofilter ID Parameter transferability and prediction uncertainty analyses 

Group CP Field-CP Lab-12Aug-CP Field-CP using Lab-12Aug-CP Lab-12Aug-CP using Field-CP 

Group WS Lab-WS Lab-12Aug-WS Lab-WS using Lab-12Aug-WS Lab-12Aug-WS using Lab-WS 

Group PB Lab-PB Lab-12Aug-PB Lab-PB using Lab-12Aug-PB Lab-12Aug-PB using Lab-PB 

Group LC Lab-LC Lab-12Aug-LC Lab-LC using Lab-12Aug-LC Lab-12Aug-LC using Lab-LC 

 

The calibrated parameter sets for microbial removal module from one biofilter 

design were used to predict the E. coli concentrations of the other biofilter 

design that from the same group (while the water flow information of each 

biofilter was still obtained from individual calibration). For example, for Group 

CP (Table 3), the following steps were done: (i) E. coli concentrations were 

predicted in the outflows of Field-CP, with the calibrated parameter sets from 

Lab-12Aug-CP (Field-CP using Lab-12Aug-CP in Table 3); (ii) the Nash-
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Sutcliffe Efficiency (Ec) of Field-CP prediction results with each parameter set 

from Lab-12Aug-CP were calculated; the Ec value when using the best-fit 

parameter set for Lab-12Aug-CP (i.e., using the parameter set that generated 

highest Ec value during the calibration of Lab-12Aug-CP), and the highest Ec 

value obtained in this step, were recorded; (iii) the 90 % uncertainty band of 

Field-CP prediction using Lab-12Aug-CP parameters was generated; the lower 

and upper bounds of the uncertainty band were respectively the 5th and 95th 

percentile of predicted E .coli concentrations (Beven and Binley, 1992); (iv) the 

observation data points with uncertainty intervals were printed with the 

prediction uncertainty band; the observation uncertainty intervals were ±30 % 

(as per McCarthy et al. (2008); including uncertainties occurred during sampling, 

sample transport, and analysis); (v) the intersections between the prediction 

uncertainty band and observation with uncertainty intervals were counted, and 

the intersection percentage was calculated: intersection percentage (%) = 

number of data points where intersection occurred / number of total data points; 

(vi) Steps (i) – (v) were repeated by adopting the parameter sets of Field-CP to 

predict outflow concentrations of Lab-12Aug-CP (i.e., Lab-12Aug-CP using 

Field-CP in Table 3). All these steps were implemented on each group in Table 

3. 

 

3. Results and discussion  

3.1 Calibration  

(1) Water flow module (Lab only) 

Relatively high Eq was achieved for each replicate (ranging from 0.77 to 0.94), 

with 80% of Eq values being above 0.85 (Table 4). Due to the additional 

complexity introduced by plants, the vegetated biofilters (Lab-PB and Lab-LC) 

had lower Eq compared to unvegetated ones (Lab-WS). Lab-WS had higher Ks 

than Lab-PB and Lab-LC, as the existence of plant is more likely to cause 

clogging (Hatt et al., 2007); the Kc values of Lab-LC were higher than for the 

other two designs, as the large plant roots of Leptospermum continentale 

enhanced plant’s transpiration capability (Le Coustumer et al., 2012). Slight 

differences in Ks and Kc values were found between replicates from a same 

design, due to the individual characteristics of each column (e.g., the plant 

growth status, and the occurrence of clogging). 
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Table 4 Calibrated Ks and Kc, and corresponding Edepth, Evolume and Eq for each 

column in Lab.  

Biofilter design  Replicate1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 

Lab-WS Ks (mm/h) 239 228 222 235 202 

Edepth 0.92 0.85 0.83 0.87 0.83 

Kc (-) 1.2 0.9 0.9 1.1 1.1 

Evolume 0.97 0.98 0.97 0.93 0.97 

Eq 0.94 0.91 0.90 0.90 0.90 

Lab-PB Ks (mm/h) 128 116 91 113 89 

Edepth 0.88 0.88 0.84 0.87 0.85 

Kc (-) 1.0 1.6 0.6 1.0 1.0 

Evolume 0.94 0.83 0.94 0.94 0.92 

Eq 0.91 0.86 0.89 0.91 0.88 

Lab-LC Ks (mm/h) 85 94 95 95 81 

Edepth 0.82 0.82 0.85 0.81 0.84 

Kc (-) 1.6 1.6 1.5 1.8 1.6 

Evolume 0.74 0.73 0.87 0.97 0.74 

Eq 0.78 0.77 0.85 0.89 0.79 

 

 

(2)  Microbial quality module (Lab and Field) 

Promising Ec values (0.50 ~ 0.60) were achieved for all tested biofilter designs 

(Table 5). Particularly, the model performance for the prediction of Field (Ec = 

0.55) was as good as those for Lab (Ec = 0.50 ~ 0.60) (Table 5), despite that 

the field-collected data normally introduce more uncertainties compared to lab-

collected data. Furthermore, this Ec value for Field was even higher than that 

achieved in a lab-scale system with similar plant type and media type (i.e., Ec 

= 0.46 for Lab-12Aug-CP, as per Shen et al. (2018b)), which was mainly due to 

the better data quality of Field data set (i.e., the data collected from Field-CP) 

compared to Lab-12Aug-CP (e.g., more sampling events and discrete outflow 

samples). Moreover, compared to other reported E. coli models, the Ec values 

achieved in this study were of high value: e.g., Ec ranged from 0.25 to 0.41 in a 

model developed for the prediction of microbial concentration in stormwater 

runoff (McCarthy et al., 2011). In addition, for each biofilter design, when the 

predicted outflow concentrations were plotted against observed ones, vast 

majority of data points were scattered around the 1:1 line and within the +/- one 

order of magnitude bar in Figure 2, reinforcing the finding that the prediction 

and observation were in good agreement for each biofilter design.  
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Table 5 Parameter values in the optimum calibrated parameter set for each 

biofilter design in Field and Lab, and their corresponding Ec. Parameter values 

reported in the literature are also provided for comparison.  

 Biofilter ID Ec katt (h
-1) Log (kdet) (h

-1) θ (-) μ0 (day-1) 

Calibrated 

in this 

study 

Lab-WS 0.54 2.82 -0.84 1.07 0.34 

Lab-PB 0.60 1.43 -1.41 1.13 0.43 

Lab-LC 0.50 1.79 -0.16 0.92 0.58 

Field-CP 0.55 1.41 -1.79 0.93 0.13 

Reported in 

Shen et al. 

(2018b) 

Lab-12Aug-CP 0.46 1.46 -3.12 1.14 0.64 

Lab-12Aug-WS 0.64 2.74 -0.35 1.07 0.61 

Lab-12Aug-PB 0.63 2.48 -0.04 1.13 1.11 

Lab-12Aug-LC 0.56 1.76 -0.53 1.01 0.03 

Reported in 

other 

literature  

  0.20 ~ 5.86a,b -4.22 ~ 0.31a,b 1.01 ~ 1.19c 0.06 ~ 1.23d,e 

a Bradford et al. (2006); b Gargiulo et al. (2008); c Brauwere et al. (2014); d Chandrasena (2014); e Crane and Moore 

(1986) 

 

 

Figure 2 Comparison of observed and predicted outflow concentrations. 

Dashed lines indicate the 1:1 line between predicted and observed E. coli 

concentrations for Lab and Field data sets, while dotted lines indicate +/- one 

order of magnitude bars.  
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All the calibrated optimum parameter values were within the ranges reported in 

literature (Table 5). For example, the calibrated adsorption and desorption rates 

in this study felt within the ranges of the calibrated values for the same 

parameters when predicting microbial removal in saturated and unsaturated 

porous media (Bradford et al., 2006; Gargiulo et al., 2008). In particular, the 

calibrated die-off rates (μ0) for Lab fitted those obtained from the measurements 

of laboratory biofilter columns very well: as per Chandrasena (2014), the 

measured die-off rates of columns plant with WS (unvegetated), PB (Palmetto 

buffalo), and LC (Leptospermum continentale)  were 0.33 ~ 0.67 day-1, 0.37 ~ 

0.70 day-1, and 0.32 ~ 0.77 day-1 respectively; all the calibrated values of Lab-

WS, Lab-PB, and Lab-LC in this study were exactly within these ranges. 

Importantly, the calibrated μ0 value of Field-CP (μ0 = 0.13 day-1) was lower than 

the measured values of laboratory columns that planted with Carex appressa 

(0.32 ~ 0.68 day-1, as per Chandrasena (2014)). The hypothesised explanation  

is, the laboratory columns in Chandrasena (2014) had submerged zone but 

Field-CP was designed without submerged zone; since submerged zone could 

retain stormwater during dry days to experience longer time of die-off, and 

increase retention time during wet days by reducing hydraulic head for 

infiltration (Chandrasena et al., 2014b), the die-off rate of a system without 

submerged zone (e.g., Field-CP) are normally of low value compared to that of 

a system with submerged zone. However, the calibrated μ0 value of Field-CP 

(μ0 = 0.13 day-1) was still within the ranges of reported die-off rates from other 

studies (e.g., 0.06 ~ 1.23 day-1 according to Crane and Moore (1986)).  

 

In addition, compared to the findings in model development stage (as per Shen 

et al. (2018b)), the calibrated values of katt for Lab-WS, Lab-LC and Field-CP, 

and the calibrated values of θ for Lab-WS and Lab-PB were almost identical to 

those reported for the systems with similar plant and media types. The 

differences in parameter values between this study and that study were mainly 

due to the differences in operational conditions (e.g., both Lab and Field data 

sets had more events than the study reported in Shen et al. (2018b); the 

growing status of plants would be various) and biofilter design (e.g., the 

existence of zeolite layer in Lab). The correlation between parameters during 
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calibration would also be a reason to cause differences in parameter values, 

which will be showed in sensitivity analysis in the next section. 

 

It could be concluded that the model’s performance in the prediction of Lab and 

Field biofilters were comparable to those reported in the model development 

phase by Shen et al. (2018b). This gives us confidence to use the model for a 

wide range of biofiltration designs and operational conditions.  

 

3.2 Sensitivity analysis 

Similar patterns of parameter distributions for each biofilter design in Field and 

Lab were obtained; therefore, only the results for Field-CP are presented here 

(Figure 3); the results for Lab biofilters are listed in Supplementary material B.  

 

 

Figure 3 Matrix plot of Field-CP for sensitivity analysis. The diagonal histograms 

represent the distributions of Ec and all the parameters; the scatter plots 

between parameters reveal the parameter interactions. 

 

For Field-CP, the peak in the diagonal histograms of katt, kdet and θ in the matrix 

plot (Figure 3) suggested that the model was sensitive to these parameters 

(Dotto et al., 2012), indicating that adsorption and desorption processes were 

crucial for trapping microbes in Field-CP, and temperature is an influential factor 

for die-off.  
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The significance of katt and kdet agreed with the findings in literature very well, as 

the majority of published studies reported that attachment and detachment were 

the most important processes for microbial removal (Bradford et al., 2006; 

Chandrasena et al., 2013; Stevik et al., 2004). In addition, temperature was also 

considered as a crucial factor for microbial survival (Chandrasena et al., 2014a; 

Stevik et al., 2004; Zhang et al., 2012), and the importance of it was confirmed 

in the sensitivity analysis in this study. It is noted that, in the model development 

stage, the importance of temperature was not successfully reflected, and the 

model was not very sensitive to the temperature coefficient (θ) in that study (Shen 

et al., 2018b). The improvement in this study was hypothesised due to the better 

data quality of Field compared that in Shen et al. (2018b) (e.g., more events and 

discrete outflow samples), and the temperature in the Field data set had higher 

fluctuation compared to the data set used for model development (which was 

collected from a greenhouse).  

 

Importantly, the model is less sensitive to μ0 than to other three parameters, 

although die-off rate governs the microbial removal during dry weather periods 

(Chandrasena et al., 2014a; Stevik et al., 2004; Zhang et al., 2012). In addition 

to the reason that parameter correlation and compensation occurred during 

calibration (Shen et al., 2018b), the importance of die-off could not be fully 

interpreted in Field-CP, as (1) Field-CP has no submerged zone, therefore, only 

limited water was retained in Field-CP to experience die-off during dry days; and 

(2) the dry period lengths in Field data set were not long enough to reflect die-off, 

as the longest dry period was only 6.75 days. 

 

Similar results were found for Lab biofilters (Figure B.1, Figure B.2 and Figure 

B.3): the model was most sensitive to katt and kdet; the sensitivity to θ was also 

enhanced compared to previous study in Shen et al. (2018b), due to a larger 

number of events in Lab data sets; the model is less sensitive to μ0 , because (1) 

parameter correlations occurred, and (2) among 19 sampling events in Lab, only 

three of them have a dry period longer than 7 days, which might be not enough 

to reveal the importance of die-off (Shen et al., 2018b).  
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3.3 Parameter transferability and prediction uncertainty analyses 

The Ec values obtained with the best-fit parameter set for the other system (e.g., 

for Field-CP by Lab-12Aug-CP, the Ec value obtained in Field-CP prediction 

with the best-fit parameter set for Lab-12Aug-CP) ranged from 0.04 to 0.56; 

these Ec values were favourable in comparison to other studies about 

parameter transferability analysis: e.g., Zhang et al. (2016) reported that when 

the best-fit parameters that estimated from laboratory experiments were used 

to predict micro-pollutants removal in field-scale biofilters, the Ec value could 

drop to -1.7. Acceptably high Ec values were achieved in most of the 

configurations (75% of Ec values were above 0.32), except the prediction of 

vegetated configurations in Lab (i.e., Lab-PB and Lab-LC) using the parameters 

from Lab-12Aug. The reason for the generally low Ec values in the prediction of 

Lab-PB and Lab-LC might be, compared to Lab-12Aug-PB and Lab-12Aug-LC, 

the soil moisture contents in these two configurations were probably influenced 

by the zeolite layer, and accordingly the plant growth status were different to 

those in Lab-12Aug-PB and Lab-12Aug-LC, which could dramatically impact 

microbial removal (Stevik et al., 2004). 

 

In addition, all the maximum Ec values achieved in parameter transferability 

analysis (0.46 ~ 0.63 in Table 6) are similar to those in the calibration of Lab, 

Field, and Lab-12Aug biofilters (0.46 ~ 0.64 in Table 5). All these results 

indicated that the model performance in microbial removal prediction was not 

obviously diminished when adopting the calibrated parameter values from 

another system with similar plant and media types.  

 

Especially, when the lab-based parameters (calibrated from Lab-12Aug-CP) for 

both water flow module and microbial quality module were used to predict the 

concentrations in discrete outflow samples from a field-scale system (Field-CP), 

an promising Ec value (0.39) was achieved when the best-fit parameter set for 

Lab-12Aug-CP was adopted (Table 6), and the maximum Ec value (0.55) was 

exactly same to that in Field-CP calibration (Table 5). 
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Table 6 Ec of E. coli predictions in parameter transferability analysis, and the 

Intersection percentage (%) between the prediction uncertainty bands and 

observation with uncertainty intervals for each configuration. The form of Ec 

values is: Ec value obtained with the best-fit parameter set for the other system 

(the maximum Ec value achieved in the prediction with all the calibrated 

parameter sets for the other system).  

Ec of E. coli predictions in parameter 

transferability analysis 

Intersection percentage (%) between the prediction uncertainty 

bands and observation with uncertainty intervals 

Lab-12Aug-CP using 

Field-CP 

Field-CP using 

Lab-12Aug-CP 
Lab-12Aug-CP using Field-CP Field-CP using Lab-12Aug-CP 

0.32 (0.46) 0.39 (0.55) 50 % 83 % 

Lab-12Aug-WS using 

Lab-WS 

Lab-WS using 

Lab-12Aug-WS 
Lab-12Aug-WS using Lab-WS Lab-WS using Lab-12Aug-WS 

0.56 (0.58) 0.45 (0.54) 97 % 71 % 

Lab-12Aug-PB using 

Lab-PB 

Lab-PB using 

Lab-12Aug-PB 
Lab-12Aug-PB using Lab-PB Lab-PB using Lab-12Aug-PB 

0.44 (0.63) 0.04 (0.60) 73 % 81 % 

Lab-12Aug-LC using 

Lab-LC 

Lab-LC using 

Lab-12Aug-LC 
Lab-12Aug-LC using Lab-LC Lab-LC using Lab-12Aug-LC 

0.36 (0.56) 0.05 (0.48) 59 % 71 % 

 

The intersection percentages between the prediction uncertainty bands and 

observation with uncertainty intervals (Table 6) further substantiated that the 

model prediction in parameter transferability analysis was reliable: all the 

intersection percentages were above 50 %; for the prediction of Field-CP using 

Lab-12Aug-CP parameters, 83 % of observed outflow concentrations with 

uncertainty intervals intersected with the prediction uncertainty band, 

demonstrating the outstanding performance of the model when it was only 

calibrated with lab-based data for field-scale system prediction; for parameter 

transferability analyses between Lab and Lab-12Aug biofilters, the intersection 

percentage ranged from 59 % to 97 %; the lowest intersection percentage 

(50 %) was achieved when Lab-12Aug-CP was predicted with Field-CP 

parameters. Compared to other studies about stormwater pollutants removal, 

these percentages could be considered as of high values: for example, Dotto 

et al. (2012) used four different techniques in urban drainage modelling to 

analyse the uncertainty in total suspended solids removal prediction, only 22.8 

~ 28.8 % observations were intersected with the 90% uncertainty band.  
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Figure 4 Uncertainty analysis of E. coli removal prediction for Field-CP using 

Lab-12Aug-CP parameters, including observation with uncertainty intervals, the 

best-fit prediction and 90% uncertainty band. En stands for Event n (the nth 

event). 

 

 

Figure 5 Uncertainty analysis of E. coli removal prediction for Lab-12Aug-CP 

using Field-CP parameters, including observation with uncertainty intervals, the 

best-fit prediction and 90% uncertainty band.  

 

For the prediction of Field-CP using Lab-12Aug-CP parameters, the outliers of 

intersection (i.e., where intersection between the prediction uncertainty band 

and observation with uncertainty intervals did not occur) were mainly the data 

points from the events with extremely high inflow volumes (Figure 4). That was 

because, the inflow volumes in some events (e.g., Event 6 and Event 18) of 

Field-CP could reach to 10 pore volumes of the biofilter; however, the maximum 

inflow volume for Lab-12Aug-CP was only two pore volumes. Therefore, the 
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parameter calibrated from Lab-12Aug-CP data did not capture the features 

regarding microbial removal during high-volume events; accordingly, the 

prediction of Field-CP for these events is not as accurate as for other events.  

 

For the prediction of Lab-12Aug-CP using Field-CP parameters, the 

comparatively low percentage (50 %) of intersection between observation and 

prediction (Figure 5) is due to the poor prediction of “old water” (submerged 

zone water retained from the previous event) in Lab-12Aug samples for most 

events. That was because, (1) for Field-CP, the longest dry period was 6.75 

days, which was shorter than 25% percent of the dry periods of Lab-12Aug-CP 

(Chandrasena et al., 2017); (2) Lab-12Aug-CP columns had submerged zone 

(Field-CP does not), which performed as an extra site for microbes to 

experience die-off during dry days. These two major differences hindered Field-

CP from fully representing the die-off process in Lab-12Aug-CP biofilters during 

dry days, especially in dry days with a length longer than 6.75 days; accordingly, 

high uncertainty occurred in predicting the “old water” samples that collected in 

events after long dry days in Lab-12Aug-CP with Field-CP parameters. 

 

For Lab and Lab-12Aug biofilters, the uncertainty analyses results including the 

prediction uncertainty bands using the other system’s parameter sets and 

observations with uncertainty intervals could be found in Supplementary 

material B (Figure B.4 ~ Figure B.9). High intersection percentages (59 % to 

97 %) were found, despite Lab and Lab-12Aug’s slight differences in media 

type (Lab biofilters include a zeolite layer but Lab-12Aug biofilters do not) and 

operational conditions (e.g., Lab-12Aug included three events with restricted 

flow; Lab had two more flushing events than Lab-12Aug), reinforcing the 

transferability of the model parameters. In addition, the averaged intersection 

percentages for each plant type followed the order of: unvegetated biofilters 

(84 % for WS) > Palmetto buffalo biofilters (77 % for PB) > Leptospermum 

continentale biofilters (65 % for LC), as some uncertainties introduced and/or 

enhanced by plants (e.g., preferential flow) could be not captured by the model, 

and the plants with denser roots are more inclined to lead to these uncertainties 

(roots density: Leptospermum continentale > Palmetto buffalo).  

 



Chapter 4. Model validation, parameter transferability analysis, and uncertainty analysis 

109 
 

4. Conclusion  

A recently developed stormwater biofilter treatment model for faecal 

microorganisms was successfully validated with the independently collected 

data sets from lab-scale and field-scale biofilters with various designs and 

operational schemes, demonstrating the broad application of this model.   

 

The sensitivity analyse reinforced the significance of adsorption and desorption. 

In addition, the importance of temperature to die-off, which was not fully 

represented in the previous study, was also revealed. This finding indicates that 

better data quality could better reflect the importance of parameters.  

 

Most importantly, a promising parameter transferability of this model was found, 

as good agreement was found between prediction and observation, even when 

the parameters from another system with similar plant type and media type 

were adopted. The results of uncertainty analysis further demonstrated the 

reliability of model prediction in parameter transferability analysis, as a 

generally low uncertainty was obtained in the prediction of each configuration. 

 

It was also concluded that the model could be applied to large-scale field 

systems after being calibrated with only simple laboratory tests, as a good 

agreement between prediction and observation with low prediction uncertainty 

was achieved when the parameters calibrated entirely from a laboratory study 

were employed to predict a field system. Considering that stormwater biofilters 

are often large systems that cannot be easily validated, the model could be 

widely utilised as a valuable tool for system design and evaluation. 
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Supplementary material A. Full details of model description and 

equations 

 

Figure A.1 Schematic representation of a typical stormwater biofilter and its flow 

scheme, and the key variables in each part. Stormwater inflow (Qin), rainfall 

precipitation (Qrain), overflow (Qover), water flow from PZ to USZ (Qpf), flow from 

the USZ to SZ (Qfs), evapotranspiration (Qet; divided to the evapotranspiration 

from USZ (Qet_usz) and from SZ (Qet_sz)), capillary rise (Qhc), infiltration into the 

surrounding soil (Qinf,p and Qinf,sz) and outflow (Qpipe). 
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Table A.1 Equations for the water flow module. 

Water flow module equation Eq. No. 

General form of equations  

Flow = min (physically possible; available upstream; available downstream)  

Ponding zone (PZ)  

Infiltration from PZ to unsaturated zone  

𝑄𝑝𝑓 = min (𝐾𝑠𝐴
ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧
,
ℎ𝑝𝐴𝑝

𝑑𝑡
+ 𝑄𝑖𝑛 + 𝑄𝑟𝑎𝑖𝑛,

1

𝑑𝑡
(1 − 𝑆)𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧𝐴) 

(A.1) 

Infiltration from PZ to the surrounding soil  

𝑄𝑖𝑛𝑓,𝑝 = {min (𝐾𝑓[(𝐴𝑝 − 𝐴) + 𝐶𝑠ℎ𝑝𝑃𝑝],
ℎ𝑝𝐴𝑝

𝑑𝑡
) , if unlined

0, if lined
 

(A.2) 

Overflow through weirs  

𝑄𝑜𝑣𝑒𝑟 = {
min(𝐶𝑄𝐵√2𝑔(ℎ𝑝 − ℎ𝑜𝑣𝑒𝑟)

3
,
𝐴𝑝(ℎ𝑝 − ℎ𝑜𝑣𝑒𝑟)

𝑑𝑡
) , ℎ𝑝 > ℎ𝑜𝑣𝑒𝑟

0, ℎ𝑝 ≤ ℎ𝑜𝑣𝑒𝑟

 

(A.3) 

Water mass balance in PZ  

𝑑(ℎ𝑝𝐴𝑝)

𝑑𝑡
= 𝑄𝑖𝑛 +𝑄𝑟𝑎𝑖𝑛 − 𝑄𝑝𝑓 − 𝑄𝑜𝑣𝑒𝑟 −𝑄𝑖𝑛𝑓,𝑝 

(A.4) 

Unsaturated zone and saturated zone (USZ and SZ)  
Entire Saturation in USZ plus SZ  

𝑆𝑒𝑛𝑡𝑖𝑟𝑒 =
𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧
𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧

 
(A.5) 

Total Evapotranspiration from USZ and SZ  

𝑄𝑒𝑡 =

{
 

 
0, 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 𝑆𝑤

𝐴 × 𝐾𝑐 × 𝐸𝑇0
𝑆𝑒𝑛𝑡𝑖𝑟𝑒 − 𝑆𝑤
𝑆𝑠 − 𝑆𝑤

, 𝑆𝑤 < 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 𝑆𝑠

𝐴 × 𝐾𝑐 × 𝐸𝑇0, 𝑆𝑠 < 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 1

 

(A.6) 

Unsaturated zone (USZ)  

Evapotranspiration from USZ  

𝑄𝑒𝑡_𝑢𝑠𝑧 = 𝑄𝑒𝑡 ×
𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧

𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧
 

(A.7) 

Flow due to capillary rise  

𝑄ℎ𝑐 = 𝐴𝐶𝑟(𝑆 − 𝑆𝑠)(𝑆𝑓𝑐 − 𝑆), 𝐶𝑟 =
4 × 𝐾𝑐 × 𝐸𝑇0

2.5(𝑆𝑓𝑐 − 𝑆𝑠)
2 

when 𝑆𝑠 ≤ 𝑆 ≤ 𝑆𝑓𝑐 , otherwise 𝑄ℎ𝑐 = 0 

(A.8) 

Infiltration from USZ to SZ  

𝑄𝑓𝑠 = {
min(𝐴 × 𝐾𝑠

ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧
𝑆𝛾,

(𝑆 − 𝑆𝑓𝑐)𝐴 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧

𝑑𝑡
+ 𝑄𝑝𝑓 + 𝑄ℎ𝑐) , 𝑆 ≥ 𝑆𝑓𝑐

0, 𝑆 < 𝑆𝑓𝑐

 

(A.9) 

Water mass balance in USZ  

𝑑(𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧𝐴)

𝑑𝑡
= 𝑄𝑝𝑓 + 𝑄ℎ𝑐 − 𝑄𝑓𝑠 − 𝑄𝑒𝑡_𝑢𝑠𝑧 

(A.10) 

Saturated zone (SZ)  

Evapotranspiration from SZ  

𝑄𝑒𝑡_𝑠𝑧 = 𝑄𝑒𝑡 ×
𝑛𝑠𝑧ℎ𝑠𝑧

𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧
= 𝑄𝑒𝑡 − 𝑄𝑒𝑡_𝑢𝑠𝑧 

(A.11) 

Infiltration from SZ to the surrounding soil  

𝑄𝑖𝑛𝑓,𝑠𝑧 = {
min (𝐾𝑓(𝐴 + 𝐶𝑠𝑃𝑠𝑧ℎ𝑠𝑧),

𝑛𝑠𝑧ℎ𝑠𝑧𝐴

𝑑𝑡
) , if unlined

0, if lined
 

(A.12) 

Flow through drainage pipe
 

 

𝑄𝑝𝑖𝑝𝑒 = {
min(𝐴 × 𝐾𝑠

ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧 + ℎ𝑠𝑧
,
(ℎ𝑠𝑧 − ℎ𝑝𝑖𝑝𝑒)𝑛𝑠𝑧𝐴

𝑑𝑡
+ 𝑄𝑓𝑠 − 𝑄ℎ𝑐 − 𝑄𝑒𝑡_𝑠𝑧 − 𝑄𝑖𝑛𝑓,𝑠𝑧) , ℎ𝑠𝑧 > ℎ𝑝𝑖𝑝𝑒

0, ℎ𝑠𝑧 ≤ ℎ𝑝𝑖𝑝𝑒

 

(A.13) 
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Table A.2 Equations for the microbial quality module. 

Microbial quality module equation Eq. No. 

Ponding zone (PZ)  

Microbial mass balance in PZ  

𝑑(𝑐𝑝ℎ𝑝𝐴𝑝)

𝑑𝑡
= 𝑐𝑖𝑛𝑄𝑖𝑛 − 𝑐𝑝(𝑄𝑝𝑓 + 𝑄𝑜𝑣𝑒𝑟 + 𝑄𝑖𝑛𝑓,𝑝) − 𝜇𝑐𝑝ℎ𝑝𝐴𝑝 

(A.14) 

Unsaturated zone (USZ)  

Microbial mass balance in the water phase  

𝜕(𝑆𝑛𝑢𝑠𝑧𝑐𝑢𝑠𝑧)

𝜕𝑡
+ (𝑆𝑛𝑢𝑠𝑧𝑘𝑎𝑡𝑡𝑐𝑢𝑠𝑧 − 𝜌𝑘𝑑𝑒𝑡𝑀1)

=
𝜕

𝜕𝑧
(𝑆𝑛𝑢𝑠𝑧𝐷1

𝜕𝑐𝑢𝑠𝑧
𝜕𝑧

) −
𝜕(𝑞1𝑐𝑢𝑠𝑧)

𝜕𝑧
− 𝑆𝑛𝑢𝑠𝑧𝜇𝑐𝑢𝑠𝑧 

(A.15) 

Adsorption, desorption and die-off of adsorbed microbes in the soil phase  

𝜕𝑀1

𝜕𝑡
=
𝑛𝑢𝑠𝑧𝑆

𝜌
𝑘𝑎𝑡𝑡𝑐𝑢𝑠𝑧 − 𝑘𝑑𝑒𝑡𝑀1 − 𝜇𝑀1 

(A.16) 

Dispersion coefficient in USZ  

𝐷1 = 𝜆
𝑞1

𝑛𝑢𝑠𝑧𝑆
 (A.17) 

Average unit flow in USZ  

𝑞1 =
𝛼1(𝑄𝑝𝑓 − 𝑄𝑒𝑡) + 𝛽1(𝑄𝑓𝑠 − 𝑄ℎ𝑐)

𝐴
 

where 𝛼1 + 𝛽1 = 1, and 𝛼1 = 1 at upper boundary, 𝛽1 = 1 at lower boundary 

(A.18) 

Saturated zone (SZ)   

Microbial mass balance in the water phase  

𝜕(𝑛𝑠𝑧𝑐𝑠𝑧)

𝜕𝑡
+ (𝑛𝑠𝑧𝑘𝑎𝑡𝑡𝑐𝑠𝑧 − 𝜌𝑘𝑑𝑒𝑡𝑀2) =

𝜕

𝜕𝑧
(𝑛𝑠𝑧𝐷2

𝜕𝑐𝑠𝑧
𝜕𝑧

) −
𝜕(𝑞2𝑐𝑠𝑧)

𝜕𝑧
− 𝑛𝑠𝑧𝜇𝑐𝑠𝑧 

(A.19) 

Adsorption, desorption and die-off of adsorbed microbes in the soil phase  

𝜕𝑀2

𝜕𝑡
=
𝑛𝑠𝑧
𝜌
𝑘𝑎𝑡𝑡𝑐𝑠𝑧 − 𝑘𝑑𝑒𝑡𝑀2 − 𝜇𝑀2 

(A.20) 

Dispersion coefficient in SZ  

𝐷2 = 𝜆
𝑞2
𝑛𝑠𝑧

 (A.21) 

Average unit flow in SZ  

𝑞2 =
𝛼2(𝑄𝑓𝑠 − 𝑄ℎ𝑐) + 𝛽2(𝑄𝑝𝑖𝑝𝑒 + 𝑄𝑖𝑛𝑓,𝑠𝑧)

𝐴
 

where 𝛼2 + 𝛽2 = 1, and 𝛼2 = 1 at upper boundary, 𝛽2 = 1 at lower boundary 

(A.22) 

Die-off rate in each part  

𝜇 = 𝜇0𝜃
𝑇−20℃ (A.23) 
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Table A.3 Model parameters. Input parameters: parameters based on design 

and measurement. Calibration parameters: parameters calibrated in this study.  

Water flow module parameters Microbial quality module parameters 

Input parameters 

B Length of overflow weir [L] ρ Bulk soil density [M L-3] 

Pp Unlined perimeter [L] λ Dispersivity [L] 

CQ Weir overflow coefficient [-]   

Cs Side infiltration coefficient [-]   

Kf Hydraulic conductivity of the 

surrounding material [L T-1] 

  

Sw Wilting point [-]: washed sand, 0.05; 

loamy sand, 0.07 

  

Ss Saturation as the threshold for plants 

to reach potential evapotranspiration 

[-]: without SZ, 0.22; with SZ, 0.37 

  

Sfc USZ saturation at field capacity [-]: 

without SZ, 0.37; with SZ, 0.61 

  

γ 

 

 

Relative hydraulic conductivity 

coefficient dependent on soil type [-]: 

washed sand, 11.1; loamy sand, 

11.76 

  

Calibration parameters 

Ks Hydraulic conductivity of the filter 

media [L T-1] 

katt Adsorption rate [T-1] 

Kc Plant coefficient for 

evapotranspiration [-] 

kdet Desorption rate [T-1] 

  μ0 Standard die-off rate at given 

reference conditions (e.g., 

standard temperature) [T-1] 

  θ Temperature correction coefficient 

for die-off [-] 
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Supplementary material B. Supplementary results of sensitivity analysis 

and prediction uncertainty analysis 

 

Figure B.1 Matrix plot of Lab-WS for sensitivity analysis. 

 

 

Figure B.2 Matrix plot of Lab-PB for sensitivity analysis. 

 

 



Chapter 4. Model validation, parameter transferability analysis, and uncertainty analysis 

119 
 

 

Figure B.3 Matrix plot of Lab-LC for sensitivity analysis. 

 

 

Figure B.4 Uncertainty analysis of E. coli removal prediction for Lab-WS using 

Lab-12Aug-WS parameters, including observation with uncertainty intervals, 

the best-fit prediction and 90% uncertainty band.  

 

 

Figure B.5 Uncertainty analysis of E. coli removal prediction for Lab-12Aug-WS 

using Lab-WS parameters, including observation with uncertainty intervals, the 

best-fit prediction and 90% uncertainty band. 
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Figure B.6 Uncertainty analysis of E. coli removal prediction for Lab-PB using 

Lab-12Aug-PB parameters, including observation with uncertainty intervals, the 

best-fit prediction and 90% uncertainty band. 

 

 

Figure B.7 Uncertainty analysis of E. coli removal prediction for Lab-12Aug-PB 

using Lab-PB parameters, including observation with uncertainty intervals, the 

best-fit prediction and 90% uncertainty band. 

 

 

Figure B.8 Uncertainty analysis of E. coli removal prediction for Lab-LC using 

Lab-12Aug-LC parameters, including observation with uncertainty intervals, the 

best-fit prediction and 90% uncertainty band.  
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Figure B.9 Uncertainty analysis of E. coli removal prediction for Lab-12Aug-LC 

using Lab-LC parameters, including observation with uncertainty intervals, the 

best-fit prediction and 90% uncertainty band 
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4.3   Discussion and conclusions  

When the previous developed model was tested with the data collected from 

five biofilter configurations (four lab-scale, one field-scale), the good fit between 

prediction and observation demonstrated the hypothesis that the governing 

processes (i.e., adsorption, desorption, and die-off) and key operational factor 

(i.e., temperature) that included in the model are adequate to provide promising 

microbial removal prediction. In addition, the consistent Nash-Sutcliffe 

Efficiency values under different biofilter design and operational conditions 

(especially under extreme field conditions, e.g., high inflow volume and 

extended dry periods) indicated that the model has a stable performance and 

could adjust itself to various inputs. Although the model was only developed for 

and applied in non-RTC biofilters (i.e., biofilters without RTC), after modification, 

the modified model is expected to perform well in RTC prediction, as the current 

model is adjustable to various operational conditions and very likely to reflect 

the effects of operational optimisation that was triggered by RTC.  

 

More importantly, the high transferability of calibrated parameters and the low 

uncertainty in the prediction of laboratory and field systems demonstrated that 

the model has a broad application in both the developed systems with data 

collected and those with difficulty in data collection (e.g., newly developed 

systems; large-scale field systems). These results not only broadened the 

application of this model (e.g., use lab-calibrated data to test field systems), but 

also provided evidence that even when biofilters are modified or re-designed to 

incorporate RTC, the model after modification could still be applied without 

further calibration. 

 

However, the model could not be used in predicting the outcome of RTC 

implementation, unless it is modified and validated with the data collected from 

RTC biofilters. Therefore, the next chapter (Chapter 5) will present a study that 

focuses on the experiments set up for the monitoring of RTC biofilters and RTC 

data collection. Chapter 6 will represent the details of modifying the developed 

model for RTC simulation, and employing the collected RTC data from the 

experiments that were introduced in Chapter 5 to test the modified model.  
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Chapter 5.                        

Development and laboratory testing 

of real time control strategies for 

stormwater biofilters 
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5.1   Introduction  

To achieve real time control (RTC) in stormwater biofilters, RTC strategies are 

essential, as they directly govern how the operation of biofilters will be 

optimised according to biofilters’ instantaneous status. However, currently there 

is no RTC strategy for stormwater biofilters; as such, one of the objectives in 

this chapter is to develop RTC strategies for stormwater biofilters. 

 

Off-line RTC strategies (where set-points are normally fixed) are favoured for 

stormwater biofilters compared to on-line strategies (where set-points are 

variable and determined during the control process), as (1) stormwater biofilters 

are rather simple systems with low technology, and implementing off-line 

strategies requires less control facilities and easier to fulfil compared to 

implementing on-line strategies; and (2) an off-line strategy normally needs less 

time to trigger control than an on-line strategy by avoiding to re-determine set-

points (Lund et al., 2018), therefore, it could provide rapid reaction to the rainfall 

events with short duration. 

 

 In addition, an effective RTC strategy for stormwater harvesting and reuse is 

expected to remove the negative impacts of extreme weather conditions, such 

as big events with excessive inflow, long dry periods, and short dry periods, as 

these three types of events could cause utmost negative effects for microbial 

removal (Chandrasena et al., 2012; Chandrasena et al., 2014b; Li et al., 2012). 

Furthermore, to ensure the feasibility and reduce the complex during RTC 

implementation, a RTC strategy is expected to be capable of being applied not 

only in newly built systems but also for the retrofit of established systems, with 

low facility requirements and uncomplicated control process.  

 

Moreover, the model developed and validated in Chapter 3 and Chapter 4 has 

a potential to be applied in RTC strategy development and evaluation after 

modification, as it has been demonstrated to have high parameter transferability 

and low prediction uncertainty when being used to predict biofilters with various 

design and operational conditions. Nevertheless, the model has only been 

developed and tested with the data collected from non-RTC biofilters (e.g., 
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typical biofilters that without RTC). Before applying the model in RTC simulation, 

it has to be modified and validate with RTC data. Therefore, there is a desperate 

need for the experimental data that collected from biofilters that incorporated 

with RTC to modify and test the model. As such, collecting data from laboratory 

testing of RTC strategies is another objective of this study.  

 

In summary, to fulfil all these requirements to achieve RTC in stormwater 

biofilters, the main objectives of the study presented in this chapter are: (1) to 

develop effective RTC strategies for stormwater biofilters; (2) to test the 

developed RTC strategies with laboratory experiments, validating the outcome 

of RTC and providing data for modelling in further studies. The research 

questions include: 

 What information and facilities are needed for the development and 

implementation of RTC strategies? 

 What experiments could best reveal the effectiveness of developed RTC 

strategies?  

 What benefits could be provided by developed RTC strategies compared 

to non-RTC?  

 What negative effects might be caused by the implementation of RTC? 

 

Corresponding to the research questions, four hypotheses were made:  

 The information of rainfall events (e.g., rainfall forecasting, event size, 

and antecedent dry length) and biofilters’ status (e.g., water volume in 

the submerged zone) are needed to trigger/stop control; facilities include 

valves, flowmeters, timer, and sensors are required to fulfil RTC 

implementation.  

 The effectiveness of developed RTC strategies could be revealed by 

comparing the laboratory performance of RTC biofilters and non-RTC 

biofilters that operated under the conditions of mimicking historical 

rainfall events with various weather conditions (e.g., event size and 

antecedent dry length) and inflow concentrations.  

 The developed RTC strategies will diminish the negative effects caused 

by extreme weather conditions, such as extensive size events, events 
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with extended dry period, and events with short dry period. Different RTC 

strategies will provide different benefits: some could provide high-quality 

outflow for harvesting and reuse, while some others will reduce the 

pollutants that discharged to ecosystems; suitable RTC strategies could 

be selected according to end uses and requirements.  

 With RTC, the water collected for harvesting will meet the treatment 

objectives better compared to without RTC. However, a focus on some 

certain treatment objectives might cause side effects: for example, the 

focus of improving outflow quality of stormwater biofilters may cause 

additional pollutants being discharged to ecosystems; in addition, the 

improvement on microbial removal might diminish the treatment effects 

on some other pollutants such as nutrients.    

 

This chapter presents the processes of developing two RTC strategies for 

stormwater biofilters, and the details of setting up laboratory experiments and 

experimental data collection. This chapter is written as a draft for journal 

publication and will be submitted to Water Research. 
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5.2   Development and laboratory testing of real time control 

strategies 
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harvesting and reuse  
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Abstract  

Stormwater biofilters have great potential to treat stormwater for harvesting and 

reuse, but their variable performance in pathogen removal requires further 

optimisation prior to widespread uptake. Our paper provides the first evidence 

that real time control (RTC) of stormwater biofilters can mitigate the impact of 

operational charactersitics that result in poor microbial removal. We developed 

two RTC strategies and validated them using long-term laboratory experiments, 

utilising biofilters with a raised outlet pipe that creates a submered zone. The 

first RTC strategy focuses on delivering the best water quality for harvesting 

and reuse or for recreational waterways. It has two components: (1) retains 

water in the biofilter for at least two days to ensure optimal die-off before 

allowing any further inputs into the system, and (2) when inputs are allowed to 

enter, the input volume is restricted to the submerged zone’s pore volume. This 

strategy was effective and signficantly improved water quality in the biofilter 

effluent. However, since the system favours bypassing influent to ensure good 

quality effluent, only 28.4 % of the stormwater was treated, which still resulted 

in a 62.3 % reduction in the influent E. coli load because the system was 
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effective at removing E. coli under controlled conditions. The second RTC 

strategy builds upon the first strategy, but focuses on delivering a balance 

between good water quality for harvesting and protecting the environment (i.e. 

lower bypass). This strategy also has two components: (1) three hours before 

next rainfall event begins, the water that has remained in the biofilter’s 

submerged zone for at least two days is drained and collected for harvesting 

through a bottom pipe, and (2) when stormwater inflow begins, the bottom pipe 

is closed and the biofilter operates without control as a normal biofilter, with 

water leaving the biofilter to the environment via the raised outlet pipe. The 

bottom pipe’s effluent of this RTC strategy met the Australian stormwater 

harvesting guideline requirements for dual reticulation with indoor and outdoor 

use and irrigation of commercial food crops. Although only 5.4 % of stormwater 

was collected for harvesting via the bottom pipe in this strategy, the 

environment was better protected because of a signficnatly reduced bypass 

volume. Our exepriments also showed nutrient and sediment removal was high 

for both RTC strategies. This study presents the first stepping stone toward 

RTC of stormwater biofilters, demonstrating that these systems can deliver safe 

water for harvesting and reuse, and for active recreational uses. 

 

Keywords: stormwater biofilters, real time control, stormwater harvesting, 

stormwater reuse, microbial removal, E. coli 

 

1. Introduction 

Stormwater runoff could serve as an alternative water resource for local 

communities (Mitchell et al., 2007); however, the wide range of pollutants 

contained in stormwater runoff impede stormwater harvesting and reuse 

(Fletcher et al., 2008). In particular, faecal microbes contained in stormwater 

are a major concern, as they could pose considerable risks to human health 

(Meng et al., 2018; Murphy et al., 2017). As such, several guidelines of 

stormwater harvesting and reuse have been established in Australia and 

globally to strictly control the risks posed by faecal microbes under different end 

uses (NHMRC, 2008; NHMRC, 2009). 

 



Chapter 5. Development and laboratory testing of real time control strategies for stormwater biofilters 

129 
 

On way to control the risks is to treat stormwater, and stormwater biofilters have 

been widely adopted to achieve this aim (Bratieres et al., 2008; Hathaway et 

al., 2011; Hatt et al., 2009; Zinger et al., 2011). Stormwater biofilters are soil-

plant systems with enhanced infiltration and evapotranspiration (FAWB, 2009). 

The major processes for microbial removal in biofilters include adsorption, 

desorption, straining and die-off, and these processes are also governed by 

various factors (e.g., temperature, moisture content, and sunlight exposure) 

(Chandrasena et al., 2014a; Stevik et al., 2004).  

 

Biofilters have better faecal microbial removal than other water sensitive urban 

design systems (e.g., wetlands) (Chandrasena et al., 2012; Hathaway and Hunt, 

2010), somewhat owing to the level of research that has been dedicated to 

optimise their design features. Indeed, much effort has been placed in 

optimising biofilters’ design: for example, microbial removal can be enhanced 

through careful plant and media selection (Chandrasena et al., 2014b; Li et al., 

2016; Li et al., 2012) and the presence of a submerged anoxic zone (i.e., a 

submerged water body at the base of a biofilter to help plants survive in dry 

weather periods and to enhance microbes’ contact time with media) 

(Chandrasena et al., 2014b).  

 

However, even with optimal designs, stormwater biofilters still experience 

variable performance. For example, E. coli reductions from the inlet to outlet 

could vary between > 99 % to net leaching (< 0 %) under challenging 

operational conditions of a well-designed biofilter (Chandrasena et al., 2014b; 

Li et al., 2012; Zhang et al., 2010; Zhang et al., 2011). Further examples existed 

for other reference pathogens such as Campylobacter spp.: e.g., Chandrasena 

et al. (2016) reported its removal rate ranged from -90.5 % to 99.1 %. The major 

explanation for these high variances is, the optimisation of design could not 

mitigate the negative impact of some operational conditions.  

 

According to previous studies, three types of operational conditions mainly 

contributed to poor pathogen removal via stormwater biofilters. (1) Short dry 

weather periods between wet weather events (e.g., < 12 h), which could result 

in insufficient time for die-off of microbes trapped in the system, thereby causing 
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detachment and leaching of viable organisms to the outlet, even if the influent 

is clean (Chandrasena et al., 2012). This is especially apparent for microbes 

that are trapped in the submerged zone water, which if left for sufficient period 

can produce extremely clean water at the effluent when being pushed out by 

the newly entered water. (2) Large inflow volumes, which could result in full 

occupation of straining and adsorption sites in biofilters, thereby leading to 

breakthrough of microbes. This could be further exacerbated by diluting the 

clean submerged zone water with newly applied influent, resulting in poorer 

removal rates (Chandrasena et al., 2014b). (3) Long dry weather periods 

between events (e.g., ≥ 14 days), which could result in poorer plant health (a 

key design parameter for pathogen removal, as per Li et al. (2012)) and the 

emptying of the clean submerged zone water via plant uptake, leading to the 

effluent of the subsequent event containing a high proportion of new influent 

that has had limited retention time (Chandrasena et al., 2014b).  

 

Although the operational conditions described above are recognised as 

governing much of the microbial removal performance, very little has been done 

to control them to eliminate their negative effects, as stormwater biofilters have 

primarily been designed as passive systems. To make biofilters “active” for the 

optimisation of their operation conditions, real time control (RTC) is a potential 

technique. The general concept of RTC is defined as: monitoring the functioning 

of a system in real time, and using these data to optimise performance through 

the control of certain aspects of the system (Schütze et al., 2004). RTC has 

been widely used and proved to be effective in other studies in environmental 

field, such as flooding control, capacity enlargement of sewer systems, and 

wastewater treatment optimisation (Hsu et al., 2015; Leon et al., 2014; Schilling 

et al., 1996; Schütze et al., 2004). However, no publication has been found on 

the application of RTC in stormwater biofilters.  

 

The main objective of this study is to develop and validate the first reported 

RTC strategies for the optimisation of stormwater biofilters, in order to 

demonstrate that the regulation and control of certain operational conditions 

can lead to enhanced faecal microbe removal. In this study, we aim to provide 

better water quality using biofilters and to reduce the human health risks posed 
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by faecal microbes during stormwater harvesting and reuse. To achieve this 

aim, two different RTC strategies were developed and tested using laboratory 

experiments, mimicking real rainfall events and drying patterns that were 

recorded in Melbourne, Australia.  

 

2. Methods  

2.1 RTC Strategy development 

The RTC strategies should avoid the three operational characteristics 

explained in the introduction that lead to poor pathogen removal: (a) short dry 

weather periods, (b) long dry weather periods, and (c) large inflow volume 

events. Using this knowledge, the following objectives were devised:  

 

Objective 1 - the strategies should attempt to promote the detention of water in 

the system for sufficient time (≥ Tmin; Tmin is the minimum retention time that 

required for sufficient die-off) to allow optimal microbial die-off, but not 

excessively long that the water contained in the submerged zone is removed 

by plants (as per Chandrasena et al. (2014b)); 

 

Objective 2 - these strategies should collect the water that retained in 

stormwater for sufficient time, as these water is of high quality; in addition, this 

these water should avoid being mixed with newly treated water(which is 

normally of low quality due to short contact time), by ensuring that no excessive 

water from large events enter the system; 

 

Objective 3 - the strategies should be flexible in its implementation, allowing for 

easy system design and facility installation, both for new systems and for retrofit 

scenarios (meaning only surface accessible equipment can be installed); 

 

Objective 4 - the strategies that require low maintenance and low cost 

equipment (e.g., sensors) are favoured; hence, low-technical solutions are 

preferable; and,  
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Objective 5 - The strategies are expected to deliver on both stormwater 

harvesting outcomes and environmental protection (e.g., minimum pathogens 

for swimming, and low nutrients for ecosystem health). 

Based on these objectives, two RTC strategies were developed in this study: 

(a) Harvesting RTC, and (b) Harvesting-Environment RTC. Both strategies are 

described in detail below in Section 2.1.1 and Section 2.1.2. 

 

2.1.1 Harvesting RTC  

The Harvesting RTC strategy shown in Figure 1 collects as much clean water 

as possible for the purpose of harvesting and reuse or for delivery into 

recreational waterways. To deliver on Objective 1 (listed in Section 2.1), this 

strategy controls the inflow by passing it around the system, unless the water 

from previous event has remained in biofilters for at least Tmin (Figure 1 top right 

and bottom left). To deliver on Objective 2, this strategy also ensures that no 

excessive water from large events enter the system, by bypassing any volume 

during an event that has exceeded the pore volume of submerged zone (Vsz) 

(Figure 1 bottom right).  

 

To deliver on Objective 3 and Objective 4, this RTC strategy allows for easy 

retrofits, with no below-surface amendments nor any within-system monitoring. 

The only facilities required for this RTC strategy are (Figure 1 - top left): (1) a 

flow meter (or depth gauge with weir) to estimate inflow volumes (Vin in Figure 

1), (2) a valve to control stormwater entering/bypassing the system, and (3) a 

timer to monitor the time that the water from previous event has retained in the 

system (T in Figure 1). 

 

It is noted that this strategy only delivers on the stormwater harvesting 

outcomes in Objective 5, by aiming to maximise the volume of collected water 

that has had sufficient retention time. This strategy places minimal emphasis 

on environmental protection, as part of the incoming water is bypassed without 

treatment (Figure 1). 
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Figure 1 Schematic of Harvesting RTC’s rules. T: stormwater retention time; 

Tmin: minimum required retention time; Vin: stormwater volume that has entered 

biofilters; Vsz: submerged zone’s pore volume (Vsz = biofilter’s bottom area × 

submerged zone depth × porosity). Top left shows the required facilities to fulfil 

this strategy (i.e., a flow meter, a valve, and a timer). When stormwater runoff 

comes: if T < Tmin, keep the valve closed and bypass all the stormwater (top 

right); if T ≥ Tmin, open the valve and start to record Vin (bottom left). When Vin 

= Vsz (i.e., submerged zone’s pores will be fully replaced with newly entered 

stormwater), close the valve and bypass the rest of stormwater (bottom right). 

 

2.1.2 Harvesting-Environment RTC  

The Harvesting-Environment RTC attempts to build upon the first strategy, and 

enhances it to overcome the fact that the Harvesting RTC strategy favours 

bypassing large volumes of untreated stormwater into receiving water bodies. 

A more complicated strategy is developed by proposing a two-outlet system 

(Figure 2 top left): the valve for the bottom outlet is opened only if the water has 

been held for more than Tmin and inflow is forecasted to occur in the near future 

(e.g., 3 hours) (Figure 2 top right and bottom left). This water from the bottom 

outlet meets Objective 1 and Objective 2, delivering clean harvestable water to 

a dedicated store or recreational waterway. Once stormwater inflow begins, the 
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bottom valve is closed, the influent will fill the system and the biofilter begins to 

operate as typical (i.e., without control), with treated effluent leaving via the 

raised outlet and being delivered to receiving waterbodies (to meet Objective 

5; Figure 2 bottom right). Although this strategy is more advanced, it still meets 

Objective 3 and Objective 4 in several ways. The system does not require flow 

monitoring equipment for inflow and only a sensor (e.g., water level sensor) is 

required at the inflow pipe to provide a binary YES/NO regarding the occurrence 

of inflows (Figure 2 top left). The system is completed with a simple valve at the 

bottom of the column (a manual valve is often included in a typical biofilter for 

maintenance reasons), and a timer to ensure Tmin is met (Figure 2 top left). The 

only other piece of information required for this strategy is rainfall forecast. In 

Melbourne and many other cities around the globe, 3-hourly forecasts are 

available for free from local weather bureaus (e.g., 

http://www.bom.gov.au/australia/meteye/); this information can communicate 

to biofilters via telemetry. In addition, three hours are generally long enough to 

discharge the water retained in biofilters through the bottom pipe (FAWB, 

2009). As such, in this study, the rainfall forecast information is assumed to be 

3-hourly. However, this could also be changed in another study, according to 

the available information for rainfall forecast and biofilters’ inherent features. 
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Figure 2 Schematic of Harvesting-Environment RTC’s rules. T: stormwater 

retention time; Tmin: minimum required retention time. Top left shows the 

required facilities and information to fulfil this strategy (i.e., a sensor, a valve, a 

timer, and rainfall forecast). When rainfall forecast informs that the next wet 

event will occur in three hours: if T < Tmin, keep the valve closed and operate 

biofilters as typical, and the treated stormwater is discharged through the raised 

outflow pipe (top right); if T ≥ Tmin, open the valve and collected the harvestable 

water through free draining (bottom left). Once stormwater inflow begins, 

biofilters operate as typical again (bottom right). 

 

2.2 Laboratory set-up 

2.2.1 Experimental biofilter columns 

These two RTC strategies were assessed using a laboratory column study. Ten 

biofilter columns were planted with Carex appressa, using washed sand as the 

filter media. These columns had an identical size (Figure 3). Although five of 

them had wood chips in the submerged zone (5 % by volume) to add carbon 

source and the other five did not, it has been reported that the existence of 

wood chips had no significant impact on microbial removal (Jung et al., 2019). 

These ten columns were randomly divided into two groups with five replicates 
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each: RTC biofilters (on which RTC strategies were implemented) and non-

RTC biofilters (operated as typical biofilters without RTC). To avoid any 

potential bias, the columns with and without woodchips were divided into each 

group: two woodchip and three non-woodchip columns for RTC biofilters, while 

three woodchip and two non-woodchip columns for non-RTC biofilters. We 

observed no obvious difference in the performance between the two types of 

columns, and hence these two types are assumed to be replicates of one 

another for the purposes of this research.  

 

Figure 3 Schematic of a biofilter column in laboratory experiments.  

 

It is important to note that these columns were matured for approximately three 

years prior to use in this project and  each column had been previously fed with 

866 L of semi-natural stormwater and 2910 L of synthetic greywater and results 

were previously presented by Fowdar et al. (2017) and Jung et al. (2019). It is 

important to note that (1) all columns prior to the start of the experiments in this 

study had received the same amount and type of input, and (2) the dataset 

within this manuscript has not been presented elsewhere. Furthermore, prior to 

use in this project, all the biofilters were further dosed with a semi-natural 

stormwater mix (see Section 2.2.2), twice per week (corresponding to the 

rainfall frequency in Melbourne) for three months, allowing plants to grow and 

acclimatise to this experiment’s operational conditions. Each time, the dosed 
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volume for each column was 13 L, representing the average rainfall event size 

(5.75 mm) in Melbourne and assuming the biofilters are sized to 2% of their 

impervious catchment area (FAWB, 2009). 

 

2.2.2 Semi-natural stormwater mix   

The semi-natural stormwater used for dosing was prepared by mixing de-

chlorinated tap water with sediments collected from a local stormwater wetland, 

supplementing with laboratory grade chemicals, and spiking with Escherichia 

coli (E. coli, as a faecal microbial indicator), to target the ‘average’ pollutant 

concentrations reported in a worldwide review of stormwater quality (Duncan, 

1999; McCarthy et al., 2008; NHMRC, 2009). The processes and recipe for 

semi-natural stormwater preparation were the same as those employed by 

Chandrasena et al. (2017).  

 

2.2.3 Design of semi-natural stormwater events 

Dosing volumes and dosing concentrations of E. coli varied during events when 

the inflow and outflow of each column were sampled to determine pollutant 

removal efficiency. Eleven Sampling events were designed to simulate 11 

selected historical rainfall events in Melbourne (from 2007 to 2016). To fully 

assess RTC under different weather conditions, these selected events were of 

three typical event sizes (Table): (1) large size (VL) with around 17.68 mm 

(equivalent to 40 L dosing volume, which is 2 pore volumes of a column) per 

event, which represents a 1 in 3 month average recurrence interval (ARI); (2) 

median size (VM) with around 8.84 mm (20 L dosing volume; 1 pore volume) 

per event, representing 1 in 1 month ARI; (3) small size (VS) with around 4.42 

mm (10 L dosing volume; same as the submerged zone volume) per event. 

These 11 events also have three types of antecedent dry lengths (Table): (1) 

long dry (DL), with ≥ 14 antecedent dry days; (2) short dry (DS), with < 2 

antecedent dry days; (3) median dry (DM), in which 2 days ≤ antecedent dry 

days < 14 days. Similarly, during laboratory experiments, three types of inflow 

concentrations were designed when spiking E.coli in semi-natural stormwater 

(Table): (1) high/large concentration (CL), with a magnitude of 105 MPN/100 

mL; (2) low/small concentration (CS), with a magnitude of 104 MPN/100 mL; (3) 

median concentration (CM), with a magnitude of 102 MPN/100 mL. 
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Table 1 Characteristics of each sampling event, including event size, inflow 

concentration, and antecedent dry length.  

Event No. 1 2 3 4 5 6 7 8 9 10 11 

Dosing volume (L) 39.8 39.4 40.3 37.6 9 10 9 18.5 20.4 21.7 22.2 

Size type VL VL VL VL VS VS VS VM VM VM VM 

Antecedent dry days 3 1 2 14 4 8 1 2 5 1 21 

Dry type DM DS DM DL DM DM DS DM DM DS DL 

Inflow concentration 

(MPN/100 mL) in 

Round 1 

3.11 

× 104 

1.34 

× 102 

3.22 

× 104 

3.76 

× 104 

3.11 

× 105 

2.28 

× 105 

1.58 

× 102 

1.44 

× 105 

2.25 

× 104 

1.35 

× 104 

1.12 

× 104 

Inflow concentration 

(MPN/100 mL)  in 

Round 2 

2.14 

× 104 

1.61 

× 102 

1.04 

× 104 

1.66 

× 104 

5.48 

× 105 

6.89 

× 105 

6.89 

× 102 

7.06 

× 105 

6.87 

× 104 

6.83 

× 104 

6.49×

104 

Concentration type CM CS CM CM CL CL CS CL CM CM CM 

 

2.2.4 Implementation of RTC strategies 

To assess the two RTC strategies, two rounds of experiments were conducted. 

In Round 1, Harvesting RTC was implemented for all 11 sampling events. In 

Round 2, these sampling events were repeated with the implementation of 

Harvesting-Environment RTC (Table 1). In this study, for both RTC strategies, 

the minimum required retention time for the water contained in biofilters (Tmin) 

was set as two days, according to the findings reported in Chandrasena (2014). 

However, a different set point could be applied to balance competing objectives.  

 

For Round 1 (Harvesting RTC), in each sampling event, dosing was stopped 

for RTC biofilters when the inflow volume (Vin) reached the submerged zone 

volume (Vsz; = 10 L); for the events had short antecedent dry periods (< Tmin; 

i.e., < 2 days), no water was dosed into RTC biofilters.  

 

In Round 2, it is assumed that perfect rainfall forecasting information was 

available (i.e., no uncertainties were caused by inaccurate forecast). This 

assumption allowed simplicity in implementation, and could fully reveal the 

benefits of Harvesting-Environment RTC. In addition, no historical rainfall 

forecast archive was available for this study, and future work will be conducted 

to explore the uncertainties caused by inaccurate rainfall forecast. For this 

round, sampling events that had an antecedent dry weather period of Tmin or 

greater, the water retained in RTC biofilters was discharged in advance through 
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the bottom pipe, and this discharge started three hours prior to dosing. In 

sampling events with short dry periods (< Tmin), the bottom pipe was closed, 

and RTC biofilters were operated as typical. Regardless of event type, when 

dosing started, these biofilters were operated the same as non-RTC biofilters.  

 

During both Round 1 and Round 2, non-RTC biofilters were also used, and 

operated as traditional biofilters without any control, receiving and treating all 

the dosed stormwater. These served as experiment controls for comparison to 

the RTC biofilters.  

 

2.2.5 Sampling regime  

During each sampling event, inflow was sampled at the beginning, middle, and 

end of the sampling period; these were mixed to create a composite inflow 

sample. In each sampling event of Round 1 (Harvesting RTC), a sub-sample 

was collected from all of the composite outflow that drained from the RTC 

biofilters, and this sample was named “RTC-harvesting”. The water that 

bypassed to the environment was assumed to have the same concentration as 

the inflow, and was named as “RTC-environment (bypassed)” (Figure 4). For 

non-RTC biofilters, a sub-sample was collected from the outflow and named as 

“non-RTC outflow” (Figure 4).  

 

Figure 4 Collection of outflow samples in Round 1 (Harvesting RTC). 

 

For RTC biofilters in Round 2 (Harvesting-Environment RTC), a sub-sample 

was collected from the composite water that was discharged in advance (for 

harvesting), naming as “RTC-harvesting”; another sub-sample was extracted 

from the composite outflow when RTC-biofilters was operated as typical 
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(discharged into the ecosystem after treatment), naming as “RTC-environment 

(treated)” (Figure 5). For non-RTC biofilters, a sub-sample was collected from 

the composite outflow and named as “non-RTC outflow” (Figure 5). 

 

Figure 5 Collection of outflow samples in Round 2 (Harvesting-Environment 

RTC). 

 

All samples were transported on ice to the Environmental and Public Health 

Microbiology Laboratory (EPHM Lab) for enumeration of E. coli using the 

Colilert method™ (IDEXX-Laboratories, 2007) within 8 hours of dosing. 

According to McCarthy et al. (2008), this storage time would cause no 

significant difference in E. coli concentrations. Turbidity was also tested for 

each sample by using Orion™ AQUAfast™ AQ4500 Turbidity Meter.  

 

In each round of experiments, samples were collected from the last three 

events (Event 9, Event 10 and Event 11) and tested for TSS (total suspended 

solids), TP (total phosphorus) and TN (total nitrogen) in NATA (National 

Association of Testing Authorities, Australia) accredited laboratories using 

standard methods (TSS: Method 2540 D in APHA-AWWA-WEF (2005); TP and 

TN: Method 4500-P J in APHA-AWWA-WEF (2005)), to analyse the impact of 

RTC on the removal of these pollutants.  

 

The outflow volumes of each event for each column was measured. The 

evapotranspiration volume for each round was estimated through mass 

balance: e.g., evapotranspiration volume = inflow volume – outflow volume – 

bypassed volume. During each sampling event, the instantaneous water depths 
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in the ponding zone were recorded after regular intervals (3.75 minutes) to 

estimate infiltration rates. 

 

2.3 Data analysis 

Removal of E. coli was presented in the form of log reduction, which was the 

difference between the logarithmic (base 10) inflow concentration and the 

logarithmic outflow concentration. The data of E. coli log reduction and 

infiltration rate were analysed for normality using the Shapiro-Wilk test; the 

results showed that the infiltration rate data and the E. coli log reduction data 

for RTC biofilters were all normally distributed, while the E. coli log reduction 

data for non-RTC biofilters were non-normally distributed. Although non-

parametric analysis is generally recommended for non-normally distributed 

data, the available non-parametric analytical methods are limited in testing the 

influence of single factor rather than the possible interactions between different 

individual factors (Kirk, 2008). In addition, even when the normality assumption 

is not verified, analysis of variance (ANOVA) is still considered as a robust test 

if a low p-value (e.g., p < 0.001) could be achieved (Kirk, 2008). As such, a 

series of ANOVA along with post hoc tests (Tukey HSD) was performed for 

pollutants removal, infiltration rate, and temperature comparisons. A three-way 

ANOVA was conducted to study whether the observed E. coli log reductions 

were affected by dry period length, event size, or inflow concentration. Two 

more three-way ANOVA were carried out to analyse whether the E. coli 

concentrations / the log reductions of E. coli concentration were affected by the 

biofilter type (i.e., RTC or non-RTC), Round, and Event. 

 

In each round, for each type of biofilters, several calculation were made as: (1) 

proportion of harvested stormwater volume = volume of harvested water / total 

stormwater volume (all the stormwater inflow, including the bypassed water); 

(2) proportion of bypassed stormwater volume = volume of bypassed water / 

total stormwater volume; (3) proportion of discharged stormwater volume = 

volume of water discharged to the environment after treatment / total 

stormwater volume; (4) proportion of stormwater evapotranspired = 1 - 

proportion of harvested stormwater volume - proportion of bypassed 

stormwater volume - proportion of discharged stormwater volume; (5) 
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proportion of bypassed stormwater load = load in the bypassed water / total 

load in the stormwater (all the stormwater inflow); and (6) total load removal 

rate = 1 – (load in the harvested stormwater - total load in the bypassed 

stormwater - load in the discharged stormwater) / total load in the stormwater. 

It is noted at, we calculated the total load removal rate in a conservative way, 

because if the water for harvesting is directly conveyed for reuse, the load in it 

will be deferred from the stormwater system, and the part “load in the harvested 

stormwater” could therefore be removed from the calculation.  

 

3. Results 

3.1 Overall performance of RTC 

3.1.1 Round 1: Harvesting RTC 

The median E. coli concentration of RTC-harvesting (i.e., the water collected 

from RTC biofilters for harvesting) was 9.3 times lower than that of the non-

RTC outflow. In addition, RTC-harvesting met the requirement for secondary 

contact recreation in Australia (median concentration < 1000 E. coli/100 mL;   

NHMRC (2008)), while non-RTC outflow did not. Furthermore, the median log 

reduction of RTC-harvesting was 2.7 times higher than non-RTC outflow ( 

Table). The 5th percentile log reduction of RTC-harvesting was 1.01, meaning 

that in the vast majority cases, at least 1 log reduction could be achieved for 

RTC biofilters. The negative value of the 5th percentile log reduction for non-

RTC outflow (-1.75) was likely from the short dry events, in which the trapped 

microbes were flushed out by the inflow with low microbial concentrations 

before experiencing sufficient die-off (similar to what Chandrasena et al. (2012) 

found).  

 

Importantly, for RTC biofilters, only 40 % volume of the stormwater was filtered, 

and the rest was directly bypassed without treatment to the environment 

(median E. coli of 2.68 × 103 MPN/100mL), while 100 % of the stormwater was 

treated by non-RTC biofilters (median E. coli of 6.87 × 103  MPN/100mL). The 

E. coli load reductions in the RTC biofilters were 62 % as compared to 83 % for 

the non-RTC biofilters. These values did not follow the proportion 

bypassed/treated because of the more efficient treatment of the RTC columns 

for the harvested portion of water.  
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Table 2 Overall performance of RTC and non-RTC biofilters with the 

implementation of Harvesting RTC (Round 1) and Harvesting-Environment 

RTC (Round 2). 

 Round 1: Harvesting RTC 
Round 2: Harvesting-Environment 

RTC 

Median inflow concentration 

(5th percentile,  95th 

percentile) (MPN/100 mL) 

3.09 × 104  (145, 2.69 × 105) 6.46 × 104 (331, 6.92 × 105) 

 

RTC biofilters 
Non-RTC 

biofilters 
RTC biofilters 

Non-RTC 

biofilters 

RTC-

harvesting 

RTC-

environment 

(bypassed) 

Non-RTC 

outflow 

RTC-

harvesting 

RTC- 

environment 

(treated) 

Non-RTC 

outflow 

Median outflow concentration 

(MPN/100 mL) 
740 2.68 ×104 6.87 × 103 < 1 6.50 × 103 5.83 × 103 

Log reduction 

Median (5th 

percentile, 

95th 

percentile) 

1.81 (1.01, 

2.71) 
0 (0, 0) 

0.66 

(-1.75, 

2.66) 

4.94 (2.92, 

5.85) 

0.88 (-1.06, 

1.67) 

0.90 

(-1.01, 

1.76) 

% stormwater volume 

harvested 
28.4 % 0 % 5.40 % 0 % 

% stormwater volume 

bypassed 
60.0 % 0 % 0 % 0 % 

% stormwater 

evapotranspired 
11.6 % 10.8 % 11.4 % 11.9 % 

% total load removal 62.3 % 83.1 % 93.7 % 92.8 % 

% stormwater load bypassed 36.6 % 0 % 0 % 0 % 

 

The impact of antecendent dry length, event size, and inflow concentration on 

harvesting was also analysed, based on the detailed experimental results for 

each event that listed in the supplementary material (Figure A.2 and Figure 

A.3).  Event size did not impact the volume or quality of RTC-harvesting (p = 

0.481, three-way ANOVA), as in each event, the volume of inflow that allowed 

to enter RTC biofilters was exactly the submerged zone volume. However, both 

antecedent dry length inflow concentration impacted the water quality for 

harvesting (p = 0.003 and 0.023, respectively; three-way ANOVA). The quality 

of RTC-harvesting samples collected after long dry periods was lower than 
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those collected after median dry periods, as the low moisture content in 

biofilters after long dry periods increased potential preferential flow pathos (as 

confirmed by increased infiltration rates; Figure A.1 in the supplementary 

material), and accordingly the likelihood of the retained stormwater being better 

mixed with newly applied stormwater. After short dry periods, no water was 

collected for RTC-harvesting as the retention time of retained water was 

insufficient and all stormwater was therefore bypassed. Similarly, RTC-

harvesting was of low quality during high concentration inflow events compared 

to that collected in median concentration inflow events, mainly due to the water 

retained from previous event was mixed with newly entered stormwater,  and 

higher concentration inflow caused lower quality after mixture. However, only 

5.4 % of the total stormwater volume was harvested for RTC biofilters ( 

Table), mainly because of the soil-holding capacity of biofilters not allowing all 

the pore water to drain freely. 

 

Since this RTC strategy continues to treat the incoming stormwater after the 

harvesting has finished, the water quality released to the environment from RTC 

biofilters (RTC-environment) was similar to that of the non-RTC outflow (p 

=0.926; one-way ANOVA), indicating that the implementation of Harvesting-

Ecosystem RTC would not exacerbate the pollution on ecosystems. 

Furthermore, 100 % of the stormwater was treated by both RTC and non RTC 

biofilters in Round 2, meaning that the load reductions were comparable (93.7 

% vs. 92.8 %) (Table 2).  

 

Neither event size nor inflow concentration were significant factors for RTC-

harvesting (p = 0.761 and 0.179, respectively; three-way ANOVA). Since RTC-

harvesting entirely came from the previous event’s water, it only depended on 

(1) the water volume and quality in previous events, and (2) the length of the 

antecedent dry weather period. Indeed, for this strategy, dry weather length 

impacted the volume and quality for harvesting. This was because all the water 

for harvesting was collected from the events with median dry periods. No RTC-

harvesting samples were collected after long dry periods, as biofilters had very 

low moisture content after the extensive evapotranspiration, and the water 

contained in the pores were all held by the filter media. Also, during short dry 
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events, in order to maintain minimum retention times for harvested water, RTC 

biofilters were only operated as typical and hence no RTC-harvesting samples 

were collected. It is noted that, although no water was collected for harvesting, 

it was still better than not collecting any water with low quality, so that the water 

quality for harvesting could be consistently kept high.  

 

3.2 Comparison of two RTC strategies 

Although in the three-way ANOVA of the log reductions of E. coli concentration, 

Round is a significant factor (p < 0.001), significant interaction was found 

between Round and biofilter type (p < 0.001), and Round and Event (p < 0.001). 

Similar results were found in the three-way ANOVA of E. coli concentrations. 

Actually, when comparing the overall performance of non-RTC biofilters in 

Round 1 with that in Round 2 after the elimination of the interactive factors, 

there was no significant difference, as comparable log reduction (p = 0.353; 

one-way ANOVA) and E. coli concentration (p = 0.394; one-way ANOVA) in 

non-RTC outflow were observed in the rounds. In addition, there were no 

significant difference between the inflow concentrations of E. coli in the two 

Rounds (p = 0.187; one-way ANOVA), although they were not exactly the same 

due to the continuous E. coli growth/die-off during spiking. Therefore, it is 

proposed that the fact that we implemented the two strategies in series instead 

of in parallel caused no significant impact to the performance of RTC biofilters 

in Round 1 and in Round 2, enabling a comparison between the two strategies.  

 

Compared to Harvesting RTC, Harvesting-Environment RTC delivered both 

higher quality of harvested water (median E. coli concentration: < 1 MPN/100 

mL vs. 740 MPN/100 mL) and higher quality of environmental discharges (total 

load removal: 93.7 % vs. 62.3 %) (Table 2). The higher water quality of 

harvested water collected from Harvesting-Environment RTC biofilters than in 

Harvesting RTC biofilters was mainly because, when collecting the water for 

harvesting, in Round 1 stormwater was entering the Harvesting RTC biofilters 

in the meantime and creating a ponding on the top of biofilters, while in Round 

2 no water was entering biofilters and therefore Harvesting-Environment RTC 

biofilters have a much lower hydraulic head compared to those in Round 1. As 

such, the outflow rates of harvested water in Round 1 were higher than those 
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in Round 2, resulting in a higher desorption of the microbes that were trapped 

in the biofilter media and plant roots. In addition, the harvested water collected 

from Harvesting-Environment RTC through free draining only contained clean 

water with sufficient die-off, while the harvested water of Harvesting RTC was 

posed to a risk of being mixed with newly entered stormwater. However, as a 

sacrifice, the total volume of water for harvesting collected from Harvesting-

Environment RTC biofilters is much less than that collected from Harvesting 

RTC biofilters (5.4 % vs. 28.4 %) (Table 2). 

 

3.4 Impact of RTC on TSS, TP and TN removal 

We also wanted to ensure that RTC was not impacting greatly on our ability to 

maintain sediment and nutrient removal. The total load removal patterns for 

TSS, TN, and TP followed the E. coli removal patterns discussed above (Table 

3). For each pollutant, the high load in the untreated stormwater that bypassed 

the Harvesting RTC resulted in a significant drop in load removal (compared to 

non-RTC) and the failure in meeting the requirements in Clause 56.07 in 

Victoria, Australia (State of Victoria, 2006) However, Harvesting-Environment 

RTC biofilters still met these requirements and had similar total removal rates 

as non-RTC biofilters, as all the inflow was treated. Furthermore, it is noted that, 

only three events were selected to test for TSS, TN, and TP, and the total 

removal rates might be different if all events were included.  

 

Table 3 Total load removal rates of TSS, TP, and TN of RTC and non-RTC 

biofilters in the last three events (Event 9, Event 10, and Event 11) in each 

round of experiments.  

  

RTC biofilters Non-RTC biofilters 

Requirements in 

Clause 56.07 (State 

of Victoria, 2006) 

R
o

u
n

d
 1

 % total load removal of TSS 27 % 96 % 80 % 

% total load removal of TP 22 % 63 % 45 % 

% total load removal of TN 26 % 75 % 45 % 

R
o

u
n

d
 2

 % total load removal of TSS 97 % 97 % 80 % 

% total load removal of TP 82 % 78  % 45 % 

% total load removal of TN 77 % 78 % 45 % 
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The TSS removal rate of RTC-harvesting was comparable to that of non-RTC 

outflow in Event 9 (median dry event) (p = 0.777 for Round 1 and p = 0.337 for 

Round 2; one-way ANOVA), and was much lower than that of non-RTC outflow 

in Event 11 (long dry event) (p < 0.001; one-way ANOVA), indicating that long 

retention time could jeopardise TSS removal. That was because, due to the low 

moisture content, filter media might remobilise during long dry days and be 

drained out by the outflow in the next event (Table 4). Similar results were found 

in TP removal (Table 4), as the release of phosphorous could occur during 

extended dry weather periods (Bratieres et al., 2008). For TN removal, median 

dry period was preferred, as the TN removal rates of RTC-harvesting were 

significantly higher than those of non-RTC outflow in Event 9 in both rounds (p 

< 0.001 for Round 1 and p = 0.002 for Round 2; one-way ANOVA), while the 

benefit disappeared after long dry weather periods (Event 11 in Round 1) (p > 

0.792; one-way ANOVA), due to the leaching of nitrogen (Bratieres et al., 2008; 

Payne et al., 2014) (Table 4). Therefore, both RTC strategies were effective for 

TN removal in harvesting, but neither were favoured in TSS or TP removal. 
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Table 4 TSS, TP and TN removal rates of RTC and non-RTC biofilters in the 

last three events (Event 9, Event 10, and Event 11) in each round. All the 

removal rates are concentration reductions. The cells were filled with “N/A” 

when no corresponding samples were collected. 

  Event 9 (median dry: 5 days) Event 10 (short dry: 1 day) Event 11 (long dry: 21 days) 

R
o

u
n

d
 1

 

Inflow 

concentrati

on 

TSS: 160 mg/L; TP: 0.35 mg/L; TN: 

1.7 mg/L 

TSS: 190 mg/L; TP: 0.36 mg/L; TN: 

1.7 mg/L 

TSS: 150 mg/L; TP: 0.29 mg/L; TN: 

1.5 mg/L 

 

RTC biofilters 

Non-

RTC 

biofilters 

RTC biofilters 

Non-

RTC 

biofilters 

RTC biofilters 

Non-

RTC 

biofilters 

RTC-

harvestin

g 

RTC-

environment 

(bypassed) 

Non-RTC 

outflow 

RTC-

harvestin

g 

RTC-

environment 

(bypassed) 

Non-RTC 

outflow 

RTC-

harvestin

g 

RTC-

environment 

(bypassed) 

Non-RTC 

outflow 

Mean TSS 

removal 

rate (SD*) 

97 % 

(1 %)  
0 % (0 %) 

97 % 

(1%) 
N/A 0 % (0 %) 

98 % 

(0 %) 

72 % 

(14 %) 
0 % (0 %) 

91 % 

(1 %) 

Mean TP 

removal 

rate (SD) 

68 % 

(10 %) 
0 % (0 %) 

60 % 

(11 %) 
N/A 0 % (0 %) 

58 % 

(11 %) 

29 % 

(25 %) 
0 % (0 %) 

55% 

(11 %) 

Mean TN 

removal 

rate (SD) 

87 % 

(2 %) 
0 % (0 %) 

76 % 

(4 %) 
N/A 0 % (0 %) 

84 % 

(4 %) 

43 % 

(19 %) 
0 % (0 %) 

46 % 

(6 %) 

R
o

u
n

d
 2

 

Inflow 

concentrati

on 

TSS: 170 mg/L; TP: 0.36 mg/L; TN: 

2.2  mg/L 

TSS: 180 mg/L; TP: 0.33 mg/L; TN: 

2.2 mg/L 

TSS: 195 mg/L; TP: 0.36 mg/L; TN: 

2.3 mg/L 

 

RTC biofilters 

Non-

RTC 

biofilters 

RTC biofilters 

Non-

RTC 

biofilters 

RTC biofilters 

Non-

RTC 

biofilters 

RTC-

harvestin

g 

RTC-

environment 

(bypassed) 

Non-RTC 

outflow 

RTC-

harvestin

g 

RTC-

environment 

(bypassed) 

Non-RTC 

outflow 

RTC-

harvestin

g 

RTC-

environment 

(bypassed) 

Non-RTC 

outflow 

Mean TSS 

removal 

rate (SD)  

95 % 

(1 %) 
98 % (0 %) 

97 % 

(1 %) 
N/A 99 % (0 %) 

93 % 

(4 %) 
N/A 99 % (0 %) 

95 % 

(1 %) 

Mean TP 

removal 

rate (SD) 

79 % 

(6 %) 
81 % (6 %) 

73 % 

(8 %) 
N/A 84 % (5 %) 

81 % 

(3 %) 
N/A 72 % (9 %) 

70 % 

(4 %) 

Mean TN 

removal 

rate (SD) 

91 % 

(2 %) 
86 % (2 %) 

90 % 

(1 %) 
N/A 94 % (1 %) 

93 % 

(1 %) 
N/A 54 % (8 %) 

56 % 

(6 %) 

 *SD: Standard deviation. 
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4. Conclusion, implications to practical application, and future work 

Both RTC strategies were effective in reducing the risks posed by faecal 

microbes during stormwater harvesting and reuse. Although RTC Strategy 2 

(Harvesting-Environment) provided less volume of water for harvesting as 

compared to RTC Strategy 1 (Harvesting), it was able to (1) provide treated 

harvested water that meets both the requirement of dual reticulation with indoor 

and outdoor use or irrigation of commercial food crops (NHMRC, 2009) and the 

requirement for secondary contact recreation in Australia (NHMRC, 2008), and 

(2) discharge water to the environment which met Urban stormwater best 

practice environmental management guidelines (CSIRO, 1999).. 

 

This study was the first attempt to apply RTC in stormwater biofilters and 

demonstrated that RTC systems can deliver safe water for harvesting and 

reuse. The two strategies developed in this study are easy and cheap to be 

implemented both in newly developed systems and for the retrofit of existing 

systems. While RTC biofilters are promising for practical applications, several 

points are worthwhile to note: 

 The set points of the two strategies used in this experiment (e.g., 

minimum required retention time Tmin = 2 days) might be different when 

the strategies are applied in another biofilter and/or with different climate 

conditions and inflow features. The set points may need to be adjusted 

in newly developed RTC strategies. 

 To increase the harvested water volume in RTC Strategy 2 (Harvesting-

Environment), a possible method in practice could be to enlarge the 

submerged zone (SZ) volume of biofilters during the design process. A 

larger SZ could also supply plants with more water to resist extended dry 

weather periods. The cost-effectiveness of enlarging SZ volumes will be 

evaluated in future work. 

 During the implementation of RTC Strategy 1 (Harvesting), the 

maximum volume of stormwater that entered biofilters in a single event 

was the submerged zone volume; however, we underestimated the 

water holding capacity of the soil and suggest that additional stormwater 
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could be allowed to enter biofilters without causing any discharge of 

newly entered water. 

 We know that extended retention time (Tmin) is crucial for microbial (and 

nutrient) removal, but we suggest that a maximum retention time (Tmax) 

could help mitigating the impact of extended dry period and balancing 

the removal of microbes and nutrients, as we observed that the leaching 

of TN and the release of TP occurred during extended dry period. 

 Finally, no historical rainfall forecast archive was available in this study, 

and future work will be conducted to explore the potential uncertainties 

caused by inaccurate rainfall forecast. It is expected that the unreliability 

of rainfall forecast could negatively impact the effectiveness of RTC. 
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Supplementary material  

We propose that the improved removal rates observed in the RTC columns 

(compared to removal rates observed in the non-RTC columns) in  in Round 1 

and Round 2 (Section 3.1.1 and 3.1.2) were both mainly derived from the 

implementation of RTC strategies, rather than the inherent differences between 

biofilters (i.e., RTC vs. non-RTC, and with vs. without woodchips). This was 

because:  (1) at the start of each round, there was no significant difference 

between the infiltration rates of RTC biofilters and those of non-RTC biofilters 

(p = 0.518, two-way ANOVA; Round and biofilter type); and (2) compared to 

the type of biofilters, time was a much more significant factor to the change of 

infiltration rates through the experiments (with much lower p value and p < 

0.001 in three-way ANOVA: Round, biofilter type, and time). The infiltration 

rates in each event are provided in Figure A.1. 

 

Figure A.1 Infiltration rates of RTC and non-RTC biofilters in each event of 

Round 1 and Round 2. 
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Figure A.2 Experimental results during the implementation of Harvesting RTC. 

In each event, a comparison between the E. coli concentrations (log 

transformed) of RTC-harvesting, RTC-environment (bypassed) and non-RTC 

outflow is included.  

 

 

Figure A.3 Experimental results during the implementation of Harvesting-

Environment RTC. In each event, a comparison between the E. coli 

concentrations (log transformed) of RTC-harvesting, RTC-environment 

(bypassed) and non-RTC outflow is included. 
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5.3   Discussion and conclusions 

This study presents the first attempt to develop and test RTC in stormwater 

biofilters for the purpose of stormwater harvesting and reuse. The developed 

two RTC strategies, Harvesting RTC and Harvesting-Environment RTC, focus 

on different priorities and could both provide benefits for stormwater harvesting 

by improving the quality of supplied water. Therefore, it is concluded that, 

adopting RTC in stormwater biofilters is feasible and effective to eliminate the 

risks posed by faecal microbes during stormwater harvesting and reuse.  

 

In addition, it is expected that the additional information (e.g., water level and 

moisture content) monitored by RTC equipment (e.g., flowmeters and sensors) 

could lead to a more effective maintenance of RTC biofilters compared to non-

RTC biofilters, so that the performance of the entire system would be improved. 

For example, the occurrence of clogging could be detected by a moisture 

sensor, and prompt maintenance could be conducted based on this information. 

 

In the meantime, the results of laboratory experiments indicated that neither of 

the developed strategies is perfect, as both of them have some limitations: e.g., 

Harvesting RTC exacerbated the pollution to the environment as untreated 

stormwater with a large amount of load was bypassed, while Harvesting-

Environment RTC only collected limited volume of stormwater due to soil 

holding capacity during the free drainage of the harvested water. These results 

indicated that, although it is aimed to collect water with good quality and large 

volume, how to balance these competing needs during RTC implementation is 

still a question.  

 

To solve this problem, one option would be developing and testing additional 

strategies, and selecting strategies according to the strategy effectiveness, end 

use requirements, and treatment priorities. To achieve this aim, it would be very 

time-consuming and not economically feasible to test all the potential strategies 

one by one through laboratory experiments or field tests; instead, modelling 

might be an efficient tool to assess RTC strategies, as long as the selected 

model is proved to be effective in reflecting the outcome of RTC implementation. 



Chapter 5. Development and laboratory testing of real time control strategies for stormwater biofilters 

158 
 

The model developed in Chapter 3 would be a potential option, however, it was 

only developed for non-RTC biofilters and therefore needs to be modified and 

validated with the data collected from RTC experiments. This work will be 

conducted in the next chapter (Chapter 6). 

 

Furthermore, in this study, only laboratory experiments were conducted in RTC 

testing, as under laboratory conditions, it is easy to fulfil system control and 

monitoring, and the test is repeatable. However, the outcome of RTC 

implementation in a field system (where extreme weather conditions and larger 

system scale may apply) is still unknown. Considering the difficulty to conduct 

and the high uncertainty in field monitoring and control, again, modelling could 

also be adapted to evaluate the performance of RTC strategies with a modelled 

representation of reality. This work will also be presented in the next chapter. 
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6.1   Introduction  

The two developed and tested RTC strategies in Chapter 5, Harvesting RTC 

and Harvesting-Environment RTC, have been proved effective to reduce the 

risks posed by faecal microbes during stormwater harvesting and reuse, as 

harvestable water has been collected. However, limitations still exist in both 

strategies. For example, a large amount of untreated stormwater is bypassed 

by Harvesting RTC and exacerbates environmental pollution, while limited 

volume of harvested water was collected from Harvesting-Environment RTC 

biofilters, due to the soil holding capacity. Indeed, competing needs (e.g., larger 

amount of water and better water quality) may exist during harvesting. To 

balance these needs, more RTC strategies need to be tested.  

 

However, it is very time-consuming and not economically feasible to test all the 

potential RTC strategies one by one through laboratory or field testing. Instead, 

modifying the model developed in Chapter 3 might be effective to generate an 

effective tool for RTC evaluation. Therefore, the first objective of this study is to 

analyse the feasibility of modifying the model that developed in Chapter 3 to 

simulate the outcome of RTC implementation. 

 

If the modified model is capable of representing the benefits of RTC through 

simulation, it could be used to explore additional RTC strategies. In addition, 

considering that the effectiveness of RTC with field inputs is still unknown, 

modelling could also be employed to assess the RTC performance under the 

scenarios where the reality could be well represented (e.g., use modelling to 

represent the reality). 

 

As such, the objectives of the study presented in this chapter are: (1) modify 

the developed model in Chapter 3 and evaluate the capability of the modified 

model in representing the benefits of RTC; (2) if the modified model is capable 

of representing the benefits of RTC implementation, utilise the model to explore 

and assess more strategies and scenarios, exploring more RTC options to 

balance the competing needs that exist in stormwater harvesting and reuse. 

The research questions include:  
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 Is the outcome of RTC implementation could be well simulated by the 

model developed for non-RTC bioifilters after modification, with the 

parameters calibrated for non-RTC bioifilters? 

 Could the competing needs in stormwater harvesting and reuse be 

balanced by optimising developed RTC strategies or developing new 

RTC strategies?  

 What are the differences of operational schemes and outcomes when a 

same RTC strategy is applied in different biofilter systems and/or with 

different inputs? 

 

Corresponding to the research questions, two hypotheses were made:  

 The model that developed for non-RTC bioifilters is capable of 

representing the outcome of RTC implementation after model 

modification, since the model is proved to be effective in simulating 

various operational conditions, and hence the change of operational 

conditions that triggered by RTC is expected to be well reflected; the only 

modification needed is to enable the model to represent potential control 

behaviors (e.g., suffocating inflow/outflow pipes); 

 The optimisation of developed RTC and the development of new RTC 

could be effective in balancing the competing needs in stormwater 

harvesting and reuse; however, the outcome may also depend on the 

inputs (e.g., rainfall characteristics, and inflow concentrations);  

 For different systems with different inputs, when a same RTC strategy is 

applied, the optimum set-points and corresponding benefits may vary, 

depends on the inputs and treatment requirement. 

 

This chapter presents the study and results of modifying the model developed 

in Chapter 3 and using the modified model to simulate the laboratory 

experiments that conducted in Chapter 5. In addition, two additional RTC 

strategies are assessed in the modelling scenarios using a modelled 

representation of reality. This chapter is written as a draft for journal publication 

and will be submitted to Journal of Hydrology. 
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6.2   Model validation and further exploration of real time 

control 

 

 

BioRTC: a new model that simulates and explores real time 

control strategies of stormwater biofilters    
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Abstract  

This study uses modelling to explore real time control (RTC) strategies for 

biofilters so that they can be used to treat stormwater and deliver harvestable 

stormwater. To achieve this aim, a model for the prediction of microbial removal 

in stormwater biofilters was first selected, modified to include RTC capabilities, 

and validated with data collected from a set of laboratory experiments. These 

experiments trialled two real time control strategies of biofilters, both focusing 

on simple rules to harvest well-treated submerged zone water. After 

modification, the new BioRTC model was able to represent the behaviour of the 

laboratory biofilters and the RTC operations well, with Nash Sutcliffe 

Efficiencies (Ec) of up to 0.80. This validated model was then used to explore 

the potential of an additional two new RTC strategies. The first strategy retains 

water in biofilters for a sufficient time to ensure optimal die-off before allowing 

any further inputs into the system, and when inputs are allowed to enter, the 

input volume is restricted to the submerged zone’s pore volume plus the 

unsaturated zone’s water holding capacity. The second strategy enlarges 

biofilters’ submerged zone depth to 1.5 times greater, uses a bottom pipe to 

collect the water that has sufficiently treated by biofilters before the start of next 
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rainfall event for harvesting, and closes the bottom pipe and operates biofilters 

as normal when stormwater enters. Compared to the previously developed 

RTC strategies, the two new strategies could better protect the environment by 

removing higher pollutant loads. With these simple modifications, they could 

also better balance the competing needs in stormwater harvesting and reuse, 

in that they could achieve a higher volume of harvestable water together with 

comparable or improved water quality. Moreover, by analysing the Pareto fronts 

under different set-point values, the optimum set-point for each strategy in the 

tested scenarios were recommended. The results also indicated that different 

RTC designs and set-points are needed for each new application, and BioRTC 

could be an effective tool to implement this suggestion. 

 

Keywords: stormwater biofilters, real time control, modelling, stormwater 

harvesting, microbes, E. coli 

 

1. Introduction 

Faecal microbes are the major pollutants that prevent stormwater harvesting 

and reuse, as they pose serious risks to human health (Meng et al., 2018; 

Murphy et al., 2017). As such stormwater needs to be treated before harvesting. 

To treat stormwater, biofilters (also named as bioretention systems or rain 

gardens) have been widely adopted all over the world (Bratieres et al., 2008; 

Hathaway et al., 2011; Hatt et al., 2009; Zinger et al., 2011). Stormwater 

biofilters are soil-plant systems, using enhanced infiltration and 

evapotranspiration to eliminate faecal microbes and other pollutants (e.g., 

nutrients and heavy metals) (FAWB, 2009). For microbial removal in 

stormwater biofilters, adsorption, desorption, straining and die-off are the 

governing processes (Chandrasena et al., 2014a; Stevik et al., 2004).  

 

Although stormwater biofilters are more effective in faecal microbial removal 

compared to other water sensitive urban design systems (e.g., wetlands) 

(Chandrasena et al., 2012; Davies and Bavor, 2000; Hathaway and Hunt, 

2010), further optimisation is needed, as their performance was reported to be 

inconsistent. For example, the removal rates for E. coli (Escherichia coli) and 

Campylobacter spp. could both range from > 99 % to < 0 % (Chandrasena et 
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al., 2016; Chandrasena et al., 2014b; Li et al., 2012; Zhang et al., 2011; Zhang 

et al., 2012). The major reason for this high variability is, the negative effects 

that result from various operational conditions could not be mitigated by design 

optimisation. These operational conditions include extended dry periods (cause 

plant death and preferential flow), short dry periods (i.e. insufficient die-off of 

trapped organisms), and big size events (cause the breakthrough of treatment 

capacity) (Chandrasena et al., 2012; Chandrasena et al., 2014b; Li et al., 2012). 

To further enhance microbial removal in biofilters to achieve better water quality 

for stormwater harvesting, operational conditions need to be controlled.  

 

To achieve control and optimisation of stormwater biofilters, real time control 

(RTC) is a potential tool. The general concept of RTC is monitoring a system in 

real time, and using collected data from monitoring to optimise operation by 

controlling certain aspects of the system (Schütze et al., 2004). RTC has been 

widely adopted in flooding control, and sewer systems and wastewater 

treatment optimisation (Hsu et al., 2015; Leon et al., 2014; Schilling et al., 1996; 

Schütze et al., 2004). Recently, the first attempt of applying RTC in stormwater 

biofilters has been carried out by Shen et al. (2018a) by developing two RTC 

strategies and testing them via laboratory experiments. The first RTC strategy 

focuses on delivering the best water quality for harvesting and reuse or for 

recreational waterways, by restricting the input volume to the submerged zone’s 

pore volume. Therefore, a part of untreated stormwater was bypassed and the 

environment was polluted. While the second RTC strategy builds upon the first 

strategy and focuses on delivering a balance between good water quality for 

harvesting and protecting the environment. However, only a very limited volume 

of stormwater was collected (Shen et al., 2018a). The experimental testing 

results indicated that, although the two developed RTC strategies were both 

effective in reducing the risks posed by faecal microbes during stormwater 

harvesting and reuse, some competing needs (e.g., good water quality and 

large water volume for harvesting) could not be well balanced.  

 

To balance the competing interests of using biofilters to deliver water with 

harvestable quality and sufficient volume, while at the same time protecting the 

receiving waterbody, further RTC strategies need to be conceptualised and 
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tested. However, it is very time-consuming and not economically feasible to test 

all the potential RTC strategies and scenarios one by one through laboratory 

experiments or field tests, as in those conducted by Shen et al. (2018a). 

Instead, modelling could be considered as a potential tool to efficiently evaluate 

RTC strategies and scenarios.  

 

This study therefore aims to analyse the feasibility of using modelling to 

simulate the results of RTC implementation and assess further options of RTC 

to balance the competing needs in stormwater harvesting and reuse.  To 

achieve this aim, a new model BioRTC was developed based on the 

modification of an existing model to include real time control capabilities. 

BioRTC was then validated using the published datasets of Shen et al. (2018a), 

which tested RTC strategies on laboratory biofilter columns. In addition, two 

new RTC strategies were conceptualised and tested using the BioRTC model.   

 

2. Methods 

To achieve this aim, we follow this framework: Section 2.1, select an 

appropriate model that can represent microbial removal in stormwater biofilters; 

Section 2.2, modify the model to include real time control capabilities and 

validate this new model (BioRTC) can represent existing studies that have 

monitored the performance of RTC on stormwater biofilters; Section 2.3, 

conceptualise new RTC strategies; and, Section 2.4, test these strategies using 

the validated BioRTC model.  

 

2.1 Model selection 

Only a limited number of models have been developed for microbial removal 

prediction in stormwater biofilters (Chandrasena et al., 2013; Shen et al., 

2018b; Zhang et al., 2010; Zhang et al., 2012). Among them, the process-based 

model developed by Shen et al. (2018b) is promising, as it includes the major 

processes known to influence microbial removal (adsorption, desorption, and 

die-off) and the primary factor associated with microbial die-off (temperature). 

Furthermore, it has demonstrated capabilities of predicting the performance of 

different laboratory-scale and field-scale biofilters (Shen et al., 2018b; Shen et 

al., 2018c). However, the model does not include RTC capabilities, nor has it 
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been applied or tested using data from biofilters that have RTCs. As such, we 

first provide an overview of the model and its structure, and later discuss how 

it has been amended to include RTC capabilities. 

 

The model details have been fully described by Shen et al. (2018b) and hence 

it is briefly summarised. The model utilises a “three-bucket” approach and these 

buckets represent the major parts of a typical stormwater biofilter: (1) a ponding 

zone (i.e., the temporary pond appears on the top of filter media when inflow 

comes), (2) an unsaturated zone (USZ; i.e., the part of filter media where is not 

saturated), and (3) a submerged zone (SZ; i.e., the part of filter media where is 

saturated; normally created by raising the outflow pipe). The model has two 

modules, the flow module and microbial quality module.  

 

The flow module simulates the governing flow processes in biofilters. For 

example, Darcy’s law is adopted to describe infiltration (Dingman, 2002), while 

the functions introduced in FAO-56 are employed to represent 

evapotranspiration (Allen et al., 1998). This module has two parameters: (1) Ks 

- hydraulic conductivity of biofilters, and (2) Kc - plant coefficient for 

evapotranspiration, to reflect the water uptake ability of the tested plants. The 

key equations in the flow module are listed in Table 1, where hp, husz, and hsz 

are respectively the depths of ponding zone, USZ, and SZ, S is the saturation 

level of USZ, nusz and nsz are respectively the porosity in USZ and SZ, Qin is the 

inflow of biofilters, A is the biofilter surface area, Qover is the overflow of 

biofilters, Qhc is the capillary rise from SZ to USZ, ET0 is the potential 

evapotranspiration rate, Sentire is the entire saturation level of USZ plus SZ, Sw 

and Ss are the thresholds of saturation level for different stages of 

evapotranspiration, Sentire is the field capacity of filter media, γ is the hydraulic 

conductivity coefficient. 
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Table 1 Key equations in the flow module of the model presented by Shen et 

al. (2018b). 

Flow module equation Eq. No. 

General form of equations  

Flow = min (physically possible; available upstream; available downstream)  

Ponding zone (PZ)  

Infiltration from PZ to unsaturated zone  

𝑄𝑝𝑓 = min (𝐾𝑠𝐴
ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧
,
ℎ𝑝𝐴𝑝

𝑑𝑡
+ 𝑄𝑖𝑛,

1

𝑑𝑡
(1 − 𝑆)𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧𝐴) 

(1) 

Water mass balance in PZ  

𝑑(ℎ𝑝𝐴)

𝑑𝑡
= 𝑄𝑖𝑛 − 𝑄𝑝𝑓 − 𝑄𝑜𝑣𝑒𝑟 

(2) 

Unsaturated zone and saturated zone (USZ and SZ)  

Total Evapotranspiration from USZ and SZ  

𝑄𝑒𝑡 =

{
 

 
0, 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 𝑆𝑤

𝐴 × 𝐾𝑐 × 𝐸𝑇0
𝑆𝑒𝑛𝑡𝑖𝑟𝑒 − 𝑆𝑤
𝑆𝑠 − 𝑆𝑤

, 𝑆𝑤 < 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 𝑆𝑠

𝐴 × 𝐾𝑐 × 𝐸𝑇0, 𝑆𝑠 < 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 1

 

(3) 

Unsaturated zone (USZ)  

Evapotranspiration from USZ  

𝑄𝑒𝑡_𝑢𝑠𝑧 = 𝑄𝑒𝑡 ×
𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧

𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧
 

(4) 

Infiltration from USZ to SZ  

𝑄𝑓𝑠 = {
min(𝐴 × 𝐾𝑠

ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧
𝑆𝛾,

(𝑆 − 𝑆𝑓𝑐)𝐴 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧

𝑑𝑡
+ 𝑄𝑝𝑓 + 𝑄ℎ𝑐) , 𝑆 ≥ 𝑆𝑓𝑐

0, 𝑆 < 𝑆𝑓𝑐

 

(5) 

Water mass balance in USZ  

𝑑(𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧𝐴)

𝑑𝑡
= 𝑄𝑝𝑓 + 𝑄ℎ𝑐 − 𝑄𝑓𝑠 − 𝑄𝑒𝑡_𝑢𝑠𝑧 

(6) 

Saturated zone (SZ)  

Evapotranspiration from SZ  

𝑄𝑒𝑡_𝑠𝑧 = 𝑄𝑒𝑡 − 𝑄𝑒𝑡_𝑢𝑠𝑧 (7) 

Flow through drainage pipe
 

 

𝑄𝑝𝑖𝑝𝑒

= {
min(𝐴 × 𝐾𝑠

ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧 + ℎ𝑠𝑧
,
(ℎ𝑠𝑧 − ℎ𝑝𝑖𝑝𝑒)𝑛𝑠𝑧𝐴

𝑑𝑡
+ 𝑄𝑓𝑠 − 𝑄ℎ𝑐 −𝑄𝑒𝑡_𝑠𝑧) , ℎ𝑠𝑧 > ℎ𝑝𝑖𝑝𝑒

0, ℎ𝑠𝑧 ≤ ℎ𝑝𝑖𝑝𝑒

 

(8) 

 

The microbial quality module predicts the behaviour of microbes using one-

dimensional advection-dispersion equations, with the flow information obtained 
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from the flow module. The water quality module has four parameters: 

adsorption rate (katt), desorption rate (kdet), the standard die-off rate (μ0), and 

the temperature coefficient for die-off (θ). Take USZ for example, the key 

equations in this module were listed in Table 2, where cusz: the microbial 

concentration in USZ, ρ: bulk soil density, M1: the the microbial concentration 

in the solid phase due to adsorption, D1: the dispersion coefficient in USZ, and 

q1: average unit flow in USZ. Detailed equations and parameters are provided 

in Supplementary material A, for all zones and both the water quality and flow 

modules. 

 

Table 2 Key equations for the unsaturated zone in the microbial quality module 

of the model presented by Shen et al. (2018b).  

Microbial quality module key equations in USZ Eq. No. 

Microbial mass balance in the water phase  

𝜕(𝑆𝑛𝑢𝑠𝑧𝑐𝑢𝑠𝑧)

𝜕𝑡
+ (𝑆𝑛𝑢𝑠𝑧𝑘𝑎𝑡𝑡𝑐𝑢𝑠𝑧 − 𝜌𝑘𝑑𝑒𝑡𝑀1)

=
𝜕

𝜕𝑧
(𝑆𝑛𝑢𝑠𝑧𝐷1

𝜕𝑐𝑢𝑠𝑧
𝜕𝑧

) −
𝜕(𝑞1𝑐𝑢𝑠𝑧)

𝜕𝑧
− 𝑆𝑛𝑢𝑠𝑧𝜇𝑐𝑢𝑠𝑧 

(9) 

Adsorption, desorption and die-off of adsorbed microbes in the soil phase  

𝜕𝑀1
𝜕𝑡

=
𝑛𝑢𝑠𝑧𝑆

𝜌
𝑘𝑎𝑡𝑡𝑐𝑢𝑠𝑧 − 𝑘𝑑𝑒𝑡𝑀1 − 𝜇𝑀1 

(10) 

Die-off rate in USZ  

𝜇 = 𝜇0𝜃
𝑇−20℃ (11) 

 

2.2 Model modification and validation  

In this section we describe the RTC dataset used for model validation (Section 

2.2.1), the modification of the existing model introduced in Section 2.1 to 

incorporate RTC capabilities (Section 2.2.2), and the modelling process 

employed to conduct this validation (Section 2.2.3).  

 

2.2.1 Summary of dataset used for validation 

Harvesting RTC is the first strategy tested by Shen et al. (2018a). It is a 

strategy that retains water in the biofilter for an adequate time to ensure optimal 

die-off before allowing any further stormwater into the system. In addition, when 
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stormwater is allowed to enter, the input volume is restricted to the submerged 

zone’s pore volume, and the rest of stormwater is bypassed. Therefore, 

although this RTC collects “clean” stormwater that has sufficient retention time, 

it would pollute the environment by bypassing significant amounts of untreated 

stormwater. To implement Harvesting RTC, a flowmeter to detect the inflow 

volume (Vin), an inflow control valve to open or close the inflow pipe, and a timer 

to monitor the retention time of retained stormwater in biofilters (T) are needed. 

The major control processes are: (1) when stormwater inflow is detected, if T< 

Tmin (minimum required retention time), keep the inflow control valve closed and 

bypass all influent; (2) if T ≥ Tmin, open the inflow control valve, and record the 

flow/volume of the stormwater entering the biofilter (Vin); and, (3) when Vin = 

Vsz, close the inflow control valve and bypass the rest of stormwater to the 

environment. These processes ensure that all the retained water with sufficient 

retention time is collected, and the submerged zone pore volume is filled with 

newly entered stormwater. The schematic of Harvesting RTC rules could be 

found in Supplementary material B (Figure B.1). 

 

Harvesting-Environment RTC is the second strategy tested by Shen et al. 

(2018a). It has similar concepts as the previous strategy, but is slightly more 

difficult to implement but the benefits are that less water is bypassed around 

the system. In addition to the raised outflow pipe typically found in biofilters, a 

bottom pipe that at the base of biofilter is required. Three hours before next 

rainfall event begins, the water that has retained in biofilters for sufficient is 

drained and collected for harvesting through the bottom pipe. When stormwater 

inflow begins, the bottom pipe is closed, and the biofilter operates as normal 

and drains via a raised outlet pipe, discharging the treated stormwater to the 

environment. To implement this RTC, rainfall forecast information, a timer to 

record the retention time of retained stormwater in biofilters (T), and a bottom 

pipe with a control value are needed. The major control processes are: (1) when 

the next wet event is around three hours away (according to rainfall forecast), 

if T < Tmin (minimum required retention time), keep the bottom pipe closed using 

the control  valve, and biofilters will be operated as normal in the coming event; 

(2) if T ≥ Tmin, open the bottom pipe and collect SZ water via the bottom pipe; 

and (3) when stormwater inflow is detected, close the bottom pipe and operate 
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biofilters as normal again. The schematic of Harvesting RTC rules is provided 

in Supplementary material B (Figure B.1). 

 

Laboratory experiments for RTC testing were done for both of these 

strategies, as detailed in Shen et al. (2018a). In brief, ten biofilter columns were 

established in a greenhouse at Monash University, Australia. They were divided 

into RTC biofilters (control was implemented) and non-RTC biofilters (without 

control), with five replicates each. All these columns had identical size, were 

planted with Carex appressa, and had washed sand as filter media. The size of 

each part of columns were: ponding depth - 280 mm, unsaturated zone depth - 

500 mm, submerged zone depth - 440 mm, column diameter - 240 mm, 

biofilter’s pore volume - 20 L, submerged zone pore volume - 10 L. The 

schematic of a tested column is shown in Supplementary material B (Figure 

B.3).  Two rounds of experiments were conducted: Harvesting RTC was 

implemented in Round 1, while Harvesting-Environment RTC was conducted 

on the same columns during a second round, Round 2. In each round, 11 

sampling events were designed and carried out based on Melbourne’s historical 

rainfall. These events were with various rainfall sizes, antecedent dry lengths, 

and inflow concentrations. However, importantly, the characteristics of the nth 

Event in Round 1 was same as those of the nth Event in Round 2. The minimum 

required retention time of the SZ water (Tmin) was set as two days, according to 

the findings by Chandrasena (2014). Biofilters were dosed with semi-natural 

stormwater, which was prepared by collecting the sediments from a local 

stormwater wetland inlet and mixing them with dechlorinated tap water, 

supplementing with laboratory grade chemicals, and spiking Escherichia coli 

(E. coli) to target the typical concentrations of different pollutants in stormwater 

(Duncan, 1999; McCarthy et al., 2008; NHMRC, 2009). During each event, 

inflow and outflow samples were collected and analysed for E. coli 

concentrations using the Colilert method™ (IDEXX-Laboratories, 2007). To 

help estimate infiltration rates, the instantaneous water depths in biofilters’ 

ponding zone were recorded at regular intervals (3.75 minutes). To help 

understand evapotranspiration rates, total outflow volumes were measured 

after each dosing event. 
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2.2.2 Model modification: creation of BioRTC 

To modify the selected model that described in Section 2.1 to suit the RTC 

capabilities used in the RTC laboratory experiments (introduced in Section 

2.1.1) and other control potentials for biofilters, some components need to be 

added/adjusted in the equations of the flow module. As such, a new model, 

BioRTC, was developed. Compared to the original model, four modification 

patterns are provided (as follows), and the modified equations/parameters are 

also corresponding to the most typical operational conditions that are potentially 

adjustable:  

 

a) Inflow equation modification 

The inflow rate of a RTC system may need to be controlled (e.g., by a valve) to 

adjust the amount of water that enters biofilters (e.g., for Harvesting RTC), or 

to control the infiltration rate. Therefore, an equation for the inflow of biofilters, 

Qin, needs to be added to the flow module in Table 1: 

𝑄𝑖𝑛 = {

𝑄𝑠𝑤, no control
0, inflow pipe is fully closed

𝑄𝑖𝑛_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , inflow is partly closed
                                                 Eq. (12)                                                       

Where Qsw is the stormwater inflow, Qin_control is the controlled inflow 

(typically, the value could be determined by a flowmeter in RTC). 

 

b)  Outflow equation modification  

Similar to the inflow, the outflow of a biofilter could also be controlled in a RTC 

system to adjust the retention time (e.g., for Harvesting-Environment RTC) or 

infiltration rate. Therefore, the Eq. (11) in Table 1 could be revised as:            

𝑄𝑝𝑖𝑝𝑒 =

{
 
 

 
 min (𝐴 × 𝐾𝑠

ℎ𝑝+ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧+ℎ𝑠𝑧
,
(ℎ𝑠𝑧−ℎ𝑝𝑖𝑝𝑒)𝑛𝑠𝑧𝐴

𝑑𝑡
+ 𝑄𝑓𝑠 − 𝑄ℎ𝑐 − 𝑄𝑒𝑡_𝑠𝑧) , ℎ𝑠𝑧 > ℎ𝑝𝑖𝑝𝑒  and no control

0, ℎ𝑠𝑧 ≤ ℎ𝑝𝑖𝑝𝑒 or outflow pipe is fully closed 

𝐴 × 𝐶𝑑 (
1

4
𝜋𝐷2)√2𝑔ℎ, outflow pipe is partly closed

     

                                                                                                              Eq. (13) 

Where Qsw is the stormwater inflow, Cd is the orifice discharge coefficient, 

D is the equivalent orifice diameter, g is the acceleration due to gravity, and h 

is the hydraulic head acting over the centreline of the orifice. 
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c) Parameter modified to variable 

In a normal biofilter without RTC, the SZ depth is a design parameter often 

represented in models as a fixed value. However, with RTC, the SZ depth could 

be adjusted by discharging water from a bottom pipe at the base of a biofilter 

(this bottom pipe is normally included for the maintenance purpose; e.g., for 

Harvesting-Environmental RTC). In this case, hsz is set as a variable in all the 

equations in the flow module. 

 

d) Additional conditional judgment 

In addition, to represent the trigger of control in the model, additional conditional 

judgment may need to be added (e.g., if-then statements). To achieve this, 

variables/RTC parameters (e.g., the instantaneous retention time of stormwater 

in biofilters) and the corresponding set-points/threshold to trigger control (e.g., 

minimum required retention time; e.g., for Harvesting RTC and Harvesting-

Environmental RTC) should be determined.  

 

It is noted that, after modification, the BioRTC model is able to represent all the 

operational behaviours in the laboratory experiments that described in Section 

2.2.1. For example, the inflow equation modification (Eq. (12)) could simulate 

the inflow control Harvesting RTC, while outflow equation modification (Eq. 

(13)) and change SZ depth from a fixed parameter to a variable could reflect 

the operation of the bottom pipe. Moreover, the timing of open/closed the 

inflow/outflow pipe could be determined in the additional conditional judgement. 

 

2.2.3 BioRTC model validation 

Parameter calibration and sensitivity analyses were conducted on the BioRTC 

model using the dataset described in Section 2.2.1. 

 

(1) Calibration of flow module 

The parameters in flow module were calibrated with the data obtained from the 

RTC experiments described in Section 2.2.1. The ponding depths of each 

column was utilised to calibrate the parameter Ks (hydraulic conductivity), while 

the event outflow volumes were used to calibrate Kc (plant coefficient for 

evapotranspiration). Nash-Sutcliffe Efficiency was used to optimise the 
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parameter values and to evaluate the performance of the model (Nash and 

Sutcliffe, 1970), using the objective function that introduced in Shen et al. 

(2018b): 

                                       𝐸𝑞 = 0.5 × (𝐸𝑑𝑒𝑝𝑡ℎ + 𝐸𝑣𝑜𝑙𝑢𝑚𝑒)                          Eq. (14)         

where Eq is the overall Nash-Sutcliffe Efficiency of the flow module (Nash 

and Sutcliffe, 1970); Edepth is the Nash-Sutcliffe Efficiency calculated using the 

observed and predicted ponding water depths (for Ks), and Evolume is the Nash-

Sutcliffe Efficiency value calculated using the observed and predicted outflow 

volumes (for Kc). 

 

(2) Calibration of microbial quality module   

The microbial quality module was calibrated using the laboratory dataset 

presented in Section 2.2.1 as well. The Modified Monte-Carlo method that 

developed by Vezzaro et al. (2013) was adopted in calibration. 100,000 

parameter sets were randomly generated. The parameters katt (adsorption rate; 

0.1 ~ 6 h-1), μ0 (standard die-off rate; 1 ~ 4 day-1), and θ (temperature correction 

coefficient for die-off; 0.9 ~ 1.6) were uniformly distributed, while kdet (desorption 

rate; Log10 (kdet); -5 ~ 0.6 h-1) was log-uniformly distributed. Each parameter set 

was used to predict the E. coli concentrations in the outflow of all of the columns 

(RTC biofilters + non-RTC biofilters) in the laboratory dataset. The method 

introduced by Vezzaro et al. (2013) was used to rank and select parameter 

sets. The criterion for parameter selection was to ensure the model prediction 

(the prediction bounds of all the selected parameters) intersects at least 70 % 

of the observations (observation uncertainty was 30 %, as per McCarthy et al. 

(2008)), and only limited increment in observation coverage could be achieved 

when further enlarging the number of parameter sets.  

 

Nash-Sutcliffe Efficiency (Ec) was also adopted to evaluate the performance of 

water quality module in prediction. In addition, all the E. coli concentrations 

were log-transformed (as per NHMRC (2008)), thus helping to avoid biases 

caused by peak values (Criss and Winston, 2008). 
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2.3 Conceptualise new RTC strategies  

To explore the potential of the new BioRTC model for designing new RTC 

strategies to meet the many competing objectives (Section 2), two new RTC 

strategies were conceptualised in this study, (1) Modified Harvesting RTC and 

(2) 1.5×SZ Harvesting-Environment RTC on biofilters, both of which are 

described below.  

 

(1)  Modified Harvesting RTC  

Modified Harvesting RTC improves the original Harvesting RTC (Section 2.2.1) 

by delivering better environmental protection, while maintaining safe 

stormwater harvesting. The original Harvesting RTC only allows a volume of 

stormwater to enter the system which is less than or equal to the SZ volume 

(Vsz) to enter the biofilter (the rest is bypassed). However, there is also some 

extra space in the pore of unsaturated zone (USZ) that could be utilised to allow 

additional stormwater to enter into the biofilter (Figure 1). As such, the Modified 

Harvesting RTC utilises the spare space in the pores of USZ to allow additional 

stormwater to enter the biofilter, reducing the load that is bypassed to the 

environment. In addition, this strategy is expected to better balance the 

competing needs, as the additional water allows into biofilters may compensate 

evapotranspiration and enable more water for harvesting being collected. To 

fulfil this strategy, based on the facilities required for Harvesting RTC, only an 

extra moisture sensor to detect the saturation degree of USZ is needed. As 

such, this strategy still meets the low maintenance and low-cost equipment 

requirements for RTC (Shen et al., 2018a). To implement Modified Harvesting 

RTC, the first two control processes in Section 2.2.1 for Harvesting RTC remain 

unchanged, but the third process is modified to: when Vin reaches to Vsz plus 

the spare pore space of USZ, Vpore (i.e., when Vin = Vsz + Vpore), close the inflow 

valve and bypass the rest of stormwater into the environment. Vpore is calculated 

as (Sfc - Susz) × Vusz × nusz, where Sfc is the field capacity/maximum water holding 

capacity of filter media, Susz is the saturation of USZ, Vusz is USZ volume, and 

nusz is the porosity of USZ (Figure 1).  
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Figure 1 Schematic of Modified Harvesting RTC, with a comparison to 

Harvesting RTC. USZ: unsaturated zone; SZ: submerged zone.  

 

(2) 1.5×SZ Harvesting-Environment RTC  

The results of laboratory study introduced in Section 2.2.3 indicated that the 

water discharged in advance of harvesting was of high quality but only a limited 

amount of water was actually collected (Shen et al., 2018a). To increase the 

volume of water harvested, while maintaining its good quality and low bypass 

volumes, a potential solution is to enlarge the submerged zone (SZ) volume of 

the biofilters to retain more water. This 1.5×SZ  Harvesting-Environment RTC 

employs the same rules of Harvesting-Environment RTC, but apply them to a 

biofilter with a 50% larger SZ pore volume (other design features remain 

unchanged, i.e. surface area, plant type, media type, and the depth of USZ). In 

this way, additional water is expected to be collected, and overflow could also 

be mitigated by the increased treatment capacity of biofilters. The 

implementation processes for 1.5×SZ Harvesting-Environment RTC are exactly 

the same to those for Harvesting-Environment RTC that were presented in 

Section 2.2.1. 

 

2.4 Explore the potential of biofiltration RTC strategies using BioRTC 

The two newly conceptualised RTC strategies (Section 2.3) were tested with 

the calibrated BioRTC model. For comparison's sake, the two previously 
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developed RTC strategies described in Section 2.2.1 were also tested. For all 

testing, a hypothetical biofilter system was assumed to be located at the outlet 

of the Hawthorn Main Drain West Catchment, Melbourne, Australia (a real 

catchment, where significant data on the hydraulics and E. coli levels exist; as 

per the Bureau of Meteorology, Australia and Melbourne Water Corporation). 

This catchment has 597 ha surface area, of which 45% is impervious.  

 

The generation of flows and E. coli concentrations from this catchment was 

done using the Micro-Organism Prediction in Urban Stormwater model 

(McCarthy et al., 2011). For this, a two-year time series with 126 rainfall events 

(10/2012 - 09/2014) was used. MOPUS simulates the build-up and wash-off of 

microorganisms (McCarthy et al., 2011), and has two modules, a flow module 

and a water quality module, and both are explained in McCarthy et al. (2011).  

In brief, the flow module and the water quality module have five model 

parameters each, the values for all these parameters were adopted from 

Jovanovic et al. (2017). According to the simulation results, the E. coli 

concentrations in the inflow of the hypothetical biofilters ranged from 3.11 × 102 

to 2.49 × 104 MPN/100 mL (mean concentration: 2.91 × 103 MPN/100 mL; 

standard deviation: 1.52 × 103 MPN/100 mL). Compared to the E. coli 

concentrations that spiked in the inflow during the laboratory experiments 

introduced in Section 2.2.1 (e.g.,  median concentrations: 3.09 × 104 MPN/100 

mL and 6.46 × 104 MPN/100 mL; as per Shen et al. (2018a)), and the typical E. 

coli concentrations found around Melbourne (e.g., with a magnitude of 104 

MPN/100 mL, as per McCarthy et al. (2008)), the median inflow concentration 

for the hypothetical biofilters were of one magnitude lower value.  

 

The hypothetical biofilter which received this runoff was represented by the new 

BioRTC model and was assumed to have a surface area equal to 2% of the 

impervious catchment area for Melbourne’s climate (as per FAWB (2009)). The 

other design features (i.e., media type, plant type, and the size of USZ) of the 

hypothetical biofilter system were exactly the same to those tested in the 

laboratory and described in Section 2.2.1. These were represented by the 

model parameters that were derived from the calibration process described in 

Section 2.2.3. 
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Four scenarios were generated, corresponding to the four RTC strategies (two 

previously developed and two newly conceptualised). It is noted that in each 

scenario, the minimum required retention time for retained water (Tmin) for each 

strategy was re-evaluated by modelling, because the optimum Tmin for a certain 

RTC strategy might be different when the strategy is applied to a different 

system. As such, thirteen Tmin values were tested: 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 

12 h, 18 h, 24 h, 30 h, 36 h, 42 h, and 48 h. The results under different Tmin 

values were also compared with those when RTC was not implemented (non-

RTC). It is noted that, same parameter sets for RTC under different Tmin and 

non-RTC simulations were used, and all these parameter sets were obtained 

from the calibration that described in Section 2.2.3. 

 

3. Results and discussion 

3.1 Model validation using RTC data set    

3.1.1 Flow module results  

For the flow module, the calibrated Ks (hydraulic conductivity) ranged from 110 

mm/h to 319 mm/h, somewhat matching those values suggested by Australian 

biofilter guidelines (e.g., 100 - 400 mm/h per FAWB (2009)). The calibrated Kc 

(plant coefficient for evapotranspiration) ranged from 0.6 to 1.0, and the 

difference was mainly due to the different plant growth status in different 

columns. Eq achieved in this study ranged from 0.72 to 0.91 (median: 0.84), 

which were comparable to those achieved in other studies for biofilter modelling 

(Shen et al., 2018b; Shen et al., 2018c) (the detailed results for the flow module 

are provided in Table C.1 in Supplementary Material C). 

 

3.1.2 Microbial quality module results  

3086 parameter sets were selected as after calibration, as they covered 70 % 

of the observations, and the cut-off point was where the marginal effect started 

to decrease (Figure C.1 in Supplementary Material C). When using this best-fit 

parameter set to predict the outcome of RTC (i.e., simulate the results of the 

laboratory experiments introduced in Section 2.2.3), the prediction fitted the 

observed E. coli concentrations in outflows well (Figure 2), as the vast majority 

of data points were scattered around the 1:1 line. With all these 3086 parameter 

sets, the prediction and observation fitted very well, as Ec ranged from 0.65 to 
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0.80. These Ec values were higher than those obtained in previous studies on 

the original model selected in Section 2.1 (on which BioRTC was built upon) 

(Ec = 0.46 ~ 0.55, according to Shen et al. (2018b) and Shen et al. (2018c)) or 

other stormwater E. coli modelling studies (e.g., Ec = 0.25 ~ 0.41 according to 

McCarthy et al. (2011)).  The best-fit parameter values were all within the 

ranges that reported in literature (Table 3).  

 

 

Figure 2 Comparison of observed and predicted E. coli concentrations in the 

outflow of all the columns and in all the events that were tested in laboratory 

experiments (with the best-fit parameter set). Dashed line indicates the 1:1 line 

between predicted and observed concentrations, while dotted lines indicate +/- 

one order of magnitude bars.  
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Table 3 The best-fit parameter values in the 3086 calibrated parameter sets 

and the corresponding Ec. Parameter values that reported in literature are 

provided for comparison.  

 Ec katt (h-1) 
Log (kdet) 

(h-1) 
θ (-) μ0 (day-1) 

The best-fit parameter set 

and corresponding Ec  
0.80 0.20 -4.10 1.16 0.30 

Parameter values reported 

in literature  
 

0.20 ~ 

5.86a,b 

-4.22 ~ 

0.31a,b 

1.01 ~ 

1.19c 

0.06 ~ 

1.23d,e 

a Bradford et al. (2006); b Gargiulo et al. (2008); c Brauwere et al. (2014); d Chandrasena 

(2014); f Crane and Moore (1986) 

 

In particular, with the best-fit parameter set, the median concentration of the 

harvested water collected from Harvesting RTC biofilters in laboratory 

experiments (introduced in Section 2.2.3) was slightly underestimated: 443 

MPN/100 mL (predicted) vs. 740 MPN/100 mL (observed). The major reason 

for the underestimation was, in the laboratory experiments, preferential flow 

might occur due to cracks after dry days (Shen et al., 2018a). However, this 

difficult-to-model, and often random phenomenon was not captured in the 

model. As such, the model slightly underestimated the median concentration. 

When predicting the effects of Harvesting-Environment RTC implementation, 

the median concentration of harvested water was slightly overestimated: 3.5 

MPN/100 mL (predicted) vs. < 1 MPN/100 mL (observed). Nevertheless, 

considering the small value of these concentrations, the difference (< 1 log) was 

still acceptable, well within the uncertainty in laboratory measurement methods 

(Chandrasena et al., 2012; Chandrasena et al., 2014b). 

. 
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Figure 3 Matrix plot for parameter distributions of the 3086 parameter sets. The 

diagonal histograms represent the distributions of Ec and all the parameters, 

while the scatter plots between parameters reveal the parameter interactions. 

 

The peak in the diagonal histograms of katt, kdet, θ and µ0 in the matrix plot (Figure 

3) suggested that the model was sensitive to all the 3086 parameters in the water 

quality module (Dotto et al., 2012). These results indicated that adsorption, 

desorption, and die-off processes were crucial for microbial removal in 

stormwater biofilters incorporated with RTC, and temperature was an influential 

factor for die-off. All these findings agreed with those reported in the literature 

very well (Bradford et al., 2006; Chandrasena et al., 2014b; Stevik et al., 2004; 

Zhang et al., 2012).   

 

More importantly, these findings demonstrated the hypothesis in previous studies 

on the same model that, better data quality could lead to better reflect the 

importance of parameters (Shen et al., 2018b; Shen et al., 2018c). In those 

previous studies, the same model was not sensitive to either temperature 

coefficient (θ) or standard die-off (μ0), and it was hypothesised due to data 

paucity rather than model structure; while in the current study, when more 
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comprehensive data (e.g., more sampling events and more columns) were 

available, the importance of all the parameters were well reflected. 

 

To explore the transferability of the BioRTC model, the prediction capability of 

the model for this dataset was also assessed using parameter sets that were 

obtained from calibration done in another independent study (Shen et al. 

(2018b)). In that study, the tested biofilters (without control) had similar design 

features (e.g., same plant type and filter media type) with those biofilters 

introduced in Section 2.2.1. The 3179 previously calibrated parameter sets 

were adopted to predict outflow concentrations of E. coli, the Ec  values ranged 

from -0.07 to 0.70, and 64 % of them were above 0.40 (Figure 4). These 

promising Ec values indicated a high parameter transferability of BioRTC, as 

even the parameters calibrated for the biofilters without control could be 

adopted for the prediction of RTC biofilters.  

 

Figure 4 Matrix plot for parameter distributions of the 3179 parameter sets 

calibrated in Shen et al. (2018b). The diagonal histograms represent the 

distributions of Ec and all the parameters, while the scatter plots between 

parameters reveal the parameter interactions. 
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3.2 Scenario testing results with modelled representation of reality 

3.2.1 Scenario 1: Harvesting RTC 

Since each parameter generated a set of results, the 3086 parameter sets 

calibrated in the microbial quality module in Section 2.2 generated 3086 sets of 

results for each tested Tmin in RTC systems and non-RTC simulation (Figure 5). 

With the increase of Tmin value, the median E. coli concentrations and the 95th 

percentile of median E. coli concentrations in harvested water decreased 

(Figure 5-A), and the median log reductions of E. coli concentrations and the 

5th percentile of median log reductions in harvested water increased (Figure 5-

B). That was because, longer retention time could enhance the die-off of the 

trapped microbes in biofilters and provide better and more consistent water 

quality for stormwater harvesting. In addition, the proportions of load in the 

bypassed water increased and total load removal rates decreased with the 

increase of minimum required retention time (Figure 5-C), as more untreated 

stormwater was bypassed to the environment. 

 

Figure 5 Boxplots for Harvesting RTC: the predicted median E. coli 

concentrations in harvested water (with 95th percentile marked) (A), median log 

reductions of E. coli concentrations in harvested water (with 5th percentile 

marked) (B), and proportions of load in bypassed water and total load removal 

rates (C), under different Tmin values.  
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To select the optimum Tmin for balancing the competing objectives in stormwater 

harvesting and reuse, the median E. coli concentration predicted with the best-

fit parameter set in harvested water was plotted against the proportions of 

harvested water volume under different Tmin values (Figure 6). The pattern of it 

was very similar to the plot that the best-fit prediction of total load removal rate 

against the proportions of harvested water volume under different Tmin values, 

which was presented in the Supplementary Material (Figure D.1). A Pareto front 

was found, where it was impossible to optimize one objective (e.g., quality of 

harvested water) without making the other objective (e.g., the volume of 

harvested water) worse (Pareto, 1897). This Pareto front could help to decide 

the optimum Tmin as a set-point, according to the specific case-study of interest. 

For example, if we aimed to harvest the water for dual reticulation with indoor 

and outdoor use or irrigation of commercial food crops (requirement: median 

concentration < 1 E. coli/100 mL, as per NHMRC (2009)), the optimum Tmin was 

24 h, as this set-point could help us collect the highest water volume under this 

water quality requirement (Figure 6); while if the harvested water is for 

municipal use with unrestricted access or irrigation of non-food crops 

(requirement: median concentration < 10 E. coli/100 mL, as per NHMRC 

(2009)), the optimum Tmin was 2 h (Figure 6).   

 

Figure 6 The best-fit prediction of median E. coli concentrations in harvested 

water against the proportions of harvested water volume, under different Tmin 

values in Harvesting RTC. 
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When Tmin was 2 h (i.e., to meet the requirement for municipal use with 

unrestricted access or irrigation of non-food crops), the volume of water 

collected for harvesting is 62.6 % of the stormwater runoff volume (Figure 6). 

According to Mitchell et al. (2008), this volume is sufficient to supply the non-

seasonal uses plus seasonal uses in typical low-density residential areas in 

Melbourne (61.1 % volume required in total). Indeed, when Tmin
 ranged from 1 

h to 48 h, the proportions of harvested water ranged from 37.9 % to 70.5 %, 

which could significantly reduce potable water supply demand.  

 

It is noted that, when Tmin in current scenario was set as 48 h (which was same 

to the Tmin value in the laboratory studies and simulations), a much better water 

quality in harvested water was achieved, compared to the result listed in 

Section 3.1.2 (median E. coli concentration: 0.32 MPN/100 mL vs. 443 

MPN/100 mL). It was mainly due to the general lower E. coli concentrations in 

the inflow in the inputs of field scenarios. This result also indicated that, to meet 

a same target, the required Tmin value could vary under different operational 

conditions (e.g., weather conditions and inflow characteristics), further 

demonstrating the necessity to testing Tmin each time before RTC being 

implemented in a new system. To fulfil this need, the modelling framework in 

this study could be an efficient tool.  

 

3.2.2 Scenario 2: Modified Harvesting RTC 

For Modified Harvesting RTC, the change patterns of median concentrations, 

median log reductions, proportions of bypassed load, and total load removal 

rates under different Tmin values were very similar to those for Harvesting RTC 

in Section 3.3.1, and the details are listed in Supplementary Material D (Figure 

D.2). Compared to the results for Harvesting RTC, the proportions of bypassed 

load slightly decreased (e.g., with the best-fit parameter set, under different the 

proportions of bypassed load, the proportions of bypassed load decreased by 

0.4 ~ 1.5 %), as the spare pore space in USZ allowed more stormwater volume 

entering biofilters. Accordingly, the total load removal rates increased (0.5 ~ 0.9 

%,with the best-fit parameter set), as the total load discharged to the 

environment mainly derived from the bypassed load. In addition, the volume of 

water collected for harvesting moderately increased, as the extra stormwater 
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that entered biofilters could compensate a portion of the water loss caused by 

evapotranspiration during dry days. For example, when Tmin = 2 h, compared 

to those in Harvesting RTC, the proportion of load in bypassed water decreased 

by 0.8 %, and  the proportion of harvested water volume increased by 0.4 %. 

Nevertheless, these harvested water was of diminished quality, as with the 

prediction using the best-fit parameter set, the median E. coli concentration 

increased and the median log reduction decreased. These might due to the 

additional stormwater entered biofilters introduced additional pollutants, which 

would cause that longer retention time is required for die-off enhancement to 

reach the same outflow quality level of that achieved in Harvesting RTC 

implementation. However, the diminishment in harvested water quality might 

be negligible, as when Tmin = 2 h, with the best-fit parameter set, the decrement 

of median E. coli concentration was 0.2 MPN/100 mL, and the harvested water 

qualities could still respectively meet the requirements for municipal use with 

unrestricted access (NHMRC, 2009). Therefore, considering the higher water 

volume collected for harvesting, Modified Harvest RTC was recommended to 

be implemented with the inputs in this scenario, as compared to Harvesting 

RTC, the two objectives in stormwater harvesting and reuse (good quality and 

large amount of the water collected for harvesting) could be better balanced, 

and the environment could be better protected.  

 

A Paleto front was also found in Figure D.4 for Modified Harvesting RTC. 

Although the pattern in Figure 6-right was also similar to that in Figure D.4, 

under a same Tmin value, both the best-fit prediction of median E. coli 

concentration and proportion of harvested water volume in Figure 6-right were 

slightly higher than those in Figure D.4.  

 

3.2.3 Scenario 3: Harvesting-Environment RTC 

The change patterns of predicted median and 95th percentile E. coli 

concentrations in harvested water (Figure 7-A), mean and 5th percentile log 

reductions of E. coli concentrations in harvested water (Figure 7-B), all followed 

those achieved in Section 3.2.1 and Section 3.2.2. That was because, as longer 

retention time could enhance the die-off of E. coli in the water retained in 

biofilters. However, the total load removal rate remained consistent for non-



Chapter 6. Model modification and validation for real time control, and further exploration of control 
strategies 

186 
 

RTC and different Tmin values in RTC (Figure 7-C). The reasons were proposed 

to be: (1) no stormwater was bypassed and all the inflow was treated by 

stormwater biofilters (Figure 7-C), and (2) under each Tmin value, the volume of 

stormwater inflow that treated during the typical operation of biofilters (without 

control) were generally consistent and of high value, and the harvested water 

contained only negligible load (i.e., extremely low concentrations of E. coli were 

achieved, as per Figure 7-A). These results fitted previous findings in Shen et 

al. (2018a). 

 

Figure 7 Boxplot for Harvesting-Environment RTC: the predicted median E. coli 

concentrations in harvested water (with 95th percentile marked) (A), median log 

reductions of E. coli concentrations in harvested water (with 5th percentile 

marked) (B), and proportions of load in bypassed water and total load removal 

rates (C), under different Tmin values. 

 

Even with 1-hour minimum retention time (Tmin = 1 h), the best-fit prediction of 

median E. coli concentrations in harvested water was much lower than those 

from non-RTC biofilters’ outflow. This concentration could meet the requirement 

for dual reticulation with indoor and outdoor use or irrigation of commercial food 

crops (median concentration < 1 E. coli/100 mL, as per NHMRC (2009)) (Figure 

8-left). Compared to Harvesting RTC and Modified Harvesting RTC, less 

retention time is required for Harvesting-Environment to meet this requirement, 
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as the hydraulic gradient was lower when collecting the harvested water (i.e., 

discharge in advance, no ponding on the top of biofilters). With the increment 

of Tmin, the water quality for harvesting was generally consistent (Figure 8-left), 

as additional retention time only provided minimum benefits for harvested water 

quality; while the proportion of harvested water volume decreased, as the 

biofilters operated as a non-RTC system more frequently.  

 

Due to the extremely small differences in median E. coli concentrations under 

various Tmin, there is no Pareto front and that no optimum could be found  

(Figure 8-left), and Tmin = 1 h was suggested for this scenario. Similar patterns 

was found in the plot of total load removal rates against the proportions of 

harvested water volume (Supplementary Material D, Figure D.3). 

 

Figure 8 The best-fit prediction of median E. coli concentrations in harvested 

water against the proportions of harvested water volume, under different Tmin 

values. Left: Harvesting-Environment RTC; right: 1.5×SZ Harvesting-

Environment RTC. 

 

It is noted that, even with 1 h Tmin, only 3.3 % of stormwater was collected for 

harvesting (highest volume among all the Tmin), due to the extensive inflow 

volume in individual event and extended dry length between rainfall events in 

the field inputs. Therefore, compared to those achieved in Harvesting RTC in 

Section 3.2.1, the benefits of Harvesting-Environment RTC were limited in this 

scenario, as to meet the requirement for dual reticulation with indoor and 

outdoor use or irrigation of commercial food crops (NHMRC, 2009), the 

maximum proportion of harvested water in Harvesting RTC implementation was 
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40.2 % (when Tmin = 24 h), while that in Harvesting-Environment RTC 

implementation was just 3.3 % (when Tmin = 1 h).  

 

3.2.4 Scenario 4: 1.5×SZ Harvesting-Environment RTC  

Compared to the results for Harvesting RTC on original field biofilters in Section 

3.2.3, similar change patterns under different Tmin values were found for all the 

key results, and these key results were listed in Supplementary Material D 

(Figure D.5). After the submerged zone volume increased to 1.5 times higher, 

under each Tmin value, the volume of water collected for harvesting increased 

to around 1.5 times higher (e.g., when Tmin = 1h, the volume of harvested water 

increased by 57 %), mainly due to the fact that larger SZ volume could retain 

more stormwater in the biofilters. More importantly, the harvested water was of 

even higher quality compared to the results obtained in Scenario 3 (biofilters 

with 1 SZ). The main reason was proposed to be that the higher SZ depth 

resulted in lower hydraulic gradient (could be well represented with Darcy's law 

in the model), therefore, the infiltration rates was lower, resulting in enhanced 

contact between E. coli and the filter media/plant roots. These results 

demonstrated the benefits of enlarging the submerged zone volume to achieve 

a better performance in the implementation of Harvesting-Environment RTC. 

Furthermore, the Pareto front analysis result was also same to that in Scenario 

3 that there was no Pareto front and Tmin = 1 h was suggested (Figure 8-right). 

 

3.4 General discussion, limitations and future work 

Establishing a deeper biofilter system is beneficial to stormwater harvesting and 

reuse, as a system with larger SZ depth could increase the water volume for 

harvesting by retain more water in SZ during dry days, and could improve the 

water quality as the hydraulic gradient is lower and accordingly the contact time 

is increased. It also could protect the environment better as a larger biofilter 

capacity could diminish the likelihood of overflow occurrence. These dynamics 

could be well reflected in the BioRTC model, and the modelling results have 

also demonstrated the benefits of enlarging SZ depth. Therefore, a biofilter will 

large SZ depth is always recommended in practice.  
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Utilising the USZ to allow more water enter biofilters until it is saturated could 

also be effective in reducing environmental pollution, as less untreated 

stormwater is bypassed. In addition, the additional water kept in USZ could 

compensate the evapotranspiration during dry days, enabling more harvestable 

water being collected in the next event. However, more studies need to be 

conducted on whether the quality of the water collected for harvesting would be 

an issue, as the inflow concentrations in the scenarios tested in this study were 

of low value, and a slight increment of E. coli concentrations in the outflow has 

been observed, although did not impact the water quality significantly. In the 

future, laboratory and field studies are suggested to test the impact under 

various level of inflow concentrations. 

 

In addition, increasing the retention time is always a method to achieve low 

microbial concentration in the harvested water, and the water with sufficient 

retention time is recommend to be isolated with any newly entered stormwater 

with insufficient treatment time. However, longer retention time means the 

volume of harvested water might be decreased as a sacrifice. Moreover, 

extremely long retention might also negatively impact the removal of some 

other pollutants such as phosphorus (Shen et al., 2018a). Therefore, the 

required retention time should be evaluated case by case, according to the 

inflow concentrations and end use requirements.  

 

4. Conclusion 

The newly developed model in this study, BioRTC, has been proved to be 

effective in representing the outcome of RTC implementation. Therefore, this 

model could be employed to explore RTC strategies and scenarios. According 

to the simulation results using BioRTC, the two newly conceptualised RTC 

strategies, Modified Harvesting RTC and 1.5×SZ Harvesting-Environment 

RTC, were both effective to better protect the environment and better balance 

the competing needs (good water quality and large water volume for harvesting) 

in stormwater harvesting and reuse.  

 

The benefits of a same RTC strategy and the corresponding optimum set-points 

might vary for different systems with different operational conditions (e.g., inflow 
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concentrations and dry lengths) and different treatment requirements (e.g., end 

uses). The new model, BioRTC, could be an efficient tool to select the most 

suitable RTC strategy and determine the optimum set-points. 
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Supplementary material A: Full details of model description and 

equations 

 

Figure A.1 Schematic representation of a typical stormwater biofilter and its flow 

scheme, and the key variables in each part. Stormwater inflow (Qin), rainfall 

precipitation (Qrain), overflow (Qover), water flow from PZ to USZ (Qpf), flow from 

the USZ to SZ (Qfs), evapotranspiration (Qet; divided to the evapotranspiration 

from USZ (Qet_usz) and from SZ (Qet_sz)), capillary rise (Qhc), infiltration into the 

surrounding soil (Qinf,p and Qinf,sz) and outflow (Qpipe). 
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Table A.1 Equations for the flow module. 

Flow module equation Eq. No. 

General form of equations  

Flow = min (physically possible; available upstream; available downstream)  

Ponding zone (PZ)  

Infiltration from PZ to unsaturated zone  

𝑄𝑝𝑓 = min (𝐾𝑠𝐴
ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧
,
ℎ𝑝𝐴𝑝

𝑑𝑡
+ 𝑄𝑖𝑛 + 𝑄𝑟𝑎𝑖𝑛,

1

𝑑𝑡
(1 − 𝑆)𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧𝐴) 

(A.1) 

Infiltration from PZ to the surrounding soil  

𝑄𝑖𝑛𝑓,𝑝 = {min (𝐾𝑓[(𝐴𝑝 − 𝐴) + 𝐶𝑠ℎ𝑝𝑃𝑝],
ℎ𝑝𝐴𝑝

𝑑𝑡
) , if unlined

0, if lined
 

(A.2) 

Overflow through weirs  

𝑄𝑜𝑣𝑒𝑟 = {
min(𝐶𝑄𝐵√2𝑔(ℎ𝑝 − ℎ𝑜𝑣𝑒𝑟)

3
,
𝐴𝑝(ℎ𝑝 − ℎ𝑜𝑣𝑒𝑟)

𝑑𝑡
) , ℎ𝑝 > ℎ𝑜𝑣𝑒𝑟

0, ℎ𝑝 ≤ ℎ𝑜𝑣𝑒𝑟

 

(A.3) 

Water mass balance in PZ  

𝑑(ℎ𝑝𝐴𝑝)

𝑑𝑡
= 𝑄𝑖𝑛 +𝑄𝑟𝑎𝑖𝑛 − 𝑄𝑝𝑓 − 𝑄𝑜𝑣𝑒𝑟 −𝑄𝑖𝑛𝑓,𝑝 

(A.4) 

Unsaturated zone and saturated zone (USZ and SZ)  
Entire Saturation in USZ plus SZ  

𝑆𝑒𝑛𝑡𝑖𝑟𝑒 =
𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧
𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧

 
(A.5) 

Total Evapotranspiration from USZ and SZ  

𝑄𝑒𝑡 =

{
 

 
0, 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 𝑆𝑤

𝐴 × 𝐾𝑐 × 𝐸𝑇0
𝑆𝑒𝑛𝑡𝑖𝑟𝑒 − 𝑆𝑤
𝑆𝑠 − 𝑆𝑤

, 𝑆𝑤 < 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 𝑆𝑠

𝐴 × 𝐾𝑐 × 𝐸𝑇0, 𝑆𝑠 < 𝑆𝑒𝑛𝑡𝑖𝑟𝑒 ≤ 1

 

(A.6) 

Unsaturated zone (USZ)  

Evapotranspiration from USZ  

𝑄𝑒𝑡_𝑢𝑠𝑧 = 𝑄𝑒𝑡 ×
𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧

𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧
 

(A.7) 

Flow due to capillary rise  

𝑄ℎ𝑐 = 𝐴𝐶𝑟(𝑆 − 𝑆𝑠)(𝑆𝑓𝑐 − 𝑆), 𝐶𝑟 =
4 × 𝐾𝑐 × 𝐸𝑇0

2.5(𝑆𝑓𝑐 − 𝑆𝑠)
2 

when 𝑆𝑠 ≤ 𝑆 ≤ 𝑆𝑓𝑐 , otherwise 𝑄ℎ𝑐 = 0 

(A.8) 

Infiltration from USZ to SZ  

𝑄𝑓𝑠 = {
min(𝐴 × 𝐾𝑠

ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧
𝑆𝛾,

(𝑆 − 𝑆𝑓𝑐)𝐴 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧

𝑑𝑡
+ 𝑄𝑝𝑓 + 𝑄ℎ𝑐) , 𝑆 ≥ 𝑆𝑓𝑐

0, 𝑆 < 𝑆𝑓𝑐

 

(A.9) 

Water mass balance in USZ  

𝑑(𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧𝐴)

𝑑𝑡
= 𝑄𝑝𝑓 + 𝑄ℎ𝑐 − 𝑄𝑓𝑠 − 𝑄𝑒𝑡_𝑢𝑠𝑧 

(A.10) 

Saturated zone (SZ)  

Evapotranspiration from SZ  

𝑄𝑒𝑡_𝑠𝑧 = 𝑄𝑒𝑡 ×
𝑛𝑠𝑧ℎ𝑠𝑧

𝑆 × 𝑛𝑢𝑠𝑧ℎ𝑢𝑠𝑧 + 𝑛𝑠𝑧ℎ𝑠𝑧
= 𝑄𝑒𝑡 − 𝑄𝑒𝑡_𝑢𝑠𝑧 

(A.11) 

Infiltration from SZ to the surrounding soil  

𝑄𝑖𝑛𝑓,𝑠𝑧 = {
min (𝐾𝑓(𝐴 + 𝐶𝑠𝑃𝑠𝑧ℎ𝑠𝑧),

𝑛𝑠𝑧ℎ𝑠𝑧𝐴

𝑑𝑡
) , if unlined

0, if lined
 

(A.12) 

Flow through drainage pipe
 

 

𝑄𝑝𝑖𝑝𝑒 = {
min(𝐴 × 𝐾𝑠

ℎ𝑝 + ℎ𝑢𝑠𝑧

ℎ𝑢𝑠𝑧 + ℎ𝑠𝑧
,
(ℎ𝑠𝑧 − ℎ𝑝𝑖𝑝𝑒)𝑛𝑠𝑧𝐴

𝑑𝑡
+ 𝑄𝑓𝑠 − 𝑄ℎ𝑐 − 𝑄𝑒𝑡_𝑠𝑧 − 𝑄𝑖𝑛𝑓,𝑠𝑧) , ℎ𝑠𝑧 > ℎ𝑝𝑖𝑝𝑒

0, ℎ𝑠𝑧 ≤ ℎ𝑝𝑖𝑝𝑒

 

(A.13) 
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Table A.2 Equations for the microbial quality module. 

Microbial quality module equation Eq. No. 

Ponding zone (PZ)  

Microbial mass balance in PZ  

𝑑(𝑐𝑝ℎ𝑝𝐴𝑝)

𝑑𝑡
= 𝑐𝑖𝑛𝑄𝑖𝑛 − 𝑐𝑝(𝑄𝑝𝑓 + 𝑄𝑜𝑣𝑒𝑟 + 𝑄𝑖𝑛𝑓,𝑝) − 𝜇𝑐𝑝ℎ𝑝𝐴𝑝 

(A.14) 

Unsaturated zone (USZ)  

Microbial mass balance in the water phase  

𝜕(𝑆𝑛𝑢𝑠𝑧𝑐𝑢𝑠𝑧)

𝜕𝑡
+ (𝑆𝑛𝑢𝑠𝑧𝑘𝑎𝑡𝑡𝑐𝑢𝑠𝑧 − 𝜌𝑘𝑑𝑒𝑡𝑀1)

=
𝜕

𝜕𝑧
(𝑆𝑛𝑢𝑠𝑧𝐷1

𝜕𝑐𝑢𝑠𝑧
𝜕𝑧

) −
𝜕(𝑞1𝑐𝑢𝑠𝑧)

𝜕𝑧
− 𝑆𝑛𝑢𝑠𝑧𝜇𝑐𝑢𝑠𝑧 

(A.15) 

Adsorption, desorption and die-off of adsorbed microbes in the soil phase  

𝜕𝑀1

𝜕𝑡
=
𝑛𝑢𝑠𝑧𝑆

𝜌
𝑘𝑎𝑡𝑡𝑐𝑢𝑠𝑧 − 𝑘𝑑𝑒𝑡𝑀1 − 𝜇𝑀1 

(A.16) 

Dispersion coefficient in USZ  

𝐷1 = 𝜆
𝑞1

𝑛𝑢𝑠𝑧𝑆
 (A.17) 

Average unit flow in USZ  

𝑞1 =
𝛼1(𝑄𝑝𝑓 − 𝑄𝑒𝑡) + 𝛽1(𝑄𝑓𝑠 − 𝑄ℎ𝑐)

𝐴
 

where 𝛼1 + 𝛽1 = 1, and 𝛼1 = 1 at upper boundary, 𝛽1 = 1 at lower boundary 

(A.18) 

Saturated zone (SZ)   

Microbial mass balance in the water phase  

𝜕(𝑛𝑠𝑧𝑐𝑠𝑧)

𝜕𝑡
+ (𝑛𝑠𝑧𝑘𝑎𝑡𝑡𝑐𝑠𝑧 − 𝜌𝑘𝑑𝑒𝑡𝑀2) =

𝜕

𝜕𝑧
(𝑛𝑠𝑧𝐷2

𝜕𝑐𝑠𝑧
𝜕𝑧

) −
𝜕(𝑞2𝑐𝑠𝑧)

𝜕𝑧
− 𝑛𝑠𝑧𝜇𝑐𝑠𝑧 

(A.19) 

Adsorption, desorption and die-off of adsorbed microbes in the soil phase  

𝜕𝑀2

𝜕𝑡
=
𝑛𝑠𝑧
𝜌
𝑘𝑎𝑡𝑡𝑐𝑠𝑧 − 𝑘𝑑𝑒𝑡𝑀2 − 𝜇𝑀2 

(A.20) 

Dispersion coefficient in SZ  

𝐷2 = 𝜆
𝑞2
𝑛𝑠𝑧

 (A.21) 

Average unit flow in SZ  

𝑞2 =
𝛼2(𝑄𝑓𝑠 − 𝑄ℎ𝑐) + 𝛽2(𝑄𝑝𝑖𝑝𝑒 + 𝑄𝑖𝑛𝑓,𝑠𝑧)

𝐴
 

where 𝛼2 + 𝛽2 = 1, and 𝛼2 = 1 at upper boundary, 𝛽2 = 1 at lower boundary 

(A.22) 

Die-off rate in each part  

𝜇 = 𝜇0𝜃
𝑇−20℃ (A.23) 
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Table A.3 Parameters in the model. Input parameters: parameters based on 

design and measurement. Calibration parameters: parameters calibrated in this 

study.  

Flow module parameters Microbial quality module parameters 

Input parameters 

B Length of overflow weir [L] ρ Bulk soil density [M L-3] 

Pp Unlined perimeter [L] λ Dispersivity [L] 

CQ Weir overflow coefficient [-]   

Cs Side infiltration coefficient [-]   

Kf Hydraulic conductivity of the 

surrounding material [L T-1] 

  

Sw Wilting point [-]: washed sand, 0.05; 

loamy sand, 0.07 

  

Ss Saturation as the threshold for plants 

to reach potential evapotranspiration 

[-]: without SZ, 0.22; with SZ, 0.37 

  

Sfc USZ saturation at field capacity [-]: 

without SZ, 0.37; with SZ, 0.61 

  

γ 

 

 

Relative hydraulic conductivity 

coefficient dependent on soil type [-]: 

washed sand, 11.1; loamy sand, 

11.76 

  

Calibration parameters 

Ks Hydraulic conductivity of the filter 

media [L T-1] 

katt Adsorption rate [T-1] 

Kc Plant coefficient for 

evapotranspiration [-] 

kdet Desorption rate [T-1] 

  μ0 Standard die-off rate at given 

reference conditions (e.g., 

standard temperature) [T-1] 

  θ Temperature correction coefficient 

for die-off [-] 
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Supplementary material B: Schematics of Harvesting RTC rules, 

Harvesting-Environment RTC rules, and a biofilter column in laboratory 

experiments 

 

Figure B.1 Schematic of Harvesting RTC rules. T: stormwater retention time; 

Tmin: minimum required retention time; Vin: stormwater volume that has entered 

biofilters; Vsz: submerged zone’s pore volume. Top left shows the required 

facilities to fulfil this strategy (i.e., a flow meter, a valve, and a timer). When 

stormwater runoff comes: if T < Tmin, keep the valve closed and bypass all the 

stormwater (top right); if T ≥ Tmin, open the valve and start to record Vin (bottom 

left). When Vin = Vsz (i.e., submerged zone’s pore volume will be fully replaced 

with newly entered stormwater), close the valve and bypass the rest of 

stormwater (bottom right). 
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Figure B.2 Schematic of Harvesting-Environment RTC rules. T: stormwater 

retention time; Tmin: minimum required retention time. Top left shows the 

required facilities and information to fulfil this strategy (i.e., a sensor, a valve, a 

timer, and rainfall forecast). When rainfall forecast informs that the next wet 

event will occur in three hours: if T < Tmin, keep the valve closed and operate 

biofilters as typical, and the treated stormwater is discharged through the raised 

outflow pipe (top right); if T ≥ Tmin, open the valve and collected the harvestable 

water through free draining (bottom left). Once stormwater inflow begins, 

biofilters operate as typical again (bottom right). 
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Figure B.3 Schematic of a biofilter column in laboratory experiments. 

 

Supplementary material C: Results for the calibration of flow module  

Table C.1 Calibrated Ks and Kc, and corresponding Edepth, Evolume and Eq for 

each RTC and non-RTC biofilters. 

Biofilter type  Replicate1 Replicate 2 Replicate 3 Replicate 4 Replicate 5 

RTC biofilters Ks (mm/h) 319 166 221 172 251 

Edepth 0.58 0.80 0.56 0.84 0.69 

Kc (-) 0.6 0.6 0.6 0.6 0.8 

Evolume 0.89 0.75 0.87 0.77 0.89 

Eq 0.73 0.77 0.71 0.81 0.79 

Non-RTC biofilters Ks (mm/h) 150 188 122 110 132 

Edepth 0.75 0.80 0.84 0.81 0.81 

Kc (-) 0.7 1.0 0.8 0.8 0.8 

Evolume 0.98 0.97 0.98 0.97 0.97 

Eq 0.86 0.88 0.91 0.89 0.89 
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Figure C.1 Cut-off points for parameter selection when re-calibrating 

parameters for the microbial quality module in current study.  

 

Supplementary material D: Supplementary results in scenario testing  

 

Figure D.1 The best-fit prediction of total load removal rates against the 

proportions of harvested water volume, under different Tmin values. Left: 

Harvesting RTC; right: Modified Harvesting RTC. 
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Figure D.2 Boxplots for Modified Harvesting RTC: the predicted median E. coli 

concentrations in harvested water (with 95th percentile marked) (A), median log 

reductions of E. coli concentrations in harvested water (with 5th percentile 

marked) (B), proportions of load in bypassed water (C), and total load removal 

rates (D), under different Tmin values.  

 

 

Figure D.3 The best-fit prediction of total load removal rates against the 

proportions of harvested water volume, under different Tmin values. Left: 

Harvesting-Environment RTC; right: 1.5×SZ Harvesting-Environment RTC.  
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Figure D.4 The best-fit prediction of median E. coli concentrations in harvested 

water against the proportions of harvested water volume, under different Tmin 

values in Modified Harvesting RTC. 

 

 

Figure D.5 Boxplots for 1.5×SZ Harvesting-Environment RTC: the predicted 

median E. coli concentrations in harvested water (with 95th percentile marked) 

(A), median log reductions of E. coli concentrations in harvested water (with 5th 

percentile marked) (B), and proportions of load in bypassed water and total load 

removal rates (C), under different Tmin values.  
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6.3   Discussion and conclusions  

The good fit between the RTC outcome that observed during laboratory 

experiments and the prediction by a new model, BioRTC that developed by 

modifying the model introduced in Chapter 3 demonstrated that, BioRTC is 

effective in RTC assessment. More importantly, when the parameters 

calibrated for non-RTC biofilters were employed for RTC prediction, promising 

results could still be achieved, indicated the high parameter transferability of 

model in RTC simulation. This finding further demonstrated the feasibility of 

using BioRTC to explore RTC strategies and scenarios, especially in the case 

that when RTC is proposed to be implemented in a brand new system, where 

no data are available for parameter calibration.  

 

As such, the new model BioRTC could be utilised as the fundamental part of 

the framework for RTC in stormwater biofilters. With this modelling tool, 

additional strategies and scenarios could be tested and evaluated, to better 

balance the competing needs existed in RTC implementation (e.g., water 

volume and water quality for harvesting).  

 

The two RTC strategies developed in Chapter 5, and the additional conceptual 

strategies developed in the study presented in this chapter, were simulated with 

a modelled representation of reality. The modelling results suggested that the 

newly developed RTC were capable of balancing the competing needs in 

stormwater harvesting better. In addition, different set-points of a same strategy 

could result in different outputs, indicating the necessity of testing RTC 

strategies and corresponding set-points case by case, to determine the 

optimum RTC and operational scheme. To fulfil this goal, again, the modelling 

tool BioRTC would be an economical and efficient option.  

 

Based on all the findings above, it is concluded that, the framework of RTC for 

stormwater biofilters by developing and utilising modelling tool has successfully 

been developed and proved to be effective.  
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However, there are still some studies need to be furthered. For example, 

although the developed strategies were tested using a modelled representation 

of reality, the benefits of RTC in the field would be better revealed if field tests 

could be conducted in practical. This work is expected to be carried out in the 

future. Considering that (1) BioRTC is capable of predicting the performance of 

laboratory-scale RTC biofilters, (2) the model developed in Chapter 3 has been 

demonstrated to be transferable from laboratory-scale to field-scale for non-

RTC biofilters, and it has a same structure with BioRTC, and (3) there are plenty 

of similarities between the operation of RTC and non-RTC biofilters, it is 

expected that the performance of RTC systems in the field could be also well 

reflected by BioRTC. In addition, more RTC strategies and scenarios will be 

explored and tested with the BioRTC modelling tool as well. 
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7.1   Introduction  

This chapter summarises the key findings for the study of RTC of stormwater 

biofilters that were presented in the previous chapters. Practical implications 

and suggestions, and strengths and limitations of this study, are also 

highlighted. Lastly, recommendations for future work are provided.  

 

7.2   Key findings 

This research aimed to develop a framework for real time control to achieve 

operational optimisation of stormwater biofilters. To achieve this aim, modelling 

and experiments were integrated, and the key findings of this study are 

presented as below. 

 

(1) Development and testing of stormwater biofilter treatment model for faecal 

microorganisms  

The model developed in Chapter 3 includes three major processes (i.e., 

adsorption, desorption, and die-off) and one operational factor (i.e., 

temperature) that govern the microbial removal in biofilters. Compared to the 

previous models in this field, the model developed in this study is a rare one 

that could provide a long-term simulation for biofilters with different designs 

features and under a wide range of operational conditions. 

 

The model was tested with 44-week-long laboratory experiments on five 

different biofilter configurations (two media types and four plant types), and the 

prediction showed good agreement with the observation. Promising Nash-

Sutcliffe Efficiency (Ec) values were achieved when comparing the prediction 

with observation, ranging from 0.46 to 0.68. In addition, all the calibrated model 

parameter values were within the range of those reported in literature. 

 

The sensitivity analyses results indicated that adsorption and desorption 

processes were dominant in microbial removal. However, due to insufficient 

data available for calibration, correlations between different parameters were 

found. The validation results further demonstrated that more data were required 
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to adequately test the model. Therefore, it is suggested to calibrate and validate 

the model with more data sets. 

 

(2) Model validation, parameter transferability analysis, and uncertainty 

analysis 

The stormwater biofilter treatment model for faecal microorganisms that 

developed in Chapter 3 was successfully validated with the independently 

collected data sets from lab-scale and field-scale biofilters with various designs 

and operational schemes (Nash Sutcliffe Efficiency Ec: 0.50 ~ 0.60), 

demonstrating the broad application of this model.   

 

The sensitivity analysis results reinforced the significance of adsorption and 

desorption to microbial removal in stormwater biofilters. Furthermore, the 

importance of temperature to die-off, which was not fully represented in the 

previous study, was also revealed. This finding indicated that better data quality 

could better reflect the importance of parameters.  

 

Most importantly, a high parameter transferability of this model was found, as 

the prediction agreed with observation well, even if the parameters from another 

system with similar plant type and media type were adopted. The results of 

uncertainty analysis further demonstrated the low uncertainty of model 

prediction when parameter values from another system were adopted. 

 

Particularly, the model could be applied to large-scale field systems after being 

calibrated with only simple laboratory tests, as a good agreement between 

prediction and observation with low prediction uncertainty was achieved (Ec = 

0.55, intersection percentage between the prediction uncertainty bands and 

observation with uncertainty intervals = 83 %), when the parameters calibrated 

from a laboratory study were employed to predict the performance of a field 

system. Considering that stormwater biofilters are often large systems that 

cannot be easily validated, the model could be widely utilised as a valuable tool 

for system evaluation. 
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(3) Development and laboratory testing of real time control strategies for 

stormwater biofilters 

The two developed RTC strategies, Harvesting RTC and Harvesting-

Environment RTC, were both effective in reducing the risks posed by faecal 

microbes during stormwater harvesting and reuse in the laboratory column 

studies: after implementing Harvesting RTC, the outflow from RTC biofilters (i.e., 

biofilters implemented with RTC) for harvesting could meet the secondary 

contact for recreational water use (median E. coli concentration < 1000 

MPN/100 mL); after implementing Harvesting-Environment RTC, the outflow 

from RTC biofilters for harvesting could fulfil the requirements for dual 

reticulation with indoor and outdoor use or irrigation of commercial food crops 

(median E. coli concentration < 1 MPN/100 mL; median turbidity < 25). However, 

without RTC, none of these requirements could be met.  

 

Harvesting RTC collected much more water for harvesting than Harvesting-

Environment RTC (proportions of water collected for harvesting: 28.4 % vs. 

5.40 %). However, 60 % of the stormwater volume was bypassed by Harvesting 

RTC, resulting in a lower total removal rate compared to the biofilters without 

RTC (62.3 % vs. 93.7 %). While with Harvesting-Environment RTC, the 

environment was protected no worse than when RTC was not implemented. In 

addition, Both Harvesting RTC and Harvesting-Environment RTC were 

beneficial to TN removal in the harvested water; however, neither of them were 

favoured in TSS or TP removal. 

 

(4) Model modification and validation for real time control, and further 

exploration of control strategies 

After the modification of the faecal microbial removal model developed in 

Chapter 3, the new model, BioRTC, is capable of simulating the outcome of 

RTC implementation, as the model prediction fitted the laboratory observation 

very well, even when the parameters previously calibrated from another system 

were adopted. With previously calibrated parameter sets, Nash Sutcliffe 

Efficiency (Ec) ranged from -0.07 ~ 0.70 (0.44 for the previous optimum set). 

When the model was re-calibrated with the RTC experimental data, a promising 
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Ec value of 0.80 could be achieved. Therefore, it is feasible to utilise BioRTC for 

RTC benefits assessment.  

 

Two additional RTC strategies, Modified Harvesting RTC and Harvesting-

Environment RTC on biofilters with 1.5 SZ (submerged zone), were 

conceptualised. Modified Harvesting RTC was built on Harvesting RTC by 

utilising the spare pore volume in biofilters’ unsaturated zone, while Harvesting-

Environment RTC on biofilters with 1.5 SZ was based on Harvesting-

Environment RTC by increasing the biofilter’s submerged zone depth/volume 

1.5 times higher. 

 

According to the results of the scenario testing that had a modelled 

representation of reality as input, both the newly conceptualised RTC strategies 

could better balance the competing needs in stormwater harvesting and reuse 

(e.g., large volume and good quality of harvested water). Compared to 

Harvesting RTC, Modified Harvesting RTC increased the water volume for 

harvesting and total load removal rate, and the water quality for harvesting only 

was only negligibly impacted. While when Harvesting-Environment RTC on 

biofilters with 1.5 SZ was adopted, compared to the results obtained from 

Harvesting-Environment RTC (on biofilters with 1 SZ) simulation, the volume of 

water collected for harvesting increased to around 1.5 times higher, and the 

harvested water was of even higher quality. 

 

The benefits of the same RTC strategy and the corresponding optimum set-

points might vary for different systems with different operational conditions (e.g., 

inflow concentrations and dry lengths) and different treatment requirements 

(e.g., end uses). As such, the model developed in this Chapter, BioRTC, could 

be an effective tool to determine the optimum RTC strategy and the 

corresponding set-points according to the input conditions and end use 

requirements. 
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7.3   Conclusions and practical implications 

To be more specific, the model developed in this study could be utilised for the 

assessment of biofilter design in practice, including plant and media selection, 

and submerged zone depth determination. Also, it could be adopted to evaluate 

the long-term performance of a newly established system and/or a large scale 

field system, where the practical monitoring and test is very costly in terms of 

money, labour and time. Furthermore, when no data are available for a certain 

system, the parameters determined in another system with a similar design 

could be simply employed without further calibration.  

 

More importantly, the BioRTC model developed in this study is an effective tool 

for RTC evaluation and selection, and the parameters calibrated for biofilter 

without RTC could also be adopted directly for RTC prediction. Although in this 

study, only four RTC strategies were modelled, it is very easy to employ this 

model to explore and evaluate other potential RTC strategies.  

 

RTC is an effective tool to achieve operational optimisation of stormwater 

biofilters to reduce the risks posed by faecal microbes during stormwater 

harvesting and reuse. The two RTC strategies developed and tested in this 

study have been effective for stormwater harvesting, and the two newly 

conceptualised RTC could even better balance the competing needs in 

stormwater harvesting and reuse. It is noted that, the selection of RTC strategy 

may vary for different systems and end uses. 

 

Harvesting RTC aims to collect as much harvestable water as possible, with 

little consideration of environmental protection. One benefit of this strategy is, 

the water collected for harvesting is of large volume, as most of the “clean” 

water with sufficient retention time will be collected. Therefore, this strategy is 

suggested to be adopted when the environmental protection is not the priority 

while the water volume for harvesting is of major concern.  

 

Modified Harvesting RTC utilises the extra pore volume in USZ (unsaturated 

zone) to allow more stormwater runoff enters into biofilters. Therefore, 
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compared to Harvesting RTC, it could provide additional water for harvesting 

and reduce environmental pollution. It is suggested to apply this strategy when 

the inflow concentration is low, so that the water quality for harvesting would 

not be significantly impacted compared to that of Harvesting RTC.  

 

Harvesting-Environment RTC collects harvestable water in advance, and could 

protect the environment no worse than without implementing RTC. The water 

collected from Harvesting-Environment RTC for harvesting is of very high 

quality, however, due to the water holding capacity of the filter media in biofilters, 

only limited water with sufficient retention time could be collected for harvesting. 

As such, Harvesting-Environment RTC is highly recommended when high 

water quality is required but the water volume for harvesting is less important. 

In addition, although the uncertainties caused by inaccurate rainfall forecast is 

out of the scope of this study, the source of rainfall forecast information is crucial 

and should be carefully selected in practical.  

 

Enlarging SZ volume is effective to increase the water volume that collected 

from Harvesting-Environment RTC biofilters for harvesting and reuse, without 

jeopardising the harvested water quality. In practice, the SZ volume of biofilters 

is suggested to be designed as large as possible. 

 

For different systems, the set-points and the outcomes of the same strategy 

could be various. Therefore, for a certain system, the potential RTC strategies 

and corresponding set-points are suggested to be tested case by case, and the 

modelling tool developed in this study, BioRTC, could be employed to 

determine the optimum RTC strategy and corresponding set-points.  

 

7.4   Strengths and limitations 

(1) Modelling of microbial removal in stormwater biofilters 

The model developed in Chapter 3 is a rare process-based model for the 

prediction of microbial removal in stormwater biofilters that could provide a long-

term prediction of the removal of faecal microbes. This model is capable of 

evaluating the performance of biofilters with various design and experience 
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different operational operations. In addition, the model does not have a 

complicated structure but has been fully validated with different data sets that 

collected from lab testing and field monitoring. More importantly, there is no 

need to re-calibrate the model when it is applied into a new system, since the 

parameters calibrated for another system with similar plant type and media type 

could be simply adopted. This is crucial for the assessment of field systems, 

since field monitoring and field data collection are very costly. With this model, 

only simple laboratory tests are needed to estimate the parameter values for 

field system prediction.  

 

Furthermore, after the modification of this model developed in Chapter 3, the 

new model for RTC simulation, BioRTC (developed in Chapter 5), could serve 

as a fundamental part to achieve RTC of stormwater biofilters, as it is capable 

of reflecting the benefits of employing RTC to adjust the operational conditions 

(e.g., infiltration rate, retention time, and inflow volume) of biofilters with various 

designs. In addition, this model has been successfully validated with the data 

collected from laboratory experiments with RTC implementation, further 

demonstrating that it could be employed to assess different RTC strategies 

under various scenarios. Moreover, although only off-line strategies (i.e., 

operational objectives are specified prior to the actual control process, and set-

points are normally fixed) have been tested in this study, BioRTC can also be 

applied in the implementation of on-line strategies (i.e., operational objectives 

are defined as a mathematical function, and set-points are variable and 

determined during the control process), as BioRTC has a rather simple 

structure, is easy to run, and could provide promising prediction promptly.  

 

Although the two models developed in this study have multiple strengths, some 

limitations exist. For example, the models do not capture some processes that 

may occur during the operation of stormwater biofilters, such as preferential 

flow, clogging after long time operation, and cracking of filter media after dry 

periods (Bright et al., 2010; FAWB, 2009). As such, the performance of the 

models can be compromised under these circumstances. However, these 

phenomena are rather random and very hard to describe with deterministic 

mathematical equations. More importantly, although these rather simple 
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models do not include these random processes, they could still provide 

reasonably good predictions for different systems, and have been successfully 

validated with various data sets.  

 

Another limitation in modelling is that the BioRTC model was only validated 

using laboratory-collected data for RTC. It would better demonstrate the 

capability of this model, if BioRTC could also be validated by the data collected 

from a field system where RTC has been implemented. However, it is important 

to note that, before modification, the model developed in Chapter 3 has shown 

good transferability between laboratory and field scale systems that operate 

under non-RTC conditions (demonstrated in Chapter 4). In addition, BioRTC 

has the same model structure with the model developed in Chapter 3, and the 

results in Chapter 6 indicated that even the non-RTC biofilters’ parameter 

values could be utilised in BioRTC for RTC prediction. These evidence 

suggested that RTC modelling with BioRTC is also very likely to be transferable 

from laboratory conditions to field conditions.  

 

In addition, only one of the microbial indicators, E. coli, was selected to test the 

model developed in Chapter 3 and the BioRTC model introduced in Chapter 6. 

How these models would perform in predicting other types of microbes (e.g., 

enterococci, Campylobacter spp.) is still unknown. Importantly, the literature 

indicates that the governing processes for E. coli removal (e.g., adsorption, 

desorption, straining, and die-off) are also applicable to other types of microbes 

(although the importance of each individual process may vary for different types 

of microbes). Therefore, it is expected that the models could still provide a good 

prediction for other types of microbes, albeit with different calibrated parameter 

values and perhaps a slightly modified structure. 

 

(2) Experimental tests of RTC  

To the author’s knowledge, this study initiates the first attempt to develop RTC 

strategies for stormwater biofilters. The two strategies that developed and 

tested in Chapter 5, Harvesting RTC and Harvesting-Environment RTC, have 

been demonstrated to provide great benefits in the laboratory tests. For 

Harvesting RTC, the harvested water from RTC biofilters for harvesting could 
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meet the secondary contact for recreational water use. While for Harvesting-

Environment RTC, the requirements for dual reticulation with indoor and 

outdoor use or irrigation of commercial food crops were met in the harvested 

water of RTC-biofilters. Also, the set-points in these two strategies (e.g., 

minimum required retention time for submerged zone water) are easy to adjust, 

ensuring that the strategies are adjustable under different weather conditions 

(e.g., different rainfall durations and dry lengths between wet events) and inflow 

conditions (e.g., various inflow volumes and concentrations) to meet the 

requirements for different end uses.  

 

However, the implementation of RTC in field-scale systems have not been 

practically conducted in this research, only modelling has been employed for 

the simulation of scenarios that using a modelled representation of reality. A 

better understanding of the benefits of RTC might be achieved if field 

implementation could be conducted with a long-term operation. Importantly, this 

study is the first study on RTC of stormwater biofilters, and provides the first 

evidence of how these systems could potentially perform under active, rather 

than passive, operation.  

 

Since this study mainly focused on the development of the framework rather 

than to explore methods to achieve control, the control processes were all 

manually implemented in the laboratory experiments. Therefore, some practical 

implications during the incorporation of RTC facilities, such as sensors, have 

not been fully revealed.  

 

In addition, in the laboratory experiments for RTC testing, Harvesting RTC and 

Harvesting-Environment RTC were tested one after the other (i.e., in separate 

rounds), but not in parallel. Therefore, bias might occur during the operation of 

the two rounds experiments, preventing a full comparison between the two 

strategies. Also, before the start of the laboratory experiments for RTC testing, 

the biofilter columns had already been operated for approximately three years. 

Since three years is a rather “old age” of stormwater biofilters, the effects of 

these two RTC strategies in a typical biofilter might not be fully presented.  
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Moreover, for Harvesting-Environment RTC, only perfect rainfall forecast 

information was adopted; that was because, no required historical rainfall 

prediction data (e.g., 3-hourly weather prediction) were available in the study 

site during the laboratory experiments. Therefore, the uncertainty introduced by 

inaccurate rainfall prediction has not been reflected. However, by assuming 

“perfect” rainfall prediction, the benefits that purely generated from Harvesting-

Environment RTC implementation have been revealed. 

 

Furthermore, only off-line RTC strategies have been tested in this study, and 

no on-line RTC strategy has been developed or tested. Therefore, how would 

an on-line RTC strategy for stormwater biofilters look like and what its effect 

would be is not unknown. However, it is also important to notice that, the off-

line RTC strategies developed and tested in this study have already been 

proved very effective.   

 

Lastly, this study mainly focused on the removal of microbes in stormwater, with 

few tests were placed the removal of TSS (total suspended solids), TN (total 

nitrogen) and TP (total phosphorus). Both positive and negative effects have 

been found for the removal of TSS, TN, and TP during RTC implementation. 

Therefore, more studies are suggested to (1) reveal the impacts of RTC that 

developed for stormwater harvesting and reuse on other pollutants, such as 

micro-pollutants and heavy metals; and (2) develop exclusive RTC strategies 

for other pollutants to broad the application of RTC in fulfilling different 

treatment objectives. 

 

7.5   Future work 

Future work aims to eliminate the limitations as stated above, and to provide 

more profound research outputs in RTC of stormwater biofilters. 

 

(1) Further testing of microbial removal model 

As aforementioned, in this study, both the developed microbial removal model 

developed in Chapter 3 and the BioRTC model introduced in Chapter 6 were 

only employed for E. coli prediction, and the models’ performance in predicting 



Chapter 7. Conclusions and future work 

218 
 

other types of microbes (such as enterococci and Campylobacter spp.) needs 

to be tested, to ensure that these models have a broad application. Therefore, 

these models will tested with the data collected from the experiments on other 

microbes in the future.  

 

In addition, neither of the two models could capture some processes that may 

cause uncertainties in prediction, such as preferential flow, and clogging and 

cracking of filter media. Therefore, it would improve the performance of current 

models if these processes could be reasonably interpreted. Although a few 

models have been developed to describe similar processes in the field of 

underground water (Dingman, 2002), the number of parameters should also be 

limited to prevent over-parameterisation. In addition, extra computation burden 

should also be avoided, otherwise the application of the model in RTC might be 

confined. Considering these, to develop simple empirical model components 

and incorporated with current models could be an option to solve this problem. 

However, to achieve this aim, additional data need to be collected and analysed. 

 

(2) Field implementation of RTC strategies 

In this study, the effectiveness of RTC in field systems has not been tested. The 

weather conditions (e.g., the length of dry period and rainfall duration) and 

inflow conditions (e.g., inflow volumes and concentrations) in a field system 

would be very different to those in a lab-scale systems; especially, extreme 

conditions (e.g., extended dry periods or extremely high inflow volume) are 

more likely to occur in the field. Therefore, field implementation of RTC is 

necessary for future work. Field testing of RTC could provide field monitoring 

data to better validate the model for RTC prediction, and better reveal the 

benefits of RTC in field application under extreme conditions.  

 

In addition, field testing could reflect the functions and uncertainties caused by 

the application of RTC facilities, such as the failure of sensors and uncertainties 

introduced by rainfall forecasting. It is expected that both failure of sensors and 

rainfall forecasting could negatively affect RTC’s effectiveness: the former may 

cause that the control actions fail to be implemented, while the latter may result 

in the implementation of inappropriate actions.  
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Furthermore, Field testing could help to gather experience in maintenance, as 

maintenance governs the effectiveness of biofilters, according to many studies 

and practical experiences. Although the implementation of RTC may require 

additional maintenance on control facilities (e.g., sensors, valves, and 

flowmeters), it is expected that RTC could help to enhance the maintenance 

quality for the entire system, so that the effectiveness of biofilters could be 

improved. This assumption is based on the fact that, RTC facilities could 

monitor what occurs within biofilters, and this information could lead to a more 

efficient maintenance. For example, a moisture sensor could help to detect the 

occurrence of clogging, so that prompt maintenance could be conducted.  

 

(3) Further development and testing of RTC strategies 

In this study, three RTC strategies have been developed and tested through 

modelling, and two of them were tested with laboratory experiments. However, 

there are also other potential RTC strategies for stormwater biofilters, such as 

decreasing the infiltration rates in the outflow at the end of rainfall to increase 

retention time (Chandrasena et al., 2014b). Besides, the further development 

of RTC may also result in the innovation the biofilters’ design: e.g., the raised 

outflow pipe in a traditional biofilter might be able to be eliminated, as the 

submerged zone depth could be controlled by a valve in the bottom pipe and 

adjusted by opening/closing the valve according to instantaneous operational 

conditions; as such, “novel” biofilters might be designed to better incorporate 

RTC strategies in the future. 

 

In addition, the strategy presented in this study mainly focused on the removal 

of microbes for stormwater harvesting and reuse, further strategies may 

consider to balance it with nutrient removal. To achieve this, one potential 

method is to keep the retention time neither too long (not favoured in nutrient 

removal) nor too short (not favoured in microbial removal).  

 

Moreover, since only off-line strategies have been tested in this study, future 

work will focus more on on-line strategies, with the help of modelling and 

monitoring facilities (e.g., sensors).  
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 (4) RTC simulation and benefits evaluation for different catchments in different 

cities and countries 

In this study, only one catchment in Melbourne, Australia was selected in the 

tested scenarios. However, for different catchments in different cities, the 

benefits of RTC would be various, as the weather conditions (e.g., antecedent 

dry days, rainfall frequency), and inflow rates and microbial concentrations may 

vary. These differences may impact strategy selection as well as the set-points 

selection of RTC. A systematic test of some typical cities in Australia and other 

countries would be necessary to provide a comprehensive evaluation of RTC. 

 

(5) Searching for a surrogate as the microbial concentration indicator 

At this moment, online measurement of microbial concentration could hardly be 

achieved; therefore, only offline RTC strategies have been tested in this study. 

In the future, if a surrogate could be found as microbial concentration indicator 

to achieve online monitoring, more efficient RTC strategies could be developed 

and RTC strategies could even be adjusted during an event. Turbidity might be 

a potential surrogate during some stages of operation, as microbes could be 

associated with soil that flushed out from biofilters. Some turbidity data have 

been collected during the laboratory experiments in this study, however, 

thorough data analysis and more data collection need to be conducted.  

 

(6) Evaluation of cost-benefits of RTC adoption 

In this study, it is concluded that enlarging SZ volume/depth is effective to 

increase the benefits of adopting Harvesting-Environment RTC. However, this 

method will also increase the cost in practical. Therefore, cost-benefit analysis, 

such as generating a curve on the benefits of different SZ sizes against the 

corresponding cost would provide more evidence for biofilter design selection 

in practical implementation. 
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