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ABSTRACT 

Malaria remains a major global health burden, and there is a need to develop an effective vaccine to 

fast track malaria elimination efforts. There is a vast amount of genome and proteome level data for 

Plasmodium species but there is a need for bioinformatics tools and approaches which can identify 

immune targets within Plasmodium species. Protein structure is a major factor in the recognition of 

antigen by the adaptive immune system, and this thesis seeks to integrate multiple data sources to 

explore the role of antigen 3-dimensional (3D) structure in the generation of adaptive immune 

responses against the malaria parasite.  

The aims of this thesis include i) investigating the role of intrinsically disordered protein (IDP) 

antigens from Plasmodium species as targets of adaptive immune, ii) performing a proteome-wide 

computational analysis of structured malaria proteins to identify key determinants of immune 

recognition and selection pressure, and iii) development of novel computational approaches to 

integrate protein structural information into measures of immune selection pressure, and application 

of these approaches to leading malaria vaccine candidates.  

IDPs are a class of proteins that exist as a dynamic ensemble of structurally distinct species, and are 

particularly enriched within apicomplexan parasites. In Chapter 2, several computational 

approaches were used to explore if regions of protein disorder were also predicted to be involved in 

adaptive immune responses. IDPs were shown to be particularly enriched within immunologically-

exposed subcellular compartments of P. falciparum. Additionally, tandem repeat regions and non-

synonymous single nucleotide polymorphisms were found to be strongly associated with regions of 

disorder. Importantly, IDP regions were shown to contain a paucity of major histocompatibility 

(MHC) class I- and II-binding peptides, potentially restricting recognition of IDP antigen by CD4+ 

and CD8+ T-cells.  

The role of protein 3D structure in immunity against malaria was examined in Chapter 3 with 

experimentally characterised and modelled protein structures across the P. falciparum proteome. A 

key finding of this study was the strong propensity for polymorphic residues to be surface exposed 

and enriched within certain secondary structure elements. Predicted MHC class II binding peptides 

were mapped onto protein 3D structures. These MHC binding peptides were primarily buried within 

the core of the protein and in general were not polymorphic. A novel 3D sliding window approach 

was also used to identify regions within leading vaccine candidates that are likely to be under 

immune-mediated selection pressure. This 3D sliding window approach was developed into a 

Python package called BioStructMap, which is made available via an online web interface, and 

presented in Chapter 4. The BioStructMap tool was further applied in Chapter 5 to two leading 
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vaccine candidates from P. vivax: PvAMA1 and PvDBP. Selection pressures on these antigens were 

investigated across multiple geographic locations, with similar structural patterns of diversity across 

most populations. 

This work has identified new bioinformatics approaches that highlight the prevalence and 

importance of IDPs as well as new approaches for mapping critical characteristics onto 3D 

structures. These approaches have been applied to specific vaccine candidates, highlighting 

important regions to assist with vaccine design. 
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1. INTRODUCTION

1.1 Malaria Background 

Malaria is an infectious, mosquito-borne disease responsible for an estimated 445,000 deaths 

globally in 2016 [1]. Malaria is caused by various apicomplexan Plasmodium species, with 

P. falciparum the major contributor to global malaria mortality. P. vivax also contributes

significantly to the global burden of disease. Other species capable of infecting humans include

P. ovale, P. malariae and P. knowlesi. The clinical symptoms of malaria range from mild to

potentially life threatening, including periodic fever, anaemia, chills, headache, fatigue, convulsions

and coma. The current recommended treatment for uncomplicated P. falciparum malaria is

artemisinin-based combination therapy (ACT). The development of drug-resistant malaria parasites

is a major concern, with evidence of resistance to artemisinin based therapies throughout Southeast

Asia [2,3]. Within a malaria endemic setting, clinical symptoms and associated complications are

worst in young children and pregnant women. The gradual development of partial immunity

following repeated exposure protects most individuals, while pregnant women are particularly

susceptible due to pregnancy-related immunomodulation and parasite sequestration in the placenta

[4]. Immunity to clinical malaria develops slowly, and is believed to be partly dependent on

antibody responses [5–7]. The exact determinants of this clinical protection are unclear, although it

is likely that a complex mix of antibody responses against a number of antigens is required for

effective protection from clinical malaria. The high burden of disease, together with increasing

evidence of drug resistance against current antimalarial drugs, highlights the urgent need for an

efficacious and cost-effective vaccine against malaria.

1.1.1 Malaria distribution, prevalence and economic impact 

There were an estimated 216 million cases of malaria in 2016, with roughly 445,000 malaria deaths 

[1]. Of these, approximately 91% occurred within the World Health Organization (WHO) African 

region. Importantly, there has been a significant reduction in malaria morbidity and mortality in the 

last ten years, considering there were over 1 million estimated malaria deaths in 2005 [8]. Aside 

from the direct impact on human health and wellbeing, the economic impact of malaria disease is 

considerable. It has been estimated that malaria costs African economies a total of US$12 billion 

per year [9]. The economic impact outside of the African region is also significant, with estimates 

that malaria costs India roughly US$100 million annually [10]. 
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The majority of malaria cases in the WHO African region are attributed to P. falciparum, whereas 

P. vivax is much more prevalent within South-East Asia and South America [1,11] (Figure 1.1).

Historically, the global distribution of malaria was much wider, encompassing much of Europe,

North-America and Northern Australia [11,12]. A combination of increased sanitation and

development, alongside dedicated eradication programs has restricted the global distribution of

malaria significantly. An ambitious WHO malaria elimination campaign in the 1950’s-1960’s

involving mass insecticide spraying and chemoprophylaxis yielded large reductions in malaria

incidence in numerous countries including India and Sri Lanka, with elimination of endemic

malaria from a total of 37 countries worldwide by 1978 [13]. However, this campaign failed to

address malaria in most of sub-Saharan Africa, and many countries that saw large reductions in

malaria incidence during this campaign have seen a subsequent resurgence in malaria incidence in

the absence of concerted control efforts.

Encouragingly, recent efforts to address the impact of malaria have been relatively successful. 

There has been a renewed push towards malaria control, elimination and eventual global eradication 

[14], beginning with the World Health Organization’s Roll Back Malaria initiative announced in 

1998 [15]. Target 6C of the Millennium Development Goals was to “have halted by 2015 and 

begun to reverse the incidence of malaria and other major diseases”, and this has been successfully 

achieved. This current success in malaria control has been achieved using a combination of 

insecticide-treated bed nets, indoor residual spraying, vector control, mass drug administration, and 

ready access to screening and treatment of both clinical and subclinical malaria [16]. Moving 

forward, Goal 3 of the United Nations Sustainable Development Goals includes the goal of ending 

the global epidemic of malaria by 2030. A detailed pathway towards this is outlined in the WHO 

Global Technical Strategy for Malaria 2015-2030 which aims to reduce global malaria case 

incidence by 90% by 2030 compared to 2015 levels, as part of a strategy towards malaria global 

elimination [14]. However, it is clear that global malaria elimination will not be achieved with the 

current tools available, and development of an efficacious malaria vaccine is likely to be required 

for a successful elimination strategy. 

1.1.2 Parasite life cycle 

The malaria life cycle is complex, and involves both human and mosquito stages (Figure 1.2). 

Within the human host, there are well-defined pre-erythrocytic, erythrocytic and sexual stages. 

When an infected Anopheles mosquito bites a human host, a number of malaria sporozoites are 

released from the salivary glands of the mosquito and enter the dermis (although some sporozoites 

may enter the epidermis or subcutaneous tissue, depending on the injection site) of the human host 

[20,21]. The number of sporozoites released varies, but is believed to be less than 100 in most 
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Figure 1.1: Worldwide malaria transmission for P. vivax (A) and P. falciparum (B) in 2010. 

Areas of stable malaria transmission (local annual case incidence greater than 0.1%) are shown in 

dark red. Areas of unstable malaria transmission (local annual case incidence less than 0.1%) are 

shown in light red. Maps were obtained from the Malaria Atlas Project (https://map.ox.ac.uk/) [17], 

with P. vivax and P. falciparum transmission data from Gething et al. (2012) [18] and Gething et al. 

(2011) [19] respectively. 
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Figure 1.2: Malaria parasite life cycle and associated vaccine candidates for P. falciparum and 

P. vivax at each life cycle stage. Antigens listed in the WHO Malaria Vaccine Rainbow Tables [27]

as currently in clinical or preclinical development are shown in bold (updated 17/7/17). For further

information on stage-specific vaccine candidates refer to [28]. Image adapted from "Life cycle of

the malaria parasite" from Epidemiology of Infectious Diseases. Available at: http://ocw.jhsph.edu.

Copyright © Johns Hopkins Bloomberg School of Public Health. Creative Commons BY-NC-SA.
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cases [22]. From the initial site of entry, sporozoites migrate to the circulation, where they 

eventually reach the liver and begin invasion of liver hepatocytes. This is followed by a period of 

asexual replication within hepatocytes, which occurs over 9-14 days for P. falciparum or 12-17 

days for P. vivax [23]. This stage of the lifecycle is largely asymptomatic for the human host. 

Following this period of asexual replication, infected liver cells then release large numbers of 

merozoite-filled merosomes into the liver sinusoids [24]. These merosomes are formed through 

budding of the hepatocyte membrane, encasing large numbers of merozoites, and are believed to 

minimise host immune responses against the newly released merozoites [25]. Once in the 

circulation, merozoites rapidly invade red blood cells. Upon entering a red blood cell, a merozoite 

undergoes maturation and division over a 48 hour period (72 hours for P. malariae; 24 hours for 

P. knowlesi), before the red blood cell ruptures and releases new merozoites into the circulation

[26]. This begins another cycle of red blood cell invasion, replication and subsequent red blood cell

rupture which characterizes the symptomatic blood-stage of the Plasmodium life cycle.

Merozoite invasion of red blood cells is a tightly coordinated, multi-stage process (reviewed in 

detail in [29]). After initial contact with a red blood cell, merozoites undergo reorientation such that 

the apical end of the parasite is in contact with the red blood cell membrane. This is followed by 

formation of a tight junction between the merozoite and red blood cell, and this tight junction 

moves along the body of the merozoite as it enters the red blood cell [30]. Once the parasite has 

entered the red blood cell, the red blood cell undergoes transient echinocytosis, characterised by 

dramatic membrane morphological changes with the formation of many spiky projections in the red 

cell membrane, before returning to its normal shape within a few minutes [31]. The initial infected 

red blood cell is known as a ring stage parasite. Over the next 48 hours the parasite begins a process 

of asexual replication, moving from ring stage to trophozoite to schizont. Once schizonts are 

matured, they rupture, releasing large numbers of merozoites that then proceed to infect fresh red 

blood cells. This cycle of invasion, replication and rupture is responsible for an exponential increase 

in parasitemia that causes many of the clinical symptoms associated with malaria. A small 

proportion of ring stage parasites commit to becoming sexual stage gametocytes, and are taken up 

by a mosquito vector that bites the human host (reviewed in [32]). During the mosquito stage of the 

life cycle, the female and male gametocytes mate and form ookinetes that further mature into 

oocysts that embed in the mosquito midgut lumen. The oocysts then rupture and release sporozoites 

into the salivary glands of the mosquito that can infect another person during a subsequent mosquito 

blood meal, continuing the life cycle and transmission [33]. 

A number of GPI-anchored merozoite surface proteins are thought to be involved in mediating 

initial attachment of the merozoite to red blood cells, including merozoite surface protein 1 (MSP1), 
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MSP6 and MSP7 [34]. Following this initial attachment, the erythrocyte binding-like (EBL) and 

reticulocyte binding-like (RBL) families of proteins are involved in further binding events, with the 

merozoite also undergoing reorientation so the apical end of the parasite is adjacent to the red blood 

cell membrane [35]. The EBL family of proteins include erythrocyte binding antigen 175 (EBA-

175), EBA-140, EBA-181 and EBL-1 within P. falciparum, and the Duffy-binding protein (DBP) 

protein within P. vivax [36]. In P. falciparum, the EBL family of proteins share a common domain 

architecture, with region II (RII) containing tandem DBL domains termed F1 and F2, regions III-V 

(RIII-V) predicted to be intrinsically disordered, a cysteine-rich structured region VI (RVI), a single 

transmembrane domain, and a cytoplasmic C-terminal tail. EBL family proteins bind to host cell 

surface glycoproteins via the DBL domain(s) contained within RII: EBA-175 recognises 

Glycophorin A [37], EBA-140 recognises Glycophorin C [38], the receptor for EBA-181 is 

unknown, EBL-1 binds to Glycophorin B [39], while PvDBP binds the Duffy antigen/receptor for 

chemokines (DARC) on reticulocytes [40]. The RBL family of proteins also plays a role during this 

attachment process, with binding of PfRH5 to basigin on the red blood cell a critical step in the 

invasion process [41]. PfRH5 is likely anchored to the parasite membrane via the GPI-anchored 

merozoite protein P133 [42]. Following binding of PfRH5 to basigin, apical membrane antigen 1 

(AMA1) binds to RON2 on the erythrocyte membrane to initiate formation of a tight junction 

between parasite and host-cell membranes. RON2 is a rhoptry protein that forms part of the rhoptry 

neck (RON) complex, which is translocated into the red blood cell membrane prior to binding to 

AMA1 [43]. AMA1 is a type 1 transmembrane protein which contains three extracellular domains 

termed Domain I (DI), II (DII) and III (DIII) [44]. DI contains a conserved hydrophobic binding 

groove that is the site of RON2 binding [45]. DI also contains a large number of polymorphic 

residues, presumed to be the result of immune pressure on this region [45,46]. 

Features of blood stage infection which contribute to clinical symptoms include red blood cell 

rosetting and adhesion to vasculature, which can result in vascular occlusion. This is driven by 

presentation of adhesins such as P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the 

surface of infected red blood cells which promote sequestration of infected cells in the vasculature, 

helping the parasite avoid splenic clearance. PfEMP1 is encoded by ~60 var genes, with only a 

single gene typically expressed at a single time. There is a significant level of diversity between 

different PfEMP1 variants, which limits the ability to generate cross-reactive antibodies that 

recognise multiple PfEMP1 variants [47]. PfEMP1 is also implicated in the development of cerebral 

malaria, with a subset of var genes (Group A) associated with sequestration of parasites in the brain 

microvasculature and associated cerebral malaria pathology [48–50]. These sequestered parasites 

cause localised hypoxia, inflammation and tissue damage [51,52]. Sequestration of infected 

erythrocytes is also a particular issue during pregnancy associated malaria, as the expression of a 
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pregnancy-specific PfEMP1 variant called VAR2CSA allows sequestration of P. falciparum 

infected erythrocytes in the placenta. This is mediated by binding of VAR2CSA to Chondroitin 

Sulfate-A (CSA) on the placenta, and ultimately leads to a number of adverse outcomes for both the 

mother and child [47].  

1.1.3 Treatment and therapy 

The primary goal of malaria treatment is the complete elimination of parasites from the body, with 

the associated reduction and prevention of pathology associated with blood stage infection. This 

also has a broader public health benefit in preventing continued transmission. The current 

recommended treatment for uncomplicated P. falciparum malaria is one of several Artemisinin-

based Combination Therapies (ACT): artemether and lumefantrine; artesunate and amodiaquine; 

artesunate and mefloquine; dihydroartemisinin and piperaquine; or artesunate and sulfadoxine-

pyrimethamine [53]. For treatment of uncomplicated P. vivax, P. ovale, P. malariae or P. knowlesi 

infection, treatment with either an ACT or chloroquine is recommended. Additionally, to prevent 

relapse of P. vivax or P. ovale malaria as a result of dormant liver-stage parasites, an additional 14-

day course of primaquine is recommended, provided the patient is not glucose-6-phosphate-

dehydrogenase (G6PD) deficient. Finally, intravenous or intramuscular artesunate is recommended 

for treatment of severe malaria, until the patient can tolerate oral ACT therapy. Despite the 

increasing spread of artemisinin resistant parasites, ACT currently remains the recommended 

treatment option [53]. 

1.1.4 Parasite drug resistance 

The emergence of drug resistant parasites poses a major public health issue. Whilst chloroquine was 

the drug of choice for many years for treatment of malaria, widespread chloroquine resistance 

amongst P. falciparum parasites has prompted a shift to ACT as a first-line treatment [54,55]. 

However, evidence of artemisinin resistance began to emerge in western Cambodia in 2008, with 

resistance now spread to large parts of mainland Southeast Asia [56]. Resistance to artemisinin 

based drugs has been associated with mutations in the kelch13 gene. This mutation has been 

suggested to increase levels of an associated phosphatidylinositol-3-kinase (PfPI3K), which appears 

to be a primary target for artemisinin [57]. The effects of drug resistance are countered by 

administering combination therapies, limiting the ability of parasites to develop resistance to any 

single drug. However, there have also been reports of additional parasite resistance to partner drugs 

such as piperaquine, limiting the effectiveness of combination therapies [58]. The inevitable 

emergence and spread of drug-resistant parasites highlights the need to develop new drugs and an 

efficacious malaria vaccine. 

7

Malaria Background



1.1.5 Vaccine development 

To date, only a single vaccine, RTS,S/AS01, has progressed to Phase III clinical trials. RTS,S is a 

recombinant protein vaccine formed by fusion of the P. falciparum circumsporozoite surface 

protein (CSP) with the Hepatitis B S-antigen, and has been paired with the AS01 adjuvant [59,60]. 

Results from Phase III trials suggest that over a 12-month period, RTS,S/AS01 reduced incidence 

of clinical malaria by 50.4% in children aged 5-17 months at enrolment [61]. Despite this success, 

there is a general consensus that greater efficacy is needed in a vaccine if global eradication of 

malaria is to be achieved [62–64]. Additionally, protection induced by the RTS,S vaccine appears to 

be short-lived, with a rapid decline over time [65]. Despite this limited efficacy, RTS,S has been 

approved for use in the Malaria Vaccine Implementation Programme in Malawi, Ghana and Kenya 

[66]. However, there remains a need for a long lasting, efficacious and affordable vaccine, 

especially if wide spread malaria eradication is to be achieved within a realistic time frame. A 

number of pre-erythrocytic, blood stage and sexual stage vaccines are currently in development 

[67–69], and key antigens that are currently being assessed in clinical or preclinical trials are shown 

in Figure 1.2. These include the P. falciparum blood stage antigens AMA1 and EBA-175, and the 

P. vivax blood stage antigen DBP, all of which are discussed in more detail in Section 1.2.2.

1.2 Stage-specific Immune Responses 

Given the current lack of a highly efficacious vaccine for malaria, the continued development of 

both existing and new vaccine candidates is needed. An understanding of the nature of protective 

immune responses against the malaria parasite is therefore essential to guide the development of 

any new vaccine. This section discusses current knowledge regarding the nature of immune 

responses against various stages of the parasite life cycle.  

1.2.1 Pre-erythrocytic stages 

Experiments in both animals and humans involving vaccination with radiation-attenuated 

sporozoites have provided solid evidence that sterile immunity against pre-erythrocytic infection is 

possible, despite there being little evidence that this occurs naturally following typical exposure to 

malaria. Radiation-attenuated sporozoites are able to infect hepatocytes, but undergo aborted 

development within these hepatocytes, and are unable to progress to viable blood stage infection 

[70]. Although the exact determinants of sterile protective immunity following immunisation with 

radiation attenuated parasites are still unclear, CD8+ T-cells appear to be critical in the protective 

response, as ablation of CD8+ T-cells in both murine and human-primate models removes sterile 

immunity [71–74]. Furthermore, it appears that protection is being mediated at the liver stage, 
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rather than against sporozoites in the circulation, as adoptively transferred cytolytic CD8+ T-cells 

specific for CSP antigen were shown to act upon the hepatocytic stage of the lifecycle [75]. While 

CD8+ responses against epitopes from CSP are capable of mediating protection, there is also a role 

for other antigens such as the thrombospondin-related adhesive protein (TRAP) in protective 

cellular responses against the liver stage parasite [76]. Interestingly, responses against CSP do not 

seem to be absolutely required for induction of protective CD8+ T-cell immunity, although it is 

apparent that CSP is immunodominant in a radiation-attenuated parasite mouse model, and 

protection is reduced in the absence of anti-CSP responses [77]. There is also a potent antibody 

response against sporozoite surface antigens following immunisation with radiation-attenuated 

sporozoites, with a high proportion of the antibody response against CSP, although very high 

antibody responses against TRAP are also observed [78]. However, antibody responses against CSP 

are not required for sterile immunity following immunisation with radiation-attenuated parasites, 

and there is suggestion that the immunodominant nature of CSP may be a parasite strategy to direct 

antibody responses away from more productive targets [79]. Immunisation with RTS,S, which 

contains the structurally disordered tandem repeat region and structurally ordered C-terminal region 

of CSP, is moderately effective in preventing blood stage infection in the short-term, although 

protective immunity wanes quickly. The determinants of protection following RTS,S delivery 

appear to be both immunoglobulin G (IgG) responses and CD4+ T-cell responses [80,81]. It is 

interesting to note that unlike vaccination with radiation-attenuated sporozoites, vaccination with 

RTS,S/AS01 produces minimal CD8+ T-cell responses. 

Other potentially important pre-erythrocytic antigens include TRAP, cell-traversal protein for 

ookinetes and sporozoites (CelTOS), RON-4 and liver-stage antigen 1 (LSA-1). TRAP is a 

sporozoite surface protein that is essential for sporozoite gliding motility [82,83], infection of 

hepatocytes [83–86], and invasion of mosquito salivary glands [87,88]. IgG responses against 

TRAP have been observed following natural infection [89], but appear to be minimal in areas of 

low or intermittent transmission [90–93]. Interestingly, induction of significant levels of anti-TRAP 

IgG and associated memory B-cells was not observed during experimental immunization with 

infectious sporozoites followed by chloroquine chemoprophylaxis, even after challenged with 

infectious sporozoites. However, elevated levels of anti-TRAP antibodies were observed following 

challenge with infected erythrocytes, suggesting an additional role/presence for TRAP during 

erythrocytic stages [94].  

1.2.2 Blood stage infection 

Natural immunity to clinical blood stage malaria develops following repeated exposure within a 

malaria endemic setting. This protection limits the progression of clinical disease, but does not 
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constitute sterilising immunity. Following natural exposure, individuals tend to develop protection 

from clinical malaria, but can still harbor a non-symptomatic level of parasitemia, which contributes 

heavily to transmission levels. This naturally-occurring, non-sterile immunity against symptomatic 

malaria develops with repeated exposure, and is directed against the blood stage of the malaria 

parasite. Antibody responses have been shown to constitute an important component of protective 

immunity against clinical malaria, as passive transfer of gamma-globulin from immune individuals 

from hyperendemic malaria areas was shown to effectively reduce clinical symptoms and 

accompanying parasitemia in children suffering from severe P. falciparum or P. malariae malaria 

[7].  

1.2.2.1 Antibody responses against the infected red blood cell 

Although a number of variable surface antigens (VSAs) are expressed on infected red blood cells, 

including PfEMP1, RIFIN, SURFIN and STEVOR proteins, PfEMP1 appears to be the major target 

of protective antibody responses to infected erythrocytes [95]. The high diversity between PfEMP1 

variants limits the generation of broadly cross-reactive antibodies, and introduces significant 

challenges to the design of an effective vaccine targeting VSAs [47]. VAR2CSA is a member of the 

PfEMP1 family, and mediates attachment of infected erythrocytes to the placenta. There may be a 

role for a vaccine targeting VAR2CSA to limit the impact of pregnancy associated malaria, 

although this is also hampered by extensive sequence variability in the VAR2CSA gene [96]. There 

are currently two vaccine candidates for placental malaria in early phase Ia/b clinical trials, with the 

two vaccines using different domains of VAR2CSA [97,98]. 

1.2.2.2 Antibody responses against merozoites  

Merozoite invasion of red blood cells is a tightly regulated, complex process, and our understanding 

of the immune response against this stage of the parasite life cycle is incomplete. However, a 

number of merozoite antigens have emerged as promising candidates for further vaccine 

development. Antibody responses against the invading merozoite have been reviewed extensively 

elsewhere [67], and we highlight salient points here.  

Numerous studies have demonstrated the importance of antibodies against many merozoite 

antigens. EBA-175 RII is a prospective vaccine candidate, with a recombinant RII construct having 

undergone phase I clinical trials [99]. There is considerable evidence for the importance of 

antibodies targeting EBA-175 RII. Monoclonal antibodies (mAbs) against RII have been shown to 

inhibit merozoite invasion in vitro [100], with some of the most potent invasion inhibitory 

antibodies shown to inhibit engagement of EBA-175 RII with its Glycophorin A receptor via 

blocking of the dimerization and receptor binding interface [101]. Additionally, naturally occurring 
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antibodies against EBA-175 RII are capable of inhibiting parasite growth in vitro [102]. 

Furthermore, naturally occurring antibodies against RII that specifically inhibit engagement of RII 

with Glycophorin A were shown to be protective against symptomatic malaria [103]. There is also 

evidence for the importance of antibodies against other EBL family proteins, with antibodies 

against EBA-175, EBA-140 and EBA-181 from naturally exposed individuals shown to be 

important in mediating in vitro parasite growth inhibition using a series of protein knockout 

parasites that lack the respective invasion ligands [104]. Region III-V (RIII-V) of EBA-175 is also 

suggested to be an important target of protective antibody responses, with relatively low levels of 

circulating anti-EBA-175 RIII-V antibodies associated with protection from clinical malaria [105]. 

Furthermore, rabbit antibodies raised against recombinant EBA-175 RIII-V were shown to potently 

inhibit parasite invasion in vitro [106]. 

AMA1 is a major vaccine candidate, with two different vaccine constructs having been tested in 

phase II clinical trials [107,108], although with no evidence of significant protection against clinical 

malaria. A number of phase I trials have also been conducted with different AMA1 constructs 

(reviewed in [67]). Both polyclonal [46,109,110] and monoclonal [111] antibodies against AMA1 

have been shown to inhibit invasion in vitro. Whilst there is substantial polymorphism within 

AMA1 [45], and cross-strain specificity has been suggested to be a hurdle for vaccine development 

[107], there is also evidence for substantial antigenic overlap between different PfAMA1 strains 

[112], supporting the design of a multi-allele vaccine construct for AMA1. The most polymorphic 

region of AMA1 is DI [45], which is also the location of the RON2 binding cleft [113]. 

A number of population studies have been performed to identify protective antibody responses 

against merozoites, and these have been reviewed by Healer et al. [114]. In a systematic meta-

analysis that examined associations between clinical P. falciparum malaria and antibodies against 

merozoite antigens, it was observed that antibodies against MSP3 (C-terminus) and MSP119 were 

strongly associated with reduced risk, whilst antibodies against AMA1 and glutamate-rich protein 

(GLURP) were associated to a lesser extent [115]. Antibodies against MSP2 and MSP1 N-terminal 

regions were not significantly associated with reduced risk of clinical malaria [115]. A study by 

Richards et al. examined antibody responses against 46 merozoite antigens in a prospective cohort 

of children from a malaria endemic region of Papua New Guinea [116]. This study identified a 

number of merozoite antigens which were strongly associated with protection from clinical malaria 

episodes, including a number of targets that have previously received little attention as vaccine 

candidates. These antigens included both EBA-140 RIII-V and EBA-175 RIII-V, both of which are 

predicted to be intrinsically disordered [117]. A prospective cohort study of Kenyan children 

measured associations between antibody responses to merozoite antigens and protection from 
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clinical malaria, with highest ranked antigens including MSP2, RhopH3, MSP11, MSP3, AMA1 

and MSRP1 [118]. This study also noted a couple of previously uncharacterised merozoite antigens 

were highly associated with protection, including PF3D7_1136200 and PF3D7_0606800. Another 

study in Kenya used a protein microarray system to measure antibody responses against 

P. falciparum antigens [119]. In this study, the antibody responses against MSP10, MSP2, liver-

stage antigen 3 (LSA3) and PfEMP1 had the highest associations with protection. Another protein 

microarray study in the Peruvian Amazon identified MSP1, HSP70, ring-infected erythrocyte 

surface antigen (RESA), LSA3, MSP11 and parasite-infected erythrocyte surface protein 2 

(PIESP2) as the top antigens associated with protection from symptomatic malaria [120]. Whilst 

there appear to be a number of vaccine candidates that are repeatedly associated with protective 

immune responses, there are also considerable discrepancies between the various studies that have 

examined associations between antibody responses and protection from symptomatic malaria. 

Differences between these studies could be attributable to numerous factors, including differences 

in antigen quality and preparation, variation in experimental protocols between laboratories or real 

differences in parasite antigen usage between populations [114]. 

1.2.2.3 Cellular immune responses against blood stage malaria 

The role of both CD4+ T-cells and CD8+ T-cells in protective responses against blood stage 

malaria is uncertain. Despite CD4+ T-cells playing an important role in mediating protective 

immune responses against blood stage infection [121–124], depletion of antigen-specific CD4+ 

T-cells is observed to occur during malaria infection [125]. Furthermore, CD4+ T-cell depletion has 

been shown to be mediated by CD4+CD25+ regulatory T-cells, and may serve as a mechanism to 

limit CD4+ T-cell associated pathology [126]. In contrast to the suppressed nature of CD4+ T-cell 

responses in normal Plasmodium infection, it has been shown that immunisation with low doses of 

killed blood stage parasites leads to protection from homologous and heterologous blood stage 

challenge in a CD4+ T-cell dependent manner [127]. Furthermore, vaccination with chemically 

attenuated blood stage parasites has also been shown to induce long-lived, CD4+ T-cell dependent 

protection, with this protection also dependent on red blood cell (RBC) membrane integrity being 

maintained during preparation of the attenuated parasites for vaccination [128]. Taken together, the 

role of CD4+ T-cells in malaria responses appears to be complex, and may serve to either enhance 

or limit pathology in a context dependent manner.  

While it is widely accepted that CD8+ T-cells are crucial in the development of immunity to liver-

stage infection, there is still a level of uncertainty and controversy regarding their importance in 

blood stage immunity. Due to the lack of major histocompatibility complex (MHC) class I 

expression on RBCs, CD8+ T-cells have been thought to contribute little to protective responses 
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against blood stage infection. However, there is increasing evidence that CD8+ T-cells are induced 

during malaria infection [129,130] and play a crucial role in controlling blood stage infection [131–

134]. From a mechanistic standpoint, malaria-specific CD8+ T-cells have been shown to recognise 

infected erythroblasts, which still retain high levels of MHC class I expression, promoting increased 

phagocytosis of infected cells [132]. This finding, alongside evidence for the important role of 

IFN-γ in controlling blood stage infection [133], may explain the seemingly paradoxical role for 

CD8+ T-cells in immunity to blood-stage malaria. 

There is a clear knowledge gap with regards to the effective antigenic targets that determine both 

antibody-mediated protection from clinical malaria as well as cell-mediated immunity against blood 

stage infection following subpatent exposure to blood-stage parasites, although this picture has 

become clearer in more recent years. More work is required to fully understand the requirements for 

an effective blood-stage vaccine, both with regards to antigenic targets and the specific 

immunological mechanisms underlying protection. Furthermore, there is a requirement for long-

lasting immune responses following vaccination, which is in contrast to naturally acquired 

protection to blood stage malaria, which is typically short-lived once the individual is removed from 

periodic re-exposure.  

1.2.3 Sexual stages 

Although antibody responses against sexual stage antigens do not reduce parasite burden in the 

host, they can prevent development of the parasite in the subsequent mosquito host, hence reducing 

or blocking transmission between human hosts. As such, development of a transmission blocking 

vaccine would be a useful tool in the pathway to malaria elimination. Antibody responses against 

the sexual stage of the P. falciparum life cycle primarily involves responses against gametocyte 

antigens Pfs230 and Pfs48/45 that are expressed on the surface of mosquito stage gametes 

[135,136]. Other key sexual stage vaccine candidates include Pfs28 and Pfs25, although these are 

not expressed until later sporogony and antibody responses to these antigens are not observed 

following natural infection [135]. There have been two phase I clinical trials to-date for 

transmission blocking vaccine candidates [137,138]. Immunisation with a P. vivax Pvs25 construct 

was well tolerated and elicited antibody responses that were capable of partially blocking 

transmission in a membrane-feeding assay [137]. A later phase 1 trial with Pvs25 and Pfs25 

recombinant antigens adjuvanted with Montanide ISA 51 demonstrated immunogenicity but also 

elicited significant adverse reactions in participants, halting the trial [138]. In comparison to blood 

stage antigens, naturally occurring immune responses against sexual stage antigens are minimal, 

and appear to be short lived in naturally exposed populations, correlating with recent exposure 

rather than age [136]. 
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1.3 Intrinsically Disordered Proteins

Disordered proteins are a unique class of proteins characterised by a high degree of flexibility and 

lack of a well-defined 3-dimensional structure [139]. Despite this lack of structure, disordered 

proteins have been shown to play significant roles in many cellular processes. These roles include 

protein-ligand binding, DNA and RNA binding roles, flexible linkage and roles linked to the 

utilisation of entropic effects such as entropic clocks and springs [140–146]. Disordered proteins 

have also been implicated in several neurodegenerative diseases including Parkinson’s, Alzheimer’s 

and Huntington’s disease [147,148]. Disordered proteins are also enriched in the proteomes of 

malaria parasites as compared to many other eukaryotic species [149], and may represent attractive 

vaccine candidates. A number of malaria vaccine candidates are predicted to contain large 

intrinsically disordered regions, included MSP2, EBA-175 RIII-V, EBA-181 RIII-V, EBA-140 

RIII-V, GLURP, MSP3 and TEX1. Despite this, very little is known regarding the nature of 

immune responses against disordered proteins and how they differ from responses to structured 

antigens, and this section summarises current knowledge regarding adaptive immune responses 

against disordered antigens. 

1.3.1 Disordered proteins overview 

There are a number of terms which have been used to describe intrinsically disordered proteins 

(IDPs), and these include intrinsically unstructured proteins, unfolded proteins, natively denatured 

proteins, intrinsically unfolded proteins and natively disordered proteins [150,151]. While most of 

these terms are generally synonymous, there are a few important distinctions to be made. In general, 

IDP refers to any protein which does not form a stable structure with well-defined equilibrium 

values for both residue positions within the protein and polypeptide main-chain conformations. This 

includes proteins that adopt an extended conformation with high levels of solvent accessibility for 

most side-chains, as well as proteins that exist in a molten-globule state with mostly buried side 

chains. In contrast, natively unfolded proteins are typically taken to mean only the prior group 

[150]. The term IDP shall be used for the remainder of this work, in line with most recent literature. 

IDPs are a unique group of proteins which do not adopt a well-defined structure under normal 

physiological conditions, and generally have a higher level of charged and hydrophilic residues that 

contribute to this behaviour [152,153]. IDPs can be fully unfolded, collapsed into a condensed state, 

or somewhere between these two extremes. In the unfolded state, the behaviour of IDPs can 

sometimes be loosely approximated as a statistical random coil, although steric interactions between 

side chains and the limits of backbone torsion angles limits this approximation somewhat. Even for 

IDPs which exist in an unfolded state, there may be levels of structural organization with the 
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protein, either in transient formation of secondary structure elements, more frequent sampling of 

particular conformational states, or long-range interactions between non-adjacent regions of the 

polypeptide chain [154]. It is clear that IDPs can also exist in a collapsed, molten-globule-like state, 

with extensive, dynamic interactions between side chains and a lack of stable tertiary structure 

[152,155]. It is also noted that some proteins contain intrinsically disordered domains which are 

flanked on one or both sides by structured domains, and these are often termed intrinsically 

disordered protein regions (IDPRs) [156] or intrinsically disordered regions (IDRs) [155]. 

There are numerous roles attributed to IDPs, and they appear to have critical functions in many 

cellular processes. These include roles in signalling networks [157–159], in nuclear transcriptional 

regulation and activation [160–162], cells stress pathways [163,164] and metal binding [165–169]. 

On a mechanistic level, IDPs can act as flexible linkers between structured protein domains, as 

entropic springs or bristles, or as entropic clocks [170,171]. The accessible nature of IDPs means 

they are often utilised to provide sites for efficient post-translational modifications such as 

phosphorylation, acetylation or ubiquitination [159,171–174]. Similarly, many sites of proteolytic 

processing are contained within IDPs [171,175]. IDPs also appear to be enriched within proteins 

known to be molecular chaperones, with several well-defined examples of disordered proteins 

acting as both protein and RNA chaperones [176,177]. 

A number of experimental techniques exist to identify and characterise IDPs, with protein disorder 

usually confirmed by a number of complementary techniques. Some of these techniques include 

solution-state nuclear magnetic resonance (NMR), small-angle X-RAY scattering (SAXS), circular 

dichroism, analytical ultracentrifugation, dynamic light scattering, fluorescence resonance energy 

transfer (FRET), Fourier-transform infrared spectroscopy (FTIR) or atomic force microscopy 

[154,178,179]. In addition to these techniques, there are a considerable number of computational 

prediction algorithms which have been developed to predict protein disorder on a per-residue level 

[180,181]. Most of these algorithms utilise some sort of machine-learning approach using a training 

dataset of known disordered proteins, with varying success rates across implementations. In recent 

years, the performance of disorder prediction software has been evaluated by the Critical 

Assessment of Protein Structure (CASP) experiments [182,183]. A number of predictors have 

emerged as leading performers in these assessments, including DISOPRED3 [184] and PrDOS 

[185]. These tools have been trained on X-RAY crystallography data (where missing residues are 

considered as disordered) [184, 185] and datasets of experimentally characterised IDPs [184]. There 

is no single authoritative experiment for the characterization of IDPs, and experimental techniques 

such as circular dichroism, SAXS and NMR probe different biophysical features of the protein 

under investigation. Missing residues from a crystal structure were used to define disorder in the 

 

 

 
 

Intrinsically Disordered Proteins

15



CASP9 and CASP10 experiments, and while there are other phenomena which may give rise to 

missing residues, it is considered that this definition of disorder is an acceptable and necessary 

compromise to enable independent benchmarking of disorder predictors [184]. 

1.3.2 Antibody responses against disordered proteins 

It has been previously shown that disordered proteins are more common in eukaryotic species as 

compared to prokaryotes [186,187]. Furthermore, there appears to be a particular enrichment of 

disordered proteins in the proteomes of apicomplexan parasites such as Plasmodium spp. and 

Toxoplasma gondii [149]. There is limited work examining the nature of immune responses against 

disordered protein antigens. A small number of studies have examined examples of antibody 

binding to disordered protein regions, and pertinent results from these studies will be discussed in 

this section. 

1.3.2.1 Conformation of IDPs when bound to antibodies 

It is apparent from a number of studies that IDPs are not restricted to one common conformation 

when binding to multiple different antibodies. Chu et al. have shown that a disordered CεmX 

domain from membrane bound IgE is capable of binding two mAbs (h47H4 and h4B12) in distinct 

conformations [188]. Both mAbs bound to overlapping regions within the target protein, with the 

peptide that encompassed both epitopes shown to form two distinct conformations when bound to 

respective mAbs. This peptide was shown to be intrinsically disordered by circular dichroism when 

in solution, suggesting limited or no formation of structural elements in the unbound state. An older 

study by Saad et al. demonstrates the existence of a discontinuous epitope within an IDP, with a 

monoclonal antibody binding to two discontinuous regions of the disordered apo-cytochrome c 

protein [189]. Another monoclonal against this protein recognised only a single region of the two. 

This again demonstrates the flexible nature of antibody binding to IDPs, with no requirement for an 

exclusive conformation for the bound IDP.  

In some cases, a disordered epitope has a preferred conformation when bound to a protein partner. 

One key example is the human immunodeficiency virus (HIV) Tat protein, which contains an 

intrinsically disordered domain in the N-terminal region. Binding of a monoclonal antibody to a 

peptide from this region induces folding of this peptide into a beta-turn conformation. This beta-

turn conformation mimics the binding of Tat to its human protein partner pTEFb [190]. This 

particular example suggests that some disordered regions may have an energetically preferred 

binding configuration, which may be shared either between antibodies, or between an antibody and 

binding to another protein partner. This is perhaps more likely to be the case when the disordered 

protein has a cognate binding partner as part of its functional role and an accompanying 
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energetically preferred conformation. Another example that suggests a preferred conformation for a 

disordered epitope is the P. falciparum CSP asparagine-alanine-asparagine-proline (NANP) repeat 

region. Two human antibodies against the NANP repeat region have been crystallised in complex 

with an (NPNA)3 peptide. While the CSP peptide formed distinct conformations when bound to the 

two different antibodies termed Fab311 and Fab317, a common type-1 β-turn was observed in 1 and 

3 of the NPNA repeats respectively [191]. This suggests an energetically preferred configuration for 

the repeat regions of the CSP protein, while retaining the plasticity associated with IDPs. 

Two studies examining antibodies against the disordered malaria antigen MSP2 highlight structural 

constraints that may have to be considered for IDP based vaccines. The N-terminal region of MSP2 

interacts with the parasite plasma membrane, despite being intrinsically disordered in vitro, 

adopting an alpha-helical structure on the lipid surface [192]. A mAb that recognises the N-terminal 

region of recombinant MSP2 fails to recognise MSP2 on the parasite surface, and this is attributed 

to the conformation of the lipid-bound N-terminus being incompatible with antibody binding by 

that particular mAb [193]. Similarly, the C-terminal region of MSP2 has also been shown to interact 

with the parasite membrane [194]. Two mAbs that recognise overlapping epitopes in this 

C-terminal domain have differing levels of binding to native MSP2 on the parasite surface, and this

is likely the result of lipid interactions within the C-terminal domain either partially blocking one of

the epitopes or forcing structural transitions that don’t favour mAb binding [194,195].

1.3.2.2 Antibody affinity against IDPs 

Another key consideration for the generation of antibodies against IDPs is the range of possible 

binding affinities for IDPs, and whether these differ compared to the affinity of antibodies against 

structured antigens. Existing work that has examined the affinity of antibodies against IDPs will be 

discussed in the following section, with an aim to assessing their suitability as potential vaccine 

candidates. 

Alpha-synuclein is a 140aa, 14.5 kDa protein that is the main component of Parkinson Disease-

associated Lewy bodies. Mutations in the alpha-synuclein gene have been reported to lead to an 

increased incidence of Parkinson Disease, although the normal biological role of alpha-synuclein is 

unclear. It has been shown that alpha-synuclein is intrinsically disordered in vitro, and possibly also 

in vivo, and can form alpha-helical structures upon binding to lipid micelles and vesicles [196]. A 

study by De Genst et al. generated a camelid nanobody against a C-terminal peptide from alpha-

synuclein, with a reported binding KD of 100 nM [197]. This affinity is reported as being typical of 

other in vivo matured camelid antibodies. Measurement of the thermodynamic properties for the 

binding of this camelid antibody to the peptide antigen from alpha-synuclein revealed a favourable 
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enthalpic contribution to binding affinity, with a large entropic cost associated with binding, 

especially at physiological temperatures. 

Merozoite surface protein 2 (MSP2) is an essential P. falciparum merozoite protein and a leading 

vaccine candidate. It has been shown that MSP2 is predominantly disordered, while having a short 

structured domain at the C-terminal end, and an N-terminal region which forms an alpha-helical 

structure upon binding to lipid membranes. Reddy et al. used Surface Plasmon Resonance (SPR) to 

examine antibody affinity (dissociation rate) against MSP2 and PfAMA1 using sera from naturally 

exposed individuals [198]. In a cohort of 219 individuals from Kenya and Uganda, the median 

affinity for MSP2 was significantly lower than the median affinity for AMA1 [198]. When 

considering MSP2 monoclonal antibodies, it is of interest that the highest affinity antibodies were 

those directed against the C-terminal region of MSP2 [198], and all of them bind in a region flanked 

by two cysteine residues [199]. These two cysteine residues form a disulphide linkage, and while 

this disulphide link is not required for antibody binding [199], it is possible that this forms a region 

of reduced entropy resulting in an associated increase in monoclonal antibody affinity compared to 

unstructured regions. 

When considering the binding kinetics of antibody-antigen interactions, there are some unique 

considerations which may dramatically affect overall affinity. Although perhaps an unusual 

example, a disordered region of the human papillomavirus E7 protein has been shown to bind to a 

monoclonal antibody with an initial on-rate dependent on a proline isomerization event within the 

recognised epitope [200]. The proline isomerization required for full antibody binding was shown to 

occur over minute time-scales, with only ~10% of the protein population having the proline cis 

isomer required for monoclonal binding at any one time. While proline isomerization is unlikely to 

be important for most antibody binding events, it highlights an additional structural consideration 

which may need to be taken into account when dealing with otherwise disordered regions. It is 

important to note that while a proline residue will generally exist as a single isomer within 

structured proteins, a proline residue will transition between the two possible isomers within 

unfolded or disordered proteins [201,202]. 

1.3.2.3 Entropic considerations of antibody binding 

Considerations of conformational entropy are also important when dealing with antibody binding to 

disordered protein domains. It has been suggested that the generation of high affinity antibodies 

against disordered antigens is limited based on the high entropic cost associated with transition to a 

bound state [198,203]. However, recent evidence suggests that this effect is not as great as has 

previously been hypothesised, and that high affinity antibodies are routinely generated against 
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disordered regions. There have been numerous suggestions that protein disorder enables high-

specificity, low-affinity binding interactions, due to the entropic cost associated with the loss of 

conformational freedom for a disordered polypeptide chain following binding [152,170,204–206]. 

However, there is little support for this as a general case for all binding events involving disordered 

proteins [207]. The typical range of binding affinities for disordered proteins binding to other 

protein partners is similar to that of ordered proteins, and both on-rates and off-rates are comparable 

to those observed for ordered proteins [207]. In many cases, it is apparent that the large reduction in 

configurational entropy upon binding is adequately balanced by a similar increase in entropy due to 

desolvation of the binding interface. Large entropic gains due to desolvation of binding interfaces 

are particularly associated with hydrophobic residues/regions [207]. 

A recent study by MacRaild et al. suggests that high affinity binding of antibodies to IDPs is 

possible, and is generally obtained by limiting the number of contact residues while maximising the 

epitope buried surface area [208]. This is driven by the observation that disordered epitopes 

typically involve fewer residues in the interaction surface than epitopes within structured proteins, 

and that disordered epitopes typically bind to a concave paratope with an increased proportion of 

buried surface area for residues within the epitope. Limiting the number of contact residues is 

suggested to limit the entropic penalty associated with binding, with a highly specific binding site 

further compensating for any entropic penalty. Nevertheless, this study did note a small but 

significant decrease in binding affinity for disordered antigens. 

Despite the limited number of studies specifically examining antibody responses against IDPs, there 

is considerable evidence that IDPs can be targets of humoral immune responses following natural 

exposure. In the context of malaria infection, population-level studies show that a number of 

predicted IDPs or IDPRs are targets of naturally acquired antibody responses, with many of these 

antigens associated with protection from clinical malaria [115,116]. These antigens include 

GLURP, RAMA, EBA-175 RIII-V and MSP2. 

1.3.3 Cellular immune responses against disordered proteins 

It is also worth considering the role of cellular immune responses against IDPs, as both CD8+ and 

CD4+ T-cell responses have been shown to be important for immunity against various stages of the 

malaria parasite. Unlike antibody recognition of antigen, CD8+ and CD4+ T-cells recognise peptide 

antigen in the context of MHC class I and MHC class II molecules, respectively. It is also important 

to note that CD4+ T-cells are crucial for the development of T-dependent antibody responses that 

lead to affinity maturation and class switching. There is some evidence that a number of highly 

disordered nuclear autoantigens make poor CD4+ T-cell epitopes, suggested to be the result of 

either increased flexibility, masking by nucleic acids or increased susceptibility to proteolysis [209]. 
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However, there has been little work examining the recognition of IDPs by CD8+ T-cells, nor any 

work examining recognition of IDPs in the context of infectious disease, and this represents a large 

knowledge gap that will be addressed in this thesis. 

1.4 Identifying Immune Targets in Structured Malaria Antigens 
IDPs fall on one end of a spectrum of protein structural behaviour; at the other end are the many 

proteins that fold into well-defined 3D structures. These proteins are often amenable to 

crystallisation and subsequent characterisation by X-ray crystallography. There are a number of 

methods for examining targets of immune responses within structured antigens, including 

crystallisation of antibody-antigen complexes. Additionally, there are a number of population 

genetics approaches that also provide a level of insight into the targets of adaptive immunity within 

a naturally exposed population. This section reviews current knowledge regarding antibody targets 

in relation to structured Plasmodium antigens, as well as current efforts to integrate protein 

structural information into tests based on population genetics. Finally, Section 1.4.5 examines 

current computational tools that could be used to integrate structural information into such tests. 

1.4.1 Antibody-antigen interactions for malaria antigens 

Protein crystallography remains perhaps the most definitive method for defining the epitopes 

recognised by monoclonal antibodies. For antigens that are derived from Plasmodium species, there 

are a limited number of antigen-antibody complexes in the Protein Data Bank (PDB) (Table 1.1). 

There are a total of 33 PDB structures representing 27 distinct mAbs, and covering 13 unique 

protein antigens from various Plasmodium species. Out of these PDB structures, most epitopes are 

found within structured domains, with the exception of mAbs against MSP2 and the CSP repeat 

region which are both predicted to be intrinsically disordered antigens. Additionally, only 11 of the 

27 mAbs crystallised against Plasmodium antigens are of human origin, and cover only two distinct 

antigens, CSP and Pfs25. The rest of the crystallised antibodies are of murine origin, with the 

exception of a single rat antibody. It is important to note that there are distinct differences in the 

level of somatic hypermutation and amino acid composition in the variable heavy (VH) CDR3 

domain of mouse antibodies compared to humans, and it is therefore unclear if the epitope 

specificity of mouse antibodies accurately reflects what is likely from a naturally exposed human 

population [210]. A number of example antigen-antibody interfaces are shown in Figure 1.3, 

covering both ordered and disordered antigens. It is interesting to note the concave paratope for the 

MSP2-binding antibody 6D8, in line with the observation by MacRaild et al. that paratopes for 

disordered antigens tend to have an increased interface curvature [208]. To expand on the work by 

MacRaild et al., a further analysis of the buried surface area between antigen and antibodies reveals 

significant differences between ordered and disordered epitopes for malaria antigens (Figure 1.4,  
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Figure 1.3: Antibody binding to ordered and disordered malaria antigens. Antibody Fab 

regions are shown in dark green as a surface representation. Antigens are shown in orange as 

cartoon representations. A) Mouse antibody (Fv region) bound to a disordered fragment of MSP2, 

PDB structure 4QY8 [193]. MSP2 residues 33-46 (3D7 sequence) are shown. B) Growth inhibitory 

mouse antibody (Fab region) bound to AMA1 DI, PDB structure 2Q8A [216]. AMA1 residues 

outside the epitope region are omitted for visual clarity. C) Human antibody (Fab region) bound to 

CSP NANP repeat region, PDB structure 6AXL [191]. This NANP repeat region adopts an 

extended, flexible structure in solution [225], and is predicted to be intrinsically disordered [226]. 

D) Mouse antibody R217 (Fab region) bound to EBA-175 RII, PDB structure 4QEX [101].
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Figure 1.4: Interface surface area between antibody and antigen for disordered and 

structured Plasmodium antigen-antibody complexes. All Plasmodium antibody-antigen 

complexes were extracted from the PDB (accessed 21/12/17), with antigens classified as ordered or 

disordered as given in Table 1.1 (predicted by DISOPRED3 [184]). Interface surface area between 

heavy/light chains and the antigen was calculated using PISA [227]. P-values were calculated using 

the Wilcoxon rank-sum test for comparisons between ordered and disordered antigens, and using 

the Wilcoxon signed-rank test for comparisons between heavy and light chain interface areas. 
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Table 1.2: Interface surface area for Plasmodium antigen-antibody complexes. 

Antigen-Antibody Interface Area, Å2 

Organism Antigen mAb ID Disordered Heavy Chain Light Chain Total 

P. falciparum CSP 663 Y 280.1 213.5 493.6 

P. falciparum CSP 580 Y 219.1 244.6 463.7 

P. falciparum CSP 311 Y 490.6 135.4 626.0 

P. falciparum CSP 317 Y 389.6 302.1 691.7 

P. falciparum CSP 1710 N 481.6 229.8 711.4 

P. falciparum CyRPA 8A7 N 572.6 315.7 888.3 

P. falciparum CyRPA C12 N 407.5 522.6 930.1 

P. falciparum EBA-175 R217 N 452.5 248.6 701.1 

P. falciparum EBA-175 R218 N 468.2 228.2 696.4 

P. falciparum MSP1 G17.12 N 278.9 509.2 788.1 

P. falciparum MSP2 4D11 Y 278.9 246.4 525.3 

P. falciparum MSP2 6D8 Y 284.1 398.6 682.7 

P. falciparum PfAMA1 1F9 N 852.5 396.0 1,248.5 

P. falciparum PfAMA1 F8.12.19 N 507.5 268.5 776.0 

P. falciparum Pfs25 1276 N 574.2 533.7 1,107.9 

P. falciparum Pfs25 1269 N 888.5 351.0 1,239.5 

P. falciparum Pfs25 1260 N 684.7 202.2 886.9 

P. falciparum Pfs25 1262 N 500.7 369.5 870.2 

P. falciparum Pfs25 1190 N 620.6 516.4 1,137.0 

P. falciparum Pfs25 1245 N 611.9 186.8 798.7 

P. falciparum PfSUB1 NIMP.M7 N 490.4 307.1 797.4 

P. falciparum RH5 9AD4 N 593.0 205.8 798.8 

P. falciparum RH5 QA1 N 523.1 263.1 786.2 

P. knowlesi PkAMA1 R31C2 N 841.7 841.7 1,683.4 

P. vivax DBP 2D10 N N/A* N/A* 716.7 

P. vivax PvAMA1 F8.12.19 N 556.2 215.4 771.6 

P. vivax Pvs25 2A8 N 626.8 67.2 694.0 

Note: All Plasmodium antibody-antigen complexes were extracted from the PDB (accessed 21/12/17), with antigens 

classified as ordered or disordered as predicted by DISOPRED3 [184]. Interface surface area between heavy/light 

chains and the antigen was calculated using PISA [227].  

*mAb 2D10 against PvDBP is a single-chain Fv construct, and hence does not have discrete heavy and light chains

defined in the PDB file.
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Table 1.2). Whilst light chain contributions to the interface surface area was similar between 

ordered and disordered antigens, the interface between antigen and heavy chain was much larger for 

structured antigens. Indeed, for disordered antigens, there is no significant difference between the 

interaction area with light or heavy chains. In contrast, the heavy chain makes a significantly greater 

contribution to buried surface area for structured antigens. This is in line with the work of MacRaild 

et al., which suggests that disordered epitopes have lower buried surface area [208]. The equal 

contributions between heavy and light chains for disordered antigens suggests a binding mode in 

which the disordered antigen binds in a groove or a pocket between the two antibody chains, as is 

observed in Figure 1.3A. However, the small number of antigen-antibody complexes for 

Plasmodium species, with even fewer antibodies derived from human sources, limits the ability to 

draw strong conclusions from this data. The small number of structures also highlights the need to 

examine other potential markers of antibody recognition such as antibody-driven selection pressure 

and resultant polymorphic variation. 

1.4.2 Genetic markers of immune selection pressure 

Immune selection pressure on an antigen can occur as a result of antibody or T-cell recognition of a 

particular epitope, conferring reduced fitness to strains that are recognised by these antibodies or 

T-cells, and increased fitness to strains with mutations that reduce or abolish binding of antibodies

or T-cells to that particular epitope. Within an individual host, such selection pressure can lead to

generation of polymorphic variants that are then transmitted to other individuals. At a population

level, and in an endemic setting, immunity is most often generated against high-frequency alleles

(i.e. the most common alleles), and this provides a selective advantage to low-frequency alleles in

the parasite population. This is an example of balancing selection, in which multiple alleles are

maintained within a population at higher frequency than would be expected under a neutral model

of selection (i.e. genetic drift alone). As such, balancing selection in Plasmodium species is

typically assessed within specific populations and not across geographically distant populations.

A number of tests exist for identifying balancing selection, and these will be briefly introduced 

before discussing their application to Plasmodium species. One of the most commonly used tests for 

identifying balancing selection is Tajima’s D [228]. This test involves comparing two estimates of 

genetic diversity, Watterson’s theta (θ) and nucleotide diversity (π), with the difference between 

these two estimators forming the basis for Tajima’s D. A positive Tajima’s D value is indicative of 

balancing selection or recent population contraction, whereas a negative Tajima’s D is indicative of 

a recent selective sweep or population expansion after a bottleneck. Other statistics that can be used 

to detect evidence of balancing selection include the Hudson-Kreitman-Aguade (HKA) test [229], 

the McDonald-Kreitman (MK) test [230], and Fu and Li’s D and F [231], although these are less 
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commonly used for Plasmodium species as compared to Tajima’s D. These tests are often applied 

either as a single test over the entire gene, or as a sliding window over the gene sequence. Two 

major drawbacks are apparent from these approaches when trying to identify antibody-mediated 

selection pressure. Firstly, when applied as a whole-gene metric, information on the particular 

protein domains under selection is lost and strong signatures of selection are potentially diluted. 

Secondly, sliding window analyses for these approaches are based on the linear genetic sequence 

and do not reflect the translated protein in 3D space. Additionally, the width of each sliding window 

is not based on the structural characteristics of the antigens being tested.  

1.4.3 Identification of immune pressure on malaria genes 

A number of studies have examined Plasmodium genes for evidence of immune selection pressure. 

The most widely studied gene in all Plasmodium species with regards to balancing selection is 

AMA1. This section summarises existing work that examines selection pressures on Plasmodium 

antigens, and highlights instances in which a sliding window analysis has been performed to 

identify domain- or region-specific selection pressures. 

Within P. falciparum, the entire AMA1 gene has been identified as being under balancing selection 

in studies in Thailand [232,233], Gambia [232,234,235], Cambodia [232], Guinea [234], Iran [236], 

Nigeria [237] and Venezuela [238]. Additionally, particular regions of AMA1 have been identified 

as being under immune selection pressure using Tajima’s D. Sliding window analyses have 

identified regions within DI [233,237,239,240], DII [240] and DIII [233,237,239,240] as being 

under balancing selection. Other studies have estimated selection pressures on particular domains of 

AMA1 (without a sliding window), with evidence for immune selection pressure on DI 

[236,241,242] and DIII [236] of PfAMA1. 

There has also been a considerable amount of work performed examining selection pressures on 

PvAMA1. The entire PvAMA1 gene has been identified as under balancing selection in Venezuela 

[238], whilst other studies have shown DI of PvAMA1 to be the sole region under significant 

immune selection pressure using both a sliding window approach [238,239,243] and a whole 

domain analysis [244]. In contrast, a study of PvAMA1 from South Korean isolates showed no 

evidence of balancing selection on any domain [245], possible as a result of recent population 

expansion. Similarly, analysis of DI PvAMA1 sequences from Myanmar showed evidence of 

diversifying selection [246] rather than balancing selection. 

In summary, whilst AMA1 in both P. falciparum and P. vivax appears to be under immune 

selection pressure in most populations, there appears to be a clear difference in the targets of this 

selection pressure; both DI and DIII are consistently shown to be under balancing selection in 
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PfAMA1, compared to only DI for PvAMA1. In contrast to what has been observed in both 

P. falciparum and P. vivax, there was no evidence for immune selection pressure on P. knowlesi

AMA1 in a Malaysian population using Tajima’s D or Fu and Li’s F and D [247].

Although AMA1 remains the most widely studied gene for evidence of immune selection pressure, 

a number of other studies have identified balancing selection on other genes. Within P. falciparum, 

there is evidence for balancing selection on genes for PfTRAP [248,249], SURFIN 4.2 [250], 

SURFIN 4.1 [251,252], Pf38 (Domain I) [253], PfMSPDBL1 [252], PfMSPDBL2 [252], PfCSP 

[254], MSP3 [255] and EBA-175 (Region II) [256]. In P. vivax, balancing selection has been 

observed for Pv41 [257], PvMSP1 [258,259], PvCSP [258], PvTRAP [260], PvDBP [260,261], 

PvMSP5 [262] and PvMSP3-alpha [263]. Additionally, a number of studies have examined 

balancing selection on a genomic scale for P. falciparum [232,234,235]. Notable genes under a high 

degree of immune selection pressure (as indicated by high Tajima’s D values) identified by these 

studies include MSPDBL1, AMA1 [232,234,235], PHISTa, PHISTb, MSPDBL2 [234,235], 

EBA-175 and MSP1 [232]. 

Nearly all of the studies examining immune selection pressure in Plasmodium species utilise 

Tajima’s D to identify genes under balancing selection, whilst some studies have also employed the 

HKA test [252], MK test [237,242,248,258] or Fu and Li’s D and F [237,250]. Whilst a number of 

studies have applied a sliding window analysis to various antigens, there is a notable lack of 

integration with structural data, despite protein structures being known for several antigens such as 

AMA1, EBA-175 and PvDBP. The integration of both structural and genetic data forms a major 

focus of this thesis, and the following section discusses the work that has been performed 

examining the location of polymorphisms in relation to Plasmodium protein structures. 

1.4.4 Integration of protein structural information with polymorphism data 

There are a limited number of studies that have examined polymorphisms in the context of protein 

structure for malaria proteins. The majority of these studies have displayed polymorphisms in the 

context of the 3D protein structure, and again the major focus of most studies has been AMA1, 

although other antigens such as EBA-175, EBA-140, EBA-181, PvDBP, CSP, VAR2CSA, 

MSPDBL1, MSPDBL2 and TRAP have also been examined. Salient results from these studies will 

be discussed below. 

1.4.4.1 PfAMA1 

For PfAMA1, it has been observed that a large number of polymorphic residues fall within Domain 

I, although DII and DIII are also moderately polymorphic [239,243,247,264,265]. Additionally, 
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there are minimal polymorphisms observed on the so-called ‘silent face’ of PfAMA1 

[239,243,247,264,265]. Many of the polymorphic residues within PfAMA1 DI are clustered around 

the conserved RON2 binding cleft [264]. In a comparison between species, PfAMA1 generally had 

a higher number of polymorphic residues in the populations examined [239,247], whilst PkAMA1 

had relatively few polymorphic residues [247]. Predicted and known CD8+ T-cell epitopes have 

also been mapped onto the PfAMA1 structure, and it is interesting to note that many of these 

epitopes were localised to the conserved face of the AMA1 structure [266]. 

1.4.4.2 EBL family proteins 

EBA-140, EBA-181 and EBA-175 all belong to the EBL family of Plasmodium proteins, with 

EBA-140 and EBA-175 binding to Glycophorin C and Glycophorin A respectively. The receptor 

for EBA-181 is unknown [267]. A functional analysis of polymorphisms in the DBL domains of 

these three EBL proteins show that polymorphisms in EBA-181 and EBA-140 negatively impact on 

receptor binding strength, but do not affect receptor specificity. In contrast, polymorphisms in EBA-

175 did not impact binding strength or receptor specificity, despite EBA-175 being the most 

polymorphic of the three EBL proteins examined [268]. In EBA-175, none of the polymorphisms 

intersected with the proposed glycan binding site, either in the F1 or F2 domains, although some 

polymorphisms fell close to the glycan binding site within the F2 domain [268]. Another study of 

epitopes within EBA-175 RII has shown that the most inhibitory antibodies target a region involved 

in the dimerization interface, and hence prevention of dimerization around the Glycophorin A 

receptor is a likely mechanism of action for these inhibitory antibodies [269]. 

PvDBP is the sole EBL family protein within P. vivax, and binds to DARC on human reticulocytes, 

forming a homodimer during this process. Polymorphic residues in PvDBP sequences from 

Brazilian isolates were observed to flank the dimerization and DARC binding interface, whilst the 

dimerization and DARC binding site itself was conserved [270]. Visualisation of fractional 

Shannon entropy values (a measure of sequence variation at each residue) over the PvDBP structure 

highlighted variation mostly within subdomain 2 (bordering the dimerization interface) and on some 

residues within subdomain 3 [271]. 

1.4.4.3 VAR2CSA 

Variant surface antigen 2-CSA (VAR2CSA) is a P. falciparum antigen that is part of the PfEMP1 

family of proteins. VAR2CSA binds to chondroitin sulfate A (CSA) in the placenta during 

pregnancy associated malaria. VAR2CSA is composed of 6 extracellular DBL domains and a 

transmembrane region. A study examining antibody reactivity against peptide epitopes from each of 

the 6 DBL domains that make up VAR2CSA noted that antibodies predominantly recognised 
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subdomains 1 and 2 of each DBL domain, while subdomain 3 was generally unreactive [272]. A 

structural analysis of the VAR2CSA DBL3X-DBL4ε domains shows that residues within the 

interface between DBL3X and DBL4ε are primarily conserved, with only a few polymorphic 

residues situated on the outer edges of this interface [273]. This work highlights the structural 

constraints that help dictate the location of polymorphic residues, even in the context of antigens 

which are naturally highly polymorphic. 

1.4.4.4 PfCSP 

CSP is a sporozoite stage antigen that is conserved across Plasmodium species, and contains three 

extracellular domains: a C-terminal thrombospondin-like type repeat (TSR), an N-terminal domain 

that mediates attachment to liver cells via heparin sulfate binding, and a central repeat region 

composed of a large number of tandem NANP repeats as well as some variant repeat sequences. A 

study of the CSP C-terminal TSR region suggests that polymorphic residues from this region have 

potentially arisen as a result of intermolecular interactions at the protein surface [274]. Within this 

analysis, it was observed that polymorphic residues were predominantly located on one side of the 

protein, with multiple polymorphisms found within two T-cell epitopes known as TH2 and TH3. 

Additionally, polymorphisms were located surrounding, but not part of, a hydrophobic pocket in the 

TSR region structure [274]. 

1.4.4.5 MSPDBL1 & MSPDBL2 

Merozoite surface protein DBL-1 (MSPDBL1) and merozoite surface protein DBL-2 (MSPDBL2) 

are two closely related proteins that are localised to the merozoite surface and thought to bind to a 

currently unknown red blood cell receptor [275]. These two proteins both contain single DBL 

domains. A study examining polymorphisms within the DBL domains of both MSPDBL2 and 

MSPDBL1 demonstrated that these antigens are highly polymorphic, although MSPDBL2 was 

observed to have more polymorphic residues in this study [276]. Polymorphisms were generally 

distributed evenly over the face of both proteins, with the exception of a conserved cleft between 

subdomain 2 and 3 in both proteins, suggesting some functional importance for this region, possibly 

in binding to host-cell receptors [276]. 

1.4.4.6 TRAP 

Thrombospondin-related adhesive protein (TRAP) is a Plasmodium protein involved in the invasion 

of hepatocytes and mosquito salivary glands, and is localised to the parasite micronemes and 

sporozoite surface. TRAP contains both a TSR domain and a von Willebrand factor A (vWA)-like 

N-terminal A domain. Mapping of polymorphisms onto the structure of the TRAP A domain 
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showed that polymorphisms were clustered on one face of the protein [277]. Furthermore, there was 

a lack of polymorphic residues on the region surrounding residues that were deemed to be 

functionally important in directed mutagenesis studies [277]. 

In summary, tests for immune selection pressure such as Tajima’s D have been applied as sliding 

windows to identify domain-specific selection pressure in a number of different studies of 

Plasmodium antigens. With regards to identification of polymorphic regions using protein structural 

information, a number of studies have displayed polymorphisms on a site-by-site basis, with one 

study also displaying relative Shannon entropy values on a site-by-site basis. However, statistical 

tests for selection pressure, such as Tajima’s D, are likely to be more sensitive in detecting 

particular sites under immune pressure, and we note that there is a notable absence of studies 

examining selection pressure in the context of protein structure. An exploration of this forms the 

basis of Chapters 3, 4 and 5, and in the following section we review current software tools that may 

allow the integration of structural data into tests for selection pressure. 

1.4.5 Current tools for examining protein structure and applicability to immune-related 

polymorphisms 

A number of tools exist for the visualisation and manipulation of protein structures and associated 

data [278–287]. With regards to mapping tests of immune selection pressure onto protein structures, 

this section briefly discusses the main features of currently available software tools, and highlights 

gaps in the capabilities of available tools. 

A number of tools have been developed to map polymorphic variants onto protein structures, 

including MuPIT Interactive [281], G23D [282], COMBOSA3D [284]. MuPIT is a web server that 

allows for mapping polymorphic variants from genomic data onto protein structures, and mutations 

are automatically retrieved from UniProtKB [281]. Similarly, G23D is a web server that also allows 

for mapping of single-nucleotide polymorphisms onto protein structures, and includes a number of 

additional structural analysis tools, including stability analysis and analysis of comparative contacts 

between mutant and wild-type variants [282]. COMBOSA3D is another web server allows for 

colouring of a protein 3D structure based on information from a multiple sequence alignment, such 

as residue conservation, highly polymorphic residues and sites of indels [284]. 

Several other tools exist that map sequence based annotations or other sequence-based features onto 

protein structures, including 3DBIONOTES [278], ConSurf [285,288], Motif3D [283] and 

POLYVIEW-3D [286]. The 3DBIONOTES v2.0 web server allows automatic annotation onto 

protein structures, drawing information from a large range of possible annotation sources. 

Sequences are aligned from UniProt sequences, and annotations mapped onto the 3D structure 
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[278]. Similarly, POLYVIEW-3D is a web server that enables annotation of sequence and structure 

features on protein 3D structures, also enabling high quality rendering of annotated structures [286]. 

ConSurf allows for the calculation of evolutionary conservation of residues and visualisation on the 

relevant protein structure [285,288]. Motif3D allows for the visualisation of sequence motifs over a 

protein 3D structure, and was available via a web interface, although it is noted that this is currently 

not available (access attempted 24/11/17) [283]. 

Finally, there are a number of tools for general protein structure visualisation and manipulation, 

including web-based libraries such as 3Dmol.js [279] and PV viewer [289], and offline tools such 

as UCSF Chimera [280] and PyMOL [287]. Both 3Dmol.js [279] and PV viewer [289] are 

JavaScript libraries for web-based visualisation of protein structures, and both use native WebGL 

1.0 to allow hardware acceleration of rendered graphics. UCSF Chimera [280] is a high-powered, 

fully-featured program for the visualisation, manipulation and exploration of protein structures. 

However, it does not have the capability to map spatially-averaged data onto the structure. PyMOL 

is another offline program for the manipulation, visualisation and analysis of protein structures, and 

can be extended with Python scripts [287]. 

While a number of these tools allow for simple mapping of polymorphisms or other sequence-based 

annotations onto protein structures, there is no utility in any of these tools for the application of a 

3D sliding window over a protein structure. This remains a key gap in current approaches to 

identifying selection pressures on structured antigens, in both the available software and subsequent 

application to organisms such as P. falciparum or P. vivax. 

1.5 Thesis Hypothesis and Aims 
This thesis explores the role of protein structure in the generation of adaptive immune responses 

against Plasmodium species. The overarching hypothesis for this thesis is that both structured and 

intrinsically disordered proteins are important antigens in adaptive immune responses against the 

malaria parasite, and consideration of protein structure will yield additional insights into protein 

regions that are targets of adaptive immunity. This thesis addresses the following specific aims: 

I. To investigate the role of intrinsically disordered protein antigens from Plasmodium species 

as targets of adaptive immune responses using a variety of computational approaches 

(Chapter 2). 

II. To perform a proteome-wide computational analysis of structured malaria proteins to 

identify key determinants of immune recognition and selection pressure (Chapter 3). 
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III. To develop novel computational approaches to integrate protein structural information into 

measures of immune selection pressure, and apply these approaches to leading malaria 

vaccine candidates (Chapters 3, 4, 5). 

1.6 Summary of Chapters 
Chapter 2 of this thesis implements a proteome-wide computational analysis of intrinsically 

disordered proteins (IDPs) within Plasmodium species. It was shown that IDPs are particularly 

enriched within immunologically exposed subcellular compartments of the malaria parasite and 

contain an increased proportion of tandem repeat regions and non-synonymous single nucleotide 

polymorphisms. Of particular relevance to adaptive immune responses, IDP regions contained very 

few MHC class I- and II-binding peptides, which may limit the ability of CD8+ and CD4+ T-cells 

to recognise these regions. Chapter 3 explores regions with known or predicted protein structures 

within the P. falciparum proteome and their relation to known and predicted immune responses. 

Polymorphic residues were shown to be primarily surface exposed and enriched within turns. This 

work introduced a new 3D sliding window approach to identify regions within leading vaccine 

candidates that are likely to be under immune-mediated selection pressure. As part of this analysis, 

a region with PfAMA1 DII/III was identified as having particularly strong signatures of balancing 

selection. The 3D sliding window analysis introduced in Chapter 3 was developed into a software 

package called BioStructMap, described in Chapter 4 and also released as an online web tool. 

Finally, Chapter 5 applies the BioStructMap tool to leading vaccine candidates from P. vivax, and 

examines structural patterns of selection and diversity across a number of geographic populations. 

This work highlights notable similarities in structural patterns of diversity across multiple 

populations. Furthermore, it was noted that regions of diversity tended to surround conserved 

binding interfaces. Finally, to integrate the various levels of data that were used and generated as 

part of this thesis, we have begun the development of an online platform called PlasmoSIP 

(Plasmodium Structure, Immunology and Polymorphisms) that collates the data generated in 

Chapter 2 alongside the structural mapping approaches outlined in Chapters 3, 4 and 5, and this is 

discussed briefly in Chapter 6. 
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Chapter 2  

The Impact of Protein Disorder on Adaptive Immunity 

Since the determination of the crystal structure of myoglobin by Kendrew et al. in 1958 [1], protein 

crystallisation has become the default method for understanding the nature of a protein’s structure, 

with more than 120,000 protein crystal structures currently deposited in the Protein Data Bank 

(PDB). The ability to determine a protein’s three-dimensional structure has led to major 

advancements in our understanding of both the structure and associated function of a large number 

of proteins. As a result, the accepted paradigm for many decades was that a well-folded protein with 

a defined three-dimensional structure was required for biological function; conversely, loss of a 

defined three-dimensional structure corresponded to a loss of biological function. This so-called 

structure-function paradigm [2] is certainly true for many functional proteins—especially enzymes. 

However, the readiness with which X-ray crystallographic techniques could be applied to many 

proteins has led to the relative neglect of proteins which do not exist as a homogeneous population 

with a well-defined three-dimensional structure. Intrinsically disordered proteins (IDPs) fall within 

this neglected category, being a set of proteins which exist as a dynamic ensemble of structurally 

distinct species and are hence refractory to crystallisation. It is only in the last decade or two that we 

have begun to understand the crucial role that IDPs play in many biological systems; it is now 

abundantly clear that IDPs are not only common within the proteomes of most species, but that 

many IDPs have functions that do not rely on well-folded protein domains. Indeed, in some cases 

the biological function of an IDP is directly tied to its disordered state [3]. 

Previous studies have shown that IDPs are more abundant within eukaryotic species as compared to 

prokaryotes [4], and that the proteomes of a number of Apicomplexan parasites contain particularly 

high levels of IDPs [5]. Of particular interest is the high proportion of IDPs within P. falciparum 

and P. vivax—the species that are responsible for the largest proportion of malaria morbidity and 

mortality in humans. Given that these parasites have evolved for many thousands of years alongside 

their primate hosts, and in the presence of immune pressures, it is worth considering whether this 

increased proportion of IDPs is a result of evolutionary interactions with the host immune response. 

Very little work has been performed to systematically evaluate the effect of protein disorder on 

adaptive immune responses, and as such, our current knowledge regarding the antigenic potential of 

disordered proteins is limited. A number of P. falciparum antigens that are key immune targets also 

happen to be IDPs, including EBA-175 RIII-V, EBA-181 RIII-V, EBA-140 RIII-V and MSP2 

[6,7]. However, the relative distribution of IDPs within specific subcellular compartments of 

Plasmodium species is unknown, as is the overall impact of protein disorder on protein antigenicity. 
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Therefore this chapter aimed to explore the effect on protein disorder on the generation of adaptive 

immune responses. A proteome-wide computational approach was used to examine the occurrence 

of IDPs across a number of Plasmodium species and compare this with several correlates of 

immunity. This approach utilised a number of computational prediction algorithms to determine 

protein disorder, MHC class I and class II binding, predicted linear B-cell epitopes and the 

existence of tandem repeats. Additionally, published experimental data on known protein 

localisation was used to identify particular subcellular compartments within P. falciparum that may 

be either enriched or depleted in disordered proteins.  

Within this chapter, it was shown that immune responses against IDPs appear to have 

characteristics distinct from those against structured protein domains, with increased antibody 

recognition of linear epitopes but some constraints for MHC presentation and increased levels of 

polymorphisms. Furthermore, it was demonstrated that IDPs are particularly enriched within 

immunologically-exposed subcellular compartments of P. falciparum. MHC presentation of foreign 

peptides is crucial for the activation of both CD4+ and CD8+ T-cells, and IDP regions were 

predicted to contain relatively few MHC class I and II binding peptides. This is due to inherent 

differences in amino acid composition compared to structured domains, and has implications for the 

generation of T-cell responses, antibody responses and B-cell memory against IDPs. In contrast, 

linear B-cell epitopes were predicted to be enriched in IDPs, as was expected given the accessible 

nature of an IDP. Finally, tandem repeat regions and non-synonymous single nucleotide 

polymorphisms were found to be strongly associated with regions of disorder. This chapter also 

highlights a number of vaccine candidates that are predicted to contain considerable IDP regions. 

From this it is clear that a number of IDPs within P. falciparum are targeted by functional immune 

responses and that some of these antigens are realistic vaccine candidates. The results presented in 

this chapter also suggest that application of an IDP in a vaccine setting would need to involve 

inclusion of appropriate CD4+ T-cell epitopes within the vaccine construct, as T-cell help is 

essential for high-affinity, long-lived antibody responses. If the goal of a particular vaccine is to 

generate a strong antibody response, then the included T-cell epitopes do not need to be from the 

IDP, and could be from an unrelated antigen. This is one of the important differences between IDPs 

in a natural setting and in an artificial vaccine construct. In summary, this study provides insights 

into the role of IDPs in immune evasion and parasite invasion processes, and raises additional 

considerations when evaluating IDPs for use within any future vaccine constructs. 

References 

1.  Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of 
the myoglobin molecule obtained by x-ray analysis. Nature. 1958;181: 662–666. 

 

 

 
 

Introduction

51



2. Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function
paradigm. J Mol Biol. 1999;293: 321–331.

3. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradović Z. Intrinsic disorder and protein
function. Biochemistry. 2002;41: 6573–6582.

4. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native
disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337: 635–645.

5. Feng Z-P, Zhang X, Han P, Arora N, Anders RF, Norton RS. Abundance of intrinsically unstructured
proteins in P. falciparum and other apicomplexan parasite proteomes. Mol Biochem Parasitol.
2006;150: 256–267.

6. Blanc M, Coetzer TL, Blackledge M, Haertlein M, Mitchell EP, Forsyth VT, et al. Intrinsic disorder
within the erythrocyte binding-like proteins from Plasmodium falciparum. Biochim Biophys Acta.
2014;1844: 2306–2314.

7. Adda CG, Murphy VJ, Sunde M, Waddington LJ, Schloegel J, Talbo GH, et al. Plasmodium
falciparum merozoite surface protein 2 is unstructured and forms amyloid-like fibrils. Mol Biochem
Parasitol. 2009;166: 159–171.

 

 

 
 

52

Chapter 2: The Impact of Protein Disorder on Adaptive Immunity



RESEARCH ARTICLE

Insights into the Immunological Properties of
Intrinsically Disordered Malaria Proteins
Using Proteome Scale Predictions
Andrew J. Guy1,2, Vashti Irani1,3, Christopher A. MacRaild4, Robin F. Anders5, Raymond
S. Norton4, James G. Beeson1,3,6, Jack S. Richards1,3,6,7☯*, Paul A. Ramsland1,2,8,9☯*

1 Centre for Biomedical Research, Burnet Institute, Melbourne, Australia, 2 Department of Immunology,
Monash University, Melbourne, Australia, 3 Department of Medicine, University of Melbourne, Melbourne,
Australia, 4 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University,
Parkville, Australia, 5 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La
Trobe University, Melbourne, Australia, 6 Department of Microbiology, Monash University, Melbourne,
Australia, 7 Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia,
8 Department of Surgery Austin Health, University of Melbourne, Heidelberg, Australia, 9 School of
Biomedical Sciences, CHIRI Biosciences, Faculty of Health Sciences, Curtin University, Perth, Australia

☯ These authors contributed equally to this work.
* richards@burnet.edu.au (JSR); pramsland@burnet.edu.au (PAR)

Abstract
Malaria remains a significant global health burden. The development of an effective malaria

vaccine remains as a major challenge with the potential to significantly reduce morbidity

and mortality. While Plasmodium spp. have been shown to contain a large number of intrin-

sically disordered proteins (IDPs) or disordered protein regions, the relationship of protein

structure to subcellular localisation and adaptive immune responses remains unclear. In

this study, we employed several computational prediction algorithms to identify IDPs at the

proteome level of six Plasmodium spp. and to investigate the potential impact of protein dis-

order on adaptive immunity against P. falciparum parasites. IDPs were shown to be particu-

larly enriched within nuclear proteins, apical proteins, exported proteins and proteins

localised to the parasitophorous vacuole. Furthermore, several leading vaccine candidates,

and proteins with known roles in host-cell invasion, have extensive regions of disorder.

Presentation of peptides by MHCmolecules plays an important role in adaptive immune

responses, and we show that IDP regions are predicted to contain relatively few MHC class

I and II binding peptides owing to inherent differences in amino acid composition compared

to structured domains. In contrast, linear B-cell epitopes were predicted to be enriched in

IDPs. Tandem repeat regions and non-synonymous single nucleotide polymorphisms were

found to be strongly associated with regions of disorder. In summary, immune responses

against IDPs appear to have characteristics distinct from those against structured protein

domains, with increased antibody recognition of linear epitopes but some constraints for

MHC presentation and issues of polymorphisms. These findings have major implications for

vaccine design, and understanding immunity to malaria.
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Introduction
Intrinsically disordered proteins (IDPs) are an important class of proteins characterised by a
high degree of flexibility and lack of a well-defined three-dimensional structure [1]. They have
been shown to play significant roles in many cellular processes, including protein-ligand bind-
ing, DNA and RNA binding, and as flexible linkers [2–5]. Other roles for IDPs relate directly
to their entropic properties, such as their proposed functions as molecular springs or in the
timing of molecular processes (entropic clocks) [6–9]. Whilst many studies have examined the
functional roles of disordered proteins, their immunogenic and antigenic properties have
received relatively little attention.

Computational studies have shown a higher proportion of IDPs in the proteomes of eukary-
otic species as compared to prokaryotes [10–12], with the proteomes of apicomplexan parasites
being particularly enriched in IDPs [13]. Of the apicomplexan parasites that infect human
hosts, Plasmodium falciparum is responsible for the highest number of deaths worldwide,
although other species including P. vivax also contribute significantly to the global malaria dis-
ease burden [14]. There is an urgent need for an effective malaria vaccine, and a major chal-
lenge is to identify key antigens that are targeted by protective immune responses and to design
vaccine constructs that generate highly effective and long-lasting immunity. Several current
vaccine candidates for P. falciparummalaria such as CSP, MSP2, MSP3, EBA-175 RIII-V and
SERA5 are targets of functional antibody responses [15–20] and are composed partly or almost
entirely of disordered regions [16,21–27].

IDPs contain a number of features that may affect adaptive immune responses against Plas-
modium spp. Firstly, the reduced proportion of bulky, hydrophobic residues in IDPs [12,28]
has potential implications for peptide binding to MHC class I and II molecules, as highlighted
by recent work suggesting that disordered regions across a number of species contain a paucity
of MHC-binding peptides [29]. Secondly, tandem repeat regions are thought to be prevalent
within IDPs, with evidence suggesting that evolution of IDPs is sometimes driven by expansion
of tandem repeat regions [30,31]. Tandem repeat regions have the potential to be immunodo-
minant [32–34] (e.g. in the sequence of the RTS, S vaccine), with certain repeat motifs capable
of inducing both T-cell-dependent and T-cell-independent B-cell responses [35–37]. Finally,
the occurrence of non-synonymous single nucleotide polymorphisms (SNPs) in some P. falcip-
arum genes has been linked to immune selection pressure [38–40], with evidence from other
organisms suggesting that positive selection of non-synonymous SNPs occurs at a higher rate
within IDPs [41].

We hypothesised that IDPs are likely to represent major immune targets in P. falciparum
and are likely to be important vaccine candidates. We sought to determine if characteristics
that have been observed for IDPs of other organisms were also found in IDPs of P. falciparum
and to ascertain the relevance of these characteristics in vaccine construct design. Using a vari-
ety of computational techniques, we established that IDPs within the P. falciparum proteome
are abundant in immunologically-exposed subcellular locations and contain a high proportion
of linear B-cell epitopes. We also determined that IDPs have a reduced proportion of MHC-
binding peptides compared with ordered domains, which may adversely affect T-cell help.
They also have a higher proportion of tandem repeats and polymorphisms, creating additional,
but not insurmountable challenges for vaccine construct design. This study has significant
implications for understanding the generation of adaptive immune responses, either through
natural exposure or vaccination against IDPs, and the development of bioinformatics tools to
assist in the development of future vaccine constructs.
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Results
Sequences from the entire P. falciparum proteome were interrogated using established predic-
tors of protein disorder, MHC class I and II binding, linear B-cell epitopes and tandem repeat
regions. Information on protein localisation for P. falciparum was obtained from ApiLoc [42]
and single nucleotide polymorphisms (SNPs) were obtained from PlasmoDB. Protein
sequences for other Plasmodium spp. capable of infecting humans (P. vivax and P. knowlesi)
and mice (P. berghei, P. chabaudi, and P. yoelii) were also assessed using these predictors to
enable comparison across Plasmodium spp. Results from these predictors were stored in a
local PostgreSQL database and subjected to further analysis using custom Python and R scripts
(Fig 1).

High proportions of the Plasmodium proteome are intrinsically
disordered
We considered disorder at both a per-proteome level (i.e. the number of residues across the
proteome that fall within disordered regions; expressed as a proportion of residues for the
entire proteome) and at a per-protein level (the percentage of predicted disordered residues for
each protein). IDPs constituted a significant proportion of the proteomes of the six Plasmo-
dium species assessed. On a per-proteome basis, the proportions of the proteomes predicted to
be disordered were as follows: P. falciparum 32.7%, P. vivax 33.2%, P. knowlesi 30.6%, P. ber-
ghei 26.7%, P. chabaudi 27.6% and P. yoelii 27.5%. The median degree of disorder per-protein
for P. falciparum was 15.5% (IQR = 6.7–31.6%; Fig 2A). No significant differences between the
proportion of disorder per-protein were observed among any of the Plasmodium spp. tested
(p> 0.05, Kruskal-Wallis rank sum test). After combining the results for the six Plasmodium
spp. tested, the median disorder per-protein was 15.1% (IQR = 7.0–29.7%). Several leading P.
falciparum vaccine candidates were also assessed to determine the proportion of these proteins
that are disordered. There was a significant proportion of disorder among many of these pro-
teins including: 1) pre-erythrocytic antigens: CSP (75.1%), LSA1 (40.6%), TRAP (47.7%); 2)
erythrocytic stage antigens: MSP1 (59.1%), MSP2 (72.4%), MSP3 (52.3%), EBA175 (46.6%),
AMA1 (21.5%), RESA (50.5%), Rh5 (8.0%), GLURP (95.4%), SERA5 (29.1%); and 3) sexual
stage antigens: Pfs25 (5.5%) and Pfs230 (21.3%). The distribution of this disorder is shown for
some selected examples, highlighting the heterogeneity of disorder amongst leading vaccine
candidates, and demonstrating that vast regions of some these proteins may be almost entirely
disordered (Fig 3).

Disordered proteins are abundant within apical organelles,
parasitophorous vacuole, exported proteins and the nucleus
Protein localisation data for 451 P. falciparum proteins were obtained from the curated ApiLoc
database [42], but there was very limited protein localisation data for other Plasmodium spp.
The prevalence of per-protein disorder in various subcellular locations was highest in nuclear
proteins (median = 28.0%), parasitophorous vacuole (PV) proteins (median = 27.7%), exported
proteins (median = 27.7%) and apical proteins (median = 23.4%). Median protein disorder was
lowest in the endoplasmic reticulum proteins (median = 8.9%) and mitochondrial proteins
(median = 8.8%). (Fig 2B, S1 Table). All of these values were significantly different from the
median degree of disorder across the whole proteome (p<0.001 for each, Wilcoxon rank-sum
test).

Immunity Against Disordered Malaria Proteins

PLOS ONE | DOI:10.1371/journal.pone.0141729 October 29, 2015 3 / 22

55

Immunity Against Disordered Malaria Proteins



Disordered proteins contain a biased amino acid composition
It has been shown previously that the amino acid composition of IDPs is distinct from that of
structured proteins [12,28]. An assessment of the amino acid composition of ordered and dis-
ordered regions in the P. falciparum proteome revealed a marked reduction in aromatic resi-
dues tryptophan (W), tyrosine (Y) and phenylalanine (F), with a 76%, 45% and 64% reduction
respectively. There was also a reduction in hydrophobic residues proline (P), alanine (A), valine
(V), leucine (L), and isoleucine (I) in IDPs. Cysteine (C) was also significantly under-repre-
sented within disordered domains, with a 53% reduction relative to ordered regions. There was
a corresponding increase within disordered regions in the proportion of charged or hydrophilic
residues including aspartic acid (D), glutamic acid (E), lysine (K), asparagine (N) and gluta-
mine (Q), with D, E and N being increased at least 50% relative to ordered regions (Fig 4).

Disordered proteins contain fewer predicted MHC binding peptides
To assess the effect of protein disorder on the predicted presentation of P. falciparum peptides
via MHC class I and MHC class II, we employed in silico prediction of peptide binding to
MHC. For each HLA allele, we defined the proteome coverage as the percentage of residues
across the P. falciparum proteome that are part of a predicted high-affinity peptide (IC50<

50nM). The median coverage of high-affinity peptides across all HLA alleles was then calcu-
lated. For MHC class I, the median coverage was 3.3% and 1.4% within ordered and disordered
regions, respectively (p<0.0001, Wilcoxon rank sum test), equating to a ~2.3-fold decrease
within disordered regions (Fig 5). For MHC class II, which is especially important for effective
antibody responses, the median coverage was 12.1% and 3.5% within ordered and disordered
regions, respectively (p<0.0001, Wilcoxon rank sum test), equating to a ~3.5-fold decrease
within disordered regions (Fig 5). When lowering the positive threshold to include predictions
for both high and low MHC affinity (predicted IC50< 500nM), the median coverage for MHC

Fig 1. Computational workflow used for analysis of the proteome of Plasmodium spp. Protein coding sequences were obtained from PlasmoDB, and
submitted to predictors of protein disorder, MHC binding, linear B-cell epitopes and tandem repeats. Protein localisation data for P. falciparumwas obtained
from ApiLoc and non-synonymous single nucleotide polymorphisms (SNPs) were obtained from PlasmoDB. All data were stored in a local PostgreSQL
database and queried using custom Python scripts. Statistical analysis and data visualisation were performed using the R statistical computing package.

doi:10.1371/journal.pone.0141729.g001
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class I was 17.5% within ordered regions and 6.1% within disordered regions (p<0.0001, Wil-
coxon rank sum test), while the median coverage for MHC class II was 42.3% within ordered
regions and 15.1% within disordered regions (p<0.0001, Wilcoxon rank sum test). When indi-
vidual HLA haplotypes were assessed, decreased MHC class I and MHC class II epitopes in

Fig 2. Prediction of protein disorder for various Plasmodium spp. and within subcellular locations for P. falciparum. A) Distribution of protein
disorder within the proteome of each Plasmodium spp. at the level of individual proteins.B) Prediction of protein disorder for P. falciparum proteins according
to subcellular localisation. Protein localisation was classified using the ApiLoc resource. A total of 451 proteins were assigned a location. Percentage
disorder was calculated as the proportion of residues predicted to be disordered at the level of individual proteins. Prediction of disorder was performed using
DISOPRED3.

doi:10.1371/journal.pone.0141729.g002
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disordered proteins were consistently observed compared with ordered proteins for each hap-
lotype (S1 Fig). These findings presumably reflect the reduced proportion of hydrophobic and
aromatic residues within disordered domains, resulting in a reduced ability to bind MHCmol-
ecules with high affinity. There was also considerable heterogeneity observed in predicted affin-
ities between different haplotypes, which may have implications for immunity in genetically
diverse populations.

To assess the possibility of biased MHC binding within different subcellular compartments,
we examined the proportion of MHC class I and MHC class II binding peptides within the sub-
set of proteins described in the ApiLoc database (S2 Fig). Peptides were grouped according to
protein disorder and subcellular protein location. No significant difference in MHC class I or
MHC class II binding was observed between subcellular locations for high-binding peptides
(p>0.05, Kruskal-Wallis rank sum test).

Fig 3. Predicted protein disorder for a number of leading P. falciparum vaccine candidates. Disorder predictions were performed using DISOPRED3.
A disorder score above 0.5 is indicative of a disordered region (dashed line). All sequences used were from the P. falciparum 3D7 strain.

doi:10.1371/journal.pone.0141729.g003
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Reduced MHC binding reflects biased amino acid composition at key
peptide anchor points
To identify potential sequence determinants that affect binding to MHC class I and MHC class
II molecules, we analysed the position-dependent sequence composition of predicted high-
affinity peptides (Fig 6). Peptides were classified as being part of an ordered region, a disor-
dered region, or on the boundary of the two. Inherent differences in sequence composition
between ordered and disordered regions (Fig 4) were taken into account when calculating the
proportional enrichment of each residue in MHC-binding peptides (see Methods), with data
presented as a weighted average across all regions (disordered/ordered/mixed). For MHC class
I binding peptides, it was observed that sequence composition differed most from background
levels at positions 2 and 9 of all predicted binding peptides (Fig 6A). Importantly, greater than
100% enrichment was observed for methionine (M) and leucine (L) at position 2, and arginine
(R), valine (V) and leucine (L) at position 9. There was also a tendency for aromatic residues
(W, Y and F) to be enriched at most other peptide positions. For MHC class II binding pep-
tides, we considered only the predicted central core-binding region (as defined by the NetMH-
CII algorithm [43,44]). It was observed that sequence composition differed most from
background levels at position 1 of predicted core-binding regions (Fig 6B). Phenylalanine (F)

Fig 4. Intrinsically disordered protein domains contain a biased amino acid composition. The relative
proportional change in amino acid frequency within disordered regions was calculated for the entire P.
falciparum proteome, with comparison made to all predicted ordered regions within the proteome.

doi:10.1371/journal.pone.0141729.g004
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and tyrosine (Y) were particularly enriched at this position, with enrichment of leucine (L), iso-
leucine (I) and tryptophan (W) observed to a lesser extent. Residues that are enriched within
MHC binding peptides are generally found at lower frequency within disordered regions (S3
Fig); for example, aromatic residues such as F and Y are found at much lower frequency within
disordered regions, while being present at much higher frequency in position 1 of predicted
MHC class II binding peptides. Similarly, hydrophilic residues are found very rarely at position
1 of MHC class II binding peptides, yet are generally enriched within disordered regions.

To determine if the position of amino acid residues within the MHC binding regions or the
amino acid residue characteristics themselves biased these results, we scrambled sequences
from within disordered and ordered regions, and submitted scrambled sequences to predic-
tors of MHCI and MHCII binding. There was a small but statistically significant difference
between observed MHC binding for the actual sequences, and that of the scrambled sequences
(with the exception of MHCII binding within ordered regions) (S4 Fig). These shifts were

Fig 5. ReducedMHCI and MHCII binding in disordered proteins for P. falciparum. The proportion of peptides with predicted high affinity to MHCI and
MHCII is significantly higher for peptides within an ordered protein domain. Boxplots represent the distribution of MHC-binding peptides across all MHC
alleles tested.

doi:10.1371/journal.pone.0141729.g005
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small compared to the large bias in MHC binding between ordered and disordered regions,
suggesting that this bias in MHC binding between regions is predominantly due to sequence
composition alone, rather than the result of selective pressure or other functional/structural
requirements of MHC-peptide interactions.

Linear B-cell epitopes are more abundant in disordered proteins
The occurrence of linear B-cell epitopes was predicted across the P. falciparum proteome and
compared to the occurrence of predicted disorder, with comparison made at a per-residue
level. The proportion of residues predicted to contain linear B-cell epitopes was assessed with
the BepiPred algorithm using a range of different output thresholds that reflect the sensitivity
and specificity of detecting a linear B-cell epitope (i.e. lower output threshold has high sensitiv-
ity but low specificity, and high output thresholds have low sensitivity but high specificity).
Across all these output thresholds, linear B-cell epitopes were predicted to be more common
in regions of disorder than in structurally ordered regions (Fig 7; solid line and dashed lines
respectively). A comparison with other Plasmodium spp. showed that P. vivax contained the
highest proportion of predicted linear B-cell epitopes, for both ordered and disordered regions,
whereas P. falciparum contained the second lowest proportion.

When examining the distribution of predicted linear B-cell epitopes within various subcellu-
lar compartments, proteins localised to the PV, parasite plasma membrane proteins, exported
proteins, apical proteins and nuclear proteins all had a significantly higher percentage of pre-
dicted linear B-cell epitopes compared to the background proteome (p< 0.001 for all except

Fig 6. Position-specific enhancement or depletion of residues in MHC binding peptides. Residue abundance in MHC class I (A) and MHC class II (B)
binding peptides was calculated relative to the abundance in the background proteome. This calculation was performed for residues at each position in an
MHC binding peptide. Adjustment was made for differing sequence composition in disordered versus ordered regions, with results presented as a weighted
average across all regions. Amino acid residue labels are omitted for visual clarity—refer to Fig 4 for residue order and colouring.

doi:10.1371/journal.pone.0141729.g006
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parasite plasma membrane, p = 0.005; Wilcoxon rank sum test). Residues were then grouped
according to predicted protein disorder, as predicted linear B-cell epitopes were correlated with
predicted disorder. Levels of predicted linear B-cell epitopes remained significantly higher in
PV proteins, exported proteins and nuclear proteins after accounting for protein disorder (S5
Fig and S2 Table).

Tandem repeat regions are more common in disordered proteins
The occurrence of tandem repeat sequences within the P. falciparum proteome and the rela-
tionship to regions of structural disorder was examined to assess the potential role of IDPs in
the generation of immunodominant antibody responses. Tandem repeat sequences were iden-
tified using T-REKS [45] with a Psim cut-off of 0.8. When grouped according to protein disor-
der, tandem repeats make up 1.7% of ordered regions, compared to 12.9% of disordered
regions. Of all the identified tandem repeat regions, 79% fell within predicted disordered
regions. To assess potential bias in the occurrence of tandem-repeat domains within different
subcellular compartments, we analysed the occurrence of tandem repeats for the subset of pro-
teins in the ApiLoc database (Fig 8A). Compared to the total P. falciparum proteome, exported
proteins (p = 0.004) and proteins localised to the PV (p = 0.02) had a significantly higher

Fig 7. The proportion of predicted linear B-cell epitopes was higher in IDPs for all Plasmodium spp. Classification of disorder was achieved using
DISOPRED3. BepiPred was used for prediction of linear B-cell epitopes. The number of predicted linear B-cell epitopes as a percentage of all residues is
shown across a range of BepiPred output thresholds. The corresponding sensitivity/specificity for each output threshold is given at http://www.cbs.dtu.dk/
services/BepiPred/output.php. Thresholds range from -0.2 (sensitivity = 0.75, specificity = 0.5) to 1.3 (sensitivity = 0.13, specificity = 0.96).

doi:10.1371/journal.pone.0141729.g007
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percentage of tandem repeats (Wilcoxon rank-sum test). Lower levels of tandem repeats were
observed in proteins in the cytoplasm (p = 0.01), endoplasmic reticulum (p = 0.03), apicoplast
(p = 0.001) and mitochondria (p< 0.001) (S3 Table).

Non-synonymous single nucleotide polymorphisms are more common in
disordered proteins
The occurrence of non-synonymous SNPs in the P. falciparum proteome was analysed, with
residues grouped according to predicted protein disorder. The percentage of disordered regions
that are polymorphic was 2.5%, compared to 1.0% of ordered regions (p< 0.001, Pearson’s
chi-squared test). When proteins were grouped according to subcellular location, an increased
proportion of SNPs (as compared to the P. falciparum proteome) was observed in exported
proteins (p = 0.001, Wilcoxon rank sum test), proteins localised to the PV (p = 0.001, Wilcoxon
rank sum test) and apical proteins (p< 0.0001, Wilcoxon rank sum test) (Fig 8B, S4 Table).

Fig 8. Distribution of tandem repeats and non-synonymous SNPs within different subcellular compartments for P. falciparum. (A) Prediction of
tandem repeats was performed using T-REKS. Percentage tandem repeats was defined as the percentage of each protein that contains tandem repeat
sequences. (B) Percentage SNPs was calculated as the percentage of residues within each protein that contain identified SNPs with a minimumminor allele
frequency of 5%. Protein localisation was classified using the ApiLoc resource. A total of 451 proteins were assigned a location.

doi:10.1371/journal.pone.0141729.g008
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Discussion
The last few decades have seen an increased understanding of the role of IDPs in various bio-
logical systems and an appreciation of their functional importance. Numerous experimental
techniques have been employed to identify and characterise IDPs [46], and these have been
complemented by a number of computational algorithms developed to predict the occurrence
of protein disorder using protein sequence data [47]. Little work has been performed examin-
ing the immunological properties of this class of protein, perhaps due to the relative scarcity of
IDPs in most bacteria and viruses [10,11]. Eukaryotic organisms, however, are known to con-
tain a relative abundance of IDPs, with apicomplexan parasites including Plasmodium and
Toxoplasma spp. being particularly enriched in IDPs [13]. It is therefore important to under-
stand the potential differences in immune recognition of IDPs compared to ordered protein
domains. In this study, we applied a number of computational prediction algorithms at a prote-
omic level to gain further insight into the role of IDPs as potential antigenic targets.

A high proportion of the P. falciparum proteome was predicted to be disordered and this
was also the case for other Plasmodium spp. IDPs appear to be especially enhanced in apical
and exported proteins, suggesting that they may play functional roles in parasite invasion and
sequestration, and that they are also likely to be accessible to antibody recognition on intact
parasites. Almost nothing is known about the actual functional role of IDPs in Plasmodium
spp. It is possible that they may play a role as flexible linkers between ordered domains,
enabling rapid molecular recognition of host ligands during parasite invasion. This is poten-
tially the case for the erythrocyte binding-like (EBL) family of proteins, which contain a disor-
dered domain termed region III-V (RIII-V) [48]. The EBL family of proteins are found in P.
falciparum, P. vivax and P. knowlesi, and includes proteins such as the Erythrocyte Binding
Antigens (e.g. EBA-140, EBA-175, EBA-181) and Duffy Binding Protein (DBP). Molecular rec-
ognition of erythrocyte receptors by the EBL family of proteins occurs via an N-terminal struc-
tured domain termed region II (RII) [39,49,50]. We hypothesise that recognition and binding
of erythrocyte receptors via RII is expedited by the flexibility of the adjacent RIII-V domain. Of
note, antibodies to the disordered RIII-V of EBA175 can inhibit erythrocyte invasion [18,51].
Similarly, antibodies to the repeat region of CSP can inhibit sporozoite infection of hepatocytes
[52], while antibodies against MSP2 can fix complement components to inhibit erythrocyte
invasion [53]. These findings indicate the importance of IDPs in host cell invasion and as
immune targets.

We observed a general enrichment of charged and hydrophilic residues within disordered
regions of P. falciparum, with a corresponding decrease in the proportion of aromatic and
hydrophobic residues. These observations are consistent with previous studies of IDPs [12,28],
although enrichment of D and N was not observed in the study by Dunker et al. [12], while
enrichment in N was not observed by Radivojac et al. [28]. It is important to note that neither
of these studies accounted for potential biases in amino acid usage between species, which may
explain the observed differences between studies. Our observed reduction in aromatic and
hydrophobic residues in IDPs was noted to affect key peptide anchor points for MHC class I
and class II binding, supporting recent findings by Mitic et al. [29]. Both MHC class I and II
presentation require peptides to be anchored in the MHC binding groove through interactions
with hydrophobic binding pockets and additional interactions with the floor and walls of the
binding channel [54–57]. Reduced MHC class II binding is likely to reduce antigen presenta-
tion to helper CD4+ T-cells and the acquisition of effective antibody responses, while reduced
MHC class I binding is likely to reduce antigen presentation to CD8+ T-cells which are
required for immune responses against the liver stage infection [58,59]. MHC class I and class
II epitopes were identified within IDPs, however, indicating that these potential limitations
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may be overcome by careful design of vaccine constructs and a detailed knowledge of the HLA
haplotypes of target populations.

Using a sequence-based linear B-cell epitope prediction method [60], it was noted that pre-
dicted linear B-cell epitopes were significantly enriched within IDPs. This is not surprising con-
sidering that most of the polypeptide chain within an IDP is accessible to antibody binding.
Several studies have characterised linear epitopes within IDPs [24,61–64], although there is a
notable report describing the existence of a discontinuous epitope with an IDP [65]. We do
note that current sequence-based prediction algorithms for linear B-cell epitopes should be
used with caution as there is some concern that they perform relatively poorly compared to
similar predictors for MHC binding [66]. While this could be due to inherent structural differ-
ences between antibody-antigen and MHC-peptide complexes, it has been suggested that cur-
rent training datasets and classification methods for B-cell epitope predictors are inadequate
[67]. Indeed, our recent study of P. falciparumMSP2 found that B-cell epitope predictors were
poor predictors of individual immunogenic epitopes within this largely disordered protein
[68].

It has been previously postulated that IDPs, and tandem repeat regions in particular, may
play an important role in the immune evasion of various parasites including Plasmodium
[37,69,70], Trypanosoma [32], Leishmania [33,71] and Ehrlichia [34]. Tandem repeat regions
may induce immunodominant responses that act as immunological decoys, masking responses
against functionally important epitopes. This hypothesis is consistent with our finding that a
high proportion of IDPs are located in immunologically-exposed subcellular compartments
and the observation that tandem repeat regions are predominantly located within IDPs. Repeat
protein sequences bear some similarity to the repeated structural motifs found on bacterial
polysaccharides that are known to elicit T-cell-independent type 2 B-cell responses. Although
such responses have been described against polysaccharide antigens, there is evidence suggest-
ing that some protozoan proteins contain tandem repeats that can act as T-cell-independent
type 2 antigens [35–37], negating the need for CD4+ T-cell help. Perhaps more importantly,
immunodominant responses against protein tandem repeats may develop due to the increased
avidity of an antibody to a region in which identical epitopes are located at several adjacent
regions of the polypeptide, increasing the apparent epitope concentration within the vicinity of
bound antibody. This is likely to lead to rapid antibody re-binding upon dissociation, resulting
in high antibody avidity, despite a relatively lower affinity for a single epitope site. In this way,
selection of B-cells from the naïve B-cell repertoire is likely to be biased towards cells with reac-
tivity to such tandem repeat domains.

Within P. falciparum, there is mixed evidence for the immunodominant nature of tandem
repeats. For example, strong antibody responses are acquired naturally against the immunodo-
minant NANP repeat region of CSP [72–74] that is predicted to adopt a coiled-coil structure
[75] and antibodies against SERA-5 predominantly target a disordered N-terminal octamer
repeat [19]. In contrast, some disordered tandem-repeats within MSP2 (3D7 allele) are poorly
immunogenic, which has been attributed to a high degree of conformational flexibility com-
pared to the rest of the sequence [68]. Taken together, protein tandem repeats appear to be
immunodominant in some cases, but may be poorly immunogenic in others, possibly due to
high flexibility and a large loss of conformational entropy upon antibody binding.

Our observation that IDPs contain a higher proportion of amino acid polymorphisms as a
result of non-synonymous SNPs is consistent with previous studies and has important implica-
tions for vaccine design. Recent work in Saccharomyces cerevisiae showed that IDPs contained
a higher proportion of non-synonymous SNPs, with disordered regions shown to be under
weaker negative selection than ordered domains [76]. This was attributed to reduced structural
constraints for disordered regions, being more tolerant to amino acid changes, especially
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changes to amino acids with similar characteristics. Many non-synonymous SNPs within P.
falciparum appear to be maintained as a result of immune selection pressure, with many of the
resulting polymorphisms located on the protein surface and hence accessible to antibody bind-
ing [77]. IDPs have a higher proportion of residues accessible for antibody binding which may
contribute to the observed increase in non-synonymous SNPs to some degree. Interestingly,
only a small number of genes (~100) within the P. falciparum proteome have been observed to
be under balancing selection [78], and hence it is unlikely that immune pressure alone is
responsible for the observed increase in polymorphic residues within IDPs [79].

Conclusions
The role of IDPs as antigenic targets is poorly understood, despite their relative abundance in
major human pathogens such as P. falciparum. We have shown here that the biased amino
acid composition of IDPs can limit their presentation via MHCmolecules and may influence
the generation of antibody responses and B-cell memory. Furthermore, we have demonstrated
that immunologically-exposed subcellular compartments within P. falciparum have a higher
proportion of IDPs, a greater number of tandem repeat regions, and a higher incidence of non-
synonymous SNPs. This indicates that IDPs can be involved in generating immunodominant
antibody responses, and that some may play a role in immune evasion. Despite these apparent
limitations, it is clear that some IDPs are targeted by functional immune responses and that
some of these antigens are realistic vaccine candidates. Indeed, we have shown that a number
of leading candidates contain a significant proportion of disordered regions. These findings
have major implications for vaccine design, and understanding immunity to malaria.

Methods

Protein sequences
Protein sequences for P. falciparum (3D7), P. vivax (Sal-1) [80], P. chabaudi (chabaudi) [81],
P. berghei (ANKA) [81] and P. knowlesi (Strain H) [82] were obtained from PlasmoDB [83]
(http://plasmodb.org). All protein-coding sequences were selected for each organism with
pseudo-genes excluded, and protein sequences downloaded in FASTA format.

Disorder prediction
DISOPRED3 software was used for prediction of protein disorder [84], and was chosen due to
its high ranking in independent benchmarking [85]. The DISOPRED3 algorithm utilises a
combination of a support vector machine (SVM), artificial neural network (ANN) and nearest-
neighbour classifier to classify residues as disordered/ordered. An initial PSI-BLAST search is
also used to create a sequence profile that is then passed to the SVM. Generation of sequence
profiles using PSI-BLAST was performed using the UniRef90 protein database and blast-2.2.26
software package from NCBI. PSI-BLAST was run with 3 passes, with an e-value threshold of
0.001 for inclusion in the multi-pass model. PSI-BLAST checkpoint file was saved and used as
an input to the DISOPRED2 SVM algorithm (part of the DISOPRED3 prediction workflow).
The default threshold was used for DISOPRED3, with a disorder score above 0.5 indicating
predicted disorder. DISOPRED3 software is freely available and was obtained from http://
bioinfadmin.cs.ucl.ac.uk/downloads/DISOPRED/ (last accessed 25/06/2015). For analysis of
protein disorder, we considered disorder at both a per-proteome level (i.e. the number of resi-
dues across the proteome that fall within disordered regions; with no adjustment for protein
length) and at a per-protein level (the percentage of residues within each protein predicted to
be disordered). A similar approach was taken with all other predictors.
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MHC binding prediction
NetMHC 3.0 [86,87] and NetMHCII 2.2 [43,44] were used for prediction of MHC class I and
II binding peptides, respectively. Peptide lengths of 9 (NetMHC) and 15 (NetMHCII) residues
were used for all predictions. Peptides were grouped according to their predicted binding affin-
ity (IC50): High-affinity, IC50 < 50nM; Low-affinity, 50 nM< IC50 < 500 nM; No-binding,
IC50 >500 nM. Predictions were performed for all human HLA alleles available in each predic-
tor. Both prediction algorithms were downloaded from http://www.cbs.dtu.dk/services/
NetMHCII/ and http://www.cbs.dtu.dk/services/NetMHC/ (last accessed on 25/06/2015).

For prediction of MHC binding within scrambled sequences from P. falciparum, we
obtained the predicted disorder scores for each protein, and scrambled sequences within
ordered and disordered regions separately, retaining the overall disorder profile for each pro-
tein. These scrambled sequences were then submitted to predictors of MHC binding as above.
This procedure was repeated four times with the scrambled proteome of P. falciparum, with
results averaged between repeats.

B-cell epitope prediction
BepiPred 1.0 was used for prediction of linear B-cell epitopes [60]. An output threshold of 0.9
was used (sensitivity = 0.25, specificity = 0.91) for identification of B-cell epitopes (unless stated
otherwise). This threshold was chosen to provide a high level of certainty for predicted B-cell
epitopes. For comparison of linear B-cell epitopes across Plasmodium spp., and between
ordered and disordered regions, we used a range of output thresholds, from -0.2 (sensitiv-
ity = 0.75, specificity = 0.5) to 1.3 (sensitivity = 0.13, specificity = 0.96). Any residue with an
output score above the threshold was considered to be part of a linear B-cell epitope. BepiPred
software was obtained from http://www.cbs.dtu.dk/services/BepiPred/ (last accessed on 25/06/
2015).

Protein localisation
Protein localisation data were obtained from the ApiLoc database (http://apiloc.biochem.
unimelb.edu.au/apiloc/apiloc) for P. falciparum sequences only (451 proteins) (last accessed on
25/06/2015). While ApiLoc also contains curated localisations for other Plasmodium spp., the
number of proteins available for other species was too low to enable proper comparison among
subcellular localisations (P. berghei, 61 proteins; P. vivax, 18 proteins; P. knowlesi, 6 proteins; P.
chabaudi, 4 proteins).

Identification of tandem repeat sequences
Tandem repeat sequences were identified using T-REKS, a program for the detection of repeat
sequences based on a K-means algorithm [45]. T-REKS software was obtained from http://
bioinfo.montp.cnrs.fr/?r = t-reks/ (last accessed 25/06/2015), and was run as a standalone Java
program. The percentage similarity (Psim) threshold was set to 0.8 for all predictions, with fil-
tering of overlapping repeats disabled. For residues that were part of overlapping repeats, only
the repeat with the highest Psim value was considered.

Analysis of amino acid substitutions due to non-synonymous point
mutations
Data for single nucleotide polymorphisms from P. falciparum were downloaded from Plas-
moDB. Within PlasmoDB, SNPs were identified based on differences within a group of isolates,
with 3D7 chosen as the reference strain. SNPs were selected from isolates obtained from all
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available geographic locations. An 80% read frequency threshold was used, with a minimum
minor allele frequency of 5%. To examine amino acid substitutions, only non-synonymous
SNPs within coding regions of DNA were used.

Workflow and database integration
Protein sequences in FASTA format were submitted to predictors of protein disorder, MHC
binding, B-cell epitopes, and tandem repeats. Output files were collated and reduced to a for-
mat amenable to storage in an SQL database. Results were stored in a local SQL database (Post-
greSQL 9.3.6). Protein localisation data from ApiLoc and SNP data were also stored in the SQL
database. Sequence input to various prediction algorithms, output data processing and SQL
queries were handled using in-house custom Perl and Python scripts (S1 File). The computa-
tional workflow is depicted in Fig 1.

Sequence analysis of MHC binding peptides
As disordered and ordered regions tend to have a different amino acid composition, we
accounted for the background amino acid frequency of ordered and disordered regions when
examining the enrichment of particular residues within MHC-binding peptides. Peptides that
fell on the boundary of disordered and ordered regions were considered to be part of a mixed
region. To do this, we defined the proportional enrichment f’ijk (Eq 1) for any particular residue
i found at position j within all MHC binding peptides in a region k (disordered, ordered or
mixed), such that residues that are neither enriched nor depleted were assigned a value of 0,
while residues with a 100% increase/decrease in frequency were assigned a value of +/-1:

f 0 ijk ¼
nijk=Si nijk

Nijk=Si Nijk

� 1 ð1Þ

where:
nijk = number of times residue i is found at position j within a predicted MHC binding pep-

tide within region k.
Nijk number of times residue i is found at position j within any peptide within region k.
Sinijk indicates a sum over all residues i at position j for residues found within an MHC

binding peptide within region k.
SiNijk indicates a sum over all residues i at position j for residues found within region k.
To determine the average enrichment across the entire proteome for residues in MHC-

binding peptides, we defined an average enrichment value fij (Eq 2) with correction for
sequence composition in each region k as:

fij ¼ ð
X

k

nijk

Nijk=SiNijk

Þ=ð
X

k

X

i

nijkÞ � 1 ð2Þ

This represents a weighted average of MHC binding residue enrichment across all regions k,
with adjustment for amino acid frequency within each region k.

Statistical analysis
All plots and statistical analysis were produced with the R statistical computing package (R
Project for Statistical Computing, http://www.r-project.org/), with RStudio IDE v. 0.97.551
used for code development. R package ggplot2 was utilised for most plots [88].
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Supporting Information
S1 Fig. Predicted MHCI and MHCII binding for the P. falciparum proteome, grouped by
protein disorder. The proportion of peptides with predicted binding to MHCI (A) and
MHCII (B) is significantly higher for peptides that are contained within a structured protein
domain. Prediction of protein disorder was performed using DISOPRED3, while predictions of
MHC class I and MHC class II binding were performed with NetMHC 3.0 and NetMHCII 2.2
Peptides were grouped according to their predicted binding affinity (IC50): High-affinity,
IC50<50nM; Low-affinity, 50nM<IC50<500nM; No-binding, IC50>500nM.
(PDF)

S2 Fig. Distribution of high-affinity MHC-binding peptides from P. falciparum across a
range of HLA alleles, grouped according to predicted protein disorder and known protein
localisation. No significant difference in the proportion of MHCI (A) or MHCII (B) binding
peptides was observed between different subcellular locations (p> 0.05, kruskal-wallis rank
sum test). Boxplots represent the distribution of MHC-binding peptides across all MHC alleles
tested. Prediction of protein disorder was performed using DISOPRED3, while prediction of
MHC class I and MHC class II binding was performed with NetMHC 3.0 and NetMHCII 2.2.
Peptides with predicted high binding affinity are shown (IC50<50nM).
(PDF)

S3 Fig. Residues that are enriched within MHC binding peptides are generally found at
lower frequency within disordered regions. The position specific enhancement of each resi-
due in both MHC class I (A) and MHC class II (B) binding peptides (IC50< 50nM) was plot-
ted against the proportional enrichment of that residue in disordered regions. Prediction of
protein disorder was performed using DISOPRED3, while prediction of MHC class I and
MHC class II binding was performed with NetMHC 3.0 and NetMHCII 2.2.
(PDF)

S4 Fig. Predicted MHC binding for scrambled sequences from P. falciparum, compared to
predicted MHC binding of native sequence. Sequences within disordered and ordered
regions of each P. falciparum protein were scrambled, and the resultant scrambled proteome
was submitted to predictors of MHC class I (A) and MHC class II (B) binding. Sequence
scrambling was performed 4x, with results fromMHC predictors averaged across all repeats.
Prediction of disorder was performed with DISOPRED3.
(PDF)

S5 Fig. Distribution of linear B-cell epitopes within P. falciparum proteins, grouped
according to subcellular localisation and predicted protein disorder. Classification of disor-
der was achieved using DISOPRED3. BepiPred was used for prediction of linear B-cell epi-
topes. A threshold of 0.9 was used for BepiPred predictions. Protein localisation was classified
using the ApiLoc resource. A total of 451 proteins were assigned a location.
(PDF)

S1 File. Computational scripts used to generate data, perform analysis and generate fig-
ures.
(ZIP)

S1 Table. Summary statistics for predicted protein disorder of P. falciparum proteins,
grouped according to subcellular localisation. Protein localisation was classified using the
ApiLoc resource. Prediction of disorder was performed using DISOPRED3. A total of 451 pro-
teins were assigned a location. Percentage disorder was calculated as the proportion of residues
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predicted to be disordered at the level of individual proteins.
(DOCX)

S2 Table. Summary statistics for percentage linear B-cell epitopes within P. falciparum pro-
teins, grouped according to subcellular localisation. Protein localisation was classified using
the ApiLoc resource. A total of 451 proteins were assigned a location. AWilcoxon Rank-Sum
test was performed on proteins from each subcellular location, comparing the percentage of
residues predicted to be part of a linear B-cell epitope for each protein in that location, to the
distribution within the entire P. falciparum proteome. Residues were grouped according to pre-
dicted protein disorder, and statistical analysis applied to each group (ordered/disordered).
(DOCX)

S3 Table. Summary statistics for predicted tandem repeats within P. falciparum proteins,
grouped according to subcellular localisation. Protein localisation was classified using the
ApiLoc resource. Prediction of tandem repeats was performed using TREKS, with a PSIM cut-
off of 0.8. A total of 451 proteins were assigned a location. Percentage tandem repeats was cal-
culated as the proportion of residues predicted to be part of a tandem repeat at the level of
individual proteins. A Wilcoxon Rank-Sum test was performed on proteins from each subcel-
lular location, comparing the percentage tandem repeats for proteins within each respective
location to the distribution of percentage tandem repeats within the entire P. falciparum prote-
ome.
(DOCX)

S4 Table. Summary statistics for SNPs within P. falciparum proteins, grouped according to
subcellular localisation. Protein localisation was classified using the ApiLoc resource. A total
of 451 proteins were assigned a location. AWilcoxon Rank-Sum test was performed on pro-
teins from each subcellular location, comparing the percentage of residues targeted by non-
synonymous SNPs for each protein in that location, to the distribution of SNPs within the
entire P. falciparum proteome.
(DOCX)
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Figure S1: Predicted MHCI and MHCII binding for the P. falciparum proteome, grouped 

by protein disorder. The proportion of peptides with predicted binding to MHCI (A) and 

MHCII (B) is significantly higher for peptides that are contained within a structured protein 

domain. Prediction of protein disorder was performed using DISOPRED3, while predictions 

of MHC class I and MHC class II binding were performed with NetMHC 3.0 and NetMHCII 

2.2 Peptides were grouped according to their predicted binding affinity (IC50): High-affinity, 

IC50<50nM; Low-affinity, 50nM<IC50<500nM; No-binding, IC50>500nM. 
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Figure S2: Distribution of high-affinity MHC-binding peptides from P. falciparum across 

a range of HLA alleles, grouped according to predicted protein disorder and known 

protein localisation. No significant difference in the proportion of MHCI (A) or MHCII (B) 

binding peptides was observed between different subcellular locations (p > 0.05, kruskal-wallis 

rank sum test). Boxplots represent the distribution of MHC-binding peptides across all MHC 

alleles tested. Prediction of protein disorder was performed using DISOPRED3, while 

prediction of MHC class I and MHC class II binding was performed with NetMHC 3.0 and 

NetMHCII 2.2. Peptides with predicted high binding affinity are shown (IC50<50nM) 
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Figure S4: Predicted MHC binding for scrambled sequences from P. falciparum, 

compared to predicted MHC binding of native sequence. Sequences within disordered and 

ordered regions of each P. falciparum protein were scrambled, and the resultant scrambled 

proteome was submitted to predictors of MHC class I (A) and MHC class II (B) binding. 

Sequence scrambling was performed 4x, with results from MHC predictors averaged across all 

repeats. Prediction of disorder was performed with DISOPRED3.
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Table S1: Summary statistics for predicted protein disorder of P. falciparum proteins, 

grouped according to subcellular localisation.  

Location Median IQR W 

statistic 

df p-value

Apical 24.3 38.9 273081.5 82 0.0003 

PV 27.7 29.1 172672 47 <0.0001 

Exported 28.0 34.1 285521 80 <0.0001 

Nucleus 28.1 28.7 248017 73 0.0002 

Inner Membrane Complex 18.1 25.1 52308 17 0.51 

Golgi 14.1 33.3 25671 9 0.84 

Parasite Plasma Membrane 22.2 37.6 187876.5 62 0.11 

Cytoplasm 15.4 26.3 266415.5 102 0.59 

Other 11.4 24.8 146830.5 60 0.19 

Apicoplast 15.7 11.0 99806.5 39 0.48 

Food Vacuole 12.0 16.8 69140.5 27 0.50 

Mitochondria 8.8 9.2 55932.5 28 0.01 

ER 8.9 14.0 67192.5 31 0.04 

Protein localisation was classified using the ApiLoc resource. Prediction of disorder was performed 

using DISOPRED3. A total of 451 proteins were assigned a location. Percentage disorder was 

calculated as the proportion of residues predicted to be disordered at the level of individual proteins.
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Table S2: Summary statistics for percentage linear B-cell epitopes within P. falciparum 

proteins, grouped according to subcellular localisation.  

Location Disorder Median IQR W 

statistic 

df p-value

PV Ordered 10.2 11.2 163005 47 0.002 

PV Disordered 48.0 33.3 179525 47 <0.0001 

Exported Ordered 8.7 7.0 260513 81 0.005 

Exported Disordered 40.0 34.6 261212.5 80 0.001 

Apical Ordered 8.8 8.8 274922.5 83 0.001 

Apical Disordered 38.0 39.7 249020 82 0.054 

Parasite Plasma 

Membrane 

Ordered 8.4 5.6 193397 62 0.058 

Parasite Plasma 

Membrane 

Disordered 33.3 45.3 183593 62 0.215 

Nucleus Ordered 8.0 5.9 235542 74 0.014 

Nucleus Disordered 38.4 24.1 243684.5 73 0.001 

Inner Membrane Complex Ordered 9.5 8.4 63922 17 0.020 

Inner Membrane Complex Disordered 31.9 34.9 50334.5 17 0.733 

Food Vacuole Ordered 8.3 3.7 92857 27 0.035 

Food Vacuole Disordered 27.2 35.8 67155.5 27 0.347 

Cytoplasm Ordered 8.2 5.7 325156.5 106 0.024 

Cytoplasm Disordered 31.3 32.5 267458.5 102 0.620 

Other Ordered 8.3 5.1 195127 61 0.023 

Other Disordered 22.7 31.3 134864 60 0.020 

Golgi Ordered 4.2 3.2 19591.5 10 0.052 

Golgi Disordered 13.3 28.9 17258 9 0.052 

ER Ordered 6.5 6.6 77775 31 0.337 

ER Disordered 20.5 37.8 64689 31 0.017 

Apicoplast Ordered 6.5 5.7 97777 39 0.309 

Apicoplast Disordered 20.3 25.9 78019.5 39 0.003 

Mitochondrion Ordered 4.7 3.5 54307.5 28 0.005 

Mitochondrion Disordered 3.8 19.2 40344 28 <0.0001 

Protein localisation was classified using the ApiLoc resource. A total of 451 proteins were assigned a 

location. A Wilcoxon Rank-Sum test was performed on proteins from each subcellular location, 

comparing the percentage of residues predicted to be part of a linear B-cell epitope for each protein in 

that location, to the distribution within the entire P. falciparum proteome.  Residues were grouped 

according to predicted protein disorder, and statistical analysis applied to each group 

(ordered/disordered).
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Table S3: Summary statistics for predicted tandem repeats within P. falciparum proteins, 

grouped according to subcellular localisation.  

Location Mean SD Median IQR W statistic df p-value

Exported 9.61 18.58 0.61 10.51 257829 81 0.004 

PV 8.54 17.69 1.67 9.89 152788.5 47 0.016 

Parasite Plasma 

Membrane 

5.62 12.48 0.00 6.63 177916 62 0.479 

Apical 5.43 11.97 0.00 5.62 244030 83 0.178 

Cytoplasm 3.79 10.92 0.00 2.79 266778.5 106 0.125 

Nucleus 3.38 6.26 0.00 4.86 212537 74 0.406 

Other 2.70 9.48 0.00 0.00 140416.5 61 0.014 

Golgi 2.14 7.11 0.00 0.00 21433.5 10 0.072 

Food Vacuole 1.98 4.46 0.00 0.89 67304 27 0.258 

ER 1.84 4.75 0.00 0.42 72449 31 0.075 

Inner Membrane 

Complex 

1.41 2.84 0.00 1.29 41423.5 17 0.222 

Apicoplast 0.61 1.70 0.00 0.00 81310 39 0.002 

Mitochondrion 0.39 1.78 0.00 0.00 51823 28 0.0004 

Protein localisation was classified using the ApiLoc resource. Prediction of tandem repeats was 

performed using TREKS, with a PSIM cutoff of 0.8. A total of 451 proteins were assigned a location. 

Percentage tandem repeats was calculated as the proportion of residues predicted to be part of a 

tandem repeat at the level of individual proteins.  A Wilcoxon Rank-Sum test was performed on 

proteins from each subcellular location, comparing the percentage tandem repeats for proteins within 

each respective location to the distribution of percentage tandem repeats within the entire P. 

falciparum proteome.
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Table S4: Summary statistics for SNPs within P. falciparum proteins, grouped according 

to subcellular localisation.  

Location Mean SD Median IQR W 

statistic 

df p-value

Exported 1.67 3.71 0.46 1.17 268938.5 81 0.001 

PV 1.47 3.14 0.60 1.08 164441.5 47 0.001 

Apical 1.46 2.65 0.55 1.27 290436.5 83 <0.0001 

Parasite Plasma 

Membrane 

1.22 1.91 0.32 1.72 193234.5 62 0.054 

ER 0.83 2.46 0.19 0.48 83620 31 0.744 

Nucleus 0.60 2.30 0.00 0.37 174068 74 0.030 

Inner Membrane 

Complex 

0.57 1.53 0.17 0.37 43346 17 0.410 

Cytoplasm 0.54 1.19 0.00 0.42 254718 106 0.029 

Food Vacuole 0.47 0.67 0.27 0.43 79508 27 0.624 

Golgi 0.45 0.79 0.00 0.41 26268.5 10 0.491 

Other 0.44 0.95 0.00 0.45 142575 61 0.037 

Mitochondrion 0.19 0.46 0.00 0.16 52161.5 28 0.001 

Apicoplast 0.11 0.18 0.00 0.17 75237.5 39 0.001 

Protein localisation was classified using the ApiLoc resource. A total of 451 proteins were assigned a 

location. A Wilcoxon Rank-Sum test was performed on proteins from each subcellular location, 

comparing the percentage of residues targeted by non-synonymous SNPs for each protein in that 

location, to the distribution of SNPs within the entire P. falciparum proteome.
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Chapter 3 

Structural Features of Plasmodium Antigens: Linking 3D Structure to Immune 

Mediated Selection Pressure 

Chapter 2 investigated the role of intrinsically disordered proteins as targets of natural immune 

responses. Protein disorder is at one end of a spectrum of structural behaviour, and we turn our 

attention here to proteins which are known to adopt a well-defined 3D structure. Antibodies 

primarily target protein antigens in their native state, and hence the conformational configuration of 

an antigen is a crucial factor that determines the location of potential epitopes. Furthermore, 

structural conformation is also an important consideration when examining selection pressures that 

arise as a result of antibody binding to antigen. It is thought that the majority of antibody epitopes 

are conformational in nature, with discontinuous regions of the linear protein sequence involved in 

the antibody-antigen interface [1–3]. The exact proportion of conformational to linear epitopes is 

unclear, and is likely to be highly dependent on the nature of the pathogen.  

Antibody binding to a functional epitope can lead to a number of effector functions, including 

antibody-dependent cellular cytotoxicity (ADCC), complement activation and inhibition of receptor 

engagement via neutralisation and steric hindrance. This can lead to selective pressures on the target 

antigens, driving mutation of epitope sites to minimise antibody binding and subsequent effector 

function.  This can occur within an individual (more common for rapidly mutating viruses) or at a 

population level. At a population level, immune-mediated selection pressure gives a selective 

advantage to low-frequency alleles/variants. This leads to balancing selection, in which multiple 

alleles are maintained within a population at higher frequency than would be expected under neutral 

selection processes. Sites of immune mediated selection pressure can be identified using metrics 

such as Tajima’s D, with balancing selection giving rise to a Tajima’s D value > 0. Tajima’s D has 

been used previously to identify malaria genes under balancing selection using genome-wide data 

[4,5] as well as identifying particular protein domains under balancing selection [6–13].  

Traditional approaches to identify sites under selection pressure apply a function to either a whole 

gene or segment of chromosome, or as a sliding window across a gene/genome. In some cases 

selection pressures are also considered on a site-by-site basis (i.e. per nucleotide position). A sliding 

window approach involves applying a function or statistical test to successive ‘windows’ along the 

DNA sequence, with each window containing a fixed number of nucleotides. A single numerical 

result is reported for each window. This allows identification of particular regions or domains that 
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are subject to selection pressure. However, none of these approaches take into account the 

arrangement of a protein in 3D space. 

Given that antibody-mediated selection pressures occur at the level of protein 3D structure, we 

proposed a modification to a standard sliding window approach that allows incorporation of protein 

structural information—performing a 3D sliding window over a protein structure. Such an approach 

allows aggregation of spatially linked data, and could be more sensitive in identifying sites of 

selection (or immunodominant functional antibody epitopes). To this end, a novel tool was 

developed and implemented in Python, allowing integration of structural information into tests of 

immune selection pressure. The development and usage of this tool is discussed in detail in Chapter 

4. This tool was used extensively in the proteome-wide analysis of structured P. falciparum proteins

in this chapter.

This chapter examines regions with experimentally characterised structures within P. falciparum, 

using polymorphism data from a study in The Gambia [5]. A number of immune-related features 

were mapped to known and predicted structures. Polymorphic residues had a strong propensity to 

be surface exposed and were enriched within certain secondary structure elements. Predicted MHC 

class II binding peptides were also mapped onto protein structure. These MHC binding peptides 

were primarily buried within the core of the protein and in general were not polymorphic. Sites of 

immune-mediated selection pressure were identified using Tajima’s D applied to spatially 

aggregated data. With this novel approach, a region within PfAMA1 involving both Domain II and 

Domain III was identified that had a high Tajima’s D value relative to the rest of the protein; this 

site did not stand out when using a conventional sliding window approach. This result highlights 

additional epitopes of interest for consideration in future vaccine development work for malaria. 
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Humoral immune responses against the malaria parasite are an important component of a protective 

structure of the antigenic region is usually critical for antibody recognition. We examined the structural 
features of various Plasmodium

P. falciparum. Examining the location 

residues to be exposed on the surface and to occur in particular secondary structure segments such 
as hydrogen-bonded turns. We also utilised established prediction algorithms for B-cell epitopes and 
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both domains II and III under a high degree of balancing selection relative to the rest of the protein. In 

P. falciparum antigens.

Malaria is an infectious mosquito-borne disease caused by Plasmodium species, responsible for an estimated 
429,000 deaths in 20151. P. falciparum is the major cause of malaria-related mortality in humans, with P. vivax also 
contributing significantly to morbidity. A more complete description of the determinants for effective immune 
responses against the parasite is a crucial step in the development of a highly efficacious malaria vaccine. The 
structural state of an antigen is an important factor that contributes to selection of immunodominant epitopes2. 
Protein conformational states spans a continuum between rigid, well-defined 3-dimensional (3D) structures and 
completely disordered states3–5. Previously, we have explored the role that intrinsically disordered proteins play as 
potential antigens within Plasmodium species, with disordered domains displaying marked differences to struc-
tured domains including containing a paucity of MHC binding peptides, an increased number of tandem repeat 
segments and an increased proportion of polymorphisms6. In this study, we turn our attention to epitope location 
within structured protein domains. In particular, we utilise established B-cell epitope predictors and predictors of 
MHC binding, examining these features in relation to the location of immunologically relevant polymorphisms 
over regions of experimentally determined or modelled structure. Additionally, we incorporate structural infor-
mation into a test for balancing selection, allowing for more powerful identification of structured regions under 
immune selection pressure.
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Immunity against clinical malaria develops naturally following repeated exposure, with antibodies known to 
play a key role in this process7,8. Within a naturally exposed population, immune selection pressure on the malaria 
parasite helps drive the occurrence of high-frequency polymorphisms on key malaria antigens. The development 
of a humoral immune response requires recognition of antigen in its native state. As a result, antigen structure 
plays a large role in the determination of epitopes for a humoral immune response. In other words, immune selec-
tion pressure driven by antibody-antigen interactions also occurs at the level of three-dimensional (3D) protein 
structure. Thus, examination of polymorphic regions in the context of protein 3D structure may help illuminate 
particular structural regions that are important targets of natural immunity. A number of studies have explored 
the relationship between protein structure and immune responses within Plasmodium species, including work on 
AMA1 from various species9–13, CSP14–16, EBA-17517, MSPDBL218 and MSP219. The majority of these studies have 
examined the location of polymorphic residues on a protein structure for single antigens, which likely arise as 
the result of immune selection pressure on particular epitopes. Polymorphisms can also arise as a result of T-cell 
driven selection pressure, as has been described for key T-cell epitopes within the C-terminal domain of CSP20,21. 
Other tests of immune selection pressure include Tajima’s D, which can help identify departure from a neutral 
model of selection22. A number of studies have examined Plasmodium proteins under immune selection pressure 
(balancing selection) using a sliding window approach9,10,23–26, although all of these studies examine Tajima’s D 
in the context of the linear sequence and do not consider the spatial proximity of residues (i.e., residues that are 
distant in the linear sequence may be proximal in the 3D structure). Here, we incorporate residue spatial infor-
mation into measures of immune pressure, using both known and modelled protein structures. We demonstrate 
that the consideration of protein structural information can give extra insights into the regions of a protein under 
immune selection pressure.

In summary, we show that polymorphic residues within P. falciparum are usually surface exposed and are 
enriched within secondary structure turn elements. Predicted B-cell epitopes are also typically located on highly 
surface exposed regions. In contrast, predicted MHC class II binding peptides are generally buried within the 
core of a protein, and do not seem to overlap with polymorphic residues to a significant extent, which suggests 
that high frequency polymorphisms are more likely driven by humoral immune responses rather than cellular 
immunity. Antibodies often recognise discontinuous epitopes, therefore it is important to consider the spatial 
arrangement of residues when examining antigenicity. Accordingly, we incorporate structural information into a 
modified Tajima’s D test, and assessed two polymorphic vaccine candidates, EBA-175 and AMA1. We identified 
strong signatures of balancing selection for a discontinuous region of PfAMA1 bordering domains II & III.

Methods
Protein sequences for Plasmodium species were obtained from PlasmoDB, v28 (www.plas-

moDB.org)27. Plasmodium genomes used were P. falciparum 3D7, P. knowlesi Strain H, P. yoelii 17X, P. chabaudi 
chabaudi, P. vivax Sal-1, P. berghei ANKA and P. reichenowi CDC. Coordinates for experimentally determined 
structures were obtained from the Protein Data Bank (PDB) from the Research Collaboratory for Structural 
Bioinformatics (RCSB) website (www.rcsb.org)28, accessed on April 20, 2017. Data on polymorphisms from 65 
Gambian isolates were obtained from PlasmoDB24.

For each Plasmodium species examined, matching PDB 
structures were identified using a BLAST search against the PDB database, with an e-value cut-off of 10.0. A 
sequence identity threshold >90% was used, normalized to the length of the shorter sequence in the comparison. 
The NCBI-blast+ 2.3.0 package was used for all BLAST searches29. Redundancy in PDB structures was removed 
using a sequence identity cut-off of 90% to group similar structures using precomputed sequence similarity clus-
ters available on the RCSB PDB database (http://www.rcsb.org/pdb/).

The 
BioStructMap Python package was developed to map various features on a protein structure. BioStructMap con-
tains methods that take a PDB file as input, alongside a set of data that is aligned to a reference sequence. The 
output is a map of this data on a three-dimensional (3D) structure using either a predefined or user-defined 
function, either with or without some level of spatial averaging. The package makes use of the BioPython Bio.
PDB module for PDB file parsing and manipulation30 and the DendroPy package for calculation of Tajima’s D31. 
The source code is available at https://github.com/andrewguy/biostructmap. For all structural mapping work 
using BioStructMap, protein chains were treated as monomers (i.e. interactions between chains in multimeric 
complexes were ignored).

Comparative structure modelling of P. falciparum structures. Template-based models of P. falci-
parum structures were created using ModPipe32, an automated software pipeline that utilises MODELLER for 
the generation of comparative protein structure models33. Models are accessible via ModBase (https://modbase.
compbio.ucsf.edu/)34. P. falciparum 3D7 sequences were used to compute all models. Structural models were 
deemed to be reliable if they had a ModPipe Quality Score (MPQS) greater than 1.1. The MPQS accounts for 
sequence coverage, sequence identity, gaps in the alignment, the compactness of the model and various statistical 
potential Z-scores34.

Tajima’s D is a statistical test used to identify regions of sequence evolving under 
non-neutral selection22. Tajima’s D was used here to identify regions of sequence subject to balancing selection, 
in which a higher level of sequence diversity is maintained within a population than would be expected under a 
neutral model of selection. Balancing selection can arise as a result of immune selection pressure within a popula-
tion, and is indicated by positive values of Tajima’s D. Tajima’s D was calculated using the DendroPy Python pack-
age, version 4.2.031. For calculation of Tajima’s D using a standard sliding window approach, the protein coding 
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region for each gene was selected based on the 3D7 reference strain, and the corresponding multiple sequence 
alignment used for a sliding window calculation of Tajima’s D. A window size of 102 base pairs (bp) and step size 
of 3 bp was used unless otherwise specified. For calculation of Tajima’s D with incorporation of protein structural 
information (referred to as spatially derived Tajima’s D), the relevant PDB file sequence was aligned to the 3D7 
reference strain, and a radius of 15 Å used to extract surrounding residues for each central residue, with Tajima’s 
D calculated using codons for these surrounding residues. For a detailed description, see the BioStructMap doc-
umentation at https://github.com/andrewguy/biostructmap.

Sequences for calculation of Tajima’s D were generated using polymorphism data obtained from PlasmoDB. 
Polymorphic sites were included on the proviso that at least 50 of the 65 sequences had a reliable base call at that 
position (percentage isolates with a base call ≥ 76%), in line with the original study24. A read frequency threshold 
of 70% and a minimum read depth of 5 was used to identify reliable base calls.

Calculation of relative solvent accessibility and secondary structure. Relative solvent accessibility 
(RSA) was calculated using the DSSP program (accessed via BioPython)35, using the maximum accessible surface 
area (ASA) values from Rost & Sander36. When considering a two-state definition of solvent accessibility, an RSA 
threshold of 20% was used, similar to approaches taken in previous studies37. Note that this threshold is very 
close to the median RSA value for the proteins considered in this study, effectively splitting the dataset in two. 
Secondary structure assignment was also performed using the DSSP program using the eight DSSP secondary 
structure classes35: H, Alpha helix; B, Beta bridge; E, Strand; G, 3-Turn Helix; I, 5-Turn Helix; T, Turn; S, Bend; –,  
Other/Coil.

Amino acid propensity scales. Average hydrophilicity and hydrophobicity within a given radius were cal-
culated using the Hopp-Woods hydrophilicity scale38 and the Kyte-Doolittle hydrophobicity scale39, respectively.

Prediction of B-cell epitopes. Potential B-cell epitopes were assessed using both BepiPred 1.040 and 
BepiPred 2.041, as we have previously used BepiPred 1.0 when examining potential epitopes within disordered P. 
falciparum proteins6 but wished to utilise the more accurate BepiPred 2.0 algorithm. BepiPred 2.0 uses a linear 
protein sequence to predict conformational B-cell epitopes, and is trained on epitope data from experimental 
crystal structures.

Analysis of MHC binding peptides. Prediction of peptide binding to MHC was performed with 
NetMHCII 2.242,43, with a 15 residue peptide length and default settings (threshold = −99.9, P1 amino acid 
residue preference turned off). Selection of MHC II alleles for analysis was performed according to known MHC 
haplotype frequencies from within a Gambian population44, obtained from www.allelefrequencies.net45.

Prediction of membrane-proximal regions. To assess the potential impact of membrane proximity, 
transmembrane regions were predicted using TMHMM v2.046. Known and predicted GPI-anchored proteins 
were obtained from Gilson et al.47, and the position of the GPI omega site within these proteins was predicted 
using PredGPI48. Structured regions were considered to be proximal to a transmembrane region or GPI anchor if 
they were within 10 residues of either.

Protein structures and features mapped on them were visualised 
using PyMol49; feature values were saved into the B-factor column of a PDB file, and visualised using the spectrum 
command.

The majority of data analysis was performed using the Anaconda distribu-
tion of Python 3.5. Data was stored in an SQLite database, and accessed using Python SQLAlchemy. Plotting was 
performed with the Python Matplotlib package, version 1.5.150. Statistical analysis was performed using SciPy51.

Results
Plasmodium structures 

identified in the PDB were used for a series of spatial mapping analyses using our BioStructMap Python package. 
When dealing with protein sequence-level data, such as sequence polymorphisms or measures of evolution-
ary selection pressure, it is common practice to apply a function over a sliding window on the linear sequence. 
However, spatial proximity of residues within a 3D folded protein structure is often important, motivating an 
application of a “3D sliding window” across a protein structure as implemented in BioStructMap (Fig. 1). We 
were particularly interested in assessing immune-mediated selection pressure that occurs as a result of antibody 
recognition of a dominant epitope. Such selection pressure often applies to multiple residues within the epitope. 
Importantly, these residues are often not continuous within a linear sequence; therefore, consideration of protein 
structural information may enhance identification of regions of immunological importance. In this setting, the 
selection of a radius for calculation of adjacent residues should be reflective of the potential binding surface for 
an antibody. While the interaction dimensions for antibody-antigen interaction surfaces vary depending on the 
sequence of both antigen and antibody, the mean maximum paratope dimension were estimated as 28 Å52 or 30 Å53.  
We have used the upper of these two estimates when choosing a radius of 15 Å for all spatial averaging presented 
in this paper. Using data on sequence polymorphism from a study in The Gambia24, we mapped known polymor-
phisms onto P. falciparum crystal structures, correlating the occurrence of polymorphisms with residue surface 
exposure36, average hydrophilicity38 and hydrophobicity39, and predicted B-cell epitopes41 and MHC class II bind-
ing peptides42,43. We used the BioStructMap package to identify polymorphic hotspots within regions with known 
or modelled structure. Finally, we used this tool to include spatial information into a calculation of Tajima’s D and 
applied this to key antigens.
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Figure 1. Overview of the structural mapping with spatial averaging approach as used in the Python 
BioStructMap package. For any given residue within a PDB structure, all residues within a specified radius of 
the given residues are identified. The location of these residues within a given reference sequence is then found, 
with the assumption that user-provided data will be aligned to this reference sequence. Using selected residues 
and the corresponding subset of user-provided data, a function is called, returning (usually) a numerical value. 
For example, this function may return the mean of the respective data. Note that the provided data and the 
mapping function may take a diverse number of forms. This includes functions which apply some statistical test 
over a multiple-sequence alignment of genetic sequences (e.g. Tajima’s D). In this case, the function would apply 
the statistical test over the subset of codons which code for the selected residues. The returned value is then 
assigned to the original residue in the PDB structure. This process is repeated for all residues within the PDB 
structure. Results can be viewed as a heatmap displayed over the PDB structure.
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Overview of experimental protein structures within Plasmodium species. To determine the num-
ber of proteins from various Plasmodium species that have structures in the PDB, we performed a BLAST search 
of proteins from major human, primate and murine Plasmodium spp. against a database of all PDB sequences. 
BLAST matches were grouped according to experimental technique (X-ray diffraction, NMR, other) and redun-
dancy across PDB files was accounted for by clustering redundant PDB sequences using a 90% sequence identity 
threshold. For Plasmodium falciparum 3D7 sequences, there were a total of 368 non-redundant structures (total 
of 1,111 PDB files), equating to a total of 275 proteins (5.1% of the proteome) with at least one known structure in 
the PDB (Table 1). The majority of these structures were determined using X-ray crystallography. Similarly, for P. 
vivax Sal-1 sequences, 234 non-redundant structures (810 PDB files) were found, covering a total of 157 proteins 
(2.8% of the proteome).

We examined the set of matching PDB structures for cross-species homology (Fig. 2). When comparing three 
human malaria species (P. falciparum, P. vivax, P. knowlesi), there was a large core of 146 non-redundant struc-
tures (596 PDB files) common to all 3 species, with another 206 non-redundant structures (490 PDB files) that 
matched only proteins in P. falciparum, while only 60 non-redundant structures (136 PDB files) matched proteins 
in P. vivax alone. For the 3 rodent malaria species examined (P. yoelii, P. chabaudi, P. berghei), 133 of the 155 
non-redundant structures (602 of the 635 PDB files) matched proteins in all 3 species. Similarly, there was a large 
overlap between P. falciparum and P. reichenowi, with only 23 of the 372 non-redundant structures (58 of the 1127 
total PDB files) matching proteins in only one of these two species. When considering all 7 species examined here, 
81.2% (388 of 478) of non-redundant structures that matched proteins in any Plasmodium sequence also matched 
proteins in two or more Plasmodium species.

To determine the number of structured regions that were proximal to either transmembrane regions or 
GPI anchors, we predicted transmembrane regions using TMHMM v2.046 and extracted known and predicted 
GPI-anchored proteins from Gilson et al.47. Only 5% (13 of 275) of proteins with known structures had structured 
regions within 10 residues of predicted transmembrane domains or GPI omega sites. Given the minimal number 
of membrane proximal structures identified, we have not treated membrane proximal regions differently in the 
following analysis.

Polymorphic residues are predominantly surface-exposed. We first correlated the occurrence of 
non-synonymous single nucleotide polymorphisms with the relative solvent accessibility (RSA) of the corre-
sponding amino acid residues; RSA is a proportional measure of exposure of a particular amino acid residue to 
bulk solvent. Based on a few known examples10,54, it was expected that polymorphic residues that evolved to evade 
humoral immune responses would be located predominantly on the surface. We indeed observed that polymor-
phic residues generally had some level of solvent exposure, with higher overall RSA values than residues that con-
tained no underlying nucleotide polymorphisms (Fig. 3). Polymorphic residues had a significantly higher median 
RSA value of 0.47 than the background median RSA level of 0.20 (p < 0.0001, Mann-Whitney U test). Residues 
with underlying synonymous SNPs did not have significantly different RSA values to the background distribution 
(p = 0.79, Mann-Whitney U test). Immunologically relevant polymorphisms are expected to be maintained at 
a high frequency within a population. A minor allele frequency (MAF) threshold of 5% is commonly used to 
distinguish between high- and low-frequency polymorphisms55–58. Correspondingly, polymorphic residues with 
a MAF ≥ 5% had significantly higher RSA than all polymorphic residues (p = 0.04, Mann-Whitney test), with a 
median RSA of 0.52.

Average hydrophilicity and hydrophobicity in relation to polymorphic residues. A number 
of epitope prediction methods have utilised amino acid residue propensity scales based on residue biophysi-
cal properties such as hydrophobicity and hydrophilicity in an attempt to predict targets of adaptive immune 

Species
Total protein 
coding genes

No. of proteins 
with PDB matches

Unique PDB Structures
All X-ray Diffraction NMR

P. falciparum 5398 275 368 229 31
P. vivax 5530 157 234 150 13
P. knowlesi 5316 124 176 99 10
P. reichenowi 5707 267 353 216 27
P. berghei 4952 108 143 81 8
P. chabaudi 5200 109 145 83 8
P. yoelii 5928 109 145 82 10

Table 1. Number of proteins within various Plasmodium species which have at least one matching PDB 
structure, and number of unique PDB structures matched to various Plasmodium species grouped by 
experimental technique. Note: Matching PDB structures were identified using a BLAST search against the PDB 
database, with an e-value cutoff of 10.0. A BLAST identity score of 90% was used as a cutoff for identifying 
close matches. When a PDB structure matched to multiple proteins within an organism, only the match with 
the highest identity score was considered for this table. Redundancy in PDB structures was removed using 
a Sequence Identity Cutoff of 90% to group similar structures using precomputed sequence identity clusters 
available on the RCSB PDB database (http://www.rcsb.org/pdb/). Plasmodium genomes used were P. falciparum 
3D7, P. knowlesi Strain H, P. yoelii 17X, P. chabaudi chabaudi, P. vivax Sal-1, P. berghei ANKA, P. reichenowi 
CDC.
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responses38,40,59–62. We considered here the effect of average residue hydrophobicity and hydrophilicity within a 
15 Å radius on polymorphism location, but observed only a small increase in hydrophilicity and corresponding 
small decrease in hydrophobicity (Figure S1a,c). Given that average hydrophilicity and hydrophobicity are cor-
related weakly with RSA, it is likely that the small shift in average hydrophilicity and hydrophobicity is reflective 
of the much larger shift observed for solvent accessibility between polymorphic and non-polymorphic residues. 
To explore this hypothesis, we re-ran the spatial averaging algorithm and restricted it to surface exposed residues 
(RSA ≥ 0.2), showing only a small, albeit significant, difference between polymorphic and non-polymorphic 
residues (Figure S1b,d).

Polymorphic residues occur preferentially in turns. We also investigated whether or not polymorphic 
residues are more likely to occur in any particular secondary structure motifs. When considering all polymorphic 
residues, we observed a significant reduction in polymorphic residues within β-strand elements (E), from 19% to 
11% (p = 0.006) (Figure S2). When considering only those polymorphisms with MAF ≥ 5%, we observed a large 
reduction in the proportion of residues within β-strand elements (E) (p = 0.0009), from 19% to 6%, alongside a 
large increase in the proportion of residues within turns (T), from 9% to 22% (p < 0.0001).

Prediction of B-cell epitopes and MHC class II binding peptides. Polymorphisms that arise as a 
result of immune-mediated selection pressure may be driven by antibody or T-cell responses. T-cells recognise 
peptide antigen in the context of MHC molecules, whereas antibodies typically recognise antigen in its native 
state. In the context of a humoral immune response, CD4+ T-cell responses are important for the development 
of a T-dependent B-cell response, recognising peptide antigen presented by B-cells on MHC class II molecules. 
To examine the location of predicted B-cell epitopes in relation to regions of known structure in P. falciparum 
we used the newly released BepiPred 2.041 (Figure S3). Although a number of tools exist for predicting B-cell 
epitopes based on structural data63,64, we wished to assess the utility of a state-of-the-art method that only uses 
the linear protein sequence as input, as this will be applicable to the many Plasmodium proteins with unknown 
structures. As we have previously utilised BepiPred 1.0 in a study examining disordered proteins in P. falciparum6, 
we provide a comparison to the older BepiPred 1.040 algorithm here (Figure S4). Our subsequent analysis was 

Figure 2. Comparison of unique protein structures which match to Plasmodium sequences with >90% identity. 
Euler diagrams show the number of PDB structures which match to single/multiple/all species. For clarity, only 
four representative combinations of species are shown. Matching PDB structures were identified using a BLAST 
search against the PDB database, with an e-value cutoff of 10.0. A BLAST identity score cutoff of 90% was used 
for included matches. Redundancy in PDB structures was removed using a Sequence Identity Cutoff of 90% 
to group similar structures using precomputed sequence identity clusters available on the RCSB PDB database 
(http://www.rcsb.org/pdb/). Only a single representative structure from each group of redundant structures was 
counted when generating Euler diagrams.
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only performed on proteins that contained at least one high frequency polymorphic residue within a region 
of known structure, as it was impractical to run the full proteome through the BepiPred 2.0 online interface. 
Epitopes predicted with BepiPred 2.0 were predominantly surface exposed, with increasing BepiPred thresh-
olds predicting increasingly surface exposed residues (Figure S3a). BepiPred 2.0 epitope scores were significantly 
higher for polymorphic residues (p < 0.0001; Mann-Whitney U test), even when restricting analysis to surface 
exposed residues (RSA ≥ 0.2) (p < 0.0001; Mann-Whitney U test) (Figure S3b). At the default threshold, 50% 
of non-polymorphic surface-exposed residues fell within predicted epitopes, compared to 75% of polymorphic 
surface-exposed residues.

We also examined the location of predicted MHC class II binding peptides, specifically looking at MHC class 
II haplotypes, again using those that have been shown to be present at high frequency within the Gambian popula-
tion: HLA-DPA1*02:01-DPB1*01:01 and HLA-DQA1*05:01-DQB1*03:0144. MHC class II binding peptides were 
observed to be predominantly buried within the core region of proteins, with lower overall surface exposure than 
the set of non-binders (Figure S3c, d). Additionally, polymorphic residues were found at lower frequency within 
MHC class II binding peptides compared to non-binding regions. For the HLA-DQA1*05:01-DQB1*03:01 hap-
lotype, 0.20% of residues involved in high-binding peptides were polymorphic (MAF ≥ 5%), compared to 0.74% 
of residues not involved in a predicted MHC binding peptide. Similarly for the HLA-DPA1*02:01-DPB1*01:01 
haplotype, 0.21% of residues involved in high-binding peptides were polymorphic (MAF ≥ 5%), compared to 
0.71% of residues not involved in a predicted MHC binding peptide. Thus, MHC class II binding peptides are 
typically buried within the hydrophobic core of proteins, and do not appear to be significant targets of immune 
selection pressure.

Comparative structural modelling of Plasmodium falciparum proteins. To extend the structural 
coverage, the entire proteome of the P. falciparum (3D7 strain) was subjected to comparative structural modelling 
using ModPipe32 (https://salilab.org/modpipe/) based on structures in the PDB. A MPQS threshold of 1.1 was 
used to filter out low-quality models before further analysis. A total of 1575 reliable models were created, cov-
ering 923 proteins or 17% of the proteome. The majority of the models in the filtered dataset covered the entire 
length of the corresponding P. falciparum 3D7 protein sequence (median coverage = 95%, mean coverage = 
87%) (Figure S5). We then used both known and modelled structures to identify polymorphic hotspots within 
P. falciparum.

Polymorphic regions have often been thought to relate to 
potential antigenicity of malaria proteins, with antigenic diversity a contributing factor to parasite evasion of host 
immune responses65,66. With this in mind, spatial averaging of polymorphisms was performed to identify regions 
of proteins that have clusters of high-frequency polymorphisms and are hence likely to be under some level of 
immune selection pressure. Given that polymorphic residues tend to be surface exposed, we have restricted this 

Figure 3. Polymorphic residues within known P. falciparum structures are predominantly surface exposed. 
Relative solvent accessibility (RSA) is shown for residues with and without identified polymorphisms. RSA 
represents the proportional surface area of a residue that is exposed to solvent, relative to the maximum 
possible exposure for that amino acid. RSA was calculated using the maximum accessible surface area (ASA) 
values from Rost & Sanders36. Box-and-whisker plots show median (red line) and interquartile range (box) of 
residue RSA values for each group. Violin plots show the smoothed distribution of RSA values for each group 
(violin plots employ a Kernel Density Estimation to compute an empirical probability distribution for each 
group). Polymorphic residues shown are both those with underlying non-synonymous SNPs regardless of allele 
frequency (n = 204), and those with underlying non-synonymous SNP with a minor allele frequency (MAF) 
≥ 5% (n = 105). The majority of residues in the dataset did not have underlying polymorphisms (n = 28,869). 
Sequence polymorphisms were obtained from 65 Gambian isolates from Amambua-Ngwa et al.24, accessed 
via PlasmoDB. Polymorphic residues had significantly higher RSA values than the background RSA levels 
(p < 0.0001, Mann-Whitney U test), and polymorphic residues with a MAF ≥ 5% had significantly higher RSA 
than all polymorphic residues (p = 0.04, Mann-Whitney test).
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analysis to surface exposed residues with RSA ≥ 0.2. Polymorphic hotspots on P. falciparum structures were 
identified using the set of all PDB crystal structures that matched proteins in P. falciparum (Table S1), and the set 
of all modelled structures with MPQS > 1.1 (Table S2). Protein polymorphisms from the Gambian population 
were used, and a MAF threshold of 5% employed to restrict polymorphisms to those with some immunological 
relevance. A threshold of either 10% or 20% of surrounding residues being polymorphic was used to identify 
regions of protein structure that are particularly polymorphic. For both experimental and modelled sets of struc-
tures, most proteins identified are known antigens, and include AMA1, CSP, TRAP, PfEMP1, DBL-MSP2, MSP1 
and EBA-175. Mapping of polymorphisms and predicted B-cell epitopes and MHC class II binding peptides on 
these structures is shown in Figures S6–S10 & Figs 4 and 5. We have used known structures where there are no 
missing residues, and modelled structures when the relevant experimental structures have unresolved residues. 
Although the density of polymorphic residues differs between antigens, all proteins examined here have regions 
of particularly dense polymorphisms that in most cases overlap with B-cell epitopes predicted using BepiPred 2.0. 
In many cases, the most polymorphic regions are surface exposed protrusions.

From the proteins identified above, we focus here on 
two major vaccine candidates for P. falciparum malaria: Apical Membrane Antigen 1 (AMA1) and Erythrocyte 
Binding Antigen 175 (EBA-175) Region II (RII) (Figs 4 and 5). A number of crystal structures exist for PfAMA1, 
but they only encompass domains I and II. Previous studies suggest that domain III may also be a significant 
target of protective antibody responses10,67, and hence we used a modelled structure of all three domains to cal-
culate polymorphic hotspots and spatially derived Tajima’s D values. There are two models for PfAMA1 gen-
erated by ModPipe with MPQS > 1.1; one of these models uses a PfAMA1 structure as a template and hence 
does not include domain III, whereas the other model uses a PvAMA1 structure as a template and includes all 
three domains. However, this second model fails to accurately place a loop (S345-Y397; 3D7 sequence) that is 
unresolved within the PvAMA1 template but resolved within known PfAMA1 structures. Previously published 
work has manually modelled the full domains I-III of PfAMA1 using a combination of P. falciparum and P. vivax 
templates, and we have used this model for examining PfAMA110. While the crystal structure for EBA-175 RII 
has been solved68, we have used a ModPipe homology model for analysis here as this model includes a number of 
residues that are unresolved in the experimental structure. These unresolved residues occur in loops that are no 
more than 4 residues long, and as such the model is likely not to be inaccurate.

For PfAMA1, the majority of polymorphic residues are surface exposed, with most polymorphisms falling 
within Domain I (Fig. 4a). The most polymorphic region (Fig. 4b) is a highly surface-exposed loop formed by 
residues T194 - D212, which has been termed the C1-L cluster69,70. Potential B-cell epitopes were predicted using 
BepiPred 2.0 (Fig. 4c). The predicted epitopes (especially at higher thresholds) predominantly fell on highly 
surface-exposed regions. In contrast, predicted MHC class II binding peptides were predominantly buried within 
the core of the protein, especially for predicted high-affinity peptides (Fig. 4d,e). For MHC class II haplotypes 
with high frequency within the Gambian population (e.g., the HLA-DPA1*02:01-DPB1*01:01 haplotype), 50% 
of residues involved in predicted high-binding peptides were located in the core of the protein (RSA < 0.2), while 
57% of residues involved in low-binding peptides were also buried. For HLA-DQA1*05:01-DQB1*03:01, 83% 
and 43% of residues from predicted high- and low-binding peptides, respectively, were buried in the protein core 
(47% of all residues are buried).

When considering EBA-175 RII polymorphisms (Fig. 5a), two main hotspots were identified, with both being 
surface-exposed loops (Fig. 5b). These two loops are located on opposing faces of the structure, with one loop 
within the F1 domain (residues N252–V266) and the other within the F2 domain (residues S432 - N442). The F2 
surface loop is involved in the formation of a two-strand antiparallel β-sheet between identical residues (N433 
- H436) upon EBA-175 RII dimer formation68. This region is in the center of the RII dimer, with residues K439 
and K442 also likely involved in binding to glycans in the glycophorin A receptor. The F2 β-finger (residues 
C476–C488) that is the target of inhibitory monoclonal antibodies R217 and R21517,71 was also identified as a 
polymorphic hotspot, although to a lesser extent. Similar to PfAMA1, predicted B-cell epitopes were located 
on highly surface-exposed regions of EBA-175 RII (Fig. 5c) and include the known F2 β-finger epitope and an 
epitope (H303 - Q315) that is the target of the R218 monoclonal antibody72. Conversely, MHC class II bind-
ing peptides were mostly buried (Fig. 5d,e). For the HLA-DPA1*02:01-DPB1*01:01 haplotype, 70% of residues 
involved in predicted high-binding peptides were located in the core of the protein (RSA < 0.2), while 58% of 
residues involved in low-binding peptides were also buried. For HLA-DQA1*05:01-DQB1*03:01, 50% and 65% 
of residues from predicted high- and low-binding peptides respectively were buried in the protein core (44% of 
all residues are buried). In summary, a number of highly polymorphic surface exposed regions were identified 
for both PfAMA1 and EBA-175 RII, which in most cases overlapped with predicted B-cell epitopes. In contrast, 
predicted MHC II binding peptides were predominantly buried within the core of the protein.

Incorporating protein spatial information into a genetic test for immune selection pressure.  
To assist in the identification of regions of protein under immune selection pressure, we developed a modi-
fied calculation of Tajima’s D that includes protein structural information using the spatial averaging approach 
introduced earlier in this study. We compared this approach to application of a standard sliding-window over 
the linear sequence to assess whether our spatially derived Tajima’s D calculation improved the ability to detect 
sites under immune selection pressure. These two methods were applied to PfAMA1 and EBA-175 (Fig. 6). For 
AMA1, there is evidence for balancing selection within DI when calculating Tajima’s D using a traditional slid-
ing window approach (Fig. 6c), as has been observed previously in other populations10. In contrast to the linear 
sliding-window approach, the new spatial averaging approach reveals a surface exposed region on the border of 
DII and DIII as the area with the highest Tajima’s D values; parts of DI also appear to be under balancing selection 
(Fig. 6a). As expected, the so-called ‘silent face’ of PfAMA1 had Tajima’s D values that were negative or close to 
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Figure 4. Location of immunologically relevant features mapped onto a PfAMA1 structural model. Each 
panel shows the front, back and top view of the modelled PfAMA1 structure. (a) Polymorphic residues with an 
underlying minor allele frequency (MAF) greater than 5% are shown colored according to location within domain 
I (blue), domain II (magenta) or domain III (orange). Sequence polymorphisms were obtained from 65 Gambian 
isolates24. (b) Spatial averaging of polymorphic residues highlights polymorphic hotspots. The proportion of 
polymorphic residues within 15 Å is shown for each central residue, with polymorphic residues defined as those 
with a MAF ≥ 5%. (c) Bepipred 2.0 predictions are shown over the PfAMA1 structure, with epitopes shown 
for two Bepipred thresholds—predicted epitopes are shown in yellow for a threshold of 0.5 (specificity = 0.57, 
sensitivity = 0.59) and in dark orange for a threshold of 0.55 (specificity = 0.81, sensitivity = 0.29). (d,e) The 
location of predicted MHC class II binding peptides are shown for the HLA-DPA1*02:01-DPB1*01:01 (d) and 
HLA-DQA1*05:01-DQB1*03:01 (e) alleles. Residues involved in a low binding peptide (50 nM < IC50 < 500 
nM) are shown in light blue, while residues involved in a high binding peptide (IC50 < 50 nM) residue are shown 
in orange. Only the core binding region of each peptide binder is indicated on each structure.
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Figure 5. Location of immunologically relevant features mapped onto an EBA-175 RII homology model. Each 
panel shows the front and back view of the modelled EBA-175 structure. The homology model was modelled 
from the 1ZRO PDB structure using ModPipe. (a) Polymorphic residues with an underlying minor allele 
frequency (MAF) greater than 5% are shown colored according to location within Region I (blue) and Region 
II (magenta). Sequence polymorphisms were obtained from 65 Gambian isolates24. (b) Spatial averaging of 
polymorphic residues highlights polymorphic hotspots. The proportion of polymorphic residues within 15 Å is 
shown for each central residue, with polymorphic residues defined as those with a MAF ≥ 5%. (c) Bepipred 2.0 
predictions are shown over the EBA-175 structure, with epitopes shown for two Bepipred thresholds: predicted 
epitopes are shown in yellow for a threshold of 0.5 (specificity = 0.57, sensitivity = 0.59) and in dark orange for 
a threshold of 0.55 (specificity = 0.81, sensitivity = 0.29). (d,e) The location of predicted MHC class II binding 
peptides are shown for the HLA-DPA1*02:01-DPB1*01:01 (d) and HLA-DQA1*05:01-DQB1*03:01 (e) alleles. 
Residues involved in a low binding peptide (50 nM < IC50 < 500 nM) are shown in light blue, while residues 
involved in a high binding peptide (IC50 < 50 nM) residue are shown in orange. Only the core binding region 
of each peptide binder is indicated on each structure.
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zero. For EBA-175, a large portion of the F1 domain appears to be under balancing selection, as is a surface loop 
in the F2 domain (residues S432 - N442) (Fig. 6b,d). The region with highest calculated spatially derived Tajima’s 
D values is contained within the F1 domain of RII, comprised predominantly of residues E266-D289, P314-Q322 
and L382-L400. This site is also part of the dimerization interface formed between two molecules of EBA-175 
RII as it binds to its glycophorin A receptor; during dimerization this site makes contact with the F2 domain of 
the other dimer pair68. It has previously been suggested that antibodies that block dimerization of EBA175 may 
negatively impact on glycophorin A engagement71, and antibodies that inhibit binding of EBA-175 to glycophorin 
A have also been shown to be associated with protection from clinical malaria72. Results from spatially derived 
Tajima’s D and conventional sliding window Tajima’s D analysis are similar to each other for EBA-175. This struc-
ture is predominantly alpha-helical, and sites with high Tajima’s D values are mostly continuous stretches of 
protein sequence.

Previous analyses of the cross-reactivity of human antibodies, and vaccine-induced antibodies in rabbits, to 
different AMA1 alleles73,74 and mutation studies of C1 residues75 suggested that polymorphisms in the C1 cluster 
did not explain a large component of antigenic differences between alleles. Furthermore standard analysis of 
polymorphisms in linear sequences did not correlate highly with antigenic differences74,75. Therefore, additional 
approaches that consider structure may be required to yield further insights. Interestingly, our analysis of AMA1 
incorporating structural considerations identified a site within DII/DIII of AMA1 that stands out as having a high 
spatially derived Tajima’s D score. This site is composed of four distinct regions of continuous sequence (P303 - 
G313; L419 - I426; V437 - I454; D483 - F505), which together make up a surface exposed face of DII/DIII (Fig. 7). 
The spatial proximity of these regions is not accounted for when performing a sliding window analysis, and it is 
only when using spatial information that we observe the highest Tajima’s D score of 2.39, compared to 1.84 for a 
linear sliding window calculation.

Figure 6. Calculation of Tajima’s D for PfAMA1 and EBA-175, both with and without incorporation of protein 
structural information. (a, b) Spatial information incorporated into a calculation of Tajima’s D using modelled 
protein structures for AMA1 (a) and EBA-175 RII (b). Tajima’s D values for each residue were calculated using 
only those codons which were mapped to residues within a 15 Å radius of the central residue. (c,d) Tajima’s 
D was calculated over a sliding window of 102 bp and a step size of 3 bp, without incorporation of protein 
structural information. Tajima’s D values for central codons are displayed on the modelled protein structures 
for AMA1 (c) and EBA-175 RII (d). Data on sequence polymorphisms was obtained from PlasmoDB using 
sequences from 65 Gambian isolates24. The structural model for PfAMA-1 was manually modelled, previously 
published in Arnott et al.10, and covers domains I-III of PfAMA-1. The structural model for EBA175 RII was 
created using Modpipe, with the PDB structure 1ZRO used as a template. Structures are colored according to 
the calculated value of Tajima’s D mapped to each residue, with residues without a defined Tajima’s D value 
shown in white.
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This study has examined structured protein domains from P. falciparum and the importance of structural features 
in assessing potential targets of humoral immunity. Antigenic polymorphism data from a Gambian population 
was used to identify regions under immune selection pressure, with polymorphic residues found to be primarily 
surface exposed and enriched within turns as compared to other secondary structure elements. A number of stud-
ies have observed that polymorphism variation in buried residues is generally more detrimental to protein func-
tion than polymorphic variation in surface exposed regions76–78. This observation, coupled with antibody-driven 
selection pressure on surface-exposed residues, likely explains our finding that high-frequency polymorphic 
residues were highly surface exposed. Similarly, our observation that polymorphic residues were proportionally 
enriched within turns is supported by previous work examining the structural features of antigen-antibody inter-
faces79–81. These studies used a three-state definition of secondary structure (helices, sheets, loops), and observed 

Figure 7. Four discontinuous stretches of sequence make up a region of PfAMA1 with high Tajima’s D values 
as calculated using spatial mapping. (a) Detailed view of a region of PfAMA1 with high Tajima’s D values as 
calculated using spatial averaging. The protein structure is colored according to the color scale presented in 
Fig. 6, with red residues corresponding to the highest Tajima’s D values. Without the use of spatial averaging, 
there is a maximum Tajima’s D value of 1.84 within this region, whereas a maximum value of 2.39 is observed 
when incorporating spatial information. (b) Four discontinuous regions of sequence contribute to the set of 
surface exposed residues with highest Tajima’s D values. These four regions are shown in yellow (P303 - G313; 
DII), green (L419 - I426; DII), blue (V437 - I454: DII/III) and orange (D483 - F505; DIII).
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an increased proportion of loop elements (turns, bends or coils) within epitopes; we only observed an increased 
number of polymorphisms within turns.

Prediction of B-cell epitopes is a challenging problem, with early attempts based on amino acid residue pro-
pensity scales only a little better than chance82. Despite many advances in recent years, the performance of current 
B-cell epitope prediction algorithms still falls behind that of predictors of other immunological features, such as 
MHC and T-cell epitope predictors83. With this in mind, the results obtained in our study are encouraging. The 
sequence-based BepiPred 2.0 algorithm41 predominantly identifies surface exposed regions as potential epitopes, 
despite only using the linear protein sequence as an input. Additionally, when restricting our analysis to only sur-
face exposed residues, ~75% of polymorphic residues were placed within predicted epitopes compared to ~50% 
of non-polymorphic residues (at the default threshold). Thus, we suggest that BepiPred 2.0 is an informative tool 
for initial selection of potential epitopes, particularly in the absence of a known protein structure.

Another approach to identifying potential epitopes explored in this study was the identification of polymor-
phisms clustered within a potential antibody binding radius. All of the proteins identified using this approach are 
known highly polymorphic antigens, including AMA1, PfEMP1, EBA-175, TRAP, DBLMSP2, CSP and MSP184–89.  
Additionally, our relatively conservative homology modelling approach did not yield additional proteins of inter-
est when examining polymorphic hotspots, despite a 3-fold increase in the coverage of the proteome. Future 
work could extend the approach used in this study using structural models derived from other methods such as 
threading and fold recognition.

Other methods for determining likely immune targets within a pathogen include measures of balancing selec-
tion such as Tajima’s D. Typically, Tajima’s D is applied as either a single metric over a whole gene, or as a sliding 
window over the genome. A number of studies of malaria antigens have also applied Tajima’s D as a sliding win-
dow over particular genes to identify regions of the protein under immune-mediated selection pressure9,10,23–26. 
However, for antibody-mediated selection pressure, a conformational epitope may contain residues that are dis-
tant in the linear protein sequence. Thus, we hypothesized that incorporation of structural information into a 
sliding window calculation of Tajima’s D may improve detection of regions under immune selection pressure. 
We developed a Python tool (BioStructMap) for spatial averaging, and applied it to both PfAMA1 and EBA-175. 
While application of a spatially derived Tajima’s D to EBA-175 did not yield any major differences compared to 
a standard linear sliding window method, we revealed a region in PfAMA1 bordering DII and DIII with a high 
spatially derived Tajima’s D value that was not observed using a traditional sliding window (Fig. 6). Interestingly, 
this region is composed of four distinct segments of protein that combine to form a surface-exposed face, which 
explains why a linear sliding window method failed to identify this discontinuous epitope (Fig. 7).

Previous studies also suggest that DIII may be an additional target of humoral immune responses. In a com-
parison of Tajima’s D between PfAMA1 and PvAMA1, the highest Tajima’s D values for PfAMA1 were observed 
in DIII, in contrast to DI for PvAMA110, suggesting that DIII may play a significant role as a target for protective 
immune responses against P. falciparum. It has also been observed that a monoclonal antibody (1E10) against 
PfAMA1 DIII acts synergistically with antibodies against other distant parts of the protein to inhibit merozoite 
growth, despite not having potent inhibitory capabilities on its own67. This suggests a potential role for antibodies 
targeting DIII in the context of a broader response against PfAMA1, despite an anti-DIII response not being 
inhibitory in isolation. Population studies examining antibody levels against PfAMA1 domains suggest that anti-
body responses against both DII and DIII are relatively rare90, however the recombinant protein constructs used 
in these studies fail to account for the considerable interaction between domains. Indeed, the region of PfAMA1 
with the strongest signature of balancing selection in our study was composed of residues from both DII and DIII, 
and antibodies targeting this epitope may not be identified in assays that use recombinant DII or DIII constructs. 
Taken together, these studies support our observation that a region bordering DII and DIII of PfAMA1 may be 
an important target of humoral responses in the context of natural infection, as well as supporting the validity of 
our spatially derived Tajima’s D approach.

In this study, we have developed an approach to identify structured regions of P. falciparum proteins that are 
likely under some level of immune selection pressure, showing that polymorphic sites are predominantly surface 
exposed and enriched within turns. We applied a spatially derived Tajima’s D calculation to key antigens, identi-
fying a region of PfAMA1 between DII and DIII that was under a high degree of balancing selection. These meth-
ods and accompanying results have utility in the identification of proteins under balancing selection, furthering 
our understanding of functional immune targets during malaria infection. These approaches are also broadly 
applicable to other pathogens.
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Figure S1: Average hydrophilicity and hydrophobicity are only weakly associated with 
residue polymorphisms once surface exposure is taken into account. ​A radius of 15 Å 
was used for spatial averaging of hydrophilicity and hydrophobicity values, and polymorphic 
residues identified by the presence of underlying non-synonymous SNPs, with additional 
filter using a minor allele frequency threshold of 5% also applied. a) ​Average hydrophilicity 
calculated over a 15 Å radius, grouped by residue polymorphism. b) Average hydrophilicity 
calculated over a 15 Å radius, with calculations restricted to surface exposed residues (RSA > 
0.2) and grouped by residue polymorphism. ​c) ​Average hydrophobicity calculated over a 15 
Å radius, grouped by residue polymorphism. d) ​Average hydrophobicity calculated over a 15 
Å radius, with calculations restricted to surface exposed residues (RSA > 0.2) and grouped by 
residue polymorphism. Mann-Whitney U test used for comparison between groups. 
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Figure S2: Polymorphic residues are more common within secondary structure turn 
elements and reduced within β-strand elements. ​Secondary structure elements for 
polymorphic residues were compared to the background set of protein structures from ​P. 
falciparum​ . When considering all polymorphic residues (without a MAF cutoff), a decreased 
proportion of polymorphic residues within β-strand (E) elements was observed (p = 0.03 after 
Bonferroni correction for multiple comparison; binomial test). When restricting polymorphic 
residues to those with a minor allele frequency (MAF) ≥ 5%, an increased proportion of 
polymorphic residues were contained in turn (T) elements (p = 0.005 after Bonferroni 
correction for multiple comparison; binomial test), and a reduced number of polymorphic 
residues found within within β-strand (E) elements (p < 0.001 after Bonferroni correction for 
multiple comparison; binomial test). Polymorphic residues with underlying non-synonymous 
SNPs with a minor allele frequency (MAF) ≥ 5% are shown in orange, whereas all 
polymorphic residues (no MAF threshold) are shown in green. Secondary structure was 
classified using the DSSP program. Secondary structure assignments are coded as follows: H, 
Alpha helix; B, Beta bridge; E, Strand; G, 3-Turn Helix; I, 5-Turn Helix; T, Turn; S, Bend; -, 
Other/Coil. 
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Figure S3: Predicted B-cell epitopes by Bepipred 2.0 strongly favor surface exposed 
residues, while predicted MHC II binding peptide are generally not surface exposed. a) 
Median relative solvent accessibility values were plotted for residues with an epitope score 
above any given threshold score for Bepipred 2.0. The location of the upper and lower 
quartiles are also shown in grey. We have shown results for thresholds between the 5th and 
95th percentile of all scores for Bepipred 2.0. b) The distribution of Bepipred 2.0 scores was 
compared between polymorphic and non-polymorphic (MAF ≥ 5%) residues, with analysis 
restricted to surface exposed residues (relative solvent accessibility ≥ 0.2). c, d) The location 
of MHC II binding peptides were assessed in relation to surface exposure, with the majority 
of residues involved in an MHC II binding peptide having relatively little surface exposure. 
Haplotypes HLA-DPA1*02:01-DPB1*01:01 (c) and HLA-DQA1*05:01-DQB1*03:01 (d) 
were assessed here, as these haplotypes have been shown to be common within a Gambian 
population and are also available for prediction using the NetMHCII tool. Prediction of 
peptide binding was performed using NetMHCII 2.2, with a 15 aa peptide length and default 
settings. 
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Figure S4: Predicted B-cell epitopes by both Bepipred 1.0 and Bepipred 2.0 both 
strongly favour surface exposed residues. Bepipred 2.0 performs better than Bepipred 
1.0 in assigning polymorphic residues a high epitope probability. a, b) ​Median relative 
solvent accessibility values were plotted for residues with an epitope score above any given 
threshold score for Bepipred 1.0 ​(a) and Bepipred 2.0 ​(b)​. The location of the upper and 
lower quartiles are also shown in grey. Note that the epitope scores used by Bepipred 1.0 and 
Bepipred 2.0 are not directly relatable, and hence we have shown results for thresholds 
between the 5th and 95th percentile of all scores for each predictor. Both Bepipred 1.0 and 
Bepipred 2.0 predicted epitopes were predominantly surface exposed, with increasing 
Bepipred thresholds predicting increasingly surface exposed residues. ​c, d) ​The distribution 
of Bepipred 1.0 (c) ​and Bepipred 2.0 ​(d) ​scores were compared between polymorphic and 
non-polymorphic (MAF ≥ 5%) residues, with analysis restricted to surface exposed residues 
(relative solvent accessibility ≥ 0.2). When considering the epitopes scores given to 
polymorphic residues, both Bepipred 1.0 and 2.0 scores were significantly higher for 
polymorphic residues (Bepipred 1.0, p = 0.007; Bepipred 2.0, p < 0.0001; Mann-Whitney U 
test), even when restricting analysis to surface exposed residues (relative solvent accessibility 
≥ 0.2). It is noted that Bepipred 2.0 scores for polymorphic residues had the greater shift 
relative to the background distribution of epitope scores, with the median Bepipred 2.0 score 
for polymorphic residues shifted higher by 0.40 of the interquartile range (IQR) of the 
background distribution, compared to 0.22 of the IQR for Bepipred 1.0. 
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Figure S5: Most ​P. falciparum ​PDB structures and Modpipe models cover the majority             
of the reference protein sequence. (a) Proportion of ​P. falciparum ​reference protein            
sequence that is covered by a matching PDB structure (sequence similarity > 90%). A total of                
275 ​P. falciparum ​proteins have at least one matching PDB structure. Proteins with no              
matching structure are not represented in this histogram. ​(b) Proportion of ​P. falciparum             
reference protein sequence that is covered by a high-quality ModPipe model (MPQS > 1.1).              
A total of 923 ​P. falciparum ​proteins have at least one high-quality ModPipe model. Proteins               
with no high-quality ModPipe model are not represented in this histogram.  

107

Supplementary Data



Figure S6: Location of immunologically relevant features mapped onto a CSP structure 
(PDB code: 3VDJ). ​Each panel shows the front and back and top view of the CSP structure. 
a) ​Polymorphic residues with an underlying minor allele frequency (MAF) greater than 5%
are shown in blue.​ ​Sequence polymorphisms were obtained from 65 Gambian isolates​1​. ​b) 
Spatial averaging of polymorphic residues highlights​ ​polymorphic hotspots. The proportion 
of polymorphic residues within 15 Å is shown for each central residue, with polymorphic 
residues defined as those with a MAF ≥ 5% .​ c) ​Spatial averaging of polymorphic residues, 
restricted to surface exposed residues. The proportion of polymorphic residues within 15 Å is 
shown for each central residue, with polymorphic residues defined as those with a MAF ≥ 5%
and surface exposed residues considered to be those with RSA ≥ 0.2.​ d) ​Bepipred 2.0 
predictions, with epitopes shown for two Bepipred thresholds — predicted epitopes are 
shown in yellow for a threshold of 0.5 (specificity = 0.57, sensitivity = 0.59) and in dark 
orange for a threshold of 0.55 (specificity = 0.81, sensitivity = 0.29). ​e, f) ​The location of 
predicted MHC class II binding peptides are shown for the HLA-DPA1*02:01-DPB1*01:01 
(e)​ and HLA-DQA1*05:01-DQB1*03:01 ​(f)​ alleles. Residues involved in a low binding 
peptide (50 nM < IC50 < 500 nM) are shown in light blue, while residues involved in a high 
binding peptide (IC50 < 50 nM) residue are shown in orange. Only the core binding region of 
each peptide binder is indicated on each structure.
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Figure S7: Location of immunologically relevant features mapped onto an MSPDBL2 
structural model ​(ModPipe ID: 45d80d0181671431333fb05b6011a7e4)​ . ​Each panel shows 
the front and back and top view of the MSPDBL2 structure. ​a) ​Polymorphic residues with an 
underlying minor allele frequency (MAF) greater than 5% are shown in blue.​ ​Sequence 
polymorphisms were obtained from 65 Gambian isolates​1 ​. ​b) ​Spatial averaging of 
polymorphic residues highlights​ ​polymorphic hotspots. The proportion of polymorphic 
residues within 15 Å is shown for each central residue, with polymorphic residues defined as 
those with a MAF ≥ 5% .​ c) ​Spatial averaging of polymorphic residues, restricted to surface 
exposed residues. The proportion of polymorphic residues within 15 Å is shown for each 
central residue, with polymorphic residues defined as those with a MAF ≥ 5% and surface 
exposed residues considered to be those with RSA ≥ 0.2.​ d) ​Bepipred 2.0 predictions, with 
epitopes shown for two Bepipred thresholds — predicted epitopes are shown in yellow for a 
threshold of 0.5 (specificity = 0.57, sensitivity = 0.59) and in dark orange for a threshold of 
0.55 (specificity = 0.81, sensitivity = 0.29). ​e, f) ​The location of predicted MHC class II 
binding peptides are shown for the HLA-DPA1*02:01-DPB1*01:01 ​(e)​ and 
HLA-DQA1*05:01-DQB1*03:01 ​(f)​ alleles. Residues involved in a low binding peptide (50 
nM < IC50 < 500 nM) are shown in light blue, while residues involved in a high binding 
peptide (IC50 < 50 nM) residue are shown in orange. Only the core binding region of each 
peptide binder is indicated on each structure.  
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Figure S8: Location of immunologically relevant features mapped onto a TRAP 
structure (PDB code: 4F1J). ​Each panel shows the front and back and top view of the 
TRAP structure. ​a) ​Polymorphic residues with an underlying minor allele frequency (MAF) 
greater than 5% are shown in blue.​ ​Sequence polymorphisms were obtained from 65 
Gambian isolates​1​. ​b) ​Spatial averaging of polymorphic residues highlights​ ​polymorphic 
hotspots. The proportion of polymorphic residues within 15 Å is shown for each central 
residue, with polymorphic residues defined as those with a MAF ≥ 5% .​ c) ​Spatial averaging 
of polymorphic residues, restricted to surface exposed residues. The proportion of 
polymorphic residues within 15 Å is shown for each central residue, with polymorphic 
residues defined as those with a MAF ≥ 5% and surface exposed residues considered to be 
those with RSA ≥ 0.2.​ d) ​Bepipred 2.0 predictions, with epitopes shown for two Bepipred 
thresholds — predicted epitopes are shown in yellow for a threshold of 0.5 (specificity = 
0.57, sensitivity = 0.59) and in dark orange for a threshold of 0.55 (specificity = 0.81, 
sensitivity = 0.29). ​e, f) ​The location of predicted MHC class II binding peptides are shown 
for the HLA-DPA1*02:01-DPB1*01:01 ​(e)​ and HLA-DQA1*05:01-DQB1*03:01 ​(f)​ alleles. 
Residues involved in a low binding peptide (50 nM < IC50 < 500 nM) are shown in light 
blue, while residues involved in a high binding peptide (IC50 < 50 nM) residue are shown in 
orange. Only the core binding region of each peptide binder is indicated on each structure.  
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Figure S9: Location of immunologically relevant features mapped onto an PfEMP1 
DBL6 structural model ​(ModPipe ID: 5f1239b7c2f20f9a5455c9a43f0fa2d7)​ . ​Each panel 
shows the front and back and top view of the PfEMP1 DBL6 structure. ​a) ​Polymorphic 
residues with an underlying minor allele frequency (MAF) greater than 5% are shown in 
blue.​ ​Sequence polymorphisms were obtained from 65 Gambian isolates​1​. ​b) ​Spatial 
averaging of polymorphic residues highlights​ ​polymorphic hotspots. The proportion of 
polymorphic residues within 15 Å is shown for each central residue, with polymorphic 
residues defined as those with a MAF ≥ 5% .​ c) ​Spatial averaging of polymorphic residues, 
restricted to surface exposed residues. The proportion of polymorphic residues within 15 Å is 
shown for each central residue, with polymorphic residues defined as those with a MAF ≥ 5% 
and surface exposed residues considered to be those with RSA ≥ 0.2.​ d) ​Bepipred 2.0 
predictions, with epitopes shown for two Bepipred thresholds — predicted epitopes are 
shown in yellow for a threshold of 0.5 (specificity = 0.57, sensitivity = 0.59) and in dark 
orange for a threshold of 0.55 (specificity = 0.81, sensitivity = 0.29). ​e, f) ​The location of 
predicted MHC class II binding peptides are shown for the HLA-DPA1*02:01-DPB1*01:01 
(e)​ and HLA-DQA1*05:01-DQB1*03:01 ​(f)​ alleles. Residues involved in a low binding 
peptide (50 nM < IC50 < 500 nM) are shown in light blue, while residues involved in a high 
binding peptide (IC50 < 50 nM) residue are shown in orange. Only the core binding region of 
each peptide binder is indicated on each structure.
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Figure S10: Location of immunologically relevant features mapped onto an PfEMP1 
DBL3x-4e structural model ​(ModPipe ID: 75fcc4663ff09a106096e5fd1e8ad13a)​ . ​Each 
panel shows the front and back and top view of the PfEMP1 DBL3x-4e structure. ​a) 
Polymorphic residues with an underlying minor allele frequency (MAF) greater than 5% are 
shown in blue.​ ​Sequence polymorphisms were obtained from 65 Gambian isolates​1 ​. ​b) 
Spatial averaging of polymorphic residues highlights​ ​polymorphic hotspots. The proportion 
of polymorphic residues within 15 Å is shown for each central residue, with polymorphic 
residues defined as those with a MAF ≥ 5% .​ c) ​Spatial averaging of polymorphic residues, 
restricted to surface exposed residues. The proportion of polymorphic residues within 15 Å is 
shown for each central residue, with polymorphic residues defined as those with a MAF ≥ 5% 
and surface exposed residues considered to be those with RSA ≥ 0.2.​ d) ​Bepipred 2.0 
predictions, with epitopes shown for two Bepipred thresholds — predicted epitopes are 
shown in yellow for a threshold of 0.5 (specificity = 0.57, sensitivity = 0.59) and in dark 
orange for a threshold of 0.55 (specificity = 0.81, sensitivity = 0.29). ​e, f) ​The location of 
predicted MHC class II binding peptides are shown for the HLA-DPA1*02:01-DPB1*01:01 
(e)​ and HLA-DQA1*05:01-DQB1*03:01 ​(f)​ alleles. Residues involved in a low binding 
peptide (50 nM < IC50 < 500 nM) are shown in light blue, while residues involved in a high 
binding peptide (IC50 < 50 nM) residue are shown in orange. Only the core binding region of 
each peptide binder is indicated on each structure.
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Table S1: Polymorphic hotspots across all ​P. falciparum ​structures in the PDB, using             
data on polymorphisms from 65 Gambian isolates. ​Analysis was restricted to surface            
exposed residues (RSA > 0.2). ​A minor allele frequency threshold of 5% was used to identify                
immunologically relevant polymorphisms. 

Location of residues with more than _% polymorphic 
residues within a 15Å radius 

Gene ID Description >10% polymorphic >20% polymorphic

PF3D7_1335900 thrombospondin-related 
anonymous protein 
(TRAP) 

57, 60-63, 65-66, 73, 77, 
94, 98-99, 104-105, 109, 
112-113, 116-117,
119-129, 152

125 

PF3D7_0731500 erythrocyte binding 
antigen-175 (EBA175) 

399-400, 402-407,
481-482, 577-585, 588,
592, 595

- 

PF3D7_1036300 merozoite surface protein 
(DBLMSP2) 

162, 166-167, 169-173, 
176, 178, 180, 197-198, 
200, 216-218, 221-227, 
229, 232, 236, 251-252, 
255, 261, 287, 290-291, 
294-296, 316, 332-333,
335, 339, 342, 344,
355-356, 359-360,
362-364, 366-367,
369-371, 373-374,
388-399, 401-402,
404-406, 408-409,
412-413, 416, 419-427,
429-430, 432, 435,
438-440, 442-443, 445,
447-449, 452-453, 456-457

344, 359, 364, 366-367, 
369-371, 373-374, 388-399,
401, 404, 416, 419-427,
429-430, 432, 435, 438-440,
443, 445, 447-449, 452-453,
456-457

PF3D7_1133400 apical membrane antigen 
1 (AMA1) 

115-116, 121, 124, 148,
164, 167-168, 174-175,
184-189, 192, 194-197,
199-201, 203-207,
209-213, 216, 219,
223-224, 235, 242-246,
281-283, 285-287, 293,
295-297, 299-301,
304-305, 329-330, 332,
339-340, 343-344,
404-405, 407, 424,
435-436, 479-480,

187-189, 192, 194-197,
199-201, 203-207, 209-213,
216, 219, 223, 242-246, 282,
285-286, 296
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483-484, 486-487, 489,
498-504, 508, 510, 512

PF3D7_0206800 merozoite surface protein 
2 (MSP2)* 

35-37, 41-43, 45-46 - 

PF3D7_0304600 circumsporozoite (CS) 
protein (CSP) 

312-314, 317, 321-322,
324-331, 345, 347-349,
351-359, 361-362, 365-366

325, 349, 352-357 

PF3D7_1200600 erythrocyte membrane 
protein 1, PfEMP1 
(VAR2CSA) 

2350, 2357-2358, 
2360-2362, 2364, 
2373-2374, 2376, 2378, 
2380-2382, 2385-2386, 
2388-2393, 2395-2396, 
2399-2400, 2403-2404, 
2407-2408, 2410-2417, 
2419, 2422, 2425, 
2437-2438, 2442-2443, 
2447-2448, 2454, 
2457-2459, 2472, 
2483-2484, 2487-2488, 
2570-2571, 2574, 
2578-2579 

2357-2358, 2360-2361, 
2373-2374, 2376, 2378, 
2380-2382, 2385, 2393, 2404, 
2407-2408, 2442-2443, 
2447-2448 

PF3D7_0930300 merozoite surface protein 
1 (MSP1) 

1614, 1639, 1669, 
1671-1672, 1674-1676, 
1679, 1681, 1687-1688 

- 

PF3D7_1115700 cysteine proteinase 
falcipain 2a 

257 - 

PF3D7_1115300 cysteine proteinase 
falcipain 2b 

255 - 

PF3D7_0906500 arginase 154 - 

*The MSP2 crystal structure used here is a fragment of MSP2 in complex with an antibody Fv                
fragment (PDB code = 4QY8) and is not likely to be representative of the native structure of this                 
protein—this region of MSP2 is thought to interact with the parasite plasma membrane ​2​.
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Table S2: Polymorphic hotspots across all modelled ​P. falciparum ​structures with           
MPQS > 1.1, using data on polymorphisms from 65 Gambian isolates. ​Analysis was             
restricted to surface exposed residues (RSA > 0.2). ​A minor allele frequency threshold of 5%               
was used to identify immunologically relevant polymorphisms. 

Location of residues with more than _% polymorphic 
residues within a 15Å radius 

Gene ID Description >10% polymorphic >20% polymorphic

PF3D7_0304600 circumsporozoite (CS) 
protein (CSP) 

317-318, 321-322, 324-330,
345, 347-349, 351-359,
361-362, 365-366

349, 352-354, 356-357, 362 

PF3D7_0731500 erythrocyte binding 
antigen-175 (EBA-175) 

229, 329-330, 333, 336, 396,
399-400, 403-407, 409, 412,
577-584, 588, 592, 595

- 

PF3D7_0930300 merozoite surface 
protein 1 (MSP1) 

1671-1672, 1674, 1676 - 

PF3D7_1335900 thrombospondin-related 
anonymous protein 
(TRAP) 

39, 43, 46, 57, 60-62, 65-66, 
73, 98-100, 104-106, 109, 
112-113, 115-117, 119-120,
122-126, 128-129, 148, 152,
238-239, 290

125 

PF3D7_1036300 duffy binding-like 
merozoite surface 
protein 2 (DBLMSP2) 

166-167, 169-170, 172-173,
183, 197-198, 200, 216-218,
221-227, 229, 232, 252, 255,
287, 290-291, 294-296,
332-333, 339, 342, 344, 356,
359-360, 362-364, 366-370,
373-395, 397-399, 401-402,
405-406, 408-409, 412-413,
416, 419-427, 429-430, 432,
435, 438-440, 442, 445,
447-449, 452-453, 456-457

344, 359, 363-364, 366-370, 
373-395, 397-399, 401, 416,
419-427, 429-430, 432, 435,
438-440, 445, 447-449,
452-453, 456

PF3D7_1133400 apical membrane 
antigen 1 (AMA1) 

115-116, 118, 121, 124, 148,
164, 167-168, 171, 184-190,
192, 194, 196-197, 199-201,
203-207, 209-213, 219,
223-224, 235, 242-246,
267-268, 270, 281-283,
285-286, 293, 295-297,
299-301, 304-305, 332, 335,
339-340, 343-344, 404-405,
407-408, 423-424, 435-438,
440, 483-486, 489, 492-493,

187-190, 192, 194, 196-197,
199-201, 203-207, 209-213,
219, 223-224, 242-246,
282-283, 285-286, 436
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495-498, 501, 503, 508

PF3D7_1200600 erythrocyte membrane 
protein 1, PfEMP1 

1209-1215, 1217, 1219-1220, 
1222-1223, 1231-1233, 1267, 
1280-1281, 1283-1286, 1289, 
1300, 1304, 1307-1308, 1315, 
1317-1323, 1325-1327, 
1329-1333, 1340, 1343, 
1368-1369, 1372-1373, 
1377-1379, 1381-1392, 
1395-1396, 1399-1400, 
1403-1404, 1407, 1410, 1414, 
1417-1425, 1427-1429, 
1432-1434, 1437-1438, 
1461-1462, 1464-1465, 
1467-1469, 1471-1478, 
1480-1482, 1484-1486, 
1488-1489, 1491-1492, 1495, 
1502, 1505, 1524, 1526, 1534, 
1539-1542, 1544-1546, 1548, 
1557, 1559-1561, 1564-1572, 
1574, 1579-1580, 1582, 1624, 
1627-1631, 1633-1634, 1653, 
1655, 1657, 1662-1663, 1718, 
1722, 1725-1742, 1744, 1751, 
1758, 1762-1771, 1773, 1776, 
1779, 1809, 1817-1827, 
1829-1830, 1837, 1872, 
1911-1913, 1915-1916, 
2350-2351, 2353-2355, 
2357-2362, 2364, 2373-2374, 
2376, 2378, 2380-2383, 
2385-2386, 2388-2393, 
2395-2397, 2400, 2403-2404, 
2407, 2410-2417, 2419, 2422, 
2425, 2437-2438, 2442-2443, 
2447-2448, 2451, 2457-2459, 
2480, 2483-2485, 2487-2488, 
2521, 2525, 2567, 2570-2571, 
2574, 2578-2579 

1209-1215, 1217, 1284-1286, 
1289, 1300, 1304, 
1307-1308, 1317-1323, 
1325-1327, 1329-1333, 1340, 
1377-1379, 1381-1391, 1400, 
1403-1404, 1407, 1410, 
1414, 1417-1425, 1427-1429, 
1432-1433, 1461, 1464, 
1468, 1472, 1474-1477, 
1484, 1488, 1526, 
1539-1542, 1544-1546, 1548, 
1559-1561, 1564-1566, 
1568-1572, 1574, 1580, 
1629-1631, 1634, 1653, 
1726-1742, 1744, 1751, 
1762-1771, 1773, 2353-2355, 
2357-2362, 2373-2374, 2376, 
2378, 2380-2383, 2393, 
2397, 2407, 2411-2412, 
2442-2443, 2447-2448 

PF3D7_1115700 cysteine proteinase 
falcipain 2a 

257 - 

PF3D7_1115300 cysteine proteinase 
falcipain 2b 

255 - 

PF3D7_0519200 V-type proton ATPase 
16 kDa proteolipid 

5 - 
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subunit 

PF3D7_0919500 major facilitator 
superfamily 
domain-containing 
protein, putative 

236 - 
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Chapter 4 

Tools for Spatial Aggregation of Protein Data 

A large number of online and offline tools exist for the visualisation and manipulation of protein 3D 

structures. These include Pymol [1], UCSF Chimera [2] and 3Dmol.js [3] for the visualisation of 

structures. Additionally, there are a number of tools that allow mapping of sequence alignments, 

variant sites or other parameters onto protein 3D structures. Such tools include POLYVIEW-3D [4], 

ConSurf [5], Motif3D [6], COMBOSA3D [7], G23D [8] and MuPIT [9]. However, there is a 

distinct lack of tools that allow application of custom data aggregation functions to sequence-

aligned data that has been mapped over a protein 3D structure. Such a tool would be useful to 

investigate protein-protein interactions, examine selection pressures on structured proteins or 

simply map desired data onto a protein structure. This chapter presents a computational tool 

designed to fill this gap, which has been developed as both a Python package (for flexibility and 

extensibility) and an online web server (for ease-of-use). This tool has been termed BioStructMap 

(Biological Structure Mapping), and allows for complex functions to be applied to spatially 

aggregated data. 

A sliding window analysis is an approach that is often used in genomics, in which a statistic or 

metric of interest is applied to successive ‘windows’ of fixed width along the genome. Such an 

approach is also commonly used in the analysis of protein sequences. At its core, a sliding window 

analysis applies a data aggregation function to particular subsets of data, where data subsets are 

defined by proximity along a particular dimension (the independent variable). In a typical sliding 

window analysis over a protein sequence, this means that residues within a certain distance of (i.e. 

number of residues away from) a particular position are included in a window centred on that 

position. For standard sliding window approaches used for both protein and nucleotide sequences, 

sliding windows are defined according to the linear sequence. However, this neglects the 

arrangement of a protein in 3D space. The BioStructMap tool presented in this chapter allows 

application of a ‘3D sliding window’, taking into account residue proximity in 3D space. 

The BioStructMap tool applies a 3D sliding window over a protein structure, passing underlying 

residue data from each window to a data aggregation function, with the resultant value mapped back 

to the central residue for that window. In this way, protein structural information can be integrated 

into data analyses which would otherwise use a sliding window applied over the protein sequence 

or underlying DNA sequence. The data aggregation functions that can be applied by BioStructMap 

are varied, and include: i) application of a mathematical function to selected residue data (e.g. 

mean, median, max, min etc), ii) calculation of average amino acid propensity scales (e.g. 
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hydrophobicity or hydrophilicity), iii) calculation of population genetics statistics such as Tajima’s 

D or Watterson’s theta, or iv) calculation of other measures commonly applied in population 

genetics such as nucleotide diversity or dN/dS. Aside from these built-in functions, spatially 

aggregated data can also be passed to external command line tools for processing, or users can 

extend this tool by writing their own Python functions to process data for each window. Examples 

of this are provided in this chapter. 

This chapter formally introduces the new BioStructMap tool (used in Chapter 3) via a short 

application note, and also includes detailed usage examples across various applications. 

BioStructMap is available on GitHub (https://github.com/andrewguy/biostructmap), via the Python 

Package Index or via an online server (https://biostructmap.burnet.edu.au). The source code has 

been released under the permissive MIT licence, allowing free modification and reuse. The GitHub 

repository is the recommended source for up-to-date code containing any updates and bug fixes. 

In summary, the BioStructMap package allows us to incorporate protein structural information into 

tests of selection pressure, allowing for more sensitive identification of protein regions under 

selection. This is likely to be an important tool in an era in which protein structures are available for 

a large number of proteins (>130,000 structures in the PDB) and large sequencing datasets allow for 

identification of particular protein regions under selection pressures. 
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Abstract
Summary: A sliding window analysis over a protein or genomic sequence is commonly performed, 
and we present a Python tool, BioStructMap, that extends this concept to three-dimensional (3D) 
space, allowing the application of a 3D sliding window analysis over a protein structure. BioStructMap 
is easily extensible, allowing the user to apply custom functions to spatially aggregated data. Bio-
StructMap also allows mapping of underlying genomic sequences to protein structures, allowing the 
user to perform genetic-based analysis over spatially linked codons—this has applications when se-
lection pressures arise at the level of protein structure.
Availability and implementation: The Python BioStructMap package is available at 
https://github.com/andrewguy/biostructmap and released under the MIT License. An online server 
implementing standard functionality is available at https://biostructmap.burnet.edu.au.
Contact: andrew.guy@burnet.edu.au
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Consideration of three-dimensional (3D) protein structure is important in 
many areas of research, including antibody-antigen interactions, protein-
protein interactions and drug interactions with proteins. For example, 
antibody recognition of a dominant epitope can lead to selection pres-
sures on residues associated with that epitope; these residues may be 
distant in the linear protein sequence despite being spatially connected. 
In immunology, these non-linear sequence-structure relationships are 
referred to as discontinuous or conformational epitopes. There are a 
number of pre-existing online tools that allow for visualisation and map-
ping of pre-defined features onto protein structures (Porollo and Meller, 
2007; Baker and Porollo, 2016; Ashkenazy et al., 2010; Segura et al., 
2017), however none of these tools allow for application of a 3D sliding 
window over a protein structure using user-defined functions. There are 
many settings in which sliding window analysis is applied to genomic or 

protein sequences, and we demonstrate that this sliding window ap-
proach can be extended to 3D protein structures.

2 Methods
We present here a Python package named BioStructMap that allows 
mapping of sequence-associated data onto a protein structure. This tool 
also allows for the application of a 3D ‘sliding window’ over a protein 
structure. The user can apply a variety of functions to spatially aggregat-
ed data, mapping the result back to the central residue within each win-
dow. The user must provide sequence-aligned data, a reference sequence, 
and PDB format coordinates over which to process data. For each resi-
due in the structure, all residues within a user-defined radius are selected. 
Data corresponding to these residues (i.e. specific characteristics of 
interest for these residues) is then passed to a function that returns a 
numerical value, which is then mapped back to the central residue (Fig-
ure S1). A number of predefined functions are included in the Bio-
StructMap package. Users can also supply their own function for data 

120

Chapter 4: Tools for Spatial Aggregation of Protein Data



A.J.Guy et al.

processing. Data is output as a Python dictionary of residues and associ-
ated values, written to a PDB file in the B-factor column, or as a text file.
Results can be viewed using PyMOL or similar programs.

BioStructMap uses the Biopython Bio.PDB module for handling PDB 
files, and can accept both PDB and mmCIF files as input. Sequence 
alignments are performed using either the NCBI BLAST+ package or 
the Biopython Bio.pairwise2 module. Alignment of DNA sequences to 
protein sequences is performed using Exonerate (Slater and Birney, 
2005) which allows handling of intron-containing sequences and reverse-
sense translation. Calculation of Tajima’s D is performed using the Py-
thon DendroPy package (Sukumaran and Holder, 2010).

The source code for BioStructMap is available on GitHub 
(https://github.com/andrewguy/biostructmap) or via the Python Package 
Index (PyPI). A simple web-server interface is also available at 
https://biostructmap.burnet.edu.au, using the JavaScript NGL viewer for 
visualisation of protein structures (Rose and Hildebrand, 2015) . Results 
can be viewed in the browser or downloaded as PDB files. Further de-
tails on BioStructMap use are available in Supplementary Material.

3 Usage example
In areas of endemic malaria, immune selection pressure on the malaria 
parasite can lead to balancing selection, in which low-frequency alleles 
are maintained at a higher proportion than would otherwise be expected 
under a neutral model of selection. Tajima’s D (Tajima, 1989) is one 
statistic that has been used to identify regions under balancing selection 
within the malaria genome, and has previously been applied as a sliding 
window over genes of interest (Arnott et al., 2013, 2014). We have also 
previously applied the BioStructMap tool to key vaccine candidates from 
P. falciparum and P. vivax, incorporating protein structural information
into calculations of selection pressures and diversity (Guy et al., 2018a, 
2018b). We illustrate here one of the potential uses for the BioStructMap 
tool, applying a 3D sliding window calculation of Tajima’s D over the 
protein structure of Plasmodium falciparum EBA-175 Region II (RII), a
leading malaria vaccine candidate (Figure 1). This approach groups data 
that are spatially connected but are distant in the linear sequence. Nucle-
otide sequences for EBA-175 RII were extracted from GenBank, origi-
nally deposited from a study examining signatures of selection in P. 
falciparum strains from Kenya and Thailand (Verra et al., 2006). Since 
known structures contain a number of unresolved residues, ModPipe 
(Eswar et al., 2003) was used to generate a comparative structural model 
for EBA-175 RII. A radius of 15 Å was selected for each window as this 
is the typical maximum-dimension for an antibody-antigen interface 
(Ramaraj et al., 2012). When analyzed, a surface exposed loop with a 
high spatially derived Tajima’s D value is identified in both Kenyan and 
Thai isolates. Importantly, this region is involved in the dimerisation of 
EBA-175 RII around its glycophorin A binding partner on the surface of 
the human red blood cell (Tolia et al., 2005), and antibodies that target 
the dimerization interface of EBA-175 RII have previously been shown
to be highly effective at inhibiting parasite entry into red blood cells 
(Chen et al., 2013). A region within the F1 domain is also identified as 
having high Tajima’s D values within Thai samples, but to a much lesser 
extent in Kenyan samples. Further experimental work would be required 
to validate this region as a target of functional antibody responses.

4 Concluding remarks

The BioStructMap package and associated web interface allow for visu-
alisation of sequence-aligned data over a 3D protein structure, as well as 

allowing the incorporation of protein structural information into se-
quence-based metrics using a 3D sliding window approach. This tool is 

applicable to a variety of problems, including identification of regions 
under various forms of genetic, immunological or drug selection pres-
sure, and spatial mapping of residue characteristics that may affect im-
munogenicity, solubility, binding interaction, etc. The tool is easily ex-
tensible, allowing users to define their own functions to apply to spatially 
aggregated data.
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BioStructMap Usage Guide

— Andrew Guy, 2017

1. Introduction

1.1 Rationale

Often in genomics or protein biology, a statistical test or data aggregation
function is applied as a sliding window over a gene or protein sequence. For
example, to identify regions under balancing selection, Tajima’s D has been
applied to the Plasmodium falciparum AMA1 gene as a sliding window (Arnott
et al. 2014). Similarly, a sliding window analysis can be performed over a
protein sequence, often using some amino acid propensity scale, such as the
Kyte & Doolittle hydrophobicity scale (Kyte and Doolittle 1982). However,
these analyses fail to account for the arrangement of a protein in 3D space. In
the case of the Tajima’s D analysis of P. falciparum AMA1 mentioned before,
balancing selection is thought to arise a result of immune selection pressure
on this particular antigen. Additionally, it is likely that this immune selection
pressure is antibody mediated, and hence the result of interactions between
antibodies and the structured antigen. Many of the potential interaction sites in
such an interaction involve discontinuous regions of the protein sequence i.e. form
a conformational/discontinuous epitope. As a result, using a sliding window
over the protein sequence is unlikely to fully capture the selection pressures on
complex structural epitopes.

With this in mind, we have proposed the application of a 3D sliding window
over a protein structure, analogous to the standard 2D sliding window analysis
that is often applied over a protein or gene sequence. This 3D sliding window
analysis has been implemented in a Python package called BioStructMap.

1.2 Overview

The BioStructMap tools allows for the application of a 3D sliding window analysis
over a protein structure. To achieve this, the user must supply a set of sequence-
aligned data and a corresponding reference sequence. This reference sequence is
used to map data to the protein structure. A set of 3D windows are then created
(one for each residue in the structure) with a user-defined radius, and data from
each window is passed to a data aggregation function. The result from this data
aggregation function is then mapped back to the central residue within each
window. These results can then be viewed over the protein structure using a
program such as PyMOL (https://pymol.org). This procedure is analagous to
the traditional 2D sliding window analysis that is often performed over a protein
or gene sequence, but also captures information on the spatial arrangement of
residues in 3D space.

1
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1.3 Availability and installation

The BioStructMap package is available via the Python Package Index (PyPI),
which means that installation with pip is as simple as:

pip install biostructmap

Alternatively, the latest source code can be downloaded from GitHub and
installed:

git clone https://github.com/andrewguy/biostructmap.git biostructmap
cd ./biostructmap
python setup.py install

It is recommended that users install numpy before installing biostructmap.

BioStructMap also has soft dependencies on the NCBI BLAST+ tool (https:
//www.ncbi.nlm.nih.gov/guide/howto/run-blast-local/) and Exonerate (https:
//www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate). If you choose
not to install these, or don’t want to use them, all sequence alignments will be
performed using the Biopython Bio.pairwise2 module. This should work just
as well if your reference sequence is reasonably similar to the sequence of the
PDB file. If this is not the case, then we suggest that a better approach may be
to build a homology model using MODELLER (Webb and Sali 2016) and use
this instead of using the poorly aligned PDB structure.

If either BLAST+ or Exonerate are not installed, you should indicate this by
setting the relevant flags during BioStructMap usage:

import biostructmap

biostructmap.seqtools.LOCAL_BLAST = False
biostructmap.seqtools.LOCAL_EXONERATE = False

Some functions within BioStructMap also require installation of the DSSP tool
(http://swift.cmbi.ru.nl/gv/dssp/). These include calculation of relative solvent
accessibility and secondary structure determination. If you wish to use these
functions, you must have DSSP installed.

2. Basic Usage

Although the BioStuctMap package contains several modules, most of these
work behind the scenes. The biostructmap module should be the only module
that needs to be directly used in most cases.
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2.1 The Structure class

The main class within the biostructmap module is the Structure class. This
is initialised as such:

from biostructmap import biostructmap

my_structure = biostructmap.Structure(pdbfile=’./1zrl.pdb’, pdbname=’1ZRL’, mmcif=False)

The pdbfile argument can be either a string of the file path to the PDB file
of interest, while the pdbname argument is an optional descriptive string that
is used when naming output files. The optional mmcif flag is used to indicate
if the input file is in mmcif format. If you are using an mmcif file, you would
instead run:

my_structure = biostructmap.Structure(pdbfile=’./1zrl.cif’, pdbname=’1ZRL’, mmcif=True)

2.2 Mapping data over a structure

The Structure class contains a number of methods, the most important being
the map() method. This method allows for the mapping of data over a protein
structure, with the ability to also apply some sort of spatial aggregation to data.
The map method takes a number of arguments, the most important of which are
data, method, ref and radius.

The Structure.map method returns a dictionary-like object, which can also be
used to write output data to a PDB file or CSV file.

data The data parameter is a dictionary mapping individual chains within
the protein structure to relevant data objects. The exact form of the data object
will depend on the method argument selected. For example, if you are mapping
the location of polymorphic residues onto a structure, the data would be a list
of polymorpic sites:

data = {(’A, B’): [1, 34, 56, 77, 120, 121, 125],
(’C’, ): [5, 34, 67, 122]

}

In this example, identical chains A and B are both assigned the same set of
data, whilst the unique chain C is assigned another set of polymorphic residues.
Note that the given polymorphic sites for each chain are aligned to the reference
sequence supplied - see below for more detail.
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method The method parameter is either a string representing a method for
mapping data (one of a number of pre-defined methods), or a custom function
for mapping data (explained in more detail below). For example, to map
polymorphic sites onto a protein structure, set method=snps.

ref The ref parameter is a set of reference sequences for all chains, and is used
to align the user-supplied data to the protein structure. All data supplied via
the data argument should align to these reference sequences.

For example, with identical chains A and B, and a unique chain C, we would have:

ref = {’A’: ’KTQEDKL...DJSKJK’,
’B’: ’KTQEDKL...DJSKJK’,
’C’: ’NAPNLEV...KLWELW’}
# Note: sequences have been condensed for readability
# You need to provide the full-length sequence!

All data provided in the data parameter should align to these sequences.

Also note the subtle difference in the keys needed for the ref dictionary vs. the
data dictionary. The ref dictionary should have a sequence provided for every
chain being evaluated, with the dictionary key being the string identifier for that
chain. The data dictionary requires a tuple of chain identifiers for each related
data value. This difference arises so that it is possible to map the same data
over multiple chains and subsequently ensure we don’t duplicate identical data
points that might fall within the same radius (from different chains). This will
be discussed in more detail in a later section.

If the supplied data is a genomic multiple sequence alignment, then the provided
reference sequence should also be a genomic sequence. In this case biostructmap
will align this genomic sequence to the protein sequence for the relevant chain in
the structure. If a genomic sequence is supplied, then the map_to_dna argument
should also be set to True.

If the ref argument is not provided, then the sequences for each chain in the
structure are used.

radius The radius (in Angstrom) over which to select nearby residues for
inclusion within each 3D window. This defaults to 15 Angstrom, which is the
typical maximum dimension for an antibody epitope. If you simply want to
map data to individual residues (eg. to display polymorphic sites on a protein
structure), set radius=0.

selector When determining which residues fall within a given radius of a
central residue, there are a number of ways in which to compute distances
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between residues. The default behaviour is to compute the minimum distance
between any two atoms in each pair of residues. The selector argument allows
the user to specify other atoms by which to compute residue distance. By default
this argument is ’all’,
which gets all non-heterologous atoms. Other potential options include ’CA’,
’CB’ etc. If an atom is not found within a residue object, then the selection
method reverts to using ’CA’.

rsa_range If the user wishes to restrict analysis to residues that fall within
a given range of relative solvent accessibility (RSA) values (eg. only surface
exposed residues), they can provide a tuple to the rsa_range argument. This
argument takes a tuple in the form (minimum, maximum), where minimum and
maximum are float values between 0 and 1.

If any residue falls outside the given range of RSA values, then this residue will
ignored in all calculations.

RSA is calculated using the DSSP software. If this is not installed and available
on the users PATH, then any attempt to use the rsa_range argument will fail,
throwing an exception.

map_to_dna The map_to_dna argument is a binary flag to indicate if the
reference sequence to be aligned is a DNA sequence. This needs to be set to
True if the reference sequence is a DNA sequence (e.g. when using the Tajima’s
D method).

method_params In order to make biostructmap flexible and extensible, the
map method also takes additional arguments that will be passed to the data
aggregation method. These arguments should be provided to the method_params
argument in a dictionary of keyword arguments (key) and associated values
(value).

To provide a concrete example of this, we can consider the ’default_mapping’
method that applies a data aggregation method to sequence-aligned numerical
data. By default, this method calculates the mean of all data within each radius.
However, we can apply other data aggregation functions (e.g. calculate the me-
dian) to each 3D window by passing a method argument to the default_mapping
function:

import numpy as np

my_structure.map(..., method_params={’method’: np.median})
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2.3 Basic Usage examples

2.3.1 Mapping polymorphic hotspots One usage of the biostructmap tool
is to determine polymorphic hotspots on a protein structure. This requires the
user to provide a list of all polymorphic residues of interest and an associated
reference sequence. In this example we have a single-chain structure with
the PDB file 1zrl.pdb and a reference sequence in FASTA format in the file
reference.fasta. We will use the Biopython SeqIO module to read in the
reference sequence from file. Polymorphic residues are residues 3, 67, 78, 99, 100,
120 and 121, relative to the reference sequence (where the first residue is number
1).

If we were interested in averaging the number of polymorphisms within a 10
Angstrom radius, we would run:

import biostructmap
from Bio import SeqIO

reference_seq = SeqIO.read("reference.fasta", "fasta")

my_structure = my_structure = biostructmap.Structure(pdbfile=’./1zrl.pdb’,
pdbname=’1ZRL’)

hotspots = my_structure.map(data={(’A’,): [3, 67, 78, 99, 100, 120, 121]}
method=’snps’,
ref={’A’: reference_seq},
radius=10

)

2.3.2 Amino acid propensity scales We can also apply a 3D sliding window
to calculation of amino acid propensity scales. In this example we will apply the
Kyte & Doolittle index of hydrophobicity to the protein structure initialized in
the above example. We will also demonstrate how to apply a custom amino acid
scale as a 3D sliding window.

We can obtain the Kyte & Doolittle scale from the Biopython package:

from Bio.SeqUtils import ProtParamData
kd_scale = ProtParamData.kd

For the ’aa_scale’ method, the data argument should be a dictionary repre-
senting the amino acid scale of interest. In this example we will use a window
size of 15 Angstrom, and only consider surface exposed residues (RSA > 0.2).
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mean_hydrophocity = my_structure(data=ProtParamData.kd_scale,
method=’aa_scale’,
ref={’A’: reference_seq},
radius=15,
rsa_range=(0.2, 1)
)

To use a custom amino acid propensity scale, we just need to provide a dictionary
of numerical values for all amino acids. We will apply the ‘relative mutability
scale’ defined by (Dayhoff, Schwartz & Orcutt, 1978). Again, we are only
considering surface exposed residues.

relative_mutability = {
’A’: 100, ’R’: 65, ’N’: 134, ’D’: 106, ’C’: 20, ’Q’: 93,
’E’: 102, ’G’: 49, ’H’: 66, ’I’: 96, ’L’: 40, ’K’: 56,
’M’: 94, ’F’: 41, ’P’: 56, ’S’: 120, ’T’: 97, ’W’: 18,
’Y’: 41, ’V’: 74

}

mean_mutability = my_structure(data=relative_mutability,
method=’aa_scale’,
ref={’A’: reference_seq},
radius=15,
rsa_range=(0.2, 1)
)

2.3.3 Calculation of Tajima’s D Tajima’s D is a statistical test used
to determine if a sequence is evolving under non-neutral selection pressure.
Here we will apply Tajima’s D as a 3D sliding window over our protein
structure. We need to supply a multiple sequence alignment, using the
biostructmap.SequenceAlignment class. The multiple sequence alignment is
initially supplied as a FASTA file.

In this case, the reference sequence is taken as the first sequence in the multiple
sequence alignment. Note the need to set map_to_dna=True.

msa = biostructmap.SequenceAlignment(’./alignment.fasta’, file_format=’fasta’)
reference_seq = str(msa_data[0].seq)

tajimas_d = my_structure(data={(’A’,): msa},
method=’tajimasd’,
ref= {’A’: reference_seq},
radius=15,
map_to_dna=True
)
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2.3.4 Nucleotide diversity Nucleotide diversity is a metric that is used to
quantify the degree of diversity within a particular window on a gene. We can
extend this here to a 3D window over a structure to get a sense of the particular
regions of the protein structure that are most diverse within a population (at a
genomic level).

Again, we need to supply a multiple sequence alignment.

msa = biostructmap.SequenceAlignment(’./alignment.fasta’, file_format=’fasta’)
reference_seq = str(msa_data[0].seq)

nucleotide_diversity = my_structure(data={(’A’,): msa},
method=’nucleotide_diversity’,
ref= {’A’: reference_seq},
radius=15,
map_to_dna=True
)

2.3.5 Applying a custom data aggregation function The ’default_mapping’
method allows the user to apply a custom data aggregation function to data
within each window. For example, you could calculate the arithmetic mean
of data within a window, calculate the maximum or minimum value within a
radius, or apply some other metric to data. We will illustrate with a simple
calculation of the maximum data value within a 5 Angstrom window.

Note the use of the additional keyword argument method_params, which takes
a dictionary of additional parameters to pass to the default_mapping method.
In this case, default_mapping takes the keyword argument method, which
should be a function that can be used to aggregate a list of data points. This
default_mapping method can be quite useful when constructing custom map-
ping procedures!

data_values = list(range(1000)) # Just some placeholder data

maximum_values = my_structure(data=data_values,
method=’default_mapping’,
ref={’A’: reference_seq},
radius=5,
method_params={

’method’: max
}

)
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2.4 Results

The results for each mapping call are returned in a dictionary-like object (DataMap
class - a simple class that extends the dict class by adding a couple of additional
methods to deal with writing results to files).

The main method that is likely to be used from the DataMap object is the
write_data_to_pdb_b_factor method. This writes all data to the B-factor
column of a PDB file, allowing easy visualisation in a program such as PyMOL.

We demonstrate the use of this following a simple calculation of average hy-
drophobicity (see section 2.3.2).

import biostructmap
from Bio import SeqIO
from Bio.SeqUtils import ProtParamData

kd_scale = ProtParamData.kd
reference_seq = SeqIO.read("reference.fasta", "fasta")

mean_hydrophocity = my_structure(data=ProtParamData.kd_scale,
method=’aa_scale’,
ref={’A’: reference_seq},
radius=15,
rsa_range=(0.2, 1)
)

mean_hydrophocity.write_data_to_pdb_b_factor(fileobj=’./1ZRL_hydrophocity.pdb’)

For the write_data_to_pdb_b_factor method, the fileobj keyword argument
can be either an output file name as a string, or a file-like object to write output
data to. Additionaly keyword arguments for this method are default_no_value
and scale_factor. The default_no_value argument is used to specify the
numerical value written to the B-factor column if the value for this residue
is None (non-numerical values can’t be written to the B-factor column). The
scale factor argument is used to scale output values in situations where they
are either too big or small to fit within the B-factor column. For example,
it is usually sensible to scale nucleotide diversity values by a factor of 1000
(scale_factor=1000).

3. Extending BioStructMap

BioStructMap can be extended by providing custom functions with which to
process data within each 3D sliding window. We will briefly discuss the format
required for these custom data processing functions.

Each data processing function has the format:

9
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def some_method(structure, data, residues, ref, **kwargs):
...
return final_data

where structure is the parent biostructmap.Structure object from which
the map method has been called, data is the data argument supplied to the map
method (no filtering has been applied to this object yet!), residues is a list of
PDB residues within that particular window, and ref is a dictionary mapping
PDB residue numbers to reference sequence indices.

3.1 Data aligned to a protein sequence

If the custom method being written needs to deal with data that is aligned to a
protein sequence, then the key steps that need to be followed are:

1. From the list of PDB residues within the window, extract the positions of
these residues in the corresponding reference sequence.

2. Construct a list of applicable data points, given the list of reference-
sequence aligned residues.

3. Perform a data aggregation function over these data points, returning a
single value (a single, numerical return value is not absolutely required,
although writing data to a PDB file will not be possible if data is non-
numerical).

We illustrate these steps with a function to calculate the mean of selected data
points:

import numpy as np

def calculate_mean(_structure, data, residues, ref, ignore_duplicates=True):
# Step 1: Get a list of all keys from the data object.
chains = data.keys()

# Step 1: Extract position of residues in the reference sequence
ref_residues = [ref[x] for x in residues if x in ref]

# Step 1: A little bit more manipulation, as each reference residue is given
# by a (chain, residue number) tuple, while the data keys are tuples that
# can contain multiple chains (to enable mapping data between several chains).
# The list of residues below will look like:
# [((’A’, ’B’), 1), ((’A’, ’B’), 2), etc.]
residues = [(chain, x[1]) for chain in chains
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for x in ref_residues if x[0] in chain]

# If two separate chains both contain the same data point, and both
# within the same window, then we might want to de-duplicate this data
# point, to prevent skewing of the result.
if ignore_duplicates:

residues = set(residues)

# Step 2: Get applicable data points
data_points = [data[res[0]][res[1]] for res in residues]

# Step 3: If there is any data that maps to residues within the given
# window, then we apply some data aggregation method to this data.
# Note that for this mapping procedure, we define this method to be the
# arithmetic mean by default.
if data_points:

result = np.mean(data_points)
else:

result = None
return result

This can then be used by passing this method to the map function of a Structure
object. Note that the data passed to the map function should be aligned to the
reference sequence.

data_values = list(range(1000)) # Just some placeholder data
mean_values = my_structure.map(data={(’A’,): data_values}

method=calculate_mean,
ref={’A’: reference_seq},
radius=15

)

Alternatively, if the user simply wants to apply an aggregation function to
selected data points (as in the above example), then the default_mapping
method provides a nice interface to perform this via the additional keyword
argument method_params:

data_values = list(range(1000)) # Just some placeholder data
mean_values = my_structure.map(data={(’A’,): data_values}

method=’default_mapping’,
ref={’A’: reference_seq},
radius=15,
method_params={’method’: np.mean}

)
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3.2 Genomic multiple sequence alignment data

If the user wants to perform a stastical test or data aggregation on codons that
map to residues within each window, then the simplest option is to use the
_genetic_test_wrapper function defined in the biostructmap.map_functions
module. This is a simple wrapper function that constructs a multiple sequence
alignment from all codons that map to resiudes within a window. For example,
to define a test to calculate nucleotide diversity:

Firstly, we define a function to calculate nucleotide diversity from a multiple
sequence alignment. We are going to use the DendroPy library to perform this.

def diversity_from_dendropy(sequence_alignment):
# Just make sure the alignment is a string in fasta format.
if not isinstance(alignment, str):

data = alignment.format(’fasta’)
else:

data = alignment

# If the alignment doesn’t exist, then return None.
if not alignment or len(alignment[0]) == 0:

return None

# Construct the relevant DenroPy data structure
seq = dendropy.DnaCharacterMatrix.get(data=data, schema=’fasta’)

# Calculate diversity
diversity = dendropy.calculate.popgenstat.nucleotide_diversity(seq)

return diversity

Now we can use the _genetic_test_wrapper function to pass alignments from
each window to the diversity_from_dendropy function:

from biostructmap.map_functions import _genetic_test_wrapper

def _calculate_nucleotide_diversity(_structure, alignments, residues, ref):
nucleotide_diversity = _genetic_test_wrapper(_structure, alignments,

residues, ref,
diversity_from_dendropy)

return nucleotide_diversity

We can then use this function:

msa = biostructmap.SequenceAlignment(’./alignment.fasta’, file_format=’fasta’)
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reference_seq = str(msa_data[0].seq)

nucleotide_diversity = my_structure(data={(’A’,): msa},
method=_calculate_nucleotide_diversity,
ref= {’A’: reference_seq},
radius=15,
map_to_dna=True
)

3.3 Genomic data passed to a command line tool

It is also possible to pass data to a command line tool for processing using the
general format outline above.

We firstly need to write a temporary file containing a multiple sequence alignment
for each window, and then call our command line tool. In this example we will
use ‘possum’ (https://github.com/jeetsukumaran/possum), which calculates a
number of population statistics from a multiple sequence alignment.

def call_possum(alignment)
#Run external tool over sub alignment.
with tempfile.NamedTemporaryFile(mode=’w’) as seq_file:

seq_file.write(alignment)
# Make sure data is actually written to file.
seq_file.flush()
process = subprocess.run(["/opt/bin/possum", "-f", "dnafasta", "-q",

"-v", seq_file.name], stdout=subprocess.PIPE)
try:

# Just need to parse the output data to get a numerical value.
tajd = float(process.stdout.decode().strip().split(’\t’)[-1])

except ValueError:
tajd = None

return tajd

Once we have a function that will process a single muliple sequence alignment,
we can wrap this in the _genetic_test_wrapper function:

def tajimas_d_from_possum(_structure, alignments, residues, ref):
result = _genetic_test_wrapper(_structure, alignments, residues, ref,

call_possum)
return result

Fianlly, we can use the final function to map Tajima’s D over a structure:

13

136

Chapter 4: Tools for Spatial Aggregation of Protein Data



msa = biostructmap.SequenceAlignment(’./alignment.fasta’, file_format=’fasta’)
reference_seq = str(msa_data[0].seq)

tajimas_d = my_structure(data={(’A’,): msa},
method=tajimas_d_from_possum,
ref= {’A’: reference_seq},
radius=15,
map_to_dna=True
)
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Chapter 5 

Selection pressures on key P. vivax antigens: a structural perspective 

Previous chapters have explored the use of a novel computational tool that allows incorporation of 

protein structural information into measures of selection pressure. In this chapter this tool is applied 

to two key P. vivax antigens, and examine selection pressures across multiple geographic locations. 

In particular, PvAMA1 and PvDBP region II were examined, using homology models based on 

known protein structures, and compared spatially-derived nucleotide diversity and Tajima’s D 

across populations. 

AMA1 is a major vaccine candidate in both P. falciparum and P. vivax, and is present in all 

Plasmodium species [1]. It is released from the micronemes onto the surface of the merozoite 

during the invasion process, and binds to RON2, assisting in the formation of a tight junction 

between the malaria parasite and host-cell membranes [2–4]. AMA1 has been shown to be an 

important target of anti-parasite immune responses in both P. falciparum [5,6] and P. vivax [7], 

supporting its consideration as a vaccine candidate. AMA1 is highly polymorphic, which may 

present an impediment to developing strain-transcending immunity from a single vaccine construct, 

although there is suggestion that strain-transcending immunity is achievable [8].  

Similar to PvAMA1, PvDBP is a micronemal protein involved in the invasion of red blood cells. 

PvDBP binds to a receptor called Duffy antigen/receptor for chemokines (DARC) on the 

reticulocyte surface via a domain termed Region II (RII) [9,10]. PvDBP is a member of the EBL 

family of proteins, which also includes the P. falciparum proteins EBA-175, EBA-181 and EBA-

140 [11]. Within P. falciparum, these EBL family proteins bind to a variety of receptors and 

facilitate a level of redundancy in the invasion process. However, PvDBP is the sole EBL family 

protein in P. vivax and loss of DARC on reticulocytes is protective against P. vivax infection, 

making PvDBL an attractive vaccine target [12]. Additionally, population studies [13,14] and in 

vitro work [15,16] have both highlighted the protective effect of anti-PvDBP antibody responses.  

To gain a further understanding of the distribution of polymorphisms and possible immune-

mediated selection pressures over the protein structures of PvAMA1 and PvDBP, these proteins 

were analysed using the BioStructMap tool outlined in Chapter 4 (and used in Chapter 3). Genomic 

sequences were extracted from GenBank from a large number of isolates from geographically 

diverse locations. With these sequences grouped according to geographic location, structural 

patterns of nucleotide diversity and Tajima’s D were examined across all populations. Nucleotide 

diversity is a  measure of the degree of genetic variation across isolates, while Tajima’s D is a test 
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statistic commonly used to identify regions of a gene under immune selection pressure (Tajima’s D 

> 0).

Structural patterns of nucleotide diversity were similar across all populations examined, suggesting 

a commonality in key epitopes targeted across all populations. Domain I of PvAMA1 was observed 

to have the highest nucleotide diversity and displayed significant signatures of immune selection 

pressure. There was no evidence of immune selection pressure on domains II or III of PvAMA1. 

This is in contrast to the results observed for PfAMA1 in Chapter 3, in which signatures of immune 

selection pressure were observed on the border of domains II and III. Nucleotide diversity for 

PvDBP was highest bordering the dimerisation and DARC-binding interface, although there was 

less evidence of immune selection pressure on this antigen. 
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Abstract 

Background: Plasmodium vivax is a significant contributor to the global malaria burden, and a vaccine targeting 

vivax malaria is urgently needed. An understanding of the targets of functional immune responses during the course 

of natural infection will aid in the development of a vaccine. Antibodies play a key role in this process, with responses 

against particular epitopes leading to immune selection pressure on these epitopes. A number of techniques exist 

to estimate levels of immune selection pressure on particular epitopes, with a sliding window analysis often used 

to determine particular regions likely to be under immune pressure. However, such analysis neglects protein three-

dimensional structural information. With this in mind, a newly developed tool, BioStructMap, was applied to two key 

antigens from Plasmodium vivax: PvAMA1 and PvDBP Region II. This tool incorporates structural information into tests 

of selection pressure.

Results: Sequences from a number of populations were analysed, examining spatially-derived nucleotide diversity 

and Tajima’s D over protein structures for PvAMA1 and PvDBP. Structural patterns of nucleotide diversity were similar 

across all populations examined, with Domain I of PvAMA1 having the highest nucleotide diversity and displaying sig-

nificant signatures of immune selection pressure (Tajima’s D > 0). Nucleotide diversity for PvDBP was highest border-

ing the dimerization and DARC-binding interface, although there was less evidence of immune selection pressure on 

PvDBP compared with PvAMA1. This study supports previous work that has identified Domain I as the main target of 

immune-mediated selection pressure for PvAMA1, and also supports studies that have identified functional epitopes 

within PvDBP Region II.

Conclusions: The BioStructMap tool was applied to leading vaccine candidates from P. vivax, to examine structural 

patterns of selection and diversity across a number of geographic populations. There were striking similarities in 

structural patterns of diversity across multiple populations. Furthermore, whilst regions of high diversity tended to 

surround conserved binding interfaces, a number of protein regions with very low diversity were also identified, 

and these may be useful targets for further vaccine development, given previous evidence of functional antibody 

responses against these regions.
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Background

Plasmodium vivax infected an estimated 8.55  million 

people in 2016 and is a significant contributor to global 

malaria morbidity, with the majority of P. vivax cases 

occurring within South-East Asia [1]. There remains 

a significant need for a vaccine against P. vivax, and an 

understanding of the targets of natural immune responses 

following P. vivax infection is likely to aid such an effort. 

A key challenge in vaccine development is the identifica-

tion of specific antigens and epitopes that are targets of 

protective antibody responses. It is possible to use popu-

lation genetic data to identify regions of proteins that are 

under immune-mediated selection pressure, which gives 

rise to balancing selection within that protein region. 

Tajima’s D is one test statistic that is often used to iden-

tify departures from a neutral model of selection, and has 

been applied to malaria genes both on a per-gene basis 

[2, 3], or as a sliding window analysis along a gene [4–7]. 

A number of studies have previously examined P. vivax 

proteins such as apical membrane antigen 1 (PvAMA1) 

and Duffy-binding protein (PvDBP) for evidence of 

immune selection pressure using these approaches [4, 8–

11]. However, because a sliding window analysis is typi-

cally performed over the linear gene sequence, it does not 

take into account the impact of the three-dimensional 

(3D) structural constraints of the protein in the calcula-

tion of selection pressures. A new method that allows 

incorporation of protein structural information into tests 

for selection pressure has recently been described [12], 

and has been applied here to two leading P. vivax vaccine 

candidates: PvAMA1 and PvDBP.

AMA1 is a type I transmembrane protein present in all 

Plasmodium species [13]. It is localized to the parasite 

micronemes, and is released onto the surface of the mer-

ozoite prior to invasion of red blood cells [14]. AMA1 

binds to RON2 during the formation of the tight junction 

between parasite and host–cell membranes [15, 16] and 

is a target of protective immune responses [17–20]. The 

ectodomain of Plasmodium AMA1 proteins is divided 

into three domains, termed Domains I (DI), II (DII) and 

III (DIII) (Additional file  1) [21]. DI is considered to be 

the most polymorphic, and is also the site of RON2 bind-

ing [22]. RON2 binds a conserved hydrophobic cleft 

that is surrounded by a number of highly polymorphic 

regions, the most notable being the C1L loop, a surface 

exposed loop with high variability that is suggested to 

define strain-specificity in anti-AMA1 responses in Plas-
modium falciparum infection [23]. While DI is gener-

ally considered to be the most important for functional 

antibody responses, there is evidence that DII and DIII 

may also be targets of functional antibody responses in P. 
falciparum [8, 24]. A number of studies have investigated 

selection pressures on PvAMA1. Evidence for balancing 

selection within Domain I has been observed in a Ven-

ezuelan population [9], in a number of Papua New Guin-

ean populations (Madang and Wosera, Madang and East 

Sepik) [4, 8], an Iranian population [10] and in a Peruvian 

population [25]. In contrast, two other studies examin-

ing PvAMA1 sequences in isolates from Korea [26] and 

Myanmar [27] did not find any evidence of balancing 

selection, but instead observed evidence of recent popu-

lation bottleneck and expansion in those populations.

PvDBP is an important micronemal protein that binds 

to the Duffy antigen/receptor for chemokines (DARC) 

on human reticulocytes during invasion [28, 29]. Whilst 

there is evidence that PvDBP is not absolutely essential 

for invasion of reticulocytes [30–32], Duffy-negative 

individuals are largely resistant to P. vivax infection, and 

hence PvDBP makes an attractive vaccine target [33]. 

PvDBP is part of the erythrocyte-binding like (EBL) 

family of proteins, which include EBA175, EBA181 and 

EBA140 in P. falciparum [34]. PvDBP is the sole EBL 

family protein in P. vivax [35]. EBL family proteins are 

composed of a number of distinct domains, with Region 

II (RII) being a cysteine-rich Duffy-binding like (DBL) 

domain that is involved in binding to erythrocytes. EBL 

family proteins each recognize a different receptor via 

their respective DBL domains [29, 36–38]; PvDBP binds 

to DARC via its DBL domain (RII) [39]. During this pro-

cess two PvDBP molecules form a dimer around two 

DARC molecules [39, 40]. RII of PvDBP has been divided 

into a number of subdomains (subdomains 1–3) [41] 

(Additional file  2), and it is subdomain 2 that contains 

both the dimer interface and DARC binding residues 

[39]. Immune responses against PvDBP have been asso-

ciated with protection from clinical malaria in naturally 

exposed cohorts [42, 43] whilst antibodies against PvDBP 

RII epitopes have been found to inhibit both attachment 

of PvDBP RII to erythrocytes [44] and in vitro invasion 

of erythrocytes [45]. With regards to immune selection 

pressure on PvDBP, a study of 100 Sri Lankan isolates 

found no evidence of significant selection pressure on 

this region using Tajima’s D, dN/dS or Fu and Li’s D and 

F statistics [11]. Another study examining genetic diver-

sity of PvDBP RII across multiple populations showed a 

significantly positive value of dN/dS in this region, sug-

gesting that this region may be under immune selection 

pressure [25].

In this study, selection pressures on PvAMA1 and 

PvDBP Region II were examined in the context of pro-

tein structure, using a newly developed tool called Bio-

StructMap [12]. BioStructMap enables the application of 

a 3D sliding window over a protein structure. This allows 

incorporation of protein structural information into tests 

such as Tajima’s D or nucleotide diversity that are tradi-

tionally performed as a linear 2D sliding window over a 
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protein or nucleotide sequence. A previous study iden-

tified a discontinuous region of PfAMA1 bordering DII 

and DIII that had a strong signature of balancing selec-

tion when considering spatially derived Tajima’s D [12]. 

Given that other studies have identified DI of PvAMA1, 

rather than DII or DIII, as being under balancing selec-

tion, it was considered that incorporation of protein 

structural information might yield additional insights 

into other regions under immune selection pressure. 

Genomic sequences from a number of populations were 

analysed, and spatially-derived nucleotide diversity and 

Tajima’s D were examined using protein structural infor-

mation for PvAMA1 and PvDBP Region II. Structural 

patterns of nucleotide diversity were similar across all 

populations examined, with Domain I of PvAMA1 hav-

ing the highest nucleotide diversity and displaying sig-

nificant signatures of balancing selection (Tajima’s D > 0). 

Nucleotide diversity for PvDBP was highest bordering 

the dimerization and DARC-binding interface, although 

there was less evidence of immune selection pressure on 

this antigen.

Methods

Data sources

Reference sequences for Sal-1 PvDBP (PVX_110810) 

and PvAMA1 (PVX_092275) were obtained from Plas-

moDB, v34 (http://www.plasm oDB.org) [46]. Genomic 

sequences from field isolates were extracted from Gen-

Bank, restricted to P. vivax, and with the condition that 

sequences had to cover > 95% of the structured domains 

examined here (i.e. partial fragments from these regions 

were excluded). Sequences from non-human hosts were 

excluded, as were sequences without a known geographic 

location described either in the associated literature or 

clearly annotated in the sequence record. Single isolate 

populations were also excluded. For PvDBP, bases 766–

1659 were used, while for PvAMA1 bases 121–1422 were 

used.

Sequence polymorphism analysis

The DendroPy Python library [47] was used to calculate 

Tajima’s D, Watterson’s Theta, mean pairwise differences 

and nucleotide diversity. Haplotype diversity was calcu-

lated using:

where xi is the relative frequency of the ith haplotype and 

n is the number of samples.

Normalized Shannon entropy [48] for each position in 

the protein sequence was calculated using:

H =

n

n − 1

(
1 −

∑
i

x2i

)

where S is the normalized Shannon entropy and pi is 

the frequency at that position of the ith amino acid in 

the standard 20 amino acid alphabet. The normalized 

Shannon entropy is a measure of sequence diversity, and 

takes values between 0 and 1, where 0 indicates perfect 

sequence conservation at that site, and 1 indicates an 

even distribution of all possible amino acids at that site.

Phylogenetic analysis

Sequences from all isolates were aligned using MUSCLE 

v3.8.31 [49], and alignments manually adjusted to mini-

mize gaps. Maximum likelihood phylogenetic trees were 

constructed for AMA-1 and DBP sequences using IQ-

TREE v1.3.11.1 [50]. The ultrafast bootstrap estimation 

(UFBoot) [51] was used with 5000 bootstrap replicates 

and a best fit model was chosen according to the Bayes-

ian Inference Criterion [52]. Phylogenetic trees were vis-

ualized with iTOL [53].

Incorporation of structural information into sequence 

analysis

A Python package, BioStructMap, which allows for the 

application of a 3D sliding window over a protein struc-

ture has been previously described [12]. BioStructMap 

was used to compute spatially derived Tajima’s D and 

nucleotide diversity (π) values for both PvAMA1 and 

PvDBP structures, with a radius of 15 Å for each window. 

BioStructMap was also used to calculate Normalized 

Shannon Entropy on a per-residue basis.

Protein structural models

Known PvDBP structures (i.e. 4NUU, 3RRC, 4YFS, 

4NUV, 5F3J) all contain a number of unresolved resi-

dues, and to ensure complete coverage of DBP Region II 

in this analysis, a template-based model of P. vivax DBP 

was generated for use with BioStructMap. This model 

was created using ModPipe [54], an automated software 

pipeline that utilizes MODELLER for the generation of 

comparative protein structure models [55]. The PDB 

structure  4NUU was used to generate this comparative 

model. The generated model is accessible via ModBase 

(https ://modba se.compb io.ucsf.edu/; ModPipe model ID 

f7602e019fac5be4a79c4cca6751b392) [56].

The PvAMA1 model used has been previously 

described [4], and uses a chimeric template to generate a 

structural model of PvAMA1.

S = −

∑

i

pi log2 pi

log2 20
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Comparing patterns of selection and diversity 

between populations

To compare structural patterns of nucleotide diversity and 

Tajima’s D between all populations considered in this study, 

Spearman’s rank correlation coefficient was computed for 

both PvAMA1 and PvDBP residue data between each pair 

of populations. Residues with missing data in one or both 

populations (i.e. Tajima’s D was undefined) were excluded 

from analysis for that pair of populations.

Data analysis, statistics and other software used

The majority of data analysis was performed using the Ana-

conda distribution of Python 3.5. Plotting was performed 

with the Python Matplotlib package, version 1.5.1 [57]. 

Statistical analysis was performed using SciPy [58]. Protein 

structures were visualized using PyMol [59].

Results

Population structure of PvAMA1 and PvDBP sequences

This study aimed to examine selection pressures on key 

structured domains of PvDBP and PvAMA1. Genomic 

sequences for each antigen were extracted from GenBank, 

with a total of 505 PvAMA1 sequences and 243 PvDBP 

sequences obtained, belonging to 10 and 12 distinct pop-

ulations, respectively. Sequences which did not cover at 

least 95% of the structured domains examined (PvAMA1, 

PVX_092275: nucleotides 121–1422; PvDBP, PVX_110810: 

nucleotides 766–1659) were excluded from analysis, as 

were sequences from single-isolate populations or non-

human hosts. Maximum likelihood phylogenetic trees 

were constructed for both PvAMA1 and PvDBP (Fig.  1) 

using aligned sequences from all populations. Some popu-

lations were generally contained on their own branch (e.g. 

South Korea for PvAMA1, Mexico and Papua New Guinea 

for PvDBP), while other branches contained a mix of popu-

lations. This intermixing was particularly evident for pop-

ulations that are geographically close, such as Thailand, 

Myanmar and Papua New Guinea for PvAMA1.

Traditional measures of selection pressure and diversity 

for PvAMA1 and PvDBP

Key population parameters for PvAMA1 and PvDBP 

sequences were computed, as well as several measures of 

diversity and selection (Tables  1, 2). A total of 259 hap-

lotypes were observed for PvAMA1 (haplotype diver-

sity = 0.99), while 84 haplotypes were observed for PvDBP 

RII (haplotype diversity = 0.96).

For PvAMA1, nucleotide diversity (π) and mean 

number of pairwise differences (k) were highest in the 

three Thai populations examined, with a maximum π of 

10.09 × 10−3 in the 2007 Tak Province, Thailand sam-

ples. Nucleotide diversity was lowest in the South Korean 

population (π = 5.90 × 10−3), which may be explained 

by a recent bottleneck in this population, limiting over-

all diversity; this is supported by the negative Tajima’s 

D value observed for PvAMA1 in this South Korean 

population (D = − 1.20). Tajima’s D is often used to iden-

tify regions under balancing selection (Tajima’s D > 0), 

which can be the result of immune selection pressure, 

and it is noted that for PvAMA1, only the Venezuelan 

population had a significantly positive Tajima’s D value 

(D = 2.12, p < 0.05), as per the confidence limits outlined 

in Tajima [60], although these limits may be overly con-

servative [61]. Most other populations also had a positive 

Tajima’s D value, such as Papua New Guinea (Madang: 

D = 1.59; East Sepik: D = 1.09) and Thailand (Chantaburi: 

D = 1.22), with the sole exception of South Korea (dis-

cussed above).

When examining PvDBP, nucleotide diversity was high-

est in South Korea (π = 10.53 × 10−3), Bangkok, Thai-

land (π = 10.37 × 10−3) and Myanmar (π = 10.17 × 10−3). 

Interestingly, the South Korean population had a negative 

Tajima’s D value that was statistically significant, sug-

gestive of a recent population bottleneck and expansion. 

This population also had the highest number of poly-

morphic sites (58 non-synonymous). This high variabil-

ity is probably due to 2 or 3 divergent isolates (Fig. 1b), 

and haplotype diversity is relatively low for this popu-

lation (Hd = 0.85). Tajima’s D values for PvDBP were 

mostly close to zero, with the highest value observed for 

a Colombian population (D = 1.72).

These observations agree with previous studies that 

have generally observed greater signatures of immune 

selection pressure on PvAMA1 as compared to PvDBP 

[25].

Diversity and selection on the PvAMA1 structure

We then examined selection pressures and polymor-

phisms in the context of protein 3D structure using Bio-

StructMap, a tool that allows for incorporation of protein 

structural information into a sliding window analysis. To 

quantify nucleotide diversity over the PvAMA1 structure 

both as a spatially averaged value and a per-residue value, 

nucleotide diversity was calculated using a 3D sliding 

(See figure on next page.)

Fig. 1 Population structure of PvAMA1 and PvDBP RII sequences. Maximum-likelihood phylogenetic trees are shown for PvAMA1 (a) and PvDBP 

Region II (b). Leaves are coloured according to the geographic location for each strain. The location of the Sal-1 reference strain is also indicated on 

each figure
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window (Fig.  2a) and per-residue normalized Shannon 

entropy (Fig.  2b) using sequences from all populations. 

Normalized Shannon entropy is a measure of sequence 

diversity, taking values between 0 and 1, where 0 indi-

cated perfect sequence conservation at that position, 

while 1 indicates an even distribution of all possible 

amino acids at that position. For PvAMA1, nucleotide 

diversity was highest in DI on one side of the RON2 

binding cleft (Fig.  2a, c). There was limited diversity 

within DII, and very little observed in DIII. This pattern 

of nucleotide diversity appeared to be maintained when 

examining patterns of nucleotide diversity in individual 

populations (Additional file 3), with the exception of the 

South Korean population, in which even DI displays lim-

ited diversity. This is possibly due to recent bottleneck 

and expansion, as suggested by the negative Tajima’s D 

value for this population. It was also observed that the 

so-called ‘silent face’ of PvAMA1 had very low diversity 

in all populations examined, which is in line with a num-

ber of other studies that have noted a distinct lack of pol-

ymorphisms on this face both in P. falciparum [8, 62–64] 

and P. vivax [4].

To test for evidence of immune-mediated selection 

pressure on PvAMA1, Tajima’s D was calculated as a 

3D sliding window over the modelled protein structure 

(referred to as a spatially-derived Tajima’s D). A positive 

Table 1 Population genetics parameters for PvAMA1 sequences from various geographic locations

n number of isolates, NS sites number of sites with non-synonymous nucleotide polymorphisms, S sites number of sites with synonymous nucleotide polymorphisms, 
π nucleotide diversity, k mean number of pairwise differences, θ Watterson’s theta, H number of haplotypes, Hd haplotype diversity

* p < 0.05, indicating rejection of the null hypothesis of a neutral mutation model (confidence limits from Tajima, 1989)

Country n Number 
of polymorphic 
sites

NS sites S sites π (× 10−3) k θ Tajima’s D H Hd

Myanmar 73 43 31 12 8.55 10.90 8.85 0.75 36 0.935

Sri Lanka 23 34 29 5 7.78 10.13 9.21 0.38 15 0.949

Papua New Guinea (Madang) 61 36 33 4 8.76 11.41 7.69 1.59 51 0.992

Papua New Guinea (East Sepik) 41 34 27 7 8.02 10.45 7.95 1.09 37 0.995

Thailand (Tak; 1996) 58 48 36 12 9.69 12.62 10.37 0.73 52 0.995

Thailand (Tak; 2007) 44 46 33 13 10.09 13.13 10.57 0.85 31 0.982

Thailand (Chantaburi) 56 44 34 10 10.02 13.04 9.58 1.22 25 0.895

India 10 27 22 5 8.31 10.82 9.54 0.64 7 0.911

South Korea 66 57 36 21 5.90 7.68 11.98 − 1.20 17 0.921

Venezuela 73 29 22 7 7.66 9.98 5.97 2.12* 17 0.908

Table 2 Population genetics parameters for PvDBP sequences from various geographic locations

n number of isolates, NS sites number of sites with non-synonymous nucleotide polymorphisms, S sites number of sites with synonymous nucleotide polymorphisms, 
π nucleotide diversity, k mean number of pairwise differences, θ Watterson’s theta, H number of haplotypes, Hd haplotype diversity

* p < 0.05, indicating rejection of the null hypothesis of a neutral mutation model (confidence limits from Tajima, 1989)

Country n Number 
of polymorphic 
sites

NS sites S sites π (× 10−3) k θ Tajima’s D H Hd

Papua New Guinea 23 18 14 5 5.24 4.69 4.88 − 0.14 11 0.925

Thailand (Bangkok) 25 46 39 9 10.37 9.01 12.18 − 1.00 19 0.977

Colombia 17 14 12 2 6.71 6.00 4.14 1.72 16 0.993

Myanmar 12 32 25 7 10.17 9.09 10.60 − 0.64 10 0.970

Mexico 35 13 9 4 3.38 3.02 3.16 − 0.14 8 0.556

India (Panna) 20 22 20 2 5.89 5.23 6.20 − 0.60 9 0.858

India (Chennai) 20 18 16 2 6.60 5.86 5.07 0.58 8 0.842

India (Delhi) 20 19 16 3 6.64 5.90 5.36 0.38 11 0.889

India (Nadiad) 20 21 17 4 6.54 5.81 5.92 − 0.07 10 0.921

India (Kamrup) 20 23 20 3 7.81 6.94 6.48 0.27 12 0.942

Iran 8 21 18 3 8.81 7.57 8.10 − 0.34 8 1.000

South Korea 23 74 58 17 10.53 9.36 20.05 − 2.12* 11 0.854
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Tajima’s D value provides evidence for balancing selec-

tion, which can arise as a result of immune pressure. It 

is noted that departures from neutrality can also arise 

as a result of population structure. In particular, sam-

pling of strains across multiple distinct populations can 

potentially give rise to similar signatures to those of bal-

ancing selection. For this reason Tajima’s D values were 

analysed within distinct geographic and temporal popu-

lations. Spatially-derived Tajima’s D was highest in DI for 

nearly all populations examined, with the exception of Sri 

Lanka and South Korea (Fig. 3; Additional file 4). As was 

observed for nucleotide diversity, Tajima’s D was high-

est on one side of DI, with the other ‘silent-face’ typically 

having Tajima’s D values close to zero. This is in agree-

ment with several studies, both in P. vivax and P. falci-
parum, in which polymorphisms on AMA1 are focused 

on one side of the protein structure, with minimal poly-

morphic variation on the other face [4, 8, 62–64]. It has 

Fig. 2 Measures of sequence diversity for PvAMA1 and relationship to key binding interfaces. a Spatially-derived nucleotide diversity (π) for 

PvAMA1 displayed over the modelled PvAMA1 structure. A radius of 15 Å was used for each 3D sliding window. b Normalized Shannon entropy for 

PvAMA1 residues on a per-site basis, with no spatial averaging performed. Higher entropy values are indicative of greater sequence diversity across 

all strains at that residue position. c Residues involved in the binding of PvAMA1 to its PvRON2 ligand. Residues within 4 Å of the RON2 peptide are 

shown in blue on the modelled PvAMA1 structure (as defined by the PDB structure 5NQG). Note that some binding residues are not visible due to 

the presence of the flexible Domain II loop near the RON2 binding groove
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been hypothesized that this silent face of the protein is 

not exposed to the immune system during the invasion 

process due to interaction with other parasite proteins, or 

is otherwise inaccessible to antibody binding [63].

Diversity and selection on the PvDBP structure

A similar analysis was performed for PvDBP, calculating 

spatially-derived nucleotide diversity, normalized Shan-

non entropy and spatially-derived Tajima’s D over the 

modelled PvDBP structure. Global nucleotide diversity 

was highest within subdomain 2 of PvDBP, with the most 

polymorphic residues clustering around the dimerization 

and DARC binding interface (Fig.  4). Residues that are 

directly involved in DARC binding and dimerization were 

nearly all highly conserved. When examining patterns of 

nucleotide diversity across individual geographic loca-

tions (Additional file 5), it is noted that nucleotide diver-

sity within PvDBP RII was universally highest in a region 

that corresponds to a previously identified inhibitory 

epitope, termed the DEK epitope [33, 39, 44], which 

corresponds to residues 338–353 (DEKAQQRRKQW-

WNESK) of the Sal-1 reference sequence. Correspond-

ingly, the opposite end of the PvDBP protein (subdomain 

3) had very low nucleotide diversity across all popula-

tions. Spatially derived Tajima’s D values were also calcu-

lated for PvDBP, and observed that most populations had

Tajima’s D values that were negative or close to zero over

most of the structure (Fig. 5; Additional file 6); Tajima’s D

values did not reach statistical significance in any popu-

lation (with the exception of a single residue in samples

from Chennai, India) (Additional file 7). However, it was

noted that spatially derived Tajima’s D values were gener-

ally highest in subdomain 2.

Amino acid mutations within binding interfaces

While binding interfaces were generally observed to 

have low nucleotide diversity, there were some polymor-

phic residues located within these binding interfaces 

Fig. 3 Spatially derived Tajima’s D plotted for PvAMA1 across various populations. Tajima’s D was calculated using a 3D sliding window over a 

modelled PvAMA1 structure, with a radius of 15 Å for each window
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for both PvAMA1 and PvDBP (Additional file 8). There 

were a total of 9 polymorphic residues within the 

PvAMA1:RON2 interface, although most of these were 

present at very low frequencies within the global popu-

lation. The three most frequent polymorphisms within 

the PvAMA1:RON2 interface fall within a short stretch 

from residues 130–133 (N132D, N130K, D133N). The 

most frequent of these polymorphisms (N132D) is a 

relatively conservative change from asparagine to aspar-

tic acid, and is the only one of the three residues whose 

side chains are directly involved in hydrogen bonds with 

RON2; the side chains from both N130 and D133 are 

only involved in intramolecular hydrogen bonds. It has 

previously been shown that a PvRON2 peptide binds well 

to PfAMA1 [22]. With this in mind, it is noted that the 

region corresponding to N130–D133 in PvAMA1 is not 

conserved in PfAMA1, and that this region is also not 

involved in the binding between PvRON2 and PfAMA1 

(PDB structure 5NQF) [22]. These observations, coupled 

with the observation that a number of polymorphisms 

fall within this region, suggests that these residues are 

not a major determinant for binding to PvRON2 and are 

hence amenable to polymorphic variation.

There were 7 polymorphic residues observed within 

the PvDBP dimerization and DARC binding interface, 

although again most of these were present at low fre-

quencies. The highest frequency polymorphism within 

this region is R263S, with a minor allele frequency of 

Fig. 4 Measures of sequence diversity for PvDBP and relationship to key binding interfaces. a Spatially-derived nucleotide diversity (π) for PvDBP 

displayed over the modelled PvDBP structure. A radius of 15 Å was used for each 3D sliding window. b Normalized Shannon entropy for PvDBP 

residues on a per-site basis, with no spatial averaging performed. Higher entropy values are indicative of greater sequence diversity across all strains 

at that residue position. c Residues involved in the PvDBP dimerization and DARC binding interface. Residues within 4 Å of the corresponding 

dimer chain or the DARC ligand (as defined by the PDB structure 4NUU) are shown in blue on the modelled PvDBP structure
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20%. In the PDB structure 4NUU, the backbone of R263 

is involved in hydrogen bonds to DARC, while the side 

chain is involved in a single intra-molecular hydrogen 

bond. This residue is also part of a loop which is disor-

dered when not bound to DARC (loop 254–267) [39], 

suggesting a level of structural plasticity. The other poly-

morphic residue of note is T359R, which was identified 

as a major contact within the DARC binding interface 

by Batchelor et al. [39], although this polymorphism was 

observed at a relatively low minor allele frequency of 

4.1% across all populations. However, this residue is not 

conserved between PvDBP and PkDBPα; PkDBPα has an 

arginine at this position and is also able to bind DARC, 

supporting the viability of the T359R mutation with 

regards to maintaining DARC binding ability.

Comparison between 3D and linear sliding window 

approaches

While a number of previous studies have utilized a lin-

ear sliding window approach when calculating Tajima’s 

D or nucleotide diversity [4–7, 65], this study is one of 

the first to utilize a spatially derived Tajima’s D. As such, 

the Tajima’s D values obtained using a 3D sliding window 

were compared with those obtained using a conventional 

linear sliding window, using a window size of 102 base 

pairs and a step size of 3 base pairs for the linear slid-

ing window (Additional files 9, 10). In general there was 

broad correspondence between the two approaches for 

both PvDBP RII and PvAMA1, although there were some 

additional regions within PvAMA1 with Tajima’s D val-

ues above the threshold for significance when using a 3D 

sliding window approach that were not identified with a 

linear sliding window. However, these regions were gen-

erally structurally contiguous with other stretches of 

sequence that were above the threshold for significance 

when using a linear sliding window.

Comparison of spatially derived nucleotide diversity 

and Tajima’s D between populations

When examining differences in the patterns of nucleo-

tide diversity and Tajima’s D values between various 

populations worldwide, it appeared that most popu-

lations had similar structural patterns of diversity/

selection, with a few exceptions that could be due to 

other population effects such as recent bottleneck and 

expansion events. To quantify the degree of similarity 

between structural patterns of selection, we computed 

Spearman’s rank correlation coefficient for nucleotide 

diversity and Tajima’s D values between every pair of 

populations (Fig.  6). Structural patterns of nucleotide 

diversity were generally highly correlated between 

populations, with the exception of South Korea for 

PvAMA1, and Myanmar and Papua New Guinea for 

PvDBP. In contrast, there was less agreement in the 

Fig. 5 Spatially derived Tajima’s D plotted for PvDBP across various populations. Tajima’s D was calculated using a 3D sliding window over a 

modelled PvDBP structure, with a radius of 15 Å for each window
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structural patterns of Tajima’s D over each structure. 

There was reasonable positive correlation between 

most populations for spatially derived Tajima’s D over 

the PvAMA1 structure, with the exception of South 

Korean and Sri Lankan populations. For PvDBP, the 

Papua New Guinean population was the major outlier 

when considering spatially derived Tajima’s D values, 

with the highest values observed on subdomain 3, fur-

thest from the dimerization interface. The lower level 

of apparent immune selection pressure on PvDBP may 

explain the more discordant results observed between 

populations for PvDBP; nearly all Tajima’s D values 

observed for PvDBP do not meet the threshold for sta-

tistical significance (p < 0.05) as defined by Tajima [60] 

and, therefore, tests of correlation are more sensitive to 

small variations in Tajima’s D. In contrast, a number of 

populations had significantly positive spatially derived 

Tajima’s D values for PvAMA1, including both Papua 

New Guinean populations (Madang, East Sepik) and 

the Venezuelan population (Additional file 7).

Discussion

In this study, patterns of nucleotide diversity and selec-

tion were examined over the protein structures for the 

P. vivax antigens PvAMA1 and PvDBP. A number of

major observations stand out from this work. Firstly,

patterns of diversity on both PvAMA1 and PvDBP were

remarkably similar across multiple geographic popu-

lations, despite phylogenetic trees for both PvAMA1

and PvDBP sequences suggesting a level of clustering

according to geographic location. The only exception

to this for PvAMA1 was the South Korean population

which displayed evidence of a recent bottleneck and

expansion. This similarity in patterns of diversity is

important when trying to extend conclusions made

from studies from single geographic locations to a

Fig. 6 Similarity in structural patterns of nucleotide diversity and Tajima’s D between populations. Spearman’s rank correlation coefficient was 

calculated for each pair of populations, comparing spatially derived nucleotide diversity and Tajima’s D values between each residue in the 

respective protein structures
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worldwide population, and these observations sug-

gest a universality with regards to major epitopes on 

these antigens. It is also interesting to note that highly 

polymorphic residues for both PvAMA1 and PvDBP 

tended to fall within regions surrounding, but not a 

part of, ligand binding interfaces. For AMA1, RON2 

binds in a hydrophobic cleft in DI, and polymorphic 

residues fall on one side of this hydrophobic cleft, but 

generally not within residues that make contact with 

the RON2 peptide. Similarly with PvDBP, contact 

with DARC occurs primarily via subdomain 2, and the 

most polymorphic regions were near the DARC bind-

ing and dimerization interface. In contrast, the resi-

dues directly involved in the PvDBP binding interface 

were highly conserved. These results are suggestive of 

two things. Firstly, the residues that make up the key 

binding interfaces in these two antigens have limited 

capacity for polymorphic variation due to functional 

constraints, as has been previously suggested by other 

studies [39, 63]. This makes them attractive vaccine 

targets, as potential epitopes within these binding sites 

would have very limited antigenic diversity, and are 

also less likely to undergo extensive mutations to evade 

immune responses. Secondly, the high degree of poly-

morphism around these interfaces suggests that anti-

body responses that target these polymorphic sites are 

capable of inhibiting parasite invasion. This inhibition 

is likely the result of steric hindrance preventing recep-

tor binding and/or dimerization. Future efforts could 

involve epitope focusing techniques [66, 67] to direct 

antibody responses to these key conserved interfaces.

For PvAMA1, we observed balancing selection primar-

ily on DI in all populations examined. Additionally, while 

the 3D sliding window approach highlighted additional 

residues under balancing selection as compared to a lin-

ear sliding window approach, nearly all of these regions 

fell within DI. This agrees with a number of other stud-

ies in which PvAMA DI is the only domain found to be 

under significant balancing selection [4, 8–10]. This is in 

contrast to selection pressures observed on PfAMA1, in 

which both DI and DIII have been observed to be under 

balancing selection [5–9, 68]. Previous work of ours has 

applied spatially-derived Tajima’s D calculations over 

a PfAMA1 structure and identified strong balancing 

selection in a region bordering DII and DIII [12], lend-

ing further evidence to DIII being under immune selec-

tion pressure in P. falciparum but not P. vivax AMA1. 

The biological reasons for such a difference are unclear, 

as AMA1 has a conserved role between Plasmodium spe-

cies, although it is possible that DIII of PvAMA1 is less 

immunogenic than the corresponding PfAMA1 domain 

due to structural or sequence differences between the 

two antigens.

Although individuals in malaria endemic areas develop 

antibodies to PvAMA1 [69–71], there are no compre-

hensive studies on how these antibodies interact with 

the different domains of PvAMA1. However, AMA1 is 

functionally conserved across Plasmodium species, and 

there is evidence that PvAMA1 is functionally equiva-

lent in a P. falciparum transgenic line in which PfAMA1 

is replaced by PvAMA1 [72]. As such, comparisons can 

be drawn with antibody studies on PfAMA1. Dutta et al. 

[24] generated a panel of monoclonal antibodies (mAbs)

to PfAMA1 and observed that their strain specificity and

functional activity was determined by the diversity of the

epitope sequence. The limited diversity in PvAMA1 DIII

observed in this current study aligns with the observa-

tions that mAbs to PfAMA1 DIII were the most strain

transcending. Similarly, we observed that the polymor-

phic face of PvAMA1 DI had the highest diversity, in line

with the observation by Dutta et al. that mAbs that bound 

the polymorphic face of PfAMA1 DI were strain specific,

compared to the others that bound the conserved face

[24]. Importantly, mAbs that bound to the conserved face

of PfAMA1 still showed strong growth inhibitory activ-

ity suggesting that epitopes on the conserved face can be

targets of neutralizing antibodies, despite being under

less immune pressure than immunodominant polymor-

phic regions.

For PvDBP, one of the regions of high diversity across 

all populations was a previously identified epitope within 

subdomain 2 termed the DEK epitope [33]. Others have 

observed that the DEK epitope is highly polymorphic 

and immunodominant [44]. However, due to the poly-

morphic nature of this epitope, cross-strain specificity 

is a concern when creating a PvDBP RII-based vaccine. 

Recent work has characterized the location of several 

conserved epitopes within PvDBP RII that are the target 

of inhibitory mAbs 2D10, 2H2 and 2C6 [73, 74], and all 

of these conserved epitopes fall within subdomain III, 

which had the lowest overall nucleotide diversity in this 

current study. This highlights some of the limitations of 

using population-level genomic data for identification of 

functionally important targets of antibody responses—

the possibility that conserved regions may contain poten-

tial epitopes that are the targets of inhibitory antibodies 

cannot be excluded.

Several attempts have been made to divert immune 

responses away from these highly polymorphic regions of 

PvDBP RII and towards conserved epitopes. One attempt 

to focus away from polymorphic regions involved mutat-

ing residues in the DEK epitope to reduce its immuno-

genicity, and these DEKnull mutants induce antibodies 

that bind PvDBP and can inhibit the interaction with 

Duffy Binding Ligand [33]. More recently, further epitope 

focusing techniques have been employed with PvDBP 
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RII, with one strategy involving mutation of all polymor-

phic residues to alanine, threonine or serine residues [75]. 

This ‘DEKnull-2’ recombinant PvDBP RII construct was 

shown to elicit broadly neutralizing antibodies following 

mouse immunization, with some naturally exposed indi-

viduals also shown to recognize the conserved epitopes 

on this construct [75]. Other recent efforts towards the 

development of a PvDBP RII vaccine include a Phase 

1a trial of a prime-boost viral-vectored vaccine that 

demonstrated both safety and immunogenicity, with 

cross-strain inhibition demonstrated for the single heter-

ologous strain tested [76].

Given the success using epitope focusing techniques 

for PvDBP RII, we suggest that such an approach could 

be applied to AMA1 to focus antibody responses towards 

conserved epitopes on the silent face of DI or within DIII. 

This would involve mutating major polymorphic residues 

to reduce the immunodominance of epitopes within the 

polymorphic face of DI; the most polymorphic residues 

identified in this study (Additional file  11) could serve 

as starting point for this work. Alternatively, it has been 

shown for PfAMA1 that immunization with multiple 

heterologous strains of PfAMA1 is capable of induc-

ing strain transcending antibody responses [24], and 

this approach could also be applied to PvAMA1. Other 

epitope-focusing approaches also exist, including the 

use of small protein scaffolds to mimic native epitopes 

[66, 67], although these might be challenging given the 

discontinuous nature of many potential epitopes within 

AMA1. The approaches used in this work could also be 

applied to other antigens such as PvRBP2b, which has 

recently been identified as a ligand for reticulocyte inva-

sion via binding to transferrin receptor 1 (TfR1) [77].

Conclusions

In this work, signatures of diversity and selection were 

identified on PvAMA1 and PvDBP, and it was shown 

that the regions of high diversity and balancing selec-

tion on the protein structure are remarkably simi-

lar across a number of populations. This suggests that 

dominant epitopes are the same across multiple human 

populations, which has positive implications for the 

development of a universal P. vivax vaccine. Further-

more, polymorphisms were observed to cluster around 

binding interfaces on both PvDBP and PvAMA1, sug-

gesting a level of immune pressure on residues surround-

ing these key binding interfaces. Large regions with very 

low diversity were also identified for both antigens, and it 

is suggested that these areas may also be useful targets to 

focus on for further vaccine development, given previous 

evidence of functional antibody responses against these 

conserved regions.
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Additional File 1: Domains/subdomains of ​Pv ​AMA1.​ ​Pv ​AMA1 has been divided into three 
domains, termed Domain I (DI), II (DII) and III (DIII), shown in orange, blue and green, 
respectively. Domain assignment follows that outlined by Pizarro ​et al. ​ [21], and corresponds 
to the following residues in the Sal-1 reference sequence: 41-250 (DI); 251-387 (DII); 
388-474 (DIII).
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Additional File 2: Domains/subdomains of ​Pv ​DBP RII.​ ​Pv ​DBP RII has been divided into 
three subdomains, indicated in orange (subdomain 1), blue (subdomain 2) and green 
(subdomain 3). Subdomain assignment follows that outlined by Singh ​et al. ​ [41], 
corresponding to the following residues in the Sal-1 reference sequence: 216-253 (subdomain 
1); 265-381 (subdomain 2); 387-508 (subdomain 3). Linkers between subdomains are shown 
in white. 
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Additional File 3: Spatially-derived nucleotide diversity for ​Pv ​AMA1 across multiple 
populations. ​Nucleotide diversity was calculated using a 3D sliding window over a modelled 
Pv​AMA1 structure, with a radius of 15 Å for each window. 
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Additional File 4: Spatially-derived Tajima’s D for ​Pv ​AMA1 across multiple 
populations. ​Tajima’s D was calculated using a 3D sliding window over a modelled 
Pv​AMA1 structure, with a radius of 15 Å for each window. 
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Additional File 5: Spatially-derived nucleotide diversity for ​Pv ​DBP across multiple 
populations. ​Nucleotide diversity was calculated using a 3D sliding window over a modelled 
Pv​DBP structure, with a radius of 15 Å for each window. 
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Additional File 6: Spatially-derived Tajima’s D for ​Pv ​DBP across multiple populations. 
Tajima’s D was calculated using a 3D sliding window over a modelled ​Pv ​DBP structure, 
with a radius of 15 Å for each window. 
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Additional File 7: Location of statistically significant (p < 0.05) Tajima’s D values on 
modelled ​Pv ​AMA1 (a) and ​Pv ​DBP (b) structures.​ Confidence limits are those defined by 
Tajima [60]. Only populations with significant Tajima’s D values are shown here. 
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Additional File 8: Sequence diversity at interfaces. 

Pv ​DBP 

Polymorphism Minor Allele Count Minor Allele Frequency (%) 

R263S 49 20.1 

T359R 10 4.1 

V240L 3 1.2 

V240I 1 0.4 

I265L 1 0.4 

K366N 1 0.4 

Y271S 1 0.4 

Pv ​AMA1 

Polymorphism Minor Allele Count Minor Allele Frequency (%) 

N132D 235 46.4 

N130K 57 11.3 

D133N 17 3.4 

M153T 12 2.4 

G117R 12 2.4 

K86R 3 0.6 

A172T 3 0.6 

N132G 2 0.4 

R88G 1 0.2 
Note: The presence of polymorphisms was determined using sequences from all populations. 
Polymorphisms with a minor allele frequency > 5% are shown in bold. Any polymorphic residues 
within 4 Å of the ​Pf​AMA1:RON2 interface or the ​Pv​DBP dimerization/DARC binding interface are 
included in the above table. 
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Additional File 9: Comparison of spatially derived Tajima’s D and conventional linear 
sliding window calculation of Tajima’s D for ​Pv ​AMA1. ​Tajima’s D values using a linear 
sliding window results are shown in blue, whilst spatially derived Tajima’s D values are 
shown in green. The threshold for significance (p < 0.05) as defined by Tajima [60] is shown 
as a dotted red line. 
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Additional File 10: Comparison of spatially derived Tajima’s D and conventional linear 
sliding window calculation of Tajima’s D for ​Pv ​DBP RII. ​Tajima’s D values using a linear 
sliding window results are shown in blue, whilst spatially derived Tajima’s D values are 
shown in green. The threshold for significance (p < 0.05) as defined by Tajima [60] is shown 
as a dotted red line. 
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6. DISCUSSION

The exact determinants of protective immunity to malaria remain unclear, and it is important to 

further our knowledge of malaria immunity as part of an ongoing effort to develop an efficacious 

and long-lasting vaccine against malaria. While the newly licensed RTS,S vaccine offers partial 

protection from infection, this protection is of limited efficacy and is short-lived. As such, there is a 

need for ongoing vaccine development and an improved understanding of the targets of protective 

immunity is likely to aid such an effort. This thesis employed a number of computational 

approaches to examine the impact of protein structure on the development of adaptive immune 

responses against the malaria parasite. As part of this work, differences between structured and 

intrinsically disordered proteins (IDPs) were examined, as well as investigating new ways of 

integrating protein structural information into population genetics analyses to identify potential 

targets of protective immunity. 

6.1 Summary of findings 

Firstly, the role of IDPs in humoral and cellular immune responses was investigated (Chapter 2). 

Plasmodium species contain a disproportionate number of IDPs compared to most other eukaryotes, 

which raises the question if this may be linked to their evasion and modulation of the host immune 

response. While there did not seem to be discernible differences in the number of IDPs between 

different Plasmodium species, immunologically exposed subcellular compartments of the parasite 

had increased levels of IDPs. This suggests some role for this class of proteins either in the invasion 

process or as targets of immunity. Indeed, a number of leading vaccine candidates contain sizeable 

regions of disorder, suggesting an important role for these regions [1–3]. It was also observed that 

disordered protein regions contained a higher frequency of polymorphisms than structured domains, 

as well as an increased number of tandem repeat regions. Many polymorphisms likely arise as a 

means of evading established immune responses, although it is also noted that disordered regions 

are less constrained in terms of sequence conservation [4]. Both the accessibility and plasticity of 

disordered regions likely contributes to their increased polymorphic variation, and this is something 

that will need to be considered for vaccines that include IDPs. 

As part of an adaptive immune response, T-cells recognise peptide antigen presented in the context 

of MHC molecules; CD4+ T-cells recognise MHC class II/peptide complexes and CD8+ T-cells 

recognise MHC class I/peptide complexes. It was shown in Chapter 2 that IDPs contain very few 

peptides that are capable of being presented on MHC molecules. This was found to be an inherent 

property of IDPs, rather than the result of sequence-specific mutations to avoid immune recognition 
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via MHC molecules. This has implications for the development of any vaccines composed of IDPs, 

as there will need to be careful consideration to include adequate T-cell help within any vaccine 

constructs. It is noted that the repeat region of CSP is predicted to be intrinsically disordered, and it 

is this region which is included in the RTS,S vaccine, along with the C-terminal domain. This 

construct is coupled to the hepatitis B surface antigen. Both the C-terminal domain of CSP [5] and 

the Hepatitis B surface antigen [6] contain appropriate CD4+ T-cell epitopes, making up for the 

lack of CD4+ T-cell epitopes within the repeat region. 

Chapter 3 of this thesis focused on regions of known structure within Plasmodium species, in 

particular P. falciparum, and examined markers of immunity and selection pressure in the context 

of various structural features. This work employed a proteome-wide approach, with the hope of 

identifying novel structured regions that are significant targets of immune responses. Within this 

study, it was noted that polymorphic residues that existed at a high frequency within the population 

were likely to be surface exposed, and were enriched within secondary structure turns, which is in 

line with previous work on non-malaria antigens [7]. Additionally, as targets of adaptive immunity, 

there are numerous examples of antibodies targeting surface exposed turns, such as the anti-

EBA175 RII mAb R217 which targets the beta-finger on EBA-175 (Figure 1.3D) [8] and the anti-

pfs25 mAb 1190 which interacts with a surface-exposed turn on Pfs25 via its heavy chain CDR2 

and CDR3 loops [9]. This supports the theory that polymorphic variation on many Plasmodium 

antigens is the result of immune selection pressure. As part of this study, we also employed a novel 

method that allows integration of protein structural information into population genetic tests for 

selection pressures. Traditionally, tests for selection pressure are applied as a sliding window along 

a linear gene sequence, allowing identification of particular regions which exhibit strong signatures 

of selection compared to the rest of the genome. However, given that many antibodies interact with 

protein antigen in its native, structured form, we considered the need to include information on 

residue proximity in 3D space into tests for selection pressure. This enabled identification of a 

region in PfAMA1 bordering DII and DIII that was under a high degree of balancing selection, 

which may be the result of immune selection pressure on this region. Interestingly, although DI is 

the most polymorphic region of PfAMA1 and is the target of several inhibitory antibodies, there is 

evidence that mAbs against DIII are also capable of inhibiting parasite growth [10]. This suggests a 

need to focus on PfAMA1 domains that contain functional epitopes whilst having minimal 

polymorphic variation. 

Chapter 4 showed the development of this 3D sliding window method into an open-source Python 

package called BioStructMap, which is now also available as a user friendly, web-based interface. 

This tool represents a novel method for inclusion of structural data into tests for selection pressure 
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that have traditionally only utilised genomic data. Additionally, the BioStructMap package can also 

map other sequence-aligned data over a protein structure, and hence has applications beyond tests 

of selection pressure. 

In Chapter 5, the BioStructMap tool was applied to two leading P. vivax vaccine candidates, 

PvAMA1 and PvDBP. Genomic sequences for these antigens were collated from a number of 

different global populations, and patterns of diversity and selection on these antigens were 

compared across populations. Interestingly, very similar patterns of diversity were observed across 

most populations worldwide, with particular regions of the protein structure having high levels of 

diversity in all populations, whereas other regions had universally low levels of diversity. This 

suggests a commonality in the epitopes targeted during the course of naturally acquired immune 

responses to these antigens. For vaccine development, this is encouraging, as it means that studies 

from a few populations should be able to be readily extrapolated. Interestingly, in this study we 

observed balancing selection on DI alone for PvAMA1, in contrast to our previous study on 

PfAMA1; the latter showing strong signatures of balancing selection on the border of DII and DIII. 

Balancing selection can arise as the result of immune selection pressure on a protein region, and this 

highlights potential differences in the immune targeting of PfAMA1 vs PvAMA1. The reason for 

this difference is not clear, although it is possible that sequence differences between the two species 

may alter the immunodominant epitopes targeted during the course of natural infection. Indeed, for 

the two P. vivax antigens examined in Chapter 5, several regions that have been shown to be the 

targets of inhibitory mAbs have very low diversity, suggesting that they may not be targeted to any 

significant extent during natural exposure. Alternatively, they may be functionally restricted in 

terms of polymorphic variation due to binding interactions with other proteins, although this is less 

likely as there is no current evidence for additional binding partners to either AMA1 or DBP within 

these regions of low diversity. Also, known binding regions within AMA1 and DBP (RON2 

binding and DARC binding respectively) are both surrounded by clusters of polymorphic residues, 

and there is no clear cluster of polymorphisms surrounding other conserved regions within these 

proteins, again suggesting that these regions may not be targeted during natural exposure. This 

increases the likelihood that these regions might be able to be targeted in a vaccine construct using 

epitope focusing techniques, or by reducing the immunodominance of polymorphic regions [11]. 

Indeed, that has already been investigated for PvDBP in a study that mutated all polymorphic 

residues to non-reactive amino acids, and found that antibodies raised against these protein 

constructs generally targeted conserved regions of the protein and were able to inhibit parasite 

invasion [12,13]. 
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Taken together, the results of this thesis highlight the need to carefully consider a range of different 

structural characteristics when selecting potential vaccine candidates, whether they are IDPs or 

structured proteins. This thesis also highlights the wealth of data that already exists for many 

Plasmodium proteins and the value in developing novel bioinformatic tools that can bring combined 

insights into the genetic, proteomic and immunological aspects of these antigens. 

6.2 Experimental validation of T-cell responses against IDPs 

The computational approaches outlined in Chapter 2 suggest that disordered domains contain very 

few MHC-binding peptides, which has the potential to limit the generation of humoral and cellular 

immune responses against this class of proteins. There are additional peptide processing steps 

within the MHC processing pathways that likely further restrict the set of peptides that can be 

presented, and it is not clear if these processing steps would preferentially select ordered or 

disordered peptides. A number of prediction tools exist for the processing of peptides in the MHC 

class I pathway [14], and these could also be used to further explore the biases in the MHC class I 

processing and presentation pathway. However, the processing of peptides in MHC class II 

pathways is less well understood, and there remains a significant lack of accurate predictive tools 

for identification of proteasomal cleavage products in endosomes as part of the MHC class II 

presentation pathway [15]. 

Acknowledging the limits of predictive approaches, the observations in Chapter 2 would benefit 

from further experimental validation, and there are a number of approaches that could be used to 

investigate this. To directly compare the ability to present peptides from ordered vs disordered 

regions of proteins, a number of mass spectrometry (MS) based approaches could be employed. A 

number of techniques have been previously employed to investigate the peptides presented on both 

MHC class I and MHC class II molecules, and these usually involve extraction of MHC-peptide 

complexes from antigen presenting cells followed by analysis of bound peptide using MS based 

techniques [16]. There are limitations with some MS based approaches, including identification of 

only a small percentage of bound peptides and biases towards peptides with particular 

characteristics [16,17]. However SWATH-MS based approaches have emerged recently as useful 

tools for characterisation of the immunopeptidome of many cell types [16,18]. SWATH-MS based 

immunopeptidomics techniques have yet to be applied to presentation of peptides from Plasmodium 

species, and combined with the predictions of disorder used in Chapter 2, these techniques could be 

used to quantify the in vitro difference in presentation of peptides from disordered or ordered 

regions, compared to our in silico predictions. Such experiments would also provide a rich data 

source for the identification of potential T-cell epitopes for inclusion in vaccine constructs. A 
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further step that was not fully explored within Chapter 2 is the subsequent activation of T-cells upon 

binding to MHC-peptide complexes. Given the huge diversity of possible T-cell receptors, 

prediction of dominant T-cell binding peptides is difficult, and this is a further area that could 

benefit from experimental work. T-cell activation assays could be performed using cells from 

naturally exposed individuals, using antigen from a range of ordered and disordered antigens from 

P. falciparum or P. vivax. Indeed, a number of studies have already been performed, mostly

focusing on CSP, and it is noted that the majority of T-cell epitopes identified fall within the

structured C-terminal domain [19–22]. One study which focused on genome-wide epitope profiling

of CD8+ T-cell responses to P. berghei liver stage parasites identified two main CD8+ T-cell

epitopes within PbTRAP (PBANKA_1349800) and PbS20 (PBANKA_1429200) that were

correlated with protection [23]. Both of these epitopes falls within structured regions of PbTRAP

and PbS20. However, given the small number of epitopes identified by this study, it is difficult to

draw any conclusions from this observation.

6.3 Limitations and future directions for B-cell epitope prediction in IDPs 

Whilst prediction of MHC binding peptides is relatively accurate, prediction algorithms for B-cell 

epitopes is less so [24]. The work presented in Chapters 2 and 3 used predictors of B-cell epitopes 

to identify putative epitopes within both disordered and structured antigens. Within this work, it was 

recognised that current B-cell epitope prediction methods are limited in their prediction accuracy, 

which is partly due to the difficulty in comprehensively defining all possible epitopes for a given 

antigen [25]. However, when dealing with IDPs, another limitation is evident, as the large majority 

of IDP regions are predicted to contain B-cell epitopes, and hence these predictions do not provide 

means of identifying the few immunodominant epitopes within an IDP. This is likely the result of 

B-cell epitope prediction algorithms being trained on structured antigens, as data is often obtained

from antigen-antibody complexes, as is the case for BepiPred 2.0 [26], or from linear peptide array

data from a structured antigen. Epitopes within these structured antigens are often found within

surface exposed loops, as was observed in Chapter 3, and these may have a similar sequence

composition to IDPs. While it is likely that antibodies could be generated against most of the

predicted epitopes within IDPs, there is evidence that antibodies are preferentially raised against a

few immunodominant epitopes within any given IDP, although recognition of a wide range of

epitopes is possible and does occur within a population setting [27,28]. This observation suggests a

need for a B-cell epitope prediction algorithm that is specific for disordered antigens, trained on sets

of known immunodominant epitopes within IDPs. Such an algorithm should not identify all

potential epitopes within an IDP, but should rather focus on identifying the most likely epitopes
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within a given protein sequence. This may enable faster and more targeted in vitro screening of 

potential epitopes for further vaccine development. 

6.4 Integrating structural features into tests of immune selection pressure 

Chapters 3, 4 and 5 introduced and utilised a novel method (BioStructMap) for integrating 

structural data into a variety of tests that would traditionally be applied as a sliding window over a 

linear gene sequence. The integration of 3D protein structural data with genomic data, with respect 

to identifying regions under immune selection pressure, polymorphic hotspots etc., should be a 

major priority given the large number of structures now available and the increasingly accurate 

predictions of protein structure by tools such as I-TASSER [29]. The approach introduced in this 

thesis could easily be extended, for example by examining surface patches rather than spherical 

windows. This would account for effects such as lack of surface accessibility for some residues 

within a spherical window, and inclusion of non-contiguous regions on the protein surface as a 

result of using the simple spherical window. However, the spherical averaging approach did provide 

additional information compared to a linear sliding window approach, and is likely adequate in 

most cases. 

It would also be worth exploring the impact of antigen dynamics on adaptive immune responses, as 

it may be that flexible surface loops are able to bind to a variety of paratope shapes, and are also 

less constrained in terms of sequence conservation. This may mean that these regions are more 

likely to be polymorphic, as well as serving as good ‘distractors’ for antibody responses, shifting 

antibody responses away from critical functional epitopes. This was hinted at by the evidence 

presented in Chapter 3 that polymorphic residues were enriched within turn elements as well as 

strongly correlated with residue surface exposure. Turn elements are likely to form part of surface 

exposed loops, and it would be of interest to perform both in silico molecular dynamics modelling 

of key antigens and associated biophysical experiments such as NMR spectroscopy [30] to validate 

predictions of flexibility and dynamic behaviour. This could be coupled with data on population-

level polymorphic variation to investigate the role of single nucleotide polymorphisms on overall 

protein stability. This would be of interest when coupled with data on the frequency of 

polymorphisms within a population, as polymorphisms that disrupt protein stability may be less 

likely to propagate through a population. 
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6.5 Development of an online platform to explore structure and immunology 

data for Plasmodium species 

To integrate the multiple levels of data developed as a part of this thesis, a second preliminary web-

based platform has been developed that integrates the data generated in Chapter 2 alongside the 

structure-based approaches developed in Chapters 3 and 4. This has initially been applied to the P. 

falciparum proteome, but will be extended to other Plasmodium species. This platform has been 

called PlasmoSIP (Plasmodium Structure, Immunology and Polymorphisms), and collates a number 

of experimental data and computational predictions into a single database. This is accessible via an 

easy-to-use website (https://plasmosip.burnet.edu.au) and can be used to aid vaccine design, 

selection of biomarkers, or as an educational tool. PlasmoSIP currently allows the visualisation of 

the following protein features: the existence of specific MHCI and MHCII binding epitopes; the 

occurrence of tandem repeats; protein localisation within the parasite; protein function and 

accessibility; protein structure; and location of polymorphisms. Within this package we have also 

included an interactive ‘Proteome Explorer’ that enables users to view summary statistics (i.e. 

percentage disorder, percentage tandem repeats, number of SNPs, Tajima’s D etc.) for proteins 

within the proteome, and then proceed to design custom filters to narrow down the selection of 

proteins for further analysis. 

Within PlasmoSIP, individual protein searches enable users to view parameters particular to each 

protein (Figure 6.1). These include predicted structural features that may impact on immune 

responses (disorder, tandem repeats, location of polymorphisms), as well as potential T-cell 

epitopes indicated by predicted MHCI and MHCII binding peptides, and predicted linear B-cell 

epitopes. At a proteomic level, the ‘Proteome Explorer’ enables users to view the distribution of 

summary metrics for each protein in an interactive manner (Figure 6.2). Selectable windows allow 

the selection of a subset of proteins in each histogram, and all histograms and scatter plots update 

upon subset selection to display only the updated selection. There is also the utility to restrict the 

analysis to proteins localised within particular subcellular locations, although this only covers 

proteins that have known experimental locations as annotated in ApiLoc [31]. Within the Proteome 

Explorer, selection of individual proteins for detailed viewing is performed by either clicking on the 

relevant protein within the scatter plot summary, or selecting a protein within the results table. 

Upon selection of an individual protein, a summary plot is generated for this protein, displaying 

features such as predicted disorder, tandem repeats, predicted linear B-cell epitopes and known 

SNPs. A BLAST query is also performed, matching the selected protein sequence against all 

Plasmodium PDB protein structure entries. Suitable PDB matches are then displayed for viewing 
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Figure 6.1: Individual protein view within PlasmoSIP showing predictions of disorder, linear 

B-cell epitopes, MHC binding and polymorphic residues for EBA-175. A large number of MHC

class I and class II alleles can be selected, with a representative set shown here. Polymorphic 

residues are also highlighted on the protein sequence for EBA-175.  
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Figure 6.2: PlasmoSIP Proteome Explorer. The Proteome Explorer tool allows the interactive 

visualisation of various structural and immunological parameters that are applicable to vaccine 

design and biomarker selection. In this example, the location of EBA-175 is highlighted in 

histograms of several summary statistics, and a detailed view of the regions of disorder and 

potential epitopes within EBA-175 is also shown. Matching PDB structures are identified, and 

protein structures can be viewed in an embedded viewer. A summary list of all proteins within the 

current selection (as defined by adjustable windows within the proteome-level histograms) is also 

provided at the bottom of the page. 
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within an in-browser viewer, with the location of the currently selected PDB structure shown on the 

individual summary plot. 

Whilst not currently implemented, future development of PlasmoSIP will involve the addition and 

integration of the BioStructMap tool introduced in Chapter 4. This will be paired with 

polymorphism data from PlasmoDB and structural data from the PDB enabling automated mapping 

of known polymorphisms from a variety of geographic locations onto known structures. 

Additionally, this could also utilise modelled structures from the MODBASE database [32], or 

structures predicted using other tools such as I-TASSER [29]. Future development will also extend 

the PlasmoSIP tool to other Plasmodium species that infect humans such as P. vivax and P. 

knowlesi, and species that are used in animal models such as P. berghei, P. chabaudi, P. yoelii and 

P. reichenowi.

6.6 Concluding remarks 

This thesis has explored the relationship between protein structure and the adaptive immune system 

within the context of malaria infection. The overarching hypothesis for this work was that both 

disordered and ordered proteins are important antigens in the adaptive immune response against 

malaria, and consideration of protein structure will yield additional insights into targets of adaptive 

immunity. It was discovered that IDPs are dramatically different to structured antigens in terms of 

antigen presentation to T-cells, and this raises important considerations for the development of 

future vaccines based around disordered antigens. Consideration of protein structure is also 

important when it comes to structured antigens, and protein 3D structural information was used to 

enhance the identification of regions under possible immune pressure for several leading vaccine 

candidates. The techniques pioneered in this thesis have broad applicability to other diseases and 

should enhance awareness of the importance of protein structure when examining selection 

pressures that arise as the result of protein-protein interactions. Key areas for further research 

include the experimental validation of some of the results from this thesis, as well as the application 

of the strategies employed in this thesis to other pathogens such as HIV, influenza or tuberculosis. 
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