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Abstract 

Conventionally, bonds in different solids are classified into three types: ionic, covalent and metallic. 

However, this fundamental concept has been challenged by suggestions that metallic bonding should 

be classified as a sub-set of covalent bonding [1]. Yet detailed knowledge of metallic bonding like 

interatomic bonding positions, shapes and electron density distributions remains limited. Little has 

been learned since Drude [2] proposed the model of cations in a “sea of delocalised electrons” in 1900. 

To date, there have been few experimental studies of bonds in metals because of the limited resolution 

of the available techniques [3]. 

Recent advances in quantitative convergent beam electron diffraction (QCBED) have made it possible 

to probe and measure chemical bonds in defect-free crystals with unprecedented resolution [4]. This 

has allowed more precise determination of bonding in materials [4-8] than previous X-ray, γ-ray and 

electron diffraction experiments. Inspired by these successful studies, this work focuses on further 

advancing the development of QCBED techniques in application to a more accurate measurement of 

the bonding in copper. Beside the measurement of bonding in copper, a highlight of this work is a two 

order of magnitude acceleration in the QCBED refinement program, which implements parallelisation 

of both CPU and GPU devices. With this significant acceleration, in-situ QCBED analysis during TEM 

experiments becomes possible as a future direction for the technique. The uniqueness of the present 

study also lies in the application of the multislice formalism for electron scattering in all of the present 

QCBED analyses, coupled with a differential approach for removing the influence of thermal diffuse 

scattering and a new method for incorporating absorption necessitated by this new methodology. In 

addition, an improved independent-atom model (IAM) calculated by density functional theory (DFT) 

is also determined, which has included the electron correlation effects neglected by the conventional 

relativistic Hartree-Fock (RHF) calculations published 50 years ago by Doyle and Turner. The new 

IAM calculated by DFT has shown about 1% difference comparing to the RHF IAM, which has a 

comparable magnitude to the bonding being measured in copper. The outcomes of this work reveal a 

mixed tetrahedral and octahedral bonding morphology that is the origin of the highly anisotropic elastic 

response of copper and gives approximately the correct magnitude of this response, unlike most 

previous studies. 
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Chapter 1. Introduction 

In recent decades, great advancements have been made to determine the bonding in metals [3, 4, 6-8, 

11-18], with the help of improved experimental techniques and computational capabilities. The 

knowledge of metallic bonding thus has become more definite, compared to the “sea of electrons” 

model proposed by Drude in 1900 [2]. However, the metallic bonds in some common metals in 

everyday lives, such as copper, are still not fully characterised, as reflected by a certain level of 

diversity is still presented in the latest reported measurements [3, 4, 7, 11, 15]. In this chapter, a brief 

introduction regarding common knowledge of metallic bond and copper, the definition and 

characterisation techniques of bonding, and the aims and outline of this thesis will be given. 
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1.1. Chemical bonding: the metallic bond 

There are three primary chemical bond types used to describe electrostatic interactions between atoms: 

ionic, covalent and metallic. The three bond types can be distinguished by electronegativity, which 

describes the ability of atoms to attract electrons [19]. For example, a van Arkel-Ketelaar triangle [20, 

21], which categorises different bond types based on the average electronegativity and 

electronegativity difference, is shown in Figure 1.1. Ionic compounds are placed in the top corner of 

the van Arkel-Ketelaar triangle, consisting of atoms with large electronegativity difference. In ionic 

bonds, valence electrons transfer from low to high electronegativity atoms, forming positive and 

negative ions respectively. The oppositely charged ions will be bonded by strong electrostatic forces. 

Covalent materials are in the bottom-right corner of the van Arkel-Ketelaar triangle. In contrast to 

ionic bonds, covalent bonds involve atoms with low electronegativity difference and relatively high 

electronegativities. Because these atoms have strong attractions to electrons, valence electrons in a 

covalent bond will be shared by different atoms without delocalisation. For metals and alloys, which 

are placed in the bottom-left corner of the van Arkel-Ketelaar triangle, the atoms have low average 

electronegativities and low electronegativity difference. The valence electrons tend to delocalise from 

the metallic atoms due to the low electronegativities, forming a “sea of electrons” which bonds the 

positive metallic ions together. Although this ternary categorisation of chemical bonds has been a 

conventional concept [22], the significance of the metallic bond has often been challenged. Some 

researchers propose that the metallic bond should be classified as a subset of the covalent bond because 

of their similarities compared to the ionic bond [1, 23], while others insist covalent and metallic bonds 

exhibit distinguishing properties [24, 25]. Apart from properties such as electronegativity and band 

gap discussed in the controversy [1, 23-25], however, detailed knowledge of the metallic bond, like 

bonding electron distribution, has remained limited [20, 22, 24, 26]. As will be described in Section 

1.3, this is mainly due to the difficulties of bonding experiments, especially for metallic materials. 
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Figure 1.1. A van Arkel-Ketelaar triangle (fashioned after Ref. [19]). Materials with both low average 

electronegativities and low electronegativity differences are placed in the bottom-left corner of the triangle and are 

metallic. Materials with high average electronegativities but low electronegativity differences are placed in the 

bottom-right corner and are covalent. The top corner of the triangle contains materials with high electronegativity 

differences and are ionic. 

The “sea of electrons” model, also known as the classic free-electron model, was proposed 118 years 

ago by Drude [2] in order to explain the transportation of electrons in materials and has become the 

most commonly used description for bonding electron distributions in metals [27]. In the Drude model, 

the delocalised electrons are assumed to form an ideal electron gas, which interacts with the metallic 

ions by collisions only [28]. Any long-range interaction between the delocalised electrons and/or the 

metallic ions is neglected [28, 29]. The high thermal and electrical conductivities, high malleability, 

high ductility and lustre of metals and alloys can be well explained by this simplified model [28, 29]. 

In contrast, the actual bonding electron distributions in metals have been experimentally observed to 

be anisotropic [3, 4, 6-8, 12-18, 30-49], which differ from the isotropic ideal electron gas assumed by 

the Drude model. For instance, the detailed bonding electron distribution in aluminium (a face-centred 

cubic (FCC) crystal) has been accurately measured by Nakashima et al. [6] using quantitative 

convergent-beam electron diffraction. The experimentally determined bonding distribution of 

aluminium exhibits anisotropic bonding localisation at the tetrahedral sites (the bonding in FCC crystal, 

like aluminium and copper, is often described as tetrahedral, bridging, octahedral types. As illustrated 

in  Figure 1.2. or the combinations thereof) which is contrary to many previous studies. This result 

also shows good correlation to the mechanical properties of aluminium (correlations between 
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electronic structures and mechanical properties are expected for metals [30]), as well as good 

agreements to theoretical calculations using first-principal method [6]. However, such successful 

characterisation of electron distribution in metallic bonding is still missing for many other metals [3, 

7, 8, 43], such as copper. This is mainly due to the fact that the localisation of bonding electrons in 

metals is very weak, which typically peaks at 3% of the overall electron intensity and often requires 

error finer than 0.1% to draw reliable conclusions. Thus, the bonding in metals is infinitesimal for 

most experimental techniques [4, 32, 50, 51], compared to the cases in ionic and covalent bonds, where 

the peak localisation of bonding electron can be 30% of the overall electron intensity.  

Figure 1.2. Illustration of common bonding sites in an FCC unit cell. The strongest bonding in an FCC metal often 

locates at any of the three sites 1) the octahedral site which is at the centre, 2) the tetrahedral sites at quarters of the 

unit cell, and 3) the bridging sites between nearest-neighbour atoms. 

1.2. The metallic bond in copper 

Copper is a non-ferrous transition metal, with an FCC crystal structure. Unlike other groups of 

transition metals, copper has a filled 3d shell and a partially filled 4s shell. Furthermore, the energies 

of its 3d and 4s shells are close enough for transitions between 3d104s1 and 3d94s2 to occur and absorb 

“blueish” photons in visible lights, giving rise to copper’s unique colour [52]. Similar rules also apply 

to gold. Silver, gold and copper are in the same group in the periodic table and have similar electronic 

configurations, but because the distance between the 4d and 5s shells of silver is too far, silver has a 

similar appearance to other metals [52]. Compared to silver and gold, because copper has a relatively 

small atomic number, experimental measurements (weaker extinction in X-ray diffraction) and 

quantum chemical calculations of its electron distributions (weaker relativistic effects) are expected to 

be less difficult [53]. Compared to metals like tungsten, molybdenum and aluminium, copper is 

relatively mechanically anisotropic [54]. With knowledge of the correlations between the mechanical 
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properties and bonding electron distributions in metal [30], the metallic bond in copper may have 

relatively strong localised electron distributions [6], which departs significantly from the ideal electron 

gas. Such interesting properties of copper lie in its unique electronic structure, motivating many 

investigations [3, 4, 11-16, 18, 31, 32, 39, 41-49, 55, 56] since the first attempt using X-ray in 1930. 

Agreements on bonding distribution of copper are found across some studies, but no common 

conclusions can be drawn. Some studies agree copper has tetrahedral bonds [4, 14, 18]; some others 

suggest the bonds in copper are combinations of octahedral and bridging types [7, 12]; while others 

propose that bonding in copper is mainly localised between the nearest-neighbour atoms [7, 11, 16].  

1.3. Definition and characterisation of bonding 

For bonding electron distribution studies, the concept “deformation density” is often used. It is defined 

as the difference in the electron density distribution caused by the presence of bonding, when 

comparing an actual crystal to a theoretical unbonded system: 

Eq. 1.1 ∆𝜌 = 𝜌𝑎𝑐𝑡𝑢𝑎𝑙 − 𝜌𝐼𝐴𝑀, 

where ∆𝜌 is the deformation density of electron distribution, 𝜌𝑎𝑐𝑡𝑢𝑎𝑙 is the electron distribution of a 

crystal with bonding and 𝜌𝐼𝐴𝑀 is the electron distribution of an unbonded system, which is also called 

the independent-atom model (IAM). The actual electron distribution of a crystal can be determined by 

theoretical calculations or experimental measurements, while the IAM electron distribution can only 

be calculated theoretically [6]. The electron distribution of a crystal, 𝜌(𝐫), can be expressed by its 

Fourier coefficients, 𝐹𝐠, which are also known as the X-ray structure factors: 

Eq. 1.2 𝜌(𝐫) =∑𝐹𝐠 ∙ exp(2𝜋𝑖𝐠 ∙ 𝐫)

𝐠

, 

where 𝐫 is the real space vector in a unit cell and 𝐠 is a reciprocal lattice vector. It is known that the 

low-order structure factors are the most significant to the deformation density [6, 7, 57]. This is because 

the redistribution of electrons caused by bonding occurs mostly among the valence electrons, which 

are Fourier transformed to the low-order structure factors (i.e. 𝐹111, 𝐹200 and 𝐹220 in FFC structures). 

Moreover, due to the weak localisation in metallic bonding, the differences (∆𝐹𝐠) between the structure 

factors of a real-world crystal (𝐹𝐠
𝑅𝑒𝑎𝑙) and of the IAM (𝐹𝐠

𝐼𝐴𝑀) are very small in metals. For FCC metals,

typically, ∆𝐹111 and ∆𝐹200 (the first two lowest-order structure factors) are only 3-4% of 𝐹111
𝑅𝑒𝑎𝑙 and
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𝐹𝑅200
𝑒𝑎𝑙 respectively, and ∆𝐹220 (the third lowest-order structure factor) is smaller than 0.5% of 𝐹𝑅220

𝑒𝑎𝑙 

[4, 32, 50]. For other structure factors after 𝐹220, ∆𝐹𝐠 are very subtle (∆𝐹𝐠⁄𝐹𝐠
𝑅𝑒𝑎𝑙 < 0.1%), which are 

even smaller than the experimental errors of any available technique at this higher-order region. 

Hence, the reliability of experimental determination of bonding for FCC metals generally ends by the 

third or fourth lowest-order structure factors, where the electron redistribution becomes insignificant 

compared to the measurement errors. However, a more comprehensive inclusion of structure factors 

should lead to more accurate bonding conclusions, if the experimental errors allow. 

To calculate the X-ray structure factors of the IAM electron distribution, knowledge of the X-ray 

atomic scattering factors is required:  

Eq. 1.3 𝐹𝐠 =∑𝑓𝑋,𝑗(𝑠) ∙ exp(−𝐵𝑗𝑠
2) ∙ exp(−2𝜋𝑖𝐠 ∙ 𝐫𝑗)

𝑗

, 

where 𝑓𝑋,𝑗(𝑠) is the X-ray atomic scattering factor of atom 𝑗 as a function of scattering angle 𝜃 and

electron wavelength 𝜆, and 𝑠 = sin 𝜃 𝜆⁄ . 𝐵𝑗 is the Debye-Waller factor of atom 𝑗, which describes its

thermal motion. Conventionally, the X-ray atomic scattering factors for the IAM are calculated using 

relativistic Hartree-Fock (RHF) atomic potentials [58]. A collection of IAM atomic scattering factors 

of several elements calculated using RHF was published by Doyle & Turner in 1968 [9]. These atomic 

scattering factors are tabulated in the range of 0 ≤ 𝑠 ≤ 6 Å−1, which covers the scattering angles

necessary to bonding studies [59]. Atomic scattering factors required by the IAM electron distribution 

calculations can be retrieved by interpolation of the tabulated values [9, 58-64]. The parameterised 

interpolation method by Doyle & Turner [9] published with the tabulated atomic structure factors is 

the most cited in bonding-related studies [3, 4, 7, 12-15, 17, 18, 31-39]. However, the high-order 

atomic scattering factors calculated by this interpolation method have been suggested to be inaccurate 

due to the poor fitting at larger 𝑠 [59, 65]. As mentioned above, due to the bonding deformations in 

metals being very small and sensitive, the accuracy of metallic bond studies using the Doyle & Turner 

interpolation for IAM may be affected. 

For theoretical calculations of the actual electron distributions in crystals, the band theory and density 

functional theory (DFT) are popular methods [3, 4, 7, 8, 13, 16, 31, 66]. The band theory solves the 

electron distribution by self-consistent calculations of the electronic band structure, with local 

exchange-correlation potentials, which assumes the electrons have no dynamical interactions [67]. 
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Similarly, DFT simulations rely on correct density functionals to estimate the energy exchange among 

electrons; however the functionals used for transition metals are semi-empirical [68, 69]. 

There are several experimental methods to measure the actual electron distribution in crystals via 

structure factor measurements: conventional X-ray diffraction (XRD), γ-ray diffraction, critical 

voltage, X-ray Pendellösung and quantitative convergent-beam electron diffraction (QCBED).  

XRD and γ-ray diffraction can measure accurate high-order structure factors, while the low-order 

structure factor measurements of periodic crystals tend to suffer from “extinction” of the low-order 

reflections [32, 50, 51]. This is because both methods are based on the kinematic theory of diffraction, 

which models the incident X-rays or γ-rays being scattered by the specimen no more than once. 

However, effects of the multiple scattering become more significant in the low-order reflections of 

periodic crystals. For heavy elements (i.e. higher atomic numbers), the extinction effects are more 

intense due to the stronger scattering of X-rays and γ-rays [15, 53].  

Convergent-beam electron diffraction (CBED) experiments in high-voltage electron microscopy make 

use of the fact that intensities in reflections higher than the first-order will drop significantly due to 

destructive interference under particular acceleration voltages, which are called the “critical voltages” 

[70, 71]. The critical voltages are very sensitive to the ratio between the low-order structure factors 

[12]. However, the absolute values of the structure factors cannot be determined by this method 

directly [4, 32, 51].  

The X-ray Pendellösung method, based on the dynamical theory of diffraction which also accounts for 

multiple scattering of the incident X-rays, can determine low-order structure factors accurately [15, 

32, 51]. The “Pendellösung” refers to the thickness fringe oscillations caused by dynamic diffraction 

[72], which are very sensitive to low-order structure factors [73]. Large edge-shaped single crystals of 

high qualities are required to produce analysable Pendellösung oscillations [72].  

Like the critical voltage method, QCBED is also a high-voltage electron microscopy technique based 

on CBED, which can directly yield accurate absolute measurements of low-order structure factors [6, 

7, 32, 50, 51, 66, 74]. Compared to the X-ray Pendellösung method, QCBED has relatively low 

specimen requirements (i.e. does not require large perfect single-grain specimens) [32]. Because the 

low-order structure factors are the most significant for bonding measurements [6, 7, 57], QCBED may 
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be the most accurate and convenient experimental method. A more detailed description of CBED and 

QCBED is given in the following section.  

1.4. A brief introduction to quantitative convergent-beam electron diffraction 

Figure 1.3. A schematic diagram of a) CBED: by focusing the electron beam on a perfect and single crystal region 

of the specimen, a CBED pattern of reflection discs is obtained (an experimental CBED pattern of copper is used 

as an example); and b) QCBED pattern-matching of the reflection discs from a): with iterative CBED pattern 

simulations of various crystal parameters (e.g. thickness and structure factors), the residual (denoted as “Err.”) of 

the experimental (denoted as “Expt.”) and simulated (denoted as “Calc.”) reflection discs is minimised, producing 

refined crystal parameters. 

An illustration of the CBED technique is shown in Figure 1.3a. With a convergent electron beam 

focused on the specimen, reflection discs are formed in the CBED pattern. The intensity distributions 

within CBED reflection discs are highly sensitive to the crystal thickness and electronic structure. 

Compared to X-rays and γ-rays, the negatively charged incident electrons have strong interactions with 

the electrons and ions in the specimen [50], resulting in much stronger multiple scattering in low-order 

reflections. Thus, dynamic diffraction analyses of the intensity distributions within reflection discs in 

CBED patterns can yield highly accurate low-order structure factors [7, 51]. The probe size of CBED 

on the specimen is typically 2-20 nm in diameter [32, 50]. With proper alignments, CBED patterns 

with symmetric reflection discs can be obtained from perfect single crystals when particular Bragg 

conditions are satisfied [75]. Therefore, with the small probe size and symmetry in CBED patterns, it 

is possible to select a defect-free single crystal region from a multi-grain specimen for structure factor 

measurements.  
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QCBED analysis is accomplished by pattern-matching of CBED patterns, as illustrated in Figure 1.3b. 

This involves iteratively comparing the intensity distributions within the reflection discs in CBED 

patterns simulated with different crystal parameters (e.g. thickness and structure factors) to the 

experimental intensity distributions. Parameters that yield the best matching patterns to the targets are 

considered as the refined result [6], which have been shown to be theoretically close to the actual 

values [50]. Because bonding deformation has little effects on the high-order structure factors [4, 6, 

32, 57], QCBED only refines the bonding-sensitive low-order structure factors and assumes the actual 

high-order structure factors to be identical to the IAM structure factors. If inaccurate IAM atomic 

scattering factors are used for QCBED refinements, the incorrect high-order structure factors will 

contribute perturbations to the intensity distributions in the calculated CBED reflection discs. 

Subsequently, the pattern-matching refinements of the low-order structure factors will be altered and 

inaccurate. Hence, a reliable IAM is essential to accurate QCBED structure factor measurements, as 

we shall see in Chapter 5. 

1.5. Aims and thesis outline 

The primary aim of this project is to obtain accurate low-order structure factors of copper by QCBED, 

and therefore accurately characterise the bonding electron distribution of copper. In particular, whether 

copper has tetrahedral, octahedral or bridging bonding shall be determined. In order to achieve this 

subjective, the present work set two additional goals: the parallelisation of computer codes to 

accelerate QCBED calculations, and a more accurate IAM of copper to satisfy its QCBED refinement 

and bonding determination. 

In contrast to previous QCBED studies of copper [4, 5, 7] using the Bloch-wave approach, this project 

will use the multislice formulation upon near-axis 2D CBED patterns. More detailed background 

knowledge, regarding 1) a literature review of bonding studies of copper, 2) available IAMs of copper, 

3) the multislice formulation used to calculate the dynamic electron diffraction, and 4) the angular 

differential QCBED analysis technique applied in this project, will be given in Chapter 2. Experimental 

methodologies, which describes the specimen preparation, data collection and data analysis conditions 

of QCBED will be explained in Chapter 3. A sample size of more than a hundred CBED patterns, 

which is more than ten times of previous QCBED studies, is involved in this work. Therefore, the 

batch processing treatments for a bulky sample size is demonstrated in the last section of Chapter 3. 
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As briefly described in Section 1.4, QCBED refinements involve iterative dynamical-theory 

calculations. Even with the dramatically increased computational capacity in modern computers, 

because the resolution in pattern-matching are also increased in modern QCBED studies to produce 

more accurate approximations, high-precision dynamical-theory calculations are still time-consuming. 

Moreover, the sample size is also increasing, as fast-response CCD detectors and acquisition 

techniques like scanning-QCBED (more details in Section 3.3) become available. Therefore, reducing 

the time required by QCBED calculation is considered a tool-sharpening task, which will significantly 

benefit the current and future QCBED projects. The acceleration of multislice QCBED pattern-

matching program, mainly by parallelisation processing, will be demonstrated in Chapter 4.  

As discussed in Sections 1.3 and 1.4, an accurate IAM is necessary to obtain reliable bonding 

determination as well as QCBED refinements. Validation of the long-existed IAM calculation method 

using the RHF atomic scattering factors by Doyle and Turner [9] for copper, along with a new proposed 

IAM calculated by DFT, will be given in Chapter 5. Finally, with the new accelerated version of 

QCBED pattern-matching, results of bonding in copper featuring different IAMs and post-acquisition 

noise reduction technique will be given and discussed in Chapter 6. 
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Chapter 2. Background 

Additional to Chapter 1, which briefly introduced the bonding definition and characterisation 

techniques, more detailed background information will be given in this chapter, which covers bonding 

and charge determination, the IAM of copper, the multislice formulation of the dynamical theory and 

the post-acquisition noise reduction technique used for QCBED analysis in this work. 

  



Chapter 2. Background 

 

13 

2.1. Bonding and charge density in copper 

As explained in Section 1.3, the bonding electron density 𝜌(𝐫) can be expressed by its X-ray structure 

factors 𝐹𝐠 (in Eq. 1.2), while the 𝐹𝐠 can be further expressed by the X-ray scattering factors 𝑓𝑋 (in Eq. 

1.3) and the temperature factor. By combining Eq. 1.2 and Eq. 1.3, for temperature at 0 K, the electron 

density can be derived from X-ray scattering factors by [76]: 

Eq. 2.1  𝜌(𝐫) =∑∑𝑓𝑋,𝑗(𝑠) ∙ exp(2𝜋𝑖𝐠 ∙ (𝐫 − 𝐫𝒋))

𝑗𝐠

  

Similarly to the relationship between X-ray scattering factors and electron density, the electrostatic 

Coulomb potential distribution 𝜑(𝐫) can be derived from electron scattering factors 𝑓𝑒𝑙(𝑠), which 

constitutes a description of electron scattering properties of a material during electron diffraction and 

will be utilised during QCBED calculations [76]: 

Eq. 2.2  𝜑(𝒓) = 𝐾∑∑𝑓𝑒𝑙,𝑗(𝑠) ∙ exp(2𝜋𝑖𝐠 ∙ (𝐫 − 𝐫𝒋))

𝑗𝐠

  

in which 𝐾 = 2𝜋𝑚0𝑒 ℎ2⁄ . 𝑚0 and 𝑒 are the mass and charge of an electron, and ℎ the Planck constant. 

With the relation between electron density and potential field of all the atoms in a system described by 

the Poisson’s equation, conversion between electron scattering factors 𝑓𝑒𝑙(𝑠) and X-ray scattering 

factors 𝑓𝑋(𝑠) can be derived by the Mott-Bethe formula [76]:  

Eq. 2.3  𝑓𝑒𝑙(𝑠) =
𝑚0𝑒

2

8𝜋𝜀0ℎ2
∙
𝑍 − 𝑓𝑋(𝑠)

𝑠2
  

More than 30 studies of low-order structure factors of copper have been published since 1930. Several 

X-ray diffraction experiments using powder or single crystal of copper [42-44, 46-49] were conducted 

prior to 1970. However, limited agreement was found among these experiments. A detailed review on 

these researches was published in 1969 by Sirota [39]. In 1990, Tabbernor, et al. [3] published a 

deformation density study of copper, which also included several band theory calculations, low-angle 

electron diffraction, X-ray Pendellösung method and 𝛾-ray results [39]. Results from different methods 

were considered to show sufficient consistency. It suggested that band theory results from Bagayoko 

et al. [16] would yield the best description of bonding in copper at then, which indicates bonding 

charge localised between nearest-neighbour atoms and next-nearest-neighbour atoms. 
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A more recent deformation density study on copper was published in 2005 by Friis et al. [7], which 

included rescaled 𝛾-ray [15], QCBED [4, 32], and theoretical results by multipole analysis, maximum-

entropy method and DFT, and band theory [16]. Conclusions were drawn that the two QCBED results 

had good consistency but were relatively far from the theoretical results. Furthermore, DFT and the 

multipole results have shown spherical charges at the atomic sites, which are expected as metallic 

bonding features. Compared to reviews by Tabbernor et al. [3] in 1990, better consistency is achieved 

by QCBED than by X-ray in low-order structure factors. The most recent study of copper structure 

factors was published in 2013 by Sang et al. [5], which aims to validate different density functionals 

with their QCBED results, but only the 𝐹111 and 𝐹200 are reported. The selected DFT values of Sang 

et al. have the best matching to their QCBED results, which were calculated using a functional tuned 

towards the QCBED values.  
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X
-r

a
y
 

hkl 
Rusterholz 

(1930) 

Brindley & 

Spiers (1935) 

Brindley 

(1936) 

Rovinski 

(1937) 

Ageev et al. 

(1948) 

Batterman et 

al. (1959) 
  

111 18.07 20.11 21.55 21.21 21.30 22.20   

200 16.52 18.56 19.85 19.74 19.50 20.60   

220 14.05 15.11 16.14 16.23 16.30 17.00   

X
-r

a
y
 

hkl 
Batterman et 

al. (1961) 

Jennings et al. 

(1964) 

Hosoya & 

Yamagichi 

(1966) 

Temkin et al. 

(1972) 
Freund (1973)    

111 21.29 ± 0.34 21.52 ± 0.10 22.02 ± 0.09 21.93 ± 0.15 22.63 ± 0.20    

200 19.75 ± 0.34 - 20.62 ± 0.18 20.36 ± 0.15 -    

220 16.37 ± 0.30 - 16.99 ± 0.13 16.70 ± 0.16 -    

B
a

n
d

 T
h

eo
ry

 

hkl 
Arlinghaus 

(1967) 

Snow (1968) 

α=1 

Snow (1968) 

α=5/6 

Snow (1968) 

α=2/3 

Wakoh & 

Yamashita 

(1971) 

Bagayoko et 

al. (1980) 

MacDonald et 

al. (1982) 

Eckardt et al. 

(1984) 

111 21.54 22.33 21.90 21.63 21.72 21.68 21.73 21.95 

200 20.25 21.04 20.66 20.40 20.46 20.35 20.39 20.68 

220 16.39 17.12 16.86 16.64 16.63 16.62 - 16.90 

C
ri

ti
ca

l 
v

o
lt

a
g

e 

hkl 
Humphreys 

(1975) 

Thomas et al. 

(1974) 

Smart & 

Humphreys 

(1980) 

Fox & Fisher 

(1988) 
    

111 21.75 ± 0.03 21.70 ± 0.02 21.76 21.72 ± 0.04     

200 20.43 ± 0.04 20.42 ± 0.02 20.43 20.45 ± 0.04     

220 - - 16.68 16.68 ± 0.08     

P
en

d
el

lö
su

n
g
 

hkl 

Smart & 

Humphreys 

(1980) 

Takama & 

Sato (1982) 
      

111 21.79 21.80 ± 0.06       

200 20.45 20.28 ± 0.11       

220 16.70 16.75 ± 0.08       

γ
-r

a
y
 

hkl 
Schneider 

(1981) 

Mackenzie & 

Mathieson 

(1984) 

Petrillo et al. 

(1998) 
     

111 21.51 ± 0.05 - 21.68 ± 0.14      

200 20.22 ± 0.04 - 20.38 ± 0.13      

220 16.45 ± 0.05 16.76 16.60 ± 0.12      

D
F

T
 

hkl 
Saunders et al. 

(1999) 

Friis et al. 

(2005) 

Sang et al. 

(2013) 
     

111 21.71 21.70 21.79      

200 20.37 20.38 20.45      

220 16.66 16.67 -      

Q
C

B
E

D
 hkl 

Saunders et al. 

(1999) 

Friis et al. 

(2005) 

Sang et al. 

(2013) 
     

111 21.78 ± 0.02 21.69 ± 0.03 21.80 ± 0.03      

200 20.44 ± 0.02 20.44 ± 0.02 20.45 ± 0.04      

220 16.72 ± 0.11 16.68 ± 0.02 -      

Table 2.1. Summary of low-order structure factors of copper from previous studies [3, 4, 7, 11-18, 31, 32, 39-49, 77-

79]. Only the three lowest-order structure factors are listed, while higher-order structure factors are also available for 

band theory, γ-ray, some DFT and QCBED studies in their original publications. Because different lattice parameters 

of copper are reported in the studies, the scattering angles are unique for each study and not listed. 
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Figure 2.1. The bonding electron distributions in copper: a) (and any FCC crystal) are described by the location of the 

major electron density position; b) – i) measured/calculated by different studies [4, 7, 11, 12, 14, 16, 18] (these studies 

are selected because they are either the most cited in bonding studies of copper or the most recent publications of the 

techniques). The RHF-IAM (derived from Doyle and Turner’s atomic scattering factors [9]) is used for bonding 

determination. The iso-surfaces are plotted at 50% (light blue) and 80% (dark blue) of the maximum bonding electron 

density of each result. As in b), c) & g), the bonding of copper is suggested to localise at the bridging sties; d), e) & h) 

indicate copper has tetrahedral bonding; while both f) & i) agree the major bonding in copper is localised around the 

octahedral sites with lower densities at the octahedron centre, as well as some bonding localised at the bridging sites. 

Images of bonding electron densities in this graph are generated by VESTA [10].  

e) Takama & Sato (1982)
Pendellösung

h) Saunders et al. (1999)
QCBED

f) Fox & Fisher (1988)
Critical voltage

i) Friis et al. (2005)
QCBED

d) Temkin et al. (1972)
X-ray diffraction 

g) Petrillo et al. (1998)
γ-ray diffraction

c) Friis et al. (2005)
DFT

a) Bonding position types b) Bagayoko et al. (1980)
Band theory
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Figure 2.2. Summary of bonding in copper from previous studies, using the RHF-IAM (derived from Doyle and 

Turner’s atomic scattering factors [9]). The intensities of charge density (𝑒− Å3⁄ ) at the tetrahedral sites, octahedral 

centre and bridging sites of copper’s unit cell are used to estimate the shapes of bonding distributions (please refer to 

Figure 2.1 for shapes of bonding). For values above 0 𝑒− Å3⁄ , anti-bonding is indicated to occur at the corresponding 

location. Results of different studies are grouped by their techniques. Shades from light to dark blue are used to indicate 

the publication years from 1930 to 2005. Experimental techniques include XRD (9 sets) [18, 39, 43, 45, 47-49, 80], 

critical voltages (2 sets) [4, 12], Pendellösung (2 sets) [14, 32], γ-ray (2 sets) [11, 15] and QCBED (2 sets) [12, 78]. 

Theoretical calculations include band theory (7 sets) [13, 16, 39, 41, 79] and DFT (2 sets) [4, 7]. The bonding charge 

densities are calculated with three lowest-order structure factors. The diversities among XRD results are the greatest 

(even excluding the farthest two points, which are from the two earliest studies). Relatively, critical voltages, DFT and 

QCBED studies have better agreement among different studies. Additionally, results from critical voltages, DFT and 

QCBED studies suggest that the magnitudes of copper bonding are relatively small, comparing to the other techniques. 
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Figure 2.3. A zoom-in graph of Figure 2.2 which includes most of the more recent studies [4, 7, 11, 12, 16, 18, 41, 79]. 

Summary of bonding in copper from previous studies, using the RHF-IAM (derived from Doyle and Turner’s atomic 

scattering factors [9]). The intensities of charge density (𝑒− Å3⁄ ) at the tetrahedral sites, octahedral centre and bridging 

sites of copper’s unit cell are used to estimate the shapes of bonding distributions (please refer to Figure 2.1 for shapes 

of bonding). For values above 0 𝑒− Å3⁄ , anti-bonding is indicated to occur at the corresponding location. Results of 

different studies are grouped by their techniques. Shades from light to dark blue are used to indicate the publication 

years from 1968 to 2005. Results include XRD (1 set) [18], band theory (3 sets) [16, 41, 79], critical voltages (2 sets) 

[4, 12], Pendellösung (1 set) [78], γ-ray (2 sets) [11, 15] and QCBED (2 sets) [4, 7] and DFT (2 sets) [4, 7]. The bonding 

charge densities are calculated with three lowest-order structure factors. The diversities among XRD results are the 

greatest (even excluding the farthest two points, which are from the two earliest studies). Relatively, critical voltages, 

DFT and QCBED studies have better agreement among different studies. Additionally, results from critical voltages, 

DFT and QCBED studies suggest that the magnitudes of copper bonding are relatively small, comparing to the other 

techniques. 
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A summary of 34 sets of low-order structure factors of copper measured/calculated by different 

techniques is listed in Table 2.1. Generally, recent studies have smaller uncertainties, although their 

differences are still outstanding (except the DFT and QCBED results of Sang et al. [5]). Because most 

studies have adopted different lattice parameters for copper, the values of scattering angles and IAM 

structure factors were reported to be different as well. Lattice constant 𝑎 = 3.6024 Å for copper [81] 

is used for unified scattering angles. Atomic scattering factors by Doyle and Turner using RHF [9] are 

used to yield the IAM of copper. The bonding electron distributions in copper measured/calculated by 

different studies [4, 7, 11, 12, 14, 16, 18] (these studies are selected because they are either the most 

cited in bonding studies of copper or the most recent publications of each technique) are plotted in 

Figure 2.1. Although the bonding distribution iso-surfaces are plotted as 50%/80% of the maximum 

bonding intensity in each result (to represent only the morphology of bonding), various bonding types 

are concluded by different studies. 

A visualisation of bonding distributions derived from 26 sets (data sets without any of 𝐹111,  𝐹200 and 

𝐹220 are ignored) is summarised by the bonding electron densities at the octahedral, tetrahedral and 

bridging sites in Figure 2.2. The ratios of bonding densities of the three bonding sites indicate the 

localisation of bonding electrons of different data sets. For instants, the two XRD data points that 

depart from the others, because they are in the bridging region and far away from the octahedral and 

tetrahedral regions, have indicated that very strong localised bonding in the bridging site. The shades 

of data points, which is coloured according to the publication times, have shown that results from more 

recent studies cluster near the origin and relatively less bridging-like. The overall linear trend is likely 

raising from the systemic errors in the magnitudes of structure factors, as earlier results (light blue 

shaded data points in Figure 2.2) have smaller 𝐹111,  𝐹200 and 𝐹220 as well. A zoom-in image is plotted 

to show the distributions of the clustered recent studies in Figure 2.3. Generally, the clustered recent 

studies, which have relatively better agreement on bonding magnitudes and morphologies, have shown 

bridging- and tetrahedral-like bonding, with weak octahedral intensities. Except for the Fox and Fisher 

critical voltage [12] and Friis et al. QCBED [7] results as shown in Figure 2.1, where most bonding 

densities are located within the octahedral sites but lower at the very centre of the octahedral atom 

cage.  

In 2003, Friis et al. [8] conducted an experiment aiming to experimentally verify DFT calculations. 

QCBED (systemic row) and X-rays were used to measure low- and high-order structure factors 

respectively of magnesium and beryllium. Agreement between DFT and QCBED results showed that 

QCBED had the ability to produce sufficiently accurate deformation density maps. Comparison 
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between deformation density maps of the two HCP metals, magnesium and beryllium also showed that 

bonding in magnesium is closer to the free-electron model of metals as expected. 

As a comparison of another FCC metal, a study on the deformation charge of aluminium, was 

published by Nakashima et al. [6] in 2011, using QCBED and DFT. In contrast to the QCBED and 

DFT copper studies by Saunders et al. in 1999  [4] and Friis et al. [8] in 2005, results of Nakashima et 

al. [6] show very close agreement between QCBED and DFT. The interatomic bonding was concluded 

to be tetrahedral and centred in four-nearest-atom tetrahedra only and without bonding deformation in 

the octahedra. This bonding geometry is similar to DFT calculations of copper (also an FCC metal) by 

Friis et al. [7], but apparently different from the QCBED results [4, 32] reviewed in Friis et al. [7] and 

band theory calculation by Bagayoko et al. [16]. Bagayoko, et al.’s work [16] was attributed as the 

most reliable study in the review by Tabbernor et al. [3].  

2.2. Independent-atom model of copper 

2.2.1. Atomic scattering factors 

For calculations of the independent neutral atom electron density or potential field, the RHF atomic 

wave function method by Coulthard [82] is the most commonly adopted [3, 4, 6-9, 15, 31-33, 62, 76]. 

However, to obtain an electron density for analytical applications, rather than solving RHF directly, it 

is usually preferred to use numerically approximated scattering factors, which are carefully curve fitted 

to the scattering factors that were calculated from RHF electron density. This is due to the fact that 

this method is more computationally effective in practice. The most widely used atomic scattering 

factors were published by Doyle and Turner in 1968 [9]. These tabulated atomic scattering factors are 

regarded as the standard values since the publication. This publication [9] covers 76 common atoms 

and ions, giving tables with 27 values of X-ray and electron scattering factors respectively for each 

atom and ion from 0 to 6 Å-1 of s (
sin𝜃

𝜆
). X-ray scattering factors from 0 to 2 Å-1 of s for other atoms 

and ions were calculated by Cromer and Waber [83], and later the neutral atoms in these tables were 

extended to 6 Å-1 of s by Fox et al. [59].  This collection of X-ray and electron scattering factors was 

later published in the International Tables for Crystallography [58, 84], forming tables that cover atoms 

and ions from number 1 to 98. The neutral atoms tables include up to 62 values from 0 to 6 Å-1 of s 

for both X-ray and electron scattering factors, while the ion tables include up to 56 values from 0 to 2 

Å-1 of s. Note that for atoms and ions that are not published by Doyle and Turner [9] (e.g. hydrogen), 

their electron scattering factors were converted from their X-ray values using the Mott-Bethe formula 

[76] as shown in Eq. 2.3. 
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In practice, these scattering factor tables will be interpolated to return either X-ray or electron 

scattering factors for the desired s. There are two interpolation solutions: the original and more popular 

method called parameterisation [9, 59, 60, 62, 63, 85], and polynomial interpolation [64]., as described 

in the following section. 

2.2.2. Numerical parameterisation and polynomial interpolation 

The electron and X-ray scattering factors determined from RHF calculations for scattering angles 𝑠 

from 0 to 6 Å−1 for most neutral atoms are tabulated by Doyle and Turner in 1968 [9], which are 

regarded as the most accurate scattering factors and are the most cited. In the same paper, a formula is 

also given to allow the interpolation of scattering factors. It involves parameterised Gaussian sums, 

curve fitted for the range from 𝑠 = 0 to 2 Å−1: 

Eq. 2.4  𝑓(𝑠) =∑𝑎𝑖𝑒
−𝑏𝑖𝑠

2
+ 𝑐

4

𝑖=1

,  

where 𝑎𝑖, 𝑏𝑖 and 𝑐 are fitting parameters (𝑐 = 0 for 𝑓𝑒𝑙(𝑠)).  

For high-resolution electron microscopy image simulations and QCBED calculations, electron 

scattering factors higher than 2 Å−1 are required to produce accurate simulations [58]. However, Fox 

et al. [59] showed that the parameterisation by Doyle and Turner [9] has poor accuracy at higher angles 

above 𝑠 = 2 Å−1  (100% error for X-ray scattering factors in some cases, and 10% for electron 

scattering factors derived by the Mott formula from X-ray scattering factors at high angles). 

Polynomial curve fittings of X-ray scattering factors were given as an alternative for the range 𝑠 = 2 

to 6 Å−1: 

Eq. 2.5  𝑓𝑥(𝑠) = exp (𝑎0 + 𝑎1𝑠 + 𝑎2𝑠
2 + 𝑎3𝑠

3)  

The correlation coefficients of these fits were above 0.999 and the errors were below 3% for most 

elements. Electron scattering factors derived from these X-ray scattering factors had errors less than 

1% [59]. 

In 1994, a new table of X-ray scattering factors was published by Rez et al. [86], [87]. Although the 

X-ray scattering factors of copper were of small difference to Doyle and Turner’s publication [9], 
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updated Gaussian sum curve fitting parameters were given for a range of 𝑠 from 0 to 2 Å−1 with better 

fitting and for an extended range of 𝑠 from 0 to 6 Å−1 with relatively poorer accuracy respectively. 

Electron scattering factors were not given, but it was suggested to use the Mott formula to derive them 

from the X-ray scattering factors. However, for low angle scattering factors, the Mott-formula 

conversion from X-ray scattering factors to electron scattering factors may result in additional errors 

as X-ray scattering factors are close to their atomic numbers, which results in the terms 𝑍 − 𝑓𝑥(𝑠) and 

𝑠2 in Eq. 2.3 tending to zero. 

In 1996, with a newly developed algorithm based on simulated-annealing and least-squares method 

for parameter optimisation, Peng et al. [62] developed new parameterised formulas for electron 

scattering factors in the form of five Gaussian sums: 

Eq. 2.6  𝑓(𝑠) =∑𝑎𝑖𝑒
−𝑏𝑖𝑠

2

5

𝑖=1

.  

Similarly to Rez et al. [86], parameters for ranges from 0 to 2 Å−1 and from 0 to 6 Å−1 of 𝑠 were given 

separately. Formulas of Peng et al. [62] for both ranges are currently included in the International 

Tables for Crystallography [58]. 

There are several parameterised electron scattering factor numerical approximations published in 

forms other than Gaussian summations [60, 63, 85]. Kirkland [85] has used 3 Lorentzian and 3 

Gaussian summations to fit the electron scattering factors. As the most recent publication, Lobato and 

Van Dyck [60] have provided 5-Lorentzian-summation formulas and resulted the best fitting to the 

tabulated electron scattering factors. The parameterised formulas by Lobato and Van Dyck [60] were 

also proposed with an extrapolation range of 𝑠 up to 12 Å−1.  

Apart from parameterisation, a less popular interpolation method is polynomial interpolation. Bird and 

King [64] published a FORTRAN subroutine, ATOM, which primarily aims to return both the real and 

imaginary components of electron atomic scattering factors. For the real component, ATOM uses cubic 

Lagrange interpolation to interpolate the electron scattering factors. Due to the nature of polynomial 

interpolation, ATOM can return a curve of electron scattering factors with perfect fitting to its 

embedded tabulated values. 
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Figure 2.4. The relative errors of electron atomic scattering factors of copper by different interpolation methods 

(parameterisation for 0  s (sin θ/λ)   6 Å⁻¹ is used for Peng et al.) [9, 59-62, 76], using the cubic spline interpolation 

of the tabulated atomic scattering factors[58] as the reference (because polynomial interpolations guarantee perfect 

fitting at known values). The error bars stand for the rounding errors introduced by the thousandth-precision of the 

tabulated values. It is shown that the relative errors of Doyle & Turner[9] and Peng et al.[62] exceed 10% when the 

scattering angle s > 3 and 4 Å⁻¹ respectively. 

In addition, all previous copper bonding studies [3, 7, 39] used IAM derived from atomic scattering 

factor interpolation of Doyle & Turner [9] or Peng et al. [62]. However, there are studies [59, 65] 

suggesting that the numerical values of copper atomic scattering factors derived from these two 

interpolation methods have poor fitting of high scattering angles (as shown in Figure 2.4). As discussed 

previously in Section 1.4, inaccurate atomic scattering factors will lead to inaccurate structure factors 

and hence inaccurate IAM charge distributions. Besides, for QCBED analysis, the high-order structure 

factors will be affected by inaccurate high-order atomic scattering factors. Thus, reliable atomic 

scattering factors and interpolations are essential for IAM and QCBED charge distribution calculations 

and deformation charge studies. This issue will be the focus of Chapter 5. 

2.3. Multislice formulation of dynamic electron diffraction 

To describe dynamic electron diffraction in a specimen, different formulations aiming to solve the 

time-independent Schrödinger equation are available. The Bloch-wave and multislice formulations are 

the most commonly used. In 1928, Hans Bethe, in his PhD thesis, used “Bloch waves” to successfully 

describe the dynamic electron diffraction behaviours in reflection experiments [51] reported by 

Davisson and Germer [88] and Thomson and Reid [89]. In 1939, Blackman extended Bethe’s Bloch-

wave theory to transmission cases [90]. In the late 1950s, Lorenzo Sturkey developed the “scattering 

matrix” approach [91, 92], which has simplified the Bloch-wave formulation and become the general 
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form of Bloch-wave formalism at present [93]. Also in the late 1950s, the multislice method, a 

formulation different to the Bloch-wave, was developed by Cowley and Moodie [94].  

 

Figure 2.5. A schematic diagram of the multislice approach. A specimen is cut in into N slices (by individual layer of 

atoms). The wave 𝛹𝑛 exited from the nth slice will be modified by the slice’s potential 𝑉𝑛 as well as its propagation 

distance.  The modification caused by 𝑉𝑛 is summarised as the phase grating 𝐺𝑛 = 𝛹𝑛−1 ∙ 𝑒
𝑖𝜎𝑉𝑛, where 𝜎 =

2𝜋𝑚𝑒𝜆

ℎ2
. The 

propagation over the distance of the slice is described by the Fresnel propagator 𝑃𝑛. ∗ denotes convolution of the Fresnel 

propator and the wave modified by the phase grating. After iterating over the 𝑁 slices, the intensities in the diffraction 

pattern of the specimen can be obtained from the absolute square of the Fourier transformation of the exit wave of the 

specimen, denoted as |𝐹(𝛹𝑁)|
2. 

A schematic diagram of the multislice approach is shown in Figure 2.5. To solve the time-independent 

Schrödinger equation, the multislice approach, utilising the Huygens-Fresnel principle, describes a 

specimen as multiple slices (usually splitting by individual layer of atoms) [94]. The exit wave 𝛹𝑛 from 

the nth slice is described as: 

Eq. 2.7  𝛹𝑛 = (𝛹𝑛−1 ∙ 𝐺𝑛) ∗ 𝑃𝑛,  

where 𝛹𝑛−1 is the exit wave from the previous slice (the incident wave is denoted as 𝛹0). 𝐺𝑛 is the 

phase grating, which describes the modification to the wave caused by the potential, 𝑉𝑛, of the slice. 
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𝐺𝑛 = 𝑒𝑖𝜎𝑉𝑛, where 𝜎 =
2𝜋𝑚𝑒𝜆

ℎ2
 and is called as the interaction constant. 𝑃𝑛 is the Fresnel propagator, 

which describes the propagation of the wave across the distance of the slice. Convolution, denoted as 

∗, of the Fresnel propator and the wave modified by the phase grating results in the exit wave of the 

slice. By iterating over the 𝑁 slices of the specimen, the final resulted intensities in the diffraction 

pattern are obtained as the absolute square of the Fourier coefficients of the exit wave 𝛹𝑁 : 𝐼 =

|𝐹(𝛹𝑁)|
2, where 𝐹(𝛹𝑁) denotes the Fourier transformation.  

The Bloch-wave and multislice approaches have different advantages. Bloch-wave calculations can be 

very fast for crystals with small unit cells, where a relatively small number of reflection beams are 

required. However, for crystals with large unit cells, or specimens with multi-layered structures, the 

amount of computation will increase significantly, as the number of included reflection beams and/or 

extra scattering matrices required for heterogenous structures increases. On the other hand, the 

multislice approach can generally achieve faster calculations than the Bloch-wave method when more 

and more reflection beams are included. Also because of its “multislice” assumption, the multislice 

approach is more suitable for multi-layered structures (smaller computation-time penalty). The 

multislice method was used for QCBED calculations of the bonding in copper in this project, both as 

a distinguish approach to previous studies of copper [4, 7] and as a chance to further develop the 

approach itself. A more detailed discussion regarding the computation performance of multislice will 

be given in Section Chapter 4. 

2.4. Angular differential QCBED 

There are several significant sources of noise/uncertainties that contribute to the total intensities of 

acquired experimental CBED patterns and differ them from calculated theoretical patterns. To 

characterise these uncertainties and reduce their significance, the angular differential QCBED 

(ADQCBED) technique [95] is used in this project. The main features of ADQCBED include: 1) point-

spread effect characterisation and elimination, 2) identification and reduction of electric current noise 

from CCD detector readout, 3) pattern-matching on angularly differentiated 2D near-axis patterns, 4) 

a gaussian function to model the absorption structure factors, and 5) geometrical distortion correction. 

The characterisation and elimination of the point-spread effect and current noise and pattern angular 

differentiation are data pre-processing steps. The scattering factor absorption modelling is executed 

during QCBED pattern-matching along other refining parameters (e.g. thickness and structure factors). 

The geometrical distortion correction is executed as an extra step that relies on theoretical QCBED 
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simulation to identify and correct distortions in the experimental data that are independent to 

parameters being refined in pattern-matching. 

The pattern-matching program used in this work is a modified version of [6, 96], which will be 

introduced in Chapter 4. The aim of the program is to find the optimised parameters (sample thickness 

and structure factors etc.) that produce the lowest residuals between the experimental and theoretical 

pattern. The residual is evaluated as: 

Eq. 2.8  𝜒 =

√
  
  
  
  
  

∑
𝑤𝑖 ∙ (𝐼𝑖

𝑒𝑥𝑝𝑡
− 𝐼𝑖

𝑡ℎ𝑒𝑜𝑟)
2

1 + 𝜎𝑖
2

𝑛
𝑖=1

∑
𝑤𝑖 ∙ 𝐼𝑖

𝑒𝑥𝑝𝑡2

1 + 𝜎𝑖
2

𝑛
𝑖=1

  

where 𝑖 stands for each pixel in the pattern, 𝑤𝑖 are the weights associated with each pixel (typically 0 

or 1, to define the region to match), 𝐼𝑖
𝑒𝑥𝑝𝑡

 and 𝐼𝑖
𝑡ℎ𝑒𝑜𝑟  are the experimental and the corresponding 

theoretical intensities of a pixel respectively, and 𝜎𝑖
2 is the variance and the characterised electric 

current noise from CCD detector readout. Perfect matching will result in 𝜒 = 0, when all 𝐼𝑖
𝑒𝑥𝑝𝑡 =

𝐼𝑖
𝑡ℎ𝑒𝑜𝑟. 

2.4.2. Measuring the point-spread function 

The point-spread effect describes the over-spreading intensities of a single electron on the detector 

instead of a point signal. This phenomenon causes blurring of the detected signal, by overflowing 

intensities to the neighbouring pixels. This is intrinsic to conventional CCD detectors, and occurs 

whenever electrons hit the detector. By analysing the diffraction aperture images (without the presence 

of specimen), it is possible to isolate this issue and characterise the shape of the spreading, which is 

represented as the point-spread function [97]. Once the point-spread function is characterised from the 

aperture image, the point-spread effect can be deconvoluted from the captured CBED patterns. 
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Figure 2.6. Image (left) of a captured diffraction image of the aperture on TEM, with a blurring edge. Image (right) of 

the same aperture image after deconvolution of its characterised point-spread-function, with a sharpened edge. 

2.4.3. Characterisation of signal noise from CCD detector readout 

Apart from the point-spread function, electron signals will also cause noise, from detection to readout 

of a CCD detector [98]. To account for the total uncertainties contributed from this source, an in-situ 

noise characterisation algorithm [99] was used, which assumes the noise 𝜎 is a function of signal I per 

pixel: 

Eq. 2.9  𝜎 = 𝑎 ∙ 𝐼 + 𝑏 ∙ √𝐼 + 𝑐  

where 𝑎, 𝑏 and 𝑐 are fitting efficiencies determined in-situ. The determined uncertainties associated to 

each pixel are used as a weighting factor during pattern-matching. 

2.4.4. Tackling inelastic scattering 

Compared to other sources of errors, inelastic scattering is a factor that will significantly affect the 

simulation of CBED patterns, and is even noticeable visually. Inelastic scattering is the phenomenon 

of electrons losing energy after being scattered by the specimen. In contrast, elastic scattering of 

electrons remains unchanged energy and are predictable. Major sources of inelastic scattering signals 

are plasmon and thermal diffuse scattering (TDS). It is known that the plasmon and some TDS signals 

have a similar intensity distribution to the elastic scattering signals, but in a more slow-varying and 

blurring fashion; other TDS signals are much less sensitive to the specimen and behave like a constant 

background noise contribution to the total intensities [96]. Energy-filtering optics, which include post 

column energy filters and in-column Omega filters, can be used to filter out most of the inelastic signal. 
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In this project, both energy-filtered and -unfiltered patterns were collected and analysed. Extra post-

collection processing techniques were used to reduce the significance of inelastic scattering in the 

unfiltered patterns. 

a) Angular differentiation of QCBED: TDS reduction 

Established theories explain that the signals in a CBED pattern consist of 1) a parameter-sensitive (e.g. 

specimen thickness, structure factors and scattering angle) elastic component, 2) a parameter-sensitive 

inelastic component and 3) a less-parameter-sensitive inelastic component [96]. The elastic component 

summarises all the electron elastic behaviours, the parameter-sensitive inelastic component consists of 

plasmon and partially TDS signals, and the less-parameter-sensitive is mostly TDS. As shown in Eq. 

2.10, the total intensity distribution I in CBED can be described as [96]:  

Eq. 2.10  𝐼 = 𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) + 𝐼𝑖𝑛𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) + 𝐼𝑖𝑛𝑒𝑙(𝜃)  

where 𝐹𝑒𝑙,𝐠, 𝐻 and 𝜃 are the structure factors, specimen thickness, and scattering angle respectively, 

𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) the elastic component, 𝐼𝑖𝑛𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) the sensitive inelastic component and 𝐼𝑖𝑛𝑒𝑙(𝜃) 

the relatively less sensitive inelastic component. In this expression, the intensity distribution of the 

𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) component can be well predicted; the 𝐼𝑖𝑛𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) intensity distribution is similar 

to 𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) but in a more diffuse manner; and 𝐼𝑖𝑛𝑒𝑙(𝜃) is usually modelled as a locally linear 

function of 𝜃. Therefore, a computable equation of the CBED signals can be expressed as [96]: 

Eq. 2.11  𝐼 ≈ 𝜂 ∙ 𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) + 𝛽 ∙ 𝜃 + 𝛾   (𝜂 > 1)  

where 𝐼𝑖𝑛𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) in Eq. 2.10 is included in 𝜂 ∙ 𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃), and 𝐼𝑖𝑛𝑒𝑙(𝜃) is modelled by 𝛽 ∙

𝜃 + 𝛾, with 𝛽 and 𝛾 representing constant coefficients. 

To reduce the influence of inelastic components and achieve better pattern-matching, techniques like 

energy-filtering and differential QCBED were developed [100]. Energy-filtering, which include post 

column energy filters and in-column Omega filters, can be used to filter out most of the inelastic signal 

including plasmon losses (i.e. losses greater than about 2eV). The 𝜂 component from Eq. 2.11 in 

energy-filtered patterns can be close to 1 [101].  
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Although energy filters can eliminate most of the plasmon signals, they cannot remove the TDS 

contribution as it involves energy loss less than 0.1 eV, which cannot be filtered out by energy filters 

[95]. Fortunately, the insensitive inelastic (TDS) signals can be reduced by the post-acquisition 

technique of differential QCBED. As the TDS intensity distribution is considered as insensitive to the 

three parameters, 𝐹𝑒𝑙,𝐠 , 𝐻  and 𝜃 , subtraction of two CBED patterns with small variation of any 

parameter will theoretically eliminate the TDS signals to a good approximation [96]. For example, the 

ADQCBED technique will have an approximate expression as [95]: 

Eq. 2.12  𝑑𝐼

𝑑𝜃
≈ 𝜂

𝑑𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃)

𝑑𝜃
+ 𝛽   (𝜂 > 1)  

which in brief is equivalent to subtracting every pixel in a CBED pattern by a neighbouring pixel, 

because each pair of pixels is considered to have linearly related TDS contributions, as it is a slowly 

varying background, but different 𝐼𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) and 𝐼𝑖𝑛𝑒𝑙(𝐹𝑒𝑙,𝐠, 𝐻, 𝜃) contributions that are sensitive 

to varying scattering angle. This is carried out in practice by subtracting the shifted patterns in four 

pairs of opposite directions (north, south, west, east, north-west, south-east, south-west and north-east, 

in order to eliminate the shifting shadow) from the original CBED patterns.  

a) Phenomenological absorption 

With angular differentiation, the significance of TDS in unfiltered data can be well reduced. However, 

while differential QCBED removes the slowly varying diffuse background in CBED patterns, the 

structured background largely contributed by plasmon losses may persist. Because the absorption 

contribution mimics the elastic signal, simulated patterns can be better approximated by applying a 

phenomenological absorption model. In the calculation of a CBED pattern, phenomenological 

absorption can be dealt with in terms of an imaginary component that contributes to the complex 

scattering factor associated with electron scattering factor. The overall electron scattering factor 𝑓𝑒𝑙,𝐠
𝑡𝑜𝑡 

for a type of atom may be expressed roughly as: 

Eq. 2.13  𝑓𝑒𝑙,𝐠
𝑡𝑜𝑡 = 𝑓𝑒𝑙,𝐠  +  𝑖𝑓𝑒𝑙,𝐠

′   

where 𝑓𝑒𝑙,𝐠 is the atomic electron scattering factor, and the imaginary component 𝑓𝑒𝑙,𝐠
′  is the absorption 

term. A well-known model for 𝑓𝑒𝑙,𝐠
′  developed by Bird and King [64] is available for energy-filtered 

data. Because both filtered and unfiltered data are used in this project, a new function of scattering 
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angle 𝑠 was used to model the absorption of each atom type (introduced in an unpublished paper by 

Nakashima et al., the draft of which is attached in Appendix D as Paper 1): 

Eq. 2.14  𝑓𝑒𝑙,g
′ (𝑠) = 𝑎 ∙ exp(−106 ∙ 𝑠2) + 𝑏 ∙ √𝐵 ∙ exp(−𝑐 ∙ 𝑠𝑑)  

where 𝑎, 𝑏, 𝑐 and 𝑑 are fitting parameters refined for each pattern and 𝐵 the Debye-Waller factor. 

With such configurations, the temperature, which affects the absorption significantly, is also taken into 

account. 

2.4.5. The geometric distortion correction  

Apart from the above uncertainties, geometric distortion caused by aberration may also occur during 

signal collection. A non-linear geometric distortion correction program written in C [102] was used in 

this project to reduce such distortions. This program serves to recover the undistorted experimental 

pattern by comparing it to a theoretical pattern and applying geometric transformations to the 

experimental pattern for further pattern-matching. In order to obtain a correct distortion 

characterisation, the theoretical refinement results have to be very near to the true (distortion-free) 

experimental pattern. For example, the sample thickness and pattern coordinates, which are sensitive 

to pattern geometry, must be determined accurately before distortion correction. Thus further pattern-

matching can yield more accurate and reliable refinement results for structure factors, which are 

sensitive to detailed features in CBED patterns.  

With these complex noise characterisation and reduction techniques of ADQCBED, uncertainty from 

data processing of experimental CBED pattern can be minimised. In addition to these post-acquisition 

techniques, reliable raw CBED data that exhibit bonding information from copper are apparently more 

vital to accurate bonding determination. In the next chapter, details about TEM specimen preparation 

and CBED data collection condition will be given, targeting minimum uncertainties prior to and during 

acquisition. 
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Chapter 3. QCBED experiments 

The whole process of QCBED experiments and analysis can be divided into four sections: specimen 

preparation, data collection, data preparation and QCBED refinement, which take place in the stated 

order. This chapter will discuss the methodologies associated with these four tasks.  
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3.1. Specimen preparation 

In order to obtain high quality data, specimen preparations, such as annealing and electro-polishing, 

and careful TEM alignments were employed. The pure copper specimens used for this project were 

made from a 1-mm-thick Puratronic® copper sheet manufactured by Alfa Aesar, featuring 99.9999% 

purity. After coarse sandpapering the copper sheet down to about 500-micron thick with SiC 600 

sandpapers, discs of 3 mm in diameter were then punched from the flat sheet. Excess thickness was 

left on purpose, and would be removed after the heat treatment described below, which may cause 

oxidation.  

Heat treatments were applied to the punched discs with the aim to eliminate defects like dislocations, 

which might be generated during grinding and disc-punching or existed in the as-purchased copper 

sheet. The 500-micron thick discs were 1) heated up to and kept at 550 °C (the melting point of copper 

is 1085 °C [103]) for 4 hours, then 2) slowly cooled down (self-cooling in air) and kept at 250 °C for 

2 hours to avoid thermal shock, and finally 3) self-cooling in air (for about an hour) down to room 

temperature to complete the annealing. 

After annealing, the discs were hand-polished again with SiC 1200 sandpapers from 500 microns down 

to about 100 – 150 microns thick. The excess removal ensured the oxidation layer formed during 

annealing was completely ground off the specimens, as shiny surfaces with metallic lustre were 

observed on both sides of the discs. Sonication with distilled water was used to clean the hand-polished 

thin specimens.  

The final thinning procedure employed electro-polishing to create electron transparent regions for 

TEM experiments. The thin copper discs were polished with a Struers TenuPol-5 twin-jet electro-

polishing unit, using a 25% orthophosphoric acid, 25% ethanol and 50% distilled water solution. The 

electro-polishing conditions used were 10 V and approximately 150 mA, at 20 °C. 

3.2. CBED data collection 

The pure copper TEM specimens were single- or multi-grained crystalline discs, with diameters of 3 

mm and edge thickness of about 100 – 150 microns. The crystal thicknesses, from where CBED 

patterns were collected, were between 500 to 3000 Å. In total 122 CBED patterns were collected and 

analysed in this project. 97 of these patterns were collected on a JEOL 2100F TEM (with a field 
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emission gun and a Gatan UltraScan 1000 CCD) at room temperature (293 K), at 200 kV, unfiltered. 

The other 25 patterns were collected on a JEOL 2200FS TEM (also with a field emission gun and a 

Gatan UltraScan 1000 CCD) by Yu-Tsun Shao, also at room temperature and 200 kV, with an omega-

energy-filter. The JEOL 2100F TEM locates at the Monash Centre of Electron Microscopy, while the 

JEOL 2200FS TEM locates at the Frederick Seitz Materials Research Laboratory of University Illinois. 

Before collecting CBED patterns, the TEMs were carefully aligned. Apart from common alignments 

(e.g. gun and beam alignments), the diffraction focus was aligned with extra care by obtaining a sharp 

and symmetrical edge of a diffraction aperture pattern as described in [97]. The gain reference of CDD 

detectors were aligned at the level of 30,000 counts, which are typically the maximum intensities of 

the collected CBED patterns. 

 

Figure 3.1. 1) Experimental CBED patterns of copper near the [100] direction and 2) the illustrations of their Laue 

circle geometries. In 2), the central reflections are outlined with red boxes, and reflection discs overlapped with the 

Laue circles are filled with a white shade, while other discs are filled with grey.  
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Figure 3.2. 1) Experimental CBED patterns of copper near the [110] direction and 2) the illustrations of their Laue 

circle geometries. In 2), the central reflections are outlined with red boxes, and reflection discs overlapped with the 

Laue circles are filled with a white shade, while other discs are filled with grey. 

Because bonding occurs mostly in the low-order structure factors [4-7], CBED patterns were collected 

slightly off three major zone axes, <100>, <110> and <112>, from different crystal thicknesses. This 

enabled access to all the low-order structure factors with higher sensitivities from various crystal 

orientations. On the JEOL 2100F TEM, the following CBED patterns were collected: a) 48 patterns 

from near <100>, with three different Laue circle geometries as shown in Figure 3.1; b) 35 patterns 

near <110> with five different geometries as shown in Figure 3.2; and c) 14 patterns near <112> with 
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three different Laue-circle geometries as shown in Figure 3.3. On the JEOL 2200FS TEM, 25 energy-

filtered patterns were collected near <110> of four geometries as shown in “[110]a-d” of Figure 3.2, 

using the scanning CBED technique [104] discussed in Section 3.3.  

 

Figure 3.3. 1) Experimental CBED patterns of copper near the [112] direction and 2) the illustrations of their Laue 

circle geometries. In 2), the central reflections are outlined with red boxes, and reflection discs overlapped with the 

Laue circles are filled with a white shade, while other discs are filled with grey.  

Additionally, it is known that patterns exhibit different levels of sensitivity to various structure factors 

with different Laue circle geometries [50]: a structure factor would have greater constraint in a pattern 

if 1) the coupling of its scattering vectors among the reflection discs crossed by the Laue circle 

(satisfying Bragg condition) occurs more frequently, 2) the coupling of reflections involves the central 

reflection disc and 3) the scattering vectors are shorter than that of other structure factors. Comparisons 

of sensitivities to various structure factors for each geometry regarding the above considerations are 

summarised in Table 3.1. Generally, patterns with smaller Laue circles, such as [100]a and [100]b in 

Figure 3.2 and [110]c, [110]e in Figure 3.1, are expected to be less sensitive to relatively higher-order 

structure factors like 𝐹222, 𝐹311, and 𝐹400. In contrast, patterns with relatively large Laue circles, such 

as [110]a in Figure 3.2, should show relatively lower sensitivities to the low-order structure factors 

𝐹111, 𝐹200 and 𝐹220 compared to those with smaller Laure circles. However, the sensitivities to 𝐹111, 

𝐹200 and 𝐹220 are still higher than 𝐹222, 𝐹311, and 𝐹400 in these large-Laue-circle geometries. 
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Geometry Sensitivities to 𝑭𝐠 

[100] 

a 𝐹200 > 𝐹220 

b 𝐹200 > 𝐹220 

c 𝐹220 ≈ 𝐹200 > 𝐹400 

[110] 

a 𝐹111 > 𝐹311 > 𝐹400 ≈ 𝐹200 > 𝐹220 > 𝐹222 

b 𝐹111 > 𝐹220 > 𝐹200 

c 𝐹111 > 𝐹220 ≈ 𝐹200 

d 𝐹111 > 𝐹200 > 𝐹220 

e 𝐹111 > 𝐹200 

[112] 
a 𝐹111 > 𝐹220 > 𝐹311 ≫ 𝐹222 

b 𝐹111 > 𝐹220 > 𝐹311 ≫ 𝐹222 

Table 3.1. Geometries of the collected CBED patterns and their sensitivities to the low-order structure factors. The 

geometries are denoted as shown in Figure 3.1, Figure 3.2 and Figure 3.3. Generally, geometries with smaller Laue 

circles are only sensitive to the lowest-order structure factors 𝐹111, 𝐹200 and 𝐹220, while geometries with larger Laue 

circles, like [100]c, [110]a, [112]a and [112]b, are also sensitive to the relatively higher-order structure factors. 

3.3. Beam damage and scanning CBED 

Because CBED experiments in this work utilise a highly focused beam in a field-emission gun TEM, 

beam damage may occur and destroy the perfect copper crystal during CBED pattern acquisition. For 

bulk copper, the electron sputtering damage threshold is about 147 keV [105]. To reduce beam damage, 

lower electron dose during acquisition is desired. Experiments on both the JEOL 2100F and JEOL 

2200FS TEMs were conducted at 200kV. Different beam-time minimisation methods were used to 

reduce the total electron dose.  

On the JEOL 2100F TEM, acquisitions were undertaken in the following fashion to minimise the dose 

and potential beam damage: 1) align desired Laue-circle geometry and focus specimen height (which 

might be time-consuming and causing beam damage), 2) slightly translate (typically a few nano-meters) 

the specimen away from the previous region with specimen tilting and Laue-circle geometry 

unchanged, 3) acquire a CBED pattern from the neighbouring region as soon as possible, and 4) check 

specimen height focus after acquisition (only patterns acquired with correct height-focus were kept). 

Although small drifting may persist soon after specimen stage translation, the diffraction pattern of 

neighbour regions from pure copper should be identical if the thickness and tilting of the crystal remain 

unchanged. 

For CBED patterns collected on the JEOL 2200FS TEM, the scanning CBED technique [104] was 

used to minimise dose. Scanning CBED is a technique which acquires multiple CBED patterns across 
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a region on a specimen, with accurately programmed real-space distances and exposure time. 

Conventionally it is used to determine spatially varying characteristics for more complex materials 

[104]. In this work, scanning CBED was used because of its advantages in programmed acquisition. 

Compared to manual operation, scanning CBED can repeat the align-crystal-and-acquire-from-

neighbour practice described above with almost no delay to maximise the exposure/beam time ratio, 

resulting in minimised beam damage. 

3.4. Batch processing of QCBED 

Because the QCBED experimental data in this project consists of a very large number of data sets (122 

CBED patterns), QCBED data collection, preparation and processing were executed in a manner of 

batch processing, while featuring the angular differential QCBED technique. Computer scripts were 

developed by the author to achieve higher efficiency and removed human error associated with the 

repeated management of many data sets. 
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Figure 3.4. Flowchart for batch processing of QCBED copper bonding characterisation experiments: 1) Collection of 

similar CBED patterns (e.g. same Laue circle geometry) with constant TEM alignments, denoted as a), b) and c)  2) 

batch data preparation for QCBED refinements, and 3) batch QCBED pattern-matching refinements (the refinement 

step may be repeated multiple times). 
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3.4.1. Batch data collection 

For convenience of batch processing, data sets exhibiting certain similarities were grouped together. 

For bonding characterisation of copper, as shown in Figure 3.4, a batch of patterns were collected with 

constant TEM alignments, different crystal thicknesses and same Laue circle geometry (small 

differences in actual crystal tilting may occur due to bending of the specimen). These grouping criteria 

are mainly due to two reasons: 1) significantly different crystal thicknesses for a given Laue circle 

geometry are required for uncertainty reduction and 2) patterns collected with fewer different 

conditions (except thickness) require less individual attention during data preparation and refinements, 

as the refinement outcomes are expected to be similar.  

Additionally, during pattern collection of the same Laue circle geometry, the locations of reflection 

discs in CBED patterns may remain unchanged, if these patterns are collected from the same crystal 

grain and all TEM alignment conditions are kept constant. This may make “reflection discs selection” 

in the following data preparation procedures easier across patterns in one batch. However, patterns 

acquired from different regions on the detector may reduce systematic errors arising from collection, 

for instance, if some pixels of the detector are defected. 

CBED patterns without the presence of any specimen (also called as “aperture patterns”) should also 

be acquired with the same TEM alignments for a batch of specimen CBED patterns for point-spread 

effect characterisation and correction in the following data preparation stage [97].  
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3.4.2. Batch data preparation 

 

Figure 3.5. a) The graphical user-interface of the batch angular differential QCBED data preparation script QCBED-

Bprep and b) the reflection discs selection script, both written for Gatan DigitalMicrograph in its scripting language. 

These scripts are designed for bulk QCBED data sets, in order to provide a guided data preparation process with 

minimised duplication labour. 

Batch ADQCBED data preparation, as shown in Figure 3.4, consists of 1) point-spread effect 

correction [97], 2) CCD signal noise characterisation [99], 3) reflection discs selection, 4) angular 

differentiation and pattern binning [96], and 5) refinement program configuration files preparation. A 

Gatan DigitalMicrograph script, named as QCBED-Bprep (batch preparation), with a graphical user-

interface aiming to guide users through the data preparation stage was developed for batch data 

preparation, as shown in Figure 3.5a. This script can process a batch of CBED pattern samples, with 

the same configurations/conditions for: 1) point-spread effect correction (samples should share the 

same point-spread function); 2) CCD signal noise characterisation (the noise characterisation is an in-

situ process for individual pattern); 3) angular differentiation and pattern binning (the sizes of 

reflection discs and images should be constant across samples); and 4) refinement program parameters 

files. QCBED-Bprep consists of modified scripts from [97], [99] and [96]. A separate script, Get 

Centres, was developed to assist manual selection of reflection discs, as shown in Figure 3.5b. Because 

patterns in one batch have the same Laue circle geometry and experimental conditions, the coordinates 

of their reflection discs are similar (as shown in Figure 3.4) and thus batch reflection discs selection 

can be efficient.  
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3.4.3. Batch QCBED refinement 

Different samples in a batch should have the same crystal structure and refinement configurations. For 

example, as shown in Figure 3.4, in copper bonding characterisation experiments only the crystal 

thicknesses and fine-tilting of the crystal might be different. Pattern-matching of a batch of data sets 

usually requires similar routes to yield relaxed and refined results, due to the similarities of the raw 

data and processing procedures (multiple batches with distinguishing experimental conditions should 

be therefore assessed to reduce systematic errors). Multiple cycles of pattern-matching refinements 

with various configurations will be needed to approach the final conclusion. Between the refinement 

cycles, editing of the configuration files, such as refinement switches of different parameters (e.g. 

thickness, phenomenological absorptions, structure factors) and number of refinement loops, is 

required to control the refinement program for each pattern. For a bulk sample size, such file editing 

requires a large amount of duplication labour which may cause human errors and lead to incorrect 

refinements. 

 

Figure 3.6. An interactive batch files editing tool for batch QCBED management written in Shell script. 

An interactive command-line Shell script program, bedit (as shown in Figure 3.6), was developed for 

this batch file-editing purpose, since QCBED refinements of this project were mainly executed on 

computer clusters installed with Linux systems where Shell script is available. Assuming the files of 

different samples of a batch are placed under individual sub-folders within one parent folder, bedit can 

edit files common in every sub-folder. Line and individual-word editing with constant content and 

advanced spread-sheet-like content replacing are available in bedit (utilising GNU sed [106], awk [107] 

and grep [108]), aiming to assist unexperienced users of shell scripts for batch file-editing. 

The detailed QCBED experimental methods used in this project, as well as a batched data processing 

approach, were described in this chapter. Accurate, precise and more efficient QCBED experiments 

and data preparation were demonstrated with these careful experiments and processing techniques. In 

the next chapter, a parallel-accelerated QCBED multislice pattern-matching program will be presented. 

As the most time-consuming stage for QCBED analysis, the efficiency of QCBED refinements has 

been accelerated by this new version of the QCBED program vastly. 
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Chapter 4. Acceleration of QCBED multislice pattern-matching 

The process of QCBED pattern-matching refinement to measure certain parameters, like structure 

factors, usually requires tens of thousands of iterations to search for the optimum solution. The time-

consumption of such refinements depends on: 1) time consumed for each iteration, 2) the total number 

of iterations, which is controlled by the optimum-searching strategy/algorithm and the starting point 

of a refinement. In this chapter, a parallel-accelerated QCBED multislice program with optimised 

processing speed will be presented. The performance of a single threaded multislice pattern-matching 

program, QCBEDMS, will be first reviewed. Then its parallelised version, QCBEDMS-PF (Parallel 

FFT), will be introduced in detail, regarding its speed performance, further potential speed 

improvements and numerical precision. 

In this chapter, various units of information storage will be used. They are: 1) basic units, bit and byte 

(B); 2) SI prefixed units, kilobyte (KB), megabyte (MB), gigabyte (GB) and terabyte (TB); and 3) 

Binary prefixed units, kibibyte (KiB), mebibyte (short for mega-binary MiB), gibibyte (GiB) and 

tebibyte (TiB). 1 byte equals 8 bits. The conversions for units with SI prefixes are: 1 TB = 103 GB = 

106 MB = 109 KB = 1012 B. For binary prefixed units: 1 TiB = 1024 GiB = 10242 MiB = 10243 KiB = 

10244 B. Binary prefixed storage units are preferred for sizes of hard drives, memories and memory 

caches, due to the designed sizes of memories and memory caches. However, SI prefixes units are 

preferred for data transfer rates, because the transfer rates are determined by speed frequencies of 

memories or hard drives, which are in SI-prefixed units – MHz or GHz. 
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4.1. Identification of time-consuming regions in the single threaded program 

When applying parallel acceleration to a single threaded program, the first step is always to identify 

the computation-intense regions and whether they can be modified to parallel processes. In this section, 

the workflow and time-consumption of the single threaded multislice pattern-matching program 

QCBEDMS will be first examined, and then its potentials of parallelisation acceleration and other 

optimisations will be discussed. 

As discussed in Section 2.3.1, the multislice approach uses the Huygens-Fresnel principle to calculate 

the propagation of the wave function between slices, which involves iterative convolution operations 

using the fast Fourier transform (FFT):  

Eq. 4.1  𝛹𝑡,𝑛 = 𝐼𝐹𝐹𝑇 (𝐹𝐹𝑇(𝛹𝑡,𝑛−1 ∙ 𝐺𝑛) ∙ 𝐹𝐹𝑇(𝑃𝑡,𝑛)),  

where 𝛹𝑡,𝑛 and 𝑃𝑡,𝑛 are the exit wave function and Fresnel propagator of the 𝑛th slice at incident angle 

(tilt) 𝑡 respectively, 𝐺𝑛 is the phase grating of the slice, and 𝐹𝐹𝑇 and 𝐼𝐹𝐹𝑇 denote the forward and 

inverse FFT respectively. The phase gratings are identical for slices with constant atomic structures, 

while the Fresnel propagators are identical for slices with constant thickness.  

A flowchart, illustrating the major procedures in an iteration of pattern-matching of the single-threaded 

program QCBEDMS, is presented in Figure 4.1. The Fresnel propagation (FP) approximation of a 

CBED pattern consisting of 𝑇  incident tilts, with an 𝑁 -slices thickness, is demonstrated in the 

flowchart. In QCBEDMS, the shape of the complex matrices 𝛹𝑡,𝑛, 𝐺𝑛 and 𝑃𝑡,𝑛, which represents the 

mesh of reflection beams being sampled during the FP, must be radix of 2 (the numbers of rows and 

columns may be different). Additionally, the inverse FFT of the last slice is omitted to yield intensities 

of diffraction patterns in reciprocal space. The process time of different procedures in QCBEDMS, as 

denoted in Figure 4.1, has the following relations: 1) 𝑡𝐼𝑡𝑒𝑟 ≈ 𝑇 ∙ 𝑡𝑇𝑖𝑙𝑡, 2) 𝑡𝑇𝑖𝑙𝑡 ≈ 𝑡𝑃𝑅 + 𝑡𝑊𝑃𝑆, and 3) 

𝑡𝑊𝑃𝑆 = 𝑁 ∙ (𝑡𝑀𝐺 + 𝑡𝑀𝑃 + 𝑡𝐹𝐹𝑇 + 𝑡𝐼𝐹𝐹𝑇) − 𝑡𝐼𝐹𝐹𝑇. On modern machines, the process time of operations 

not mentioned in the equation is subtle, therefore:  

Eq. 4.2  𝑡𝐼𝑡𝑒𝑟 ≈ 𝑇 ∙ [𝑡𝐹𝑃 + 𝑁 ∙ (𝑡𝑀𝐺 + 𝑡𝐼𝐹𝐹𝑇 + 𝑡𝑀𝑃 + 𝑡𝐼𝐹𝐹𝑇) − 𝑡𝐼𝐹𝐹𝑇],  

where 𝑡𝐹𝑃, 𝑡𝑀𝐺 , 𝑡𝑀𝑃, 𝑡𝐹𝐹𝑇 and 𝑡𝐼𝐹𝐹𝑇 are proportional to the number of included reflection beams (the 

size of the 𝛹𝑡,𝑛, 𝐺𝑛 and 𝑃𝑡,𝑛 matrices).  
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Figure 4.1. The flowchart of an iteration in pattern-matching of the single-threaded QCBEDMS. In the case of matching 

a pattern that consists of 𝑇 incident angles (tilts) from a specimen with 𝑁 slices, QCBEDMS will: 1) Calculate phase 

gratings 𝐺; 2) Calculate the Fresnel propagators 𝑃𝑡 at Tilt 𝑡, and then their Fourier coefficients 𝑃𝐹𝑇,𝑡; 3) Prepare the 

initial wave 𝛹𝑡,0 ; 4) Iterate the wave 𝛹𝑡,𝑛  propagating through the 𝑁 -slices specimen; 5) Output the diffraction 

intensities 𝐼𝑡
𝑐𝑎𝑙𝑐  at Tilt 𝑡; 6) Repeat Steps from 2) to 5) for all tilts to generate the intensities 𝐼𝑐𝑎𝑙𝑐 for selected reflections 

and compare them to the experimental intensities 𝐼𝑒𝑥𝑝𝑡; Finally, keep iterating with new parameters until a matched 

pattern is found. 𝐹𝐹𝑇 and 𝐼𝐹𝐹𝑇 denote forward and inverse 2-D complex FFT respectively. The process times of major 

procedures/steps are denoted: one iteration as 𝑡𝐼𝑡𝑒𝑟, one tilt as 𝑡𝑇𝑖𝑙𝑡, the calculations of 𝑃𝑡 and 𝑃𝐹𝑇,𝑡  for one tilt as 𝑡𝐹𝑃, 

the propagations of wave through all slices for one tilt as 𝑡𝑊𝑃𝑆, and the element-wise multiplications and FFT operations 

in the wave propagation for one slice as 𝑡𝑀𝐺 and 𝑡𝑀𝑃, and 𝑡𝐹𝐹𝑇  and 𝑡𝐼𝐹𝐹𝑇  respectively. The process times will have the 

following relation: a) 𝑡𝐼𝑡𝑒𝑟 ≈ 𝑇 ∙ 𝑡𝑇𝑖𝑙𝑡, b) 𝑡𝑇𝑖𝑙𝑡 ≈ 𝑡𝑃𝑅 + 𝑡𝑊𝑃𝑆, and c) 𝑡𝑊𝑃𝑆 = 𝑁 ∙ (𝑡𝑀𝐺 + 𝑡𝐹𝐹𝑇 + 𝑡𝑀𝑃 + 𝑡𝐼𝐹𝐹𝑇) − 𝑡𝐼𝐹𝐹𝑇. 
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Figure 4.2. An energy-filtered CBED pattern of copper, labelled as “U-2”, collected from a 259-nm-thick region, near 

[110] zone-axis: a) the original pattern, and b) the QCBED refinement patterns showing the experimental discs in 

“Expt.”, calculated discs in “Theo.” And their differences in “Err.”. Because the pattern is the thickest in this project 

and hence consumes the longest processing time with the multislice approach, it is used to time and benchmark the 

performance of QCBEDMS and QCBEDMS-PF. For both programs, the “U-2” test will be timed and calculate the 

theoretical pattern only once (only one iteration), with angular differentiation. 

Machine Desktop A Desktop B Desktop C Laptop A 
Cluster K80 

Node 

Cluster P100 

Node 

Cluster CPU 

Node 

CPU 
Intel Core i7-

4770 

Intel Core i7-

4690 

Intel Core i7-

4770K 

Intel Core i7-

4960HQ 

Intel Xeon 

E5-2680 v3 

(×2) 

Intel Xeon 

E5-2680 v4 

(×2) 

Intel Xeon 

Gold 6150 

(×2) 

Core frequency (GHz) 3.4-3.9 3.5-3.9 3.5-3.9 2.6-3.8 3.3 2.4 2.7 

Cores/Threads 4/8 4/4 4/8 4/8 12/12 14/14 18/18 

Last level cache (MiB) 8 6 8 6 30 35 24.75 

GPU 

Nvidia 

GeForce 

Titan Black 

Nvidia 

GeForce 

GTX 760 

AMD Radeon 

R9 270X 

Nvidia 

GeForce GT 

750M 

Nvidia Tesla 

K80 (single 

chip) (×8) 

Nvidia Tesla 

P100-16GB 

(×2) 

N/A 

Double (single) 

precision GFLOPS 
1707 (5121) 94 (2258) 168 (2688) 30 (723) 1456 (4368) 4670 (9340) - 

Max memory 

bandwidth (GB/s) 
336 192 179.2 80 240 732 - 

Stream multiprocessor 

(SMX) 
15 6 20 2 13 56 - 

Last level cache (KiB) 1536 512 512 256 1536 4096 - 

Platform Ubuntu 18.04 Ubuntu 16.04 Windows 10 
macOS 

10.13.6 

CentOS Linux 

7 

CentOS Linux 

7 

CentOS Linux 

7 

Intel compilers’ 

optimisation flags 

Linux & macOS: -O3 -fp-model fast=2 -march=core-avx2 -ipo; 

Windows: /O3 /fp:fast=2 /Qxcore-avx2 

Table 4.1. Specifications of machines used to benchmark QCBEDMS and QCBEDMS-PF. Three personal desktops, 

one laptop and three cluster computer nodes were used. 

An energy-filtered CBED pattern of copper collected near the [110] zone-axis, labelled as “U-2” and 

shown in Figure 4.2, was used to test the actual process time of QCBEDMS, because its specimen 



Chapter 4. Acceleration of QCBED multislice pattern-matching 

 

48 

thickness was measured to be 259 nm – the thickest in this project. The U-2 Test used a 32×16 mesh 

for reflections sampling in X and Y directions respectively (i.e. totally 512 reflection beams included), 

2029 slices for thickness and 2500 tilts for pattern resolution (the reflection discs were binned to 

50 × 50 pixels, and QCBEDMS calculated all 50 × 50 tilts including those outside the aperture). Only 

one iteration of pattern-matching was timed in the test. Beside the U-2 Test, a “Standard Test”, which 

calculated a pattern with a 64×64-reflections mesh, 1000 slices and 2500 tilts, is used to test the 

process time when more reflection beams are included. The specifications of machines used to test the 

programs are listed in Table 4.1. 

 

Figure 4.3. Process times of QCBEDMS running the U-2 and Standard Tests. The single-threaded program was 

executed and timed on Desktop A. The U-2 Test simulates the thickest (about 259 nm) copper CBED pattern in this 

project, using a 32×16 reflections-mesh, 2500 tilts and 2029 slices. While the Standard Test performs a 1000-slices 

calculation with a 64×64 reflections-mesh and 2500 tilts. The process times of different steps are: 1) Fresnel 

propagator for calculations related to Fresnel propagators and their Fourier coefficients; 2) FFT and IFFT for forward 

and inverse FFT operations respectively; 3) MG and MP for element-wise complex array multiplications with the phase 

gratings and Fresnel propagators’ Fourier coefficients respectively during wave propagation; and 4) Others for all other 

operations. The total process times were 83.61/460.85 seconds for the U-2/Standard Tests respectively. The process 

times of the FFT and IFFT operations tend to be very similar and both occupy about 35%/30% of the total process time 

in the U-2/Standard Tests. The multiplication operations with the Fresnel propagators’ Fourier coefficients take slightly 

longer than the multiplications with the phase gratings and occupy about 16% and 15%/21% and 19% in the U-

2/Standard Tests respectively. 

The time-consumption of the major operations in QCBEDMS was timed on Desktop A, as shown in 

Figure 4.3. The total process times of the single-threaded program were 83.61 and 460.85 seconds for 

the U-2 and Standard Tests respectively. The process times of the FFT and IFFT operations tend to be 

equal and both occupy about 35%/30% of the total process time in the U-2/Standard Tests. The 

multiplication operations with the Fresnel propagators’ Fourier coefficients take slightly longer than 

0 50 100 150 200 250 300 350 400 450 500

U-2

Standard

Duration (s)

U-2Standard

Fresnel propagator 0.030.32

FFT 29.17138.46

IFFT 28.79137.67

MG 12.1886.16

MP 13.2897.99

Others 0.160.26
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the multiplications with the phase gratings and occupy about 16% and 15%/21% and 19% in the U-

2/Standard Tests. It is obvious that in these tests, the wave propagation (including FFT operations and 

matrix multiplications, excluding calculations of the Fresnel propagators) occupies almost 100% of 

the total process time. However, because patterns of pure copper, a homogeneous and simple 

crystalline material, are calculated in the U-2 and Standard Tests, only two Fresnel propagators are 

needed for each incident tilt in QCBEDMS. In contrast, for specimens requiring more Fresnel 

propagators, the corresponding process times will be increased linearly. 

Given that the FP (which consists of Fresnel propagator calculations and the following wave 

propagation) of different incident tilts are independent to other tilts, as shown in Figure 4.1, 

parallelisation can be applied to the looping of multiple incident tilts, which occupies almost 100% of 

the total process time. As QCBEDMS-PF is designed for QCBED analysis, neither overlapping 

reflection discs are expected as the experimental input, nor spatial coherence is included to allow the 

calculations of theoretical patterns with overlapping discs. This ensures there is no exception to the 

independence and parallelisability of the calculations for different incident tilts. Moreover, because 

the process times are mostly spent on the FFT and matrix multiplications during wave propagation, 

these steps should be optimised (on top of the per-tilt-parallelisation) to result in significant 

improvements in processing speed.  

4.2. Different architectures and parallelisation for CPU and GPU 

As indicated in the previous section, parallelising the calculations of every incident tilt in a CBED 

pattern is possible, while a nearly 100% parallelisation efficiency can be achieved as other operations 

outside the per-tilt calculations cost almost no process time. For the detailed parallelisation architecture, 

there could be two different routes to parallelising the per-tilt calculations. The first route, namely “tilt-

oriented”, would be parallelised as:  

1. each processing core collects an incident tilt from the pattern,  

2. finish this tilt’s Fresnel propagator calculations and the following wave propagation, and 

then  

3. move on to another tilt, until all tilts are finished.  

The other route, namely “operation-oriented”, would be carried out as:  
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1. each processing core collects an incident tilt from the pattern and finishes the 

calculations of its Fresnel propagators, and then move on to another tilt until Fresnel 

propagators of all tilts are finished,  

2. each processing core collects an incident tilt from the pattern and finishes the calculations 

of a step in the wave propagation, and then move on to another tilt until this step of all 

tilts are finished, and  

3. follow this path until all steps of all tilts are finished.  

To summarise, the tilt-oriented parallelisation would have each processing core finish all the 

operations of each incident tilt, while the operation-oriented route would have each operation of all 

tilts finished one by one. The efficiencies of the two routes will be different, and should be chosen 

depending on the architectures of CPU and GPU. 

 

Figure 4.4. Schematic of CPU-GPU computing architecture. There are three major components in modern processing 

units (CPU/GPU): 1) processing cores, where computations are operated, 2) memories, where values of parameters are 

stored, and 3) caches, featuring as temporary memories with super-fast speed but small capacities.  

As shown in Figure 4.4, there are three major components in both CPU and GPU: 1) the processing 

cores, which operate the computations, 2) the memories, which store the values of parameters, and 3) 

the caches, which may be regarded as temporary memories with super-fast speed but small capacities. 

For CPU, the multiple processing cores have very high processing speed (which is usually proportional 
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to their core frequencies). For GPU, there are more processing cores (or called streaming 

multiprocessors, SM, in GPU). The processing speed of a SM in GPU is much slower than that of a 

CPU core. However, a GPU SM can process hundreds of identical operations (e.g. element-wise 

addition of two matrices) in parallel, while a CPU core has to proceed in serial. During processing, 

both CPU and GPU prefer to temporarily store information in lower level caches, which are located 

separately in every CPU core/GPU SM (not shown in the schematic). Low-level caches, Levels 1 (L1) 

& 2 (L2) in CPU and L1 in GPU, have almost no transfer latency but very small capacities (about 256 

KB for CPU, 64 KB for GPU). When larger capacities are required, the last-level caches will be used, 

which 1) are shared by all the cores/SMs, 2) are named as Level 3 (L3) and L2 caches for CPU and 

GPU respectively, and 3) have slightly larger capacities and super-fast transfer rates (but slower than 

lower-level caches). When even the last-level caches are not large enough, temporary values will be 

pushed to the memories, which have significantly reduced transfer rate compared to caches. For CPU 

computation, transfers between cache and memory are essential only when data is not already in cache 

or writing data to hard drive. For GPU, however, implicit data syncing between cache and memory 

also occurs before and after every GPU kernel, therefore extra kernel execution will cause extra 

memory caching operations. Due to different architecture designs, CPU’s are more efficient for serial 

computations, while GPU’s are optimised for matrix operation. 
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4.2.1. CPU parallelisation: tilt-oriented parallelisation 

 

Figure 4.5. Flowchart of tilt-oriented parallelisation for CPU in QCBEDMS-PF. According to the micro architecture 

of CPU, the tilt-oriented parallelisation is employed: 1. Prepare common parameters (including calculations of the 

phase gratings 𝐺) in the host thread; 2. Each processing core collect an incident tilt from the pattern, finish this tilt’s 

Fresnel propagator calculations and the following wave propagation, then move on to another tilt, until all tilts are 

finished, and; 3. Finally, compare the calculated 𝐼𝑐𝑎𝑙𝑐 and experimental 𝐼𝑒𝑥𝑝𝑡  CBED patterns on the host thread. 

The tilt-oriented parallelisation, which assigns all calculates of each tilt to a processing core (as shown 

in Figure 4.5), is preferable for CPU. In fact, even for single-threaded multislice program, like 

QCBEDMS, “finishing calculations tilt-by-tilt” will also be much faster than “finishing one operation 

of all tilts then proceeding to the next operation of all tilts”. This is due to the “memory caching” 

process required for every tilt: all matrices (e.g. the wave 𝛹 and Fresnel propagators 𝑃) unique to a tilt 

have to be loaded from the memory to the caches for the processing core to perform operations for this 

tilt, and then the outcomes of this tilt will be put back to the memory from the caches when the 

calculations are finished. The tilt-oriented approach will make the processing core focus on the same 

tilt, which minimises the number of caching operations between each step of multislice propagation. 

This is vital to the speed performance of multislice programs on CPU, where the caching speed is 

generally slow comparing to the processing speed. This is also true for the multi-threaded QCBEDMS-

PF, where all processing cores focus on their associated tilts, respectively, before moving to the rest 
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of tilts. For GPU, however, the caching speed, caching behaviours and matrix operation speed are 

different, where the operation-oriented parallelisation is preferred. 

4.2.2. GPU parallelisation: operation-oriented parallelisation 

 

Figure 4.6. Flowchart of OpenCL and CUDA implementations in QCBEDMS-PF. By using the clFFT and cuFFT 

libraries respectively, the accelerations of OpenCL and CUDA have similar structures: 1. Passing calculated parameters, 

e.g. the phase gratings 𝐺, from the main program (on CPU) to the GPU device; 2. Calculate the Fourier coefficients of 

the Fresnel propagators, 𝐹𝐹𝑇(𝑃), required by the following multislice propagation for all the incident tilts; 3. Calculate 

the wave functions, 𝛹𝑛, propagating through the N slices of the specimens for all the tilts; 4. Calculate the diffraction 

intensities I from the exit wave of the last slice 𝛹𝑁, and; 5. Finally, pass the calculated intensities back to the main 

program. Because the clFFT library supports advanced custom pre/post-operations of FFT (called as FFT Callback), 

the FFT operations and their prior and posterior element-wise array multiplications can be combined into one step 

(denoted as “𝑐𝑙𝐹𝐹𝑇 (𝐺,𝛹𝑛−1, 𝑃𝐹𝑇)”), resulting in only two steps for calculations of the wave in one slice. In contrast, 

because cuFFT does not support this kind of FFT Callback, four independent steps are required to calculate the wave 

for each slice. 

In order to gain better compatibility on various devices, both OpenCL and CUDA, the two most 

common low-level general-purpose GPU (GPGPU) application program interfaces (APIs), are 

implemented in QCBEDMS-PF for GPU acceleration. Both the calculations of the Fresnel propagators 

and multislice propagation have been parallelised, as shown in Figure 4.6. The clFFT and cuFFT 

libraries were used for the FFT operations in OpenCL and CUDA respectively. Overall, the workflows, 

which employ the operation-oriented parallelisation, are similar for both GPU frameworks: 1. Start by 

passing calculated parameters from the main program on CPU to the GPU device; 2. Calculate the 

Fourier coefficients of the Fresnel propagators, which is required by the following multislice 
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propagation for all the incident tilts; 3. Calculate the wave functions, which propagate through all the 

slices of the specimens for all the tilts; 4. Calculate the diffraction intensities from the exit wave of the 

last slice, and; 5. Finally, pass the calculated intensities back to the main program on CPU. Because 

the clFFT library supports advanced custom pre/post-operations of FFT (termed as “FFT Callback”), 

the FFT operations and their prior and posterior element-wise array multiplications can be combined 

into one step. In contrast, because cuFFT does not support advanced FFT Callbacks which involve 

extra matrices, four independent steps are required to for the wave calculations of each slice. Mostly 

due to the differences of the FFT Callback, the speed performances of the two GPU frame are different. 

 

Figure 4.7. Time-consumption of QCBEDMS-PF with different GPU accelerations running the Standard Test on 

Desktop A.  

As shown in Figure 4.7, QCBEDMS-PF was timed for the Standard Test using the OpenCL and CUDA 

accelerations respectively. The testing platform was Desktop A, which is equipped with a Nvidia GTX 

Titan Black GPU. OpenCL is about 15% faster than CUDA in this test. This may be unexpected, as 

CUDA and its cuFFT library are optimised for Nvidia devices, while the clFFT library was originally 

motivated by non-Nvidia devices that only supports OpenCL. However, the mentioned combined steps 

in the multislice propagation process are the key components that make the OpenCL implement faster 

than CUDA. On GPU, the major bottleneck of the speed performance of QCBEDMS-PF is the 

“memory caching” process. The term “memory caching” is defined as the process of data moving 

between a device’s global memory and its caches.  

0 2 4 6 8 10

OpenCL (clFFT)

CUDA (cuFFT)

Duration (s)

OpenCL (clFFT)CUDA (cuFFT)

Fresnel propagator 0.0180.010

FFT 4.1772.888

IFFT 3.9062.886

MG -1.383

MP -2.093

Others 0.0100.010
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GPU 

framework 
OpenCL CUDA 

Memory 

object 
Phase grating 

Fresnel 

propagators 
Wave function Phase grating 

Fresnel 

propagators 
Wave function 

Size per slice 

(MiB) 
0.06 156.25 156.25 0.06 156.25 156.25 

Caching operations of GPU kernel 

MG N/A Read - Read & write 

FFT  

(2 kernels) 

Read by 1st 

kernel 

Read by 2nd 

kernel 

Read & write 

by both kernels 
- - 

Read & write 

by both kernels 

MP N/A - Read Read & write 

FFT  

(2 kernels) 
- - 

Read & write 

by both kernels 
- - 

Read & write 

by both kernels 

Least-number of total caching operations 

MG N/A 1,000 - 2,000 

FFT 1,000 1,000 4,000 - - 4,000 

MP N/A - 1,000 2,000 

IFFT - - 3,996 - - 3,996 

Total least-caching size (GiB) 

MG N/A 0.06 - 305.18 

FFT 0.06 152.59 610.35 - - 610.35 

MP N/A - 152.59 305.18 

IFFT - - 609.74 - - 609.74 

Sum in  

GiB (GB) 
1372.74 (1473.97) 1983.09 (2129.33) 

Table 4.2. Memory caching operations of GPU kernels in QCBEDMS-PF, in the case of a (double-precision) Standard 

Test. In the Standard Test, 1) the phase gratings, Fresnel propagators and wave functions are 64-by-64 double-precision 

complex matrices, and a double-precision complex number occupies 16 bytes; 2) the operations will be repeated for 

1000 slices; and 3) there are 2500 incident tilts. Because all tilts are processed in parallel, the memory objects of the 

Fresnel propagators and wave functions both consist of 2500 64-by-64 matrices. MG stands for the multiplications of 

the phase grating and wave function matrices, while MP for that of the Fresnel propagators and wave functions. 

FFT/IFFT operations by both OpenCL’s clFFT and CUDA’s cuFFT libraries consist of two kernels, therefore read/write 

operations of the wave functions are repeated by the two kernels as well. For OpenCL, because both the MG and MP 

operations are combined into the FFT operations, no extra kernels are required. While for CUDA, since separated 

kernels are required for MG and MP, the wave functions will be read and write once, resulting in two more caching 

operations. As the IFFT operation of the last slice is omitted in QCBEDMS-PF, the total number of caching operations 

of IFFT is always four less than that of FFT. If the last level cache of a GPU is capable of containing all memory objects 

throughout the four operations (MG, FFT, MP and then IFFT) of each slice, the least-number of total caching can be 

achieved. Otherwise, the actual caching size will be larger than the least-caching size, causing longer process time. 

Please note that, the numbers of caching operations are constant for samples with single or multiple phase grating and 

Fresnel propagator slices. 
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The memory caching behaviour of GPU is slightly different to that of CPU: in addition to the caching 

required by the loading of new variables and saving of the outcomes, implicit caching is forced 

between GPU “kernels (chunks of operations)”. In QCBEDMS-PF, individual steps demonstrated in 

Figure 4.6 represent different GPU kernels that cannot be combined in OpenCL and CUDA, 

receptively. Moreover, 2D FFT operations require two separated kernels for both clFFT and cuFFT. 

The memory caching operations in QCBEDMS-PF on GPU, in the case of the Standard Test, is 

summarised in Table 4.2. Because the clFFT library supports advanced FFT Callbacks, matrix 

multiplications can be combined into the FFT operations on the OpenCL framework. Such practices 

lead to fewer kernels, and thus less memory caching when OpenCL is used by QCBEDMS-PF. The 

overall caching size of OpenCL is about 30% smaller than that of CUDA in QCBEDMS-PF.  

GPU 

Nvidia 

GeForce 

Titan Black 

Nvidia 

GeForce 

GTX 760 

AMD 

Radeon R9 

270X 

Nvidia 

GeForce 

GT 750M 

Nvidia 

Tesla K80 

(single chip) 

Nvidia 

Tesla P100-

16GB 

Processing power (GFLOPS) 1707 94 168 30 1456 4670 

Memory bandwidth (GB/s) 336 192 179.2 80 240 732 

OpenCL (least-caching size: 1473.97 GB) 

Measured bandwidth (GB/s) 237.49 150.00 144.36 58.49 - 539.68 

Least-caching time (s) 6.21 9.83 10.21 25.20 - 2.73 

Total process time (s) 8.08 22.98 22.10 110.92 - 3.26 

CUDA (least-caching size: 2129.33 GB) 

Measured bandwidth (GB/s) 239.16 149.92 - 52.99 171.50 540.60 

Least-caching time (s) 8.90 14.20 - 40.18 12.42 3.94 

Total process time (s) 9.18 25.76 - 96.27 12.91 3.99 

Table 4.3. Speed performance of QCBEDMS-PF running the Standard Test on various GPUs, compared with the least-

caching time. Although the GPUs were located on different machines, because the majority of computations, i.e. the 

FP, were executed by the GPUs, the variety of systems should have very small impacts. 

The speed performances of various GPUs are summarised in Table 4.3. Typically, a 15% reduction of 

the total process time can be achieved with the decreased overall caching size, comparing the speeds 

of OpenCL and CUDA where both frameworks are available. The Nvidia GeForce GT 750M is an 

exception. This is probably because the GPU has a too-small L2 cache size (only 256 KiB). The 

OpenCL framework in QCBEDMS-PF, with the FFT Callbacks, needs a larger cache size to contain 

all required variables in the combined kernels. If the L2 cache is too small, the least-caching size stated 

in Table 4.2 and the least-caching time in Table 4.3 become impossible, resulting in extra caching 

inside kernels and thus significantly longer total process time. Comparing the speeds between different 
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GPUs, it is shown that the caching operations have occupied a significant proportion of the total 

process time, especially for GPUs with greater double-precision performance (e.g. Nvidia GeForce 

Titan Black, Nvidia Tesla K80 and Nvidia Tesla P100-16GB). For GPU products targeting the 

entertainment market with reduced (double-precision) processing power, like the Nvidia GeForce 

GTX 760, AMD Radeon R9 270X and Nvidia GeForce GT 750M, considerably more time was 

consumed by other processes than the caching.  

4.3. Other optimisations 

As indicated in the previous section, most of the computation time in multislice calculation is spent on 

the multislice propagation process and the calculation of Fresnel propagators. Especially for 

applications to specimens with simple crystal structure, such as copper, the multislice propagation 

process occupies nearly 100% of the total calculation time. In this section, optimisation of these 

computation intense regions will be discussed. 

4.3.1. Fast Fourier-transform 

As shown in Figure 4.3, the FP, consisting of FFT and element-wise multiplication of the complex 

matrices, occupies almost 100% of the processing time in QCBEDMS, since these operations are 

repeated as many times as the number of slices of a specimen in every iteration. Therefore, 

modifications to the FFT and the multiplications may result in maximum reduction to the processing 

time of QCBEDMS, as these operations are repeated as many times as the number of slices of a 

specimen in every iteration. Inspired by previous studies [109-112] using different FFT algorithms 

(including FFT libraries utilising GPU acceleration) to accelerate the FP, a modified version of 

QCBEDMS featuring various FFT libraries and GPU acceleration has been developed and named 

QCBEDMS-PF (parallel FFT). In the original version of QCBEDMS, the FORTRAN version of the 

FFTSG library was used for FFT operation. In QCBEDMS-PF, FFTW, clFFT and cuFFT libraries, 

which are written in C/C++ languages, are implemented as alternative options for FFT operations. 

FFTW, generally recognised as the fastest FFT library on CPU, is implemented for machines without 

a GPU. clFFT is a GPU FFT library written in OpenCL language, while cuFFT is a GPU FFT library 

written in CUDA language. The performances of QCBEDMS-PF using various FFT libraries are 

benchmarked with the U-2 Test and summarised in Figure 4.8. Generally, when using FFT libraries 

that utilise GPU acceleration, QCBEDMS-PF can reduce the process time by 50% compared to the 

faster CPU FFT library, FFTW.  
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Figure 4.8. Results of the U-2 process time benchmarks by various FFT libraries in QCBEDMS-PF (shorter process 

times represent faster processing speed). For clFFT and cuFFT, 1 GPU and 1 CPU were used, while for FFTW and 

FFTSG, 1 CPU was used. Double floating-point precision was used for all FFT libraries. cuFFT was not available on 

Desktop C because an AMD GPU was used. clFFT was not available on the Cluster K80 Node because OpenCL was 

not installed. Generally, when using FFT libraries that utilise GPU acceleration, QCBEDMS-PF can reduce the process 

time by 50% compared to the faster CPU FFT library, FFTW. However, for GPUs with low double precision floating-

point performance (e.g. the case in d) Laptop A), the FFTW can achieve better performance. 

4.3.2. Array operations 

Although the underneath math operations are constant for the multislice formulation, the realisation of 

the calculations by programming can vary: different programming languages and different 

programming syntaxes, which may lead to different processing speed. In this section, the speed 

performance of 1) various array types, 2) variable-passing methods (VPM) and 3) array operation 

syntaxes (AOS) of Fortran and C/C++ will be discussed, which mostly benefits the computational 

efficiency on CPU.  Beside the FFT operations, as shown in Figure 4.3, the multiplication of complex 

arrays inside the FP are the other time-consuming components. Therefore optimisations and tests were 

focused on these regions. Because the original program, QCBEDMS, was written in Fortran, and it is 

generally accepted that Fortran has faster operations than C/C++ (while both Fortran and C/C++ are 

faster than other programming languages), discussions of Fortran will be first given.  

Different array types and syntaxes in the scripting codes will affect the optimisations of compilers, 

which will lead to changes in processing speeds of the final executable of the program. Therefore 

choosing the appropriated combination of array type and syntax will benefit the overall speed 

performance. As shown in Figure 4.9, various combinations of array types, variable passing and array 

operation syntaxes were tested by different compilers for Fortran. Only array types that allow varying 

numbers of elements were included, because the program aims for different QCBED configurations 
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which will involve varying matrix sizes across different experiments. Overall, the combination of 1) 

the “fftw_complex” array type (provided by the FFTW library), 2) passing as function arguments 

(called from C++) and 3) the syntax 𝐴(1:𝑚𝑡) = 𝐴(1:𝑚𝑡) ∙ 𝐵(1:𝑚𝑡) (where 𝑚𝑡 is the index of the 

last element) showed the best performance across various compilers. 

 

Figure 4.9. Speed of array operations with various array types in Fortran. Double precision complex array element-

wise multiplications of 𝐴 = 𝐴 ∙ 𝐵 then 𝐴 = 𝐴 ∙ 𝐶 were repeated 1000 times, single-threaded, and timed to simulate the 

time-consumption of array multiplications in multislice propagation. 𝐴, 𝐵 and 𝐶 are complex arrays with size of 64×64. 

Ten loops of all tests were timed and plotted with the average, minimum and maximum values. A combination of 

various array types, VPM and AOS were tested as annotated. There are four AOS’s for every array type and plotted in 

the same sequence as annotated, which all indicate the element-wise multiplication of all elements between 𝐴, 𝐵 and 𝐶 

(𝑚𝑡 stands for the index of the last element). Four sets of Fortran and C++ compilers were tested: 1) Intel compilers 

with flags “-fast -march=core-avx2”, 2) GNU compilers with “-Ofast -march=native”, 3) PGI compilers with “-fast”, 

and 4) LLVM (flang and clang++) compilers with “-Ofast -march=native”. The testing platform was a 64-bit Linux 

system, with a 4-cores CPU operating at 3.5 GHz fixed frequency. Overall, the “fftw_complex” array type, provided 

by the FFTW library, showed the best performance across various compilers.  
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The speed of FFT operations by FFTW, using different array allocation methods, is also tested and 

shown in Figure 4.10, as FFTW will be the preferred FFT library for CPU regarding the overall 

performance. Similarly to the test in Figure 4.9, the “fftw_complex” array type, which is provided and 

suggested by the FFTW library, showed the best speed performance. Because the FTTW library is 

written in C, C/C++ implementations of the library are involved in the QCBEDMS-PF program (by 

C/Fortran mixed languages programming). The speeds of array operations in C/C++ were also tested 

and shown in Figure 4.11, to determine whether a pure C/C++ script would result comparable speed 

performance to Fortran. Comparing to Figure 4.9, it is obvious that array operations are faster in 

Fortran than C/C++. Static arrays and looping syntax with fixed lengths of arrays were also tested for 

Fortran, as shown in Figure 4.12, which generally allow compilers to employ further optimisations 

compared to arrays and looping structures with variable lengths. However, scripting codes with array 

operations of fixed lengths are less flexible and harder to maintain.  

 

Figure 4.10. Speed performances of the FFTW library using different types of arrays for FFT operations. Double 

precision complex FFT and IFFT of a 64×64 array were repeated 1000 times, single-threaded, and timed to simulate 

the time-consumption of FFT operations in multislice propagation. Ten loops of all tests were timed and plotted with 

the average, minimum and maximum values. A combination of various array types and VPM were tested as annotated. 

Four sets of Fortran and C++ compilers were tested: 1) Intel compilers with flags “-fast -march=core-avx2”, 2) GNU 

compilers with “-Ofast -march=native”, 3) PGI compilers with “-fast”, and 4) LLVM (flang and clang++) compilers 

with “-Ofast -march=native”. The testing platform was a 64-bit Linux system, with a 4-cores CPU operating at 3.5 GHz 

fixed frequency. Overall, the “fftw_complex” array type, provided and suggested by the FFTW library, showed the 

best performance across various compilers. 
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Figure 4.11. Speed of array operations with various array types in C++. Double precision complex array element-wise 

multiplications of 𝐴 = 𝐴 ∙ 𝐵 then 𝐴 = 𝐴 ∙ 𝐶 were repeated 1000 times, single-threaded, and timed to simulate the time-

consumption of array multiplications in multislice propagation. 𝐴, 𝐵 and 𝐶 are complex arrays with size of 64×64. Ten 

loops of all tests were timed and plotted with the average, minimum and maximum values. A combination of various 

array types and VPM were tested as annotated. For “C++ valarray<complex<double>>”, a different array operation 

syntax, A *= B, was also tested and shown in (7). Three sets of Fortran and C++ compilers were tested: 1) Intel 

compilers with flags “-fast -march=core-avx2”, 2) GNU compilers with “-Ofast -march=native”, and 3) LLVM (flang 

and clang++) compilers with “-Ofast -march=native”. The testing platform was a 64-bit Linux system, with a 4-cores 

CPU operating at 3.5 GHz fixed frequency. Overall, the performance of complex array operation in C++ is slower than 

that of Fortran.  

In summary, scripting codes involving C/Fortran mixed-languages programming, which mainly use 

Fortran for array operations and use the array type “fftw_complex” provided by the FFTW library 

written in C, were tested to be the most computational efficient. By implementing fixed-length 

arrays/looping structures, the speed of array operations may be slightly improved. However, 

complexity of the scripting codes will be increased while the flexibility of the program is reduced, 

which will also lead to more difficult maintenance.  
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Figure 4.12. Speed of array operations with various static and local-temporary array types in Fortran. Double precision 

complex array element-wise multiplications of 𝐴 = 𝐴 ∙ 𝐵 then 𝐴 = 𝐴 ∙ 𝐶 were repeated 1000 times, single-threaded, 

and timed to simulate the time-consumption of array multiplications in multislice propagation. 𝐴, 𝐵 and 𝐶 are complex 

arrays with size of 64×64. Ten loops of all tests were timed and plotted with the average, minimum and maximum 

values. A combination of various array types, VPM and AOS were tested as annotated. There are four AOS’s for every 

array type and plotted in the same sequence as annotated. Four sets of Fortran and C++ compilers were tested: 1) Intel 

compilers with flags “-fast -march=core-avx2”, 2) GNU compilers with “-Ofast -march=native”, 3) PGI compilers with 

“-fast”, and 4) LLVM (flang and clang++) compilers with “-Ofast -march=native”. The testing platform was a 64-bit 

Linux system, with a 4-cores CPU operating at 3.5 GHz fixed frequency. Compared to Figure 4.9, the processing speed 

can be slightly improved when 1) static arrays with known sizes, 2) dynamically-allocated arrays but with fixed loop 

sizes, or 3) local-temporary arrays are used. 
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4.3.3. Single instruction, multiple data (SIMD) and vectorisation 

 

Figure 4.13. Performance of QCBEDMS-PF compiled with different SIMD instruction sets, SSE2, AVX2 and AVX-

512. The Standard Test was executed five times on the Cluster CPU Node (with 36 CPU cores), to compare the averaged 

process times using different numbers of CPU threads and various auto-vectorisation configurations. The FFTW library 

was used for all FFT operations. The Intel compilers were used to compile both the QCBEDMS-PF program and the 

FFTW library: 1) for SSE2 tests, QCBEDMS-PF was compiled with Flag “-xSSE2”, and FFTW was compiled with 

Option “—enable-sse2”; 2) for AVX2, QCBEDMS-PF with Flag “-xCORE-AVX2” and FFTW with Option “—enable-

avx2”; and 3) for AVX-512, QCBEDMS-PF with Flag “-xCORE-AVX512” and FFTW with Options “—enable-avx2” 

and “—enable-avx512” (“—enable-avx2” is also suggested by FFTW when using “—enable-avx512”). Overall, AVX2 

and AVX-512 have similar performances on QCBEDMS-PF, which are about 25% faster than using the SSE2 

instruction set. 

In addition to choosing the appropriated combination of array type and scripting syntax, vectorisation 

is another optimisation that can significantly benefit the speed of array operations on CPU. 

Vectorisation is also sometimes called as “single instruction, multiple data (SIMD)”, which represents 

the action of applying identical operation upon multiple (and especially serial) data. On modern CPUs, 

vectorisation often leads to faster array operations, because the number of instructions (commands of 

operations given to the CPUs) that can be processed within a certain time is limited. For array 

operations, where identical operations are casted on multiple elements serially, such instruction 

processing speed becomes the limiting factor. With vectorisation, the total number of instructions can 

be reduced for array operations, thus resulting in higher processing speed. For QCBEDMS-PF, such 
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optimisations rely on the auto-vectorisation provided by the compilers. This is because manual 

implementation of SIMD will increase the complexity of the scripting codes, while the actual speed 

improvement is subtle compared to auto-vectorisation (since the most time-consuming components in 

the program have relatively simple syntax structures). In Figure 4.13, the speed performances of 

different vectorisations are summarised. Both the FFTW library and the QCBEDMS-PF program were 

complied with specific vectorisations. It is shown that both AVX2 and AVX-512 (usually available on 

mid- and high-end CPUs launched after 2011) have about 25% speed improvements compared to SSE2 

(usually available on CPUs launched after 2003). There is no significant difference between AVX2 

and AVX-512, although AVX-512, which allows doubled-amounts of data processed with one 

instruction compared to AVX2, should theoretically further accelerate the array operations. Therefore, 

according to the CPU on a computing machine, QCBEDMS-PF should be compiled with AVX2 or 

AVX-512 as long as they are available. 

4.4. Precision considerations 

Number of 

slices 

Process time (s) 
χ 

Double Single 

1 0.07 0.05 1.16×10-7 

100 0.81 0.43 8.04×10-6 

1000 7.31 3.56 9.10×10-5 

2000 14.64 7.13 1.88×10-4 

Table 4.4. Processing speeds and errors (represented by χ as defined in Section 2.4) of QCBEDMS-PF using single-

precision, compared to using double-precision. Like the Standard Test, with 64×64 reflection beams and 50×50 incident 

angles, CBED patterns of copper consisting of various numbers of slices were calculated and timed. Double and single 

floating-point number precisions were used for Fresnel propagators and wave propagation and tested respectively. The 

testing platform was Desktop A, using OpenCL (clFFT) on GPU. A fixed scale of intensities is applied to both single- 

and double-precision calculations. It is shown that with 2000-slices, single-precision calculation results in errors of 

approximately 0.0188%. 

Although floating point operations using single-precision can achieve significant speed improvement, 

the accuracy may be compromised as: 1) single-precision variables have only 7 significant digits, 2) 

after multiplication/division etc., their accuracy may be reduced to 6 significant digits, and 3) after 

thousands of slices of iterative wave propagation, as shown in Table 4.4 and Figure 4.14, the accuracy 

will be reduced to only four or five significant digits in the final intensities. For thin specimens, e.g. 

those used in STEM experiments, single-precision may provide sufficient accuracy and half of the 

process time compared to double-precision. However, for QCBED analyses involve very thick 

specimens should avoid using single-precision.  
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Figure 4.14. Errors caused by single-precision floating number operation. Different numbers of slices (N) were used, 

resulting in different magnitudes of errors. Instead of applying a fixed scale, the intensities of the single-precision 

patterns were scaled to match that of the double-precision patterns, resulting in lower χ, which mimics the actual 

QCBED refinement practices. It is shown that with 2000-slices, single-precision calculation results in errors of 

approximately 0.00467%. 

Beside common floating-point number operations, optimisations of precision were also applied to sine 

and cosine calculations. In Fortran, the double-precision operations of sine and cosines have the 

following features: 1) sin(0) = sin(Pi) = 0, 2) cos(0) = 1 and cos(Pi) = -1, but 3) cos(Pi/2) ≈ 10^-17, 

which does not exactly equal 0. Due to this small residual, small differences will occur during the 

calculations of structure factors for symmetric reflections. Although the differences may be too small 

to harm the calculations, it is still visible to the double-precision operations. Therefore, for all sine, 

cosine and Pi related operations, quadruple-precision will be used in QCBEDMS-PF, except for 
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calculations of the Fresnel propagator, because quadruple-precision reduces the computing speed 

dramatically. 

4.5. Final performance 

 

Figure 4.15. Speed performance of QCBEDMS-PF running the Standard Test on cluster nodes with GPUs. On the a) 

Cluster K80 Node, only GPU accelerations with CUDA were tested because OpenCL was not installed. While on the 

b) Cluster P100 Node, both OpenCL and CUDA were tested with various combinations of GPUs. Linear reduction in 

total process times was observed for both increasing numbers of CPU cores and GPUs. Except for cases where GPUs 

are used while almost all CPU cores are occupied, the total process times will increase as the coordination of GPUs is 

also CPU-intense. The minimum process time for the (medium resolution) Standard Test on such cluster nodes can be 

as fast as near a second. 

The overall calculation times of QCBEDMS-PF on modern machines, which contain multiple CPU 

cores and may also contain one or more GPUs, can be reduced to be within 10 seconds for one iteration 

with medium resolution (i.e. the Standard Test). This performance is about 50 times faster than what 

was observed with the original single-thread program QCBEDMS. The process times of QCBEDMS-

PF with various combinations of CPUs and GPUs by using cluster nodes are shown in Figure 4.15. 

With increased numbers of CPU cores, the process times decrease linearly. This is also true for 

multiple GPUs parallelisation. Moreover, while a mixture of CPU and GPU resources on a machine is 

used, the total computing capabilities of different units are still summed linearly. This indicates that 
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the QCBEDMS-PF has a near-100% parallelisation efficiency, which suggests further linearly 

reduction of total process time can be achieved with multiple cluster nodes (enabled by the 

implemented MPI functions in the program). Although the communications between CPU and GPU, 

as well as between different cluster nodes, may limit the minimum process time while massive 

computing resources are involved. 

Additionally, the total process time can be further decreased with reduced resolution (real-space 

resolution as data points in the CBED patterns, or diffraction-space resolutions as the number of 

included reflection beams or coarser slicing, i.e. including multiple layers of atoms in one slice) or 

reduced operation precision. For examples, 1) fewer incident angles (lower real-space resolution), 2) 

smaller reflection beam mesh sizes (lower horizontal resolutions in diffraction-space), 3) coarser 

slicing (lower vertical resolutions in diffraction-space) or 4) using single floating-point precision for 

GPU acceleration, will all lead to linear reduction of the total process time with compromised accuracy 

and precision. However, such rough approximations enable very fast QCBED analysis for certain 

scenario, e.g. “live QCBED” analysis during TEM experiments. For example, using a 32-by-32 

reflection beam mesh size, 100-slices, 30-by-30 real-space resolutions and single-precision for CBED 

pattern simulations (GPU-only), the total operand can be reduced to 1/220 of the Standard Test, which 

is about 0.02 second on a Nvidia P100 GPU (neglecting the limitations of network speed and machine 

respond time etc.). With conservative estimate including other limiting factors, if four Nvidia P100 

GPUs are used in such case, one iteration should practically take less than 0.2 second, which enables 

about 3000 iterations in a minute. In scenarios where the TEM specimens are very thin, e.g. STEM 

experiments, the concern of decreased accuracy caused by rough QCBED approximation could be 

minimised, making “live QCBED” analysis possible while relatively reliable.  
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Chapter 5. The role of the independent-atom model 

As introduced in Section 1.2, in order to characterise the bonding of copper, its absolute charge density 

with bonding and IAM charge density without bonding have to be determined. In this project, QCBED 

was used to measure the absolute charge density, while the IAM was determined using different 

methods. Additionally, due to the nature of QCBED, the process of measuring the absolute charge 

density also involves the usage of IAM. Therefore, the first step of bonding characterisation of copper 

using QCBED is to determine the IAM for copper.  

Conventionally, the IAM is derived from the tabulated atomic scattering factors published by Doyle 

and Turner in 1968 [9]. The tabulated atomic scattering factors were calculated using the relativistic 

Hartree-Fock (RHF) atomic wave function method by Coulthard [82], which takes account of the 

electron exchange in the charge density of the independent atoms; however the electron correlation is 

neglected. To obtain the atomic scattering factors at scattering angles required by the IAM of copper, 

interpolation of the tabulated values is needed. In this project, the parameterisation published by Peng 

et al. in 1996 [62], which is included in the latest version of the International Tables for 

Crystallography [58], was first used for interpolated electron atomic scattering factors of copper. 

However, as pointed out in Section 2.2.2, Peng et al.’s parameterisation of copper has limited fitting 

to the tabulated atomic scattering factors at higher scattering angles. In order to gain perfect fitting and 

thus obtain more accurate atomic scattering factors for the IAM of copper, a cubic-spline method was 

developed and was also used for IAM of copper. Furthermore, the tabulated RHF atomic scattering 

factors by Doyle and Turner were also reviewed. DFT simulations, which include both the electron 

exchange and correlation, were performed to calculate the charge density of an isolated copper atom 

(by Dr. Andrew E. Smith). IAM was then derived from the DFT-calculated charge density of the 

isolated copper atom and used for QCBED refinements and bonding determination.  
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5.1. Atomic scattering factors of different IAMs  

The parameterisation of the electron atomic scattering factors of copper published by Peng et al. in 

1996 [62] was used to determine the IAM of copper at the early stage of this project. This 

parameterisation was chosen because: 1) QCBED refinements require electron atomic scattering 

factors for unrefined higher-order structure factors, 2) it is an update to the original parameterisation 

published by Doyle and Turner, featuring improved fitting to the electron scattering factors, and 3) it 

is considered as the standard approach since it is included in the latest version of the International 

Tables for Crystallography [58]. As discussed in Section 2.2, the fitting of Peng et al.’s 

parameterisation may be considered as poor at higher scattering angles, yielding inaccurate higher-

order atomic scattering factors. Errors in the higher-order scattering factors are likely to lead to 

inaccurate QCBED pattern-matching refinements, as the calculated intensities will always contains 

incorrect information from higher scattering angles which are not refined. Additionally, an inaccurate 

IAM will also cause errors during the bonding determination process, where the charge density of IAM 

is subtracted from the experimental charge density. Therefore, atomic scattering factors of copper with 

higher accuracy are required for more accurate bonding characterisation.  

There are several parameterisations available for electron [60, 61] and X-ray [86, 87] atomic scattering 

factors respectively, providing improved accuracy of atomic scattering factors of copper. However, 

instead of parameterisation, cubic-spline was used for interpolation of the tabulated electron and X-

ray atomic scattering factors from the International Tables for Crystallography respectively. This is 

because, comparing to parameterisation, polynomial interpolations like the cubic-spline can provide 

perfect fitting to the tabulated values. Moreover, for new data sets of atomic scattering factors other 

than the RHF values by Doyle and Turner, no parameter fitting is required by polynomial 

interpolations. For example, for the IAM of copper calculated by DFT which will be discussed later in 

this section, parameterisation becomes impossible as there are millions of atomic scattering factor 

values within the scattering angles 0 < s < 5 Å. 
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hkl s (Å⁻¹) 

X-ray atomic scattering factor Electron atomic scattering factor (Å) 

X1) Doyle & 

Turner (1968) 

X2) Cubic-

splined RHF 
X3) DFT-IAM 

E1) Peng et al. 

(1996) 

E2) Cubic-

splined RHF 
E3) DFT-IAM 

111 0.2404 22.046 22.042 21.875 2.885 2.882 3.022 

200 0.2776 20.689 20.676 20.522 2.597 2.586 2.697 

220 0.3926 16.739 16.746 16.686 1.900 1.903 1.958 

311 0.4603 14.737 14.748 14.740 1.599 1.610 1.649 

222 0.4808 14.190 14.198 14.204 1.523 1.532 1.569 

400 0.5552 12.421 12.420 12.455 1.286 1.288 1.316 

331 0.6050 11.420 11.412 11.454 1.157 1.150 1.175 

420 0.6207 11.132 11.124 11.166 1.119 1.110 1.135 

422 0.6800 10.159 10.151 10.193 0.991 0.976 0.997 

333 0.7212 9.578 9.573 9.616 0.911 0.894 0.913 

511 0.7212 9.578 9.573 9.616 0.911 0.894 0.913 

440 0.7852 8.816 8.817 8.857 0.799 0.784 0.801 

531 0.8211 8.453 8.456 8.494 0.742 0.729 0.745 

442 0.8328 8.344 8.348 8.386 0.724 0.713 0.729 

600 0.8328 8.344 8.348 8.386 0.724 0.713 0.729 

620 0.8778 7.961 7.967 8.001 0.660 0.653 0.668 

533 0.9101 7.719 7.726 7.756 0.618 0.614 0.629 

622 0.9207 7.645 7.652 7.681 0.605 0.602 0.616 

444 0.9616 7.381 7.387 7.411 0.557 0.559 0.572 

551 0.9912 7.209 7.215 7.234 0.525 0.531 0.543 

711 0.9912 7.209 7.215 7.234 0.525 0.531 0.543 

640 1.0009 7.156 7.161 7.180 0.516 0.522 0.534 

642 1.0387 6.962 6.964 6.979 0.479 0.489 0.500 

553 1.0661 6.831 6.832 6.844 0.455 0.467 0.478 

731 1.0661 6.831 6.832 6.844 0.455 0.467 0.478 

800 1.1104 6.638 6.636 6.643 0.420 0.435 0.444 

Table 5.1. Comparison of different X-ray and electron atomic scattering factors for copper. X1) and E1) are derived 

from the parameterisations by Doyle & Turner’s parameterisation [9] and Peng et al.[62] (fitted up to s = 6 Å⁻¹). X2 

and E2) are cubic-splined from the tabulated RHF atomic scattering factors in [84] and [58], respectively. X3 and E3) 

are derived from the DFT-IAM calculation (interpolated with cubic-spline). The X-ray atomic scattering factors are 

used as the IAM for bonding charge density determination, while the electron atomic scattering factors are used as the 

IAM for potential density measurements during QCBED refinements.  

Comparisons of the low-order structure factors between the parameterised-IAM, cubic-splined RHF-

IAM and DFT-IAM are shown in Table 5.1. Because the differences between the parameterisation and 

cubic-spline of the RHF values are considerably small when compared to the DFT-IAM, as well as the 

parameterisation by Peng et al. [62] is known to be less accurate, discussions will be focused on only 

the cubic-splined RHF-IAM (hereinafter referred to as “RHF-IAM”) and DFT-IAM. Comparing the 

RHF-IAM and DFT-IAM, the largest differences are observed at 0.1≤ s ≤ 0.4 Å⁻¹, where the DFT X-

ray and electron atomic scattering factors can be about 1% and 5% offsetting from the RHF values 

respectively. Smaller differences, which are still significant, are observed at higher s of atomic 

scattering factors. 
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Figure 5.1. Summary of bonding in copper for previous studies, using the RHF-IAM and DFT-IAM. The intensities of 

charge density (𝑒− Å3⁄ ) at the tetrahedral sites, octahedral centre and bridging sites of copper’s unit cell are used to 

estimate the shapes of bonding distributions. For values below 0 𝑒− Å3⁄ , anti-bonding is indicated to occur at the 

corresponding location. Results of different studies are grouped by their techniques. Shades from orange to red are used 

to indicate the publication years from 1930 to 2005 using the DFT-IAM. The light to dark blue shades are used to show 

the corresponding studies from using the RHF-IAM. Experimental techniques include XRD (9 sets) [18, 39, 43, 45, 47-

49, 80], critical voltages (2 sets) [4, 12], Pendellösung (2 sets) [14, 32], γ-ray (2 sets) [11, 15] and QCBED (2 sets) [4, 

7]. Theoretical calculations include band theory (7 sets) [13, 16, 39, 41] and DFT (2 sets) [4, 7]. The bonding charge 

densities are calculated with only the three lowest-order structure factors. The difference between bonding concluded 

using RHF-IAM and DFT-IAM are constant, while the absolute values of bonding charge density are changed for all 

results. For example, the intensities at tetrahedral sites are decreased by about 0.02 𝑒− Å3⁄ , increased by about 0.02 

𝑒− Å3⁄  at octahedral centres, and increased by about 0.05 𝑒− Å3⁄  at the bridging sites.  
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Figure 5.2. A zoom-in graph of Figure 5.1 which includes most of the more recent studies [4, 7, 11, 12, 16, 18, 41, 79]. 

Shades from light to dark blue are used to indicate the publication years from 1968 to 2005 using the RHF-IAM. Shades 

from orange to red are used to show the DFT-IAM values and linked to the corresponding RHF-IAM values. Results 

of different studies are grouped by their techniques. Results include XRD (1 set) [18], band theory (3 sets) [16, 41, 79], 

critical voltages (2 sets) [4, 12], Pendellösung (1 set) [78], γ-ray (2 sets) [11, 15] and QCBED (2 sets) [4, 7] and DFT 

(2 sets) [4, 7]. It is shown that the changes caused by a different IAM is very significant compared the differences 

between various studies. 
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Figure 5.3. The bonding charge density of copper using various IAMs. The iso-surfaces are plotted at 50% (light blue) 

and 80% (dark blue) of the maximum bonding electron density of each result. Only the three lowest-order structure 

factors were included. The IAM of a) is cubic-splined from the tabulated RHF atomic scattering factors in [84], while 

b) is cubic-splined from the DFT-IAM. With a different IAM, the bonding distributions have changed significantly. 

For copper, as well as other FCC metals, only the first two-to-three lowest-order structure factors are 

expected to significantly differ from the IAM structure factors [5, 99], since these structure factors 

cover most of the charge distribution in the valence electrons. Since the lowest-order structure factors 

in copper measured by QCBED [4, 7] are typically no more than 2% different from the RHF-IAM 

structure factors, very different conclusion of the bonding in copper can be yielded with the 1%-altered 
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DFT-IAM. The three lowest-order structure factors, which contribute the most bonding deformations, 

are all within the scattering angle range (0.1≤ s ≤ 0.4 Å⁻¹) where largest differences are observed 

between the RHF and DFT calculations. The differences between using the RHF-IAM and DFT-IAM 

of bonding determination for previous studies is summarised in Figure 5.1. Cold shades and warm 

shades are used to indicate the corresponding results using the RHF-IAM and DFT-IAM respectively. 

Replacing the RHF-IAM with the DFT-IAM for bonding determination results in a constant shifting 

for all data sets. For example, the intensities at tetrahedral sites are decreased by about 0.02 𝑒− Å3⁄ , 

increased by about 0.02 𝑒− Å3⁄  at octahedral centres, and increased by about 0.05 𝑒− Å3⁄  at the 

bridging sites, as summarised in the figure. Generally, such shifting causes a less-bridging-like and 

more-octahedral-like transformation in the bonding morphologies. A zoom-in graph which includes 

most of the more recent studies [4, 7, 11, 12, 16, 18, 41, 79] is also shown in Figure 5.2 for more 

detailed discussions. In this magnified figure, it can be illustrated that the impact of IAM alternation 

is very significant when comparing the difference among various studies. In particular, bonding types 

for some data sets have migrated from bridging-dominant to tetrahedral-dominant. The actual bonding 

distributions of copper from the most recent studies using the two IAMs can be found in Figure 5.3. 

Although the general types (octahedral-, tetrahedral- or bridging-like) of bonding have not changed, 

significant changes of the morphologies of bonding in these studies are caused by using a different 

IAM. Especially for the results of critical voltage by Fox and Fisher (1988) [12] and QCBED by Friis 

et al. (2005) [7], the locations of the maximum bonding density are also changed. The changes in the 

distributions of band theory by Bakayoko et al. (1980) [16] and γ-ray by Petrillo et al. (1998) [11] are 

relatively small, because the ratios of ∆𝐹111, ∆𝐹200 and ∆𝐹220 are similar. However, the magnitudes 

of bonding have changed, which is also true for all literature results. 

5.2. IAM of copper calculated by DFT 

The RHF approximation by Doyle and Turner [9] has been considered the most accurate atomic 

scattering factors since it was published 50 years ago. However, it only calculates the electron 

exchange in the charge density of the independent atom while the electron correlation is neglected. In 

the current work, DFT calculations (by Dr. Andrew E. Smith), which include both the exchange and 

correlation effects, are performed to generate a more accurate copper IAM. 
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s X-ray Electron s X-ray Electron s X-ray Electron s X-ray Electron s X-ray Electron 

0.01 - - 0.51 13.4791 1.4282 1.01 7.1281 0.5132 1.51 5.2713 0.2491 2.01 3.8269 0.1491 

0.02 - - 0.52 13.2416 1.3948 1.02 7.0742 0.5044 1.52 5.2422 0.2461 2.02 3.8002 0.1478 

0.03 - - 0.53 13.0095 1.3625 1.03 7.0218 0.4958 1.53 5.2105 0.2432 2.03 3.7741 0.1465 

0.04 - - 0.54 12.7835 1.3310 1.04 6.9711 0.4875 1.54 5.1800 0.2404 2.04 3.7478 0.1452 

0.05 - - 0.55 12.5630 1.3005 1.05 6.9214 0.4793 1.55 5.1497 0.2376 2.05 3.7218 0.1440 

0.06 - - 0.56 12.3481 1.2709 1.06 6.8728 0.4713 1.56 5.1194 0.2349 2.06 3.6960 0.1427 

0.07 - - 0.57 12.1389 1.2421 1.07 6.8254 0.4635 1.57 5.0891 0.2322 2.07 3.6708 0.1415 

0.08 - - 0.58 11.9347 1.2141 1.08 6.7791 0.4560 1.58 5.0596 0.2295 2.08 3.6449 0.1403 

0.09 - - 0.59 11.7374 1.1869 1.09 6.7338 0.4485 1.59 5.0288 0.2269 2.09 3.6196 0.1391 

0.10 - - 0.60 11.5449 1.1605 1.10 6.6894 0.4413 1.60 4.9989 0.2244 2.10 3.5945 0.1379 

0.11 27.0584 4.6470 0.61 11.3579 1.1347 1.11 6.6460 0.4342 1.61 4.9688 0.2219 2.11 3.5689 0.1367 

0.12 26.7200 4.5097 0.62 11.1763 1.1097 1.12 6.6034 0.4273 1.62 4.9386 0.2194 2.12 3.5450 0.1356 

0.13 26.3698 4.3716 0.63 10.9994 1.0855 1.13 6.5616 0.4206 1.63 4.9088 0.2170 2.13 3.5197 0.1344 

0.14 26.0102 4.2341 0.64 10.8287 1.0618 1.14 6.5205 0.4140 1.64 4.8791 0.2146 2.14 3.4950 0.1333 

0.15 25.6438 4.0983 0.65 10.6627 1.0388 1.15 6.4803 0.4075 1.65 4.8490 0.2123 2.15 3.4704 0.1322 

0.16 25.2722 3.9653 0.66 10.5017 1.0164 1.16 6.4403 0.4013 1.66 4.8195 0.2100 2.16 3.4464 0.1311 

0.17 24.8973 3.8356 0.67 10.3455 0.9946 1.17 6.4016 0.3951 1.67 4.7895 0.2078 2.17 3.4173 0.1300 

0.18 24.5202 3.7099 0.68 10.1941 0.9734 1.18 6.3631 0.3891 1.68 4.7597 0.2056 2.18 3.3982 0.1289 

0.19 24.1421 3.5885 0.69 10.0469 0.9528 1.19 6.3253 0.3832 1.69 4.7303 0.2034 2.19 3.3745 0.1279 

0.20 23.3860 3.3591 0.70 9.9051 0.9327 1.20 6.2878 0.3775 1.70 4.7004 0.2012 2.20 3.3510 0.1268 

0.21 23.0094 3.2512 0.71 9.7673 0.9131 1.21 6.2511 0.3719 1.71 4.6709 0.1991 2.21 3.3273 0.1258 

0.22 22.6343 3.1478 0.72 9.6331 0.8941 1.22 6.2145 0.3664 1.72 4.6414 0.1971 2.22 3.3041 0.1248 

0.23 22.2613 3.0488 0.73 9.5043 0.8756 1.23 6.1787 0.3610 1.73 4.6121 0.1950 2.23 3.2805 0.1238 

0.24 21.8906 2.9541 0.74 9.3785 0.8576 1.24 6.1432 0.3558 1.74 4.5826 0.1930 2.24 3.2580 0.1228 

0.25 21.5226 2.8634 0.75 9.2576 0.8400 1.25 6.1080 0.3506 1.75 4.5535 0.1911 2.25 3.2353 0.1218 

0.26 21.1575 2.7766 0.76 9.1394 0.8230 1.26 6.0730 0.3456 1.76 4.5242 0.1891 2.26 3.2128 0.1208 

0.27 20.7955 2.6936 0.77 9.0259 0.8063 1.27 6.0386 0.3407 1.77 4.4953 0.1872 2.27 3.1903 0.1199 

0.28 20.4370 2.6141 0.78 8.9150 0.7901 1.28 6.0043 0.3359 1.78 4.4662 0.1853 2.28 3.1681 0.1189 

0.29 20.0821 2.5379 0.79 8.8085 0.7743 1.29 5.9703 0.3312 1.79 4.4372 0.1835 2.29 3.1456 0.1180 

0.30 19.7309 2.4649 0.80 8.7044 0.7590 1.30 5.9369 0.3266 1.80 4.4083 0.1817 2.30 3.1239 0.1171 

0.31 19.3838 2.3949 0.81 8.6042 0.7440 1.31 5.9035 0.3221 1.81 4.3773 0.1799 2.31 3.1021 0.1162 

0.32 19.0407 2.3277 0.82 8.5072 0.7294 1.32 5.8704 0.3177 1.82 4.3509 0.1781 2.32 3.0806 0.1153 

0.33 18.7020 2.2632 0.83 8.4129 0.7152 1.33 5.8375 0.3134 1.83 4.3223 0.1764 2.33 3.0585 0.1144 

0.34 18.3678 2.2013 0.84 8.3216 0.7014 1.34 5.8046 0.3092 1.84 4.2941 0.1747 2.34 3.0374 0.1135 

0.35 18.0383 2.1417 0.85 8.2326 0.6879 1.35 5.7722 0.3050 1.85 4.2652 0.1730 2.35 3.0177 0.1126 

0.36 17.7121 2.0846 0.86 8.1468 0.6748 1.36 5.7400 0.3010 1.86 4.2371 0.1713 2.36 2.9963 0.1117 

0.37 17.3936 2.0291 0.87 8.0637 0.6620 1.37 5.7077 0.2970 1.87 4.2090 0.1697 2.37 2.9755 0.1109 

0.38 17.0787 1.9759 0.88 7.9830 0.6496 1.38 5.6758 0.2931 1.88 4.1808 0.1681 2.38 2.9550 0.1100 

0.39 16.7683 1.9247 0.89 7.9048 0.6374 1.39 5.6441 0.2893 1.89 4.1529 0.1665 2.39 2.9347 0.1092 

0.40 16.4645 1.8751 0.90 7.8294 0.6255 1.40 5.6123 0.2856 1.90 4.1250 0.1649 2.40 2.9145 0.1084 

0.41 16.1654 1.8274 0.91 7.7559 0.6140 1.41 5.5809 0.2819 1.91 4.0963 0.1634 2.41 2.8945 0.1076 

0.42 15.8716 1.7812 0.92 7.6845 0.6027 1.42 5.5495 0.2783 1.92 4.0698 0.1619 2.42 2.8747 0.1068 

0.43 15.5834 1.7367 0.93 7.6149 0.5918 1.43 5.5181 0.2748 1.93 4.0426 0.1604 2.43 2.8551 0.1060 

0.44 15.2999 1.6937 0.94 7.5478 0.5811 1.44 5.4869 0.2714 1.94 4.0147 0.1589 2.44 2.8355 0.1052 

0.45 15.0236 1.6519 0.95 7.4828 0.5706 1.45 5.4558 0.2680 1.95 3.9874 0.1574 2.45 2.8180 0.1044 

0.46 14.7520 1.6116 0.96 7.4194 0.5604 1.46 5.4249 0.2647 1.96 3.9603 0.1560 2.46 2.7972 0.1036 

0.47 14.4861 1.5725 0.97 7.3576 0.5505 1.47 5.3941 0.2615 1.97 3.9334 0.1546 2.47 2.7780 0.1029 

0.48 14.2259 1.5347 0.98 7.2980 0.5408 1.48 5.3633 0.2583 1.98 3.9064 0.1532 2.48 2.7595 0.1021 

0.49 13.9713 1.4981 0.99 7.2395 0.5314 1.49 5.3325 0.2551 1.99 3.8787 0.1518 2.49 2.7408 0.1014 

0.50 13.7218 1.4626 1.00 7.1828 0.5222 1.50 5.3017 0.2521 2.00 3.8530 0.1505 2.50 2.7222 0.1006 

Table 5.2.  Tabulated X-ray and electron atomic scattering factors of copper calculated by DFT (for 0.1 ≤ s ≤ 2.5) Å⁻¹. 

Cubic-spline was used to interpolate the atomic scattering factors at given s. The given range of s is because the 

calculation is simulated with an orthorhombic primitive unit cell (lattice constants a=15.88 Å, b=15.93 Å and c=15.98 

Å), hence too few numbers of atomic scattering factors were obtained for s < 0.1 Å⁻¹ for accurate interpolation, while 

at very large s the WIEN2k program has too many entities of atomic scattering factors to output. 
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S X-ray Electron s X-ray Electron s X-ray Electron s X-ray Electron s X-ray Electron 

2.51 2.7043 0.0999 3.01 1.9931 0.0713 3.51 1.5873 0.0533 4.01 1.3557 0.0411 4.51 1.2102 0.0327 

2.52 2.6859 0.0992 3.02 1.9822 0.0709 3.52 1.5811 0.0530 4.02 1.3522 0.0409 4.52 1.2078 0.0326 

2.53 2.6680 0.0985 3.03 1.9718 0.0705 3.53 1.5754 0.0527 4.03 1.3488 0.0407 4.53 1.2054 0.0324 

2.54 2.6503 0.0978 3.04 1.9615 0.0700 3.54 1.5695 0.0524 4.04 1.3452 0.0406 4.54 1.2030 0.0323 

2.55 2.6328 0.0970 3.05 1.9512 0.0696 3.55 1.5636 0.0521 4.05 1.3418 0.0404 4.55 1.2001 0.0321 

2.56 2.6155 0.0964 3.06 1.9411 0.0692 3.56 1.5579 0.0518 4.06 1.3384 0.0402 4.56 1.1983 0.0320 

2.57 2.5980 0.0957 3.07 1.9311 0.0687 3.57 1.5524 0.0515 4.07 1.3351 0.0400 4.57 1.1959 0.0319 

2.58 2.5811 0.0950 3.08 1.9211 0.0683 3.58 1.5468 0.0513 4.08 1.3314 0.0398 4.58 1.1936 0.0317 

2.59 2.5641 0.0943 3.09 1.9113 0.0679 3.59 1.5417 0.0510 4.09 1.3283 0.0396 4.59 1.1913 0.0316 

2.60 2.5474 0.0937 3.10 1.9017 0.0675 3.60 1.5358 0.0507 4.10 1.3250 0.0394 4.60 1.1889 0.0315 

2.61 2.5309 0.0930 3.11 1.8925 0.0671 3.61 1.5305 0.0504 4.11 1.3219 0.0392 4.61 1.1866 0.0313 

2.62 2.5145 0.0923 3.12 1.8826 0.0667 3.62 1.5250 0.0502 4.12 1.3186 0.0390 4.62 1.1843 0.0312 

2.63 2.4982 0.0917 3.13 1.8732 0.0663 3.63 1.5200 0.0499 4.13 1.3154 0.0388 4.63 1.1821 0.0311 

2.64 2.4823 0.0911 3.14 1.8639 0.0659 3.64 1.5146 0.0496 4.14 1.3122 0.0387 4.64 1.1798 0.0309 

2.65 2.4662 0.0904 3.15 1.8548 0.0655 3.65 1.5096 0.0494 4.15 1.3090 0.0385 4.65 1.1776 0.0308 

2.66 2.4504 0.0898 3.16 1.8458 0.0651 3.66 1.5044 0.0491 4.16 1.3058 0.0383 4.66 1.1753 0.0307 

2.67 2.4349 0.0892 3.17 1.8368 0.0647 3.67 1.4991 0.0489 4.17 1.3028 0.0381 4.67 1.1731 0.0305 

2.68 2.4069 0.0886 3.18 1.8286 0.0643 3.68 1.4944 0.0486 4.18 1.2997 0.0379 4.68 1.1709 0.0304 

2.69 2.4032 0.0880 3.19 1.8192 0.0639 3.69 1.4894 0.0484 4.19 1.2966 0.0378 4.69 1.1687 0.0303 

2.70 2.3878 0.0874 3.20 1.8106 0.0635 3.70 1.4846 0.0481 4.20 1.2936 0.0376 4.70 1.1665 0.0302 

2.71 2.3741 0.0868 3.21 1.8021 0.0632 3.71 1.4797 0.0479 4.21 1.2908 0.0374 4.71 1.1643 0.0300 

2.72 2.3593 0.0862 3.22 1.7934 0.0628 3.72 1.4749 0.0476 4.22 1.2864 0.0372 4.72 1.1621 0.0299 

2.73 2.3447 0.0856 3.23 1.7855 0.0624 3.73 1.4702 0.0474 4.23 1.2847 0.0371 4.73 1.1600 0.0298 

2.74 2.3304 0.0850 3.24 1.7772 0.0621 3.74 1.4655 0.0471 4.24 1.2818 0.0369 4.74 1.1578 0.0297 

2.75 2.3155 0.0845 3.25 1.7690 0.0617 3.75 1.4609 0.0469 4.25 1.2788 0.0367 4.75 1.1556 0.0295 

2.76 2.3016 0.0839 3.26 1.7609 0.0613 3.76 1.4569 0.0466 4.26 1.2759 0.0366 4.76 1.1535 0.0294 

2.77 2.2876 0.0833 3.27 1.7529 0.0610 3.77 1.4518 0.0464 4.27 1.2731 0.0364 4.77 1.1514 0.0293 

2.78 2.2735 0.0828 3.28 1.7451 0.0606 3.78 1.4473 0.0462 4.28 1.2703 0.0362 4.78 1.1493 0.0292 

2.79 2.2599 0.0822 3.29 1.7374 0.0603 3.79 1.4429 0.0459 4.29 1.2675 0.0361 4.79 1.1472 0.0291 

2.80 2.2464 0.0817 3.30 1.7296 0.0599 3.80 1.4384 0.0457 4.30 1.2648 0.0359 4.80 1.1451 0.0289 

2.81 2.2329 0.0811 3.31 1.7221 0.0596 3.81 1.4340 0.0454 4.31 1.2619 0.0357 4.81 1.1430 0.0288 

2.82 2.2197 0.0806 3.32 1.7147 0.0592 3.82 1.4299 0.0452 4.32 1.2591 0.0356 4.82 1.1409 0.0287 

2.83 2.2065 0.0801 3.33 1.7071 0.0589 3.83 1.4265 0.0450 4.33 1.2564 0.0354 4.83 1.1388 0.0286 

2.84 2.1936 0.0795 3.34 1.6997 0.0586 3.84 1.4216 0.0448 4.34 1.2538 0.0353 4.84 1.1368 0.0285 

2.85 2.1806 0.0790 3.35 1.6924 0.0582 3.85 1.4170 0.0445 4.35 1.2510 0.0351 4.85 1.1347 0.0284 

2.86 2.1682 0.0785 3.36 1.6854 0.0579 3.86 1.4131 0.0443 4.36 1.2483 0.0349 4.86 1.1327 0.0282 

2.87 2.1554 0.0780 3.37 1.6784 0.0576 3.87 1.4090 0.0441 4.37 1.2457 0.0348 4.87 1.1306 0.0281 

2.88 2.1428 0.0775 3.38 1.6712 0.0573 3.88 1.4059 0.0439 4.38 1.2430 0.0346 4.88 1.1286 0.0280 

2.89 2.1305 0.0770 3.39 1.6493 0.0570 3.89 1.4008 0.0437 4.39 1.2404 0.0345 4.89 1.1266 0.0279 

2.90 2.1182 0.0765 3.40 1.6574 0.0566 3.90 1.3970 0.0434 4.40 1.2378 0.0343 4.90 1.1245 0.0278 

2.91 2.1067 0.0760 3.41 1.6506 0.0563 3.91 1.3930 0.0432 4.41 1.2352 0.0342 4.91 1.1225 0.0277 

2.92 2.0945 0.0755 3.42 1.6442 0.0560 3.92 1.3891 0.0430 4.42 1.2326 0.0340 4.92 1.1205 0.0276 

2.93 2.0825 0.0750 3.43 1.6373 0.0557 3.93 1.3853 0.0428 4.43 1.2300 0.0339 4.93 1.1185 0.0275 

2.94 2.0700 0.0746 3.44 1.6307 0.0554 3.94 1.3814 0.0426 4.44 1.2275 0.0337 4.94 1.1165 0.0273 

2.95 2.0595 0.0741 3.45 1.6243 0.0550 3.95 1.3777 0.0424 4.45 1.2250 0.0336 4.95 1.1145 0.0272 

2.96 2.0481 0.0736 3.46 1.6180 0.0547 3.96 1.3742 0.0422 4.46 1.2225 0.0334 4.96 1.1126 0.0271 

2.97 2.0369 0.0732 3.47 1.6116 0.0544 3.97 1.3703 0.0420 4.47 1.2200 0.0333 4.97 1.1106 0.0270 

2.98 2.0257 0.0727 3.48 1.6057 0.0541 3.98 1.3651 0.0418 4.48 1.2176 0.0331 4.98 1.1086 0.0269 

2.99 2.0147 0.0722 3.49 1.5992 0.0538 3.99 1.3629 0.0415 4.49 1.2151 0.0330 4.99 1.1066 0.0268 

3.00 2.0039 0.0718 3.50 1.5932 0.0535 4.00 1.3595 0.0413 4.50 1.2127 0.0328 5.00 1.1047 0.0267 

Table 5.3.  Tabulated X-ray and electron atomic scattering factors of copper calculated by DFT (for 2.5 < s ≤ 5.0 Å⁻¹). 

Cubic-spline was used to interpolate the atomic scattering factors at given s. The given range of s is because the 

calculation is simulated with an orthorhombic primitive unit cell (lattice constants a=15.88 Å, b=15.93 Å and c=15.98 

Å), hence too few numbers of atomic scattering factors were obtained for s < 0.1 Å⁻¹ for accurate interpolation, while 

at very large s the WIEN2k program has too many entities of atomic scattering factors to output. 
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S 
X-ray Electron 

s 
X-ray Electron 

RHF DFT Err. RHF DFT Err. RHF DFT Err. RHF DFT Err. 

0.00 29.000 29.0000 0.0% 5.600 - - 0.38 17.145 17.0787 -0.4% 1.965 1.9759 0.6% 
0.01 28.977 - - 5.587 - - 0.40 16.514 16.4645 -0.3% 1.868 1.8751 0.4% 
0.02 28.908 - - 5.547 - - 0.42 15.904 15.8716 -0.2% 1.777 1.7812 0.2% 
0.03 28.794 - - 5.482 - - 0.44 15.318 15.2999 -0.1% 1.691 1.6937 0.2% 
0.04 28.640 - - 5.395 - - 0.45 15.034 15.0236 -0.1% 1.651 1.6519 0.1% 
0.05 28.448 - - 5.287 - - 0.46 14.757 14.7520 0.0% 1.611 1.6116 0.0% 
0.06 28.223 - - 5.165 - - 0.48 14.219 14.2259 0.0% 1.535 1.5347 0.0% 
0.07 27.971 - - 5.029 - - 0.50 13.707 13.7218 0.1% 1.464 1.4626 -0.1% 
0.08 27.694 - - 4.886 - - 0.55 12.533 12.5630 0.2% 1.303 1.3005 -0.2% 
0.09 27.397 - - 4.737 - - 0.60 11.507 11.5449 0.3% 1.163 1.1605 -0.2% 
0.10 27.084 27.0584 -0.1% 4.585 4.6470 1.4% 0.65 10.621 10.6627 0.4% 1.041 1.0388 -0.2% 
0.11 26.758 26.7200 -0.1% 4.434 4.5097 1.7% 0.70 9.861 9.9051 0.4% 0.935 0.9327 -0.2% 
0.12 26.422 26.3698 -0.2% 4.285 4.3716 2.0% 0.80 8.663 8.7044 0.5% 0.761 0.7590 -0.3% 
0.13 26.077 26.0102 -0.3% 4.139 4.2341 2.3% 0.90 7.799 7.8294 0.4% 0.626 0.6255 -0.1% 
0.14 25.726 25.6438 -0.3% 3.998 4.0983 2.5% 1.00 7.166 7.1828 0.2% 0.523 0.5222 -0.2% 
0.15 25.370 25.2722 -0.4% 3.862 3.9653 2.7% 1.10 6.681 6.6894 0.1% 0.442 0.4413 -0.2% 
0.16 25.009 24.8973 -0.4% 3.731 3.8356 2.8% 1.20 6.285 6.2878 0.0% 0.378 0.3775 -0.1% 
0.17 24.645 24.5202 -0.5% 3.607 3.7099 2.9% 1.30 5.939 5.9369 0.0% 0.327 0.3266 -0.1% 
0.18 24.278 24.1421 -0.6% 3.488 3.5885 2.9% 1.40 5.617 5.6123 -0.1% 0.285 0.2856 0.2% 
0.19 23.910 23.7638 -0.6% 3.375 3.4715 2.9% 1.50 5.308 5.3017 -0.1% 0.252 0.2521 0.0% 
0.20 23.540 23.3860 -0.7% 3.267 3.3591 2.8% 1.60 5.005 4.9989 -0.1% 0.224 0.2244 0.2% 
0.22 22.798 22.6343 -0.7% 3.067 3.1478 2.6% 1.70 4.705 4.7004 -0.1% 0.201 0.2012 0.1% 
0.24 22.057 21.8906 -0.8% 2.885 2.9541 2.4% 1.80 4.413 4.4083 -0.1% 0.182 0.1817 -0.2% 
0.25 21.687 21.5226 -0.8% 2.800 2.8634 2.3% 1.90 4.128 4.1250 -0.1% 0.165 0.1649 -0.1% 
0.26 21.319 21.1575 -0.8% 2.719 2.7766 2.1% 2.00 3.855 3.8530 -0.1% 0.150 0.1505 0.3% 
0.28 20.589 20.4370 -0.7% 2.568 2.6141 1.8% 2.50 2.721 2.7222 0.0% 0.101 0.1006 -0.4% 
0.30 19.869 19.7309 -0.7% 2.428 2.4649 1.5% 3.00 2.001 2.0039 0.1% 0.072 0.0718 -0.3% 
0.32 19.162 19.0407 -0.6% 2.299 2.3277 1.3% 3.50 1.590 1.5932 0.2% 0.054 0.0535 -0.8% 
0.34 18.472 18.3678 -0.6% 2.180 2.2013 1.0% 4.00 1.358 1.3595 0.1% 0.041 0.0413 0.8% 
0.35 18.133 18.0383 -0.5% 2.123 2.1417 0.9% 5.00 1.105 1.1047 0.0% 0.027 0.0267 -1.1% 
0.36 17.799 17.7121 -0.5% 2.069 2.0846 0.8% 6.00 0.929 - - 0.019 - - 

Table 5.4. Comparison of X-ray and electron atomic scattering factors of copper calculated by RHF [9] and interpolated 

DFT results. Cubic-spline was used to interpolate the DFT atomic scattering factors at given s. Only 0.1 ≤ s ≤ 5.0 Å⁻¹ 

is listed for DFT, because the calculation is simulated with an orthorhombic primitive unit cell (lattice constants a=15.88 

Å, b=15.93 Å and c=15.98 Å), too few numbers of atomic scattering factors were resulted for s < 0.2 Å⁻¹ for accurate 

interpolation, while at very large s the WIEN2k program has too many entities of atomic scattering factors to output. 

The X-ray atomic scattering factor at 0.0 Å⁻¹ of DFT is also available and listed, while the responding electron atomic 

scattering factor is omitted, as it represented the value at infinity-distance and is considered inaccurate. 

The charge density of a very large orthorhombic primitive unit cell (lattice constants a=15.88 Å, 

b=15.93 Å and c=15.98 Å, or 30.0, 30.1 and 30.2 in Bohr radius respectively) of copper was calculated 

by WIEN2k, while the lattice constant of a copper FCC unit cell is about 3.6 Å (the distance between 

the nearest atoms is about 2.5 Å). The DFT calculations employed the GGA PBE functional, using 

1,000 k points, and the energy converged to 10-4 eV. Structure factors of the large primitive cell of 

copper were derived from its charge density, and then converted into atomic scattering factors. The 

atomic scattering factors resulted from the DFT independent copper atom are summarised in Table 5.2 

and Table 5.3. As limited by the size and shape of the unit cell, only a few numbers of scattering angles 

are available for s < 0.1 Å⁻¹. At very large s, because too many entities of atomic scattering factors are 
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available, only those with s ≤ 5.0 Å⁻¹ were calculated and listed. Therefore, only the X-ray and electron 

atomic scattering factors with 0.1 ≤ s ≤ 5.0 Å⁻¹ were interpolated with cubic-spline and listed. 

S 
X-ray Electron 

s 
X-ray Electron 

RHF DFT Err. RHF DFT Err. RHF DFT Err. RHF DFT Err. 

0.0544 28.353 28.3580 0.0% 5.235 5.1975 -0.7% 0.1538 25.234 25.1310 -0.4% 3.812 3.9155 2.7% 

0.0626 28.161 28.1635 0.0% 5.131 5.1131 -0.3% 0.1540 25.225 25.1214 -0.4% 3.808 3.9122 2.7% 

0.0628 28.156 28.1584 0.0% 5.128 5.1102 -0.4% 0.1626 24.914 24.7983 -0.5% 3.698 3.8021 2.8% 

0.0630 28.150 28.1533 0.0% 5.125 5.1073 -0.4% 0.1631 24.896 24.7803 -0.5% 3.692 3.7960 2.8% 

0.0886 27.438 27.4267 0.0% 4.758 4.7924 0.7% 0.1636 24.878 24.7620 -0.5% 3.686 3.7899 2.8% 

0.0888 27.434 27.4220 0.0% 4.755 4.7909 0.7% 0.1773 24.378 24.2447 -0.5% 3.520 3.6213 2.9% 

0.0889 27.429 27.4172 0.0% 4.753 4.7894 0.8% 0.1776 24.367 24.2335 -0.5% 3.516 3.6177 2.9% 

0.1039 26.960 26.9318 -0.1% 4.527 4.5887 1.4% 0.1779 24.356 24.2223 -0.6% 3.513 3.6143 2.9% 

0.1041 26.951 26.9237 -0.1% 4.523 4.5845 1.4% 0.1853 24.084 23.9416 -0.6% 3.428 3.5263 2.9% 

0.1044 26.943 26.9155 -0.1% 4.519 4.5805 1.4% 0.1854 24.078 23.9362 -0.6% 3.426 3.5247 2.9% 

0.1087 26.800 26.7636 -0.1% 4.453 4.5266 1.7% 0.1856 24.073 23.9310 -0.6% 3.424 3.5230 2.9% 

0.1251 26.245 26.1865 -0.2% 4.209 4.2994 2.1% 0.1859 24.063 23.9203 -0.6% 3.421 3.5197 2.9% 

0.1256 26.231 26.1716 -0.2% 4.203 4.2937 2.2% 0.1860 24.058 23.9149 -0.6% 3.420 3.5180 2.9% 

0.1260 26.217 26.1565 -0.2% 4.197 4.2879 2.2% 0.1861 24.052 23.9097 -0.6% 3.418 3.5164 2.9% 

0.1366 25.845 25.7680 -0.3% 4.045 4.1431 2.4% 0.1877 23.994 23.8497 -0.6% 3.400 3.4980 2.9% 

0.1368 25.838 25.7609 -0.3% 4.042 4.1406 2.4% 0.1881 23.979 23.8342 -0.6% 3.396 3.4930 2.9% 

0.1370 25.831 25.7539 -0.3% 4.039 4.1380 2.4% 0.1883 23.971 23.8263 -0.6% 3.393 3.4905 2.9% 

0.1400 25.726 25.6433 -0.3% 3.998 4.0982 2.5% 0.1886 23.963 23.8185 -0.6% 3.391 3.4881 2.9% 

0.1401 25.722 25.6398 -0.3% 3.997 4.0969 2.5% 0.1890 23.948 23.8027 -0.6% 3.386 3.4833 2.9% 

0.1403 25.716 25.6330 -0.3% 3.994 4.0944 2.5% 0.1979 23.616 23.4638 -0.6% 3.289 3.3818 2.8% 

0.1405 25.709 25.6261 -0.3% 3.991 4.0919 2.5% 0.1980 23.614 23.4613 -0.6% 3.288 3.3811 2.8% 

0.1407 25.702 25.6192 -0.3% 3.989 4.0893 2.5% 0.1985 23.597 23.4432 -0.7% 3.283 3.3764 2.8% 

0.1408 25.699 25.6158 -0.3% 3.988 4.0881 2.5% 0.1986 23.592 23.4379 -0.7% 3.282 3.3752 2.8% 

0.1535 25.243 25.1406 -0.4% 3.815 3.9188 2.7% 0.1991 23.572 23.4183 -0.7% 3.276 3.3691 2.8% 

Table 5.5. Comparison of X-ray and electron atomic scattering factors of copper calculated by DFT and interpolated 

RHF [9] results for s < 0.2 Å⁻¹. Cubic-spline was used to interpolate the RHF atomic scattering factors at given s. 

Because the DFT calculation is simulated with an orthorhombic primitive unit cell (lattice constants a=15.88 Å, b=15.93 

Å and c=15.98 Å), only a few numbers of atomic scattering factors are available for s < 0.1 Å⁻¹. 

The comparisons of copper X-ray and electron atomic scattering factors calculated by RHF and DFT 

are listed in Table 5.4 and Table 5.5. Overall, better agreement is observed at higher s between the 

RHF and DFT atomic scattering factors, which indicates that the charge distributions near the atomic 

core are similar and is as expected. In Table 5.4, the DFT results are cubic-splined to compare with 

the tabulated RHF values. Due to the limited numbers of scattering factors at very low scattering angles 

by DFT calculations, no DFT value 0 < s < 0.1 Å⁻¹ is listed as interpolation would be unreliable. The 

DFT electron atomic scattering factor at 0 Å⁻¹ is omitted, as it represented the value at infinity-distance 

and is considered inaccurate by this simulation. In Table 5.5, comparison is shown with DFT atomic 
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scattering factors and cubic-splined RHF values for s < 0.2 Å⁻¹, where the DFT atomic scattering 

factors with s < 0.1 Å⁻¹ are shown without interpolation. The largest differences are observed at 0.1≤ 

s ≤ 0.4 Å⁻¹, where the DFT X-ray and electron atomic scattering factors can be about 1% and 3% 

respectively offset from the RHF values. For s < 0.1 Å⁻¹, the differences are relatively smaller, while 

for s > 1 Å⁻¹, the differences are very small. Especially for s > 2 Å⁻¹, the offsets are subtle when errors 

arising from rounding are considered. These may suggest the differences between the RHF and DFT 

charge distribution simulations of copper IAM: 1) are very small for the core electrons (close values 

for s > 2 Å⁻¹), 2) peak at the valence electrons (significant offsets at 0.1≤ s ≤ 0.4 Å⁻¹), and 3) decrease 

at distances far from the atom core (relatively smaller differences at s < 0.1 Å⁻¹). These trends are 

expected and predicted by Doyle and Turner for calculations including the correlation energy [9]. 

Although the peak difference of X-ray structure factors is smaller than 1% between the RHF and DFT 

copper IAMs, considering the differences between the QCBED and IAM X-ray structure factors are 

only within 2%, a different IAM can lead to a significant change for bonding determination in copper. 

Moreover, as electron IAM structure factors, which consist of up to 3% offsets, are used during 

QCBED refinements, a different IAM would also considerably alter the QCBED results. 

Apart from the likely impact on low-order structure factor measurement and bonding determination, 

an inaccurate IAM will also affect other experiments, when higher-order structure factors are assumed 

to equal the IAM values without further refinements. For example, if the Debye-Waller factor, atomic 

positions or lattice parameter of copper are refined with QCBED using the RHF-IAM, which generally 

also only refine the low-order structure factors, their accuracy will be compromised by the higher-

order structure factors fixed as the RHF-IAM values.  

More detailed discussion of impacts caused by altering the IAM to bonding determination will be 

given in the next chapter, while the DFT simulation of a regular copper unit cell and QCBED results 

are also considered. 
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Chapter 6. Final results of bonding in copper 

In the previous chapter, the role and importance of IAM in QCBED analysis and bonding 

determination were discussed. This leads to the conclusion that bonding of copper derived using the 

DFT-IAM is the most reliable. In this chapter, copper structure factors and bonding calculated with 

DFT-IAM will be focused on and compared to literature values for discussion. Qualitative linking 

between copper’s bonding distribution and its mechanical properties will also be discussed, which can 

justify the relationship between copper’s relatively isotropic elastic constants and its bonding 

distribution. 
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6.1. Structure factors of copper by QCBED 

 

Figure 6.1. QCBED-refined copper structure factors as thickness dependence. The refined electron structure factors 

V111, V200 and V220 are plotted as ratios to the IAM by DFT (denoted as “R111”, “R200” & “R220” respectively) for 

122 sets of copper CBED patterns from <110>, <100> and <112> axes against their thickness. Energy-filtered patterns 

are available from <110> and denoted as “EF <110>”. 

hkl s (Å⁻¹) 

IAM XRD Band Theory γ-ray Pendellösung DFT QCBED 

DFT RHF 
Temkin et 

al. (1972) 

Bagayoko 

(1980) 

Schneider 

(1981) 

Takama & 

Sato (1982) 

Friis et 

al. (2005) 

This 

work 

Saunders 

et al. 

(1999) 

Friis et al. 

(2005) 
This work 

111 0.2404 21.87 22.04 21.9(2) 21.68 21.51(5) 21.80(6) 21.70 21.77 21.78(2) 21.69(3) 21.74(1) 

200 0.2776 20.52 20.68 20.4(2) 20.35 20.22(4) 20.3(1) 20.38 20.45 20.44(2) 20.44(2) 20.41(2) 

220 0.3926 16.69 16.75 16.7(2) 16.62 16.45(5) 16.75(8) 16.67 16.76 16.7(1) 16.68(2) 16.70(5) 

311 0.4603 14.74 14.75 14.7(2) 14.70 14.70(4) 14.74(4) 14.75 14.85 14.8(1) 14.73(1) 14.79(9) 

222 0.4808 14.20 14.20 14.2(2) 14.17 14.22(5) 14.36(6) 14.21 14.32  14.24(7) 14.2(1) 

400 0.5552 12.45 12.42 12.3(2) 12.42 12.42(6) 12.46(6) 12.48 12.57  12.45(9) 12.2(3) 

Table 6.1. Comparison of low-order structure factors of copper by this work and previous studies (selected as they are 

either the most cited in bonding studies of copper or the most recent publications of the techniques [4, 7, 11, 12, 14, 16, 

18]). Both the DFT and RHF [9] IAMs are interpolated with cubic-spline. 

The QCBED-refined electron structure factors are summarised in Figure 6.1 as ratios to the DFT-IAM, 

which was used as the input atomic scattering factors for QCBED refinements. The thickness of the 

copper specimens where the CBED patterns were collected spans from about 500 to 2600 Å. No 

thickness dependence is observed. Although the mean values of the refined structure factors from 

various axes and pattern geometries are slightly different, they are all within uncertainties. The slightly 
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different mean values are expected as different Bragg conditions will cause various structure factor 

sensitivities. When comparing the energy-filtered and -unfiltered results, no significant difference is 

observed. This further confirms the validity of ADQCBED. Some patterns have yielded structure 

factors significantly different to most of the other patterns, maybe due to sample defects or acquisition 

errors. The final X-ray structure factors of QCBED are listed in Table 6.1. When examining the 

difference between the QCBED and the DFT-IAM structure factors, it can be seen that ∆𝐹220 and other 

∆𝐹𝐠 of higher order are very small and well within the errors. This indicates only 𝐹111 and 𝐹200 are 

significant to the bonding in copper, which is as expected for an FCC metal [5, 6]. 

6.2. QCBED results using alternative refinement recipes 

Various combinations of different IAMs and with/without the angular differentiation were used to 

refine the CBED patterns. Refinement results of 1) using the RHF-IAM [9] with angular differentiation, 

2) using the DFT-IAM with angular differentiation and 3) using the DFT-IAM without differentiation 

are listed in Table 6.2. 

hkl s (Å⁻¹) 

IAM 
1) Using RHF-IAM & 

differentiation 

2) Using DFT-IAM & 

differentiation 

3) Using DFT-IAM 

without differentiation 

𝑭𝐠
𝑹𝑯𝑭−𝑰𝑨𝑴 𝑭𝐠

𝑫𝑭𝑻−𝑰𝑨𝑴 𝑭𝐠
𝑸𝑪𝑩𝑬𝑫−𝟏

 ∆𝑭𝐠
𝑸𝑪𝑩𝑬𝑫−𝟏

 𝑭𝐠
𝑸𝑪𝑩𝑬𝑫−𝟐

 ∆𝑭𝐠
𝑸𝑪𝑩𝑬𝑫−𝟐

 𝑭𝐠
𝑸𝑪𝑩𝑬𝑫−𝟑

 ∆𝑭𝐠
𝑸𝑪𝑩𝑬𝑫−𝟑

 

111 0.2404 22.04 21.87 21.75(2) -0.29(2) 21.74(1) -0.13(1) 21.78(7) -0.09(7) 

200 0.2776 20.68 20.52 20.42(3) -0.26(3) 20.41(2) -0.11(2) 20.40(6) -0.12(6) 

220 0.3926 16.75 16.69 16.71(5) -0.04(5) 16.70(5) 0.01(5) 16.7(1) 0.0(1) 

311 0.4603 14.75 14.74   14.79(9) 0.05(9)   

222 0.4808 14.2 14.2   14.2(1) -0.0(1)   

400 0.5552 12.42 12.45   12.2(3) -0.3(3)   

Table 6.2. Comparison of low-order structure factors in copper refined using different QCBED refinement recipes. The 

CBED patterns were refined: 1) using the RHF-IAM [9] with angular differentiation, 2) using the DFT-IAM with 

angular differentiation and 3) using the DFT-IAM without differentiation, respectively. 𝐹311, ∆𝐹222 and 𝐹400 were not 

refined for Methods 1) and 3) due to large uncertainties in these relatively higher-order structure factors. The refined 

absolute structure factors suggest that QCBED refinements may be slightly altered by using a different IAM, and that 

the uncertainties are significantly reduced when the angular differentiation is applied. However, for bonding 

determination where 𝐹𝐠
𝐼𝐴𝑀 are subtracted from 𝐹𝐠

𝑄𝐶𝐵𝐸𝐷
 to yield ∆𝐹𝐠

𝑄𝐶𝐵𝐸𝐷
, different IAMs have led to very different 

∆𝐹𝐠
𝑄𝐶𝐵𝐸𝐷

, since the differences between the 𝐹𝐠
𝑅𝐻𝐹−𝐼𝐴𝑀 and 𝐹𝐠

𝐷𝐹𝑇−𝐼𝐴𝑀 are as large as 50% of the ∆𝐹𝐠
𝑄𝐶𝐵𝐸𝐷

. 

QCBED structure factors 𝐹𝐠
𝑄𝐶𝐵𝐸𝐷

 of copper refined using the RHF-IAM (cubic-splined from tabulated 

atomic scattering factors by Doyle and Turner [58]) are only slightly different when compared to the 
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results of using DFT-IAM. As mentioned in Section 1.4, near-zone-axis QCBED refinements are 

highly sensitive to low-order structure factors, while the higher-order structure factors are assumed to 

be identical to the input IAM and fixed. Because the corresponding IAM structure factors 𝐹𝐠
𝐼𝐴𝑀 of 

copper at higher scattering angles of DFT-IAM and RHF-IAM are relatively similar, the (low-order) 

𝐹𝐠
𝑄𝐶𝐵𝐸𝐷

 refined by using different IAMs respectively are close to each other as well. However, to 

calculate the bonding charge density distribution in copper, the IAM charge density is to be subtracted 

from the QCBED-measured charge density. While comparing to the bonding structure factors  

∆𝐹𝐠, the differences between the 𝐹𝐠
𝑅𝐻𝐹−𝐼𝐴𝑀 and 𝐹𝐠

𝐷𝐹𝑇−𝐼𝐴𝑀 are significant, which are as large as 50% 

of the ∆𝐹𝐠 measured by QCBED. Such significant changes between different IAMs lead to obvious 

changes to the ∆𝐹𝐠 as well as to the bonding density distributions. 

 

Figure 6.2. The QCBED refinement results a) with and b) without angular differentiation (conventional) of an energy-

filtered CBED pattern of copper collected near the [110] zone axis. The collected reflection discs are denoted as “Expt.”, 

calculated discs with refined structure factors as “Theo.”, and their residuals as “Err.”. Intensity distributions in a) are 

changing more rapidly than in b), which leads to stronger constraints during refinement using the angular differentiation. 

The refined results of an energy-filtered CBED pattern of copper are shown in Figure 6.2, as an 

example showing the differences between angular differentiated and conventional QCBED 

refinements. Comparing the conventional refinement results without differentiation to other results in 

Table 6.2, it is shown that the uncertainties of the refined lowest-order structure factors were decreased 

from about 0.3% to 0.1% via the use of angular differentiation. This is expected, as discussed in Section 

2.4 and reported in Ref. [96], because angular differentiation can notably reduce the diffuse 

background caused by inelastic scattering for CBED patterns collected without an energy filter, as well 

as generating more rapidly changing gradients within the reflection discs which leads to better 

constraints during pattern-matching. The reduced uncertainties have also enabled the assessments of 

relatively higher-order structure factors, 𝐹311 , 𝐹222  and 𝐹400 , despite the CBED patterns were 
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collected near low-order zone-axes and most reliable for the lowest-order structure factor 

measurements. 

6.3. Structure factors of copper by DFT 

hkl 

DFT with relaxed lattice parameter (3.6320 Å) DFT with fixed lattice parameter (3.6024 Å) 

s (Å⁻¹) 𝑭𝐠
𝑹𝒆𝒍𝒂𝒙 𝑭𝐠

𝑹𝑯𝑭−𝑰𝑨𝑴 𝑭𝐠
𝑫𝑭𝑻−𝑰𝑨𝑴 ∆𝑭𝐠

𝑹−𝑹𝑯𝑭 ∆𝑭𝐠
𝑹−𝑫𝑭𝑻 s (Å⁻¹) 𝑭𝐠

𝑭𝒊𝒙 𝑭𝐠
𝑹𝑯𝑭−𝑰𝑨𝑴 𝑭𝐠

𝑫𝑭𝑻−𝑰𝑨𝑴 ∆𝑭𝐠
𝑭−𝑹𝑯𝑭 ∆𝑭𝐠

𝑭−𝑫𝑭𝑻 

111 0.2384 21.768 22.118 21.947 -0.351 -0.180 0.2404 21.694 22.046 21.875 -0.352 -0.181 

200 0.2753 20.452 20.771 20.604 -0.318 -0.151 0.2776 20.371 20.689 20.523 -0.318 -0.152 

220 0.3894 16.763 16.841 16.788 -0.078 -0.025 0.3926 16.665 16.739 16.690 -0.074 -0.025 

311 0.4566 14.849 14.841 14.844 0.008 0.005 0.4603 14.749 14.737 14.743 0.011 0.006 

222 0.4769 14.315 14.293 14.306 0.023 0.009 0.4808 14.215 14.190 14.205 0.025 0.010 

400 0.5507 12.573 12.519 12.548 0.053 0.025 0.5552 12.476 12.421 12.450 0.055 0.025 

331 0.6001 11.558 11.513 11.543 0.045 0.015 0.6050 11.465 11.420 11.451 0.046 0.015 

420 0.6157 11.273 11.223 11.254 0.051 0.019 0.6207 11.183 11.132 11.163 0.051 0.020 

422 0.6744 10.290 10.243 10.277 0.048 0.013 0.6800 10.207 10.159 10.194 0.048 0.013 

511 0.7153 9.714 9.657 9.695 0.057 0.019 0.7212 9.637 9.578 9.618 0.058 0.019 

333 0.7153 9.700 9.657 9.695 0.044 0.005 0.7212 9.623 9.578 9.618 0.044 0.005 

440 0.7788 8.933 8.886 8.929 0.047 0.004 0.7852 8.864 8.816 8.860 0.047 0.004 

531 0.8144 8.566 8.517 8.560 0.049 0.006 0.8211 8.501 8.453 8.496 0.049 0.005 

600 0.8260 8.466 8.407 8.450 0.059 0.016 0.8328 8.403 8.344 8.387 0.059 0.016 

442 0.8260 8.450 8.407 8.450 0.043 0.000 0.8328 8.387 8.344 8.387 0.043 0.000 

620 0.8707 8.068 8.018 8.058 0.051 0.010 0.8778 8.010 7.961 8.000 0.050 0.010 

533 0.9027 7.807 7.772 7.809 0.035 -0.002 0.9101 7.752 7.719 7.754 0.033 -0.002 

622 0.9132 7.738 7.697 7.733 0.041 0.005 0.9207 7.684 7.645 7.679 0.039 0.005 

444 0.9538 7.452 7.429 7.458 0.023 -0.006 0.9616 7.403 7.381 7.409 0.022 -0.007 

711 0.9831 7.290 7.254 7.279 0.035 0.010 0.9912 7.243 7.209 7.233 0.034 0.010 

551 0.9831 7.277 7.254 7.279 0.022 -0.002 0.9912 7.230 7.209 7.233 0.021 -0.003 

640 0.9927 7.224 7.201 7.224 0.023 0.000 1.0009 7.178 7.156 7.178 0.022 0.000 

Table 6.3. Structure factors and bonding of copper calculated by DFT. Two sets of DFT charge density calculations of 

copper were performed: 1) the lattice parameter was set to relax according to energy and 3.6320 Å was the relaxed 

value (structure factors listed as 𝐹g
𝑅𝑒𝑙𝑎𝑥), and 2) the lattice parameter was fixed to be 3.6024 Å (structure factors listed 

as 𝐹g
𝐹𝑖𝑥 . This lattice parameter is determined from extrapolation of experimental data [81]). Because the two sets of 

DFT calculations have different lattice parameters, their scattering angles and IAM structure factors are also different 

and listed respectively. Both the structure factors of RHF-IAM (𝐹g
𝑅𝐻𝐹−𝐼𝐴𝑀 ) derived from Doyle and Turner’s 

publication and the DFT-IAM (𝐹g
𝐷𝐹𝑇−𝐼𝐴𝑀) in this work were listed, as well as their differences (∆𝐹g

𝑅𝐻𝐹  and ∆𝐹g
𝐷𝐹𝑇) 

compared to the corresponding 𝐹g
𝑅𝑒𝑙𝑎𝑥  and 𝐹g

𝐹𝑖𝑥 . 𝐹g
𝑅𝑒𝑙𝑎𝑥  and 𝐹g

𝐹𝑖𝑥  have different values for different reflections with 

identical scattering angles, which suggest the DFT calculations have yielded aspherical charge distributions. However, 

both IAMs have respectively constant values for identical scattering angles, because they are monotonic curves against 

the scattering angles and assume to have spherical charge distributions. Although the absolute values of 𝐹g
𝑅𝑒𝑙𝑎𝑥  and 

𝐹g
𝐹𝑖𝑥  are different, the corresponding ∆𝐹g

𝑅−𝑅𝐻𝐹 and ∆𝐹g
𝐹−𝑅𝐻𝐹, and ∆𝐹g

𝐹−𝐷𝐹𝑇 and ∆𝐹g
𝐹−𝐷𝐹𝑇 respectively are very close. 

This suggests different lattice parameters have small contributions to the bonding differences. 
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As comparisons to the QCBED and DFT-IAM results, charge density calculations of copper by DFT 

were also performed (by Dr. Andrew E. Smith), using the same functional (GGA PBE) used for the 

DFT-IAM calculations. Two sets of DFT charge density calculations of copper were performed: 1) the 

lattice parameter was set to vary, resulting in the lowest possible energy state, and the calculations 

finished with a lattice parameter of 3.6320 Å, and 2) the lattice parameter was fixed as 3.6024 Å 

(determined from experimental data by extrapolation [81]), resulting in a higher energy state compared 

to 1). Note that when different lattice parameters are used, the scattering angles of structure factors are 

also changed. 

Comparisons between DFT results and IAM values are summarised in Table 6.3. Because the two sets 

of DFT calculations have different lattice parameters, the scattering angles and IAM structure factors 

are also different and listed respectively. Both the IAM derived from the atomic scattering factors of 

Doyle and Turner (𝐹g
𝑅𝐻𝐹−𝐼𝐴𝑀)  and the IAM calculated by DFT (𝐹g

𝐷𝐹𝑇−𝐼𝐴𝑀) in this work are presented, 

as well as their differences compared to the 𝐹g
𝑅𝑒𝑙𝑎𝑥  and 𝐹g

𝐹𝑖𝑥  (differences listed as ∆𝐹g
𝑅−𝑅𝐻𝐹  and 

∆𝐹g
𝐹−𝑅𝐻𝐹 , and ∆𝐹g

𝑅−𝐷𝐹𝑇  and ∆𝐹g
𝐹−𝐷𝐹𝑇  respectively). Because both DFT and DFT-IAM structure 

factors are calculated with similar functional configurations, ∆𝐹g
𝐷𝐹𝑇 are mostly contributed by bonding 

effects in the valance electrons, resulting in significant ∆𝐹111
𝐷𝐹𝑇 and ∆𝐹200

𝐷𝐹𝑇 for both lattice parameters. 

Noticeable ∆𝐹g
𝐷𝐹𝑇  also exist at higher-order structure factors, which are caused by the 

aspherical/spherical charge distribution difference between the DFT (𝐹g
𝑅𝑒𝑙𝑎𝑥 and 𝐹g

𝐹𝑖𝑥) and DFT-IAM 

(𝐹g
𝐷𝐹𝑇−𝐼𝐴𝑀 ). For example, the 𝐹511

𝑅𝑒𝑙𝑎𝑥 /𝐹333
𝑅𝑒𝑙𝑎𝑥  and 𝐹511

𝐹𝑖𝑥 /𝐹333
𝐹𝑖𝑥  have different values respectively 

(representing aspherical charge distribution), while  the 𝐹511
𝐷𝐹𝑇−𝐼𝐴𝑀/𝐹333

𝐷𝐹𝑇−𝐼𝐴𝑀 are identical respectively 

for different lattice parameters (representing spherical charge distribution). The raw data of DFT-IAM 

calculations, which have used the same GGA functional, also have aspherical features. However, the 

asphericity was removed, because conventional IAM applications (e.g. the QCBED pattern-matching 

program) can only accept spherical IAMs. Therefore, both the RHF-IAM and DFT-IAM have 

respectively constant values for identical scattering angles. Although the absolute values of 𝐹g
𝑅𝑒𝑙𝑎𝑥 and 

𝐹g
𝐹𝑖𝑥  are different, the corresponding ∆𝐹g

𝑅−𝑅𝐻𝐹  and ∆𝐹g
𝐹−𝑅𝐻𝐹 , and ∆𝐹g

𝐹−𝐷𝐹𝑇  and ∆𝐹g
𝐹−𝐷𝐹𝑇 

respectively are very close. This suggests different lattice parameters have small contributions to the 

bonding differences, which is also observed and suggested in [5]. 3D visualisation of the bonding by 

DFT calculations are shown in Figure 6.3. The figure has demonstrated that different lattice parameters 

have almost no effect on the bonding determination, while alteration of IAM has a very strong impact.  
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Figure 6.3. Bonding in copper calculated by DFT. Two sets of DFT charge density calculations of copper were 

performed: 1) the lattice parameter was set to relax according to energy and 3.6320 Å was the relaxed value, and 2) the 

lattice parameter was fixed to be 3.6024 Å (determined from extrapolation of experimental data [81]). The bonding 

charge distributions were plotted using only the lowest three structure factors. The conventional RHF-IAM derived 

from Doyle and Turner’s atomic scattering factors and the DFT-IAM were used for bonding determination, respectively. 

No obvious difference is found between different lattice parameter configurations. Using the RHF-IAM has yielded a 

tetrahedral-bridging type of bonding, while using the DFT-IAM has yielded a more tetrahedral-like bonding. 

hkl 

This work Saunders et al. (1999) Friis et al. (2005) Sang et al. (2013) 

DFT 

(relaxed) 

DFT 

(fixed) 
QCBED DFT QCBED DFT QCBED DFT QCBED 

111 21.768 21.694 21.74(1) 21.71 21.78(2) 21.70 21.69(3) 21.794 21.80(3) 

200 20.452 20.371 20.41(2) 20.37 20.44(2) 20.38 20.44(2) 20.450 20.45(4) 

220 16.763 16.665 16.70(5) 16.66 16.7(1) 16.67 16.68(2)   

311 14.849 14.749 14.79(9) 14.75 14.8(1) 14.75 14.73(1)   

222 14.315 14.215 14.2(1)   14.21 14.24(7)   

400 12.573 12.476 12.2(3)   12.48 12.45(9)   

Table 6.4. Low-order structure factors of copper calculated by DFT. Two sets of DFT charge density calculations 

(using the GGA functional) of copper were performed in this work: 1) the lattice parameter was fixed as 3.6024 Å 

(determined from extrapolation of experimental data [81]). Results from some recent studies using DFT and QCBED 

are also included for comparison, and 2) the lattice parameter was set to relax according to energy and 3.6320 Å was 

the relaxed value. Note that the LDA + U calculation from Sang et al. (2013) was selected as their DFT values, which 

has the best agreement to their QCBED result. 
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Comparisons between the DFT and QCBED results, as well as values from previous studies, are 

summarised in Table 6.4. DFT results by Saunders et al. [4] were calculated using the WIEN95 

program. Although no further details of DFT calculations were reported, their DFT values are very 

close to Friis et al.’s [7] DFT results and our DFT results using a fixed lattice parameter, which 

suggests similar configurations were employed. Friis et al.’s DFT results were calculated using the 

GGA functional. The same set of results were also reported in [31], where more precise scattering 

angles were presented, suggesting 3.6054 Å was used as the lattice parameter. Friis et al.’s DFT 

structure factors are very close to their QCBED values (except 𝐹200), although their QCBED 𝐹111 is 

different from that of other QCBED studies. In Sang et al.’s publication in 2013 [5], various functionals 

were tested against their QCBED results, using 3.610 Å as the fixed lattice parameter. Among their 

DFT calculations of copper, the LDA + U (U = 0.5 Ry) functional resulted in best agreements to their 

QCBED structure factors. For DFT calculations by this work, using relaxed lattice parameter generally 

result better agreement to QCBED studies on 𝐹111 and 𝐹200, while using a fixed experimental lattice 

parameter yields structure factors closer to QCBED values at higher scattering angles. Although for 

some other metals, like aluminium, excellent agreement can be found between experimental and DFT 

results using the GGA functional [6], structure factors of copper are likely to differ from the 

experimental values using this method. This is because the GGA functionals are reported to have 

difficulties evaluating materials with strongly localised d or f electrons [5]. As reported in Sang et al.’s 

paper [5], after evaluation it is possible to conclude a specific functional to obtain near-perfect fitting 

to the experimental results. However, as discussed in Chapter 5, an accurate IAM is prerequisite for 

the experimental structure factors of copper determined by QCBED. For consistency, the IAM 

simulated by DFT should employ the same functional as well. Hence, extra refinement loops to relax 

the QCBED, DFT and DFT-IAM calculations may be applied to determine the bonding in copper with 

improved accuracy and consistency, if a different functional (other than the GGA PBE functional 

which is the most universal) is used.  
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Figure 6.4. Comparison of bonding in copper between the DFT calculation and the QCBED results of this work 

including error bars. The bonding charge distributions are plotted as: a) DFT with a fixed lattice parameter, b) QCBED 

mean value, b1) – b6) QCBED at the extremities of each error bar, and c) the error of QCBED results listed in Table 

6.4. Only the three lowest structure factors are included. The DFT-IAM is used. The iso-surfaces are plotted at 50% 

(light blue) and 80% (dark blue) of the maximum bonding electron density of each result; except for c) the error, where 

the iso-surfaces are plotted at the same levels of b) the mean and coloured in yellow. The ∆𝐹111, ∆𝐹200 and ∆𝐹220 

calculated by DFT and QCBED are also plotted (inset) for comparison. Although the absolute 𝐹𝐠 are different for the 

DFT and QCBED values, similar bonding morphologies may be yielded within the errors of QCBED results. The error 

distribution in c), which has a much smaller spreading than the QCBED charge distribution, indicates the reliability of 

the measurements. 
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Comparison of bonding in copper between the DFT and QCBED results is plotted in Figure 6.4. As 

discussed in previous paragraphs, the DFT simulations are likely to be different from the QCBED 

measurements for copper, as long as the GGA PBE functional is used (which leads to inaccurate 

calculations of strongly localised d electrons). The low-order structure factors of DFT and QCBED’s 

mean values are noticeably different. However, similar ratios between the 𝐹111, 𝐹200 and 𝐹220 to the 

DFT values can be obtained within the uncertainties of QCBED measurements. This suggests similar 

bonding morphologies in copper may be obtained between the current QCBED and DFT results, 

although the magnitudes of the bonding are different. The errors of QCBED measurements for this 

work listed in Table 6.4 are also plotted as charge distribution in Figure 6.4c). The light and dark 

shades of yellow are errors corresponding to the light and dark blue iso-surfaces plotted for the mean 

values in Figure 6.4b), respectively. The much smaller spreading of the error distribution indicates that 

the QCBED measurements have sufficient precisions for a reliable bonding determination. 

6.4. Comparison with previous studies 

A summary of bonding in copper obtained by previous studies and this work is shown in Figure 6.5. 

The charge density at the tetrahedral sites, octahedral centre and bridging sites of copper’s unit cell are 

plotted to summarise the morphologies of bonding distributions. The ratios of bonding densities of the 

three bonding sites for each dataset indicate where the bonding electrons are mostly localised. For 

example, the two XRD data points that depart from the others have indicated that the bonding is mostly 

localised in the bridging sites, because they have very high electron densities in the bridging sites 

compared to the tetrahedral and octahedral sites. A zoom-in graph which contains most results from 

more recent studies is plotted as Figure 6.6, showing the cluster of more recent results including those 

from this work. The shifting caused by replacing the RHF-IAM with the DFT-IAM is constant (except 

for the QCBED results of this work, since the measured charge density is also altered). The electron 

density differences are about 0.02 𝑒− Å3⁄  at the tetrahedral sites, about 0.02 𝑒− Å3⁄  at the octahedral 

centres and increased by about 0.05 𝑒− Å3⁄  at the bridging sites. An obvious linear aggregation can be 

observed, where earlier results are located on the strong-bridging corner departing from more recent 

results. Moreover, the result from this work is surrounded by values from recent studies closely. 

Generally, these results from previously recent studies are distributed around the results from the 

current work. From this magnified graph, it is obvious that the bonding of different studies has become 

significantly more octahedral-like and less bridging-like.  
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Figure 6.5. Summary of bonding in copper for all studies (including this work). The charge densities at the tetrahedral 

sites, octahedral centre and bridging sites of copper’s unit cell are used to estimate the shapes of bonding distributions. 

Higher density indicates stronger electron density localisation at a certain site, while density < 0 𝑒− Å3⁄  indicates the 

presence of anti-bonding. Results of different studies are grouped by their techniques. Shades from orange to red are 

used to indicate the publication years from 1930 to 2005 using the DFT-IAM. The light to dark blue shades are used to 

show the corresponding studies from using the RHF-IAM. Experimental techniques include XRD (9 sets) [18, 39, 43, 

45, 47-49, 80], critical voltages (2 sets) [4, 12], Pendellösung (2 sets) [14, 32], γ-ray (2 sets) [11, 15] and QCBED (3 

sets including the current work) [4, 7]. Theoretical calculations include band theory (7 sets) [13, 16, 39, 41] and DFT 

(3 sets including the current work) [4, 7]. The bonding charge densities are calculated with only the three lowest-order 

structure factors. The results of more recent studies are clustered with those of the current work. The electron density 

difference is about 0.02 𝑒− Å3⁄  at the tetrahedral site, about 0.02 𝑒− Å3⁄  at the octahedral centres and about 0.05 𝑒− Å3⁄  

at the bridging sites. This constant shifting leads to less bridging-like bonding conclusions for all previous studies and 

the current work.  
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Figure 6.6. A zoom-in plot of Figure 6.5, which shows a small region clustered with the most recent studies (including 

the results from this work). Shades from orange to red are used to indicate the publication years from 1959 to 2005 

using the DFT-IAM. The light to dark blue shades are used to show the corresponding studies from using the RHF-

IAM. Experimental techniques include XRD (3 sets) [18] [42, 45], band theory (3 sets) [13, 16, 41, 79], critical voltages 

(2 sets) [4, 12], Pendellösung (2 sets) [14, 32], γ-ray (1 set) [11]and QCBED (3 sets) [4, 7] and DFT (3 sets, with results 

from this work highlighted in red box) [4, 7]. The shifting between the usages of the DFT-IAM and RHF IAM is 

constant (except for the QCBED results of this work, since the measured structure factors were also altered). The 

changes caused by a different IAM is very significant compared the differences between various studies. 
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Figure 6.7. The bonding electron distributions for copper in the present work and previous studies (selected as they are 

either the most cited in bonding studies of copper or the most recent publications of the techniques [4, 7, 11, 12, 14, 16, 

18]) using the DFT-IAM. The iso-surfaces are plotted at 50% (light blue) and 80% (dark blue) of the maximum bonding 

electron density of each result. Both a) & c) and h) and i) indicate tetrahedral localisation with different shapes 

respectively; b) & e) indicate a bridging-site bonding; both d) & g) agree with an octahedral type of bonding; while in 

f) & i), the bonding of copper is suggested to localise at the tetrahedral sites, as well as some bonding at the octahedral 

sites. In detail, the QCBED result from this suggests a pointier bonding distribution comparing to f). 
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Morphologies of the most recent previous studies and this work are plotted in Figure 6.7. Although 

the results from recent studies are relatively close compared to those of earlier studies as shown in 

Figure 6.5 and Figure 6.6, different shapes of bonding are found due to the different ratios of the 

octahedral, tetrahedral and bridging charge densities in these recent studies. Temkin et al.’s XRD 

(1972) [18], Takama & Sato’s Pendellösung (1982) [14], Suanders et al.’s QCBED (1999) [4], Friis 

et al.’s DFT (2005) [7] and the current work’s QCBED and DFT results have shown tetrahedral-like 

bonding, which are relatively similar to the aluminium bonding measured by Nakashima et al. (2011) 

[6]. The structure factors of these recent studies are also listed in Table 6.1. The low-order structure 

factors of copper measured by different QCBED experiments are comparable. However, due to the 

significance of F111 in an FCC structure, the bonding density maps of copper are different between the 

QCBED studies as shown in Figure 6.7: the QCBED results of this work and Saunders et al. [4] suggest 

the bonding is localised at the tetrahedral and octahedral sites, while the QCBED result of Friis et al. 

[7] suggest copper has an octahedral type bonding. While compared to Saunders et al.’s QCBED result, 

the QCBED result of the current work has shown a pointer bonding distribution. 
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Figure 6.8. Summary of the lowest-orders of bonding structure factors ∆𝐹𝐠  of bonding in copper for all studies 

(including this work). The ∆𝐹220 axis is inversed for better overall distribution representation. Results of different 

studies are grouped by their techniques. Shades from orange to red are used to indicate the publication times (from 

1930 to 2005) using the DFT-IAM. The shadows in grey are the corresponding studies using the RHF-IAM. 

Experimental techniques include XRD (9 sets) [18, 39, 43, 45, 47-49, 80], critical voltages (2 sets) [4, 12], Pendellösung 

(2 sets) [14, 32], γ-ray (2 sets) [11, 15] and QCBED (3 sets, including the current work) [4, 7]. Theoretical calculations 

include band theory (7 sets) [13, 16, 39, 41] and DFT (3 sets, including the current work) [4, 7]. Only the ∆𝐹111, ∆𝐹200 

and  ∆𝐹220, were included. The ∆𝐹𝐠 are changed constantly by: ∆𝐹111
𝐷𝐹𝑇 = ∆𝐹111

𝑅𝐻𝐹 + 0.17, ∆𝐹200
𝐷𝐹𝑇 = ∆𝐹200

𝑅𝐻𝐹 + 0.15, and 

∆𝐹220
𝐷𝐹𝑇 = ∆𝐹220

𝑅𝐻𝐹 + 0.06. 
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Figure 6.9. A zoom-in plot of Figure 6.8, showing a small region filled with results from most of the recent studies and 

the current work (highlighted in red boxes). Colourful markers are used to indicate the publications using the DFT-

IAM, while the shadows in grey are the corresponding studies using the RHF-IAM. Experimental techniques include 

XRD (1 set) [18], band theory (3 sets) [16, 41, 79], critical voltages (2 sets) [4, 12], Pendellösung (1 set) [78], γ-ray (2 

sets) [11, 15] and QCBED (3 sets) [4, 7] and DFT (3 sets, with results from this work highlighted in red box) [4, 7]. 

Compared to the ∆𝐹𝐠 interpreted with the RHF-IAM, the shifting caused by the DFT-IAM are constant (except for 

results of this work, where the measured charge density is also altered).  
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The linear trend of weaker bridging bonding shown in Figure 6.5 may suggest systematic errors exist 

in the older studies, which result in smaller absolute values of structure factors. A summary graph of 

∆𝐹111, ∆𝐹200 and  ∆𝐹220 in copper for previous studies and this work and its zoom-in plot are shown 

as Figure 6.8 and Figure 6.9, respectively. The ∆𝜌 (𝑒− Å3⁄ ) at the three bonding sites are related to the 

∆𝐹𝐠 by: 1) the octahedral ∆𝜌𝑂𝑐𝑡𝑎 = −8 ∙ ∆𝐹111 + 6 ∙ ∆𝐹200 + 12 ∙ ∆𝐹220, 2) the tetrahedral ∆𝜌𝑇𝑒𝑡𝑟𝑎 =

−6 ∙ ∆𝐹200 + 12 ∙ ∆𝐹220, and 3) the bridging ∆𝜌𝐵𝑟𝑖 = −2 ∙ ∆𝐹200 − 4 ∙ ∆𝐹220. These relations indicate 

that magnitudes of ∆𝜌𝐵𝑟𝑖  are directly proportional to the sums of ∆𝐹200  and ∆𝐹220 , while the 

magnitudes of ∆𝜌𝑂𝑐𝑡𝑎  and ∆𝜌𝑇𝑒𝑡𝑟𝑎  consist of subtracting the magnitudes of a ∆𝐹𝐠 from the others. 

Therefore the linear aggregation originating from the ∆𝐹𝐠 distributions in Figure 6.8 leads to a similar 

trend in the ∆𝜌  summary of different studies in Figure 6.5. A good example of the impacts of 

systematic errors can be found in the magnified graph, Figure 6.9. The γ-ray measurements by 

Schneider in 1981, with ∆𝐹111
𝐷𝐹𝑇 = −1.65, ∆𝐹200

𝐷𝐹𝑇 = 0.99 and ∆𝐹220
𝐷𝐹𝑇 = −0.24, have been considered 

as too low [3, 7, 11]. In contrast, for the result published by Petrillo et al. in 1998, which applied a 

scaling factor to correct the systematic errors (the bonding structure factors are increased to ∆𝐹111
𝐷𝐹𝑇 =

−1.49, ∆𝐹200
𝐷𝐹𝑇 = 1.15 and ∆𝐹220

𝐷𝐹𝑇 = −0.09), locates much closer to the results of other recent works. 

Compared to the bonding structure factors interpreted with the RHF-IAM, constant shifting caused by 

the usage of the DFT-IAM can also be found in Figure 6.8 and Figure 6.9 (except for the results of this 

work, where the measured charge density is also altered). The constant changes in the ∆𝐹𝐠  are: 

∆𝐹111
𝐷𝐹𝑇 = ∆𝐹111

𝑅𝐻𝐹 + 0.17 , ∆𝐹200
𝐷𝐹𝑇 = ∆𝐹200

𝑅𝐻𝐹 + 0.15 , and ∆𝐹220
𝐷𝐹𝑇 = ∆𝐹220

𝑅𝐻𝐹 + 0.06 . Generally, ∆𝐹𝐠  of 

the current work is surrounded by the most recent literature values. 

The QCBED and DFT results of the current work are close to the most recent copper studies, while 

the values of earlier studies are significantly different. Both the QCBED and DFT results of the current 

work have roughly agreed that the bonding in copper is tetrahedral-like. However, the morphologies 

of bonding are still different, even for the most recent studies.  

 

 



Chapter 6. Final results of bonding in copper 

 

99 

6.5. Mechanical properties of copper determined from the bonding density 

As mentioned in Section 1.2, correlation may be drawn from the bonding electron density and 

deformation electrostatic potential of a solid material to its mechanical properties [6].  

In Figure 6.10, plots of the ∆𝑉 = 0 𝑉 iso-surface are shown for different copper studies and IAMs. 

The surfaces are coloured by the deformation electron density, ∆ρ(r), in each case. Beside the present 

QCBED results using the DFT-IAM and RHF-IAM respectively, the work of Saunders et al. (1999) 

[4] was chosen because it shows the closest agreement with the present study, while the results of 

Schneider et al. (1981) [15] are very different to the present results. 

 

Figure 6.10. Deformation electrostatic potential iso-surface plots for ∆𝑉 = 0 𝑉, coloured by the intersected bonding 

charge, ∆𝜌(𝐫)), for: (a) the present QCBED results with the DFT-IAM, (b) the present QCBED results with the RHF-

IAM, (c) the QCBED results of Saunders et al. (1999) [4] with the DFT-IAM, and (d) the γ-ray study of Schneider et 

al. (1981) [15]with the DFT-IAM. The principal axes are drawn from an origin located at the nucleus of a copper atom 

in all cases. This figure was prepared using VESTA [10]. 
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In the study of bonding in aluminium by Nakashima et al. [6], the correlation between elastic moduli 

in different crystallographic directions, 𝐸<𝑢𝑣𝑤>, was explained as being proportional to the value of 

∆𝜌(𝐫) intersected by the ∆V=0 iso-surface. Comparing (a) and (c) in Figure 6.10, it can be seen that 

both the QCBED results of the present work and Saunders et al. (1999) [4] have agreed that 𝐸<001> <

𝐸<011> < 𝐸<111> in copper, while the DFT-IAM is used. A similar trend is observed in aluminium [6] 

but the differences are smaller in the case of aluminium. The magnitudes of 𝐸<𝑢𝑣𝑤> of Figure 6.10(a) 

and (c) are close to each other, as well. Figure 6.10(b) shows the QCBED results of this work while 

the RHF-IAM is used, which suggests that 𝐸<001> < 𝐸<111> < 𝐸<011> instead. This contradicts not 

only (a) and (c) in Figure 6.10, but also the elastic moduli measured mechanically from bulk single 

crystals of copper where 𝐸<001> = 67.1 GPa, 𝐸<011> = 131.3 GPa and 𝐸<111> = 192.8 GPa [113]. 

Figure 6.10(d) of the γ-ray results of Schneider et al. (1981) [15], comparing to the other three plots, 

shows very different ratios, 𝐸<111> < 𝐸<001> < 𝐸<011>, and magnitudes of 𝐸<𝑢𝑣𝑤>. 

To compare the current work to the previous studies of copper in the context of mechanical properties, 

the ratios of ∆𝜌<001>,∆𝑉=0, ∆𝜌<011>,∆𝑉=0 and ∆𝜌<111>,∆𝑉=0 (where ∆𝜌<𝑢𝑣𝑤>,∆𝑉=0 is the deformation 

electron density intersected by the ∆𝑉 = 0 𝑉 iso-surface in the <uvw> direction) for all studies listed 

in Table 6.1 in the previous section are summarised in Figure 6.11. The maximum elastic modulus, 

𝐸𝑚𝑎𝑥 , in each set of the results, derived from the bonding, is listed in column on the right. The 

correlation between the mechanical properties and bonding can be expressed as [6]: 

Eq. 6.1  
𝑈𝑏𝑜𝑛𝑑𝑖𝑛𝑔

𝛺𝑊𝑆
= ∫Δ𝜌(𝐫) ∙ 𝑉𝑏𝑜𝑛𝑑𝑒𝑑(𝐫) 𝑑𝐫,  

where Δ𝜌(𝐫) is the bonding charge density and 𝑉𝑏𝑜𝑛𝑑𝑒𝑑(𝐫) is the full crystal potential with bonding, 

integrating over every point within the Wigner-Seitz cell specified by r. 𝑈𝑏𝑜𝑛𝑑𝑖𝑛𝑔  is the bonding 

potential energy (in Joules) and Ω𝑊𝑆 is the volume of the Wigner-Seitz cell surrounding each atom (in 

m3). The potential energy density therefore has unit of Pascals, and 𝑈𝑏𝑜𝑛𝑑𝑖𝑛𝑔 per atom is equivalent to 

the maximum value attainable by the elastic modulus. 
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Figure 6.11. A comparison of the ratios of the deformation charge density intersected by the zero-deformation potential 

iso-surface, ∆𝜌<𝑢𝑣𝑤>,∆𝑉=0 , in each of the major crystallographic directions, <001>, <011> and <111> from the 

literature and the present work as listed in Table 6.1 in Section 0. Comparisons of using both the DFT-IAM and RHF-

IAM are presented. All of these ratios are compared to the known elastic moduli for copper in the three major 

crystallographic directions, calculated from elastic compliances listed in [113]. Vertical colour coded bands are drawn 

in to facilitate this comparison to the reference values. The colour coding is red for <001>, blue for <011> and green 

for <111>. The bonding energy density within the Wigner-Seitz cell is listed for each interpretation at right in GPa, 

which corresponds to the maximum elastic modulus in any direction in copper. 

Several points of discussion arise from Figure 6.11. The first is that, as indicated in Section 5.1, 

replacing the IAM leads to significantly different conclusions. The magnitudes of 𝐸𝑚𝑎𝑥 are generally 

multiplied when the RHF-IAM is used instead of the DFT-IAM. In some cases, e.g. the QCBED results 

of the present work, the ratios of 𝐸<𝑢𝑣𝑤> are also changed with a different IAM. Generally, the DFT-

IAM helps to conclude 𝐸<𝑢𝑣𝑤> trends closer to the mechanically measured values by [113], compared 

to the RHF-IAM. 

The second point is that, while considering only the cases where the DFT-IAM is used, only three data 

sets satisfy the known relationship 𝐸<001> < 𝐸<011> < 𝐸<111> of Nye’s [113]. These are the present 

QCBED results (DFT-IAM), Saunders et al.’s QCBED results [4] (DFT-IAM) and Temkin et al.’s 
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single crystal X-ray structure factors [18] (DFT-IAM). Temkin et al.’s XRD results (DFT-IAM) have 

the closest fit of the ratios of 𝐸<𝑢𝑣𝑤>, although the maximum elastic modulus is only a fracture of 

Nye’s values [113]. The present QCBED results using the DFT-IAM come second closest in terms of 

order and ratios. 

The third point is that the maximum elastic modulus, determined from the potential energy density in 

each scenario, is extremely sensitive to even the smallest variations in the structure factors as listed in 

Table 6.1. The present QCBED results with the DFT-IAM are in very good agreement with 𝐸𝑚𝑎𝑥 =

261.5 GPa compare to the 𝐸𝑚𝑎𝑥 = 192.8 GPa in [113] (still about 35% too large), with very good 

fitting of the ratios discussed previously. Whilst the QCBED results of Saunders et al. [4] with the 

DFT-IAM do not yield ratios of ∆𝜌<𝑢𝑣𝑤>,∆𝑉=0 as accurate as the present QCBED work, the 𝐸𝑚𝑎𝑥 of 

160 GPa is only about 15% in error. 

A fourth and final point for this section, although many other points could be made, is that the two 

most accurate results revealed from Figure 6.11, namely those of Saunders et al. and the present work 

(with the DFT-IAM), both involved measuring structure factors with 2D on- or near -axis QCBED. 

This section has illustrated a method of verifying the accuracy of charge density measurements in a 

crystalline solid and a superposition of independent, unbonded atoms by deriving elastic moduli that 

can be compared to the known properties of bulk crystals obtained from mechanical tests. This 

naturally begs the question as to whether these methods can be developed to the point where one might 

obtain a bonding charge density in the context of an IAM directly from mechanical properties alone. 

In other words, can mechanical testing determine bonding morphologies with even greater accuracy 

than performing extremely accurate sets of diffraction experiments, which are ultimately much more 

complex? This section concludes on this open question. 
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Chapter 7. Conclusion 

The bonding in copper was characterised using the angular differential QCBED (AGQCBED) 

technique in this work, with a new proposed IAM of copper and atomic scattering factor interpolation 

method. An accelerated multislice pattern-matching program and a batch-processing framework for 

bulk QCBED data were also developed, reducing the time-consumption required by QCBED analyses. 

In this chapter, the key results will be summarised, following the sequence of previous chapters. 
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7.1. The parallelised and accelerated program QCBEDMS-PF  

QCBEDMS-PF enabled a vast improvement in speed performance compared to its original single 

threaded version QCBEDMS. With the use of the high performance FFT library FFTW and array 

operation optimisations, the single-threaded speed of QCBEDMS-PF is already improved by a factor 

of five, typically. While using multiple CPU cores and especially with multiple GPUs, the processing 

speed can be further multiplied, with nearly 100% of parallelisation efficiency. Generally, with 4 CPU 

cores and a powerful GPU on a modern desktop computer, QCBEDMS-PF can finish one calculation 

of a relatively thick pattern including thousands of reflection beams within seconds. This typically 

leads to about 50 times acceleration to comparing to the calculation speed before QCBEDMS-PF was 

implements. If enough computing resources are presented, for example, using multiple GPUs and 

many CPU cores, the same calculation can be finished within a second. The process time can be further 

reduced when lower precision and lower resolution are used, achieving hundreds of QCBED iterations 

within minutes. With such fast calculations, “live QCBED” – in-situ QCBED analyses of specimen 

thickness or even bonding information become possible. 

7.2. The independent-atom model calculated by density functional theory 

WIEN2k, a DFT program, was used to simulate an independent copper atom, by constructing a huge 

unit cell with only one copper atom. The charge density of the huge unit cell is then calculated, and 

regarded as the IAM charge density of copper. By including the effects of both electron exchanges and 

correlations, the DFT calculations have provided a more accurate description of the IAM for copper 

comparing to the RHF calculations by Doyle and Turner [9]. X-ray atomic scattering factors were 

found to be decreased in the new IAM at smaller scattering angles s, which is expected with the 

inclusion of electron correlation. Comparing to the conventional IAM derived from Doyle and 

Turner’s RHF calculations, the largest differences are observed at 0.1≤ s ≤ 0.4 Å⁻¹, where the DFT X-

ray and electron atomic scattering factors can be about 1% and 5% offsetting from the RHF values 

respectively. Smaller differences are observed at higher s of atomic scattering factors. Although the 

peak difference of X-ray structure factors is smaller than 1% between the RHF and DFT copper IAMs, 

it can lead to a significant change for bonding determination in copper, since the difference between 

the IAM and absolution charge density is only about 1%. The more significant changes in electron 

atomic scattering factors, especially at higher scattering angles, can also impact on the measurements 

of the overall absolute charge density in copper, as QCBED bonding measurements only refine the 
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low-order structure factors, while the higher-order structure factors are assumed as identical to the 

IAM values. 

7.3. The bonding in copper 

From the analysis of a combination of energy filtered and unfiltered CBED data collected near the 

<100>, <110> and <112> axes, the results of this work have shown that the bonding in copper is 

mostly localised at its tetrahedral sites, while a smaller proportion is located at the octahedral site. This 

bonding distribution is expected, as the bonding in aluminium, another FCC metal, also exhibits a 

tetrahedral-like bonding type [6]. This conclusion is similar to the previous QCBED study by Saunders 

et al. [4] also using 2D near-zone data, while the results of another QCBED study by Friis et al. [7] 

suggested the localisation occurs near the octahedral centre. The measured low-order structure factors 

of copper in this work are comparable to the previous studies. However, due to the significance of F111 

in an FCC structure, the absolute magnitudes of bonding in copper are significantly different. The use 

of a more accurate IAM in the present work has led to more accurate QCBED measurements and 

bonding determination compared to previous copper studies. The interpretations of the anisotropic 

Young’s modules for different bonding studies of copper also suggest the results of the current work 

have better agreement to the mechanical properties of copper. 

7.4. Future work 

For bonding measurements, refinement cycles including IAM calculations by tuned DFT 

configurations may further improve the accuracy of experimental measurements. Since the current 

QCBED measurements used only a universal density functional (which appears less accurate for 

copper), an DFT-IAM using a functional tuned for copper will likely benefit the accuracy of QCBED 

refinements. 

For QCBED program acceleration, machine-learning may be implemented to guide the refinement 

cycles. Since the current version of the QCBED pattern-matching program only utilise generalised 

parameter-searching algorithms, a more intelligent optimisation algorithm should significantly reduce 

the total amount of parameter-searching steps, leading to closer realisation of “live QCBED”.  
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Appendix A. Manuals for QCBEDMS-PF 

A.1. Parallel processing options of QCBEDMS-PF 

A.1.1. Parallel Multislice Propagation Methods 

The Multislice Propagation (MSP) options expect three arguments: 1) Name of FFT Library, 2) Device Option 

and 3) Incident Tilts Splitting. Examples: 

• To use FFTW with 8 threads: 

fftw   8  0 

• To use OpenCL (clFFT) with the second OpenCL device: 

clfft  1  0 

• To use CUDA (cuFFT) with the first CUDA device: 

cufft  0  0 

• To list available OpenCL GPU devices and their Device Number: 

clfft -1  0 

• To list available CUDA devices and they Device Number: 

cufft -1  0 

• To use OOURA FFT: 

fftsg  0  0 

a) The “Name of FFT Library” argument 

This argument should be a string. Available options: FFTSG (single thread only), FFTW, clFFT & cuFFT. It 

controls which FFT library and the associated MSP framework to use. 

b) The Device Option argument 

This argument is an integer. It has no effect for FFTSG. 

(a) For FFTW 

It controls how many threads to use, which can exceed the number of available CPU cores on a machine. 
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(b) For OpenCL (clFFT) and CUDA (cuFFT) 

It specifies which GPU device to use. Numbers of the devices on the system starts from “0”. Set this argument 

to “-1” to query the available devices and their Device Number. Set this argument to “-2” to use all OpenCL 

GPU/CUDA devices. However, if the GPU core on CPU (supporting OpenCL) is also presented, such option 

may fail. 

c) The “Incident Tilts Splitting” argument 

This argument is an integer. It only affects the GPU frameworks, as CPU frameworks FFTW and FFTSG 

always process 1 tilt (per thread) at once. 

By setting this argument to “0”, the program will first try to process all tilts at once (on GPU), and try to split 

the number of tilts into 2 or more splits If the GPU device does not have enough memories to contain all tilts 

at once. 

If the auto option “0” could not solve the memory usage, set this argument to integers larger than 0 to force 

the program to split the tilts.  

A.1.2. Hybrid mode: CPU + GPU  

To use hybrid MSP, start the MSP Methods with a “Hybrid Option” line with three arguments: 1) “Hybrid”, 

2) Number of MSP Methods and 3) Reassign-Tilts Option. Also insert a “Share of tilts” argument before each 

following MSP Method. Examples: 

• Using clFFT and 8 threads of FFTW, and clFFT processes “5” parts, each FFTW thread processes “1” part 

of tils: 

hybrid 2 0 

5  clfft 0 0 

1  fftw 8 0 

• Using cuFFT and 8 threads of FFTW, and clFFT processes “5” parts, each FFTW thread processes “1” part 

of tils. And re-distribute the shares of tilts every “10” iterations according to the measured speeds of each 

MSP method: 

hybrid 2 10 

5  cufft 0 0 

1  fftw 8 0 

a) The “Hybrid Option” argument 

Just enter “Hybrid” to enable the Hybrid Option. 

b) The “Number of MSP Methods” argument 

This argument expects an integer. It controls how many lines of MSP Methods to read in FOR007.DAT.  
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c) The “Reassign-Tilts” Option  

This argument expects an integer. It controls the number of iterations to perform a “share-of-tilts re-

distribution”.  

For example, “1” will let the program re-distribute the number of tilts of each MSP method before every 

iteration (according to the processing speed of the previous iteration); “10” will let the program average the 

speed of 10 iterations and re-distribute the tilts every 10 iteration. “0” will disable the re-distributing. 

Please note that, because there are small (8 bytes) memory leaks in OpenCL and CUDA drivers, the Reassign-

Tilts Option may cause errors if the re-distribution happened too many times in a refinement. 

d) Ratio of Share-of-Tilts for each MSP method 

Insert a “Ratio of Share-of-Tilts” argument before every MSP method when “Hybrid” method is used. This 

argument can be a decimal or an integer. The larger the more shares.  

For FFTW with multi-threads, the ratio will be copied to each thread:  

hybrid 2 0 

5  cufft 0 0 

1  fftw 4 0 

will have the tilts distributed as 5:1:1:1:1 for cuFFT:FFTW-thread1:FFTW-thread2:FFTW-thread3:FFTW-

thread4. 

A.1.3. Hybrid mode: multiple GPUs 

To use multiple GPUs, just specify separate GPU MSP methods in hybrid mode. For example, to use the #0, 

#4 and #5 OpenCL GPU device: 

hybrid 3 0 

1  clfft 0 0 

1  clfft 4 0 

1  clfft 5 0 

A.1.4. MPI mode 

The MPI mode is similar to the Hybrid mode: to use MPI mode, enter “mpi” instead of “hybrid” for the Hybrid 

Option argument. 

a) Default MPI mode - Number of MSP Methods argument > 0 

This mode is designed for scenarios when, many CPU cores spreading on multiple cluster nodes, without GPU 

MSP methods. For example, if a cluster job has 5 CPU cores on Node A and 3 cores on Node B, using  

mpi 1 0 

1  fftw 1 0 
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and execute QCBEDMS-PF with mpirun -np 8 (before ./QCBEDMS-PF) will have the program to use the 5 

and 3 CPU cores. 

b) Per-node MPI mode - Number of MSP Methods argument < 0 

This mode is designed for scenarios when, equal numbers of CPU + GPU resources are distributed on multiple 

cluster nodes. For example, if there are 2 GPUs and 4 CPU cores on each of Node A, Node B and Node C, 

using 

mpi -3 0 

10 cufft 0 0 

10 cufft 1 0 

1  fftw 4 0 

or  

mpi -2 0 

10 cufft -2 0 

1  fftw 4 0 

and execute QCBEDMS-PF with mpirun -pernode will have the program to use 2 GPUs and 4 CPU cores or 

all GPUs and 4 CPU cores on every node. 

A.1.5. Multislice Propagation Testing mode 

There is a testing mode for timing MSP. To enable this mode, start the MSP Methods with a “Testing Option” 

line with three arguments: 1) “test”, 2) Number of Tests and 3) Repeat Option. The results of processing times 

will be output (append) to File “test_info.txt”. Examples: 

• To time an 8-threads FFTW: 

  test 1 1 

fftw 8 0 

• To time an 8-threads FFTW 5 times: 

  test 1 5 

fftw 8 0 

• To time a hybrid method 5 times, while the hybrid mode keep re-distributing tilts: 

  test 1 5  

hybrid 2 1 

5  cufft 0 0 

1  fftw 8 0 

• To time 2 tests, 5 times each: 
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  test 2 5  

cufft  0 0 

hybrid 2 0 

5  cufft 0 0 

1  fftw 8 0  

• To time 2 tests, 5 times each and collect detailed processing times of key components as well (“-5”): 

  test 4 -5  

clfft  0 0 

cufft  0 0 

fftw  8 0  

fftsg  0 0 

a) The “Test Option” argument 

Enter “test” for the first argument. 

b) The “Number of Tests” argument 

This argument expects an integer. It controls how many lines of (hybrid) MSP Methods to read in 

FOR007.DAT. 

(a) The “Repeat Option” argument 

This argument expects an integer. In controls how many times each test will be repeated. If the argument is > 

0, then only the overall time of every iteration is collected. If the argument is < 0, then the processing time of 

“Fresnel propagator calculations”, and “FFT operation”, “IFFT operation”, “Wave-Phase-grating 

Multiplication” and “Wave-Propagator Multiplication” in Multislice Propagation will be measured as well.  

Please note that, because detailed time-measurement will trigger many more time-collect operations, which 

also include syncing of GPU task-status to CPU, it should not be used when Hybrid Mode is enable. Otherwise 

the GPU will be blocked for every time-measurement and require much more time to finish. 

A.2. Input Pattern and Simulation Options of QCBEDMS-PF 

A.2.1. Input Pattern Options 

The first line of the input pattern file (e.g. “in.dat”) controls the width, height and differentiation of the pattern. 

Number of reflection beams is determined in File “FOR007.DAT”, outside this input pattern file. 

The arguments are: 1) Width (number of pixels) and 2) Height (number of pixels) of reflection beams, and 3) 

Differentiation Options. Integers are expected for these three arguments. 

The Width and Height could be different. 

The Differentiation Option could be any integer larger than or equals to “0”. If it is “0”, then there is no 

differentiation. If it is > 0, then it specifies the differentiation length – the number of pixels of the 

differentiation shifting. 
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A.2.2. Simulation Options 

QCBEDMS-PF can run without input pattern intensities. QCBEDMS-PF will enter the simulation mode if the 

Input Pattern Filename specified in File “FOR007.DAT” starts with “out” and “sim”, while a filename never 

contains whitespace. The simulated pattern will be output to the Output Pattern Filename specified in File 

“FOR007.DAT”. Examples: 

• To calculate a pattern with 50×50 reflection-beam resolution and no differentiation: 

out  50  50  0 

• To calculate a pattern with 50×50 reflection-beam resolution and differentiation of 1 pixel:  

out  50  50  1  

• To generate a synthetic Input Pattern File, which consist of the Input Pattern Options header, pattern 

intensities, uncertainties and weightings:  

sim  50  50  1 

A.3. Compilation of QCBEDMS-PF 

A.3.1. Possible combinations of systems, compilers and frameworks 

OOURA FFT (FFTSG) is always supported, as it comes in Fortran source files.  

FFTW frameworks in QCBEDMS-PF should be compiled without difficulty as well. To achieve best 

performance, one may wish to compile FFTW libraries on the local machine.  

Supports of OpenCL and CUDA will require correct installation of the OpenCL/CUDA toolkits and GPU 

drivers. Please check that whether the target system and hardware have supported OpenCL and CUDA drivers. 

a) Linux 

• Intel compilers + FFTW + OpenCL + CUDA (tested) 

• GNU compilers + FFTW + OpenCL + CUDA (tested) 

• PGI compilers + FFTW + OpenCL + CUDA (tested) 

• LLVM compilers + FFTW + OpenCL + CUDA (tested) 

Combination using Fortran and C++ compilers from different vendors may also succeed. Although not tested, 

other compiler suites may succeed easily as well.  

b) MacOS 

• Intel compilers + FFTW + OpenCL + CUDA (tested) 

• GNU compilers + FFTW + OpenCL + CUDA (tested; if -march=native causes errors, use -march=avx2) 

• PGI compilers + FFTW + OpenCL + CUDA (tested) 

• LLVM compilers + FFTW + OpenCL + CUDA (not tested; installation of Flang could be complex) 

• Clang++ and Intel, GNU or PGI Fortran compiler + FFTW + OpenCL + CUDA (tested) 
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Support of the OpenCL framework on MacOS is out-of-box, requiring no extra configuration. CUDA on 

MacOS may require an older version of Xcode, because the Clang compilers supplied with the latest version 

of MacOS usually are not yet supported by the CUDA toolkit. Although not tested, other compiler suites may 

succeed easily as well.  

c) Cygwin/MSYS on Windows 

• GNU compilers + FFTW + OpenCL (tested) 

• LLVM compilers + FFTW + OpenCL (not tested; installation of LLVM compilers could be complex) 

Other compilers are not likely to work on Cygwin/MSYS, because their command line interface on Windows 

may differ from the syntax in “Makefile”. 

d) Native Windows 

Visual Studio is required. Check the supported versions of Visual Studios by (Intel and CUDA) compilers  

• Intel compilers + FFTW + OpenCL + CUDA (tested) 

• Intel Fortran and Visual Studio C++ compiler + FFTW + OpenCL + CUDA (not tested; require 

modifications to the Makefile “QCBEDMS.mak”) 

• PGI Fortran and Visual Studio C++ compiler + FFTW + OpenCL + CUDA (not tested; require modifications 

to the Makefile “QCBEDMS.mak”) 

Other compiler suites (Fortran and C++) from the same vendor may also work with some effort. Other Fortran 

compilers may also work with the Visual Studio C++ compiler with more effort. 

A.3.2. Compilation on Linux and MacOS 

Such environments will rely on the (GNU) make command and the File “Makefile”. After correctly modifying 

the Makefile, just call make or make all to compile. Call make clean to clean. 

a) Settings that must be checked in Makefile 

(a) Fortran and C++ Compilers 

FC, CXX and OPT. These variables specify the Fortran, C++ compilers and optimisation flags.  

Fortran source files of QCBEDMS-PF are in fix-form requiring extended-length of 132 characters. The 

extended-length flags of the following Fortran compilers will be added automatically: ifort, gfortran, 

pgfortran and flang. For other compilers, the extended-length flag should be added to the FGEN variable 

manually. 

By default, the Fortran compiler will be used to link Fortran and C++ object files. The linking operation 

usually requires specifying the basic C++ library explicitly. The C++ library will be added to the linking 

option automatically for the following C++ compilers: icpc, g++, pgc++ and clang++. For other compilers, the 

C++ library should be added to the LDFLAGS variable manually. 

(b) OOURA FFT, FFTW, OpenCL and CUDA 

Variables FFTSG, FFTW, OPENCL and CUDA will control whether to compile the OOURA FFT, FFTW, 

OpenCL and CUDA frameworks respectively (“true” to compile, any other string to disable). At least one of 
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FFTSG and FFTW must be “true”. OpenCL and CUDA (clFFT) must be installed to compile/execute the 

frameworks respectively. 

NVCC_FLAG sets the (path to) nvcc compiler and flags of CUDA.  

Portable libraries of FFTW and clFFT for different platforms are supplied in Folder “PORT_LIBS”.  

FFTW_DIR sets the directory of the FFTW library.  

CLFFT_DIR sets the directory of the clFFT library. 

OPENCL_LIB sets the directory of the OpenCL library on the system. The default values are meant for 64-

bit systems. MacOS ignores this argument. 

CUDA_DIR sets the directory of CUDA on the system. The default values are meant for 64-bit systems. 

b) Link with dynamic FFTW and clFFT libraries if the statics failed 

FFT_STATIC sets whether to link with the static libraries of FFTW and clFFT. To get an independent 

executable without the needs of dynamic FFTW & clFFT libraries, set it to “true”. To get better compatibility, 

set it to anything other than “true”. 

c) sincos() from C++ library 

SINCOS sets whether to explicitly call the sincos() function provided in C++ library for Fortran. This option 

should normally NOT be “true”, because Fortran compilers will enable this feature automatically during 

optimisation. 

d) MPI 

To use MPI, the program should be compiled with MPI set to “true”. Also set the MPI Fortran and C++ 

compilers in MPIFC and MPICXX. Correctly setting of the FC and CXX variables is also required, because 

the Fortran generate flag FGEN and Linking libraries flag LDFLAGS are determined by them. 

A.3.3. Compilation on Cygwin/MSYS and Native Windows 

a) Cygwin/MSYS 

Follow the Linux and MacOS guidelines and use GNU compilers. Copy the dynamic-link libraries (*.DLL) 

of FFTW and clFFT and place the copies next to the executable, as it is where they will be searched during 

runtime.  

To obtain an executable even portable outside Cygwin/MSYS environments (e.g. in Windows CMD or 

PowerShell), link with GNU compiler static libraries. 

b) Native Windows 

For compilation in native Windows environment, installation of Visual Studio is required for C++. Call nmake 

-f QCBEDMS.mak to compile, and nmake clean -f QCBEDMS.mak to clean.  
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(a) Fortran and C++ Compilers 

Because only Intel Fortran compiler plus Intel C++ compilers have been tested to work in this condition, the 

Makefile “QCBEDMS.mak” is set for Intel compilers. Use Intel compiler’s command line environment to 

compile. 

(b) OOURA FFT, FFTW, OpenCL and CUDA 

Similar to the “Makefile” for Linu and MacOS, modify the FFTSG, FFTW, OPENCL, CUDA options and 

library paths accordingly. 

A.3.4. Auto-Vectorisation Optimisation Options 

Because currently no SIMD instructions are implemented in the source codes of QCBEDMS-PF, 

vectorisations are relied on compilers’ optimisation options.  

For CPUs released after 2013, AVX2 is recommended (or just AVX if AVX2 is not available). For CPUs not 

supporting AVX/AVX2, SSE2, SSE3, SSSE3 or SSE4 should be enabled (higher the version, faster the speed). 

For CPUs that support AVX-512, related auto-vectorisation options may be enabled as well, although no 

significant performance improvement was observed compared to AVX2-only compilations in current version 

of QCBEDMS-PF  

Because the supplied portable FFTW libraries are compiled with only AVX2 (and only SSE/SSE2 for 

Windows), users may wish to compile the FFTW library themselves as well with extra vectorisation supports, 

like AVX-512. Please refer to FFTW’s website for compilation options. However, for the implement of the 

FFTW library in QCBEDMS-PF, no obvious improvement was observed by enabling AVX-512 (comparing 

to AVX2-only). 

a) Intel compilers 

For Intel compilers on Intel CPUs, the -xHost option (vectorisation according to the host machine) only 

enables SSE2 by default. To enable AVX2 or AVX-512, use -march=core-avx2 or -march=common-avx512. 

Please refer to the online document Intel® Compiler Options for Intel® SSE and Intel® AVX generation processor-

specific optimizations and Intel compilers’ manual for further details. 

b) GNU compilers 

GNU compilers can have -march=native to enable auto-vectorisation according to the host machine. On 

MacOS, -march=native has been reported to fail to detect the supported instruction sets; use the name of the 

CPU architecture, like -march=haswell, instead.  

c) PGI compilers 

With the optimisation flag -fast, PGI compilers will choose the best vectorisation (AVX-512, AVX/AVX2 or 

SSE2) automatically. 

d) LLVM compilers 

Both Clang++ and Flang also support -march=native. 

https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations
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Appendix B. Program scripts 

B.1. QCBEDMS-PF – a paralleled 

multi-slice pattern-matching program 

B.1.1. Multi-slice propagation scripts 

a) Fortran subroutines and functions 

! Multi-slice Propagation (MSP) related Fortran scripts 

 

      module msp_c_wrapper 

        implicit none 

        interface 

! Share Global share variables to C C wrappers 

        subroutine Fortran_global_vars_to_C(pg, 

     *   deltaz,xshift,yshift,applieddilation,cell2rpr,tiltarray,beam, 

     *   res2adr,ib, 

     *   ay,bee,cee,dee,meshx,meshy,mt,nslice,mbout,nump,numl,res2,tottilts,ncalcs) 

     *   bind(c,name="Fortran_global_vars_to_C") 

          use iso_c_binding, only: c_double,c_double_complex,c_int 

          complex(c_double_complex)::pg(*) 

          real(c_double)::deltaz(*),xshift(*),yshift(*),applieddilation(*), 

     *     cell2rpr(*),tiltarray(*),beam(*) 

          integer(c_int)::res2adr(*),ib(*) 

          integer(c_int),value::ay,bee,cee,dee,meshx,meshy,mt,nslice,mbout, 

     *     nump,numl,res2,tottilts,ncalcs 

        end subroutine Fortran_global_vars_to_C 

 

        subroutine Slice_beam_global_vars_to_C(sl_beam,mseq,sl_hi,sl_lo,sl_opt) 

     *   bind(c,name="Slice_beam_global_vars_to_C") 

          use iso_c_binding, only: c_double,c_int,c_bool 

          real(c_double)::sl_beam(*) 

          integer(c_int)::mseq(*) 

          integer(c_int),value::sl_hi,sl_lo 

          logical(c_bool),value::sl_opt 

        end subroutine Slice_beam_global_vars_to_C 

 

        subroutine MSP_global_vars_to_C(ratio,meth, 

     *   dev,splt,chid,as_nt,as_toff,ntilt, 

     *   MPI_rank,nhyb,hyb_redi,fftw_bat,nfftsg,nfftw,nclfft,ncufft, 

     *   sgl) bind(c,name="MSP_global_vars_to_C") 

          use iso_c_binding, only: c_double,c_char,c_int,c_bool 

          real(c_double)::ratio(*) 

          character(c_char)::meth(*) 

          integer(c_int)::dev(*),splt(*),chid(*),as_nt(*),as_toff(*),ntilt(*) 

          integer(c_int),value::MPI_rank,nhyb,hyb_redi,fftw_bat,nfftsg,nfftw,nclfft,ncufft 

          logical(c_bool),value::sgl 

        end subroutine MSP_global_vars_to_C 

 

        subroutine Timer_global_vars_to_C(ch,pr,fft,ifft,mpg,mpr,msp) 

     *   bind(c,name="Timer_global_vars_to_C") 

          use iso_c_binding, only: c_double,c_bool 

          real(c_double)::ch(*),pr(*),fft(*),ifft(*),mpg(*),mpr(*) 

          logical(c_bool),value::msp 

        end subroutine Timer_global_vars_to_C 

 

! OpenCL & CUDA get total device counts OR print all devices C wrappers 

        subroutine OpenCLGetGPU(in,n) bind(c,name="OpenCLGetGPU") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::in 

          integer(c_int)::n 

        end subroutine OpenCLGetGPU 

 

        subroutine CUDAGetDevices(in,n) bind(c,name="CUDAGetDevices") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::in 

          integer(c_int)::n 

        end subroutine CUDAGetDevices 

 

! MSP libraries global initiation/termination C wrappers 

        subroutine fftw_init(pmap) bind(c, name="fftw_init") 

          use iso_c_binding, only: c_double_complex 

          complex(c_double_complex)::pmap(*) 

        end subroutine fftw_init 

 

        subroutine fftw_term() bind(c, name="fftw_term") 

        end subroutine fftw_term 

 

        subroutine clfft_init() bind(c, name="clfft_init") 

        end subroutine clfft_init 

 

        subroutine clfft_term() bind(c, name="clfft_term") 

        end subroutine clfft_term 

 

        subroutine cufft_init() bind(c, name="cufft_init") 

        end subroutine cufft_init 

 

        subroutine cufft_term() bind(c, name="cufft_term") 

        end subroutine cufft_term 

 

! MSP libraries per child initiation/termination C wrappers 

        subroutine fftw_child_init(f) bind(c, name="fftw_child_init") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f 

        end subroutine fftw_child_init 

 

        subroutine fftw_child_term(f) bind(c, name="fftw_child_term") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f 

        end subroutine fftw_child_term 

 

        subroutine clfft_child_init(f) bind(c, name="clfft_child_init") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f 

        end subroutine clfft_child_init 

 

        subroutine clfft_child_term(f) bind(c, name="clfft_child_term") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f 

        end subroutine clfft_child_term 

 

        subroutine cufft_child_init(f) bind(c, name="cufft_child_init") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f 

        end subroutine cufft_child_init 

 

        subroutine cufft_child_term(f) bind(c, name="cufft_child_term") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f 

        end subroutine cufft_child_term 

 

! Hybrid MSP C++11 <thread> wrapper 

        subroutine msp_cppthread_exec(nf,offset) bind(c, name='msp_cppthread_exec') 

          use iso_c_binding, only: c_int 

          integer(c_int),value::nf,offset 

        end subroutine msp_cppthread_exec 

 

! One-time FFT & per child MSP C wrappers 

        subroutine fftw_one(dir) bind(c, name="fftw_one") 

        use iso_c_binding, only: c_int 

        integer(c_int),value::dir 

        end subroutine fftw_one 

 

        subroutine fftw_msp_bridge(f,ct1,ct2) bind(c, name="fftw_msp_bridge") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f,ct1,ct2 

        end subroutine fftw_msp_bridge 

 

        subroutine clfft_msp(f,ct1,ct2) bind(c, name="clfft_msp_cast") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f,ct1,ct2 

        end subroutine clfft_msp 

 

        subroutine cufft_msp(f,ct1,ct2) bind(c, name="cufft_msp") 

          use iso_c_binding, only: c_int 

          integer(c_int),value::f,ct1,ct2 

        end subroutine cufft_msp 

        end interface 

      end module msp_c_wrapper 

 

 

      recursive subroutine msp_init_bridge () 

        use qcbedms_var 

        use utils 

        use mpi 

        use msp_c_wrapper 

        implicit none 

        logical::fftsg_check,fftw_check,clfft_check,cufft_check 

        real(8)::rsum 

        integer(c_int)::f 

        character(len=8)::list_meth(4) 

        integer::list_n(4),i,j,k 

 

        nhyb=0 

        hyb_redi=0 

        nfftsg=0 

        nfftw=0 

        nclfft=0 

        ncufft=0 

        fftsg_check=.false. 

        fftw_check=.false. 

        clfft_check=.false. 

        cufft_check=.false. 

        hybrid_opt=.false. 

        msp_sgl=.false. 

        MPI_rank=0 

        mpi_pernode=.false. 

 

        call read_f7 

        read(7,*) msp_opt1,msp_opt2,msp_opt3 

        call format_case(msp_opt1,"l") 

 

        select case (msp_opt1) 

          case ('fftsg','fftw','clfft','cufft') 

            nhyb0=1 

            allocate(msp_ratio0(nhyb0),msp_meth0(nhyb0),msp_dev0(nhyb0),msp_splt0(nhyb0)) 

 

            msp_ratio0(1)=1.d0 

            msp_meth0(1)=msp_opt1 

            msp_dev0(1)=msp_opt2 

            msp_splt0(1)=msp_opt3 

 

            call case_method(1) 

 

            if(msp_meth0(1) == 'clfft' .and. msp_splt0(1) < 0) msp_sgl=.true. 

 

          case ('hybrid','mpi') 

            hybrid_opt=.true. 
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            if(msp_opt2 == 0) then 

              write(13,*) "Number of MSP methods = 0!" 

              stop "Number of hybrid Multi-slice Propagation methods = 0!" 

            end if 

 

            if(msp_opt1 == 'mpi' .and. msp_opt2 < 0) mpi_pernode=.true. 

 

            nhyb0=abs(msp_opt2) 

            hyb_redi=msp_opt3 

            allocate(msp_ratio0(nhyb0),msp_meth0(nhyb0),msp_dev0(nhyb0),msp_splt0(nhyb0)) 

 

            do f=1,nhyb0 

              call read_f7 

              read (7,*) msp_ratio0(f),msp_meth0(f),msp_dev0(f),msp_splt0(f) 

 

              call case_method(f) 

 

              if(msp_splt0(f) < 0) stop 

     *         "Single precision (negative split) is not supported in hybrid multi-slice!" 

            end do 

 

          case ('test') 

            msp_test=logical(.true.,kind=c_bool) 

            if(msp_opt3 < 0) then 

              msp_timer=logical(.true.,kind=c_bool) 

              msp_opt3=-msp_opt3 

            end if 

 

            call test_msp_methods(msp_opt2,msp_opt3) 

            return 

 

          case default 

            stop 'Unknown Multi-slice Propagation method!' 

        end select 

 

 

! Count total threads required by all MS methods as 'nhyb' 

        nhyb=nfftsg+nfftw+nclfft+ncufft 

        allocate(msp_ratio(nhyb),msp_meth(nhyb),msp_dev(nhyb),msp_splt(nhyb), 

     *   msp_chid(nhyb)) 

 

        list_meth=(/ 'fftsg   ','fftw    ','clfft   ','cufft   ' /) 

        list_n=(/ nfftsg,nfftw,nclfft,ncufft /) 

 

! Assign each thread/device of the listed MS methods to an individual slot 

        j=0 

        do f=1,nhyb0 

          do k=1,4 

            if(msp_meth0(f) == list_meth(k)) then 

              if(msp_dev0(f) == -2 .or. msp_meth0(f)(1:3) == 'fft') then 

                do i=1,list_n(k) 

                  j=j+1 

                  msp_dev(j)=i-1 

                  msp_meth(j)=msp_meth0(f); msp_ratio(j)=msp_ratio0(f) 

                  msp_splt(j)=msp_splt0(f); msp_chid(j)=i 

                enddo 

              else 

                j=j+1 

                msp_dev(j)=msp_dev0(f) 

                msp_meth(j)=msp_meth0(f); msp_ratio(j)=msp_ratio0(f) 

                msp_splt(j)=msp_splt0(f); msp_chid(j)=i+1 

              endif 

            endif 

          enddo 

        enddo 

 

! Initiate MPI 

        if(msp_opt1 == 'mpi') call msp_mpi_init() 

 

! Normalise the ratios of tilt assignment 

        rsum=sum(msp_ratio) 

        msp_ratio(:)=msp_ratio(:)/rsum 

 

        allocate(as_nt(nhyb),as_toff(nhyb),msp_ntilt(nhyb),msp_spd(nhyb)) 

        allocate(timer_pr(nhyb),timer_ch(nhyb),timer_fft(nhyb),timer_ifft(nhyb), 

     *   timer_mpg(nhyb),timer_mpr(nhyb)) 

 

! Share global variables to C++; 

!   slice_beam related variables are shared in 'oneit' for every iteration 

        call Fortran_global_vars_to_C(pgarray, 

     *   deltaz,xshift,yshift,applieddilation,cell2rpr,tiltarray,beam, 

     *   res2adr,ib, 

     *   ay,bee,cee,dee,meshx,meshy,mt,nslice,mbout,nump,numl,res2,tottilts,ncalcs) 

 

        call MSP_global_vars_to_C(msp_ratio,msp_meth, 

     *   msp_dev,msp_splt,msp_chid,as_nt,as_toff,msp_ntilt, 

     *   MPI_rank,nhyb,hyb_redi,fftw_bat,nfftsg,nfftw,nclfft,ncufft, 

     *   msp_sgl) 

 

        call Timer_global_vars_to_C(timer_ch,timer_pr,timer_fft,timer_ifft,timer_mpg,timer_mpr, 

     *   msp_timer) 

 

! Setup each MSP library's global environment 

#ifdef COMPILE_FFTW 

        call fftw_init(pmap0) 

        fft_one_lib="" 

        if(msp_opt1 /= 'fftsg') then 

          fft_one_lib='fftw' 

        end if 

#endif 

        if(nfftw>0) allocate(fftw_pr(mt,fftw_bat,nslice,nfftw)) 

 

#ifdef COMPILE_OPENCL 

        call clfft_init 

#endif 

#ifdef COMPILE_CUDA 

        call cufft_init 

#endif 

#ifdef COMPILE_FFTSG 

        if(fft_one_lib /= 'fftw') then 

          fft_one_lib='fftsg' 

          allocate(fsgi(0:2**(int(log(max(meshx,meshy)+0.5d0)/log(2.d0))/2)+1), 

     *     fsga(0:2*meshx-1,0:meshy-1),fsgt(0:8*meshy-1),fsgw(0:max(meshx,meshy)/2-1)) 

          allocate(prarray(mt,nslice)) 

          fsgi(0)=0 

        end if 

#endif 

 

        write(13,'("Using ",a," for FFT outside multi-slice propagation.")') 

     *   fft_one_lib 

        if(hybrid_opt) then 

          write(13,'(/,"Using ",i0,2x,a," Multi-slice Propagation items (threads).")') 

     *     nhyb,trim(msp_opt1) 

          if(hyb_redi>0) then 

            write(13,'("Auto-redistribute tilts every ",i0," iterations.")') hyb_redi 

          end if 

        else 

          write(13,'(/,"Using ",a," for multi-slice propagation.")') msp_opt1 

        end if 

 

! Initiate each MSP method 

        call msp_child_init_bridge() 

 

!        call c_shared_var_test 

!        call f_c_var_test 

      contains 

        subroutine case_method(ff) 

          implicit none 

          integer(c_int)::ff 

 

          select case (msp_meth0(ff)) 

            case ('fftsg') 

              msp_dev0(ff)=1 

              nfftsg=msp_dev0(ff) 

              if(hybrid_opt) stop 'FFTSG is not implemented in Hybrid Multi-slice!' 

 

            case ('fftw') 

              if(msp_dev0(ff) == 0) msp_dev0(ff)=1 

              nfftw=msp_dev0(ff) 

              fftw_bat=msp_splt0(ff) 

              if(fftw_bat < 1) fftw_bat=1 

              if(fftw_check) stop 'Only ONE entity of FFTW is allowed!' 

              fftw_check=.true. 

 

            case ('clfft') 

              if(msp_dev0(ff) < 0) then 

                call OpenCLGetGPU(msp_dev0(ff),nclfft) 

                if(clfft_check) stop 

     *           'Only ONE entity of clFFT is allowed while device option = -2 (all)!' 

                clfft_check=.true. 

              else 

                nclfft=nclfft+1 

              endif 

 

            case ('cufft') 

              if(msp_dev0(ff) < 0) then 

                call CUDAGetDevices(msp_dev0(ff),ncufft) 

                if(cufft_check) stop 

     *           'Only ONE entity of cuFFT is allowed while device option = -2 (all)!' 

                cufft_check=.true. 

              else 

                ncufft=ncufft+1 

              endif 

 

            case default 

              print'("Multi-slice method: ",a)', msp_meth0(ff) 

              stop "Unknown multi-slice method!" 

          end select 

        end subroutine case_method 

      end subroutine msp_init_bridge 

 

 

      subroutine msp_term_bridge() 

        use qcbedms_var 

        use msp_c_wrapper 

        implicit none 

 

        call msp_child_term_bridge() 

 

#ifdef COMPILE_FFTW 

        call fftw_term 

#endif 

#ifdef COMPILE_OPENCL 

        call clfft_term 

#endif 

#ifdef COMPILE_CUDA 

        call cufft_term 

#endif 

 

        if(msp_opt1 == 'mpi') call msp_mpi_term() 

 

        if(allocated(fsga)) deallocate(fsga,fsgw,fsgi,fsgt) 

        if(allocated(as_nt)) deallocate(as_nt,as_toff,msp_ntilt,msp_spd) 

 

        if(allocated(msp_ratio)) deallocate(msp_ratio,msp_meth,msp_dev,msp_splt,msp_chid) 

        if(allocated(msp_ratio0)) deallocate(msp_ratio0,msp_meth0,msp_dev0,msp_splt0) 

        if(allocated(fftw_pr)) deallocate(fftw_pr) 

        if(allocated(prarray)) deallocate(prarray) 
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        deallocate(timer_ch,timer_pr,timer_fft,timer_ifft,timer_mpg,timer_mpr) 

      end subroutine msp_term_bridge 

 

 

      subroutine msp_child_init_bridge() 

        use qcbedms_var 

        use msp_c_wrapper 

        implicit none 

        integer(c_int)::f,offset,n 

! Heterogeneous job & memory allocation, Pt. 1 - Global 

! 1. Distribute all tilts to be calculated to each child according to the allocated ratios: 

        as_nt(:)=floor(tottilts*msp_ratio(:)) 

!    If there is any residual tilts caused by flooring, increase tilts from the 1st child: 

        do f=1,tottilts-sum(as_nt) 

          as_nt(f)=as_nt(f)+1 

        end do 

!    Note - tottilts === sum( as_nt ) 

! 2. Range of calculating tilts distributed to Child 'f' - 

!     ( 1 + as_toff(f) : as_nt(f) + as_toff(f) ): 

        as_toff=0 

        do f=2,nhyb 

          if(as_nt(f) > 0) as_toff(f)=as_toff(f-1)+as_nt(f-1) 

        end do 

! 3. Numbers of parallelised tilts for each child will be determined by each's restrictions 

!     during their initialisations, satisfying the following rule: 

!       msp_ntilt(:) = ceil( as_nt(:) / msp_splt(:) ) 

!   The memory usage (GPU memory for GPU methods) of each child is dominated by 

!       'msp_ntilt(:)' - the number of paralleling tilts of each child. 

!   Note - msp_ntilt(:) * msp_splt(:) >= as_nt(:) because of ceiling 

 

        offset=0; n=nhyb 

        if(msp_opt1 == 'mpi') then 

          call mpi_calc_tilt_init() 

          offset=mhyb_oset(mpir); n=mhyb(mpir)+mhyb_oset(mpir) 

        end if 

 

        do f=1+offset,n 

          write(13,'(i0,". ",a," - ",f6.2,"%, ",i0," tilts")') 

     *     f,msp_meth(f),msp_ratio(f)*100,as_nt(f) 

 

          select case (msp_meth(f)) 

          case ("fftsg") 

#ifndef COMPILE_FFTSG 

            stop "QCBEDMS-PF was compiled without FFTSG!" 

#endif 

            msp_ntilt(f)=1 

 

          case ("fftw") 

#ifdef COMPILE_FFTW 

            call fftw_child_init(f-1) 

#else 

            stop "QCBEDMS-PF was compiled without FFTW!" 

#endif 

 

          case ("clfft") 

#ifdef COMPILE_OPENCL 

            call clfft_child_init(f-1) 

#else 

            stop "QCBEDMS-PF was compiled without OpenCL!" 

#endif 

 

          case ("cufft") 

#ifdef COMPILE_CUDA 

            call cufft_child_init(f-1) 

#else 

            stop "QCBEDMS-PF was compiled without CUDA!" 

#endif 

 

          case default 

            write(*,'("Multi-slice Propagation method: ",a)') msp_meth(f) 

            stop "Unknown Multi-slice Propagation method!" 

          end select 

        end do 

      contains 

        subroutine mpi_calc_tilt_init() 

#ifdef MPI 

          use mpi 

          integer::nct,ct1,ierr 

 

! Summarise tilts of MPI slave threads 

          nct=sum(as_nt(1+mhyb_oset(mpir):mhyb(mpir)+mhyb_oset(mpir))) 

          ct1=as_toff(1+mhyb_oset(mpir)) 

 

          call 

MPI_ALLGATHER(nct,1,MPI_INTEGER,mas_nt,1,MPI_INTEGER,MPI_COMM_WORLD,ierr) 

          call 

MPI_ALLGATHER(ct1,1,MPI_INTEGER,mas_toff,1,MPI_INTEGER,MPI_COMM_WORLD,ierr) 

!        print*,'mpir',mpir,'mas_toff',mas_toff,'c',as_toff 

#endif 

        end subroutine mpi_calc_tilt_init 

 

      end subroutine msp_child_init_bridge 

 

 

      subroutine msp_child_term_bridge() 

        use qcbedms_var 

        use msp_c_wrapper 

        implicit none 

        integer::f,offset,n 

 

        offset=0; n=nhyb 

        if(msp_opt1 == 'mpi') then 

          offset=mhyb_oset(mpir); n=mhyb(mpir)+mhyb_oset(mpir) 

        end if 

 

        do f=1+offset,n 

          select case (msp_meth(f)) 

            case ("fftsg") 

              ! Nothing to do 

            case ("fftw") 

#ifdef COMPILE_FFTW 

              call fftw_child_term(f-1) 

#endif 

            case ("cufft") 

#ifdef COMPILE_CUDA 

              call cufft_child_term(f-1) 

#endif 

            case ("clfft") 

#ifdef COMPILE_OPENCL 

              call clfft_child_term(f-1) 

#endif 

          end select 

        end do 

      end subroutine msp_child_term_bridge 

 

 

      subroutine msp_redi_calc_ntilt() 

        use qcbedms_var 

        implicit none 

        integer::f 

        real(8)::rsum=0 

 

        write(13,'(/,"Redistributing tilts of Multi-slice Propagation methods")') 

        msp_ratio(1:nhyb)=msp_spd(:)/hyb_redi 

        write(13,'("Measured speeds: ",100(i0,". ",a8," - ",g14.5," tilt/s, "))') 

     *   (f,msp_meth(f),msp_ratio(f),f=1,nhyb) 

 

        rsum=sum(msp_ratio(1:nhyb)) 

        msp_ratio(1:nhyb)=msp_ratio(1:nhyb)/rsum 

        write(13,'("Ratio updated: ",100(i0,". ",a8," - ",f7.2,"%, "))') 

     *   (f,msp_meth(f),msp_ratio(f)*100,f=1,nhyb) 

 

        call msp_child_term_bridge() 

        call msp_child_init_bridge() 

        write(13, '("Multi-slice Propagation tilts redistributed!",/)') 

      end subroutine msp_redi_calc_ntilt 

 

 

      subroutine msp_exec_bridge() 

        use qcbedms_var 

        use msp_c_wrapper 

        implicit none 

 

        timer_pr=0; timer_fft=0; timer_ifft=0; timer_mpg=0; timer_mpr=0 

 

        select case (msp_opt1) 

          case ('mpi') 

            call msp_mpi_exec 

          case ('hybrid') 

            call msp_cppthread_exec(nhyb,0) 

          case ('fftsg','fftw','clfft','cufft') 

            call msp_child_exec_bridge(1) 

        end select 

      end subroutine msp_exec_bridge 

 

 

      subroutine msp_mpi_init() 

#ifdef MPI 

        use qcbedms_var 

        use mpi 

        implicit none 

        integer::ierr,r 

        character(len=8,kind=c_char),target,allocatable::imeth(:) 

        integer(c_int),target,allocatable::idev(:),isplt(:),ichid(:) 

        real(c_double),target,allocatable::iratio(:) 

        logical::initd 

 

        call MPI_INITIALIZED(initd,ierr) 

        if(.not. initd) call MPI_INIT(ierr) 

        call MPI_COMM_RANK(MPI_COMM_WORLD,MPI_rank,ierr) 

        call MPI_COMM_SIZE(MPI_COMM_WORLD,nmpi,ierr) 

 

        mpir=MPI_rank+1 

 

        allocate(mhyb(nmpi),mhyb_oset(nmpi),mas_nt(nmpi),mas_toff(nmpi)) 

        allocate(iratio,source=msp_ratio) 

        allocate(imeth,source=msp_meth) 

        allocate(idev,source=msp_dev) 

        allocate(isplt,source=msp_splt) 

        allocate(ichid,source=msp_chid) 

 

! Gather & sync number of MSP methods 

        call 

MPI_ALLGATHER(nhyb,1,MPI_INTEGER,mhyb,1,MPI_INTEGER,MPI_COMM_WORLD,ierr) 

        nhyb=sum(mhyb) 

 

! Prepare the new MSP method containers 

        deallocate(msp_ratio,msp_meth,msp_dev,msp_splt,msp_chid) 

        allocate(msp_ratio(nhyb),msp_meth(nhyb),msp_dev(nhyb),msp_splt(nhyb),msp_chid(nhyb)) 

 

! Prepare displacements 

        mhyb_oset(1)=0 

        do r=2,nmpi 

          mhyb_oset(r)=mhyb_oset(r-1)+mhyb(r-1) 

        end do 

 

! Gather & sync parameters of MSP methods 

        call MPI_ALLGATHERV(iratio,mhyb(mpir),MPI_DOUBLE_PRECISION, 
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     *   msp_ratio,mhyb,mhyb_oset,MPI_DOUBLE_PRECISION,MPI_COMM_WORLD,ierr) 

        call MPI_ALLGATHERV(imeth,8*mhyb(mpir),MPI_CHARACTER, 

     *   msp_meth,8*mhyb,8*mhyb_oset,MPI_CHARACTER,MPI_COMM_WORLD,ierr) 

        call MPI_ALLGATHERV(idev,mhyb(mpir),MPI_INTEGER, 

     *   msp_dev,mhyb,mhyb_oset,MPI_INTEGER,MPI_COMM_WORLD,ierr) 

        call MPI_ALLGATHERV(isplt,mhyb(mpir),MPI_INTEGER, 

     *   msp_splt,mhyb,mhyb_oset,MPI_INTEGER,MPI_COMM_WORLD,ierr) 

        call MPI_ALLGATHERV(ichid,mhyb(mpir),MPI_INTEGER, 

     *   msp_chid,mhyb,mhyb_oset,MPI_INTEGER,MPI_COMM_WORLD,ierr) 

 

        deallocate(iratio,imeth,idev,isplt,ichid) 

 

!        print*,'rank=',MPI_rank,msp_dev 

!        print*,'rank=',MPI_rank,msp_meth 

#else 

        stop 'QCBEDMS-PF was compiled without MPI!' 

#endif 

      end subroutine msp_mpi_init 

 

 

      subroutine program_mpi_term() 

#ifdef MPI 

        use mpi 

        integer::ierr 

        call MPI_FINALIZE(ierr) 

#endif 

      end subroutine program_mpi_term 

 

 

      subroutine msp_mpi_term() 

#ifdef MPI 

        use qcbedms_var 

        use mpi 

        if(MPI_rank == 0) call msp_mpi_loops(.true.,p) 

        deallocate(mhyb,mhyb_oset,mas_nt,mas_toff) 

#endif 

      end subroutine msp_mpi_term 

 

 

      subroutine msp_mpi_loops(opt,pt) 

#ifdef MPI 

        use qcbedms_var 

        use mpi 

        integer::ierr,l 

        logical::opt 

        real(8)::pt(npar) 

 

        l=-1 

        if(opt) l=-2 

! Broadcase the 'loops' parameter to MPI slave threads 

        call MPI_BCAST(l,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) 

! Broadcase parameters for current iteration 

        call MPI_BCAST(PT,npar,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

!        print*,'MPI_rank',MPI_rank,pt 

 

        if(MPI_rank > 0) loops=l 

!        print*,MPI_rank,i,loops,ncalcs,initd,finad 

#endif 

      end subroutine msp_mpi_loops 

 

 

      subroutine msp_mpi_exec() 

#ifdef MPI 

        use qcbedms_var 

        use mpi 

        use msp_c_wrapper 

        implicit none 

        integer::ierr=0,b 

 

! Execute MSP 

        if(mpi_pernode) then 

          call msp_cppthread_exec(mhyb(mpir),mhyb_oset(mpir)) 

        else 

          call msp_child_exec_bridge(mpir) 

        end if 

 

! Gather calculated tilts from MPI slave threads 

        do b=1,mbout 

          call MPI_GATHERV(beam(mas_toff(mpir)+1,b),mas_nt(mpir),MPI_DOUBLE_PRECISION, 

     *     beam(:,b),mas_nt,mas_toff,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

        end do 

!        print'(2i4,1000g15.7)',MPI_rank,ncalcs,beam(:,:) 

 

! Gather Timers 

          call 

MPI_GATHERV(timer_ch(1+mhyb_oset(mpir)),mhyb(mpir),MPI_DOUBLE_PRECISION, 

     *     timer_ch,mhyb,mhyb_oset,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

          call 

MPI_GATHERV(timer_pr(1+mhyb_oset(mpir)),mhyb(mpir),MPI_DOUBLE_PRECISION, 

     *     timer_pr,mhyb,mhyb_oset,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

          call 

MPI_GATHERV(timer_fft(1+mhyb_oset(mpir)),mhyb(mpir),MPI_DOUBLE_PRECISION, 

     *     timer_fft,mhyb,mhyb_oset,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

          call 

MPI_GATHERV(timer_ifft(1+mhyb_oset(mpir)),mhyb(mpir),MPI_DOUBLE_PRECISION, 

     *     timer_ifft,mhyb,mhyb_oset,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

          call 

MPI_GATHERV(timer_mpg(1+mhyb_oset(mpir)),mhyb(mpir),MPI_DOUBLE_PRECISION, 

     *     timer_mpg,mhyb,mhyb_oset,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

          call 

MPI_GATHERV(timer_mpr(1+mhyb_oset(mpir)),mhyb(mpir),MPI_DOUBLE_PRECISION, 

     *     timer_mpr,mhyb,mhyb_oset,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) 

#endif 

      end subroutine msp_mpi_exec 

 

 

      recursive subroutine msp_child_exec_bridge(f) 

        use iso_c_binding,only:c_int 

        interface 

          recursive subroutine msp_child_exec_bridge_f(f) 

     *     bind(c,name='msp_child_exec_bridge_f') 

            use iso_c_binding,only:c_int 

            integer(c_int),value::f 

          end subroutine msp_child_exec_bridge_f 

        end interface 

 

        integer(c_int)::f 

        call msp_child_exec_bridge_f(f) 

      end subroutine msp_child_exec_bridge 

 

 

      recursive subroutine msp_child_exec_bridge_f(f) bind(c,name='msp_child_exec_bridge_f') 

        use utils 

        use qcbedms_var 

        use msp_c_wrapper 

        implicit none 

        integer(c_int),value::f 

        integer(c_int)::ct1,ct2 

        integer(8)::t_ch 

 

        call system_clock(t_ch) 

 

        ct1=as_toff(f) 

        ct2=as_toff(f)+as_nt(f) 

 

        select case (msp_meth(f)) 

          case ("fftsg") 

#ifdef COMPILE_FFTSG 

            call fftsg_msp(f) 

#endif 

 

          case ("fftw") 

#ifdef COMPILE_FFTW 

            call fftw_msp_bridge(f-1,ct1,ct2) 

#endif 

 

          case ("clfft") 

#ifdef COMPILE_OPENCL 

            call clfft_msp(f-1,ct1,ct2) 

#endif 

 

          case ("cufft") 

#ifdef COMPILE_CUDA 

            call cufft_msp(f-1,ct1,ct2) 

#endif 

        end select 

!        write(*,'(1000g25.16)') beam(:,:) 

        timer_ch(f)=timer(t_ch) 

      end subroutine msp_child_exec_bridge_f 

b) C++ functions 

/* 

 * Common C++ functions of QCBEDMS-PF 

 */ 

 

#ifdef SINCOS 

# ifndef _GNU_SOURCE 

#  define _GNU_SOURCE 

# endif 

# ifdef INTEL_MATH_LIB 

#  include <mathimf.h> 

# endif 

extern "C" void c_sincos(double *x, double *sn, double *cs) 

{ 

 sincos(*x, sn, cs); 

} 

#endif 

 

#include "cpp_comm.hpp" 

 

Fortran_global_vars F; 

MSP_global_vars MSP; 

Timer_global_vars Tr; 

 

extern "C" void Fortran_global_vars_to_C(complex<double> *pg, 

  double *deltaz, double *xshift, double *yshift, double *applieddilation, 

  double *cell2rpr, double *tiltarray, double *beam, 

  int *res2adr, int *ib, 

  int ay, int bee, int cee, int dee, int meshx, int meshy, int mt, int nslice, int mbout, 

  int nump, int numl, int res2, int tottilts, int ncalcs) 

{ 

 F.pg = pg; 

 F.deltaz = deltaz, F.xshift = xshift, F.yshift = yshift, F.applieddilation = applieddilation, 

   F.cell2rpr = cell2rpr, F.tiltarray = tiltarray, F.beam = beam; 

 F.res2adr = res2adr, F.ib = ib; 

 F.ay = ay, F.bee = bee, F.cee = cee, F.dee = dee, F.meshx = meshx, F.meshy = meshy, 

   F.mt = mt, F.nslice = nslice, F.mbout = mbout, F.nump = nump, F.numl = numl, 

   F.res2 = res2, F.tottilts = tottilts, 

   F.ncalcs = ncalcs; 

} 

 

extern "C" void Slice_beam_global_vars_to_C(double *sl_beam, int *mseq, int sl_hi, int sl_lo, 

  bool sl_opt) 

{ 
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 F.sl_beam = sl_beam, F.mseq = mseq, F.sl_hi = sl_hi, F.sl_lo = sl_lo, F.sl_opt = sl_opt; 

} 

 

extern "C" void MSP_global_vars_to_C(double *ratio, char *meth, 

  int *dev, int *splt, int *chid, int *as_nt, int *as_toff, int *ntilt, 

  int MPI_rank, int nhyb, int hyb_redi, int fftw_bat, 

  int nfftsg, int nfftw, int nclfft, int ncufft, 

  bool sgl) 

{ 

 MSP.ratio = ratio; 

 MSP.meth = meth; 

 MSP.dev = dev, MSP.splt = splt, MSP.chid = chid, MSP.as_nt = as_nt, 

   MSP.as_toff = as_toff, MSP.ntilt = ntilt; 

 MSP.MPI_rank = MPI_rank, MSP.nhyb = nhyb, MSP.hyb_redi = hyb_redi, MSP.fftw_bat = 

fftw_bat, 

   MSP.nfftsg = nfftsg, MSP.nfftw = nfftw, MSP.nclfft = nclfft, MSP.ncufft = ncufft; 

 MSP.sgl = sgl; 

} 

 

extern "C" void Timer_global_vars_to_C(double *ch, double *pr, double *fft, double *ifft, 

  double *mpg, double *mpr, bool msp) 

{ 

 Tr.ch = ch, Tr.pr = pr, Tr.fft = fft, Tr.ifft = ifft, Tr.mpg = mpg, Tr.mpr = mpr; 

 Tr.msp = msp; 

} 

 

extern "C" void F_C_var_test() 

{ 

 printf("Variables read by C:\n"); 

 printf("meshx meshy mt = %d %d %d, nslice = %d,\n" 

   "mbout = %d, nump numl res2 = %d %d %d, tottilts = %d, \n" 

   "nhyb hyb_redi = %d %d, sl_hi sl_lo = %d %d,\n" 

   "msp_sgl sl_opt msp_timer = %s %s %s\n", 

   F.meshx, F.meshy, F.mt, F.nslice, 

   F.mbout, F.nump, F.numl, F.res2, F.tottilts, 

   MSP.nhyb, MSP.hyb_redi, F.sl_hi, F.sl_lo, 

   MSP.sgl ? "T" : "F", F.sl_opt ? "T" : "F", Tr.msp ? "T" : "F"); 

 printf("msp_meth = "); 

 for (int f = 0 ; f < MSP.nhyb ; f++) { 

  char msp_meth[9] = ""; 

  strncpy(msp_meth, MSP.meth + f * 8, 8); 

  printf("%d. '%s', ", f, msp_meth); 

 } 

 cout << endl; 

} 

 

size_t size_R, size_C; 

 

size_t msp_mem(const int f, const int a) 

{ 

 size_R = MSP.sgl ? sizeof(float) : sizeof(double); 

 size_C = MSP.sgl ? sizeof(complex<float> ) : sizeof(complex<double> ); 

 

 size_t pg = F.mt * F.nslice * size_C; 

 size_t pr = F.mt * MSP.ntilt[f] * F.nslice * size_C; 

 size_t pmap = F.mt * MSP.ntilt[f] * size_C; 

 size_t beam = F.res2 * F.mbout * size_R; 

 

 if (strncmp(MSP.meth + f * 8, "fftw", 4) == 0) { 

  pmap = F.mt * a * size_C; 

  return pg + pr + pmap * 2; 

 } 

 

 return pg + pr + pmap * 2 + beam + MSP.as_nt[f] * sizeof(int); 

} 

 

extern "C" void save_as_bmp(int w, int h, double* data, char* name) 

{ 

 unsigned long long filesize = 1078 + w * h; 

 

 unsigned char fileheader[14] = { 'B', 'M', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

 unsigned char infoheader[40] = { 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 0 }; 

 unsigned char rgbquad[1024] = { 0, 255, 0, 0 }; // map '0' indexed color to Magenta 

 unsigned char bmppad[3] = { 0, 0, 0 }; 

 

 unsigned char* img = new unsigned char[w * h]; 

 for (int i = 0 ; i < w * h ; i++) 

  img[i] = (unsigned char) data[i]; 

 

 // '0' was mapped to Magenta, '1' to '255' are still grayscale 

 for (int i = 1 ; i < 256 ; i++) { 

  rgbquad[4 * i] = i; 

  rgbquad[4 * i + 1] = i; 

  rgbquad[4 * i + 2] = i; 

  rgbquad[4 * i + 3] = 0; 

 } 

 

 fileheader[2] = (unsigned char) (filesize); 

 fileheader[3] = (unsigned char) (filesize >> 8); 

 fileheader[4] = (unsigned char) (filesize >> 16); 

 fileheader[5] = (unsigned char) (filesize >> 24); 

 fileheader[10] = (unsigned char) (1078); 

 fileheader[11] = (unsigned char) (1078 >> 8); 

 fileheader[12] = (unsigned char) (1078 >> 16); 

 fileheader[13] = (unsigned char) (1078 >> 24); 

 

 infoheader[4] = (unsigned char) (w); 

 infoheader[5] = (unsigned char) (w >> 8); 

 infoheader[6] = (unsigned char) (w >> 16); 

 infoheader[7] = (unsigned char) (w >> 24); 

 infoheader[8] = (unsigned char) (h); 

 infoheader[9] = (unsigned char) (h >> 8); 

 infoheader[10] = (unsigned char) (h >> 16); 

 infoheader[11] = (unsigned char) (h >> 24); 

 infoheader[32] = (unsigned char) (256); 

 infoheader[33] = (unsigned char) (256 >> 8); 

 infoheader[34] = (unsigned char) (256 >> 16); 

 infoheader[35] = (unsigned char) (256 >> 24); 

 

 string filename = ""; 

 filename += name; 

 filename += ".bmp"; 

 FILE* f = fopen(filename.c_str(), "wb"); 

 fwrite(fileheader, 1, 14, f); 

 fwrite(infoheader, 1, 40, f); 

 fwrite(rgbquad, 1, 1024, f); 

 for (int j = 0 ; j < h ; j++) { 

  fwrite(&img[(h - j - 1) * w], 1, w, f); 

  fwrite(bmppad, 1, (4 - w % 4) % 4, f); 

 } 

 fclose(f); 

 

 delete[] img; 

} 

 

typedef chrono::time_point<chrono::high_resolution_clock> time_point; 

 

time_point time_now() 

{ 

 return chrono::high_resolution_clock::now(); 

} 

 

double timer(time_point* t0) 

{ 

 time_point t1 = time_now(), t2 = *t0; 

 *t0 = t1; 

 return chrono::duration<double>(t1 - t2).count(); 

} 

 

extern "C" void c2fwrite(int, char*); 

 

void fortran_write(const int u, const char *__restrict format, ...) 

{ 

 if (MSP.MPI_rank > 0) return; 

 va_list args; 

 va_start(args, format); 

 char fmsg[1024]; 

 vsprintf(fmsg, format, args); 

 c2fwrite(13, fmsg); 

} 

 

extern "C" void msp_child_exec_bridge_f(const int f); 

 

extern "C" void msp_cppthread_exec(const int nf, const int offset) 

{ 

 thread *hybrid = new thread[nf]; 

 for (int f = 0 ; f < nf ; f++) { 

  hybrid[f] = thread(msp_child_exec_bridge_f, f + 1 + offset); 

//  hybrid[f].join(); 

 } 

 

 for (int f = 0 ; f < nf ; f++) { 

  hybrid[f].join(); 

 } 

 delete[] hybrid; 

} 

 

 

B.1.2. Fresnel propagation using FFTW 

a) Fortran subroutine “fftw_msp” – main 

body of multi-slice propagation using 

FFTW 

 

      recursive subroutine fftw_msp(f,ct1,ct2,pmap) bind(c,name='fftw_msp') 

#ifdef COMPILE_FFTW 

        use utils 

        use qcbedms_var 

        implicit none 

        interface 

          subroutine fftw_fft(f,dir) bind(c,name='fftw_fft') 

            use iso_c_binding, only: c_int 

            integer(c_int),value::f,dir 

          end subroutine fftw_fft 

 

          subroutine fftw_time_now(f) bind(c,name='fftw_time_now') 

            use iso_c_binding, only: c_int 

            integer(c_int),value::f 

          end subroutine fftw_time_now 

 

          function fftw_timer(f) bind(c,name='fftw_timer') 

            use iso_c_binding, only: c_int,c_double 

            integer(c_int),value::f 

            real(c_double)::fftw_timer 

          end function fftw_timer 

        end interface 

 

        integer(c_int),value::f,ct1,ct2 

        complex(c_double_complex)::pmap(mt,fftw_bat) 

        integer::k,t,t1,kpg,ct3,j,ifftw 
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        real(8)::dzdil(nslice) 

 

        ifftw=msp_chid(f) 

        dzdil=deltaz*APPLIEDDILATION 

 

        do t=ct1,ct2,fftw_bat 

          ct3=min(t+fftw_bat-1,as_nt(f)+as_toff(f)) 

 

! Prepare the Fresnel propagators 'pr' 

          if(msp_timer) call fftw_time_now(f-1) 

          do t1=t,ct3 

            DO k=1,NSLICE 

              CALL PROPG(k,TILTARRAY(:,t1,k), 

     *         dzdil(k),XSHIFT(k),YSHIFT(k),fftw_pr(:,t1-t+1,k,ifftw)) 

            END DO 

          end do 

          if(msp_timer) timer_pr(f)=timer_pr(f)+fftw_timer(f-1) 

 

          pmap(1:mt,1:fftw_bat)=cmplx(1.d0,0.d0,kind=8) 

 

          if(msp_timer) call fftw_time_now(f-1) 

          DO k=1,sl_hi 

            kpg=MSEQ(k) 

            do t1=1,fftw_bat 

              pmap(1:mt,t1)=pmap(1:mt,t1)*pgarray(1:mt,kpg) 

            end do 

            if(msp_timer) timer_mpg(f)=timer_mpg(f)+fftw_timer(f-1) 

 

            call fftw_fft(f-1,-1) 

            if(msp_timer) timer_fft(f)=timer_fft(f)+fftw_timer(f-1) 

 

            pmap(1:mt,:)=pmap(1:mt,:)*fftw_pr(1:mt,:,mseq(k),ifftw) 

            if(msp_timer) timer_mpr(f)=timer_mpr(f)+fftw_timer(f-1) 

 

            if((sl_opt .and. k >= sl_lo) .or. k == sl_hi) then 

              do j=1,mbout 

                if(sl_opt) then 

                  sl_beam(t:ct3,j,k-sl_lo+1) 

     *             =real(pmap(ib(j),1:ct3-t+1))**2 

     *             +aimag(pmap(ib(j),1:ct3-t+1))**2 

                else 

                  beam(t:ct3,j) 

     *             =real(pmap(ib(j),1:ct3-t+1))**2 

     *             +aimag(pmap(ib(j),1:ct3-t+1))**2 

                end if 

              end do 

              if(k == sl_hi) exit 

            end if 

 

            call fftw_fft(f-1,1) 

            if(msp_timer) timer_ifft(f)=timer_ifft(f)+fftw_timer(f-1) 

          end do 

        end do 

#endif 

      end subroutine fftw_msp 

b) File “fftw_func.cpp” – FFTW C++ 

functions 

/* 

 * FFTW functions of QCBEDMS-PF 

 */ 

#include "cpp_comm.hpp" 

#include <fftw3.h> 

 

using namespace std; 

typedef fftw_complex CD; 

 

struct fftw_vars { 

 CD *pmap; 

 fftw_plan msf, msb; 

 time_point t_msp; 

} *fwv; 

 

fftw_plan p1f, p1b; 

 

extern "C" 

{ 

void fftw_init(complex<double>* pmap0) 

{ 

 fwv = new fftw_vars[MSP.nhyb]; 

 p1f = fftw_plan_dft_2d(F.meshy, F.meshx, 

   reinterpret_cast<CD*>(pmap0), reinterpret_cast<CD*>(pmap0), 

   FFTW_FORWARD, FFTW_PATIENT); 

 p1b = fftw_plan_dft_2d(F.meshy, F.meshx, 

   reinterpret_cast<CD*>(pmap0), reinterpret_cast<CD*>(pmap0), 

   FFTW_BACKWARD, FFTW_PATIENT); 

} 

 

void fftw_term() 

{ 

 delete[] fwv; 

 fftw_destroy_plan(p1f); 

 fftw_destroy_plan(p1b); 

} 

 

void fftw_one(const int dir) 

{ 

 if (dir == -1) 

  fftw_execute(p1f); 

 else if (dir == 1) 

  fftw_execute(p1b); 

} 

 

void fftw_child_init(const int f) 

{ 

 MSP.ntilt[f] = MSP.fftw_bat; 

 

 fortran_write(13, "  FFTW will calculate %d tilts; " 

   "calculating %d tilt(s) at once, using at least %g MB\n", 

   MSP.as_nt[f], MSP.fftw_bat, msp_mem(f, MSP.fftw_bat) / 1024.0 / 1024); 

 

 int n[2] = { F.meshy, F.meshx }; 

 fwv[f].pmap = fftw_alloc_complex(F.mt * MSP.fftw_bat); 

 fwv[f].msf = fftw_plan_many_dft(2, n, MSP.fftw_bat, 

   fwv[f].pmap, n, 1, F.mt, fwv[f].pmap, n, 1, F.mt, 

   FFTW_FORWARD, FFTW_PATIENT); 

 fwv[f].msb = fftw_plan_many_dft(2, n, MSP.fftw_bat, 

   fwv[f].pmap, n, 1, F.mt, fwv[f].pmap, n, 1, F.mt, 

   FFTW_BACKWARD, FFTW_PATIENT); 

} 

 

void fftw_child_term(const int f) 

{ 

 fftw_free(fwv[f].pmap); 

 fftw_destroy_plan (fwv[f].msf); 

 fftw_destroy_plan (fwv[f].msb); 

} 

 

void fftw_time_now(const int f) 

{ 

 fwv[f].t_msp = time_now(); 

} 

 

double fftw_timer(const int f) 

{ 

 return timer(&fwv[f].t_msp); 

} 

 

void fftw_fft(const int f, const int dir) 

{ 

 if(dir == -1) 

  fftw_execute(fwv[f].msf); 

 else 

  fftw_execute(fwv[f].msb); 

} 

 

void fftw_msp(const int f, const int ct1, const int ct2, CD *pmap); 

 

void fftw_msp_bridge(const int f, const int ct1, const int ct2) 

{ 

 fftw_msp(f+1,ct1+1,ct2+1,fwv[f].pmap); 

} 

} 

B.1.3. Fresnel propagation using clFFT 

/* 

 * OpenCL functions of QCBEDMS-PF 

 */ 

 

#define CL_USE_DEPRECATED_OPENCL_1_2_APIS 

#include <clFFT.h> 

#include "cpp_comm.hpp" 

 

using namespace std; 

 

struct clfft_vars { 

 cl_context ctx; 

 cl_command_queue q; 

 cl_mem pmap, ptmp, *pg, *pr, beam, ib, tiltarray; 

 cl_program program; 

 cl_kernel propg, pad0oshift, fill_pmap, fill_beam, beam_out; 

 clfftPlanHandle *plans_f, plan_b; 

 size_t G_pmap, L_pmap, G_beam_out[2] = { 1, 1 }, L_beam_out[2] = { 1, 1 }, 

   G_propg[3] = { 1, 1, 1 }, L_propg[3] = { 1, 1, 1 }, G_pad, L_pad; 

 complex<float> *host_pgf; 

}*clv; 

 

extern "C" 

{ 

void clfft_init(int *count) 

{ 

 clv = new clfft_vars[MSP.nhyb]; 

} 

 

void clfft_term() 

{ 

 delete[] clv, clv = NULL; 

} 

 

void cl_dbg(string msg, cl_int err) 

{ 

 if(err != 0) 

  printf("%s error code = %d\n", msg.c_str(), err); 

} 

 

cl_device_id OpenCLGetGPU(int idev, int *gpu_count) 

{ 

 cl_device_id dev_id; 
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 cl_uint num_plat; 

 clGetPlatformIDs(0, NULL, &num_plat); 

 cl_platform_id *plats = new cl_platform_id[num_plat]; 

 clGetPlatformIDs(num_plat, plats, NULL); 

 

 cl_uint num_dev = 0; 

 cl_uint idev_gb = 0; 

 char plat_name[128]; 

 char device_name[128]; 

 char vend_name[128]; 

 int count = 0; 

 

 if (idev == -1) 

  printf("OpenCL GPU devices:\n"); 

 

 for (cl_uint i = 0 ; i < num_plat ; i++, num_dev = 0) { 

  clGetPlatformInfo(plats[i], CL_PLATFORM_NAME, 

    sizeof(plat_name), plat_name, NULL); 

  clGetDeviceIDs(plats[i], CL_DEVICE_TYPE_GPU, 0, NULL, &num_dev); 

  count += num_dev; 

 

  cl_device_id* devices = new cl_device_id[num_dev]; 

  clGetDeviceIDs(plats[i], CL_DEVICE_TYPE_GPU, num_dev, devices, NULL); 

 

  for (cl_uint j = 0 ; j < num_dev ; j++, idev_gb++) { 

   clGetDeviceInfo(devices[j], CL_DEVICE_NAME, 

     sizeof(device_name), device_name, NULL); 

   clGetDeviceInfo(devices[j], CL_DEVICE_VENDOR, 

     sizeof(vend_name), vend_name, NULL); 

   if (idev == -1) 

    printf("  %i. %s, Vendor: %s, Platform: %s.\n", 

      idev_gb, device_name, vend_name, plat_name); 

   if (idev == (int) idev_gb) dev_id = devices[j]; 

  } 

 

  delete[] devices, devices = NULL; 

 } 

 

 delete[] plats, plats = NULL; 

 

 if (idev == -1) 

  exit(0); 

 else if (idev == -2) { 

  *gpu_count = count; 

  return 0; 

 } 

 

 cl_platform_id plat; 

 clGetDeviceInfo(dev_id, CL_DEVICE_NAME, sizeof(device_name), device_name, NULL); 

 clGetDeviceInfo(dev_id, CL_DEVICE_VENDOR, sizeof(vend_name), vend_name, NULL); 

 clGetDeviceInfo(dev_id, CL_DEVICE_PLATFORM, sizeof(plat), &plat, NULL); 

 clGetPlatformInfo(plat, CL_PLATFORM_NAME, sizeof(plat_name), plat_name, NULL); 

 fortran_write(13, "  Device: %d. %s, Vendor: %s, Platform/Driver: %s. \n", 

   idev, device_name, vend_name, plat_name); 

 

 return dev_id; 

} 

 

void clfft_child_init(const int f) 

{ 

 cl_int err; 

 cl_device_id dev_id = OpenCLGetGPU(MSP.dev[f], NULL); 

 cl_platform_id plat; 

 err = clGetDeviceInfo(dev_id, CL_DEVICE_PLATFORM, sizeof(plat), &plat, NULL); 

 

/* Check double precision support on GPU */ 

 fortran_write(13, "  clFFT precision: %s.\n", MSP.sgl ? "single" : "double"); 

 cl_device_fp_config fp; 

 err = clGetDeviceInfo(dev_id, CL_DEVICE_DOUBLE_FP_CONFIG, sizeof(fp), &fp, NULL); 

 if (fp == 0 && !MSP.sgl) { 

  fortran_write(13, "\nDouble floating point precision not supported by the device!"); 

  cout << "Double floating-point precision not supported by the device!" << endl; 

  exit(-1); 

 } 

 

/* Calculate GPU memory usage */ 

 float MB = 1.0 / 1024 / 1024; 

 size_t total_gm, max_alloc, work_gm; 

 cl_int mem_err1 = clGetDeviceInfo(dev_id, CL_DEVICE_GLOBAL_MEM_SIZE, 

   sizeof(total_gm), &total_gm, NULL); 

 cl_int mem_err2 = clGetDeviceInfo(dev_id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, 

   sizeof(max_alloc), &max_alloc, NULL); 

 if (MSP.splt[f] == 0) { 

  MSP.splt[f] = 1, MSP.ntilt[f] = MSP.as_nt[f]; 

  /* Apply total memory and max allocation criterion */ 

  while (msp_mem(f, 0) > total_gm && F.mt * MSP.ntilt[f] * size_C > max_alloc 

    && MSP.splt[f] < MSP.as_nt[f]) 

   ++MSP.splt[f], MSP.ntilt[f] = (int) ceil((float) MSP.as_nt[f] / MSP.splt[f]); 

  fortran_write(13, "  (AUTO)"); 

 } 

 else 

  MSP.ntilt[f] = (int) ceil((float) MSP.as_nt[f] / MSP.splt[f]); 

 

 fortran_write(13, "  Paralleling %d/%d tilts; will loop %d time(s).\n", 

   MSP.ntilt[f], MSP.as_nt[f], MSP.splt[f]); 

 work_gm = msp_mem(f, 0); 

 fortran_write(13, "  Total GPU memory: %g MB; clFFT will use about %g MB.\n", 

   total_gm * MB, work_gm * MB); 

 fortran_write(13, "  The max GPU buffer is %g MB (Device's limit is %g MB).\n", 

   F.mt * MSP.ntilt[f] * size_C * MB, max_alloc * MB); 

 

 if (work_gm > total_gm || F.mt * MSP.ntilt[f] * size_C > max_alloc) { 

  if (F.ncalcs < 1) { 

   fortran_write(13, "\nNOT enough GPU memory OR the max array excesses GPU's limit! " 

     "\nPlease reduce paralleled tilts manually.\n"); 

   cout << "NOT enough GPU memory OR the max GPU array excesses device's limit! " 

     "Please reduce paralleled tilts manually." << endl; 

   exit(-1); 

  } else if (mem_err1 != CL_SUCCESS || mem_err2 != CL_SUCCESS) { 

   fortran_write(13, "\nWARNING: \"OpenCL get memory info\" failed " 

     "during refinement! Ignored and continue.\n"); 

  } 

 } 

 if (work_gm > total_gm * 0.5) 

  fortran_write(13, "  GPU memory may be intensive; reduce paralleled " 

    "tilts manually if any error occurs.\n"); 

 

/* Initiate memory objects */ 

 err = clGetDeviceInfo(dev_id, CL_DEVICE_PLATFORM, sizeof(plat), &plat, NULL); 

 cl_context_properties props[3] = { CL_CONTEXT_PLATFORM, 0, 0 }; 

 props[1] = (cl_context_properties) plat; 

 clv[f].ctx = clCreateContext(props, 1, &dev_id, NULL, NULL, &err); 

 cl_dbg("clCreateContext", err); 

 clv[f].q = clCreateCommandQueue(clv[f].ctx, dev_id, 0, &err); 

 cl_dbg("clCreateCommandQueue", err); 

 

 if(MSP.sgl) 

  clv[f].host_pgf = new complex<float>[F.mt * F.nslice]; 

 clv[f].pg = new cl_mem[F.nslice]; 

 clv[f].pr = new cl_mem[F.nslice]; 

 clv[f].tiltarray = clCreateBuffer(clv[f].ctx, 

   CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, 

   2 * MSP.ntilt[f] * size_R, NULL, &err); 

 for (int i = 0 ; i < F.nslice ; i++) { 

  clv[f].pg[i] = clCreateBuffer(clv[f].ctx, CL_MEM_READ_ONLY | 

CL_MEM_HOST_WRITE_ONLY, 

    F.mt * size_C, NULL, &err); 

  clv[f].pr[i] = clCreateBuffer(clv[f].ctx, CL_MEM_READ_ONLY | 

CL_MEM_HOST_WRITE_ONLY, 

    F.mt * MSP.ntilt[f] * size_C, NULL, &err); 

 } 

 clv[f].pmap = clCreateBuffer(clv[f].ctx, CL_MEM_READ_WRITE | 

CL_MEM_HOST_WRITE_ONLY, 

   F.mt * MSP.ntilt[f] * size_C, NULL, &err); 

 clv[f].ptmp = clCreateBuffer(clv[f].ctx, CL_MEM_READ_WRITE | 

CL_MEM_HOST_NO_ACCESS, 

   F.mt * MSP.ntilt[f] * size_C, NULL, &err); 

 clv[f].beam = clCreateBuffer(clv[f].ctx, CL_MEM_READ_WRITE | 

CL_MEM_HOST_READ_ONLY, 

   F.mt * MSP.ntilt[f] * size_C, NULL, &err); 

 clv[f].ib = clCreateBuffer(clv[f].ctx, 

   CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY,//| 

CL_MEM_COPY_HOST_PTR | CL_MEM_HOST_NO_ACCESS, 

   F.mbout * sizeof(int), NULL, &err); 

 // CL_MEM_COPY_HOST_PTR appears to cause memory leak on Nvidia 

 err = clEnqueueWriteBuffer(clv[f].q, clv[f].ib, CL_FALSE, 

   0, F.mbout * sizeof(int), F.ib, 0, NULL, NULL); 

 

/* Initialise clFFT */ 

 clfftSetupData fftSetup; 

 err = clfftInitSetupData(&fftSetup); 

 err = clfftSetup(&fftSetup); 

 

/* Plan clFFT backward transform */ 

 size_t clfftLengths[2] = { (size_t) F.meshx, (size_t) F.meshy }; 

 err = clfftCreateDefaultPlan(&clv[f].plan_b, clv[f].ctx, CLFFT_2D, clfftLengths); 

 err = clfftSetPlanBatchSize(clv[f].plan_b, MSP.ntilt[f]); 

 err = clfftSetPlanDistance(clv[f].plan_b, F.mt, F.mt); 

 err = clfftSetPlanPrecision(clv[f].plan_b, MSP.sgl ? CLFFT_SINGLE : CLFFT_DOUBLE); 

 err = clfftSetLayout(clv[f].plan_b, CLFFT_COMPLEX_INTERLEAVED, 

CLFFT_COMPLEX_INTERLEAVED); 

 err = clfftSetResultLocation(clv[f].plan_b, CLFFT_INPLACE); 

 err = clfftBakePlan(clv[f].plan_b, 1, &clv[f].q, NULL, NULL); 

 

/* Set precision & global constants for kernels */ 

 string p1 = MSP.sgl ? "float" : "double"; 

 string p2 = MSP.sgl ? "float2" : "double2"; 

 string p4 = MSP.sgl ? "float4" : "double4"; 

 string mx = to_string(F.meshx / 2), my = to_string(F.meshy / 2), mthf = to_string(F.mt / 2), 

   meshx = to_string(F.meshx), meshy = to_string(F.meshy), mt = to_string(F.mt), 

   ntilt = to_string(MSP.ntilt[f]); 

 

/* Setup clFFT callbacks for forward transform */ 

 string preXpg_str = "" 

""+p2+" preXpg(__global "+p2+"* pmap, uint offset,       \n" 

"  const __global "+p2+"* pg)          \n" 

"{                  \n" 

" "+p2+" pgi = *(pg + offset%"+mt+"), pmapi = *(pmap+offset);   \n" 

//" if(offset<5) printf(\"pg %i %g %g\\n\",offset,pgi.x,pgi.y);   \n" 

//" if(offset<5) printf(\"pmap %i %g %g\\n\",offset,pmapi.x,pmapi.y); \n" 

" return ("+p2+") (pmapi.x * pgi.x - pmapi.y * pgi.y,     \n" 

"      pmapi.x * pgi.y + pmapi.y * pgi.x);    \n" 

"}\n"; 

 string postXpr_str = "" 

"void postXpr(__global "+p2+"* pmap, uint offset,      \n" 

"  const __global "+p2+"* pr, "+p2+" fftO)      \n" 

"{                 \n" 

" "+p2+" pri = *(pr + offset);         \n" 

//" if(offset<5) printf(\"pr %i %g %g\\n\",offset,pri.x,pri.y);  \n" 

" *(pmap + offset) = ("+p2+") (fftO.x * pri.x - fftO.y * pri.y, \n" 

"         fftO.x * pri.y + fftO.y * pri.x); \n" 

"}"; 

 

/* Plan clFFT forward transform */ 

 clv[f].plans_f = new clfftPlanHandle[F.nslice]; 

 for (int i = 0 ; i < F.nslice ; i++) { 

  err = clfftCopyPlan(&clv[f].plans_f[i], clv[f].ctx, clv[f].plan_b); 

  err = clfftSetPlanCallback(clv[f].plans_f[i], "preXpg", preXpg_str.c_str(), 



Appendix B. Program scripts 

 

133 

    0, PRECALLBACK, &clv[f].pg[i], 1); 

  err = clfftSetPlanCallback(clv[f].plans_f[i], "postXpr", postXpr_str.c_str(), 

    0, POSTCALLBACK, &clv[f].pr[i], 1); 

  err = clfftBakePlan(clv[f].plans_f[i], 1, &clv[f].q, NULL, NULL); 

 } 

 

/* Setup other kernels */ 

 string program_str = "" 

"__kernel void propg(const "+p4+" xyz, const "+p4+" c2r,        \n" 

"  const __global "+p2+" *tiltarray, __global "+p2+" *pr)      \n" 

"{                     \n" 

" const int x = get_global_id(1), y = get_global_id(2), t = get_group_id(0);  \n" 

" const int h = x - "+mx+", k = y -  "+my+";          \n" 

" const "+p2+" tilt = tiltarray[t];            \n" 

" "+p1+" a1, b1, sg, sn, cs;              \n" 

" a1 = tilt.x + h, b1 = tilt.y + k;            \n" 

" sg = a1 * h * c2r.x + b1 * k * c2r.y + (a1 * k + b1 * h) * c2r.z;    \n" 

" sn = sincos(6.283185307179586477 * (sg * xyz.z + h * xyz.x + k * xyz.y), &cs); \n" 

" pr[x + y *  "+meshx+" + t *  "+mt+"] = ("+p2+") {cs, sn};      \n" 

//" if (x==0&&y==0)                 \n" 

//"  printf(\"%d %g %g\\n\",t,tilt.x,tilt.y);         \n" 

//" if (t == 0 && x==0&&y==0)              \n" 

//"  printf(\"%g %g %g %g %g %g sizeof(U)=%i\\n\",         \n" 

//"    xyz.x,xyz.y,xyz.z,c2r.x,c2r.y,c2r.z,sizeof(xyz));     \n" 

//" if (t == 1 && x!=0&&y!=0)              \n" 

//"  printf(\"%i.%i %i %i %i %g %g\\n\", x,y, h,k,x+y*"+meshx+",cs,sn);   \n" 

"}\n" 

 

"__kernel void pad0oshift(__global "+p2+" *pr)           \n" 

"{                      \n" 

" int tmt = get_global_id(0);               \n" 

" if (tmt < "+ntilt+") {                \n" 

"  tmt *=  "+mt+";                 \n" 

// PAD0 

"  "+p2+" m = {0, 0};                \n" 

"  for (int i = tmt ; i <  "+meshx+" + tmt ; ++i)         \n" 

"   pr[i] = m;                 \n" 

"  for (int j = "+meshx+" + tmt ; j < "+mt+" + tmt ; j += "+meshx+")    \n" 

"   pr[j] = m;                 \n" 

// OSHIFT 

"  for (int j = tmt ; j < "+mthf+" - "+meshx+" + tmt + 1 ; j += "+meshx+")   \n" 

"   for (int i = j, i1 = i +  "+mx+" + "+mthf+" ; i < "+mx+" + j ; ++i, ++i1) \n" 

"    m = pr[i], pr[i] = pr[i1], pr[i1] = m;         \n" 

"  for (int j = "+mthf+" + tmt ; j < "+mt+" - "+meshx+" + tmt + 1 ; j += "+meshx+")\n" 

"   for (int i = j, i1 = i + "+mx+" - "+mthf+" ; i < "+mx+" + j ; ++i, ++i1) \n" 

"    m = pr[i], pr[i] = pr[i1], pr[i1] = m;         \n" 

//"  if(tmt/"+mt+"==0)                \n" 

//"  for (int i = 0 ; i < "+mt+" ; ++i)            \n" 

//"   printf(\"%i-%i. %g %g\\n\",tmt/"+mt+",i,pr[tmt+i].x,pr[tmt+i].y);   \n" 

" }                     \n" 

"}\n" 

 

"__kernel void fill_pmap(__global "+p2+"* pmap)    \n" 

"{               \n" 

" int i = get_global_id(0);        \n" 

" pmap[i].x = "+to_string(1.0/F.mt)+", pmap[i].y = 0.; \n" 

"}\n" 

 

"__kernel void beam_out(__global "+p1+"* beam, const __global "+p2+"* pmap,  \n" 

"  const __global int* ib)             \n" 

"{                    \n" 

" int i = get_global_id(0), j = get_group_id(1);        \n" 

" if (i < "+ntilt+") {              \n" 

"  "+p2+" m = pmap[i * "+mt+" + ib[j] - 1];        \n" 

"  beam[i + j * "+ntilt+"] = ("+p1+") m.x * m.x + m.y * m.y;    \n" 

//"  if(j==0) printf(\"beam: %d %d %g\\n\",i,last,beam[i + j * "+ntilt+"]); \n" 

" }\n" 

"}\n"; 

 const char* program_cstr = program_str.c_str(); 

 

 clv[f].program = clCreateProgramWithSource(clv[f].ctx, 1, &program_cstr, NULL, &err); 

 err = clBuildProgram(clv[f].program, 1, &dev_id, NULL, NULL, NULL); 

 cl_build_status build_status; 

 clGetProgramBuildInfo(clv[f].program, dev_id, CL_PROGRAM_BUILD_STATUS, 

sizeof(cl_build_status), &build_status, NULL); 

 if (build_status != CL_BUILD_SUCCESS) { 

  size_t build_log_size; 

  clGetProgramBuildInfo(clv[f].program, dev_id, CL_PROGRAM_BUILD_LOG, 0, NULL, 

&build_log_size); 

  char* build_log = (char*) malloc(build_log_size); 

  clGetProgramBuildInfo(clv[f].program, dev_id, CL_PROGRAM_BUILD_LOG, 

build_log_size, build_log, NULL); 

  printf("%s\n", build_log); 

  free(build_log); 

 } 

 

 clv[f].propg = clCreateKernel(clv[f].program, "propg", &err); 

 

 clv[f].pad0oshift = clCreateKernel(clv[f].program, "pad0oshift", &err); 

 

 clv[f].fill_pmap = clCreateKernel(clv[f].program, "fill_pmap", &err); 

 err = clSetKernelArg(clv[f].fill_pmap, 0, sizeof(cl_mem), &clv[f].pmap); 

 

 clv[f].beam_out = clCreateKernel(clv[f].program, "beam_out", &err); 

 err = clSetKernelArg(clv[f].beam_out, 0, sizeof(cl_mem), &clv[f].beam); 

 err = clSetKernelArg(clv[f].beam_out, 1, sizeof(cl_mem), &clv[f].pmap); 

 err = clSetKernelArg(clv[f].beam_out, 2, sizeof(cl_mem), &clv[f].ib); 

 

/* Setup GPU multi-thread job distribution */ 

 size_t maxWorkSize[3], maxWorkGroup; 

 clGetDeviceInfo(dev_id, CL_DEVICE_MAX_WORK_ITEM_SIZES, 

   sizeof(maxWorkSize), maxWorkSize, NULL); 

 clGetDeviceInfo(dev_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, 

   sizeof(maxWorkGroup), &maxWorkGroup, NULL); 

 

 clv[f].L_propg[1] = F.meshx, clv[f].L_propg[2] = F.meshy; 

 while (clv[f].L_propg[2] > min(maxWorkSize[2], maxWorkGroup)) 

  clv[f].L_propg[2] /= 2; 

 while (clv[f].L_propg[1] * clv[f].L_propg[2] > maxWorkGroup) 

  clv[f].L_propg[1] /= 2; 

 clv[f].G_propg[0] = MSP.ntilt[f], clv[f].G_propg[1] = F.meshx, clv[f].G_propg[2] = F.meshy; 

 

 clv[f].L_pad = MSP.ntilt[f]; 

 if (clv[f].L_pad > min(maxWorkGroup, maxWorkSize[0])) 

  clv[f].L_pad = min(maxWorkGroup, maxWorkSize[0]); 

 clv[f].G_pad = ceil(1.0 * MSP.ntilt[f] / clv[f].L_pad) * clv[f].L_pad; 

 

 clv[f].L_pmap = F.mt, clv[f].G_pmap = F.mt * MSP.ntilt[f]; 

 while (clv[f].L_pmap > min(maxWorkSize[2], maxWorkGroup)) 

  clv[f].L_pmap /= 2; 

 

 clv[f].L_beam_out[0] = MSP.ntilt[f]; 

 if (clv[f].L_beam_out[0] > maxWorkGroup) 

  clv[f].L_beam_out[0] = maxWorkGroup; 

 clv[f].G_beam_out[0] = ceil(1.0 * MSP.ntilt[f] / clv[f].L_beam_out[0]) * clv[f].L_beam_out[0]; 

 clv[f].G_beam_out[1] = F.mbout; 

 

 fortran_write(13, "  Device's max total size of a work group = %d & per dimension = 

(%d, %d, %d)\n", 

   maxWorkGroup, maxWorkSize[0], maxWorkSize[1], maxWorkSize[2]); 

 fortran_write(13, "  Kernels' work group sizes will be:\n"); 

 fortran_write(13, "    propg      - local = (%d, %d, %d),  global = (%d, %d, %d);\n", 

   clv[f].L_propg[0], clv[f].L_propg[1], clv[f].L_propg[2], 

   clv[f].G_propg[0], clv[f].G_propg[1], clv[f].G_propg[2]); 

 fortran_write(13, "    pad0oshift - local = (%d),  global = (%d);\n", clv[f].L_pad, clv[f].G_pad); 

 fortran_write(13, "    pmap       - local = (%d),  global = (%d);\n", clv[f].L_pmap, clv[f].G_pmap); 

 fortran_write(13, "    beam_out   - local = (%d, %d),  global = (%d, %d).\n", 

   clv[f].L_beam_out[0], clv[f].L_beam_out[1], clv[f].G_beam_out[0], clv[f].G_beam_out[1]); 

} 

 

void clfft_child_term(const int f) 

{ 

 if(MSP.sgl) delete[] clv[f].host_pgf; 

 for (int i = 0 ; i < F.nslice ; i++) { 

  clReleaseMemObject(clv[f].pg[i]); 

  clReleaseMemObject(clv[f].pr[i]); 

  clfftDestroyPlan(&clv[f].plans_f[i]); 

 } 

 delete[] clv[f].pg; 

 delete[] clv[f].pr; 

 delete[] clv[f].plans_f; 

 clfftDestroyPlan(&clv[f].plan_b); 

 clfftTeardown(); 

 clReleaseMemObject(clv[f].ptmp); 

 clReleaseMemObject(clv[f].pmap); 

 clReleaseMemObject(clv[f].tiltarray); 

 clReleaseMemObject(clv[f].beam); 

 clReleaseMemObject(clv[f].ib); 

 clReleaseKernel(clv[f].propg); 

 clReleaseKernel(clv[f].pad0oshift); 

 clReleaseKernel(clv[f].fill_pmap); 

 clReleaseKernel(clv[f].beam_out); 

 clReleaseProgram(clv[f].program); 

 clReleaseCommandQueue(clv[f].q); 

 clReleaseContext(clv[f].ctx); 

} 

} 

 

template<typename T, typename U> 

void clfft_msp(const int f, const int ct1, const int ct2, complex<T>* host_pg) 

{ 

 time_point t_msp; 

 for (int i = 0 ; i < F.nslice ; i++) 

  cl_dbg("Write pg", clEnqueueWriteBuffer(clv[f].q, clv[f].pg[i], CL_FALSE, 

    0, F.mt * size_C, host_pg + i * F.mt, 0, NULL, NULL)); 

 

 for (int isplt = 0 ; isplt < MSP.splt[f] ; ++isplt) { 

  int tct1 = isplt * MSP.ntilt[f] + ct1; 

  size_t copy_size = min(MSP.ntilt[f], ct2 - tct1 + 1) * size_R; 

//  printf("%d %d %d %lu\n",tct1,ct2,ct2 - tct1 + 1,copy_size/size_R); 

 

  if (Tr.msp) { 

   clFinish(clv[f].q); 

   t_msp = time_now(); 

  } 

  for (int i = 0 ; i < F.nslice ; i++) { 

   cl_dbg("Write tiltarray", clEnqueueWriteBuffer(clv[f].q, clv[f].tiltarray, CL_FALSE, 

     0, 2 * copy_size, ((T*) F.tiltarray) + 2 * (tct1 + i * F.tottilts), 0, NULL, NULL)); 

 

   U xyz = { (T) F.xshift[i], (T) F.yshift[i], (T) (F.deltaz[i] * F.applieddilation[i]) }; 

   U c2r = { (T) F.cell2rpr[3 * i], (T) F.cell2rpr[3 * i + 1], (T) F.cell2rpr[3 * i + 2] }; 

//   printf("%g %g %g %g %g %g\n", xyz.s[0],xyz.s[1],xyz.s[2],c2r.s[0],c2r.s[1],c2r.s[2]); 

   cl_dbg("propg set xyz", clSetKernelArg(clv[f].propg, 0, sizeof(U), &xyz)); 

   cl_dbg("propg set c2r", clSetKernelArg(clv[f].propg, 1, sizeof(U), &c2r)); 

   cl_dbg("propg set tilt", clSetKernelArg(clv[f].propg, 2, sizeof(cl_mem), &clv[f].tiltarray)); 

   cl_dbg("propg set pr", clSetKernelArg(clv[f].propg, 3, sizeof(cl_mem), &clv[f].pr[i])); 

   cl_dbg("propg enqueue", clEnqueueNDRangeKernel(clv[f].q, clv[f].propg, 3, 0, 

     clv[f].G_propg, clv[f].L_propg, 0, NULL, NULL)); 

 

   cl_dbg("pad0oshift set pr", clSetKernelArg(clv[f].pad0oshift, 0, sizeof(cl_mem), 

&clv[f].pr[i])); 

   cl_dbg("pad0oshift enqueue", clEnqueueNDRangeKernel(clv[f].q, clv[f].pad0oshift, 1, 0, 

     &clv[f].G_pad, &clv[f].L_pad, 0, NULL, NULL)); 

  } 

  if (Tr.msp) { 

   clFinish(clv[f].q); 

   Tr.pr[f] += timer(&t_msp); 

  } 
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  // clEnqueueFillBuffer is buggy on Mac; a kernel is required to fill clv[f].pmap 

  // complex<T> cmplx1 = { (T) 1.0 / F.mt, 0 }; 

  // clEnqueueFillBuffer(clv[f].q, clv[f].pmap, &cmplx1, 

  //   sizeof(cmplx1), 0, Size.pmap, 0, NULL, NULL); 

  clEnqueueNDRangeKernel(clv[f].q, clv[f].fill_pmap, 1, 0, 

    &clv[f].G_pmap, &clv[f].L_pmap, 0, NULL, NULL); 

 

  if (Tr.msp) { 

   clFinish(clv[f].q); 

   t_msp = time_now(); 

  } 

 

  for (int i = 0 ; i < F.sl_hi ; i++) { 

   cl_dbg("clfftEnqueueTransform FFT", clfftEnqueueTransform(clv[f].plans_f[F.mseq[i] - 1], 

     CLFFT_FORWARD, 1, &clv[f].q, 0, NULL, NULL, &clv[f].pmap, NULL, 

clv[f].ptmp)); 

   if (Tr.msp) { 

    clFinish(clv[f].q); 

    Tr.fft[f] += timer(&t_msp); 

   } 

 

   if ((F.sl_opt && i >= F.sl_lo - 1) || i == F.sl_hi - 1) { 

    cl_dbg("clEnqueueNDRangeKernel beam_out", clEnqueueNDRangeKernel(clv[f].q, 

      clv[f].beam_out, 2, 0, clv[f].G_beam_out, clv[f].L_beam_out, 0, NULL, NULL)); 

 

    double* host_beam = F.sl_opt ? F.sl_beam + (i + 1 - F.sl_lo) * MSP.ntilt[f] * F.mbout : 

F.beam; 

 

    for (int j = 0 ; j < F.mbout ; j++) 

     cl_dbg("clEnqueueReadBuffer beam", clEnqueueReadBuffer(clv[f].q, clv[f].beam, 

       CL_FALSE, j * MSP.ntilt[f] * size_R, copy_size, 

       host_beam + tct1 + j * F.tottilts, 0, NULL, NULL)); 

 

    if (i == F.sl_hi - 1) break; 

   } 

 

   if (Tr.msp) { 

    clFinish(clv[f].q); 

    t_msp = time_now(); 

   } 

   cl_dbg("clfftEnqueueTransform IFFT", clfftEnqueueTransform(clv[f].plan_b, 

     CLFFT_BACKWARD, 1, &clv[f].q, 0, NULL, NULL, &clv[f].pmap, NULL, 

clv[f].ptmp)); 

   if (Tr.msp) { 

    clFinish(clv[f].q); 

    Tr.ifft[f] += timer(&t_msp); 

   } 

  } 

 } 

 

 clFinish(clv[f].q); 

} 

 

extern "C" 

{ 

void clfft_msp_cast(const int f, const int ct1, const int ct2) 

{ 

 if (MSP.sgl){ 

  for (auto i = 0 ; i < F.mt * F.nslice ; ++i) 

   clv[f].host_pgf[i] = (complex<float> ) F.pg[i]; 

 

  clfft_msp<float,cl_float4>(f, ct1, ct2, clv[f].host_pgf); 

 } 

 else 

  clfft_msp<double,cl_double4>(f, ct1, ct2, F.pg); 

} 

} 

B.1.4. Fresnel propagation using cuFFT 

/* 

 * CUDA functions of QCBEDMS-PF 

 */ 

#include <cufft.h> 

//#include <cuda_profiler_api.h> 

#include "cpp_comm.hpp" 

 

using namespace std; 

typedef cuDoubleComplex CD; 

typedef cuFloatComplex CF; 

 

__constant__ int mx, my, mthf, meshx, meshy, mt, nslice, mbout, ntilt; 

 

template<typename T> 

__host__ __device__ static __inline__ T CmplxMul(T a, T b) 

{ 

 T r = { a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x }; 

 return r; 

} 

 

bool debug = false; 

void cu_dbg(string msg, cudaError_t err) 

{ 

 if(debug) printf("%s: %s\n", msg.c_str(), cudaGetErrorString(err)); 

} 

 

struct cufft_vars { 

 CD *pmap, *pg, *pr; 

 double2 *tiltarray; 

 double *beam; 

 int *ib; 

 cufftHandle plan; 

 dim3 g_propg, b_propg, g_pmap, b_pmap, g_beam, b_beam; 

 size_t g_pad, b_pad; 

} *cuv; 

 

extern "C" 

{ 

void cufft_init() 

{ 

 cuv = new cufft_vars[MSP.nhyb]; 

} 

 

void cufft_term() 

{ 

 delete[] cuv; 

} 

 

void CUDAGetDevices(int in, int *count) 

{ 

 cudaGetDeviceCount(count); 

 if (in == -2) 

  return; 

 

 printf("Found %i CUDA device(s):\n", *count); 

 cudaDeviceProp prop; 

 for (int i = 0 ; i < *count ; i++) { 

  cudaGetDeviceProperties(&prop, i); 

  printf("\t%i. %s, compute capability %d.%d\n", 

    i, prop.name, prop.major, prop.minor); 

 } 

 exit(0); 

} 

 

void cufft_child_init(const int f) 

{ 

/* Choose CUDA device */ 

 cudaDeviceProp prop; 

 cudaSetDevice(MSP.dev[f]); 

 cudaGetDeviceProperties(&prop, MSP.dev[f]); 

 cu_dbg("set dev", cudaSetDeviceFlags(cudaDeviceScheduleYield)); 

 fortran_write(13, "  Device: %d. %s.\n", MSP.dev[f], prop.name); 

 

/* Measure cuFFT working memory and optional auto-determine beam pixels split */ 

 fortran_write(13, "  cuFFT precision: %s.\n", MSP.sgl ? "single" : "double"); 

 float MB = 1.0 / 1024 / 1024; 

 size_t free_gm, total_gm; 

 cudaError_t mem_err = cudaMemGetInfo(&free_gm, &total_gm); 

 if (MSP.splt[f] == 0) { 

  MSP.splt[f] = 1, MSP.ntilt[f] = MSP.as_nt[f]; 

  while (msp_mem(f, 0) > free_gm && MSP.splt[f] < MSP.as_nt[f]) 

   MSP.ntilt[f] = (int) ceil((float) MSP.as_nt[f] / ++MSP.splt[f]); 

  fortran_write(13, "(AUTO) "); 

 } 

 else 

  MSP.ntilt[f] = (int) ceil((float) MSP.as_nt[f] / MSP.splt[f]); 

 

 fortran_write(13, "  Paralleling %d/%d tilts; will loop %d time(s).\n", 

   MSP.ntilt[f], MSP.as_nt[f], MSP.splt[f]); 

 fortran_write(13, "  Available GPU memory: %g/%g MB, cuFFT will use at least %g MB.\n", 

   free_gm * MB, total_gm * MB, msp_mem(f, 0) * MB); 

 

 if (msp_mem(f, 0) > free_gm) { 

  if (F.ncalcs < 1) { 

   fortran_write(13, "\nNOT enough GPU memory! " 

     "Please reduce paralleled tilts manually.\n"); 

   cout << "NOT enough GPU memory! Please reduce paralleled tilts manually." << endl; 

   exit(-1); 

  } else if (mem_err != cudaSuccess) { 

   fortran_write(13, "\nWARNING: \"CUDA get memory usage\" failed " 

     "during refinement! Ignored and continue.\n"); 

   fortran_write(13, "%s\n", cudaGetErrorString(mem_err)); 

  } 

 } 

 if (msp_mem(f, 0) > free_gm * 0.5) 

  fortran_write(13, "  GPU memory may be intensive; reduce paralleled " 

    "tilts manually if any error occurs.\n"); 

 

/* Set global constants (even before choosing devices) */ 

 int mxt = F.meshx / 2, myt = F.meshy / 2, mthft = F.mt / 2; 

 cudaMemcpyToSymbolAsync(mx, &mxt, sizeof(int)); 

 cudaMemcpyToSymbolAsync(my, &myt, sizeof(int)); 

 cudaMemcpyToSymbolAsync(mthf, &mthft, sizeof(int)); 

 cudaMemcpyToSymbolAsync(meshx, &F.meshx, sizeof(int)); 

 cudaMemcpyToSymbolAsync(meshy, &F.meshy, sizeof(int)); 

 cudaMemcpyToSymbolAsync(mt, &F.mt, sizeof(int)); 

 cudaMemcpyToSymbolAsync(nslice, &F.nslice, sizeof(int)); 

 cudaMemcpyToSymbolAsync(mbout, &F.mbout, sizeof(int)); 

 cudaMemcpyToSymbolAsync(ntilt, &MSP.ntilt[f], sizeof(int)); 

 

/* Allocate GPU arrays */ 

 cudaMalloc((void **) &cuv[f].pg, F.mt * F.nslice * size_C); 

 cudaMalloc((void **) &cuv[f].pr, F.mt * MSP.ntilt[f] * F.nslice * size_C); 

 cudaMalloc((void **) &cuv[f].pmap, F.mt * MSP.ntilt[f] * size_C); 

 cudaMalloc((void **) &cuv[f].tiltarray, 2 * MSP.ntilt[f] * size_R); 

 cudaMalloc((void **) &cuv[f].beam, MSP.ntilt[f] * F.mbout * size_R); 

 cudaMalloc((void **) &cuv[f].ib, F.mbout * sizeof(int)); 

 cudaMemcpyAsync(cuv[f].ib, F.ib, F.mbout * sizeof(int), cudaMemcpyHostToDevice, 0); 

 cudaMemsetAsync(cuv[f].beam, 0, MSP.ntilt[f] * F.mbout * size_R); 

 

/* Setup batched 2D cuFFT plan */ 

 int n[2] = { (int) F.meshy, (int) F.meshx }; 

 cufftPlanMany(&cuv[f].plan, 2, n, NULL, 1, F.mt, NULL, 1, F.mt, 
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   MSP.sgl ? CUFFT_C2C : CUFFT_Z2Z, MSP.ntilt[f]); 

 

 int maxThreads, warp_size, SMs, attr[100]; 

 for (size_t i = 1 ; i < 92 ; i++) 

  cudaDeviceGetAttribute(&attr[i], (cudaDeviceAttr) i, 0); 

 maxThreads = attr[1]; 

 warp_size = attr[10]; 

 SMs = attr[16]; 

 

/* Kernel cu_propg GPU threads mapping 

 1. 0 <= threadIdx.x + blockIdx.y * blockDim.x < meshx, 

 0 <= threadIdx.y + blockIdx.z * blockDim.y < meshy; 

 2. 0 <= blockIdx.x < MSP.ntilt[f], as gridDim.x can hold the most blocks; 

 3. Repeat kernel for F.nslice. 

 */ 

 cuv[f].b_propg = cuv[f].g_propg = 1; 

 cuv[f].b_propg.x = F.meshx, cuv[f].b_propg.y = F.meshy; 

 int i = 1; 

 while ((cuv[f].b_propg.x * cuv[f].b_propg.y % warp_size != 0 && 

   cuv[f].b_propg.x * cuv[f].b_propg.y > warp_size) || 

   cuv[f].b_propg.x * cuv[f].b_propg.y > maxThreads) { 

  if (i == 0) 

   i++, cuv[f].b_propg.x /= 2, cuv[f].g_propg.y *= 2; 

  else 

   i--, cuv[f].b_propg.y /= 2, cuv[f].g_propg.z *= 2; 

 } 

 cuv[f].g_propg.x = MSP.ntilt[f]; 

 

/* Kernel pad0oshift GPU threads mapping 

 1. 0 <= threadIdx.x + blockIdx.x * blockDim.x < MSP.ntilt[f]; 

 2. Repect kernel for F.nslice. 

*/ 

 cuv[f].b_pad = ceil(1. * MSP.ntilt[f] / SMs); 

 if (cuv[f].b_pad > maxThreads) 

  cuv[f].b_pad = maxThreads; 

 cuv[f].g_pad = ceil(1. * MSP.ntilt[f] / cuv[f].b_pad); 

 

/* Kernels pmapXpg & pmapXpg GPU threads mapping 

 1. 'cuv[f].b_pmap.x' holds 'F.mt' as threads per block, 

 'cuv[f].g_pmap.x' holds 'MSP.ntilt[f]' as number of blocks; 

 2. If 'cuv[f].b_pmap.x' > max allowed threads number 'maxThreads', 

 keep halving it and the excess goes to grid 'cuv[f].g_pmap.y'; 

 3. Finally, try to make total-thread-number divisible by warp 'warp_size'. 

 

 So threads iterate upon 'cuv[f].b_pmap.x' only, while blocks iterate through 

 'cuv[f].g_pmap.x' * 'cuv[f].g_pmap.y'. 

 

 Criteria: 

 1. 0 <= threadIdx.x * gridDim.y + blockIdx.y < cuv[f].b_pmap.x * cuv[f].g_pmap.y = F.mt, 

 they control mesh iteration of every pixel; 

 2. 0 <= blockIdx.x < cuv[f].g_pmap.x = MSP.ntilt[f], for pixel iterations. 

 */ 

 

 cuv[f].b_pmap = cuv[f].g_pmap = 1; 

 cuv[f].b_pmap.x = F.mt, cuv[f].g_pmap.x = MSP.ntilt[f]; 

 while ((cuv[f].b_pmap.x % warp_size != 0 && cuv[f].b_pmap.x > warp_size) || 

   cuv[f].b_pmap.x > maxThreads) 

  cuv[f].b_pmap.x /= 2, cuv[f].g_pmap.y *= 2; 

 

/* Kernel calc_beam GPU threads mapping 

 Total paralleled jobs = (num of beams 'F.mbout') * (paralleled pixels 'MSP.ntilt[f]'). 

 

 1. Primarily, divide 'MSP.ntilt[f]' iterations into blocks 'cuv[f].g_beam.x' same to number 

 of multiprocessors, and put the threads in 'cuv[f].b_beam.x', but 

 'cuv[f].b_beam.x' * 'cuv[f].g_beam.x' >= 'MSP.ntilt[f]'; 

 2. Map beam iterations to 'cuv[f].g_beam.y'; 

 3. If 'cuv[f].b_beam.x' > 'maxThreads', then maximise 'cuv[f].b_beam.x' to 'maxThreads', 

 and map the excess jobs back to grid 'cuv[f].g_beam.x' 

 

 So threads iterate upon 'cuv[f].b_beam.x' only, while blocks iterate through 

 'cuv[f].g_beam.x' * 'cuv[f].g_beam.y'. 

 

 Criteria: 

 1. cuv[f].b_beam.x * cuv[f].g_beam.x = MSP.ntilt[f], they control 'MSP.ntilt[f]' iteration of each 

beam 

 (threadIdx.x * gridDim.y + blockIdx.y); 

 2. cuv[f].g_beam.y = blockIdx.x = F.mbout, for beam iterations. 

 */ 

 

 cuv[f].b_beam = cuv[f].g_beam = 1; 

 cuv[f].b_beam.x = ceil(1. * MSP.ntilt[f] / SMs); 

 if (cuv[f].b_beam.x > maxThreads) 

  cuv[f].b_beam.x = maxThreads; 

 cuv[f].g_beam.x = ceil(1. * MSP.ntilt[f] / cuv[f].b_beam.x); 

 cuv[f].g_beam.y = F.mbout; 

 

// printf("pmap block = %i %i %i, grid = %i %i %i\n", 

//   cuv[f].b_pmap.x, cuv[f].b_pmap.y, cuv[f].b_pmap.z, 

//   cuv[f].g_pmap.x, cuv[f].g_pmap.y, cuv[f].g_pmap.z); 

// printf("beam block = %i %i %i, grid = %i %i %i\n", 

//   cuv[f].b_beam.x, cuv[f].b_beam.y, cuv[f].b_beam.z, 

//   cuv[f].g_beam.x, cuv[f].g_beam.y, cuv[f].g_beam.z); 

 

// cudaDeviceSynchronize(); 

// printf("%s\n", cudaGetErrorString(cudaGetLastError())); 

} 

 

void cufft_child_term(const int f) 

{ 

 cudaSetDevice(MSP.dev[f]); 

 cudaFree(cuv[f].pg); 

 cudaFree(cuv[f].pr); 

 cudaFree(cuv[f].pmap); 

 cudaFree(cuv[f].beam); 

 cudaFree(cuv[f].ib); 

 cudaFree(cuv[f].tiltarray); 

 cufftDestroy(cuv[f].plan); 

 cudaDeviceReset(); 

} 

} 

 

// CUDA kernels: 

__global__ void propg(const double3 xyz, const double3 c2r, const double2 *tiltarray, CD *pr) 

{ 

 int x = threadIdx.x + blockIdx.y * blockDim.x; 

 int y = threadIdx.y + blockIdx.z * blockDim.y; 

 int h = x - mx, k = y - my, t = blockIdx.x; 

 double2 tilt = tiltarray[t]; 

 double a1, b1, sg, sn, cs; 

 a1 = tilt.x + h, b1 = tilt.y + k; 

 sg = a1 * h * c2r.x + b1 * k * c2r.y + (a1 * k + b1 * h) * c2r.z; 

 sincospi(2 * (sg * xyz.z + h * xyz.x + k * xyz.y), &sn, &cs); 

 pr[x + y * meshx + t * mt] = {cs / mt, sn / mt}; 

// if (t == 3 && x!=0&&y!=0) 

//  printf("pr: %d %g %g\n", t, pr[x + y * meshx + t * mt].x, 

//    pr[x + y * meshx + t * mt].y); 

// if (t == 3 && x!=0&&y!=0) 

//  printf("%i.%i %i %i %i %g %g\n", x,y, h,k,x+y*meshx,pr[x + y * meshx + t * mt].x, 

//    pr[x + y * meshx + t * mt].y); 

// if (x == 0 && y == 0) 

//  printf("%i %g %g\n", t,tilt.x,tilt.y); 

} 

 

template<typename T> 

__global__ void pad0oshift(T *pr) 

{ 

 int tmt = threadIdx.x + blockIdx.x * blockDim.x; 

 if (tmt < ntilt) { 

  tmt *= mt; 

// PAD0 

  for (int i = tmt ; i < meshx + tmt ; ++i) 

   pr[i] = {0., 0.}; 

  for (int j = meshx + tmt ; j < mt + tmt ; j += meshx) 

   pr[j] = {0., 0.}; 

// OSHIFT 

  T tmp; 

  for (int j = tmt ; j < mthf - meshx + tmt + 1 ; j += meshx) 

   for (int i = j, i1 = i + mx + mthf ; i < mx + j ; ++i, ++i1) 

    tmp = pr[i], pr[i] = pr[i1], pr[i1] = tmp; 

  for (int j = mthf + tmt ; j < mt - meshx + tmt + 1 ; j += meshx) 

   for (int i = j, i1 = i + mx - mthf ; i < mx + j ; ++i, ++i1) 

    tmp = pr[i], pr[i] = pr[i1], pr[i1] = tmp; 

//  if(tmt/mt==0) 

//  for (int i = 0 ; i < mt ; ++i) 

//   printf("%i-%i. %g %g\n",tmt/mt,i,pr[tmt+i].x*mt,pr[tmt+i].y*mt); 

 } 

} 

 

template<typename T> 

__global__ void pmapCmplx1(T* __restrict__ pmap) 

{ 

 int i = threadIdx.x + (blockIdx.y + blockIdx.x * gridDim.y) * blockDim.x; 

 pmap[i].x = 1., pmap[i].y = 0.; 

} 

 

template<typename T> 

__global__ void pmapXpg(T* __restrict__ pmap, const T* __restrict__ pg) 

{ 

 int i = threadIdx.x + blockIdx.y * blockDim.x; 

 int j = blockIdx.x * mt + i; 

// if(j<5) printf("pg %i %g %g\n",j,pg[i].x,pg[i].y); 

 T a = pmap[j], b = pg[i]; 

 pmap[j] = CmplxMul(a, b); 

// if(j<5) printf("pmap %i %g %g\n",j,pmap[j].x,pmap[j].y); 

} 

 

template<typename T> 

__global__ void pmapXpr(T* __restrict__ pmap, const T* __restrict__ pr) 

{ 

 int i = threadIdx.x + (blockIdx.y + blockIdx.x * gridDim.y) * blockDim.x; 

// printf("pr %i %g %g\n",i,pr[i].x,pr[i].y); 

 T a = pmap[i], b = pr[i]; 

 pmap[i] = CmplxMul(a, b); 

} 

 

template<typename T, typename U> 

__global__ void calc_beam(U* __restrict__ beam, T* __restrict__ pmap, int* __restrict__ ib) 

{ 

 int i = blockIdx.x * blockDim.x + threadIdx.x, j = blockIdx.y; 

 if (i < ntilt) { 

  const T m = pmap[i * mt + ib[j] - 1]; 

  beam[i + j * ntilt] = (U) m.x * m.x + m.y * m.y; 

//  if(j==0) printf("beam: %d %d %d %g\n",i,tct1,tct2,beam[i + j * ntilt]); 

 } 

} 

 

extern "C" void cufft_msp(const int f, const int ct1, const int ct2) 

{ 

 time_point t_msp; 

 cudaSetDevice(MSP.dev[f]); 

 

 for (int isplt = 0 ; isplt < MSP.splt[f] ; ++isplt) { 

  int tct1 = isplt * MSP.ntilt[f] + ct1; 

  int copy_size = min(MSP.ntilt[f], ct2 - tct1 + 1) * size_R; 

//  printf("%d %d %d %d %d %lu\n",ct1,ct2); 

 

  cudaMemcpyAsync(cuv[f].pg, F.pg, F.mt * F.nslice * size_C, cudaMemcpyHostToDevice, 0); 
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// cudaProfilerStart(); 

  if (Tr.msp) { 

   cudaDeviceSynchronize(); 

   t_msp = time_now(); 

  } 

  for (int i = 0 ; i < F.nslice ; ++i) { 

   cudaMemcpyAsync(cuv[f].tiltarray, 

     F.tiltarray + 2 * (tct1 + i * F.tottilts), 

     2 * copy_size, cudaMemcpyHostToDevice, 0); 

   propg<<<cuv[f].g_propg, cuv[f].b_propg>>>( 

     {F.xshift[i], F.yshift[i], F.deltaz[i] * F.applieddilation[i]}, 

     ((double3*) F.cell2rpr)[i], cuv[f].tiltarray, 

     ((CD*) cuv[f].pr) + i * F.mt * MSP.ntilt[f] ); 

 

   pad0oshift<<<cuv[f].g_pad, cuv[f].b_pad>>>(cuv[f].pr + i * F.mt * MSP.ntilt[f]); 

  } 

  if (Tr.msp) { 

   cudaDeviceSynchronize(); 

   Tr.pr[f] += timer(&t_msp); 

  } 

 

  pmapCmplx1<<<cuv[f].g_pmap,cuv[f].b_pmap>>>(cuv[f].pmap); 

 

  if (Tr.msp) { 

   cudaDeviceSynchronize(); 

   t_msp = time_now(); 

  } 

 

  for (int i = 0 ; i < F.sl_hi ; i++) { 

   int ipg = (F.mseq[i] - 1) * F.mt; 

   pmapXpg<<<cuv[f].g_pmap, cuv[f].b_pmap>>>(cuv[f].pmap, cuv[f].pg + ipg); 

   if (Tr.msp) { 

    cudaDeviceSynchronize(); 

    Tr.mpg[f] += timer(&t_msp); 

   } 

 

//   MSP.sgl ? cufftExecC2C(cuv[f].plan, (CF*) cuv[f].pmap, (CF*) cuv[f].pmap, -1) : 

   cufftExecZ2Z(cuv[f].plan, cuv[f].pmap, cuv[f].pmap, -1); 

   if (Tr.msp) { 

    cudaDeviceSynchronize(); 

    Tr.fft[f] += timer(&t_msp); 

   } 

 

   pmapXpr<<<cuv[f].g_pmap, cuv[f].b_pmap>>>(cuv[f].pmap, cuv[f].pr + ipg * MSP.ntilt[f]); 

   if (Tr.msp) { 

    cudaDeviceSynchronize(); 

    Tr.mpr[f] += timer(&t_msp); 

   } 

 

   if ((F.sl_opt && i >= F.sl_lo - 1) || i == F.sl_hi - 1) { 

    calc_beam<<<cuv[f].g_beam, cuv[f].b_beam>>>(cuv[f].beam, cuv[f].pmap, cuv[f].ib); 

 

    double *host_beam = F.sl_opt ? 

      F.sl_beam + (i + 1 - F.sl_lo) * F.tottilts * F.mbout : F.beam; 

 

    for (int j = 0; j < F.mbout; j++) { 

     cudaMemcpyAsync(host_beam + tct1 + j * F.tottilts, 

       cuv[f].beam + j * MSP.ntilt[f], copy_size, cudaMemcpyDeviceToHost); 

    } 

 

    if (i == F.sl_hi - 1) break; 

   } 

 

   if (Tr.msp) { 

    cudaDeviceSynchronize(); 

    t_msp = time_now(); 

   } 

//   MSP.sgl ? cufftExecC2C(cuv[f].plan, (CF*) dev_pmap, (CF*) dev_pmap, 1) : 

   cufftExecZ2Z(cuv[f].plan, cuv[f].pmap, cuv[f].pmap, 1); 

   if (Tr.msp) { 

    cudaDeviceSynchronize(); 

    Tr.ifft[f] += timer(&t_msp); 

   } 

  } 

 } 

 

 cudaDeviceSynchronize(); 

// cudaProfilerStop(); 

// printf("%s\n", cudaGetErrorString(cudaGetLastError())); 

} 

 

 

B.2. ShiftBeam – the reflection disc 

coordinates refining program 

B.2.1. File “shiftbeam.cpp” – main body of 

ShiftBeam: 

/* 

QCBEDMS Whole-Pixel Beam Position Matching. 

 

Updates 

 29/11/2017 - Tianyu Liu: 

  1. Sigma/Variance corrected: assuming input as 'uncertainty'; outputing 'variance'. 

 28/11/2017 - Tianyu Liu: 

  1. 'in.dat' output with 8 significant figures. 

 27/06/2017 - Tianyu Liu: 

  1. 2D Array row and column are swapped to 'array[y][x]' for C/C++ performance, 

   but function arguments still have 'x' before 'y'. 

  2. Added Template for 'float' or 'double', but shifted 'in.dat' output remains 7 significant figures 

  3. C++11 required, for timing 

 

 

Philip Nakashima, ARC Centre of Excellence for Design in Light Metals, Monash University, Vic 

3800, Australia. 

 

Conceived Feb 2003, Latest Gatan DM version modified 11/05/2009, C/C++ version 1.0 last 

modified 08/06/2009. 

 

This program executes the QCBED geometric distortion correction refinement algorithm of [1]. 

It can be compiled for any platform. 

Please refer to this reference if you publish work that made use of this program. 

 

[1] P.N.H. Nakashima, J. Appl. Cryst. 38 (2005), 374. 

 

*/ 

 

#include <cstdio> 

#include <cstdlib> 

#include <cmath> 

#include <iostream> 

#include <chrono> 

#include "commonfunctions_shift.hpp" 

 

using namespace std; 

 

typedef chrono::time_point<chrono::high_resolution_clock> time_point; 

 

time_point now() 

{ 

 return chrono::high_resolution_clock::now(); 

} 

 

double timer(time_point t) 

{ 

 return chrono::duration<double, std::milli>(now() - t).count(); 

} 

 

double timer_bin = 0, timer_grad = 0, timer_fit = 0; 

 

struct image_sizes 

{ 

 int xfull, yfull, xlrg, ylrg, xsml, ysml, avgbin, pcbin, xsel, ysel, 

   xsmlsel, ysmlsel, xexsel, yexsel, beams_height; 

 int afull, alrg, asml, asel, asmlsel, aexsel, abeams, totbin, totbin2; 

}; 

 

template<typename T> 

class image_arrays 

{ 

public: 

 cont_2d<T> pattern, sigma, expt, theo, wts, patfin, sigfin, 

   patexsel, sigexsel, patsel, sigsel, patsml, sigsml, theo1b, wts1b, 

   patsmlsel, sigsmlsel, patsmlgrad, sigsmlgrad, smlseltmp, 

   patgrad, siggrad, patlrg, siglrg; 

 

 image_arrays(image_sizes S) 

 { 

  pattern.alloc(S.xfull, S.yfull); 

  sigma.alloc(S.xfull, S.yfull); 

  expt.alloc(S.xsml, S.beams_height); 

  theo.alloc(S.xsml, S.beams_height); 

  wts.alloc(S.xsml, S.beams_height); 

  patsel.alloc(S.xsel, S.ysel); 

  sigsel.alloc(S.xsel, S.ysel); 

  patsml.alloc(S.xsml, S.ysml); 

  sigsml.alloc(S.xsml, S.ysml); 

  theo1b.alloc(S.xsml, S.ysml); 

  wts1b.alloc(S.xsml, S.ysml); 

  patfin.alloc(S.xsml, S.beams_height); 

  sigfin.alloc(S.xsml, S.beams_height); 

  patsmlsel.alloc(S.xsmlsel, S.ysmlsel); 

  sigsmlsel.alloc(S.xsmlsel, S.ysmlsel); 

  patsmlgrad.alloc(S.xsmlsel, S.ysmlsel); 

  sigsmlgrad.alloc(S.xsmlsel, S.ysmlsel); 

  smlseltmp.alloc(S.xsmlsel, S.ysmlsel); 

  patexsel.alloc(S.xexsel, S.yexsel); 

  sigexsel.alloc(S.xexsel, S.yexsel); 

 

  patgrad.alloc(S.xfull + 2 * S.totbin2,S.yfull + 2 * S.totbin2); 

  siggrad.alloc(S.xfull + 2 * S.totbin2,S.yfull + 2 * S.totbin2); 

 } 

 

// ~image_arrays() 

// { 

//  dealloc(); 

// } 

 

 void dealloc() 

 { 

  pattern.dealloc(), sigma.dealloc(), expt.dealloc(), theo.dealloc(); 

  wts.dealloc(), patfin.dealloc(), sigfin.dealloc(), patexsel.dealloc(), sigexsel.dealloc(); 

  patsel.dealloc(), sigsel.dealloc(), patsml.dealloc(), sigsml.dealloc(); 

  theo1b.dealloc(), wts1b.dealloc(), patsmlsel.dealloc(), sigsmlsel.dealloc(); 

  patsmlgrad.dealloc(), sigsmlgrad.dealloc(), smlseltmp.dealloc(); 

 } 

}; 
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bool G2B = true; 

 

template<typename T> 

void ImageShift(cont_2d<T>& in, int sx, int sy, cont_2d<T>& out) 

{ 

 int x, y, top, right, bottom, left; 

 

 if (sx > 0) { 

  left = 0, right = in.d2x() - sx; 

  for (y = 0; y < in.d2y() ; y++) 

   for (x = right; x < in.d2x() ; x++) 

    out.d2[y][x] = 0; 

 } else { 

  left = -sx, right = in.d2x(); 

  for (y = 0; y < in.d2y() ; y++) 

   for (x = 0; x < left ; x++) 

    out.d2[y][x] = 0; 

 } 

 

 if (sy > 0) { 

  top = 0, bottom = in.d2y() - sy; 

  for (y = bottom; y < in.d2y() ; y++) 

   for (x = 0; x < in.d2x() ; x++) 

    out.d2[y][x] = 0; 

 } else { 

  top = -sy, bottom = in.d2y(); 

  for (y = 0; y < top ; y++) 

   for (x = 0; x < in.d2x() ; x++) 

    out.d2[y][x] = 0; 

 } 

 

 for (y = top; y < bottom ; y++) 

  for (x = left; x < right ; x++) 

   out.d2[y][x] = in.d2[y + sy][x + sx]; 

} 

 

template<typename T> 

void ImageRegionFromLarger(cont_2d<T>& in, int offx, int offy, cont_2d<T>& out) 

{ 

 for (int x, y = 0 ; y < out.d2y() ; y++) 

  for (x = 0; x < out.d2x() ; x++) 

   out.d2[y][x] = in.d2[offy + y][offx + x]; 

} 

 

template<typename T> 

void ImageRegionFromSmaller(cont_2d<T>& in, int offx, int offy, cont_2d<T>& out) 

{ 

 for (int x, y = 0 ; y < in.d2y() ; y++) 

  for (x = 0; x < in.d2x() ; x++) 

   out.d2[offy + y][offx + x] = in.d2[y][x]; 

} 

 

template<typename T> 

void Bin(image_sizes S, cont_2d<T>& in, cont_2d<T>& out) 

{ 

 int x, y, subx, suby, argx, argy, bintemp = floor(S.pcbin / 2.0) * S.avgbin; 

 double sum, r_avebin2 = 1.0 / (S.avgbin * S.avgbin); 

 

 for (y = 0; y < out.d2y() ; y++) 

  for (x = 0; x < out.d2x() ; x++) { 

   sum = 0; 

   for (suby = 0; suby < S.avgbin ; suby++) 

    for (subx = 0; subx < S.avgbin ; subx++) { 

     argx = x * S.totbin + bintemp + subx; 

     argy = y * S.totbin + bintemp + suby; 

     sum += in.d2[argy][argx]; 

    } 

 

   out.d2[y][x] = sum * r_avebin2; 

  } 

} 

 

template<typename T> 

void BinSig(image_sizes S, cont_2d<T>& in, cont_2d<T>& out) 

{ 

 int x, y, subx, suby, argx, argy, bintemp = floor(S.pcbin / 2.0) * S.avgbin; 

 double sum, r_avebin2 = 1.0 / (S.avgbin * S.avgbin); 

 

 for (y = 0; y < out.d2y() ; y++) 

  for (x = 0; x < out.d2x() ; x++) { 

   sum = 0; 

   for (suby = 0; suby < S.avgbin ; suby++) 

    for (subx = 0; subx < S.avgbin ; subx++) { 

     argx = x * S.totbin + bintemp + subx; 

     argy = y * S.totbin + bintemp + suby; 

     sum += in.d2[argy][argx] * in.d2[argy][argx]; 

    } 

 

   out.d2[y][x] = sqrt(sum) * r_avebin2; 

  } 

} 

 

template<typename T> 

void Gradients(int gs, cont_2d<T>& in, cont_2d<T>& out, cont_2d<T>& tmp) 

{ 

 out = 0.0; 

 

 ImageShift(in,  gs,   0, tmp), out += tmp; 

 ImageShift(in, -gs,   0, tmp), out += tmp; 

 ImageShift(in,   0,  gs, tmp), out += tmp; 

 ImageShift(in,   0, -gs, tmp), out += tmp; 

 ImageShift(in,  gs,  gs, tmp), out += tmp; 

 ImageShift(in, -gs,  gs, tmp), out += tmp; 

 ImageShift(in,  gs, -gs, tmp), out += tmp; 

 ImageShift(in, -gs, -gs, tmp), out += tmp; 

 

 out /= 8.0; 

 out -= in; 

} 

 

template<typename T> 

void GradientsSig(int gs, cont_2d<T>& in, cont_2d<T>& out, cont_2d<T>& tmp) 

{ 

 out = 0.0; 

 ImageShift(in,  gs,   0, tmp), tmp *= tmp, out += tmp; 

 ImageShift(in, -gs,   0, tmp), tmp *= tmp, out += tmp; 

 ImageShift(in,   0,  gs, tmp), tmp *= tmp, out += tmp; 

 ImageShift(in,   0, -gs, tmp), tmp *= tmp, out += tmp; 

 ImageShift(in,  gs,  gs, tmp), tmp *= tmp, out += tmp; 

 ImageShift(in, -gs,  gs, tmp), tmp *= tmp, out += tmp; 

 ImageShift(in,  gs, -gs, tmp), tmp *= tmp, out += tmp; 

 ImageShift(in, -gs, -gs, tmp), tmp *= tmp, out += tmp; 

 out /= 64.0; 

 

 tmp = in, tmp *= tmp; 

 out += tmp; 

 out.sqrt(); 

} 

 

template<typename T> 

double ChiSQ(cont_2d<T>& expt, cont_2d<T>& sig, cont_2d<T>& wts, cont_2d<T>& theo, 

double &norm) 

{ 

 int x, y; 

 double totala, totalb, qualfit, tmp; 

 totala = totalb = qualfit = 0; 

 

 for (x = 0; x < expt.d1x() ; x++) { 

  totala += wts.d1[x] * theo.d1[x] / (sig.d1[x] * sig.d1[x]); 

  totalb += wts.d1[x] * expt.d1[x] / (sig.d1[x] * sig.d1[x]); 

 } 

 

 norm = totala / totalb; 

 

 for (x = 0; x < expt.d1x() ; x++) { 

  tmp = theo.d1[x] - norm * expt.d1[x]; 

  qualfit += wts.d1[x] * tmp * tmp / sig.d1[x]; 

 } 

 

 qualfit /= wts.sum(); 

 

// if (qualfit == 0) 

//  return 1000000000000000; 

 return qualfit; 

} 

 

template<typename T> 

double Fit(image_sizes S, int gradopt, int sx, int sy, image_arrays<T> &I, double &norm) 

{ 

 int x, y; 

 time_point t_bin, t_grad, t_fit = now(); 

 

 ImageRegionFromLarger(I.patexsel, S.totbin2 + sx, S.totbin2 + sy, I.patsel); 

 ImageRegionFromLarger(I.sigexsel, S.totbin2 + sx, S.totbin2 + sy, I.sigsel); 

 

 t_bin = now(); 

 Bin(S, I.patsel, gradopt ? I.patsmlsel : I.patsmlgrad); 

 BinSig(S, I.sigsel, gradopt ? I.sigsmlsel : I.sigsmlgrad); 

 timer_bin += timer(t_bin); 

 

 if (gradopt == 1) { 

  t_grad = now(); 

  Gradients(1, I.patsmlsel, I.patsmlgrad, I.smlseltmp); 

  GradientsSig(1, I.sigsmlsel, I.sigsmlgrad, I.smlseltmp); 

  timer_grad += timer(t_grad); 

 } 

 

 ImageRegionFromLarger(I.patsmlgrad, 1, 1, I.patsml); 

 ImageRegionFromLarger(I.sigsmlgrad, 1, 1, I.sigsml); 

 

 timer_fit += timer(t_fit); 

 return ChiSQ(I.patsml, I.sigsml, I.wts1b, I.theo1b, norm); 

} 

 

int main() 

{ 

 time_point start = now(); 

 image_sizes S; 

 int numbeams, refcycles, randcycles, gradientopt; 

 int x, y, x1, y1; 

 double gof, storedgof, norm; 

 int sx, sy, sx0, sy0, ss, newsx, newsy; 

 

 FILE* expt = fopen("pattern.dat", "r"); 

 FILE* sigma = fopen("sigma.dat", "r"); 

 FILE* exptoutput = fopen("in.dat", "r"); 

 FILE* theory = fopen("out.dat", "r"); 

 FILE* params = fopen("parameters.dat", "r"); 

 FILE* refoutput = fopen("shiftbeam_log.txt", "w"); 

 

 fprintf(refoutput, "Beginning the shifting correction of the experimental QCBED data.\n"); 

 fflush(refoutput); 

 fscanf(params, "%i %i %i %i %i %i %i %i %i %i %i", 

   &gradientopt, &S.xfull, &S.yfull, &S.xlrg, &S.ylrg, &S.xsml, &S.ysml, 

   &S.avgbin, &S.pcbin, &refcycles, &randcycles); 

 fscanf(params, "%i", &numbeams); 
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 S.totbin = S.avgbin * S.pcbin, S.totbin2 = 2 * S.totbin; 

 S.afull = S.xfull * S.yfull, S.alrg = S.xlrg * S.ylrg, S.asml = S.xsml * S.ysml; 

 S.xsel = S.xlrg + S.totbin2, S.ysel = S.ylrg + S.totbin2, S.asel = S.xsel * S.ysel; 

 S.xsmlsel = S.xsel / S.totbin, S.ysmlsel = S.ysel / S.totbin, S.asmlsel = S.xsmlsel * S.ysmlsel; 

 S.xexsel = S.xsel + 2 * S.totbin2, S.yexsel = S.ysel + 2 * S.totbin2, S.aexsel = S.xexsel * S.yexsel; 

 S.beams_height = S.ysml * numbeams, S.abeams = S.xsml * S.beams_height; 

 

 int *newcentx = new int[numbeams], *newcenty = new int[numbeams], 

   *centx = new int[numbeams], *centy = new int[numbeams], 

   *steps = new int[numbeams], *fitcounts = new int[numbeams]; 

 double* bg = new double[numbeams]; 

 

 for (int i = 0 ; i < numbeams ; i++) { 

  fscanf(params, "%i %i %lg", &centx[i], &centy[i], &bg[i]); 

  newcentx[i] = centx[i], newcenty[i] = centy[i]; 

  steps[i] = fitcounts[i] = 0; 

 } 

 fclose(params); 

 

 image_arrays<double> I(S); 

 

 cont_2d<double> cmap(2 * S.xexsel + 1, 2 * S.yexsel + 1); 

 

 // 

 //  Reading data from intensity files into their respective arrays. 

 // 

 

 time_point t_read = now(); 

 for (x = 0; x < S.afull ; x++) 

  fscanf(expt, "%lg", &I.pattern.d1[x]); 

 

 for (x = 0; x < S.afull ; x++) 

  fscanf(sigma, "%lg", &I.sigma.d1[x]); 

 

 fscanf(exptoutput, "%i %i %i", &S.xsml, &S.ysml, &gradientopt); 

 

 for (x = 0; x < S.abeams ; x++) 

  fscanf(theory, "%lg", &I.theo.d1[x]); 

 

 for (x = 0; x < S.abeams ; x++) 

  fscanf(exptoutput, "%lg", &I.expt.d1[x]); 

 for (x = 0; x < S.abeams ; x++) 

  fscanf(exptoutput, "%lg", &I.wts.d1[x]); 

 for (x = 0; x < S.abeams ; x++) 

  fscanf(exptoutput, "%lg", &I.wts.d1[x]); 

 double timer_read = timer(t_read); 

 

// if(G2B) { 

//  time_point t_grad = now(); 

//  Gradients(1, I.patsmlsel, I.patsmlgrad, I.smlseltmp); 

//  timer_read += timer(t_grad); 

// } 

 

 fclose(expt); 

 fclose(sigma); 

 fclose(exptoutput); 

 fclose(theory); 

 

 for (int ib = 0 ; ib < numbeams ; ib++) { 

  fprintf(refoutput, "\n#\tHere begins the refinement of beam %i.\n", ib); 

  fflush(refoutput); 

 

  for (y = 0; y < S.yexsel ; y++) 

   for (x = 0; x < S.xexsel ; x++) { 

    x1 = newcentx[ib] - (S.xexsel / 2) + x; 

    y1 = newcenty[ib] - (S.yexsel / 2) + y; 

    if ( (x1 < S.xfull) && (y1 < S.yfull) && (x1 >= 0) && (y1 >= 0)) { 

     I.patexsel.d2[y][x] = I.pattern.d2[y1][x1]; 

     I.sigexsel.d2[y][x] = I.sigma.d2[y1][x1]; 

    } else { 

     I.patexsel.d2[y][x] = 0.0; 

     I.sigexsel.d2[y][x] = 1.0; 

    } 

   } 

 

  I.patexsel -= bg[ib]; 

  CopyImage(S.asml, I.theo.d1 + ib * S.asml, I.theo1b.d1); 

  CopyImage(S.asml, I.wts.d1 + ib * S.asml, I.wts1b.d1); 

 

  // 

  // Raw data binning 8-direactions ChiSQ minimisation. 

  // 

 

  cmap = -1.0; 

  ss = S.totbin; 

  ss = 0; 

  sx = sy = newsx = newsy = 0, sx0 = newcentx[ib] - centx[ib], sy0 = newcenty[ib] - centy[ib]; 

  storedgof = gof = Fit(S, gradientopt, 0, 0, I, norm); 

  fitcounts[ib]++; 

  fprintf(refoutput, "\nStarting ChiSQ = %lg\n", storedgof); 

  fflush(refoutput); 

 

  while (ss > 0 && abs(newsx) < S.totbin2 && abs(newsy) < S.totbin2) { 

   int xys[8][2] = { { newsy - ss, newsx }, { newsy + ss, newsx }, 

     { newsy, newsx - ss }, { newsy, newsx + ss }, 

     { newsy - ss, newsx - ss }, { newsy - ss, newsx + ss }, 

     { newsy + ss, newsx - ss }, { newsy + ss, newsx + ss } }; 

 

   fprintf(refoutput, "\nBeam %i, step %i, current (relative) centre (%i, %i). " 

     "ChiSQ = %lg. Step size = %i\n", ib, ++steps[ib], newsx, newsy, storedgof, ss); 

   fflush(refoutput); 

 

   for (int i = 0 ; i < 8 ; i++) { 

    int sxi = xys[i][1], syi = xys[i][0]; 

    if (cmap.d2[syi + S.ysel][sxi + S.xsel] == -1) { 

     cmap.d2[syi + S.ysel][sxi + S.xsel] = gof = 

       Fit(S, gradientopt, sxi, syi, I, norm); 

     fitcounts[ib]++; 

    } else 

     gof = cmap.d2[syi + S.ysel][sxi + S.xsel]; 

 

    if (gof < storedgof) 

     storedgof = gof, newsx = sxi, newsy = syi; 

 

    fprintf(refoutput, "\t%i. (%i, %i) - %lg\n", (1 + i), sx0 + sxi, sy0 + syi, gof); 

    fflush(refoutput); 

   } 

 

   if (sx == newsx && sy == newsy) 

    ss = floor(ss / 2.0); 

   else 

    sx = newsx, sy = newsy; 

 

   fprintf(refoutput, "\tBest: (%i, %i) - %lg\n", sx0 + newsx, sy0 + newsy, storedgof); 

   fflush(refoutput); 

  } 

 

  newcentx[ib] += newsx; 

  newcenty[ib] += newsy; 

 

  if (abs(newsx) >= S.totbin2 || abs(newsy) >= S.totbin2) { 

   fprintf(refoutput, "\n!!! Shifting reached edge of selected region with centre (%i,%i) !!!\n" 

     "!!! Reload Beam %i from new centre (%i,%i) and restart !!!\n", 

     centx[ib], centy[ib], ib, newcentx[ib], newcenty[ib]); 

   fflush(refoutput); 

   --ib; 

   continue; 

  } 

 

  // 

  //  Summarise final output 

  // 

  Fit(S, gradientopt, newsx, newsy, I, norm); 

  CopyImage(S.asml, I.patsml.d1, I.patfin.d1 + ib * S.asml); 

  CopyImage(S.asml, I.sigsml.d1, I.sigfin.d1 + ib * S.asml); 

 } 

 

 // 

 //  Print output to the pattern-matching input file. 

 // 

 

 exptoutput = fopen("in.dat", "w"); 

 fprintf(exptoutput, "%i %i %i\n", S.xsml, S.ysml, gradientopt); 

 fflush(exptoutput); 

 

 for (y = 0; y < S.beams_height ; y++) { 

  for (x = 0; x < S.xsml ; x++) 

   fprintf(exptoutput, "%.8g\t", I.patfin.d2[y][x]); 

  fprintf(exptoutput, "\n"); 

 } 

 for (y = 0; y < S.beams_height ; y++) { 

  for (x = 0; x < S.xsml ; x++) 

   fprintf(exptoutput, "%.8g\t", I.sigfin.d2[y][x]); 

  fprintf(exptoutput, "\n"); 

 } 

 for (y = 0; y < S.beams_height ; y++) { 

  for (x = 0; x < S.xsml ; x++) 

   fprintf(exptoutput, "%.8g\t", I.wts.d2[y][x]); 

  fprintf(exptoutput, "\n"); 

 } 

 fflush(exptoutput); 

 

 gof = ChiSQ(I.patfin, I.sigfin, I.wts, I.theo, norm); 

 

 fprintf(refoutput, "\nThe final normalisation constant is: %f \n", norm); 

 fprintf(refoutput, "The final chi squared is: %f \n", gof); 

 for (int i = 0 ; i < numbeams ; i++) 

  fprintf(refoutput, "Beam %i: final shift (x,y)=(%i,%i), " 

    "took %i binning steps and %i new calculations\n", 

    i, newcentx[i] - centx[i], newcenty[i] - centy[i], steps[i], fitcounts[i]); 

 fflush(refoutput); 

 

 fclose(exptoutput); 

 

 // 

 // Create new 'parameters.dat' and backup the old one 

 // 

 

 FILE* params_new = fopen("parameters.tmp", "w"); 

 fprintf(params_new, "%i %i %i %i %i %i %i %i %i %i %i\n", 

   gradientopt, S.xfull, S.yfull, S.xlrg, S.ylrg, S.xsml, 

   S.ysml, S.avgbin, S.pcbin, refcycles, randcycles); 

 fprintf(params_new, "%i\n", numbeams); 

 for (int i = 0 ; i < numbeams ; i++) 

  fprintf(params_new, "%i %i %lg\n", newcentx[i], newcenty[i], bg[i]); 

 fflush(params_new); 

 fclose(params_new); 

 

 remove("parameters.bak"); 

 rename("parameters.dat","parameters.bak"); 

 rename("parameters.tmp","parameters.dat"); 

 

 fprintf(refoutput, "\nTotal duration: %g ms, image read-in: %g ms\n", timer(start), timer_read); 

 fprintf(refoutput, "Fitting took %g ms (binning: %g ms, gradients: %g ms)\n", 

   timer_fit, timer_bin, timer_grad); 

 fflush(refoutput); 

 fclose(refoutput); 

} 
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B.2.2. File “commonfunctions_shift.hpp” 

– functions used by ShiftBeam: 

// This routine takes an input image of arbitrary size and applies a geometric 

// transformation to it, returning the transformed image. 

// 

// Updates 

// 27/06/2017 - Tianyu Liu: 

//  1. Array row and column are swapped to 'array[y][x]', 

//   but arguments of functions still have 'x' before 'y'. 

//  2. Added Template for 'float' or 'double' 

// 

 

#include <cstdio> 

#include <cstdlib> 

#include <cmath> 

#include <algorithm> 

 

using namespace std; 

 

double randomnumber(int nut) 

{ 

 double rnumb; 

 

 srand(nut); 

 rnumb = rand() % 32768; 

 rnumb = rnumb / 32768; 

 return (rnumb); 

} 

 

template<typename T> 

T** MakeArray(int dimx, int dimy) 

{ 

 T** newarray = new T*[dimy]; 

 

 for (int j = 0 ; j < dimy ; j++) 

  newarray[j] = new T[dimx]; 

 

 return newarray; 

} 

 

template<typename T> 

class cont_2d 

{ 

private: 

 int d1x_, d2x_, d2y_; 

 

public: 

 T* d1; 

 T** d2; 

 

 cont_2d() 

 { 

  d1 = NULL, d2 = NULL, d1x_ = d2x_ = d2y_ = 0; 

 } 

 

 cont_2d(int dimx, int dimy) 

 { 

  alloc(dimx, dimy); 

 } 

 

// ~cont_2d() 

// { 

//  dealloc(); 

// } 

 

 void alloc(int dimx, int dimy) 

 { 

  d1x_ = dimx * dimy, d2x_ = dimx, d2y_ = dimy; 

  d1 = new T[d1x_], d2 = new T*[d2y_]; 

 

  for (int i = 0 ; i < d2y_ ; i++) 

   d2[i] = d1 + i * d2x_; 

 } 

 

 void dealloc() 

 { 

  delete[] d1; 

  delete[] d2; 

  d1x_ = d2x_ = d2y_ = 0; 

 } 

 

 int d1x() 

 { 

  return d1x_; 

 } 

 

 int d2x() 

 { 

  return d2x_; 

 } 

 

 int d2y() 

 { 

  return d2y_; 

 } 

 

 inline cont_2d& operator =(T c) 

 { 

  fill(d1, d1 + d1x_, c); 

  return *this; 

 } 

 

 inline cont_2d& operator =(const cont_2d& other) 

 { 

  copy(other.d1, other.d1 + d1x_, d1); 

  return *this; 

 } 

 

 inline cont_2d& operator +=(T c) 

 { 

  for (auto x = d1 ; x != d1 + d1x_ ; x++) 

   *x += c; 

  return *this; 

 } 

 

 inline cont_2d& operator +=(const cont_2d& other) 

 { 

  for (auto x = d1, x2 = other.d1 ; x != d1 + d1x_ ; x++, x2++) 

   *x += *x2; 

  return *this; 

 } 

 

 inline cont_2d& operator -=(T c) 

 { 

  for (auto x = d1 ; x != d1 + d1x_ ; x++) 

   *x -= c; 

  return *this; 

 } 

 

 inline cont_2d& operator -=(const cont_2d& other) 

 { 

  for (auto x = d1, x2 = other.d1 ; x != d1 + d1x_ ; x++, x2++) 

   *x -= *x2; 

  return *this; 

 } 

 

 inline cont_2d& operator *=(T c) 

 { 

  for (auto x = d1 ; x != d1 + d1x_ ; x++) 

   *x *= c; 

  return *this; 

 } 

 

 inline cont_2d& operator *=(const cont_2d& other) 

 { 

  for (auto x = d1, x2 = other.d1 ; x != d1 + d1x_ ; x++, x2++) 

   *x *= *x2; 

  return *this; 

 } 

 

 inline cont_2d& operator /=(T c) 

 { 

  T rc = 1.0 / c; 

  for (auto x = d1 ; x != d1 + d1x_ ; x++) 

   *x *= rc; 

  return *this; 

 } 

 

 inline cont_2d& operator /=(const cont_2d& other) 

 { 

  for (auto x = d1, x2 = other.d1 ; x != d1 + d1x_ ; x++, x2++) 

   *x /= *x2; 

  return *this; 

 } 

 

 void sqrt() 

 { 

  for (auto x = d1 ; x != d1 + d1x_ ; x++) 

   *x = std::sqrt(*x); 

 } 

 

 T sum() 

 { 

  T s = 0; 

  for (auto x = d1 ; x != d1 + d1x_ ; x++) 

   s += *x; 

  return s; 

 } 

} 

; 

 

template<typename T> 

void CopyImage(int dimx, int dimy, T** inimage, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x]; 

} 

 

template<typename T> 

void CopyImage(int dimx, T* inimage, T* outimage) 

{ 

 for (auto x = 0 ; x < dimx ; x++) 

  outimage[x] = inimage[x]; 

} 

 

template<typename T> 

T SumImage(int dimx, int dimy, T** inimage) 

{ 

 T sum = 0.0; 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 
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   sum += inimage[y][x]; 

 

 return sum; 

} 

 

template<typename T> 

void ImageSetConst(int dimx, int dimy, T** inimage, T c) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   inimage[y][x] = c; 

} 

 

template<typename T> 

void ImageDistort(int dimx, int dimy, T** inimage, T pa[12], T** outimage) 

{ 

 int x, y, oldx, oldy; 

 T exactoldx, exactoldy, pix1, pix2, pix3, pix4, fracx, fracy, delta, newpix, 

   truncoldx, truncoldy; 

 

 delta = 1e-20; 

 

 for (y = 0; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) { 

   exactoldx = pa[0] + pa[1] * x + pa[2] * y + pa[3] * x * x + pa[4] * y * y + pa[5] * x * y; 

   exactoldy = pa[6] + pa[7] * x + pa[8] * y + pa[9] * x * x + pa[10] * y * y + pa[11] * x * y; 

 

   oldx = exactoldx; 

   oldy = exactoldy; 

   truncoldx = floor(exactoldx); 

   truncoldy = floor(exactoldy); 

   fracx = exactoldx - truncoldx; 

   fracy = exactoldy - truncoldy; 

 

   pix1 = pix2 = pix3 = pix4 = 0.0; 

 

   if (oldx >= 0 && oldy >= 0 && oldx < dimx && oldy < dimy) 

    pix1 = inimage[oldy][oldx]; 

   if (oldx + 1 >= 0 && oldy >= 0 && oldx + 1 < dimx && oldy < dimy) 

    pix2 = inimage[oldy][oldx + 1]; 

   if (oldx >= 0 && oldy + 1 >= 0 && oldx < dimx && oldy + 1 < dimy) 

    pix3 = inimage[oldy + 1][oldx]; 

   if (oldx + 1 >= 0 && oldy + 1 >= 0 && oldx + 1 < dimx && oldy + 1 < dimy) 

    pix4 = inimage[oldy + 1][oldx + 1]; 

 

   newpix = (1 - fracx) * (1 - fracy) * pix1 + fracx * (1 - fracy) * pix2 + fracy * (1 - fracx) * pix3 

+ fracx * fracy * pix4; 

   outimage[y][x] = newpix; 

  } 

} 

 

template<typename T> 

void ImageAddConst(int dimx, int dimy, T** inimage, T constant, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x] + constant; 

} 

 

template<typename T> 

void ImageSubConst(int dimx, int dimy, T** inimage, T constant, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x] - constant; 

} 

 

template<typename T> 

void ImageMulConst(int dimx, int dimy, T** inimage, T constant, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = constant * inimage[y][x]; 

} 

 

template<typename T> 

void ImageDivConst(int dimx, int dimy, T** inimage, T constant, T** outimage) 

{ 

 T rconst = 1.0 / constant; 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x] * rconst; 

} 

 

template<typename T> 

void ImageAddImage(int dimx, int dimy, T** inimage, T** inimage2, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x] + inimage2[y][x]; 

} 

 

template<typename T> 

void ImageSubImage(int dimx, int dimy, T** inimage, T** inimage2, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x] - inimage2[y][x]; 

} 

 

template<typename T> 

void ImageMulImage(int dimx, int dimy, T** inimage, T** inimage2, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x] * inimage2[y][x]; 

} 

 

template<typename T> 

void ImageDivImage(int dimx, int dimy, T** inimage, T** inimage2, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = inimage[y][x] / inimage2[y][x]; 

} 

 

template<typename T> 

void SQRTImage(int dimx, int dimy, T** inimage, T** outimage) 

{ 

 for (int x, y = 0 ; y < dimy ; y++) 

  for (x = 0; x < dimx ; x++) 

   outimage[y][x] = sqrt(inimage[y][x]); 

} 

B.3. QCBED-BPrep – a Gatan 

DigitalMicrograph script for batch 

QCBED data preparation 

B.3.1. File “Batch IGQCBED 

Preparation_v1.0.2.s” – main body of 

QCBED-BPrep 

// Batch IGQCBED Preparation (Batch Intensity-Gradient-QCBED Preparation) 

// A intergated hub to prepare QCBED data in bulk 

// for DM versions 2.32 and maybe later 

// Tianyu Liu, Aug 2016 

 

// Changelog 

// v 1.0.2: Fixed 'ImageRegion' out of boundary error 

// v 1.0.1: 1) Fixed sigma == 0 ? 1 : sigma; 2) jpg overview; 3) Removed the 4th pair of pattern 

coordinates; 4) Draw Mask out of boundary fixed 

// V 1.0 

 

//  1.1  AMMPSF child function: Aperture Method for Measuring Point Spread Functions 

(AMMPSF) 

// by Philip Nakashima  21/08/2001 

// P. N. H. Nakashima, A. W. S. Johnson, Measuring the PSF from aperture images of arbitrary 

shape—an algorithm. Ultramicroscopy 94, 135-148 (2003). 

// Adapted for batch processing by Tianyu Liu, 

// for the original version with explanatory comments please refer to 

"http://www.philipnakashima.com/" 

 

// 1.2  Noise Characterisation child function: Noise as a function of signal measurement script 

// by Philip N.H. Nakashima, July 1 2008 (Bye bye Golf Sniff!), last modified 12th September 2011 

- correct physical model for noise ie: sigma = a.I + b.Sqrt(I) + c 

// P. N. H. Nakashima, In situ quantification of noise as a function of signal in digital images. Optics 

Letters 37, 1023-1025 (2012). 

//  Adapted for batch pocessing by Tianyu Liu; correct "noise mask" edge-stroking. 

 

// 1.3  IGQCBED child functions: Intensity gradient QCBED script for preparation of data for 

pattern-matching. 

// by Philip Nakashima, Conceived 28th Oct 2008, Last Modified 9:30am, 21/06/2011 

// P. N. H. Nakashima, B. C. Muddle, Differential convergent beam electron diffraction: Experiment 

and theory. Physical Review B 81, 115135 (2010). 

// P. N. H. Nakashima, B. C. Muddle, Differential quantitative analysis of background structure in 

energy-filtered convergent-beam electron diffraction patterns. Journal of Applied Crystallography 

43, 280-284 (2010). 

// Adapted for batch pocessing by Tianyu Liu 

 

// Table of Contents (copy to find) 

// 0.0  Global Variables Declaration 

// 0.1  Variable passing functions 

// 0.1.1  Variables to 'settings' TagGroup 

// 0.1.2 'settings' TagGroup to Variables 

// 0.1.3 Panel Data to Variables 

// 0.2  Recording functions 

// 0.3  Common functions 

// 0.3.1 Image shift (region copy) 

// 0.3.2 Image region (region copy) 

 

// 1.1  AMMPSF child function 

// 1.2  Noise Characterisation child function 

// 1.3  IGQCBED child functions 

// 1.3.1  Draw Mask step child function 

// 1.3.2 Pattern coordinates function 

// 1.3.3 IGQCBED step child function 

// 1.3.4 FOR007.DAT step child function 

// 1.3.5 parameters.dat step child function 

 

// 2  Batch Processing looping functions 

// 2.0.1 Update current paths function 

// 2.1  AMMPSF looping function  

// 2.2  PSF averaging function 

// 2.3  PSF correction looping function 
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// 2.4  Noise characterisation looping function 

// 2.5  IGQCBED looping function 

// 2.6  Extra step looping function 

 

// 3  GUI functions 

// 3.1  AMMPSF tag 

// 3.2  PSF correction tag 

// 3.3  Noise Characterisation tag 

// 3.4  IGQCBED tag 

// 3.4.1 Check processing files for IGQCBED 

// 3.5  Extra tag 

// 3.6  Main Panel grouping 

// 3.7  The Test function 

// 3.8  Background thread function 

// 3.9  GUI class: panel respone functions (buttons & options etc.) 

 

// 4  Main function 

 

 

// 

// 0.0  Global Variables Declaration 

// 

 

String m_dir    //Main directory 

String sub_dir    //Temporary path for subfolders during looping 

String img_path    //Temperary path for images furing looping 

String img_name    //Temperary filename for images furing looping 

String sub_name    //Temporary folder name for subfolders during looping 

Number noi     //The loop variable for image looping & subfolder looping 

 

String img_pre,img_suf  //Image name prefix & suffix 

String sub_pre,sub_suf  //Subfolder name prefix & suffix 

Number num_start,num_end //Looping tries from 'num_start' to 'num_end' 

 

// AMMPSF variables 

Number psf_nummeas = 25  //Number of measurements for each PSF image 

 

// PSF Correction variables 

String psf_path    //The Averaged PSF used for PSF Correction (deconvolution) 

 

// Noise Characterisation variables 

Number nc_mask = 0   //Option to whether apply pre-determined Mask 

String nc_mask_path  //Mask image path 

Number nc_normal = 1e+9  //Gain Normalisation target 

Number nc_numslice = 1000 //Number of slices for sampling 

Number nc_bin = 1   //Piecewise binning factor 

Number nc_darknoise = -1 //Dark Noise 

Number nc_txt = 1   //Whether to save the outputs as text images as well 

Number nc_raw = 0   //Whether to proceed on raw data instead of PSF corrected ones 

 

// IGQCBED variables 

Number ig_numbeams   //Number of beams 

Number ig_dia    //Diameter of beams (Width & Height of selection) 

Number ig_bin    //Binning factor 

Number ig_switch = 1  //Switch for pattern-matching & distortion-correction programs to turn on 

"gradient"; does not affect preparation 

 

Number ig_step_mask   //Switch for step '1. Draw Mask' 

Number ig_step_igqcbed  //Switch for step '2. IGQCBED' 

Number ig_step_for7   //Switch for step '3. FOR007.DAT' 

Number ig_step_filepm  //Switch for step '4. parameters.dat' 

 

Number ig_ratio = 0.9  //Mask ratio for step '1. Draw Mask' 

Number ig_magn = 1   //Magnification for step '2. IGQCBED' 

Number ig_finaltxt = 1  //Text image output option for step '2. IGQCBED' 

Number ig_noisemask = 1  //Apply noise mask option for step '2. IGQCBED' 

// Variables for GeoMetric DIstortion Correction's command file 'parameters.dat'; do not affect 

preparation 

Number ig_piecebin = 1  //Piecewise binning for 'parameters.dat' 

Number gdc_cycles = 1800 //Total refinement cycles for 'parameters.dat' 

Number gdc_rand = 10  //Random step numbers for 'parameters.dat' 

 

// Extra Step variables 

Number ex_loop    //Extra external script's looping mode 

String ex_script_path  //Path of extra external script 

 

Object mainpanel_win  //Window object of the GUI 

Number stage = 0   //Which tag to display (0 = initially the first tag) 

String settings_path  //Path of the settings' file 'settings.gtg' 

String exit_text   //Exit message for extra external script, passing through 

GetUserPersistentTagGroup() 

Number exit_code   //Exit code for extra external script, passing through Exit(Number exit_code) 

Number running = 0   //Busy indicator for GUI 

Number abort = 0   //Abort-halfway indicator for GUI 

String log_txt = "", log2_txt = "" //Strings to store batch process logs and child process logs 

Number test_mode = 0  //Switch for the 'Test' button in Extra tag 

 

DocumentWindow open_win  //Temporary window object for "Open..." window 

 

TagGroup settings = NewTagGroup() //The TagGroup to store settings 

 

// GUI items for above variables 

// '*_f' for field objects, '*_tabs' for tab lists, '*_r' for radio lists, '*_c' for checkboxes 

TagGroup m_dir_f 

TagGroup img_pre_f,img_suf_f,sub_pre_f,sub_suf_f,num_start_f,num_end_f 

TagGroup stage_tabs 

 

TagGroup psf_nummeas_f  

TagGroup psf_path_f 

 

TagGroup nc_mask_r 

TagGroup nc_mask_path_f,nc_normal_f 

TagGroup nc_numslice_f,nc_bin_f,nc_darknoise_f 

TagGroup nc_raw_c 

TagGroup nc_txt_c 

TagGroup nc_fewer_c 

 

TagGroup ig_numbeams_f, ig_dia_f, ig_bin_f, ig_switch_f 

TagGroup ig_step_mask_c, ig_ratio_f 

TagGroup ig_step_igqcbed_c, ig_magn_f, ig_noisemask_c, ig_finaltxt_c 

TagGroup ig_step_for7_c 

TagGroup ig_step_filepm_c, ig_piecebin_f, gdc_cycles_f, gdc_rand_f 

 

TagGroup ex_loop_r 

TagGroup ex_script_path_f 

 

//Pre-declaration for class method 

Interface PreUIFrame 

{ 

 Void OptionChanged(Object self, TagGroup self1); 

} 

 

/////////////////////////////////////////////////////////////// 

// 

// 0.1  Variable passing functions 

 

// 0.1.1 Variables to 'settings' TagGroup 

TagGroup VarToTag() 

{ 

 settings = NewTagGroup() 

 TagGroupSetTagAsNumber(settings,"stage",stage) 

  

 TagGroupSetTagAsNumber(settings,"num_start",num_start) 

 TagGroupSetTagAsNumber(settings,"num_end",num_end) 

 TagGroupSetTagAsString(settings,"img_pre",img_pre) 

 TagGroupSetTagAsString(settings,"img_suf",img_suf) 

 TagGroupSetTagAsString(settings,"sub_pre",sub_pre) 

 TagGroupSetTagAsString(settings,"sub_suf",sub_suf) 

  

 TagGroupSetTagAsNumber(settings,"psf_nummeas",psf_nummeas) 

 TagGroupSetTagAsString(settings,"psf_path",psf_path) 

  

 TagGroupSetTagAsNumber(settings,"nc_numslice",nc_numslice) 

 TagGroupSetTagAsNumber(settings,"nc_bin",nc_bin) 

 TagGroupSetTagAsNumber(settings,"nc_darknoise",nc_darknoise) 

 TagGroupSetTagAsNumber(settings,"nc_mask",nc_mask) 

 TagGroupSetTagAsString(settings,"nc_mask_path",nc_mask_path) 

 TagGroupSetTagAsNumber(settings,"nc_normal",nc_normal) 

 TagGroupSetTagAsNumber(settings,"nc_txt",nc_txt) 

 TagGroupSetTagAsNumber(settings,"nc_raw",nc_raw) 

  

 TagGroupSetTagAsNumber(settings,"ig_numbeams",ig_numbeams) 

 TagGroupSetTagAsNumber(settings,"ig_dia",ig_dia) 

 TagGroupSetTagAsNumber(settings,"ig_bin",ig_bin) 

 TagGroupSetTagAsNumber(settings,"ig_switch",ig_switch) 

 TagGroupSetTagAsNumber(settings,"ig_ratio",ig_ratio) 

 TagGroupSetTagAsNumber(settings,"ig_magn",ig_magn) 

 TagGroupSetTagAsNumber(settings,"ig_finaltxt",ig_finaltxt) 

 TagGroupSetTagAsNumber(settings,"ig_noisemask",ig_noisemask) 

 TagGroupSetTagAsNumber(settings,"ig_piecebin",ig_piecebin) 

 TagGroupSetTagAsNumber(settings,"gdc_cycles",gdc_cycles) 

 TagGroupSetTagAsNumber(settings,"gdc_rand",gdc_rand) 

  

 TagGroupSetTagAsString(settings,"ex_script_path",ex_script_path) 

 TagGroupSetTagAsNumber(settings,"ex_loop",ex_loop) 

} 

// 0.1.2 'settings' TagGroup to Variables 

Void TagToVar() 

{ 

 //TagGroupGetTagAsString(settings,"m_dir",m_dir) 

 //TagGroupGetTagAsString(settings,"sub_dir",sub_dir) 

 //TagGroupGetTagAsString(settings,"img_path",img_path) 

 //TagGroupGetTagAsString(settings,"img_name",img_name) 

 //TagGroupGetTagAsString(settings,"sub_name",sub_name) 

 //TagGroupGetTagAsNumber(settings,"noi",noi) 

 //TagGroupGetTagAsString(settings,"exit_text",exit_text) 

 //TagGroupGetTagAsNumber(settings,"abort",abort) 

 TagGroupGetTagAsNumber(settings,"stage",stage) 

  

 TagGroupGetTagAsNumber(settings,"num_start",num_start) 

 TagGroupGetTagAsNumber(settings,"num_end",num_end) 

 TagGroupGetTagAsString(settings,"img_pre",img_pre) 

 TagGroupGetTagAsString(settings,"img_suf",img_suf) 

 TagGroupGetTagAsString(settings,"sub_pre",sub_pre) 

 TagGroupGetTagAsString(settings,"sub_suf",sub_suf) 

  

 TagGroupGetTagAsNumber(settings,"psf_nummeas",psf_nummeas) 

 TagGroupGetTagAsString(settings,"psf_path",psf_path) 

  

 TagGroupGetTagAsNumber(settings,"nc_numslice",nc_numslice) 

 TagGroupGetTagAsNumber(settings,"nc_bin",nc_bin) 

 TagGroupGetTagAsNumber(settings,"nc_darknoise",nc_darknoise) 

 TagGroupGetTagAsNumber(settings,"nc_mask",nc_mask) 

 TagGroupGetTagAsString(settings,"nc_mask_path",nc_mask_path) 

 TagGroupGetTagAsNumber(settings,"nc_normal",nc_normal) 

 TagGroupGetTagAsNumber(settings,"nc_txt",nc_txt) 

 TagGroupGetTagAsNumber(settings,"nc_raw",nc_raw) 

  

 TagGroupGetTagAsNumber(settings,"ig_numbeams",ig_numbeams) 

 TagGroupGetTagAsNumber(settings,"ig_dia",ig_dia) 

 TagGroupGetTagAsNumber(settings,"ig_bin",ig_bin) 

 TagGroupGetTagAsNumber(settings,"ig_switch",ig_switch) 

 TagGroupGetTagAsNumber(settings,"ig_ratio",ig_ratio) 

 TagGroupGetTagAsNumber(settings,"ig_magn",ig_magn) 

 TagGroupGetTagAsNumber(settings,"ig_noisemask",ig_noisemask) 

 TagGroupGetTagAsNumber(settings,"ig_finaltxt",ig_finaltxt) 

 TagGroupGetTagAsNumber(settings,"ig_piecebin",ig_piecebin) 

 TagGroupGetTagAsNumber(settings,"gdc_cycles",gdc_cycles) 
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 TagGroupGetTagAsNumber(settings,"gdc_rand",gdc_rand) 

  

 TagGroupGetTagAsString(settings,"ex_script_path",ex_script_path) 

 TagGroupGetTagAsNumber(settings,"ex_loop",ex_loop) 

} 

 

// 0.1.3 Panel Data to Variables 

Void PanelToVar() 

{ 

 DLGGetValue(m_dir_f,m_dir) 

 DLGGetValue(num_start_f,num_start) 

 DLGGetValue(num_end_f,num_end) 

 DLGGetValue(img_pre_f,img_pre) 

 DLGGetValue(img_suf_f,img_suf) 

 DLGGetValue(sub_pre_f,sub_pre) 

 DLGGetValue(sub_suf_f,sub_suf) 

 DLGGetValue(stage_tabs,stage) 

  

 DLGGetValue(psf_nummeas_f,psf_nummeas) 

 DLGGetValue(psf_path_f,psf_path) 

  

 DLGGetValue(nc_numslice_f,nc_numslice) 

 DLGGetValue(nc_bin_f,nc_bin) 

 DLGGetValue(nc_mask_r,nc_mask) 

 DLGGetValue(nc_darknoise_f,nc_darknoise) 

 DLGGetValue(nc_mask_path_f,nc_mask_path) 

 DLGGetValue(nc_normal_f,nc_normal) 

 DLGGetValue(nc_txt_c,nc_txt) 

 DLGGetValue(nc_raw_c,nc_raw) 

  

 DLGGetValue(ig_numbeams_f,ig_numbeams) 

 DLGGetValue(ig_bin_f,ig_bin) 

 DLGGetValue(ig_dia_f,ig_dia) 

 DLGGetValue(ig_switch_f,ig_switch) 

  

 DLGGetValue(ig_step_mask_c,ig_step_mask) 

 DLGGetValue(ig_step_igqcbed_c,ig_step_igqcbed) 

 DLGGetValue(ig_step_for7_c,ig_step_for7) 

 DLGGetValue(ig_step_filepm_c,ig_step_filepm) 

 DLGGetValue(ig_ratio_f,ig_ratio) 

 DLGGetValue(ig_magn_f,ig_magn) 

 DLGGetValue(ig_noisemask_c,ig_noisemask) 

 DLGGetValue(ig_finaltxt_c,ig_finaltxt) 

 DLGGetValue(ig_piecebin_f,ig_piecebin) 

 DLGGetValue(gdc_cycles_f,gdc_cycles) 

 DLGGetValue(gdc_rand_f,gdc_rand) 

  

 DLGGetValue(ex_script_path_f,ex_script_path) 

 DLGGetValue(ex_loop_r,ex_loop) 

} 

// 0.1.4 Variables to Panel 

Void VarToPanel() 

{ 

 DLGValue(m_dir_f,m_dir) 

 DLGValue(num_start_f,num_start) 

 DLGValue(num_end_f,num_end) 

 DLGValue(img_pre_f,img_pre) 

 DLGValue(img_suf_f,img_suf) 

 DLGValue(sub_pre_f,sub_pre) 

 DLGValue(sub_suf_f,sub_suf) 

 DLGValue(stage_tabs,stage) 

  

 DLGValue(psf_nummeas_f,psf_nummeas) 

 DLGValue(psf_path_f,psf_path) 

  

 DLGValue(nc_numslice_f,nc_numslice) 

 DLGValue(nc_bin_f,nc_bin) 

 DLGValue(nc_mask_r,nc_mask) 

 DLGValue(nc_darknoise_f,nc_darknoise) 

 DLGValue(nc_mask_path_f,nc_mask_path) 

 DLGValue(nc_normal_f,nc_normal) 

 DLGValue(nc_txt_c,nc_txt) 

 DLGValue(nc_raw_c,nc_raw) 

  

 DLGValue(ig_numbeams_f,ig_numbeams) 

 DLGValue(ig_bin_f,ig_bin) 

 DLGValue(ig_dia_f,ig_dia) 

 DLGValue(ig_switch_f,ig_switch) 

  

 DLGValue(ig_step_mask_c,ig_step_mask) 

 DLGValue(ig_step_igqcbed_c,ig_step_igqcbed) 

 DLGValue(ig_step_for7_c,ig_step_for7) 

 DLGValue(ig_step_filepm_c,ig_step_filepm) 

 DLGValue(ig_ratio_f,ig_ratio) 

 DLGValue(ig_magn_f,ig_magn) 

 DLGValue(ig_noisemask_c,ig_noisemask) 

 DLGValue(ig_finaltxt_c,ig_finaltxt) 

 DLGValue(ig_piecebin_f,ig_piecebin) 

 DLGValue(gdc_cycles_f,gdc_cycles) 

 DLGValue(gdc_rand_f,gdc_rand) 

  

 DLGValue(ex_script_path_f,ex_script_path) 

 DLGValue(ex_loop_r,ex_loop) 

} 

 

// 0.1  Variable passing functions end 

// 

/////////////////////////////////////////////////////////////// 

 

////////////////////////////////////////////////////////////////// 

// 

// 0.2  Recording functions 

 

// Use 'Log("Text")' to log batch procedures to 'Notes'  

// and save to the 'Misc' folder with 'FinishLog("batch process name")' 

Void Log(String text)  

{  

 log_txt += text 

 Notes(text) 

} 

 

Void StartLog(String name) 

{ 

 log_txt = "" 

 ClearNotes() 

 OpenOutputWindow() 

 Notes("Previous Notes cleared!\n") 

  

 Log("\nBatch IGQCBED Preparation: " + name) 

 Log("\n\tBegan at " + DateStamp()) 

 Log("\nSpecimens Main directory:") 

 Log("\n\t" + m_dir) 

} 

 

Void FinishLog(String name) 

{ 

 Log("\n\n\tFinished at " + DateStamp()) 

  

 CreateDirectory(m_dir + "Misc\\") 

 Number saved = 1,k = -1 

 While(saved == 1) 

  saved = DoesFileExist(m_dir + "Misc\\Logs_" + name + "_" + ++k + ".txt") 

  

 Number log_id = CreateFileForWriting(m_dir + "Misc\\Logs_" + name + "_" + k + ".txt") 

 Object log_stream = NewStreamFromFileReference(log_id,1) 

   log_stream.StreamWriteAsText(0,log_txt) 

 CloseFile(log_id) 

 log_txt = "" 

  

 Notes("\n\nNotes automatically saved to 'Misc\\Logs_" + name + "_" + k + ".txt'") 

} 

 

// Use 'Log2("Text")' to log detailed processing information to 'Results'  

// and save to a specific path with 'FinishLog2("path")' 

Void Log2(String text)  

{  

 log2_txt += text 

 Result(text) 

} 

 

Void StartLog2(String text) { 

 log2_txt = "" 

 ClearResults() 

 Result("Previous Results cleared!\n\n") 

 Log2(text) 

 Log2("\n\tBegan at " + DateStamp() + "\n\n") 

} 

 

Void FinishLog2(String path) 

{ 

 Log2("\n\nFinished at " + DateStamp()) 

 Number log2_id = CreateFileForWriting(path) 

 Object log2_stream = NewStreamFromFileReference(log2_id,1) 

   log2_stream.StreamWriteAsText(0,log2_txt) 

 CloseFile(log2_id) 

 log2_txt = "" 

 Result("\n\nResults automatically saved to '" + path + "'") 

} 

 

// 0.2  Recording functions end 

// 

////////////////////////////////////////////////////////////////// 

 

////////////////////////////////////////////////////////////////// 

// 

// 0.3  Common functions 

 

// 0.3.1 Image shift (region copy) 

RealImage ImageShift(RealImage in,Number x,Number y){ 

 Number w,h 

 GetSize(in,w,h) 

 RealImage out := RealImage("",4,w,h) 

  

 out[y>0 ? y:0, x>0 ? x:0, y>0 ? h:h+y, x>0 ? w:w+x] \ 

   = in[y>0 ? 0:-y, x>0 ? 0:-x, y>0 ? h-y:h, x>0 ? w-x:w] 

  

 Return out 

} 

// 0.3.2 Image region (region copy) 

RealImage ImageRegion(RealImage in,Number l,Number t,Number w,Number h) { 

 Number w0,h0 

 GetSize(in,w0,h0) 

 RealImage out := RealImage("",4,w,h) 

  

 out[ t>0 ? 0:-t , l>0 ? 0:-l , t+h<=h0 ? h:h0-t , l+w<=w0 ? w:w0-l]\ 

   = in[ t>0 ? t:0 , l>0 ? l:0 , t+h<=h0 ? t+h:h0 , l+w<=w0 ? l+w:w0 ] 

  

 Return out 

} 

 

// 0.3  Common functions end 

// 

////////////////////////////////////////////////////////////////// 

 

////////////////////////////////////////////////////////////////// 

// 

// 1.1  AMMPSF child function 
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Number AMMPSF(String aperture_path,Number nummeas) 

{ 

// Batch processing version adapted by Tianyu Liu 

// For the original version with explanatory comments please refer to 

"http://www.philipnakashima.com/" 

// 

//  Aperture Method for Measuring Point Spread Functions (AMMPSF) 

// 

// by Philip Nakashima  21/08/2001 

// 

// This script calculates both the modulation transfer function and point spread function for a CCD 

detector 

// from the image of a focussed aperture of ANY SHAPE (ie. need not be circular).  It is is fully 

equivalent to 

// the C++ version included in this distribution. 

// 

// Last Modified 21th October 2012. 

 

 number 

xrange,yrange,limit,shifts,squares,pointx,pointy,dim,delta,pixelone,pixeltwo,pixelthree,pixelfour,\ 

 pixelzero,dispx,dispy,dist,storedgof,storedit,gof,otfmin,sums,currentdim,numstd,storednumstd,rep

y,repx,ang 

 Number max 

  

 StartLog2("Welcome to AMMPSF, a script that automates the accurate measurement of 

instrumental point spread functions from an aperture image of arbitrary shape.") 

  

 Image aperture = OpenImage(aperture_path) 

 GetSize(aperture,xrange,yrange) 

  

 Image shapedhat := RealImage("ShapedHat",4,xrange,yrange) 

 Image smoothap := RealImage("smoothap",4,xrange,yrange) 

 Image avepsf := RealImage("AvePSF",4,xrange,yrange) 

 Image storedshapedhat := RealImage("storedshapedhat",4,xrange,yrange) 

 Image normaliser := RealImage("normaliser",4,xrange,yrange) 

 Image psf := RealImage("psf",4,xrange,yrange) 

 Image realotf := RealImage("realotf",4,xrange,yrange) 

 Image new := RealImage("new",4,xrange,yrange) 

 Image storedpsf := RealImage("storedpsf",4,xrange,yrange) 

 Image hat := RealImage("hat",4,xrange,yrange) 

 Image weights := RealImage("weights",4,xrange,yrange) 

 Image rotavepsf := RealImage("rotavepsf",4,xrange,yrange) 

 Image revpsf := RealImage("revrotavepsf",4,xrange,yrange) 

 Image secondrotavepsf := RealImage("secondrotavepsf",4,xrange,yrange) 

 Image rot := RealImage("rot",4,xrange,yrange) 

 Image psfcore := RealImage("psfcore",4,xrange,yrange) 

 Image core := RealImage("core",4,xrange,yrange) 

 Image bigcore := RealImage("bigcore",4,xrange,yrange) 

 Image deconvedap := RealImage("deconvedap",4,xrange,yrange) 

 Image data := RealImage("data",4,xrange,yrange) 

 Image mtf := RealImage("mtf",4,xrange,yrange) 

 ComplexImage otf := ComplexImage("otf",8,xrange,yrange) 

 ComplexImage finalotf := ComplexImage("finalotf",8,xrange,yrange) 

 Image decvlapt := RealImage("Deconvoluted Aperture for Dark Noise 

Measurement",4,xrange,yrange) 

  

 delta = 1e-30 

  

 core = Sqrt((icol - xrange/2)**2 + (irow - yrange/2)**2) 

 core = 1 - (((core - 4.99) + Abs(core - 4.99))/(2*Abs(core - 4.99) + 1e-30)) 

 bigcore = Sqrt((icol - xrange/2)**2 + (irow - yrange/2)**2) 

 bigcore = 1 - (((bigcore - 24.99) + Abs(bigcore - 24.99))/(2*Abs(bigcore - 24.99) + 1e-30)) 

 normaliser = 1 

 for (ang = 1 ; ang <= 16 ; ang = ang + 1){ 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  rot = warp(normaliser,(icol-xrange/2)*cos((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*sin((360/(2**ang))*Pi()/180)+xrange/2,\ 

   -(icol-xrange/2)*sin((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*cos((360/(2**ang))*Pi()/180)+yrange/2) 

  normaliser = normaliser + rot 

  revpsf = warp(normaliser,xrange-icol,irow) 

  normaliser = normaliser + revpsf 

  revpsf = warp(normaliser,icol,yrange - irow) 

  normaliser = normaliser + revpsf 

 } 

 normaliser = normaliser/Max(normaliser) 

 while(sums < nummeas){ 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  dim = 1 

  storedgof = 1e25 

  storednumstd = 100 

  gof = 1e30 

  { 

  number iteration = 0 

  while (dim <= 13){ 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   iteration = iteration + 1 

   limit = Max(shapedhat)/2 

   if (dim == 1){ 

    data = aperture 

    shapedhat = aperture 

    limit = Max(shapedhat)*(1.5 + 0.5*(2*UniformRandom() - 1))/3 

   } 

   Log2("thresholding intensity for iteration "+iteration+" = "+limit+"\n") 

   ClearImage(shapedhat) 

   ClearImage(psf) 

   shifts = (dim)**2 

   squares = dim - 1 

   { 

   for (number step = 1 ; step <= shifts ; step = step + 1){ 

    If(abort) Return -1 //Stop processing if "Stop" pressed 

    pointx = (step-1)-((dim)*Trunc((step-1)/(dim))) 

    pointy = Trunc((step-1)/(dim)) 

    dispx = ((squares/(2*(squares + delta)))-pointx/((squares + delta))) 

    dispy = ((squares/(2*(squares + delta)))-pointy/((squares + delta))) 

    hat = warp(data,icol + dispx,irow + dispy) 

    hat = hat-limit 

    hat = (hat + Abs(hat))/(2*Abs(hat)+delta) 

    shapedhat = shapedhat + hat 

   } 

   } 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   shapedhat = shapedhat*Sum(aperture)/Sum(shapedhat) 

   psf = RealIFFT(RealFFT(aperture)/RealFFT(shapedhat)) 

   psf = psf/Sum(psf) 

   ShiftCenter(psf) 

   rotavepsf = psf 

   for (ang = 1 ; ang <= 2 ; ang = ang + 1){ 

    If(abort) Return -1 //Stop processing if "Stop" pressed 

    rot = warp(rotavepsf,(icol-xrange/2)*cos((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*sin((360/(2**ang))*Pi()/180)+xrange/2,\ 

    -(icol-xrange/2)*sin((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*cos((360/(2**ang))*Pi()/180)+yrange/2) 

    rotavepsf = rotavepsf + rot 

    revpsf = warp(rotavepsf,xrange-icol,irow) 

    rotavepsf = rotavepsf + revpsf 

    revpsf = warp(rotavepsf,icol,yrange - irow) 

    rotavepsf = rotavepsf + revpsf 

   } 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   secondrotavepsf = rotavepsf 

   for (ang = 3 ; ang <= 16 ; ang = ang + 1){ 

    If(abort) Return -1 //Stop processing if "Stop" pressed 

    rot = warp(secondrotavepsf,(icol-xrange/2)*cos((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*sin((360/(2**ang))*Pi()/180)+xrange/2,\ 

    -(icol-xrange/2)*sin((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*cos((360/(2**ang))*Pi()/180)+yrange/2) 

    secondrotavepsf = secondrotavepsf + rot 

    revpsf = warp(secondrotavepsf,xrange-icol,irow) 

    secondrotavepsf = secondrotavepsf + revpsf 

    revpsf = warp(secondrotavepsf,icol,yrange - irow) 

    secondrotavepsf = secondrotavepsf + revpsf 

   } 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   secondrotavepsf = secondrotavepsf/normaliser 

   secondrotavepsf = secondrotavepsf/Max(secondrotavepsf) 

   rotavepsf = rotavepsf/Max(rotavepsf) 

   psfcore = rotavepsf*core + (1 - core)*secondrotavepsf 

   ShiftCenter(psf) 

   realotf = Modulus(RealFFT(psf)) 

   for (ang = 1 ; ang <= 16 ; ang = ang + 1){ 

    If(abort) Return -1 //Stop processing if "Stop" pressed 

    rot = warp(realotf,(icol-xrange/2)*cos((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*sin((360/(2**ang))*Pi()/180)+xrange/2,\ 

    -(icol-xrange/2)*sin((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*cos((360/(2**ang))*Pi()/180)+yrange/2) 

    realotf = realotf + rot 

    revpsf = warp(realotf,xrange-icol,irow) 

    realotf = realotf + revpsf 

    revpsf = warp(realotf,icol,yrange - irow) 

    realotf = realotf + revpsf 

   } 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   realotf = realotf/normaliser 

   realotf = realotf/Max(realotf) 

   psf = RealIFFT(Complex(realotf,0)) 

   psf = psf/Sum(psf) 

   ShiftCenter(psf) 

   rotavepsf = psf 

   for (ang = 1 ; ang <= 16 ; ang = ang + 1){ 

    If(abort) Return -1 //Stop processing if "Stop" pressed 

    rot = warp(rotavepsf,(icol-xrange/2)*cos((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*sin((360/(2**ang))*Pi()/180)+xrange/2,\ 

    -(icol-xrange/2)*sin((360/(2**ang))*Pi()/180)+(irow-

yrange/2)*cos((360/(2**ang))*Pi()/180)+yrange/2) 

    rotavepsf = rotavepsf + rot 

    revpsf = warp(rotavepsf,xrange-icol,irow) 

    rotavepsf = rotavepsf + revpsf 

    revpsf = warp(rotavepsf,icol,yrange - irow) 

    rotavepsf = rotavepsf + revpsf 

   } 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   rotavepsf = rotavepsf/normaliser 

   rotavepsf = rotavepsf/Max(rotavepsf) 

   psfcore = psfcore/Max(psfcore) 

   psf = bigcore*psfcore + (1 - bigcore)*rotavepsf 

   if (dim == 1) 

    SetPixel(psf,xrange/2,yrange/2,2) 

   psf = psf/Sum(psf) 

   ShiftCenter(psf) 

   otf = RealFFT(psf) 

   otfmin = Min(Real(otf)) 

   Log2("otfmin = "+otfmin+"\n") 

   currentdim = dim 

   dim = -1 

   if ((otfmin >= -1e30) && (otfmin < 0)){ 

    otf = otf + 2*Abs(otfmin) 

    dim = currentdim - 2 

    otf = otf/Max(Real(otf)) 

    psf = RealIFFT(otf) 

   } 

   if (otfmin > 0) 

    dim = currentdim 

   deconvedap = RealIFFT(RealFFT(aperture)/otf) 

   data = deconvedap 

   Log2("The first five pixels at integer distance from the centre are:\n") 

   max = Max(psf) 

   For(Number i = 1; i <= 5; i++)  
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    Log2(" " + GetPixel(psf,i,0)/max) 

   smoothap = RealIFFT(RealFFT(shapedhat)*otf) 

   weights = Abs(1 - Abs(smoothap - (Max(smoothap)/2))/(Max(smoothap)/2)) 

   gof = Sum(weights*((smoothap - aperture)**2))/Sum(weights) 

   numstd = Sqrt(gof/(Sum(weights*aperture)/Sum(weights))) 

   Log2("\ngof = "+gof+" Number of Poisson sigmas mismatch = "+numstd+"\n") 

   if ((gof < storedgof) && (numstd <= 50)){ 

    storedit = iteration 

    storedgof = gof 

    storednumstd = numstd 

    storedpsf = psf 

    storedshapedhat = shapedhat 

   } 

   dim = dim + 2 

   Log2("dim = "+dim+"\n") 

   mainpanel_win.DLGSetProgress("SubProgress",(dim + 13*sums)/(13*nummeas)) //Set 

progress bar 

  } 

  } 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  shapedhat = storedshapedhat 

  psf = storedpsf 

  otf = RealFFT(psf) 

  deconvedap = RealIFFT(RealFFT(aperture)/otf) 

  psf = psf/Max(psf) 

  ShiftCenter(psf) 

  mtf = Modulus(otf) 

  Log2("The running average intensities so far:\n") 

  max = Max(avepsf) 

  For(Number i = 1; i <= 5; i++)  

   Log2(" " + GetPixel(avepsf,xrange/2 + i,yrange/2)/max) 

  Log2("\nThe goodness of fit factor of "+storedgof+" was reached at iteration "+storedit+".\n") 

  if (storednumstd <= 25){ 

   avepsf = avepsf + psf/Max(psf) 

   sums = sums + 1 

  } 

  Log2("The number of summed psfs in the average = "+sums+", " + (nummeas-sums-1) +" more 

to go\n") 

 } 

 If(abort) Return -1 //Stop processing if "Stop" pressed 

 mainpanel_win.DLGSetProgress("SubProgress",0.99) //Set progress bar 

 //Final finishing 

 max = Max(avepsf) 

 For(Number i = 1; i <= 5; i++)  

  Log("" + GetPixel(avepsf,i,0)/max + " ") 

 Image psf0 = avepsf 

 avepsf = avepsf/Sum(avepsf) 

 ShiftCenter(avepsf) 

 finalotf = RealFFT(avepsf) 

 decvlapt = RealIFFT(RealFFT(aperture)/finalotf) //Deconvoluted Aperture 

 String folder_dir = m_dir + "PSF\\" + PathExtractBaseName(aperture_path,0) + "\\" 

 CreateDirectory(folder_dir) 

 SaveAsGatan3(psf0,folder_dir + "psf") 

 SaveAsGatan3(avepsf,folder_dir + "NormalisedPSF") 

 SaveAsGatan3(shapedhat,folder_dir + "ShapedHat") 

 SaveAsGatan3(decvlapt,folder_dir + "DeconvolutedAperture") 

 FinishLog2(folder_dir + "AMMPSF_log.txt") 

 mainpanel_win.DLGSetProgress("SubProgress",1) //Set progress bar 

  

 Return 0 

} 

 

// 1.1  AMMPSF child function ends 

// 

////////////////////////////////////////////////////////////////// 

 

 

////////////////////////////////////////////////////////////////// 

// 

// 1.2  Noise Characterisation child function 

 

Number NoiseChar(String specimen_path,String dir,Number darknoise0,Number maskopt0,\ 

  Number gainnormalmax0,Number numslice0,Number binning0,Number txt_opt) 

{ 

 // Noise as a function of signal measurement script. 

 // 

 // Note: If you are operating with a difference image (A - B), then specimeni = A + B. 

 // 

 // Philip N.H. Nakashima, July 1 2008 (Bye bye Golf Sniff!) 

 // Last Modified 12th September 2011 - correct physical model for noise ie: sigma = a.I + b.Sqrt(I) 

+ c 

 // 

 //  Adapted for batch pocessing by Tianyu Liu; correct "noise mask" edge-stroking. 

 

 Number xrange,yrange,cyclex,cycley,numslice,intensity,loop,count,aveint,avestdev,sumpoints,\ 

 ay,bee,cee,storeday,storedbee,storedcee,gof,storedgof,step,sincechange,shot,cuts,higheststdev,\ 

 scale1,scale2,smoothloop,stdev,expfacx,expfacy,interval,intrange,maxx,maxy,\ 

 totalpts,a,b,change,times,topdynrange,lowdynrange,inputave,inputstdev,cycle,turn,numpix,\ 

 storednumpix,binfactor,topdyn,sigref,lowdyn,lasttopdyn,lastlowdyn,highestsig,hfstdev,percentdev,

\ 

 lastpercentdev,hfdev,hfmean,refdev,lastay,lastcee,swintb,sw,swint2b,swsigintb,\ 

 swsig,pert,dynrangepct,its,high,xhigh,yhigh,rank,pos,level,lowint,highint,tolerance,error,\ 

 firstay,firstbee,firstcee,mark,counter,normalisation,infofract,lim,darknoise,laststdev,\ 

 avelnint,avelnsig,sxx,syy,sxy,radius,numstds,storeddev,devchange,bins,gainnormalmax,\ 

 hfchange,lastnorm,hf,reduction,storedave,ave,storedchange,storedred,ordercycle,coeff,\ 

 order,refhf,lastave,stopave,testave,maskopt,binning,xbinned,ybinned,xmax,ymax,highest,intval,\ 

 noiseval,weightval,lastthresh,highthresh,lowthresh,intbin,sigbin,wtsbin,xcoord,remainder,maxwei

ght 

  

 darknoise = darknoise0 

 maskopt = maskopt0 

 gainnormalmax = gainnormalmax0 

 numslice = numslice0 

 binning = binning0 

  

 If(abort) Return -1 //Stop processing if "Stop" pressed 

 StartLog2("Noise Results") 

     

 Image specimen := OpenImage(specimen_path) 

 GetSize(specimen,xrange,yrange) 

 Image mask := RealImage("mask",4,xrange,yrange) 

 Image zeroth := RealImage("zeroth",4,xrange,yrange) 

 Image highfrequency := RealImage("highfrequency",4,xrange,yrange) 

 Image sigma := RealImage("sigma",4,xrange,yrange)  

 

 Image smeared := RealImage("smeared",4,xrange,yrange) 

 Image starting := RealImage("starting",4,xrange,yrange) 

 Image interppsf := RealImage("psf",4,xrange,yrange) 

 ComplexImage interpotf := ComplexImage("interpotf",8,xrange,yrange) 

 ComplexImage fftspecimeni := ComplexImage("fftspecimeni",8,xrange,yrange) 

 

 If (maskopt == 0)  

  mask = 1 

 Else 

  mask := OpenImage(nc_mask_path) 

 zeroth[4,4,yrange - 4,xrange - 4] = 1 

 mask *= zeroth 

 mask = mask * (specimen > 0 ? 1 : 0) 

 If(maskopt == 0)  

  mask = mask*(specimen > gainnormalmax ? 0 : 1) 

 

 ClearImage(zeroth) 

 a = 0.5 

 b = a**2 

 SetPixel(interppsf,xrange/2,yrange/2,1) 

 SetPixel(interppsf,xrange/2 - 1,yrange/2,a) 

 SetPixel(interppsf,xrange/2 + 1,yrange/2,a) 

 SetPixel(interppsf,xrange/2,yrange/2 - 1,a) 

 SetPixel(interppsf,xrange/2,yrange/2 + 1,a) 

 SetPixel(interppsf,xrange/2 + 1,yrange/2 - 1,b) 

 SetPixel(interppsf,xrange/2 + 1,yrange/2 + 1,b) 

 SetPixel(interppsf,xrange/2-1,yrange/2 - 1,b) 

 SetPixel(interppsf,xrange/2-1,yrange/2 + 1,b) 

 interppsf = interppsf/Sum(interppsf) 

 ShiftCenter(interppsf) 

 interpotf = (RealFFT(interppsf)) 

 fftspecimeni = RealFFT(specimen) 

 ShiftCenter(fftspecimeni) 

 change = 100 

 reduction = 1 

 storedave = 1e+30 

 storedchange = 1e+30 

 reduction = 2 

 ComplexImage cutfft := ComplexImage("cutfft",8,xrange/reduction,yrange/reduction) 

 Image noise := RealImage("noise",4,xrange/reduction,yrange/reduction) 

 Image minimask := RealImage("minimask",4,xrange/reduction,yrange/reduction) 

 Image modcutfft := RealImage("modcutfft",4,xrange/reduction,yrange/reduction) 

 minimask = Warp(mask,icol*reduction,irow*reduction) 

 cutfft = Warp(fftspecimeni,icol + (xrange/2) - (xrange/(2*reduction)),irow + (yrange/2) - 

(yrange/(2*reduction))) 

 ShiftCenter(cutfft) 

 noise = RealIFFT(cutfft)/reduction 

 refhf = Sqrt(Sum(minimask*(noise)**2)/Sum(minimask)) 

 starting = specimen 

 order = 4 

 coeff = order 

 for (ordercycle = 1 ; ordercycle <= order ; ordercycle++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  smeared = RealIFFT(RealFFT(starting)*interpotf) 

  zeroth = zeroth + coeff*smeared 

  starting = smeared 

 

  coeff = coeff*(ordercycle - order)/(ordercycle + 1) 

 } 

 highfrequency = specimen - zeroth 

 ave = Sum(mask*highfrequency)/Sum(mask) 

 hf = Sqrt(Sum(mask*(highfrequency - ave)**2)/Sum(mask)) 

 normalisation = refhf/hf 

 Log2(""+hf+" "+normalisation+"\n") 

 Log2("Output stdev = "+(hf*normalisation)+"\n") 

 highfrequency = normalisation*highfrequency 

 mask = mask*(zeroth > 0 ? 1:0) 

 Image longint := RealImage("longint",4,numslice,1) 

 Image longweights := RealImage("longweights",4,numslice,1) 

 Image longsig := RealImage("longsig",4,numslice,1) 

 Image binnedint := RealImage("binnedint",4,xrange/binning,yrange/binning) 

 Image binnedsig := RealImage("binnedsig",4,xrange/binning,yrange/binning) 

 Image binnedwts := RealImage("binnedwts",4,xrange/binning,yrange/binning) 

 Image slice := RealImage("slice",4,xrange/binning,yrange/binning) 

 binnedint = Warp(zeroth,icol*binning,irow*binning) 

 binnedsig = Warp(highfrequency,icol*binning,irow*binning) 

 binnedwts = Warp(mask,icol*binning,irow*binning) 

 interval = (Max(binnedint*binnedwts) - Min(binnedint*binnedwts))/numslice 

 maxweight = 0 

 for (loop = 0 ; loop < numslice ; loop++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  highthresh = Max(binnedint) - loop*interval 

  lowthresh = highthresh - interval 

  slice = binnedint > lowthresh ? 1:0 

  slice = slice - (binnedint > highthresh ? 1:0) 

  intval = Sum(slice*binnedwts*binnedint)/(Sum(slice*binnedwts) + 1e-30) 

  noiseval = Sqrt(Sum(slice*binnedwts*(binnedsig**2))/(Sum(slice*binnedwts) + 1e-30)) 

  weightval = Sum(slice*binnedwts) 

  SetPixel(longint,loop,0,intval) 

  SetPixel(longsig,loop,0,noiseval) 

  SetPixel(longweights,loop,0,weightval) 

  if (Mod(loop,100) == 1) 

   Log2(""+intval+" "+noiseval+" "+weightval+"\n") 
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  if (weightval >= maxweight) 

   maxweight = weightval 

  mainpanel_win.DLGSetProgress("SubProgress",(loop + 1)/numslice/5) //Set progress bar 

 } 

 Log2("\nStart ordering in terms of sigma\n\n") 

 Image shortweights := RealImage("shortweights",4,numslice,1) 

 Image shortsig := RealImage("shortsig",4,numslice,1) 

 Image shortint := RealImage("shortint",4,numslice,1) 

 loop = 0 

 xcoord = 0 

 remainder = Sum(longweights) 

 while (remainder > maxweight) { 

  sigbin = 0 

  wtsbin = 0 

  intbin = 0 

  while (wtsbin < maxweight) { 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   wtsbin = wtsbin + GetPixel(longweights,loop,0) 

   sigbin = sigbin + GetPixel(longweights,loop,0)*(GetPixel(longsig,loop,0))**2 

   intbin = intbin + GetPixel(longweights,loop,0)*GetPixel(longint,loop,0) 

   if (wtsbin >= maxweight) { 

    intbin = intbin/wtsbin 

    sigbin = Sqrt(sigbin/wtsbin) 

    SetPixel(shortint,xcoord,0,intbin) 

    SetPixel(shortsig,xcoord,0,sigbin) 

    SetPixel(shortweights,xcoord,0,wtsbin) 

    Log2(""+intbin+" "+sigbin+" "+wtsbin+"\n") 

    remainder = remainder - wtsbin 

   } 

   loop = loop + 1 

  } 

  xcoord = xcoord + 1 

  mainpanel_win.DLGSetProgress("SubProgress",maxweight/remainder/5 + 0.2) //Set progress 

bar 

 } 

 sigbin = 0 

 wtsbin = 0 

 intbin = 0 

 while (loop < numslice) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  wtsbin = wtsbin + GetPixel(longweights,loop,0) 

  sigbin = sigbin + GetPixel(longweights,loop,0)*(GetPixel(longsig,loop,0))**2 

  intbin = intbin + GetPixel(longweights,loop,0)*GetPixel(longint,loop,0) 

 

  loop = loop + 1 

  mainpanel_win.DLGSetProgress("SubProgress",(loop + 1)/numslice/5 + 0.4) //Set progress bar 

 } 

 intbin = intbin/wtsbin 

 sigbin = Sqrt(sigbin/wtsbin) 

 SetPixel(shortint,xcoord,0,intbin) 

 SetPixel(shortsig,xcoord,0,sigbin) 

 SetPixel(shortweights,xcoord,0,wtsbin) 

 Log2(""+intbin+" "+sigbin+" "+wtsbin+"\n") 

 Image weights := RealImage("weights",4,xcoord,1) 

 Image sig := RealImage("sig",4,xcoord,1) 

 Image int := RealImage("int",4,xcoord,1) 

 Image intfunc := RealImage("intfunc",4,xcoord,1) 

 ClearImage(int) 

 ClearImage(weights) 

 ClearImage(sig) 

 ClearImage(intfunc) 

 for (loop = 0 ; loop < xcoord ; loop++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  SetPixel(int,loop,0,GetPixel(shortint,loop,0)) 

  SetPixel(sig,loop,0,GetPixel(shortsig,loop,0)) 

  SetPixel(weights,loop,0,GetPixel(shortweights,loop,0)) 

  mainpanel_win.DLGSetProgress("SubProgress",(loop + 1)/xcoord/5 + 0.6) //Set progress bar 

 } 

 ay = 1 

 bee = 1 

 cee = 1 

 if (darknoise > 0) 

  cee = darknoise 

 storeday = ay 

 storedcee = cee 

 storedbee = bee 

 storedgof = 1e+20 

 step = 1 

 sincechange = 1 

 //weights = 1 

 swsig = Sum(weights*sig) 

 sw = Sum(weights) 

 while (sincechange < 1000) { 

  swintb = Sum(weights*(int + bee*Sqrt(int))) 

  swsigintb = Sum(weights*sig*(int + bee*Sqrt(int))) 

  swint2b = Sum(weights*(int + bee*Sqrt(int))**2) 

  pert = 1e+20 

  its = 0 

  While ((pert >= 0.00001) && (its < 1000)) { 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   lastay = ay 

   lastcee = cee 

   ay = Abs((swsigintb - (cee*swintb))/swint2b) 

   if (darknoise < 0) 

    cee = Abs((swsig - (ay*swintb))/sw) 

   pert = (Abs((lastay - ay)/lastay) + Abs((lastcee - cee)/lastcee))/2 

   its = its + 1 

  } 

  intfunc = ay*(int + bee*Sqrt(int)) + cee 

  gof = Sum(weights*(sig - intfunc)**2)/(Sum(weights) - (3*Sum(weights)/xcoord)) 

  if (gof < storedgof) { 

   storedgof = gof 

   sincechange = 0 

   storeday = ay 

   storedbee = bee 

   storedcee = cee 

  } 

  bee = Abs(storedbee + ((2*uniformRandom() - 1)**1)/((Mod(step,10) + 1)**2)) 

  sincechange = sincechange + 1 

  step = step + 1 

  ay = storeday 

  cee = storedcee 

  if (Mod(step,100) == 1) 

   Log2("It. "+step+", gof = "+storedgof+" a*I + b*Sqrt(I) + c: a = "+storeday+" b = 

"+(storedbee*storeday)+" c = "+storedcee+"\n") 

  mainpanel_win.DLGSetProgress("SubProgress",sincechange/1000/5 + 0.8) //Set progress bar 

 } 

 If(abort) Return -1 //Stop processing if "Stop" pressed 

 mainpanel_win.DLGSetProgress("SubProgress",0.99) //Set progress bar 

 Log2("Final results: "+storeday+"*I + "+(storedbee*storeday)+"*Sqrt(I) + "+storedcee+"\n") 

 intfunc = storeday*int + (storedbee*storeday)*Sqrt(int) + storedcee 

 Log2("Final output: Iexpt, sigma, calc sigma\n") 

 for (cycle = 0 ; cycle < xcoord ; cycle++) 

  Log2(""+GetPixel(int,cycle,0)+" "+GetPixel(sig,cycle,0)+" "+GetPixel(intfunc,cycle,0)+"\n") 

 sigma = storeday*(Abs(specimen) + storedbee*Sqrt(Abs(specimen))) + storedcee 

 // Save output 

 SaveAsGatan3(zeroth,dir + "zeroth") 

 SaveAsGatan3(sigma,dir + "sigma") 

 SaveAsGatan3(mask,dir + "NoiseMask") 

 SaveAsGatan3(highfrequency,dir + "highfrequency") 

 If(txt_opt == 1) { 

  SaveAsText(sigma,dir + "sigma") 

  SaveAsText(zeroth,dir + "pattern") 

 } 

 FinishLog2(dir + "NoiseResults.txt") 

 mainpanel_win.DLGSetProgress("SubProgress",1) //Set progress bar 

  

 Return 0 

} 

 

// 1.2  Noise Characterisation child function ends 

// 

////////////////////////////////////////////////////////////////// 

 

 

////////////////////////////////////////////////////////////////// 

// 

// 1.3  IGQCBED child functions 

 

// 1.3.1  Draw Mask step child function 

String DrawMask(String dir,String specimen_name,Number numbeams,Number dia,Number ratio) 

{ 

 Image ref 

 If(DoesFileExist(dir + "zeroth.dm3")) 

  ref := OpenImage(dir + "zeroth.dm3") 

 Else 

  If(DoesFileExist(dir + "sigma.dm3")) 

   ref := OpenImage(dir + "sigma.dm3") 

  Else 

   If(DoesFileExist(dir + "_PSFCorrected.dm3"))       

    ref := OpenImage(dir + "_PSFCorrected.dm3") 

   Else 

    If(DoesFileExist(dir + specimen_name + ".dm3"))       

     ref := OpenImage(dir + specimen_name + ".dm3") 

    Else 

     Return "No full-size image found (for size reference)!" 

  

 Number xrange,yrange,i,x,y,ra = dia/2 

 GetSize(ref,xrange,yrange) 

  

 If(!DoesFileExist(dir + "centres.dm3"))  

  Return "Input file 'centres.dm3' unfound" 

 Image centres := OpenImage(dir + "centres.dm3") 

 

 Image mask := RealImage("mask",4,xrange,yrange) 

 Image beam_mask := RealImage("beam mask",4,dia,dia) 

 beam_mask = ra*ratio > iradius ? 1 : 0 

 

 For(i = 0; i < numbeams; i++) 

 { 

  x = GetPixel(centres,0,i) 

  y = GetPixel(centres,1,i) 

  Number t,l,b,r 

  t = y - ra < 0 ? 0 : y - ra 

  l = x - ra < 0 ? 0 : x - ra 

  b = y + ra > yrange ? yrange : y + ra 

  r = x + ra > xrange ? xrange : x + ra 

  mask[t,l,b,r] = beam_mask[t - (y - ra),l - (x - ra),dia - ((y + ra) - b),dia - ((x + ra) - r)] 

 } 

 

 SaveAsGatan3(mask,dir + "mask") 

 Return "mask.dm3" 

} 

// 1.3.2 Pattern coordinates function 

String PatternCoords(Image centres,Number dia,Number binning) 

{ 

 Number point1x,point1y,point2x,point2y,point3x,point3y,point4x,point4y,\ 

 AAA,BBB,vec1x,vec1y,vec2x,vec2y,zonex,zoney  

 String coords 

  

 point4x = GetPixel(centres,0,0) 

 point4y = GetPixel(centres,1,0) 

 zonex = GetPixel(centres,2,0) 

 zoney = GetPixel(centres,3,0) 

 

 point4x = point4x - zonex 

 point4y = point4y - zoney 

 vec1x = GetPixel(centres,2,1) - zonex 
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 vec1y = GetPixel(centres,3,1) - zoney 

 vec2x = GetPixel(centres,2,2) - zonex 

 vec2y = GetPixel(centres,3,2) - zoney 

 

 point1x = point4x - ((dia - binning)/2) 

 point1y = point4y - ((dia - binning)/2) 

 point2x = point4x + ((dia - binning)/2) 

 point2y = point4y - ((dia - binning)/2) 

 point3x = point4x - ((dia - binning)/2) 

 point3y = point4y + ((dia - binning)/2) 

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 

 AAA = ((point1x*vec2y) - (point1y*vec2x))/((vec1x*vec2y) - (vec1y*vec2x)) 

 BBB = (point1y/vec2y) - ((vec1y/vec2y)*AAA) 

 coords = ""+AAA+"  "+BBB+" \n" 

 

 AAA = ((point2x*vec2y) - (point2y*vec2x))/((vec1x*vec2y) - (vec1y*vec2x)) 

 BBB = (point2y/vec2y) - ((vec1y/vec2y)*AAA) 

 coords += ""+AAA+"  "+BBB+" \n" 

 

 AAA = ((point3x*vec2y) - (point3y*vec2x))/((vec1x*vec2y) - (vec1y*vec2x)) 

 BBB = (point3y/vec2y) - ((vec1y/vec2y)*AAA) 

 coords += ""+AAA+"  "+BBB+" \n" 

 

 /* The 4th pair of pattern coordinates is no longer used by QCBEDMS after 2017 */ 

 //AAA = ((point4x*vec2y) - (point4y*vec2x))/((vec1x*vec2y) - (vec1y*vec2x)) 

 //BBB = (point4y/vec2y) - ((vec1y/vec2y)*AAA) 

 //coords += ""+AAA+"  "+BBB+" \n" 

  

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 Return coords 

} 

// 1.3.3 IGQCBED step child function 

String IGQCBED(String dir,Number numbeams,Number dia,Number binning,\ 

  Number igqcbed_opt,Number expansionfactor,Number noisemask_opt,Number txt_opt) 

{ 

 If(!DoesFileExist(dir + "mask.dm3"))  

  Return "Input file 'mask.dm3' unfound!" 

 If(noisemask_opt == 1 && !DoesFileExist(dir + "NoiseMask.dm3")) 

  Return "Input file 'NoiseMask.dm3' unfound!" 

 If(!DoesFileExist(dir + "zeroth.dm3")) 

  Return "Input file 'zeroth.dm3' unfound!" 

 If(!DoesFileExist(dir + "sigma.dm3")) 

  Return "Input file 'sigma.dm3' unfound!" 

 If(!DoesFileExist(dir + "centres.dm3")) 

  Return "Input file 'centres.dm3' unfound!" 

   

 Image mask    := OpenImage(dir + "mask.dm3") 

 If(noisemask_opt == 1)  

  mask *= OpenImage(dir + "NoiseMask.dm3") 

 Image zeroth   := OpenImage(dir + "zeroth.dm3") 

 Image sigmaimage  := OpenImage(dir + "sigma.dm3") 

 Image centres   := OpenImage(dir + "centres.dm3") 

 Image sigmaimage_2 = sigmaimage**2 

  

 Number xrange,yrange,centx,centy,cycle,loopx,loopy 

 GetSize(zeroth,xrange,yrange) 

 Number diabe = dia*expansionfactor/binning 

 Number diab = dia/binning 

 

 Image gradientsum := RealImage("grandientsum",4,xrange,yrange) 

 Image sigmasum := RealImage("sigmasum",4,xrange,yrange) 

 Image masksum := RealImage("masksum",4,xrange,yrange) 

 Image fullweights := RealImage("fullweights",4,xrange,yrange) 

 Image selection := RealImage("selection",4,dia,dia) 

 Image hugeselection := RealImage("hugeselection",4,dia*expansionfactor,dia*expansionfactor) 

 Image largeselection := RealImage("largeselection",4,diabe,diabe) 

 Image binnedselection := RealImage("binnedselection",4,dia,dia) 

 Image outputdata := RealImage("outputdata",4,diabe,3*numbeams*diabe) 

 Image finaloutput := RealImage("finaloutput",4,diab,3*numbeams*diab) 

 Image temp //:= RealImage("temp",4,diab,numbeams*diab) 

 Image jpg := RealImage("Finaloutput JPG",4,3*diab,numbeams*diab) 

 

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 gradientsum = ImageShift(zeroth,binning,0) + ImageShift(zeroth,-binning,0) 

 sigmasum = ImageShift(sigmaimage_2,binning,0) + ImageShift(sigmaimage_2,-binning,0) 

 masksum = ImageShift(mask,binning,0) + ImageShift(mask,-binning,0) 

 

 gradientsum += ImageShift(zeroth,0,binning) + ImageShift(zeroth,0,-binning) 

 sigmasum += ImageShift(sigmaimage_2,0,binning) + ImageShift(sigmaimage_2,0,-binning) 

 masksum += ImageShift(mask,0,binning) + ImageShift(mask,0,-binning) 

 

 gradientsum += ImageShift(zeroth,binning,binning) + ImageShift(zeroth,-binning,-binning) 

 sigmasum += ImageShift(sigmaimage_2,binning,binning) + ImageShift(sigmaimage_2,-binning,-

binning) 

 masksum += ImageShift(mask,binning,binning) + ImageShift(mask,-binning,-binning) 

 

 gradientsum += ImageShift(zeroth,binning,-binning) + ImageShift(zeroth,-binning,binning) 

 sigmasum += ImageShift(sigmaimage_2,binning,-binning) + ImageShift(sigmaimage_2,-

binning,binning) 

 masksum += ImageShift(mask,binning,-binning) + ImageShift(mask,-binning,binning) 

 

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 gradientsum = (gradientsum/8) - zeroth 

 masksum = masksum + mask 

 sigmasum = Sqrt(sigmasum)/8 

 sigmasum = Sqrt(sigmasum**2 + sigmaimage_2) 

  

 fullweights = masksum > max(masksum) - 1 ? 1:0 

 

 for (cycle = 1 ; cycle <= numbeams ; cycle++) { 

  centx = GetPixel(centres,0,cycle - 1) 

  centy = GetPixel(centres,1,cycle - 1) 

   

  selection = ImageRegion(gradientsum,centx - dia/2,centy - dia/2,dia,dia) 

  hugeselection = Warp(selection,Trunc(icol/expansionfactor),Trunc(irow/expansionfactor)) 

   

  ClearImage(largeselection) 

 

  for (loopy = 1 ; loopy <= binning ; loopy++) 

   for (loopx = 1 ; loopx <= binning ; loopx++) { 

    If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

    largeselection = largeselection + Warp(hugeselection,icol*binning + (loopx - 

1),irow*binning + (loopy - 1)) 

   } 

 

  largeselection = (largeselection/(expansionfactor**2))/((binning**2)/(expansionfactor**2))  

  outputdata[(cycle - 1)*diabe,0,cycle*diabe,diabe] = largeselection 

 

  selection = ImageRegion(sigmasum,centx - dia/2,centy - dia/2,dia,dia) 

  hugeselection = Warp(selection,Trunc(icol/expansionfactor),Trunc(irow/expansionfactor)) 

   

  ClearImage(largeselection) 

 

  for (loopy = 1 ; loopy <= binning ; loopy++) 

   for (loopx = 1 ; loopx <= binning ; loopx++) { 

    If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

    largeselection = largeselection + (Warp(hugeselection,icol*binning + (loopx - 

1),irow*binning + (loopy - 1)))**2 

   } 

 

  largeselection = Sqrt(largeselection/(expansionfactor**2))/((binning**2)/(expansionfactor**2)) 

  outputdata[(numbeams + cycle - 1)*diabe,0,(numbeams + cycle)*diabe,diabe] = 

largeselection**2 

 

  selection = ImageRegion(fullweights,centx - dia/2,centy - dia/2,dia,dia) 

  hugeselection = Warp(selection,Trunc(icol/expansionfactor),Trunc(irow/expansionfactor)) 

   

  ClearImage(largeselection) 

 

  for (loopy = 1 ; loopy <= binning ; loopy++) 

   for (loopx = 1 ; loopx <= binning ; loopx++) { 

    If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

    largeselection = largeselection + Warp(hugeselection,icol*binning + (loopx - 

1),irow*binning + (loopy - 1)) 

   } 

 

  largeselection = largeselection < Max(largeselection) ? 0 : 1 

  outputdata[(2*numbeams + cycle - 1)*diabe,0,(2*numbeams + cycle)*diabe,diabe] = 

largeselection 

 } 

 

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 finaloutput = Warp(outputdata,icol*expansionfactor + Round((expansionfactor - 1)/2),\ 

   irow*expansionfactor + Round((expansionfactor - 1)/2)) 

  

 // Set 'zero' pixels in 'sigma' section of 'finaloutput' to 1, because 'sigma' will be divisor 

 Image finalsigma := finaloutput[numbeams*diab,0,2*numbeams*diab,diab] 

 finalsigma = finalsigma == 0 ? 1 : finalsigma 

  

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 // Generate high-contrast JPG overview 

 jpg[0,0,numbeams*diab,diab] = finaloutput[0,0,numbeams*diab,diab] 

 jpg[0,diab,numbeams*diab,2*diab] = finaloutput[numbeams*diab,0,2*numbeams*diab,diab] 

 jpg[0,2*diab,numbeams*diab,3*diab] = finaloutput[2*numbeams*diab,0,3*numbeams*diab,diab] 

 temp := jpg[0,0,numbeams*diab,diab] 

 temp = temp > 0 ? 1:0 

 temp := jpg[0,diab,numbeams*diab,2*diab] 

 temp -= Min(temp) 

 temp /= Max(temp) 

 jpg = jpg > 1 ? 1:jpg 

  

 // Crop 'weights' section and save separately 

 temp := finaloutput[2*numbeams*diab,0,3*numbeams*diab,diab] 

  

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 SaveAsGatan3(finaloutput,dir + "intensities") 

 SaveAsGatan3(temp,dir + "weights") 

 ImageDocument jpg_doc = CreateImageDocument("JPG") 

 ImageDocumentAddImage(jpg_doc,jpg) 

 ImageDocumentSaveToFile(jpg_doc,"JPEG/JFIF Format",m_dir + "JPG\\Final_" + sub_name) 

  

 // Generate 'Pattern Coordinates.txt' 

 Number patterncoords_id = CreateFileForWriting(dir + "Pattern Coordinates.txt") 

 Object patterncoords_stream = NewStreamFromFileReference(patterncoords_id,1) 

 StreamWriteAsText(patterncoords_stream,0,PatternCoords(centres,dia,binning)) 

 CloseFile(patterncoords_id) 

  

 // Save as Text Images 

 If(txt_opt == 1) { 

  If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

  SaveAsText(finaloutput,dir + "intensitydata") 

  If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

  SaveAsText(temp,dir + "weights") 

   

  // Generate ready-to-go 'in.dat' from 'intensitydata.txt' 

  Number read_id = OpenFileForReading(dir + "intensitydata.txt") 

  Object read_stream = NewStreamFromFileReference(read_id,1) 

  String content = StreamReadAsText(read_stream,0,StreamGetSize(read_stream)) 

  CloseFile(read_id) 

 

  Number write_id = CreateFileForWriting(dir + "in.dat") 

  Object write_stream = NewStreamFromFileReference(write_id,1) 

  StreamWriteAsText(write_stream,0,"" + diab + " " + diab + " " + igqcbed_opt + "\n") 

  StreamWriteAsText(write_stream,0,content) 

  CloseFile(write_id) 
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  Return "in.dat, weights.dat, intensitydata.txt, intensities.dm3, JPG, weights.dm3 & Pattern 

Coordinates.txt" 

 } 

 

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 Return "intensities.dm3, JPG, weights.dm3, & Pattern Coordinates.txt" 

} 

// 1.3.4 FOR007.DAT step child function 

String FOR007_DAT(String dir,Number dia,Number binning) 

{ 

 If(!DoesFileExist(dir + "centres.dm3")) 

  Return "Input file 'centres.dm3' unfound!" 

 If(!DoesFileExist(m_dir + "Misc\\FOR007_head.txt"))  

  Return "Input file 'FOR007_head.txt' unfound in folder 'Misc'!" 

 If(!DoesFileExist(m_dir + "Misc\\FOR007_tail.txt"))  

  Return "Input file 'FOR007_tail.txt' unfound in folder 'Misc'!" 

 

 Image centres := OpenImage(dir + "centres.dm3") 

 Number head_id = OpenFileForReading(m_dir + "Misc\\FOR007_head.txt") 

 Number tail_id = OpenFileForReading(m_dir + "Misc\\FOR007_tail.txt") 

 Object head_stream = NewStreamFromFileReference(head_id,1) 

 Object tail_stream = NewStreamFromFileReference(tail_id,1) 

 String head_content = StreamReadAsText(head_stream,0,StreamGetSize(head_stream)) + " \n" 

 String tail_content = StreamReadAsText(tail_stream,0,StreamGetSize(tail_stream)) + " \n" 

 CloseFile(head_id) 

 CloseFile(tail_id) 

  

 Number for7_id = CreateFileForWriting(dir + "FOR007.DAT") 

 Object for7_stream = NewStreamFromFileReference(for7_id,1) 

 StreamWriteAsText(for7_stream,0,head_content + PatternCoords(centres,dia,binning) + 

tail_content) 

 CloseFile(for7_id) 

  

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 Return "FOR007.DAT" 

} 

// 1.3.5 parameters.dat step child function 

String Parameters_dat(String dir,String specimen_name,Number numbeams,Number dia,\ 

  Number binning,Number igqcbed_opt,Number piecebin,Number refcycle,Number randstep) 

{ 

 Image ref 

 If(DoesFileExist(dir + "zeroth.dm3")) 

  ref := OpenImage(dir + "zeroth.dm3") 

 Else 

  If(DoesFileExist(dir + "sigma.dm3")) 

   ref := OpenImage(dir + "sigma.dm3") 

  Else 

   If(!DoesFileExist(dir + "mask.dm3")) 

    ref := OpenImage(dir + "mask.dm3") 

   Else 

    If(DoesFileExist(dir + specimen_name + ".dm3"))       

     ref := OpenImage(dir + specimen_name + ".dm3") 

    Else 

     If(DoesFileExist(dir + "_PSFCorrected.dm3"))       

      ref := OpenImage(dir + "_PSFCorrected.dm3") 

     Else 

      Return "No full-size image found (for size reference)!" 

  

 Number xrange,yrange,i,x,y 

 GetSize(ref,xrange,yrange) 

  

 If(!DoesFileExist(dir + "centres.dm3")) 

  Return "Input file 'centres.dm3' unfound!" 

 

 Image centres := OpenImage(dir + "centres.dm3") 

 

 Number filepm_id = CreateFileForWriting(dir + "parameters.dat") 

 Object filepm_stream = NewStreamFromFileReference(filepm_id,1) 

  

 StreamWriteAsText(filepm_stream,0,"" + igqcbed_opt + " " + xrange + " " + yrange + " " + dia + 

" " + dia + " ") 

 StreamWriteAsText(filepm_stream,0,"" + dia/binning + " " + dia/binning + " " + binning + " " + 

piecebin + " ") 

 StreamWriteAsText(filepm_stream,0,"" + refcycle + " " + randstep + " \n") 

 StreamWriteAsText(filepm_stream,0,"" + numbeams + " \n") 

  

 For(i = 0; i < numbeams; ++i) { 

  If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

  x = GetPixel(centres,0,i) 

  y = GetPixel(centres,1,i) 

   

  StreamWriteAsText(filepm_stream,0,"" + x + " " + y + " " + "0 \n") 

 } 

  

 CloseFile(filepm_id) 

  

 If(abort) Return "Process canceled" //Stop processing if "Stop" pressed 

 Return "parameters.dat" 

} 

 

// 1.3  IGQCBED child functions end 

// 

////////////////////////////////////////////////////////////////// 

 

 

////////////////////////////////////////////////////////////////// 

// 

// 2  Batch Processing looping functions 

 

// 2.0.1 Update current paths function 

Void UpdateCurrentPaths(Number tag_opt) { 

 img_name = img_pre + noi + img_suf 

 img_path = m_dir + img_name + ".dm3" 

 sub_name = sub_pre + noi + sub_suf 

 sub_dir = m_dir + sub_name + "\\" 

  

 If(tag_opt == 1) { 

  TagGroupSetTagAsString(settings,"m_dir",m_dir) 

  TagGroupSetTagAsString(settings,"sub_dir",sub_dir) 

  TagGroupSetTagAsString(settings,"img_path",img_path) 

  TagGroupSetTagAsString(settings,"img_name",img_name) 

  TagGroupSetTagAsString(settings,"sub_name",sub_name) 

  TagGroupSetTagAsNumber(settings,"noi",noi) 

  TagGroupSetTagAsString(settings,"exit_text",exit_text) 

  TagGroupSetTagAsnumber(settings,"abort",abort) 

 } 

} 

// 2.1  AMMPSF looping function  

Number AMMPSF_Batch() 

{ 

 Number num_apertures = 0, num_tags 

 TagGroup one_file,  all_files = GetFilesInDirectory(m_dir + "PSF\\",1) 

 String filename 

 CreateDirectory(m_dir + "PSF\\Unwanted PSFs\\") 

  

 StartLog("AMMPSF Measurement") 

 Log("\nPSF measurement cycles = " + psf_nummeas) 

 Log("\n\nBatch processing starts:") 

 Log("\nAperture image: first 5 integer pixels of PSF curve (in ratio to max pixel)") 

  

 num_tags = TagGroupCountTags(all_files) 

 For(Number i = 0; i < num_tags; i++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  TagGroupGetIndexedTagAsTagGroup(all_files,i,one_file) 

  TagGroupGetTagAsString(one_file,"Name",filename) 

  If(PathExtractExtension(filename,0) == "dm3") { 

   ++num_apertures 

   Log("\n\t" + filename + ": ") 

   AMMPSF(m_dir + "PSF\\" + filename,psf_nummeas) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

  } 

   

  mainpanel_win.DLGSetProgress("MainProgress",(i + 1)/num_tags) 

 } 

 mainpanel_win.DLGSetProgress("MainProgress",1) 

 mainpanel_win.DLGSetProgress("SubProgress",1) 

 Log("\n\n\n" + num_apertures + " aperture images processed.") 

  

 FinishLog("AMMPSF") 

  

 ShowAlert("" + num_apertures + " aperture images processed!",2) 

  

 Return 0 

} 

// 2.2  PSF averaging function 

Number PSFAvg_Batch() 

{ 

 Number num_psfs = 0,num_apertures = 0, max, num_tags 

 TagGroup one_tag, all_list = GetFilesInDirectory(m_dir + "PSF\\",2) 

 TagGroup aperture_list = NewTagList() 

 String folder_name,dir,file_name,aperture_path 

 Image avgpsf,aperture 

  

 CreateDirectory(m_dir + "PSF\\Averaged PSF\\") 

  

 StartLog("PSFs Average") 

 Log("\nAveraging starts:") 

 Log("\nPSF file  |  first 5 integer pixels of PSF curve (in ratio to max pixel)") 

  

 num_tags = TagGroupCountTags(all_list) 

 For(Number i = 0; i < num_tags; i++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  TagGroupGetIndexedTagAsTagGroup(all_list,i,one_tag) 

  TagGroupGetTagAsString(one_tag,"Name",folder_name) 

   

  If(folder_name != "Averaged PSF" && folder_name != "Unwanted PSFs") { 

   dir = m_dir + "PSF\\" + folder_name + "\\" 

   file_name = "" 

   If(DoesFileExist(dir + "NormalisedPSF.dm3")) 

    file_name = "NormalisedPSF.dm3" 

   Else If(DoesFileExist(dir + "psf.dm3")) 

    file_name = "psf.dm3" 

     

   If(file_name != "") { 

    Image psf := OpenImage(dir + file_name) 

    psf /= Max(psf) 

      

    Log("\n" + ++num_psfs + ". " + folder_name + "\\" + file_name) 

    For(Number p = 0; p < 5; p++) 

     Log(", " + GetPixel(psf,p,0)) 

     

    If(abort) Return -1 //Stop processing if "Stop" pressed 

    If(ImageIsValid(avgpsf)) 

     avgpsf += psf 

    Else 

     avgpsf = psf 

     

    TagGroupInsertTagAsString(aperture_list,Infinity(),folder_name) // Storage aperture 

images 

   } 

  } 

  mainpanel_win.DLGSetProgress("MainProgress",(i + 1)/num_tags/2) 

 } 

 If(abort) Return -1 //Stop processing if "Stop" pressed 

 avgpsf /= Sum(avgpsf) 

 Log("\n\n" + num_psfs + " PSFs averaged over.") 

  

 max = Max(avgpsf) 
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 Log("\n\nFirst 5 integer pixels of PSF curve (in ratio to max pixel):\n") 

 For(Number p = 0; p < 5; p++) 

  Log(GetPixel(avgpsf,p,0)/max + " ") 

   

 SaveAsGatan3(avgpsf,m_dir + "PSF\\Averaged PSF\\AverageNormalisedPSF.dm3") 

 Log("\nAverage PSF normalised and saved as '" + m_dir + "PSF\\Averaged 

PSF\\AverageNormalisedPSF.dm3") 

  

 Log("\n\n\nAperture image deconvolution: ") 

 num_tags = TagGroupCountTags(aperture_list) 

 For(Number i = 0; i < num_tags; i++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  TagGroupGetIndexedTagAsString(aperture_list,i,file_name) 

  aperture_path = m_dir + "PSF\\" + file_name + ".dm3" 

  If(DoesFileExist(aperture_path)) { 

   Log("\n\t" + ++num_apertures + ". " + file_name + ".dm3 -> Averaged 

PSF\\DeconvolutedAperture_" + file_name + ".dm3") 

   aperture := OpenImage(aperture_path) 

   aperture = RealIFFT(RealFFT(aperture)/RealFFT(avgpsf)) 

   SaveAsGatan3(aperture,m_dir + "PSF\\Averaged PSF\\DeconvolutedAperture_" + file_name) 

  } 

  mainpanel_win.DLGSetProgress("MainProgress",(i + 1)/num_tags/2 + 0.5) 

 } 

 If(abort) Return -1 //Stop processing if "Stop" pressed 

 mainpanel_win.DLGSetProgress("MainProgress",1) 

 mainpanel_win.DLGSetProgress("SubProgress",1) 

 Log("\n\n" + num_apertures + " deconvoluted aperture images saved to '" + m_dir + 

"PSF\\Averaged PSF\\'") 

  

 FinishLog("PSFAvg") 

  

 ShowAlert("" + num_psfs + " PSFs averaged over!\n\n" + num_apertures + \ 

   " deconvoluted aperture images saved to 'PSF\\Averaged PSF\\'",2) 

    

 Return 0 

} 

// 2.3  PSF correction looping function 

Number PSFCorr_Batch() 

{ 

 Number num_specimens = 0 

 Image psf := OpenImage(psf_path) 

 psf = psf/Sum(psf) 

 Image otf = RealFFT(psf) 

 

 StartLog("PSF Correction") 

 Log("\nTry images from " + img_pre + num_start + img_suf + " to " + img_pre + num_end + 

img_suf) 

 Log("\nPSF file: " + psf_path) 

 Log("\n\nBatch processing starts:") 

  

 For(noi = num_start; noi <= num_end; noi++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  UpdateCurrentPaths(0) 

   

  If(DoesFileExist(img_path)) { 

   Log("\n\t" + img_name + ".dm3 - ") 

   CreateDirectory(sub_dir) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   SaveAsGatan3(RealIFFT(RealFFT(OpenImage(img_path))/otf),sub_dir + img_name + 

"_PSFCorrected") 

   Log("Done; saved to '" + sub_dir + img_name + "_PSFCorrected.dm3'") 

   num_specimens++ 

  } 

  mainpanel_win.DLGSetProgress("MainProgress",(noi - num_start + 1)/(num_end - num_start + 

1)) 

 } 

 If(abort) Return -1 //Stop processing if "Stop" pressed 

 mainpanel_win.DLGSetProgress("MainProgress",1) 

 mainpanel_win.DLGSetProgress("SubProgress",1) 

  

 Log("\n\n\n" + num_specimens + " specimen images processed.") 

  

 FinishLog("PSFCorr") 

  

 ShowAlert("" + num_specimens + " specimen images processed!",2) 

  

 Return 0 

} 

// 2.4  Noise characterisation looping function 

Number NoiseChar_Batch() 

{ 

 Number num_specimens = 0 

  

 StartLog("Noise Characterisation") 

 If(nc_raw == 1) 

  Log("\nTry images from " + img_pre + num_start + img_suf + " to " + img_pre + num_end + 

img_suf) 

 Else 

  Log("\nTry subfolders from " + sub_pre + num_start + sub_suf + " to " + sub_pre + num_end + 

sub_suf) 

 Log("\nTotal number of slices for sampling = " + nc_numslice) 

 Log("\nPiecewise binning factor for images = " + nc_bin) 

 Log("\nDark noise = " + nc_darknoise) 

 Log("\nPre-determined mask = " + nc_mask + " (1 - yes, 0 - no)")  

 Log("\nMask image: " + nc_mask_path) 

 Log("\nGain normalisation target = " + nc_normal) 

 Log("\nAlso output *.txt copies = " + nc_txt + " (1 - yes, 0 - no)")  

 Log("\nApply on raw data instead of PSF corrected ones = " + nc_raw + " (1 - yes, 0 - no)") 

 Log("\n\nBatch processing starts:") 

  

 For(noi = num_start; noi <= num_end; noi++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  UpdateCurrentPaths(0) 

   

  If(nc_raw == 0)  

   img_path = m_dir + img_name + ".dm3" 

  Else 

   img_path = sub_dir + img_name + "_PSFCorrected.dm3" 

    

  If(DoesFileExist(img_path)) { 

   CreateDirectory(sub_dir) 

   Log("\n\t" + PathExtractFileName(img_path,0) + " - ") 

   NoiseChar(img_path,sub_dir,nc_darknoise,nc_mask,nc_normal,nc_numslice,nc_bin,nc_txt) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   Log("Done") 

   num_specimens++ 

  } 

  mainpanel_win.DLGSetProgress("MainProgress",(noi - num_start + 1)/(num_end - num_start + 

1)) 

 } 

 Log("\n\n\n" + num_specimens + " images processed.") 

 mainpanel_win.DLGSetProgress("MainProgress",1) 

 mainpanel_win.DLGSetProgress("SubProgress",1) 

  

 FinishLog("NoiseChar") 

  

 ShowAlert("" + num_specimens + " images processed!",2) 

  

 Return 0 

} 

// 2.5  IGQCBED looping function 

Number IGQCBED_Batch() 

{ 

 Number num_subfolders = 0 

 CreateDirectory(m_dir + "JPG\\") 

  

 StartLog("IGQCBED Preparation") 

 Log("\nTry subfolders from " + sub_pre + num_start + sub_suf + " to " + sub_pre + num_end + 

sub_suf) 

 Log("\n\n\nProcessing parameters:") 

 Log("\n\tNumber of beams = " + ig_numbeams) 

 Log("\n\tBeam diameter = " + ig_dia) 

 Log("\n\tOutput binning = " + ig_bin) 

 Log("\n\tIGQCBED switch = " + ig_switch + " (1 - gradient, 0 - conventional)") 

 Log("\n\t1. Draw Mask option: Mask ratio = " + ig_ratio) 

 Log("\n\t2. IGQCBED options: Magnification = " + ig_magn + ", Noise mask = " + ig_noisemask 

+ \ 

   ", TXT copies = " + ig_finaltxt + " (1 - yes, 0 - no)") 

 Log("\n\t4. parameters.dat options: Piecewise binning = " + ig_piecebin + ", Cycles = " + 

gdc_cycles + ", Random steps = " + gdc_rand) 

 Log("\n\n\nBatch processing starts:") 

  

 For(noi = num_start; noi <= num_end; noi++) { 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  UpdateCurrentPaths(0) 

   

  IF(DoesDirectoryExist(sub_dir)) { 

   Log("\n\t" + sub_name) 

   num_subfolders++ 

    

   if(ig_step_mask == 1) 

    Log("\n\t\t1. Draw Mask: " + DrawMask(sub_dir,img_name,ig_numbeams,ig_dia,ig_ratio)) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   if(ig_step_igqcbed == 1) 

    Log("\n\t\t2. IGQCBED: " + 

IGQCBED(sub_dir,ig_numbeams,ig_dia,ig_bin,ig_switch,ig_magn,ig_noisemask,ig_finaltxt)) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   if(ig_step_for7 == 1) 

    Log("\n\t\t3. FOR007.DAT: " + FOR007_DAT(sub_dir,ig_dia,ig_bin)) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   if(ig_step_filepm == 1) 

    Log("\n\t\t4. parameters.dat: " + 

Parameters_dat(sub_dir,img_name,ig_numbeams,ig_dia,ig_bin,\ 

      ig_switch,ig_piecebin,gdc_cycles,gdc_rand)) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

  } 

  mainpanel_win.DLGSetProgress("MainProgress",(noi - num_start + 1)/(num_end - num_start + 

1)) 

 } 

 Log("\n\n" + num_subfolders + " sub-folders processed.") 

 mainpanel_win.DLGSetProgress("MainProgress",1) 

 mainpanel_win.DLGSetProgress("SubProgress",1) 

  

 FinishLog("IGQCBED") 

  

 ShowAlert("" + num_subfolders + " sub-folders processed!",2) 

  

 Return 0 

} 

// 2.6  Extra step looping function 

Number Extra_Batch() 

{ 

 TagGroupSetTagAsTagGroup(GetUserPersistentTagGroup(),"BatchQCBEDPreparation",settings) 

  

 StartLog("Extra Step") 

 Log("\nExternal script: " + ex_script_path) 

 Log("\nLoop option = " + ex_loop) 

 If(ex_loop == 0) { 

  Log("\nNo batch looping OR customised looping") 

  Log("\n\nExternal script starts:") 

  UpdateCurrentPaths(1) 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  exit_code = ExecuteScriptFile(ex_script_path) 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  TagGroupGetTagAsString(settings,"exit_text",exit_text) 

   

  If(exit_code == 0 && exit_text == "") 

   exit_text = "Seems like finished without error" 
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  mainpanel_win.DLGSetProgress("MainProgress",1) 

  mainpanel_win.DLGSetProgress("SubProgress",1) 

    

  Log("\n" + exit_text) 

  FinishLog("Extra") 

  ShowAlert("Extra Step finished!",2) 

 } Else { 

  Number count = 0 

  If(ex_loop == 1)  

   Log("\nTry images from " + img_pre + num_start + img_suf + " to " + img_pre + num_end + 

img_suf + "\n") 

  Else 

   Log("\nTry subfolders from " + sub_pre + num_start + sub_suf + " to " + sub_pre + num_end 

+ sub_suf + "\n") 

    

  Log("\n\nBatch processing starts:") 

   

  For(noi = num_start; noi <= num_end; noi++) { 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

   UpdateCurrentPaths(1) 

    

   If(ex_loop == 1 && DoesFileExist(img_path)) { 

    Log("\n\t" + img_name + ".dm3 - ") 

    CreateDirectory(sub_dir) 

   } Else If(ex_loop == 2 && DoesDirectoryExist(sub_dir)) 

    Log("\n\t" + sub_name + " - ") 

   Else 

    Continue 

    

   exit_code = ExecuteScriptFile(ex_script_path) 

   If(abort) Return -1 //Stop processing if "Stop" pressed 

    

   TagGroupGetTagAsString(settings,"exit_text",exit_text) 

   If(exit_code == 0 && exit_text == "") 

    exit_text = "Seems like finished without error" 

     

   Log(exit_text) 

 

   count++ 

    

   mainpanel_win.DLGSetProgress("MainProgress",(noi - num_start + 1)/(num_end - num_start 

+ 1)) 

  } 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

  mainpanel_win.DLGSetProgress("MainProgress",1) 

  mainpanel_win.DLGSetProgress("SubProgress",1) 

   

  Log("\n\n\n" + count + " specimen images/subfolders processed.") 

  FinishLog("Extra") 

  ShowAlert("" + count + " specimen images/subfolders processed!",2) 

 }  

  

 Return 0 

} 

 

 

// 2  Batch Processing function end 

// 

////////////////////////////////////////////////////////////////// 

 

 

////////////////////////////////////////////////////////////////// 

// 

// 3  GUI functions 

 

TagGroup empty_l   = DLGCreateLabel("") 

 

// 3.1  AMMPSF tag 

TagGroup AMMPSF_tag() 

{ 

 TagGroup measure_l1  = DLGCreateLabel("1. Create a folder named 'PSF' under the Main 

Directory.").DLGAnchor("West") 

 TagGroup measure_l2  = DLGCreateLabel("2. Put all aperture images into the 'PSF' 

folder.").DLGAnchor("West") 

 TagGroup measure_l3  = DLGCreateLabel("3. All *.dm3 files in this folder will be 

processed.").DLGAnchor("West") 

 TagGroup psf_nummeas_g = DLGCreateIntegerField("Measurement 

cycles:",psf_nummeas_f,psf_nummeas,5) 

 TagGroup go_btn   = DLGCreatePushButton(" Measure AMMPSFs 

","AMMPSF_Go").DLGIdentifier("AMMPSFGo").DLGInternalPadding(5,5).DLGExternalPadding(

20,5) 

 TagGroup measure_box = DLGCreateBox("1. AMMPSF Measurement").DLGFill("XY") 

   measure_box.DLGAddElement(DLGGroupItems(measure_l1,measure_l2,measure_l3)) 

  

 measure_box.DLGAddElement(DLGGroupItems(psf_nummeas_g,go_btn).DLGTableLayout(2,1,

0)) 

  

 TagGroup average_l1  = DLGCreateLabel("1. Check and move unwanted PSF-result folders to 

'Unwanted PSFs'.").DLGAnchor("West") 

 TagGroup average_l2  = DLGCreateLabel("2. All PSF-result folders will be averaged over, 

except the 'Averaged PSF'\n    and those in the 'Unwanted PSFs' folders.").DLGAnchor("West") 

 TagGroup average_l3  = DLGCreateLabel("3. The averaged PSF-result will be in the 'Averaged 

PSF' folder.").DLGAnchor("West") 

 TagGroup average_btn  = DLGCreatePushButton(" Check folders && Start Averaging 

","PSFAvg_Go").DLGIdentifier("PSFAvgGo").DLGInternalPadding(5,5) 

 TagGroup average_box = DLGCreateBox("2. PSFs Average").DLGFill("XY") 

   average_box.DLGAddElement(DLGGroupItems(average_l1,average_l2,average_l3)) 

   average_box.DLGAddElement(average_btn) 

  

 TagGroup ammpsf_dlg  = DLGCreateDialog("AMMPSF").DLGFill("X").DLGExpand("Y") 

   ammpsf_dlg.DLGAddElement(measure_box) 

   ammpsf_dlg.DLGAddElement(average_box) 

    

 Return ammpsf_dlg 

} 

// 3.2  PSF correction tag 

TagGroup PSFCorr_tag() 

{ 

 String label1   = "1. Choose a normalised PSF image (whose sum = 1) for deconvolution. \n" 

   label1 += "    E.g. 'AverageNormalisedPSF.dm3' or 'NormalisedPSF.dm3'. " 

 TagGroup psfc_l1  = DLGCreateLabel(label1) 

    

 String label2  = "2. Measure the background noise of aperture images deconvoluted by \n" 

   label2 += "    this PSF for 'Dark noise' in Noise Characterisation." 

 TagGroup psfc_l2  = DLGCreateLabel(label2) 

  

 TagGroup psf_path_btn  = DLGCreatePushButton(" PSF ","GetPSFPath") 

   psf_path_f   = DLGCreateStringField(psf_path,60) 

  

 TagGroup go_btn   = DLGCreatePushButton(" Start PSF Correction 

","PSFCorr_Go").DLGIdentifier("PSFCorrGo").DLGInternalPadding(5,5).DLGExternalPadding(10,

5) 

  

 TagGroup psf_corr_dlg  = DLGCreateDialog("").DLGExpand("XY") 

   psf_corr_dlg.DLGAddELement(psfc_l1,"","West") 

  

 psf_corr_dlg.DLGAddELement(DLGGroupItems(psf_path_btn,psf_path_f).DLGTableLayout(2,1,

0)) 

   psf_corr_dlg.DLGAddELement(go_btn) 

   psf_corr_dlg.DLGAddELement(psfc_l2,"","West") 

    

 Return psf_corr_dlg 

} 

// 3.3  Noise Characterisation tag 

TagGroup NoiseChar_tag() 

{ 

   nc_mask_r  = DLGCreateRadioList(nc_mask,"OptionChanged") 

   nc_mask_r.DLGAddRadioItem("No -",0).DLGExternalPadding(0,2) 

   nc_mask_r.DLGAddRadioItem("Yes -",1).DLGExternalPadding(0,2) 

 TagGroup nc_normal_g = DLGCreateRealField("Gain Normalisation 

target:",nc_normal_f,nc_normal,22,1) 

 TagGroup nc_mask_btn = DLGCreatePushButton("Mask","GetMaskPath") 

 TagGroup nc_mask_path_g = DLGCreateStringField("",nc_mask_path_f,nc_mask_path,40) 

 TagGroup mask_box   = DLGCreateBox("Apply pre-determined mask?")  

   mask_box.DLGAddElement(nc_mask_r,"Left","") 

   mask_box.DLGAddElement(nc_normal_g.DLGIdentifier("GainNormGroup")) 

  

 mask_box.DLGAddElement(DLGGroupItems(nc_mask_btn,nc_mask_path_g).DLGTableLayout(

2,1,0).DLGIdentifier("MaskPathGroup")) 

  

 TagGroup numslice_g  = DLGCreateIntegerField("Total number of slices for 

sampling:",nc_numslice_f,nc_numslice,10).DLGAnchor("East") 

 TagGroup bin_g    = DLGCreateIntegerField("Piecewise binning factor for 

images:",nc_bin_f,nc_bin,5).DLGAnchor("East") 

 TagGroup darknoisehelp = DLGCreatePushButton("?","DarkNoiseHelp").DLGAnchor("East") 

 TagGroup darknoise_g = DLGCreateRealField("Dark noise: 

",nc_darknoise_f,nc_darknoise,8,1).DLGAnchor("East") 

 TagGroup field_gp  = 

DLGGroupItems(numslice_g,bin_g,darknoisehelp.DLGSide("Right"),darknoise_g) 

  

   nc_txt_c  = DLGCreateCheckBox("Also output Text Images",nc_txt).DLGAnchor("West") 

   nc_raw_c   = DLGCreateCheckBox("Apply on raw data instead of PSF corrected 

ones",nc_raw).DLGAnchor("West") 

 TagGroup checkbox_gp = DLGGroupItems(nc_txt_c,nc_raw_c) 

    

 TagGroup go_btn   = DLGCreatePushButton(" Start Noise Characterisation 

","NoiseChar_Go").DLGIdentifier("NoiseCharGo").DLGInternalPadding(5,5) 

    

 TagGroup noise_char_dlg = DLGCreateDialog("Noise Characterising 

Options").DLGExpand("XY") 

   noise_char_dlg.DLGAddElement(field_gp,"","") 

   noise_char_dlg.DLGAddElement(mask_box,"","") 

   noise_char_dlg.DLGAddElement(checkbox_gp,"","") 

   noise_char_dlg.DLGAddElement(empty_l,"","") 

   noise_char_dlg.DLGAddElement(go_btn,"","") 

  

 Return noise_char_dlg 

} 

// 3.4  IGQCBED tag 

TagGroup IGQCBED_tag() 

{ 

 TagGroup common_dlg   = DLGCreateDialog("Common 

parameters").DLGExternalPadding(3,0).DLGTableLayout(3,2,0) 

   common_dlg.DLGAddElement(DLGCreateIntegerField("Number of 

beams:",ig_numbeams_f,ig_numbeams,4).DLGIdentifier("NumbeamsGroup"),"","East") 

   common_dlg.DLGAddElement(DLGCreateIntegerField("   Beam 

diameter:",ig_dia_f,ig_dia,6).DLGIdentifier("DiaGroup"),"","East") 

   common_dlg.DLGAddElement(DLGCreateIntegerField("   

Method:",ig_switch_f,ig_switch,3).DLGIdentifier("MethodGroup"),"","East") 

   common_dlg.DLGAddElement(DLGCreateIntegerField("Output 

binning:",ig_bin_f,ig_bin,4).DLGIdentifier("BinningGroup"),"","East") 

  

 TagGroup manual_step_1_l = DLGCreateLabel("Pre-1: Find beam centres and save as 

'centres.dm3' in each subfolder.") 

  

   ig_step_mask_c   = DLGCreateCheckBox("1. Draw Mask -

",ig_step_mask,"OptionChanged") 

 TagGroup mask_g    = 

DLGCreateRealField("Ratio:",ig_ratio_f,ig_ratio,8,3).DLGIdentifier("MaskOptions") 

 

 TagGroup manual_step_2_l = DLGCreateLabel("Pre-2: Enter zone-axis & basic vectors in 

'centres.dm3' in each subfolder.") 

  

   ig_step_igqcbed_c = DLGCreateCheckBox("2. IGQCBED -

",ig_step_igqcbed,"OptionChanged") 

 TagGroup ig_magn_g   = DLGCreateRealField("Magnification:",ig_magn_f,ig_magn,6,0) 

    ig_noisemask_c  = DLGCreateCheckBox("Noise mask",ig_noisemask) 

    ig_finaltxt_c  = DLGCreateCheckBox("TXT copies",ig_finaltxt) 
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 TagGroup igqcbed_opt_gp  = 

DLGGroupItems(ig_magn_g,ig_noisemask_c,ig_finaltxt_c).DLGTableLayout(3,1,0).DLGIdentifier(

"IGQCBEDOptions") 

  

 TagGroup manual_step_3_l = DLGCreateLabel("Pre-3: Prepare 'FOR007_head.txt' & 

'FOR007_tail.txt' in the 'Misc' folder.") 

 

   ig_step_for7_c  = DLGCreateCheckBox("3. Pattern-matching command file: 

FOR007.DAT",ig_step_for7,"OptionChanged") 

    

   ig_step_filepm_c  = DLGCreateCheckBox("4. Geometric Distortion Correction command 

file: parameters.dat",ig_step_filepm,"OptionChanged") 

 TagGroup ig_piecebin_g  = DLGCreateIntegerField("Piecewise 

binning:",ig_piecebin_f,ig_piecebin,4) 

 TagGroup gdc_cycles_g   = DLGCreateIntegerField("Cycles:",gdc_cycles_f,gdc_cycles,6) 

 TagGroup gdc_rand_g   = DLGCreateIntegerField("Random:",gdc_rand_f,gdc_rand,6) 

 TagGroup filepm_opt_gp  = 

DLGGroupItems(ig_piecebin_g,gdc_cycles_g,gdc_rand_g).DLGTableLayout(3,1,0).DLGIdentifier(

"FilepmOptions") 

  

 TagGroup step_box    = DLGCreateBox("Steps").DLGExternalPadding(-3,0) 

   step_box.DLGAddElement(manual_step_1_l,"","West") 

  

 step_box.DLGAddElement(DLGGroupItems(ig_step_mask_c,mask_g).DLGTableLayout(2,1,0),"

","West") 

   step_box.DLGAddElement(manual_step_2_l,"","West") 

  

 step_box.DLGAddElement(DLGGroupItems(ig_step_igqcbed_c,igqcbed_opt_gp).DLGTableLayo

ut(2,1,0),"","West") 

   step_box.DLGAddElement(manual_step_3_l,"","West") 

   step_box.DLGAddElement(ig_step_for7_c,"","West") 

   step_box.DLGAddElement(ig_step_filepm_c,"","West") 

   step_box.DLGAddElement(filepm_opt_gp,"","") 

  

 TagGroup checklist_btn   = DLGCreatePushButton("File 

Checklist","CheckFiles").DLGInternalPadding(5,5).DLGExternalPadding(30,0) 

 TagGroup go_btn    = DLGCreatePushButton("Go Go 

Go","IGQCBED_Go").DLGIdentifier("IGQCBEDGo").DLGInternalPadding(5,5).DLGExternalPad

ding(30,0) 

  

 TagGroup igqcbed_dlg   = DLGCreateDialog("Process").DLGFill("X") 

   igqcbed_dlg.DLGAddElement(common_dlg.DLGFill("X")) 

   igqcbed_dlg.DLGAddElement(step_box.DLGFill("X")) 

  

 igqcbed_dlg.DLGAddElement(DLGGroupItems(checklist_btn,go_btn).DLGTableLayout(2,1,0)) 

  

 Return igqcbed_dlg 

} 

// 3.4.1 Check processing files for IGQCBED 

Void CheckProcFiles() 

{ 

 String head,tail,label1,label2 

 If(DoesFileExist(m_dir + "Misc\\FOR007_head.txt"))  

  head = "is in place!" 

 Else 

  head = "UNFOUND in the 'Misc' folder!" 

 If(DoesFileExist(m_dir + "Misc\\FOR007_tail.txt"))  

  tail = "is in place!" 

 Else 

  tail = "UNFOUND in the 'Misc' folder!" 

   

 label1  = "FOR007.DAT templates:\n" 

 label1 += "    FOR007_head.txt " + head + "\n" 

 label1 += "    FOR007_tail.txt " + tail 

  

 label2  = "Checklist of required input files in each subfolder:\n" 

 label2 += "1. Draw Mask: \n        centres.dm3\n" 

 label2 += "2. IGQCBED Preparation: \n        sigma.dm3, zeroth.dm3, mask.dm3 \& 

centres.dm3\n" 

 label2 += "3. File FOR007.DAT: \n        centres.dm3\n" 

 label2 += "4. File parameters.dat: \n        centres.dm3" 

  

 TagGroup file_check_dlg = DLGCreateDialog("File Checklist") 

  

 file_check_dlg.DLGAddElement(DLGGroupItems(DLGCreateLabel(label1).DLGAnchor("West")

,DLGCreateLabel(label2).DLGAnchor("West"))).DLGInternalPadding(10,10) 

    

 Object proc_file_check = alloc(UIframe).Init(file_check_dlg) 

 proc_file_check.Display("File Checklist") 

} 

// 3.5  Extra tag 

TagGroup Extra_tag() 

{ 

 TagGroup unlock_c   = DLGCreateCheckBox("Unlock all input 

fields",0,"OptionChanged").DLGIdentifier("Unlock") 

 TagGroup ex_loop_l   = DLGCreateLabel("Batch looping under Main Directory:") 

   ex_loop_r   = DLGCreateRadioList(ex_loop) 

   ex_loop_r.DLGAddRadioItem("None/Costumised by external script",0) 

   ex_loop_r.DLGAddRadioItem("Loop No. of image names",1) 

   ex_loop_r.DLGAddRadioItem("Loop No. of subfolder names",2) 

  

 TagGroup extra_btn    = DLGCreatePushButton(" Script ","GetScriptPath") 

    ex_script_path_f  = DLGCreateStringField(ex_script_path,50) 

 TagGroup go_btn    = DLGCreatePushButton(" Run 

","Extra_Go").DLGIdentifier("ExtraGo").DLGInternalPadding(5,5) 

 TagGroup external_opt_gp = 

DLGGroupItems(extra_btn,ex_script_path_f,go_btn).DLGTableLayout(3,1,0) 

 TagGroup external_box  = DLGCreateBox("External script") 

   external_box.DLGAddElement(external_opt_gp) 

   external_box.DLGAddElement(unlock_c) 

   external_box.DLGAddElement(ex_loop_l) 

   external_box.DLGAddElement(ex_loop_r) 

  

 TagGroup ext_l    = DLGCreateLabel("Change 'sigma.txt' 'pattern.txt' 'in.txt' 'weights.txt' to 

*.dat:") 

 TagGroup ext_btn   = DLGCreatePushButton("txt -> 

dat","ChangeExt").DLGInternalPadding(5,5).DLGIdentifier("ChangeExt") 

 TagGroup test_btn   = DLGCreatePushButton(" Test ","Test").DLGIdentifier("Test") 

 

 TagGroup extra_dlg   = DLGCreateDialog("Extra").DLGFill("X")//.DLGExpand("Y") 

  

 extra_dlg.DLGAddElement(DLGGroupItems(ext_l,ext_btn).DLGTableLayout(2,1,0).DLGAnchor

("West")) 

   extra_dlg.DLGAddElement(external_box.DLGFill("X")) 

 If(test_mode) 

   extra_dlg.DLGAddElement(test_btn) 

  

 Return extra_dlg 

} 

// 3.6  Main Panel grouping 

TagGroup status_l, settings_l 

TagGroup Panel() 

{ 

 TagGroup m_btn    = DLGCreatePushButton(" Main Directory ","GetMDir") 

 m_dir_f = DLGCreateStringField(m_dir,60,"CheckDirEnding") 

 TagGroup m_dir_gp   = DLGGroupItems(m_btn,m_dir_f).DLGTableLayout(2,1,0) 

  

 TagGroup syntax_dlg  = DLGCreateDialog("").DLGTableLayout(4,3,0) 

   syntax_dlg.DLGAddElement(DLGCreateLabel(""),"","") 

   syntax_dlg.DLGAddElement(DLGCreateLabel("Images"),"","") 

   syntax_dlg.DLGAddElement(DLGCreateLabel("Subfolders"),"","") 

   syntax_dlg.DLGAddElement(DLGCreateLabel("Sorting No."),"","") 

   syntax_dlg.DLGAddElement(DLGCreateLabel("Prefix:"),"","East") 

   syntax_dlg.DLGAddElement(DLGCreateStringField("",img_pre_f,"",20),"","East") 

  

 syntax_dlg.DLGAddElement(DLGCreateStringField("",sub_pre_f,"Set",20),"","East").DLGExter

nalPadding(5,0) 

   syntax_dlg.DLGAddElement(DLGCreateIntegerField("   From",num_start_f,1,8),"","East") 

   syntax_dlg.DLGAddElement(DLGCreateLabel("Suffix:"),"","East") 

   syntax_dlg.DLGAddElement(DLGCreateStringField("",img_suf_f,"",20),"","East") 

  

 syntax_dlg.DLGAddElement(DLGCreateStringField("",sub_suf_f,"",20),"","East").DLGExternalP

adding(5,0) 

   syntax_dlg.DLGAddElement(DLGCreateIntegerField("To",num_end_f,100,8),"","East") 

 TagGroup syntax_box  = DLGCreateBox("Specimen Filename 

Syntax").DLGIdentifier("FileSyntaxGroup") 

   syntax_box.DLGAddElement(syntax_dlg) 

  

   stage_tabs  = DLGCreateTabList(stage,"OptionChanged").DLGIdentifier("StageTabList") 

   stage_tabs.DLGAddTab("1. AMMPSF").DLGAddElement(AMMPSF_tag()) 

   stage_tabs.DLGAddTab("2. PSF Corr.").DLGAddElement(PSFCorr_tag()) 

   stage_tabs.DLGAddTab("3. Noise Char.").DLGAddElement(NoiseChar_tag()) 

   stage_tabs.DLGAddTab("4. IGQCBED").DLGAddElement(IGQCBED_tag()) 

   stage_tabs.DLGAddTab("Extra").DLGAddElement(Extra_tag()) 

  

 TagGroup load_btn   = DLGCreatePushButton("  Load  ","LoadSettings") 

 TagGroup save_btn   = DLGCreatePushButton("  Save  ","SaveSettings") 

 TagGroup inspect_btn  = DLGCreatePushButton("Inspect","InspectSettings") 

   settings_l  = DLGCreateLabel("").DLGWidth(35) 

 TagGroup settings_box= DLGCreateDialog("Settings") 

   settings_box.DLGAddElement(DLGCreateLabel("  Settings:"),"Left","") 

   settings_box.DLGAddElement(load_btn,"Left","") 

   settings_box.DLGAddElement(save_btn,"Left","") 

   settings_box.DLGAddElement(inspect_btn,"Left","") 

   settings_box.DLGAddElement(settings_l,"Left","") 

  

 TagGroup stop_btn  = DLGCreatePushButton(" Stop 

","Stop").DLGInternalPadding(5,8).DLGIdentifier("Stop") 

 TagGroup main_bar  = DLGCreateProgressBar("MainProgress").DLGInternalPadding(65,0) 

 TagGroup sub_bar  = DLGCreateProgressBar("SubProgress").DLGInternalPadding(65,0) 

 TagGroup progress_gp = DLGGroupItems(DLGCreateLabel(" 

Main:"),main_bar,DLGCreateLabel("  Sub:"),sub_bar).DLGTableLayout(4,1,0) 

   status_l   = DLGCreateLabel("Idle.").DLGWidth(58) 

 TagGroup status_gp  = DLGGroupItems(DLGCreateLabel(" 

Status:"),status_l).DLGTableLayout(2,1,0) 

 TagGroup status_dlg  = DLGCreateDialog("Status") 

   status_dlg.DLGAddElement(stop_btn,"Right","") 

   status_dlg.DLGAddElement(status_gp,"","West") 

   status_dlg.DLGAddElement(progress_gp,"","West") 

  

 TagGroup mainpanel_dlg = DLGCreateDialog("Main Panel") 

   mainpanel_dlg.DLGAddElement(m_dir_gp.DLGFill("X").DLGExternalPadding(-5,-5,0,5)) 

   mainpanel_dlg.DLGAddElement(settings_box.DLGFill("X").DLGExternalPadding(5,0)) 

   mainpanel_dlg.DLGAddElement(syntax_box.DLGFill("X").DLGExternalPadding(5,0)) 

   mainpanel_dlg.DLGAddElement(status_dlg.DLGFill("X").DLGExternalPadding(5,0)) 

   mainpanel_dlg.DLGAddElement(stage_tabs.DLGFill("X")) 

  

 Return mainpanel_dlg 

} 

// 3.7  The Test function 

Number Test() 

{ 

 Result("\nTesting. Waiting for interaction for 3 seconds:") 

 OpenResultsWindow() 

 For(number i = 1; i<=3; i++) { 

  Sleep(1) 

  mainpanel_win.DLGSetProgress("MainProgress",i/3) 

  If(abort) Return -1 //Stop processing if "Stop" pressed 

 } 

  

 Return 0 

} 

// 3.8  Background thread function 

Class BatchThread: Thread 

{ 

 String method 
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 Void Stop(Object self) { abort = 1; status_l.DLGTitle("Stopping..."); } 

  

 Void Start(Object self,String input) {  

  method = input 

  self.StartThread() //StartThread() runs thread in background 

 } 

  

 Void AutoSaveSettings(Object self) { 

  VarToTag() 

  CreateDirectory(m_dir + "Misc\\") 

  TagGroupSaveToFile(settings,m_dir + "Misc\\settings") 

  settings_l.DLGTitle("Auto-saved to 'Misc\\settings.gtg'") 

 } 

  

 Void RunThread(Object self) { 

  self.AutoSaveSettings() 

  running = 1 

  mainpanel_win.OptionChanged(Null) 

  abort = 0 

  status_l.DLGTitle("Running " + method + "; DO NOT change any options!") 

  mainpanel_win.DLGSetProgress("MainProgress",0) 

  mainpanel_win.DLGSetProgress("SubProgress",0) 

   

  If(method == "Test") 

   Test() 

  Else If(method == "AMMPSF Meas.") 

   AMMPSF_Batch() 

  Else If(method == "PSFs Avg") 

   PSFAvg_Batch() 

  Else If(method == "PSF Corr.") 

   PSFCorr_Batch() 

  Else If(method == "Noise Char.") 

   NoiseChar_Batch() 

  Else If(method == "IGQCBED Prep.") 

   IGQCBED_Batch() 

  Else If(method == "Extra Step") 

   Extra_Batch() 

   

  running = 0 

  mainpanel_win.OptionChanged(Null) 

  If(abort) { 

   status_l.DLGTitle(method + " aborted.") 

   mainpanel_win.DLGSetProgress("MainProgress",0) 

   mainpanel_win.DLGSetProgress("SubProgress",0) 

  } Else  

   status_l.DLGTitle(method + " finished.") 

 } 

} 

 

// 

// 3.9  GUI class: panel respone functions (buttons & options etc.) 

// 

 

Class Panel_UI : UIframe 

{  

 Object batch_thread 

  

 String CheckDirEnding(Object self,TagGroup dir0) 

 { 

  String dir 

  DLGGetValue(dir0,dir) 

   

  If(dir != "") 

   If(Right(dir,1) != "\\") { 

    dir = dir + "\\" 

    dir0.DLGValue(dir) 

   } 

   

  Return dir 

 } 

  

 Void GetMDir(Object self) { 

  If(GetDirectoryDialog(open_win,"Choose the Specimens Main directory",m_dir,m_dir)) { 

   If(DoesFileExist(m_dir + "Misc\\settings.gtg")) 

    If(TagGroupLoadFromFile(settings,m_dir + "Misc\\settings.gtg")) { 

     TagToVar() 

     settings_l.DLGTitle("Previous settings loaded.") 

    } 

    

   VarToPanel() 

  } 

 }  

  

 Void CheckMainDirectory(Object self) { 

  If(m_dir != "")  

   m_dir = self.CheckDirEnding(m_dir_f) 

  Else  

   Throw("Specimens Main directory unspecified!") 

   

  If(!DoesDirectoryExist(m_dir))  

   Throw("Specimens Main directory " + m_dir + " unfound!") 

 } 

  

 Void LoadSettings(Object self) { 

  If(OpenDialog(open_win,"Select the Settings TagGroup file",m_dir + "Misc\\",settings_path)) { 

   PanelToVar() 

   VarToTag() 

    

   If(!TagGroupLoadFromFile(settings,settings_path)) 

    Throw(settings_path + " loading fail!") 

    

   TagToVar() 

   VarToPanel() 

   settings_l.DLGTitle("Settings loaded.") 

  } 

 } 

  

 Void SaveSettings(Object self) { 

  PanelToVar() 

  VarToTag() 

   

  self.CheckMainDirectory() 

  CreateDirectory(m_dir + "Misc\\") 

  TagGroupSaveToFile(settings,m_dir + "Misc\\settings") 

  settings_l.DLGTitle("Saved to 'Misc\\settings.gtg'.") 

 } 

  

 Void InspectSettings(Object self) { 

  PanelToVar() 

  VarToTag() 

  TagGroupOpenBrowserWindow(settings,0) 

 } 

  

 Void DarkNoiseHelp(Object self) { 

  OkDialog("Dark Noise can be determined from background noise of aperture images 

deconvoluted by the same PSF. Input '-1' if unknown.") 

 } 

 

 Void GetPSFPath(OBject self) { 

  If(OpenDialog(open_win,"Choose a normalised PSF image for PSF Corr.",m_dir + 

"PSF\\",psf_path))  

   psf_path_f.DLGValue(psf_path) 

 } 

 

 Void GetMaskPath(OBject self) { 

  If(OpenDialog(open_win,"Choose a mask image",m_dir,nc_mask_path))  

   nc_mask_path_f.DLGValue(nc_mask_path) 

 } 

  

 Void GetScriptPath(Object self) { 

  If(OpenDialog(open_win,"Choose a script for the Extra Step","",ex_script_path))  

   ex_script_path_f.DLGValue(ex_script_path) 

 }  

  

 Void OptionChanged(Object self,TagGroup tmp) { 

  PanelToVar() 

  Number unlock 

  self.DLGGetValue("Unlock",unlock) 

   

  If(nc_mask || unlock) { 

   self.SetElementIsEnabled("MaskPathGroup",1) 

   self.SetElementIsEnabled("GainNormGroup",0) 

  } Else { 

   self.SetElementIsEnabled("MaskPathGroup",0) 

   self.SetElementIsEnabled("GainNormGroup",1) 

  } 

   

  //If(stage > 0 || unlock)  

  // self.SetElementIsEnabled("FileSyntaxGroup",1) 

  //Else     

  // self.SetElementIsEnabled("FileSyntaxGroup",0) 

   

  If(ig_step_mask || ig_step_igqcbed || ig_step_filepm || unlock)  

   self.SetElementIsEnabled("NumbeamsGroup",1) 

  Else  

   self.SetElementIsEnabled("NumbeamsGroup",0) 

   

  If(ig_step_mask || ig_step_igqcbed || ig_step_filepm || ig_step_for7 || unlock) 

   self.SetElementIsEnabled("DiaGroup",1) 

  Else  

   self.SetElementIsEnabled("DiaGroup",0) 

   

  If(ig_step_igqcbed || ig_step_filepm || ig_step_for7 || unlock) 

   self.SetElementIsEnabled("BinningGroup",1) 

  Else  

   self.SetElementIsEnabled("BinningGroup",0) 

   

  If(ig_step_igqcbed || ig_step_filepm || unlock)  

   self.SetElementIsEnabled("MethodGroup",1) 

  Else  

   self.SetElementIsEnabled("MethodGroup",0) 

   

  If(ig_step_mask || unlock) 

   self.SetElementIsEnabled("MaskOptions",1) 

  Else      

   self.SetElementIsEnabled("MaskOptions",0) 

   

  If(ig_step_igqcbed || unlock) 

   self.SetElementIsEnabled("IGQCBEDOptions",1) 

  Else  

   self.SetElementIsEnabled("IGQCBEDOptions",0) 

   

  If(ig_step_filepm || unlock)  

   self.SetElementIsEnabled("FilepmOptions",1) 

  Else      

   self.SetElementIsEnabled("FilepmOptions",0) 

    

  If(running) { 

   self.SetElementIsEnabled("Stop",1) 

   self.SetElementIsEnabled("AMMPSFGo",0) 

   self.SetElementIsEnabled("PSFAvgGo",0) 

   self.SetElementIsEnabled("PSFCorrGo",0) 

   self.SetElementIsEnabled("NoiseCharGo",0) 

   self.SetElementIsEnabled("IGQCBEDGo",0) 

   self.SetElementIsEnabled("ExtraGo",0) 

  } Else { 

   self.SetElementIsEnabled("Stop",0) 

   self.SetElementIsEnabled("AMMPSFGo",1) 
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   self.SetElementIsEnabled("PSFAvgGo",1) 

   self.SetElementIsEnabled("PSFCorrGo",1) 

   self.SetElementIsEnabled("NoiseCharGo",1) 

   self.SetElementIsEnabled("IGQCBEDGo",1) 

   self.SetElementIsEnabled("ExtraGo",1) 

  } 

 } 

  

 Void CheckFiles(Object self) { 

  PanelToVar() 

  CheckProcFiles() 

 } 

  

 Void AMMPSF_Go(Object self) { 

  PanelToVar() 

  CheckMainDirectory(self) 

   

  If(!DoesDirectoryExist(m_dir + "PSF\\"))  

   Throw("PSF folder unfound!") 

   

  batch_thread.Start("AMMPSF Meas.") 

 } 

  

 Void PSFAvg_Go(Object self) { 

  PanelToVar() 

  CheckMainDirectory(self) 

   

  If(!DoesDirectoryExist(m_dir + "PSF\\"))  

   Throw("PSF folder unfound!") 

   

  TagGroup one_folder,folders = GetFilesInDirectory(m_dir + "PSF\\",2) 

  String name,yes_list = "",no_list = "",dir 

  Number yes_total = 0,no_total = 0 

  For(number i = 0; i < TagGroupCountTags(folders); i++){ 

   TagGroupGetIndexedTagAsTagGroup(folders,i,one_folder) 

   TagGroupGetTagAsString(one_folder,"Name",name) 

   dir = m_dir + "PSF\\" + name + "\\" 

   If(name != "Averaged PSF" && name != "Unwanted PSFs") 

    If(DoesFileExist(dir + "\\NormalisedPSF.dm3") || DoesFileExist(dir + "\\psf.dm3"))  

     yes_list += "\n\t" + ++yes_total + ". " + name + "\\" 

    Else 

     no_list += "\n\t" + ++no_total + ". " + name + "\\" 

  } 

 

  If(yes_total == 0)  

   yes_list = "\n\t(None)" 

  If(no_total == 0)  

   no_list = "\n\t(None)"   

   

  If(!OkCancelDialog("The following PSF subfolders will be processed:" + yes_list + \ 

    "\n\nThe following subfolders without 'NormalisedPSF.dm3' nor 'psf.dm3' will be ignored:" 

+ no_list)) 

   Exit(0) 

   

  batch_thread.Start("PSFs Avg") 

 } 

  

 Void PSFCorr_Go(Object self) { 

  PanelToVar() 

  self.CheckMainDirectory() 

   

  If(!DoesFileExist(psf_path)) 

   Throw("PSF image '" + psf_path + "' unfound!") 

   

  If(!DoesDirectoryExist(m_dir + "PSF\\"))  

   Throw("PSF folder unfound!") 

   

  batch_thread.Start("PSF Corr.") 

 } 

  

 Void NoiseChar_Go(Object self) { 

  PanelToVar() 

  CheckMainDirectory(self) 

   

  If(nc_mask == 1) { 

   If(nc_mask_path == "") 

    Throw("Mask image file unspecified!") 

   Else If(!DoesFileExist(nc_mask_path))  

    Throw("Mask image '" + nc_mask_path + "' unfound!") 

  } 

   

  If(nc_bin < 1)  

   Throw("Piecewise binning factor must be greater than 0!") 

   

  batch_thread.Start("Noise Char.") 

 } 

  

 Void IGQCBED_Go(Object self) { 

  PanelToVar() 

  CheckMainDirectory(self) 

   

  If(ig_step_mask || ig_step_igqcbed || ig_step_filepm)  

   If(ig_numbeams < 1)  

    Throw("Number of beams must be greater than 0!") 

   

  If(ig_step_mask || ig_step_igqcbed || ig_step_filepm || ig_step_for7)  

   If(ig_dia < 1 || (ig_bin ? Mod(ig_dia,ig_bin) : 0) || Mod(ig_dia,2))  

    Throw("Beam diameter must be: \n1) Divisible by Binning, \n2) Even, and \n2) Greater 

than 0!") 

   

  If(ig_step_igqcbed || ig_step_filepm || ig_step_for7)  

   If(ig_bin < 1 || Mod(ig_dia,ig_bin))  

    Throw("Binning factor must be divisible to beam diameter and greater than 0!") 

   

  If(ig_step_igqcbed == 1)  

   If(ig_magn <= 0)  

    Throw("IGQCBED magnification must be greater than 0!") 

   

  If(ig_step_for7 == 1)  

   If(!DoesFileExist(m_dir + "Misc\\FOR007_head.txt") || !DoesFileExist(m_dir + 

"Misc\\FOR007_tail.txt"))  

    Throw("'FOR007_head.txt' and/or 'FOR007_tail.txt' unfound in the 'Misc' folder!") 

   

  If(ig_step_filepm == 1) 

   If(ig_piecebin < 1) 

    Throw("Piecewise binning factor must be greater than 0!") 

   

  batch_thread.Start("IGQCBED Prep.") 

 } 

  

 Void Extra_Go(Object self) { 

  PanelToVar() 

  VarToTag() 

  CheckMainDirectory(self) 

   

  If(ex_script_path == "") 

   Throw("Script file unspecified!") 

  Else If(!DoesFileExist(ex_script_path))  

   Throw("Script file '" + ex_script_path + "' unfound!") 

    

 

 TagGroupSetTagAsTagGroup(GetUserPersistentTagGroup(),"BatchQCBEDPreparation",settings) 

   

  batch_thread.Start("Extra Step") 

 } 

  

 Void ChangeExt(Object self) { 

  PanelToVar() 

  CheckMainDirectory(self) 

   

  String  bat  = "cd %~dp0 \n" 

    bat += "for /d %%a in (..\\*) do " 

    bat += "for /r %%f in (sigma.txt,pattern.txt.txt,in.txt,weights.txt) do " 

    bat += "ren %%~fa\\%%~nf.txt %%~nf.dat" 

   

  String bat_path = m_dir + "Misc\\txt2dat.bat" 

  Number bat_id = CreateFileForWriting(bat_path) 

  Object bat_stream = NewStreamFromFileReference(bat_id,1) 

    bat_stream.StreamWriteAsText(0,bat) 

  CloseFile(bat_id) 

   

  LaunchExternalProcessAsync(bat_path) 

 } 

 

 Void Test(Object self) {  

  batch_thread.Start("Test");  

 } 

  

 Void Stop(Object self) { batch_thread.Stop(); } 

 

 Object Init(Object self, Number batch_thread_id) { 

  batch_thread = GetScriptObjectFromID(batch_thread_id) 

   

  Return self.super.Init(Panel()) 

 } 

} 

 

// 3  GUI functions end 

// 

////////////////////////////////////////////////////////////////// 

 

// 4  Main function 

Object process_thread = alloc(BatchThread) 

mainpanel_win = alloc(Panel_UI).Init(process_thread.ScriptObjectGetID()) 

mainpanel_win.Display("Batch IGQCBED Preparation") 

mainpanel_win.OptionChanged(Null) 

B.3.2. File “GetCentres_v1.1.s” – script to 

assist the determination of the centres of 

reflection discs in CBED patterns 

// $BACKGROUND$ 

 

// Get Centres 

// A tool to help finding centre locations etc. for 'Batch QCBED Preparation' 

// for DM versions later than 2.* (especially for 2.32.*) 

// Tianyu Liu, Aug 2016 

 

// Changelog 

// v 1.1, Vector option X added 

// V 1.0 

 

 

////////////////////////////////////////////////////////////////// 

// 

//   Function for Panel 

 

// 

// Panel items 

// 
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TagGroup Centres_tag() { 

 TagGroup draw_oval_btn  = DLGCreatePushButton("Draw Ovals","DrawOvals") 

  

 TagGroup nb_l   = DLGCreateLabel("Beams:") 

 TagGroup nb_f   = 

DLGCreateIntegerField(3,4,"UpdateAnnotations").DLGIdentifier("NumBeams") 

 TagGroup d_l   = DLGCreateLabel("d=") 

 TagGroup d_f   = 

DLGCreateIntegerField(400,6,"UpdateAnnotations").DLGExternalPadding(-

3,0).DLGIdentifier("Diameter") 

 TagGroup d_plus_btn  = 

DLGCreatePushButton("+","DiameterPlus").DLGWidth(10).DLGExternalPadding(-3,0) 

 TagGroup d_minus_btn = DLGCreatePushButton("-

","DiameterMinus").DLGWidth(10).DLGExternalPadding(-3,0) 

  

 TagGroup centres_dlg = DLGCreateDialog("")//.DLGExternalPadding(3,0) 

   centres_dlg.DLGAddElement(DLGGroupItems(nb_l,nb_f).DLGTableLayout(2,1,0)) 

  

 centres_dlg.DLGAddElement(DLGGroupItems(d_l,d_f,d_plus_btn,d_minus_btn).DLGTableLayo

ut(4,1,0)) 

   centres_dlg.DLGAddElement(draw_oval_btn) 

  

 Return centres_dlg.DLGExpand("Y") 

} 

 

TagGroup ZoneAxis_tag() { 

 TagGroup za_a_f  = DLGCreateIntegerField(0,4).DLGIdentifier("ZoneAxisA") 

 TagGroup za_b_f  = DLGCreateIntegerField(0,4).DLGIdentifier("ZoneAxisB") 

 TagGroup za_c_f  = DLGCreateRealField(2,6,10).DLGIdentifier("ZoneAxisC") 

  

 TagGroup fields_dlg  = DLGCreateDialog("").DLGTableLayout(2,3,0).DLGExternalPadding(0,-

2) 

   fields_dlg.DLGAddElement(DLGCreateLabel("A = 

Beam"),"","East").DLGExternalPadding(0,0,-2,-2) 

   fields_dlg.DLGAddElement(za_a_f,"","West").DLGExternalPadding(0,2,-2,0) 

   fields_dlg.DLGAddElement(DLGCreateLabel("B = 

Beam"),"","East").DLGExternalPadding(-2,-2) 

   fields_dlg.DLGAddElement(za_b_f,"","West").DLGExternalPadding(-2,-2) 

   fields_dlg.DLGAddElement(DLGCreateLabel("Number c 

="),"","East").DLGExternalPadding(2,0,0,-2) 

   fields_dlg.DLGAddElement(za_c_f,"","West").DLGExternalPadding(2,2,0,0) 

  

 TagGroup za_dlg  = DLGCreateDialog("") 

   za_dlg.DLGAddElement(DLGCreateLabel("Zone Axis = (A+B)/c").DLGExternalPadding(0,-

2)) 

   za_dlg.DLGAddElement(fields_dlg) 

    

 Return za_dlg.DLGExpand("Y") 

} 

 

TagGroup Vectors_tag() { 

 TagGroup v1_f   = DLGCreateIntegerField(1,4).DLGIdentifier("Vector1") 

 TagGroup v2_f   = DLGCreateIntegerField(2,4).DLGIdentifier("Vector2") 

 TagGroup x_f   = DLGCreateIntegerField(0,4).DLGIdentifier("Vector0") 

    

 TagGroup draw_v_btn  = DLGCreatePushButton("Draw 

Vectors","DrawVectors").DLGExternalPadding(-2,-3) 

  

 TagGroup fields_dlg  = DLGCreateDialog("").DLGTableLayout(2,3,0).DLGExternalPadding(0,-

2) 

   fields_dlg.DLGAddElement(DLGCreateLabel("V1 = Beam")).DLGExternalPadding(0,0,-2,-

2) 

   fields_dlg.DLGAddElement(v1_f).DLGExternalPadding(0,2,-2,0) 

   fields_dlg.DLGAddElement(DLGCreateLabel("V2 = Beam")).DLGExternalPadding(2,0,-2,-

2) 

   fields_dlg.DLGAddElement(v2_f).DLGExternalPadding(2,2,-2,0) 

   fields_dlg.DLGAddElement(DLGCreateLabel(" X = Beam")).DLGExternalPadding(2,0,0,-2) 

   fields_dlg.DLGAddElement(x_f).DLGExternalPadding(2,2,0,0) 

  

 TagGroup vector_dlg  = DLGCreateDialog("") 

   vector_dlg.DLGAddElement(DLGCreateLabel("Vector = V-

X+ZA").DLGExternalPadding(0,-2)) 

   vector_dlg.DLGAddElement(fields_dlg) 

   vector_dlg.DLGAddElement(draw_v_btn) 

  

 Return vector_dlg.DLGExpand("Y") 

} 

 

Void AddColourItems(TagGroup &items) { 

 items.DLGAddPopupItemEntry("Black")  //2. rgb(0,0,0) 

 items.DLGAddPopupItemEntry("Red")  //3. rgb(1,0,0) 

 items.DLGAddPopupItemEntry("Yellow") //4. rgb(1,1,0) 

 items.DLGAddPopupItemEntry("Lime")  //5. rgb(0,1,0) 

 items.DLGAddPopupItemEntry("Aqua")  //6. rgb(0,1,1) 

 items.DLGAddPopupItemEntry("Blus")  //7. rgb(0,0,1) 

 items.DLGAddPopupItemEntry("Fuchsia") //8. rgb(1,0,1) 

 items.DLGAddPopupItemEntry("White")  //9. rgb(1,1,1) 

} 

 

TagGroup Misc_tag() { 

 TagGroup label_l  = DLGCreateLabel("Label:").DLGExternalPadding(0,-2) 

 TagGroup label_opt  = 

DLGCreatePopup(2,"UpdateAnnotations").DLGIdentifier("LabelOption").DLGInternalPadding(-

5,0).DLGExternalPadding(-2,-2) 

   label_opt.DLGAddPopupItemEntry("No label") 

   label_opt.DLGAddPopupItemEntry("Corner") 

   label_opt.DLGAddPopupItemEntry("Centre") 

 TagGroup shape_c_opt = 

DLGCreatePopup(6,"UpdateAnnotations").DLGIdentifier("ShapeColour").DLGInternalPadding(-

11,0).DLGExternalPadding(-3,-2) 

   shape_c_opt.DLGAddPopupItemEntry("Shape") 

   AddColourItems(shape_c_opt) 

 TagGroup label_c_opt = 

DLGCreatePopup(3,"UpdateAnnotations").DLGIdentifier("LabelColour").DLGInternalPadding(-

11,0).DLGExternalPadding(-2,-2) 

   label_c_opt.DLGAddPopupItemEntry("Label") 

   AddColourItems(label_c_opt) 

    

 TagGroup from_c_btn  = DLGCreatePushButton("From 

'centres'","FromCentres").DLGExternalPadding(-4,-2) 

  

 TagGroup misc_dlg = DLGCreateDialog("") 

   misc_dlg.DLGAddElement(DLGGroupItems(label_l,label_opt).DLGTableLayout(2,1,0)) 

  

 misc_dlg.DLGAddElement(DLGGroupItems(shape_c_opt,label_c_opt).DLGTableLayout(2,1,0)) 

   misc_dlg.DLGAddElement(from_c_btn.DLGFill("X")) 

    

 Return misc_dlg.DLGExpand("Y") 

} 

 

TagGroup Panel(Number modeless) 

{ 

 TagGroup lock_front_btn = 

DLGCreatePopup(1,"ChooseFrontImage").DLGIdentifier("LockFrontImage").DLGInternalPadding(

-12,0).DLGExternalPadding(3,-2) 

   lock_front_btn.DLGAddPopupItemEntry("Front Image") 

   lock_front_btn.DLGAddPopupItemEntry("Choose & Lock") 

 TagGroup float_btn  = 

DLGCreatePushButton("Dock","FloatingWindow").DLGExternalPadding(0,-2) 

 TagGroup help_btn  = DLGCreatePushButton(" ? ","Help").DLGExternalPadding(-3,-2) 

 

 TagGroup stage_tabs,header_gp = DLGCreateDialog("").DLGFill("X") 

 If(modeless) { 

  header_gp.DLGAddElement(help_btn,"Right","") 

  header_gp.DLGAddElement(float_btn,"Left","") 

  header_gp.DLGAddElement(lock_front_btn,"Center","") 

   

  stage_tabs    = DLGCreateDialog("").DLGExternalPadding(3,0).DLGTableLayout(2,2,0) 

  stage_tabs.DLGAddElement(DLGCreateBox("1. 

Centres").DLGFill("XY").DLGExternalPadding(0,-2)).DLGAddElement(Centres_tag()) 

  stage_tabs.DLGAddElement(DLGCreateBox("2. Zone 

Axis").DLGFill("XY").DLGExternalPadding(0,-2)).DLGAddElement(ZoneAxis_tag()) 

  stage_tabs.DLGAddElement(DLGCreateBox("3. 

Vectors").DLGFill("XY").DLGExternalPadding(0,0)).DLGAddElement(Vectors_tag()) 

 

 stage_tabs.DLGAddElement(DLGCreateBox("Misc.").DLGFill("XY").DLGExternalPadding(0,0)

).DLGAddElement(Misc_tag()) 

 } Else { 

  header_gp   = DLGGroupItems(lock_front_btn,help_btn).DLGTableLayout(2,1,0) 

   

  stage_tabs   = DLGCreateTabList(0) 

  stage_tabs.DLGAddTab(" C ").DLGAddElement(Centres_tag()) 

  stage_tabs.DLGAddTab(" Z ").DLGAddElement(ZoneAxis_tag()) 

  stage_tabs.DLGAddTab(" V ").DLGAddElement(Vectors_tag()) 

  stage_tabs.DLGAddTab(" * ").DLGAddElement(Misc_tag()) 

 } 

  

 TagGroup get_l_btn   = DLGCreatePushButton("Centres","ToCentres").DLGExternalPadding(-

2,-2)//.DLGInternalPadding(5,0) 

 TagGroup info_btn  = DLGCreatePushButton("Info","Info").DLGExternalPadding(-3,-2) 

 TagGroup tilt_btn  = DLGCreatePushButton("Tilts","Tilts").DLGExternalPadding(-2,-2) 

  

 TagGroup container = DLGCreateDialog("") 

   container.DLGAddElement(header_gp)//.DLGExternalPadding(-3,0) 

   container.DLGAddElement(stage_tabs) 

  

 container.DLGAddElement(DLGGroupItems(get_l_btn,info_btn,tilt_btn).DLGTableLayout(3,1,0)

) 

 

   

 //TagGroupOpenBrowserWindow(container,0) 

  

 Return container 

} 

 

// 

// Panel buttons respone setting 

// 

 

Class Panel_UI : UIframe 

{ 

 Number nb,d,fs,label,v1,v2,v0,za,zb,zc,lc,sc,lock,xrange,yrange 

 Image front 

 ImageDisplay disp 

 TagGroup gp_ids 

  

 Void PanelToVar(Object self) { 

  self.DLGGetValue("NumBeams",nb) 

  self.DLGGetValue("Diameter",d) 

  self.DLGGetValue("Vector1",v1) 

  self.DLGGetValue("Vector2",v2) 

  self.DLGGetValue("Vector0",v0) 

  self.DLGGetValue("ZoneAxisA",za) 

  self.DLGGetValue("ZoneAxisB",zb) 

  self.DLGGetValue("ZoneAxisC",zc) 

  self.DLGGetValue("ShapeColour",sc) 

  self.DLGGetValue("LabelColour",lc) 

  self.DLGGetValue("LabelOption",label) 

  self.DLGGetValue("LockFrontImage",lock) 

 } 

  

 Void ChooseFrontImage(Object self, TagGroup tg) { 

  self.DLGGetValue("LockFrontImage",lock) 

  If(lock==2) 

   If(!GetOneImage("Choose & lock",front)) 

    self.DLGValue("LockFrontImage",1) 
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 } 

  

 TagGroup GetAnnotations(Object self,ImageDisplay disp_in) { 

  TagGroup an_ids = NewTagGroup() 

   

  For(Number i=0;i<ComponentCountChildrenOfType(disp_in,17);i++) { 

   Component gp = ComponentGetNthChildOfType(disp_in,17,i) 

   If(ComponentIsOfType(ComponentGetChild(gp,0),6)) { 

    String l = TextAnnotationGetText(ComponentGetChild(gp,1)) 

    Number id = ComponentGetID(gp) 

    TagGroupSetTagAsNumber(an_ids,"C"+l,id) 

   } Else If(ComponentIsOfType(ComponentGetChild(gp,0),3)) { 

    Number id = ComponentGetID(gp) 

    TagGroupSetTagAsNumber(an_ids,"V",id) 

   } 

  } 

   

  Return an_ids 

 } 

  

 Void FrontImage(Object self) { 

  self.DLGGetValue("LockFrontImage",lock) 

  If(lock==1) { 

   If(!GetFrontImage(front)) 

    Exit(0) 

   If(GetName(front) == "centres")  

    Exit(0) 

  } 

   

  If(!ImageIsValid(front)) { 

   self.DLGValue("LockFrontImage",1) 

   Exit(0) 

  } 

   

  SelectImage(front) 

  disp = front.ImageGetImageDisplay(0) 

  GetSize(front,xrange,yrange) 

  gp_ids = GetAnnotations(self,disp) 

 } 

  

 Component OneNewOvalGroup(Object self,Number i) { 

  Component oval = NewOvalAnnotation(0,0,d,d) 

  Component no = NewTextAnnotation(0,0,""+i,d/8) 

    no.ComponentSetFontFaceName("Microsoft Sans Serif") 

  Component gp = NewGroupAnnotation() 

    gp.ComponentAddChildAtEnd(oval) 

    gp.ComponentAddChildAtEnd(no) 

     

  Return gp 

 } 

  

 Void GetCentreOfOvalGroup(Object self,Component gp,Number &x,Number &y) { 

  number t,l,b,r 

  Component oval = ComponentGetChild(gp,0) 

  Component no = ComponentGetChild(gp,1) 

  GroupAnnotationUngroup(gp) 

  ComponentGetControlPoint(oval,3,x,y) 

  ComponentGetRect(oval,t,l,b,r) 

  gp.ComponentAddChildAtEnd(oval) 

  gp.ComponentAddChildAtEnd(no) 

 } 

  

 Void SetColour(Object self,Component &obj,Number c) { 

  If(c>1) 

   obj.ComponentSetForegroundColor((c==3||c==4||c==8||c==9)?1:0,\ 

           (c==4||c==5||c==6||c==9)?1:0,\ 

           (c==6||c==7||c==8||c==9)?1:0) 

 } 

  

 Number UpdateAnnotations(Object self,TagGroup tg) { 

  Number id,x,y,t,l,b,r,fs,updated = 0 

   

  PanelToVar(self) 

  FrontImage(self) 

   

  If(TagGroupIsValid(tg) && !TagGroupCountTags(gp_ids))  

   Exit(0) 

   

  For(Number i=0;i<nb;i++) { 

   Component gp,oval,no 

    

   If(TagGroupGetTagAsNumber(gp_ids,"C"+i,id)) { 

    gp = ComponentGetChildByID(disp,id) 

    oval = ComponentGetChild(gp,0) 

    no = ComponentGetChild(gp,1) 

    ComponentGetRect(no,t,l,b,r) 

    GroupAnnotationUngroup(gp) 

    ComponentGetControlPoint(oval,3,x,y) 

    ComponentSetRect(oval,y-d/2,x-d/2,y+d/2,x+d/2) 

    ComponentSetControlPoint(no,3,x,y,1) 

    gp.ComponentAddChildAtEnd(oval) 

    gp.ComponentAddChildAtEnd(no) 

    ComponentSetRect(no,0,0,b-t,r-l) 

   } Else { 

    gp = OneNewOvalGroup(self,i) 

    oval = ComponentGetChild(gp,0) 

    no = ComponentGetChild(gp,1) 

    ComponentAddChildAtEnd(disp,gp) 

    ComponentSetControlPoint(gp,3,d/2,(yrange-d)/(nb-1)*i+d/2,1) 

    updated = 1 

   } 

    

    

   If(label == 3) 

    ComponentSetControlPoint(no,3,d/2,d/2,0) 

   ComponentSetVisible(no,label-1) 

   SetColour(self,no,lc) 

   SetColour(self,oval,sc) 

  } 

   

  If(TagGroupGetTagAsNumber(gp_ids,"V",id)) { 

   Component gp = ComponentGetChildByID(disp,id) 

   Component arrow1 = ComponentGetChild(gp,0) 

   Component arrow2 = ComponentGetChild(gp,1) 

   Component no1 = ComponentGetChild(gp,2) 

   Component no2 = ComponentGetChild(gp,3) 

    

   ComponentSetVisible(no1,label-1) 

   ComponentSetVisible(no2,label-1) 

   SetColour(self,arrow1,sc) 

   SetColour(self,arrow2,sc) 

   SetColour(self,no1,lc) 

   SetColour(self,no2,lc) 

  } 

   

  Return updated 

 } 

  

 Void DrawOvals(Object self) { 

  PanelToVar(self) 

  FrontImage(self) 

   

  For(Number i=0;i<nb;i++) { 

   If(!TagGroupDoesTagExist(gp_ids,"C"+i)) { 

    Component gp = OneNewOvalGroup(self,i) 

    ComponentAddChildAtEnd(disp,gp) 

    ComponentSetControlPoint(gp,3,d/2,(yrange-d)/(nb-1)*i+d/2,1) 

   } 

  } 

   

  UpdateAnnotations(self,NULL) 

 } 

  

 Void DrawVectors(Object self) { 

  Number id,id1,id2,ida,idb,v0x,v0y,v1x,v1y,v2x,v2y,cax,cay,cbx,cby,x,y 

  PanelToVar(self) 

  FrontImage(self) 

   

  If(TagGroupGetTagAsNumber(gp_ids,"V",id)) 

   ComponentRemoveFromParent(ComponentGetChildByID(disp,id)) 

   

  If(TagGroupGetTagAsNumber(gp_ids,"C"+v0,id) && 

TagGroupGetTagAsNumber(gp_ids,"C"+v1,id1) \ 

    && TagGroupGetTagAsNumber(gp_ids,"C"+v2,id2) && 

TagGroupGetTagAsNumber(gp_ids,"C"+za,ida) \ 

    && TagGroupGetTagAsNumber(gp_ids,"C"+zb,idb)) { 

   GetCentreOfOvalGroup(self,ComponentGetChildByID(disp,id),v0x,v0y) 

   GetCentreOfOvalGroup(self,ComponentGetChildByID(disp,id1),v1x,v1y) 

   GetCentreOfOvalGroup(self,ComponentGetChildByID(disp,id2),v2x,v2y) 

   GetCentreOfOvalGroup(self,ComponentGetChildByID(disp,ida),cax,cay) 

   GetCentreOfOvalGroup(self,ComponentGetChildByID(disp,idb),cbx,cby) 

   Number zx = (cax+cbx)/zc, zy = (cay+cby)/zc 

   v1x += zx - v0x; v1y += zy - v0y; v2x += zx - v0x; v2y += zy - v0y 

    

   Component tmp = NewBoxAnnotation(0,0,0,0) 

   Component arrow1 = NewArrowAnnotation(zy,zx,v1y,v1x) 

   Component no1 = NewTextAnnotation((v1x+zx)/2,(v1y+zy)/2,"V1",d/8) 

     no1.ComponentSetFontFaceName("Microsoft Sans Serif") 

   Component arrow2 = NewArrowAnnotation(zy,zx,v2y,v2x) 

   Component no2 = NewTextAnnotation((v2x+zx)/2,(v2y+zy)/2,"V2",d/8) 

     no2.ComponentSetFontFaceName("Microsoft Sans Serif") 

    

   Component gp = NewGroupAnnotation() 

     gp.ComponentAddChildAtEnd(tmp) 

     gp.ComponentAddChildAtEnd(arrow1) 

     gp.ComponentAddChildAtEnd(arrow2) 

     gp.ComponentAddChildAtEnd(no1) 

     gp.ComponentAddChildAtEnd(no2) 

   ComponentRemoveFromParent(tmp) 

    

   ComponentAddChildAtBeginning(disp,gp) 

    

   UpdateAnnotations(self,NULL) 

  } 

 } 

  

 Image GetLocations(Object self) { 

  If(UpdateAnnotations(self,NULL)) 

   Exit(0) 

   

  Image centres := IntegerImage("centres",4,1,4,nb) 

   

  Number id,x1,x2,y1,y2,v1x,v1y,v2x,v2y,zx,zy 

  For(Number i=0;i<nb;i++) { 

   TagGroupGetTagAsNumber(gp_ids,"C"+i,id) 

   GetCentreOfOvalGroup(self,ComponentGetChildByID(disp,id),x1,y1) 

   SetPixel(centres,0,i,Nearest(x1)) 

   SetPixel(centres,1,i,Nearest(y1)) 

  } 

   

  If(TagGroupGetTagAsNumber(gp_ids,"V",id)) { 

   Component gp = ComponentGetChildByID(disp,id) 

   Component arrow1 = ComponentGetChild(gp,0) 

   Component arrow2 = ComponentGetChild(gp,1) 

   Component no1 = ComponentGetChild(gp,2) 

   Component no2 = ComponentGetChild(gp,3) 

   GroupAnnotationUngroup(gp) 

   ComponentGetRect(arrow1,zy,zx,v1y,v1x) 
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   ComponentGetRect(arrow2,zy,zx,v2y,v2x) 

   gp.ComponentAddChildAtEnd(arrow1) 

   gp.ComponentAddChildAtEnd(arrow2) 

   gp.ComponentAddChildAtEnd(no1) 

   gp.ComponentAddChildAtEnd(no2) 

    

   SetPixel(centres,2,0,Nearest(zx)) 

   SetPixel(centres,3,0,Nearest(zy)) 

   SetPixel(centres,2,1,Nearest(v1x)) 

   SetPixel(centres,3,1,Nearest(v1y)) 

   SetPixel(centres,2,2,Nearest(v2x)) 

   SetPixel(centres,3,2,Nearest(v2y)) 

  } 

   

  Return centres 

 } 

  

 Void ToCentres(Object self) { 

  Image centres := GetLocations(self) 

  centres.SetDisplayType(5) 

  centres.ShowImage() 

 } 

  

 Void FromCentres(Object self) { 

  Number xrange2,yrange2 

  PanelToVar(self) 

  FrontImage(self) 

   

  Image centres 

  If(!GetOneImage("Choose 'centres'",centres))  

   Exit(0) 

  GetSize(centres,xrange2,yrange2) 

   

  For(Number i=0;i<yrange2;i++) { 

   Number x,y 

   x = GetPixel(centres,0,i) 

   y = GetPixel(centres,1,i) 

   Component gp = OneNewOvalGroup(self,i) 

   ComponentAddChildAtEnd(disp,gp) 

   ComponentSetControlPoint(gp,3,x,y,1) 

  } 

   

  If(xrange2 == 4 && yrange2 > 2) { 

   Number zx = GetPixel(centres,2,0),zy = GetPixel(centres,3,0),\ 

     v1x = GetPixel(centres,2,1),v1y = GetPixel(centres,3,1),\ 

     v2x = GetPixel(centres,2,2),v2y = GetPixel(centres,3,2) 

      

   Component tmp = NewBoxAnnotation(0,0,0,0) 

   Component arrow1 = NewArrowAnnotation(zy,zx,v1y,v1x) 

   Component no1 = NewTextAnnotation((v1x+zx)/2,(v1y+zy)/2,"V1",d/8) 

     no1.ComponentSetFontFaceName("Microsoft Sans Serif") 

   Component arrow2 = NewArrowAnnotation(zy,zx,v2y,v2x) 

   Component no2 = NewTextAnnotation((v2x+zx)/2,(v2y+zy)/2,"V2",d/8) 

     no2.ComponentSetFontFaceName("Microsoft Sans Serif") 

    

   Component gp = NewGroupAnnotation() 

     gp.ComponentAddChildAtEnd(tmp) 

     gp.ComponentAddChildAtEnd(arrow1) 

     gp.ComponentAddChildAtEnd(arrow2) 

     gp.ComponentAddChildAtEnd(no1) 

     gp.ComponentAddChildAtEnd(no2) 

   ComponentRemoveFromParent(tmp) 

    

   ComponentAddChildAtBeginning(disp,gp) 

  } 

   

  UpdateAnnotations(self,NULL) 

 } 

  

 Void FloatingWindow(Object self) { 

  OpenGadgetPanel("Get Centres") 

  self.Close() 

 } 

  

 Void DiameterPlus(Object self) { 

  PanelToVar(self) 

  self.DLGValue("Diameter",d+5) 

 } 

  

 Void DiameterMinus(Object self) { 

  PanelToVar(self) 

  self.DLGValue("Diameter",d-5) 

 } 

  

 Void Help(Object self) { 

  String text  = "" 

  text += "Copy annotations from previous pattern & Press \"Centres\"; Otherwise,\n\n" 

  text += "0. \"Front Image\": \n" 

  text += "  1) \"Front Image\" - When an action takes place it will\n" 

  text += "    apply on the front-most Image (except \"centres\") at then;\n"  

  text += "  2) \"Choose & Lock\" - Choose an Image and all actions will\n" 

  text += "    always apply on the selected Image.\n\n"  

  text += "1. \"Centres\" or Tag \"C\": \n" 

  text += "  Press \"Draw Ovals\" and then move the ovals to select the beams;\n" 

  text += "  Use \"Oval 0\" for the central beam!\n\n" 

  text += "2. \"Zone Axis\" or Tag \"Z\": \n" 

  text += "  Example 1. If the pattern is exactly on-zone,\n" 

  text += "    then enter A = Beam 0, B = Beam 0, Number c = 2;\n\n" 

  text += "  Example 2. If Zone Axis is at the middle of Beam 0 & Beam 1,\n" 

  text += "    then enter A = Beam 0, B = Beam 1, Number c = 2;\n\n" 

  text += "  Example 3. If Zone Axis is between Beam 0 & Beam 1 and 1/3 away from Beam 0,\n" 

  text += "    then enter A = Beam 0, B = Beam 1, Number c = 3.\n\n" 

  text += "3. \"Vectors\" or Tag \"V\": \n" 

  text += "  If Vector 1 is from Beam 0 to Beam 1, then enter V1 = Beam 1 and X = Beam 0;\n" 

  text += "  If Vector 2 is from Beam 0 to Beam 2, then enter V2 = Beam 2.\n\n" 

  text += "  Press \"Draw Vectors\" to place the Vectors upon Zone Axis settings;\n" 

  text += "    manually move the Vectors' Annotation afterwards\n" 

  text += "    to adjust the locations of Zone Axis and Vectors.\n\n" 

  text += "4. Press \"Centres\": to create the \"centres\" image and displayed as spreadsheet;\n" 

  text += "  1) Locations of Centres will be stored at 1st (x) & 2nd (y) Columns;\n" 

  text += "  2) Zone Axis, Vector 1 and then Vector 2 in 3rd (x) & 4th (y) Columns;\n" 

  text += "  3) Numbers can be copied from the spreadsheet as tabulated text;\n" 

  text += "  4) Double-click a cell in spreadsheet can change its value.\n\n" 

  text += "Button \"Info\" displays Vectors' info.\n\n" 

  text += "Button \"Tilts\" displays tilting coordinates (the binning factor will be asked).\n\n" 

  text += "\"Misc.\" or Tag \"*\" for Misc. settings:\n" 

  text += "  1) Label options - No label, or labels at ovals' corners/centres.\n" 

  text += "  2) Choose colours for Shapes and Label. If \"Shape\" or \"Label\" is chosen,\n" 

  text += "    then the colours will stop updating.\n" 

  text += "  3) \"From 'centres'\" - Load Locations from a 'centres' Image." 

   

  DocumentWindow help_win = NewScriptWindow("Help",100,100,800,800) 

  EditorWindowAddText(help_win,text) 

  WindowShow(help_win)  

 } 

  

 Void Info(Object self) { 

  Image centres := GetLocations(self) 

  Number c0x = GetPixel(centres,0,0),c0y = GetPixel(centres,1,0),\ 

    zx = GetPixel(centres,2,0),zy = GetPixel(centres,3,0),\ 

    v1x = GetPixel(centres,2,1)-zx,v1y = GetPixel(centres,3,1)-zy,\ 

    v2x = GetPixel(centres,2,2)-zx,v2y = GetPixel(centres,3,2)-zy 

  Number v1m = Sqrt(v1x**2+v1y**2),v2m = Sqrt(v2x**2+v2y**2) 

  String text = "" 

  text += "\n\nInfo:\n" 

  text += "Abs(Vector 1) = " + Nearest(v1m) 

  text += ", Abs(Vector 2) = " + Nearest(v2m) + " (rounded)\n" 

  text += "Ratio Vector 1/Vector 2 = " + v1m/v2m + "\n" 

  text += "Angle = " + acos((v1x*v2x+v1y*v2y)/(v1m*v2m))/Pi()*180 + " degree\n" 

   

  Notes(text) 

  OpenResultsWindow() 

 } 

  

 Void Tilts(Object self) { 

  Image centres := GetLocations(self) 

  Number c0x = GetPixel(centres,0,0),c0y = GetPixel(centres,1,0),\ 

    zx = GetPixel(centres,2,0),zy = GetPixel(centres,3,0),\ 

    v1x = GetPixel(centres,2,1)-zx,v1y = GetPixel(centres,3,1)-zy,\ 

    v2x = GetPixel(centres,2,2)-zx,v2y = GetPixel(centres,3,2)-zy 

  Number point1x,point1y,point2x,point2y,point3x,point3y,point4x,point4y,\ 

    AAA,BBB,binning 

  TagGroup user_tg = GetUserPersistentTagGroup() 

  TagGroupGetTagAsNumber(user_tg,"GetCentres_binning",binning)  

   

  If(!GetNumber("What is the binning factor?",binning,binning)) 

   Exit(0) 

  If(binning <= 0) 

   Throw("Binning must be larger than 0!") 

     

  TagGroupSetTagAsNumber(user_tg,"GetCentres_binning",binning)  

   

  String text  = "" 

  text += "\n\nTilting Coordinates (selx = sely = diameter = " + d + \ 

    ", binning = " + binning + "): \n" 

   

  point4x = c0x - zx 

  point4y = c0y - zy 

 

  point1x = point4x - ((d - binning)/2) 

  point1y = point4y - ((d - binning)/2) 

  point2x = point4x + ((d - binning)/2) 

  point2y = point4y - ((d - binning)/2) 

  point3x = point4x - ((d - binning)/2) 

  point3y = point4y + ((d - binning)/2) 

 

  AAA = ((point1x*v2y) - (point1y*v2x))/((v1x*v2y) - (v1y*v2x)) 

  BBB = (point1y/v2y) - ((v1y/v2y)*AAA) 

 

  text += ""+AAA+"  "+BBB+" \n" 

 

  AAA = ((point2x*v2y) - (point2y*v2x))/((v1x*v2y) - (v1y*v2x)) 

  BBB = (point2y/v2y) - ((v1y/v2y)*AAA) 

 

  text += ""+AAA+"  "+BBB+" \n" 

 

  AAA = ((point3x*v2y) - (point3y*v2x))/((v1x*v2y) - (v1y*v2x)) 

  BBB = (point3y/v2y) - ((v1y/v2y)*AAA) 

 

  text += ""+AAA+"  "+BBB+" \n" 

 

  AAA = ((point4x*v2y) - (point4y*v2x))/((v1x*v2y) - (v1y*v2x)) 

  BBB = (point4y/v2y) - ((v1y/v2y)*AAA) 

 

  text += ""+AAA+"  "+BBB+" \n" 

 

  Notes(text) 

  OpenResultsWindow() 

 } 

} 

 

//   Panel function ends 

// 

////////////////////////////////////////////////////////////////// 

 

 

////////////////////////////////////////////////////////////////// 

//    
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//   Main function starts 

 

Object float_win = alloc(Panel_UI).Init(Panel(0)) 

UnregisterScriptPalette("Get Centres") 

RegisterScriptPalette(float_win,"","Get Centres") 

 

Object modeless_win = alloc(Panel_UI).Init(Panel(1)) 

modeless_win.Display("Get Centres") 

 

//   Main function ends 

//    

////////////////////////////////////////////////////////////////// 

B.4. bedit – a Shell-script-based bulk 

files editing script 

#!/bin/bash 

editortitle="Batch Text File Editor for Series Folders" 

editorversion="v 1.2" 

# 2017/11/29: v 1.2.1. awk variables whitespace syntax 

# 2017/09/21: v 1.2. "Word replace" added 

# 2015/11/20: v 1.1. Bug fixed 

# 2014/09/08: v 1.0. Basic functions 

 

 

 

# 

#  Function of Load settings from ./confs.txt 

# 

 

Updateconfs(){ 

 

#  Update variables in confs.txt if specified as input 

 

 for sp in foldermod foldername mfno mlno list file; do 

  eval spo="\${$sp}" 

  if [ -n "$spo" ]; then 

   if grep -q "$sp" confs.txt; then 

    sed -i "/$sp/c\\$sp=$spo" confs.txt 

   else 

    echo -e "\n$sp=$spo" >> confs.txt 

   fi 

  fi 

 done 

 

#  Load all variables from confs.txt 

 

 unset foldermod list foldername ffolder lfolder mfno mlno lfno llno 

 if [ -f confs.txt ]; then 

  . confs.txt 

  if [ "$foldermod" = L ]; then 

   if [ -f "$list" ]; then 

    sed -i '$a\' $list 

    sed -i '/^[[:space:]]*$/d' $list 

    lfno=1; llno=`sed -n '$=' $list` 

    ffolder=$(awk -v line="$lfno" 'NR==line{print $1}' $list) 

    lfolder=$(awk -v line="$llno" 'NR==line{print $1}' $list) 

   else 

    warnmsg=$warnmsg"\033[41m List file '$list' NOT exists! \033[0m \n" 

   fi 

  elif [ "$foldermod" = "M" ]; then 

   ffolder="$foldername$mfno" 

   lfolder="$foldername$mlno" 

  fi 

 fi 

} 

 

 

####################################################### 

# 

#  File Editing Functions 

 

# Add a line 

AddLine (){ 

 data0=`awk -v line="${pe[0]}" 'NR==line{print $0}' $file` 

 echo -e "Add line '${pe[1]}' \033[33mbefore\033[0m '$data0'" 

 sed -i$backup "${pe[0]} i\\${pe[1]}" $file 

} 

 

# Replace a line 

ReplaceLine (){ 

 data0=`awk -v line="${pe[0]}" 'NR==line{print $0}' $file` 

 echo -e "'$data0' \033[33m->\033[0m '${pe[1]}'" 

 sed -i$backup "${pe[0]} c\\${pe[1]}" $file 

} 

 

# Delete lines 

DeleteLine (){ 

 data0=`awk -v "line=${pe[0]}" 'NR==line{print $0}' $file` 

 data1=`awk -v "line=${pe[1]}" 'NR==line{print $0}' $file` 

 echo -e "Delete lines from '$data0' \033[33mto\033[0m '$data1'" 

 sed -i$backup "${pe[0]},${pe[1]} d" $file 

} 

 

# Print line 

PrintLine () { 

 echo -e "$(awk -v "line=${pe[0]}" 'NR==line{print $0}' $file)" 

} 

 

# Word replace 

WordReplace (){ 

 cp $file $file$backup 

 data0=`awk -v "line=${pe[0]}" -v word="${pe[1]}" 'NR==line{print $word}' $file$backup` 

 echo -e "'$data0' \033[33m->\033[0m '${pe[2]}'" 

 awk -v line="${pe[0]}" -v word="${pe[1]}" -v val="${pe[2]}" 'NR==line{$word = val} 1' 

$file$backup > $file 

} 

 

# Spreadsheet Input 

SpreadsheetInput() { 

 linei=${pe[0]} 

 cp $file $file$backup 

 echo -e "" 

 for (( wordi=${pe[2]}; wordi <= ${pe[3]}; ++wordi )); do 

  data="" 

 

  for (( coli=1; coli <= ${pe[1]}; ++coli )); do 

   data0=`awk -v line="$linei" 'NR==line{print $0}' $file` 

   data1=`awk -v line="$noi" -v field="$wordi" 'NR==line{print $field}' ../$list` 

 

   if [ $coli = 1 ]; then data=$data1; else data="$data  $data1"; fi 

   let wordi=$wordi+1 

   if [ $wordi -gt ${pe[3]} ]; then break; fi 

  done 

  let wordi=$wordi-1 

 

  sed -i "$linei c\\$data" $file 

  echo -e "#L $linei, '$data0' \033[31m->\033[0m '$data'" 

 

  let linei=$linei+1 

 done 

} 

 

# Restore Backups 

RestoreBak (){ 

 echo -e "Restore from '$file$backup'" 

 cp $file$backup $file 

} 

 

 

#  File Editing Functions end 

# 

####################################################### 

 

 

# 

#  Editor Menu 

# 

 

EditorMenu() { 

 echo -e "\n" 

 #echo -e "Display help: " 

 echo -e  "\033[45m    $editortitle $editorversion     \033[0m\033[35m\033[0m" 

 emenu[1]="    Line Edit    | Parameter Edit | Subfolders | Others   " 

 emenu[2]=" [R]eplace [A]dd | [W]ord replace |  [M]anual  | [F]ile   " 

 emenu[3]=" [P]rint   [D]el | [S]preadsheet  |  [L]ist    | [U]ndo   " 

 

 for (( mi=1 ; mi<4 ; mi++ )); do 

  emenu[$mi]=$(sed 

's/\[/\\033[32m\[\\033[0m/g;s/\]/\\033[32m\]\\033[0m/g;s/|/\\033[35m|\\033[0m/g' <<< 

"${emenu[$mi]}") 

  echo -e "${emenu[$mi]}" 

 done 

 

#  Current directory 

 dir=`echo "$(pwd)/" | sed 's/\//\\\033[36m\/\\\033[0m/g'` 

#  Briefly Show Targeted Folders and File 

 echo -ne "\033[35mTargets:\033[0m $dir" 

 if [ -n "$foldermod" ]; then 

  echo -ne "\033[36m{\033[32m$foldermod:\033[0m " 

  if [ "$foldermod" = L ]; then 

   echo -ne "\033[36m(\033[0m$list\033[36m:\033[0m $llno \033[36mfolders)\033[0m " 

  fi 

  echo -ne "\033[36m\033[0m$ffolder \033[36m-\033[0m $lfolder\033[36m}/\033[0m" 

 fi 

 

 if [ -n $file ]; then 

  echo -e "$file" 

 else 

  echo -e "\033[0;41mFile unknown!\033[0m" 

 fi 

 

#  Show warning if any 

 if [ -n "$warnmsg" ]; then echo -e "$warnmsg"; fi 

 unset warnmsg 

 

#  Show messages 

 echo -ne "\033[35mNow - \033[0m" 

 if [ -n "$editname" ]; then echo -e "\033[44m $editname \033[0m" ; fi 

 for (( mi=1 ; mi<11 ; mi++ )); do 

  if [ -n "${msg[$mi]}" ]; then 

   msg[$mi]=$(sed 

's/\[/\\033[32m\[\\033[0m/g;s/\]/\\033[32m\]\\033[0m/g;s|\;|\\033[36m\;\\033[0m|g' <<< 

${msg[$mi]}) 

   if [ "$mi" = 10 ]; then 

    echo -ne "${msg[10]}" 

   else 

    echo -e "${msg[$mi]}" 

   fi 

  fi 

 done 
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} 

 

 

# 

#  Editor Main Body 

# 

 

EditorBody() { 

 while :; do 

  while :; do 

   unset msg 

 

   case "$ecode" in 

    "R"|"A"|"D") 

     case "$ecode" in 

      R) 

       editcmd="ReplaceLine"; editname="Line Replace" 

       msg[1]="Replace Line #L with CONTENT:" 

       msg[2]="#L;CONTENT"  ;; 

      A) 

       editcmd="AddLine"; editname="Line Addition" 

       msg[1]="Add a new line with CONTENT before Line #L:" 

       msg[2]="#L;CONTENT"  ;; 

      D) 

       editcmd="DeleteLine"; editname="Line Deletion" 

       msg[1]="Delete Lines from #L1 to #L2:" 

       msg[2]="#L1;#L2"  ;; 

     esac 

     if [ "${pe[1]}" != "" ]; then EditingLoop; fi  ;; 

    "P") 

     editcmd="PrintLine"; editname="Print Line" 

     msg[10]="Enter Line #: " 

     if [ "${pe[0]}" != "" ]; then EditingLoop; fi  ;; 

    "W") 

     editcmd="WordReplace"; editname="Word Replace" 

     msg[1]="On Line #L, replace the #W Word with VALUE:"  

     msg[2]="#L;#W;VALUE" 

     if [ "${pe[2]}" != "" ]; then EditingLoop; fi  ;; 

    "S") 

     if [ "$foldermod" != L ]; then 

      warnmsg=$warnmsg"Spreadsheet Input only available with List Subfolder Mode! \n" 

      ecode="L"; break 

     fi 

     editcmd="SpreadsheetInput"; editname="Parameters from Spreadsheet" 

     msg[1]="Parameters from Spreadsheet" 

     msg[2]="Target - '$file' starting at Line #L, #N words per line" 

     msg[3]="Source - '$list' Columns #C1 to #C2 " 

     msg[4]="#L;#N;#C1;#C2" 

     if [ "${pe[3]}" != "" ]; then EditingLoop; fi  ;; 

    "U") 

     editname="Restore"; editcmd="RestoreBak"; EditingLoop; ecode=$lecode; break  ;; 

   esac 

   unset editcmd 

 

   case "$ecode" in 

    "F") 

     editname="Set Editing File" 

     msg[10]="Enter filename ([FF] for 'FOR007.DAT'): " 

     if [ "${#pe[@]}" = 1 ]; then file=${pe[0]}; ecode=$lecode; break; fi  ;; 

    "FF") 

     file="FOR007.DAT"; ecode=$lecode; break ;; 

    "L") 

     editname="List Folder Mode"; foldermod=L 

     msg[10]="Enter List filename ([LL] for list.txt): " 

     if [ "${#pe[@]}" = 1 ]; then list=${pe[0]}; ecode=$lecode; break; fi  ;; 

    "LL") 

     list="list.txt"; foldermod=L; ecode=$lecode; break  ;; 

    "M") 

     editname="Manual Folder Mode"; foldermod=M 

     msg[1]="Specify folders' Base-name, Starting and Last # ([MM] for Set1 - Set200):" 

     msg[2]="Base-name;1st #;Last #" 

     if [ "${#pe[@]}" = 3 ]; then foldername=${pe[0]}; mfno=${pe[1]}; mlno=${pe[2]}; 

break; fi  ;; 

    "MM") 

     foldername=Set ; mfno=1 ; mlno=200 ; foldermod=M; break  ;; 

   esac 

   unset pe 

   Updateconfs 

   Debug 1 

 

   EditorMenu 

 

   IFS=';' read -a r 

   r0=`echo ${r[0]} | tr [:lower:] [:upper:]` 

 

   case "$r0" in 

    R|A|D|P|W|S|M|L|F|U|FF|LL|MM) 

     ecode=$r0; pe=( "${r[@]:1}" ) 

     case "$ecode" in 

      R|A|D|P|W|S) lecode=$ecode  ;; 

     esac 

     ;; 

    "") ecode=$lecode; editname=""; break  ;; 

    *) pe=( "${r[@]}" )  ;; 

   esac 

   Debug 2 

  done 

 

  Debug 3 

  unset pe editcmd ecode editname 

 done 

} 

 

Debug (){ 

 if [ "$debug_check" = 1 ]; then 

  echo -ne "\033[36mDebug $1:\033[0m ecode=$ecode; lecode=$lecode; editcmd=$editcmd; 

r0=$r0; " 

  for pi in "${!pe[@]}"; do echo -ne "pe[$pi]='${pe[$pi]}'  "; done 

  echo -e "" 

 fi 

} 

 

 

# 

#  Batch File Editing Loop 

# 

 

EditingLoop() { 

 if [ -z $foldermod ]; then ecode=""; warnmsg=$warnmsg"Folders unknown! \n"; break 

 elif [ -z $file ]; then code=""; warnmsg=$warnmsg"File unknown! \n"; break 

 elif [ -z $editcmd ]; then ecode=""; warnmsg=$warnmsg"Unknown command! Empty editcmd! 

\n"; break 

 fi 

 

#  Looping starts 

 echo -e "\n\033[32m$editname\033[0m start:" 

 

 unset fno lno noi unfolder unfo numfolder 

 

 if [ "$foldermod" = M ]; then 

  fno=$mfno; lno=$mlno 

 else 

  fno=$lfno; lno=$llno 

 fi 

 

 for (( noi=$fno; noi <= $lno; ++noi )); do 

  if [ "$foldermod" = M ]; then subfolder="$foldername$noi" 

  else subfolder=$(awk -v line="$noi" 'NR==line{print $1}' $list) 

  fi 

 

  if [ -f $subfolder/$file ]; then 

   cd $subfolder 

   echo -ne "\033[35m$noi/$lno\033[0m \033[36m$subfolder\033[0m: " 

   $editcmd 

   cd ../ 

   let numfolder=$numfolder+1 

  elif [[ "$foldermod" = "L" || -d "$subfolder" ]]; then 

   echo -e "\033[35m$noi/$lno\033[0m \033[36m$subfolder\033[0m: \033[41m'$file' 

UNFOUND! \033[0m" 

   unfolder=$unfolder"$subfolder, " 

   let unfo=$unfo+1 

  fi 

 done 

 

#  Looping finishes 

 

 echo -ne "\n\033[32m$editname\033[0m " 

 if [ "$ecode" != U ]; then echo -ne "on Line ${pe[0]} "; fi 

 echo -e "completed, $numfolder folders processed." 

 if [ -n "$unfo" ]; then 

  echo -e "$unfo file(s) unfound: $unfolder" 

 fi 

} 

 

 

####################################################### 

# 

#  Editor starts 

 

lecode=""; ecode=""; backup=".bak"; warnmsg=""; list="list.txt" 

debug_check=1 

if [ -n "$1" ]; then 

 file=$1; Updateconfs 

fi 

 

EditorBody 

 

file="" 

 

#  Exits Editor 

# 

####################################################### 
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Appendix C. Revised tables of RHF electron atomic scattering factors 

Some values in the tables of electron atomic scattering factors from the latest version of the International 

Tables for Crystallography [56] appears to be incorrect. They either differ from the original publication [57], 

or far depart from converted values from the corresponding X-ray atomic scattering factors as well as misfits 

to the trends of neighbouring scattering angles and elements. Such values are assumed to be erroneous caused 

by inaccurate optical character recognition (OCR). Values from the original publication are copied if they are 

available. If no original publication value is aviable, assumptions will be made replacing 1-2 digits that might 

be mistaken by OCR (like 0, 3, 6 & 8 etc.); the corrected values satisfy smaller differences than 0.5% to the 

converted values from the corresponding X-ray atomic scattering factors. The list and notations of the 

corrected values are:  

4. Corrected to values from [57] and denoted as *:

a. 27. Co – 0.30 = 2.471;

5. Corrected to assumed values and denoted as †:

a. 52. Te – 0.24 = 5.291,

b. 57. Ba – 1.50 = 0.456,

c. 57. La – 1.30 = 0.591,

d. 62. Sm – 0.40 = 3.506,

e. 64. Gd – 1.40 = 0.583,

f. 67. Ho – 0.70 = 1.805,

g. 85. At – 0.22 = 7.474, and

h. 98. Cf – 1.70 = 0.615.

The values are in unit of Å. 
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C.1. Revised tables of neutral atoms 1 – 20 

s (Å⁻¹) 1. H 2. He 3. Li 4. Be 5. B 6. C 7. N 8. O 9. F 10. Ne 11. Na 12. Mg 13. Al 14. Si 15. P 16. S 17. Cl 18. Ar 19. K 20. Ca 

0.00 0.529 0.418 3.286 3.052 2.794 2.509 2.211 1.983 1.801 1.652 4.778 5.207  5.889  5.828  5.488  5.161  4.857  4.580  8.984  9.913  

0.01 - 0.418 3.265 3.042 2.788 2.505 2.209 1.982 1.800 1.651 4.749 5.187  5.867  5.810  5.476  5.152  4.851  4.576  8.921  9.860  

0.02 - 0.417 3.200 3.011 2.768 2.492 2.201 1.976 1.796 1.648 4.663 5.124  5.800  5.759  5.439  5.124  4.830  4.559  8.731  9.699  

0.03 - 0.415 3.097 2.961 2.736 2.471 2.187 1.966 1.789 1.642 4.527 5.022  5.692  5.675  5.378  5.079  4.795  4.531  8.434  9.442  

0.04 0.51 0.413 2.961 2.892 2.693 2.442 2.168 1.953 1.779 1.635 4.348 4.884  5.547  5.561  5.296  5.016  4.746  4.493  8.054  9.104  

0.05 0.51 0.410 2.800 2.807 2.638 2.406 2.144 1.937 1.767 1.626 4.138 4.717  5.371  5.421  5.192  4.938  4.685  4.444  7.619  8.703  

0.06 0.50 0.407 2.622 2.710 2.574 2.363 2.116 1.917 1.752 1.615 3.908 4.527  5.170  5.258  5.071  4.845  4.613  4.386  7.157  8.258  

0.07 0.49 0.404 2.435 2.601 2.502 2.313 2.083 1.893 1.735 1.602 3.667 4.320  4.949  5.077  4.935  4.740  4.529  4.320  6.691  7.789  

0.08 0.48 0.399 2.245 2.484 2.423 2.259 2.047 1.867 1.716 1.587 3.425 4.102  4.717  4.882  4.785  4.623  4.436  4.245  6.239  7.312  

0.09 0.47 0.395 2.058 2.362 2.339 2.200 2.007 1.839 1.694 1.570 3.190 3.879  4.478  4.677  4.625  4.496  4.335  4.163  5.815  6.841  

0.10 0.45 0.390 1.879 2.237 2.250 2.138 1.963 1.808 1.671 1.552 2.967 3.656  4.237  4.467  4.457  4.362  4.227  4.074  5.426  6.388  

0.11 0.44 0.384 1.710 2.111 2.159 2.072 1.918 1.774 1.646 1.533 2.759 3.437  3.999  4.255  4.285  4.222  4.113  3.980  5.073  5.959  

0.12 0.425 0.378 1.554 1.987 2.067 2.005 1.870 1.739 1.619 1.512 2.569 3.226  3.767  4.043  4.109  4.078  3.994  3.881  4.756  5.560  

0.13 0.411 0.372 1.411 1.865 1.974 1.936 1.821 1.702 1.591 1.490 2.395 3.025  3.544  3.835  3.933  3.931  3.871  3.779  4.474  5.192  

0.14 0.396 0.366 1.282 1.748 1.882 1.866 1.770 1.664 1.562 1.467 2.239 2.835  3.330  3.632  3.758  3.783  3.746  3.674  4.222  4.855  

0.15 0.382 0.359 1.166 1.635 1.791 1.796 1.718 1.625 1.532 1.443 2.099 2.657  3.128  3.437  3.586  3.635  3.620  3.566  3.997  4.550  

0.16 0.366 0.352 1.063 1.528 1.702 1.727 1.666 1.585 1.501 1.418 1.974 2.492  2.938  3.249  3.417  3.487  3.493  3.458  3.795  4.273  

0.17 0.353 0.345 0.971 1.427 1.616 1.658 1.614 1.545 1.469 1.393 1.863 2.340  2.760  3.070  3.253  3.342  3.367  3.348  3.612  4.023  

0.18 0.338 0.338 0.889 1.332 1.533 1.591 1.561 1.504 1.436 1.367 1.763 2.199  2.595  2.900  3.094  3.200  3.242  3.239  3.446  3.797  

0.19 0.324 0.330 0.817 1.243 1.453 1.524 1.510 1.463 1.404 1.340 1.674 2.071  2.441  2.740  2.942  3.061  3.118  3.130  3.295  3.593  

0.20 0.311 0.323 0.753 1.161 1.377 1.460 1.458 1.422 1.371 1.313 1.594 1.953  2.299  2.589  2.796  2.927  2.997  3.022  3.154  3.408  

0.22 0.285 0.308 0.646 1.013 1.235 1.337 1.358 1.341 1.304 1.259 1.458 1.748  2.046  2.315  2.525  2.671  2.763  2.811  2.902  3.086  

0.24 0.261 0.293 0.562 0.887 1.107 1.222 1.262 1.261 1.238 1.204 1.344 1.577  1.832  2.076  2.281  2.436  2.543  2.609  2.680  2.815  

0.25 0.249 0.286 0.526 0.832 1.048 1.168 1.216 1.222 1.206 1.176 1.295 1.502  1.737  1.969  2.169  2.326  2.438  2.512  2.578  2.695  

0.26 0.238 0.278 0.494 0.781 0.993 1.117 1.171 1.184 1.173 1.149 1.249 1.434  1.650  1.869  2.064  2.221  2.337  2.417  2.481  2.584  

0.28 0.218 0.264 0.440 0.690 0.892 1.020 1.085 1.110 1.110 1.095 1.167 1.313  1.495  1.689  1.872  2.026  2.148  2.238  2.299  2.383  

0.30 0.199 0.250 0.396 0.614 0.803 0.932 1.006 1.040 1.049 1.043 1.095 1.211  1.363  1.534  1.702  1.851  1.974  2.070  2.134  2.206  

0.32 0.182 0.236 0.359 0.549 0.725 0.853 0.932 0.974 0.991 0.991 1.031 1.123  1.251  1.400  1.553  1.694  1.816  1.915  1.982  2.048  

0.34 0.167 0.224 0.328 0.494 0.657 0.781 0.863 0.911 0.935 0.942 0.973 1.047  1.154  1.284  1.422  1.554  1.672  1.772  1.842  1.905  

0.35 0.160 0.217 0.314 0.469 0.625 0.748 0.831 0.881 0.908 0.918 0.946 1.013  1.111  1.231  1.362  1.490  1.606  1.705  1.776  1.838  

0.36 0.153 0.211 0.301 0.446 0.596 0.717 0.800 0.853 0.882 0.894 0.921 0.980  1.070  1.182  1.306  1.429  1.542  1.641  1.714  1.775  

0.38 0.141 0.200 0.279 0.406 0.543 0.658 0.742 0.798 0.831 0.849 0.872 0.921  0.997  1.094  1.205  1.318  1.425  1.522  1.595  1.657  

0.40 0.130 0.189 0.259 0.371 0.497 0.606 0.689 0.747 0.784 0.805 0.827 0.868  0.932  1.017  1.115  1.218  1.319  1.412  1.487  1.548  

0.42 0.120 0.178 0.241 0.341 0.455 0.559 0.641 0.700 0.739 0.764 0.785 0.821  0.875  0.949  1.036  1.130  1.224  1.313  1.387  1.449  

0.44 0.111 0.169 0.226 0.314 0.419 0.517 0.596 0.656 0.697 0.725 0.746 0.777  0.825  0.888  0.965  1.051  1.138  1.223  1.295  1.357  

0.45 0.107 0.164 0.219 0.302 0.402 0.497 0.575 0.635 0.677 0.706 0.727 0.757  0.801  0.861  0.933  1.014  1.098  1.181  1.252  1.314  

0.46 0.103 0.159 0.212 0.291 0.387 0.479 0.555 0.615 0.658 0.687 0.709 0.738  0.779  0.834  0.903  0.980  1.061  1.141  1.211  1.272  

0.48 0.096 0.151 0.200 0.271 0.358 0.444 0.518 0.577 0.621 0.652 0.675 0.701  0.737  0.786  0.847  0.917  0.991  1.066  1.134  1.194  

0.50 0.089 0.143 0.188 0.253 0.333 0.413 0.484 0.542 0.586 0.619 0.642 0.667  0.700  0.743  0.797  0.860  0.928  0.998  1.064  1.123  

0.55 0.075 0.125 0.164 0.215 0.280 0.348 0.411 0.466 0.510 0.544 0.569 0.592  0.618  0.651  0.692  0.741  0.796  0.854  0.912  0.966  

0.60 0.064 0.110 0.145 0.186 0.239 0.297 0.353 0.403 0.445 0.479 0.505 0.528  0.551  0.578  0.610  0.648  0.692  0.740  0.790  0.838  

0.65 0.055 0.097 0.128 0.164 0.207 0.256 0.305 0.350 0.390 0.424 0.450 0.473  0.494  0.517  0.543  0.573  0.609  0.648  0.690  0.733  

0.70 0.048 0.086 0.115 0.145 0.182 0.223 0.266 0.307 0.344 0.376 0.403 0.425  0.445  0.465  0.487  0.513  0.541  0.574  0.609  0.647  

0.80 0.037 0.068 0.093 0.117 0.144 0.175 0.208 0.241 0.272 0.300 0.325 0.347  0.366  0.383  0.401  0.419  0.440  0.462  0.488  0.515  

0.90 0.029 0.055 0.077 0.096 0.118 0.141 0.167 0.193 0.219 0.244 0.266 0.286  0.304  0.320  0.335  0.350  0.366  0.383  0.402  0.422  

1.00 0.024 0.046 0.064 0.081 0.098 0.117 0.137 0.159 0.180 0.201 0.221 0.239  0.255  0.270  0.284  0.298  0.311  0.324  0.339  0.354  

1.10 0.020 0.038 0.054 0.069 0.083 0.099 0.115 0.133 0.150 0.168 0.185 0.202  0.217  0.231  0.243  0.255  0.267  0.278  0.290  0.303  

1.20 0.017 0.032 0.046 0.059 0.072 0.085 0.098 0.113 0.128 0.143 0.158 0.172  0.185  0.198  0.210  0.221  0.232  0.242  0.252  0.262  

1.30 0.014 0.028 0.040 0.051 0.062 0.073 0.085 0.097 0.110 0.123 0.135 0.148  0.160  0.172  0.183  0.193  0.202  0.212  0.220  0.230  

1.40 0.012 0.024 0.035 0.045 0.055 0.064 0.074 0.085 0.095 0.106 0.117 0.129  0.139  0.150  0.160  0.169  0.178  0.187  0.194  0.202  

1.50 0.011 0.021 0.031 0.040 0.048 0.057 0.065 0.074 0.084 0.093 0.103 0.113  0.123  0.132  0.141  0.150  0.158  0.166  0.174  0.181  

1.60 - 0.019 0.028 0.035 0.043 0.051 0.058 0.066 0.074 0.083 0.092 0.100  0.109  0.117  0.125  0.133  0.141  0.148  0.156  0.162  

1.70 - 0.016 0.024 0.031 0.038 0.045 0.052 0.059 0.066 0.074 0.081 0.089  0.096  0.104  0.111  0.119  0.126  0.132  0.138  0.144  

1.80 - 0.015 0.022 0.028 0.035 0.041 0.047 0.053 0.060 0.066 0.073 0.080  0.087  0.093  0.100  0.107  0.113  0.119  0.127  0.132  

1.90 - 0.013 0.019 0.026 0.031 0.037 0.043 0.048 0.054 0.060 0.065 0.072  0.078  0.084  0.090  0.096  0.102  0.108  0.112  0.118  

2.00 - 0.012 0.017 0.023 0.028 0.034 0.039 0.044 0.049 0.054 0.059 0.065  0.070  0.076  0.082  0.087  0.093  0.098  0.101  0.107  

2.50 - 0.008 0.011 0.015 0.019 0.022 0.026 0.029 0.032 0.036 0.039 0.043 0.046 0.050  0.053  0.057  0.060  0.064  0.065  0.071  

3.00 - 0.005 0.008 0.011 0.013 0.016 0.018 0.020 0.023 0.025 0.028 0.030 0.032 0.035  0.037  0.040  0.042  0.045  0.047  0.050  

3.50 - 0.004 0.006 0.008 0.010 0.012 0.013 0.015 0.017 0.019 0.021 0.022 0.024 0.026  0.028  0.030  0.031  0.033  0.035  0.037  

4.00 - 0.003 0.004 0.006 0.007 0.009 0.010 0.012 0.013 0.015 0.016 0.017 0.019 0.020  0.021  0.023  0.024  0.026  0.027  0.028  

5.00 - 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.009 0.010 0.011 0.012 0.013  0.014  0.015  0.016  0.017  0.018  0.018  

6.00 - 0.001 0.002 0.003 0.003 0.004 0.005 0.005 0.006 0.007 0.007 0.008 0.009 0.009  0.010  0.010  0.011  0.012  0.012  0.013  



Appendix C. Revised tables of RHF electron atomic scattering factors 

 

160 

C.2. Revised tables of neutral atoms 21 – 40  

s (Å⁻¹) 21. Sc 22. Ti 23. V 24. Cr 25. Mn 26. Fe 27. Co 28. Ni 29. Cu 30. Zn 31. Ga 32. Ge 33. As 34. Se 35. Br 36. Kr 37. Rb 38. Sr 39. Y 40. Zr 

0.00 9.307  8.776 8.305  6.969  7.506  7.165  6.854  6.569  5.600  6.065  7.108  7.378  7.320 7.205  7.060  6.897  11.778  13.109  12.674  12.166  

0.01 9.264  8.740 8.274  6.945  7.484  7.145  6.836  6.552  5.587  6.051  7.088  7.359  7.306 7.192  7.049  6.889  11.699  13.035  - - 

0.02 9.134  8.631 8.180  6.875  7.412  7.081  6.779  6.501  5.547  6.009  7.027  7.303  7.260 7.154  7.016  6.861  11.460  12.816  - - 

0.03 8.926  8.455 8.029  6.762  7.296  6.978  6.687  6.418  5.482  5.941  6.927  7.211  7.184 7.090  6.962  6.814  11.088  12.468  - - 

0.04 8.649  8.220 7.826  6.610  7.140  6.839  6.562  6.306  5.395  5.849  6.792  7.088  7.081 7.004  6.888  6.750  10.613  12.013  11.79  11.41  

0.05 8.318  7.937 7.581  6.427  6.949  6.669  6.410  6.169  5.287  5.735  6.629  6.935  6.953 6.895  6.795  6.670  10.073  11.476  11.34  11.04  

0.06 7.946  7.618 7.303  6.221  6.732  6.474  6.234  6.010  5.165  5.603  6.441  6.759  6.803 6.767  6.684  6.574  9.504  10.888  10.84  10.62  

0.07 7.548  7.274 7.002  5.997  6.493  6.260  6.040  5.834  5.029  5.457  6.236  6.562  6.634 6.621  6.558  6.464  8.934  10.273  10.31  10.15  

0.08 7.139  6.917 6.686  5.764  6.241  6.032  5.834  5.646  4.886  5.299  6.017  6.351  6.449 6.460  6.418  6.341  8.385  9.655  9.77  9.68  

0.09 6.729  6.556 6.365  5.527  5.981  5.796  5.619  5.449  4.737  5.133  5.792  6.129  6.253 6.288  6.266  6.207  7.872  9.052  9.23  9.20  

0.10 6.328  6.199 6.045  5.291  5.719  5.558  5.401  5.249  4.585  4.962  5.564  5.902  6.048 6.105  6.104  6.064  7.402  8.478  8.70  8.72  

0.11 5.944  5.853 5.732  5.061  5.459  5.320  5.182  5.048  4.434  4.790  5.337  5.672  5.838 5.916  5.935  5.913  6.976  7.940  8.20  8.26  

0.12 5.580  5.522 5.430  4.838  5.206  5.087  4.967  4.848  4.285  4.618  5.113  5.442  5.625 5.722  5.760  5.755  6.593  7.443  7.722  7.818  

0.13 5.239  5.209 5.142  4.625  4.962  4.861  4.758  4.654  4.139  4.449  4.896  5.217  5.411 5.525  5.580  5.593  6.248  6.988  7.278  7.400  

0.14 4.924  4.916 4.871  4.423  4.728  4.644  4.555  4.465  3.998  4.283  4.686  4.996  5.200 5.328  5.399  5.428  5.938  6.575  6.865  7.007  

0.15 4.633  4.643 4.616  4.231  4.506  4.436  4.361  4.283  3.862  4.123  4.486  4.783  4.992 5.132  5.217  5.260  5.658  6.200  6.485  6.640  

0.16 4.366  4.390 4.378  4.051  4.297  4.240  4.177  4.110  3.731  3.969  4.295  4.578  4.789 4.938  5.036  5.092  5.403  5.862  6.136  6.299  

0.17 4.122  4.157 4.158  3.882  4.100  4.054  4.002  3.944  3.607  3.822  4.114  4.382  4.593 4.749  4.857  4.925  5.170  5.555  5.816  5.983  

0.18 3.899  3.943 3.953  3.723  3.916  3.880  3.836  3.788  3.488  3.681  3.942  4.195  4.404 4.564  4.680  4.759  4.954  5.278  5.523  5.689  

0.19 3.695  3.745 3.763  3.574  3.743  3.716  3.681  3.640  3.375  3.547  3.781  4.017  4.222 4.384  4.507  4.595  4.754  5.025  5.254  5.419  

0.20 3.509  3.564 3.588  3.434  3.583  3.562  3.534  3.500  3.267  3.421  3.629  3.849  4.048 4.211  4.339  4.434  4.566  4.794  5.008  5.168  

0.22 3.183  3.242 3.276  3.179  3.292  3.284  3.267  3.245  3.067  3.186  3.352  3.541  3.724 3.884  4.017  4.123  4.224  4.387  4.570  4.721  

0.24 2.906  2.967 3.006  2.953  3.039  3.039  3.032  3.018  2.885  2.977  3.108  3.268  3.433 3.585  3.718  3.829  3.916  4.039  4.195  4.333  

0.25 2.783  2.844 2.885  2.849  2.924  2.928  2.924  2.914  2.800  2.880  2.997  3.143  3.299 3.446  3.578  3.690  3.773  3.882  4.027  4.158  

0.26 2.669  2.730 2.772  2.750  2.817  2.824  2.823  2.816  2.719  2.789  2.892  3.026  3.172 3.314  3.443  3.556  3.636  3.735  3.869  3.995  

0.28 2.462  2.523 2.568  2.568  2.620  2.632  2.637  2.636  2.568  2.620  2.701  2.813  2.940 3.069  3.192  3.303  3.382  3.465  3.583  3.697  

0.30 2.281  2.341 2.386  2.403  2.445  2.461  2.471*  2.474  2.428  2.468  2.531  2.623  2.733 2.849  2.963  3.071  3.149  3.224  3.329  3.433  

0.32 2.119  2.178 2.225  2.252  2.288  2.308  2.321  2.328  2.299  2.329  2.379  2.455  2.548 2.651  2.757  2.858  2.936  3.007  3.101  3.196  

0.34 1.974  2.032 2.079  2.114  2.146  2.168  2.184  2.195  2.180  2.203  2.242  2.304  2.384 2.475  2.570  2.665  2.742  2.810  2.895  2.982  

0.35 1.906  1.964 2.011  2.049  2.080  2.104  2.121  2.133  2.123  2.144  2.179  2.235  2.308 2.393  2.484  2.575  2.651  2.718  2.799  2.883  

0.36 1.842  1.899 1.947  1.987  2.017  2.042  2.060  2.073  2.069  2.087  2.119  2.169  2.237 2.316  2.402  2.490  2.564  2.630  2.708  2.789  

0.38 1.722  1.778 1.826  1.870  1.899  1.925  1.946  1.962  1.965  1.980  2.006  2.048  2.105 2.173  2.250  2.330  2.402  2.466  2.538  2.613  

0.40 1.612  1.668 1.716  1.761  1.790  1.818  1.841  1.858  1.868  1.882  1.903  1.938  1.986 2.045  2.113  2.186  2.254  2.315  2.383  2.452  

0.42 1.511  1.566 1.614  1.660  1.690  1.719  1.743  1.763  1.777  1.790  1.808  1.837  1.878 1.929  1.989  2.055  2.119  2.178  2.241  2.305  

0.44 1.418  1.472 1.520  1.567  1.597  1.628  1.653  1.674  1.691  1.704  1.720  1.745  1.780 1.824  1.877  1.936  1.995  2.052  2.111  2.171  

0.45 1.374  1.428 1.476  1.523  1.553  1.584  1.610  1.631  1.651  1.663  1.679  1.702  1.734 1.776  1.825  1.881  1.938  1.993  2.049  2.108  

0.46 1.332  1.385 1.433  1.480  1.511  1.542  1.569  1.591  1.611  1.624  1.639  1.661  1.691 1.729  1.775  1.828  1.883  1.936  1.991  2.047  

0.48 1.252  1.305 1.352  1.399  1.431  1.462  1.490  1.513  1.535  1.549  1.563  1.583  1.608 1.642  1.683  1.730  1.780  1.830  1.881  1.934  

0.50 1.179  1.230 1.277  1.323  1.356  1.388  1.416  1.440  1.464  1.478  1.492  1.510  1.533 1.562  1.598  1.640  1.686  1.733  1.780  1.829  

0.55 1.018  1.067 1.111  1.155  1.189  1.222  1.251  1.277  1.303  1.319  1.334  1.349  1.367 1.389  1.416  1.447  1.483  1.522  1.562  1.603  

0.60 0.885  0.930 0.973  1.014  1.047  1.080  1.110  1.136  1.163  1.181  1.197  1.212  1.228 1.245  1.266  1.290  1.319  1.350  1.383  1.417  

0.65 0.775  0.816 0.856  0.894  0.927  0.959  0.988  1.015  1.041  1.061  1.078  1.093  1.108 1.124  1.141  1.160  1.182  1.208  1.235  1.263  

0.70 0.684  0.721 0.757  0.792  0.824  0.854  0.883  0.909  0.935  0.955  0.973  0.989  1.004 1.019  1.034  1.050  1.068  1.089  1.111  1.135  

0.80 0.544  0.573 0.602  0.631  0.659  0.686  0.712  0.737  0.761  0.781  0.800  0.817  0.832 0.847  0.860  0.873  0.887  0.902  0.918  0.935  

0.90 0.444  0.467 0.490  0.514  0.538  0.561  0.583  0.605  0.626  0.646  0.665  0.681  0.697 0.711  0.725  0.737  0.749  0.762  0.774  0.787  

1.00 0.371  0.389 0.408  0.427  0.446  0.466  0.485  0.504  0.523  0.541  0.558  0.574  0.589 0.603  0.616  0.628  0.640  0.651  0.662  0.673  

1.10 0.316  0.330 0.345  0.361  0.377  0.393  0.409  0.425  0.442  0.457  0.473  0.488  0.502 0.515  0.528  0.540  0.551  0.562  0.572  0.582  

1.20 0.273  0.285 0.297  0.310  0.323  0.336  0.350  0.364  0.378  0.391  0.405  0.418  0.431 0.444  0.456  0.467  0.478  0.488  0.498  0.507  

1.30 0.239  0.249 0.259  0.269  0.280  0.291  0.303  0.315  0.327  0.339  0.350  0.362  0.374 0.385  0.396  0.407  0.417  0.427  0.436  0.445  

1.40 0.211  0.219 0.228  0.237  0.246  0.255  0.265  0.275  0.285  0.296  0.306  0.317  0.327 0.337  0.347  0.357  0.365  0.375  0.384  0.393  

1.50 0.188  0.195 0.203  0.210  0.218  0.226  0.235  0.243  0.252  0.261  0.270  0.279  0.288 0.297  0.306  0.315  0.325  0.333  0.341  0.349  

1.60 0.169  0.175 0.182  0.188  0.195  0.202  0.209  0.217  0.224  0.232  0.240  0.248  0.256 0.264  0.272  0.280  0.290  0.297  0.303  0.311  

1.70 0.151  0.157 0.163  0.169  0.175  0.181  0.188  0.194  0.201  0.208  0.215  0.222  0.229 0.236  0.243  0.250  0.257  0.264  0.272  0.278  

1.80 0.137  0.143 0.148  0.154  0.159  0.165  0.170  0.176  0.182  0.188  0.194  0.200  0.206 0.212  0.219  0.225  0.233  0.239  0.244  0.251  

1.90 0.124  0.129 0.134  0.139  0.144  0.149  0.154  0.160  0.165  0.170  0.175  0.181  0.187 0.192  0.198  0.204  0.208  0.214  0.221  0.227  

2.00 0.112  0.117 0.122  0.127  0.132  0.136  0.141  0.146  0.150  0.155  0.160  0.165  0.170 0.175  0.180  0.185  0.188  0.194  0.201  0.206  

2.50 0.075  0.078  0.081  0.085  0.088  0.091 0.094 0.097 0.101 0.104 0.107 0.110 0.113 0.116 0.119 0.123 0.126 0.129 - - 

3.00 0.052  0.055  0.057  0.060  0.062  0.065 0.067 0.069 0.072 0.074 0.076 0.079 0.081 0.083 0.085 0.088 0.090 0.092 - - 

3.50 0.039  0.041  0.043  0.044  0.046  0.048 0.050 0.052 0.054 0.055 0.057 0.059 0.061 0.062 0.064 0.066 0.067 0.069 - - 

4.00 0.030  0.031  0.033  0.034  0.036  0.037 0.039 0.040 0.041 0.043 0.044 0.046 0.047 0.048 0.050 0.051 0.052 0.054 - - 

5.00 0.019  0.020  0.021  0.022  0.023  0.024 0.025 0.026 0.027 0.028 0.029 0.029 0.030 0.031 0.032 0.033 0.034 0.035 - - 

6.00 0.014  0.014  0.015  0.015  0.016  0.017 0.017 0.018 0.019 0.019 0.020 0.021 0.021 0.022 0.023 0.023 0.024 0.024 - - 



Appendix C. Revised tables of RHF electron atomic scattering factors 

 

161 

C.3. Revised tables of neutral atoms 41 – 60  

s (Å⁻¹) 41. Nb 42. Mo 43. Tc 44. Ru 45. Rh 46. Pd 47. Ag 48. Cd 49. In 50. Sn 51. Sb 52. Te 53. I 54. Xe 55. Cs 56. Ba 57. La 58. Ce 59. Pr 60. Nd 

0.00 10.679  10.260  10.856  9.558 9.242  7.583  8.671  9.232  10.434  10.859  10.974  11.003  10.905  10.794  16.508 18.267  17.805  17.378  16.987  16.606  

0.01 - 10.230  - - - - 8.654  9.213  10.406  10.833  10.950  - 10.887  10.777  16.391 18.157  - - - - 

0.02 - 10.138  - - - - 8.599  9.153  10.320  10.750  10.876  - 10.828  10.725  16.050 17.828  - - - - 

0.03 - 9.989  - - - - 8.510  9.057  10.181  10.615  10.755  - 10.731  10.638  15.521 17.309  - - - - 

0.04 10.13  9.790  10.35  9.18 8.90  7.43  8.391  8.926  9.995  10.433  10.591  10.65  10.599  10.520  14.855 16.636  16.45  16.10  15.62  15.30  

0.05 9.86  9.548  10.10  8.99 8.73  7.35  8.244  8.764  9.768  10.209  10.387  10.47  10.434  10.371  14.106 15.854  15.79  15.46  14.94  14.67  

0.06 9.54  9.272  9.80  8.77 8.53  7.26  8.075  8.577  9.509  9.950  10.150  10.25  10.238  10.194  13.326 15.008  15.05  14.77  14.22  13.97  

0.07 9.20  8.972  9.48  8.53 8.31  7.16  7.888  8.369  9.224  9.664  9.884  10.01  10.017  9.993  12.556 14.138  14.28  14.03  13.47  13.25  

0.08 8.85  8.655  9.14  8.27 8.01  7.03  7.689  8.144  8.923  9.357  9.596  9.74  9.773  9.771  11.823 13.278  13.51  13.29  12.72  12.52  

0.09 8.49  8.330  8.78  8.00 7.83  6.91  7.480  7.909  8.612  9.037  9.291  9.46  9.511  9.530  11.145 12.431  12.74  12.56  11.99  11.82  

0.10 8.12  8.004  8.42  7.73 7.58  6.77  7.267  7.666  8.297  8.709  8.976  9.16  9.235  9.274  10.525 11.675  12.01  11.85  11.29  11.15  

0.11 7.77  7.680  8.07  7.46 7.33  6.62  7.052  7.421  7.983  8.380  8.654  8.85  8.948  9.007  9.965 10.958  11.32  11.19  10.65  10.52  

0.12 7.421  7.364  7.720  7.190 7.079  6.474  6.837  7.176  7.674  8.053  8.331  8.538  8.654  8.732  9.458 10.302  10.671  10.561  10.052  9.944  

0.13 7.090  7.058  7.383  6.928 6.836  6.319  6.625  6.933  7.374  7.732  8.010  8.224  8.357  8.451  9.000 9.707  10.072  9.981  9.506  9.412  

0.14 6.772  6.763  7.057  6.672 6.598  6.162  6.418  6.695  7.084  7.419  7.694  7.914  8.059  8.167  8.583 9.168  9.522  9.448  9.008  8.928  

0.15 6.472  6.481  6.746  6.426 6.366  6.003  6.215  6.464  6.805  7.118  7.386  7.608  7.764  7.884  8.201 8.682  9.017  8.958  8.556  8.486  

0.16 6.187  6.213  6.451  6.188 6.143  5.843  6.018  6.240  6.539  6.829  7.088  7.309  7.472  7.603  7.848 8.241  8.555  8.507  8.144  8.084  

0.17 5.918  5.957  6.171  5.960 5.929  5.684  5.827  6.024  6.286  6.552  6.800  7.018  7.186  7.325  7.519 7.840  8.131  8.094  7.768  7.717  

0.18 5.665  5.715  5.907  5.741 5.722  5.526  5.643  5.817  6.045  6.289  6.524  6.738  6.908  7.053  7.212 7.474  7.742  7.714  7.424  7.380  

0.19 5.427  5.486  5.658  5.533 5.524  5.369  5.464  5.618  5.817  6.039  6.261  6.467  6.639  6.787  6.922 7.139  7.384  7.365  7.107  7.071  

0.20 5.203  5.269  5.423  5.332 5.334  5.214  5.293  5.427  5.601  5.803  6.010  6.209  6.379  6.529  6.649 6.829  7.053  7.041  6.815  6.785  

0.22 4.792  4.868  4.994  4.959 4.976  4.913  4.967  5.070  5.203  5.368  5.547  5.727  5.889  6.039  6.143 6.275  6.462  6.462  6.291  6.272  

0.24 4.426  4.507  4.614  4.618 4.648  4.626  4.665  4.745  4.846  4.979  5.131  5.291†  5.442  5.586  5.684 5.791  5.948  5.957  5.831  5.822  

0.25 4.258  4.341  4.439  4.459 4.493  4.487  4.522  4.592  4.682  4.801  4.940  5.090  5.234  5.374  5.471 5.570  5.714  5.728  5.620  5.615  

0.26 4.099  4.182  4.273  4.306 4.345  4.352  4.384  4.447  4.525  4.633  4.760  4.899  5.036  5.172  5.268 5.361  5.495  5.312  5.421  5.421  

0.28 3.804  3.888  3.969  4.021 4.066  4.093  4.122  4.173  4.236  4.323  4.428  4.548  4.670  4.795  4.890 4.975  5.092  5.115  5.053  5.059  

0.30 3.539  3.622  3.695  3.759 3.809  3.850  3.878  3.922  3.973  4.044  4.131  4.234  4.341  4.454  4.547 4.628  4.730  4.759  4.719  4.731  

0.32 3.298  3.379  3.448  3.518 3.572  3.622  3.651  3.690  3.734  3.792  3.865  3.952  4.046  4.147  4.235 4.313  4.405  4.438  4.414  4.432  

0.34 3.080  3.158  3.223  3.296 3.353  3.408  3.440  3.476  3.515  3.564  3.625  3.700  3.780  3.870  3.953 4.028  4.111  4.146  4.136  4.157  

0.35 2.978  3.054  3.118  3.192 3.249  3.306  3.339  3.375  3.412  3.458  3.514  3.583  3.658  3.742  3.822 3.893  3.974  4.010  4.006  4.029  

0.36 2.880  2.955  3.018  3.092 3.150  3.208  3.242  3.278  3.313  3.356  3.408  3.472  3.541  3.620  3.697 3.769  3.844  3.881  3.882  3.906  

0.38 2.698  2.770  2.830  2.904 2.962  3.022  3.058  3.093  3.127  3.165  3.210  3.265  3.325  3.394  3.465 3.533  3.602  3.640  3.648  3.675  

0.40 2.531  2.600  2.658  2.730 2.788  2.848  2.886  2.922  2.955  2.990  3.030  3.078  3.130  3.191  3.255 3.318  3.381  3.420  3.434  3.462  

0.42 2.379  2.444  2.500  2.570 2.626  2.686  2.726  2.762  2.795  2.828  2.864  2.907  2.953  3.006  3.064 3.123  3.180  3.219  3.238  3.267  

0.44 2.239  2.300  2.355  2.421 2.477  2.535  2.576  2.613  2.646  2.678  2.712  2.750  2.791  2.838  2.890 2.944  2.997  3.035  3.057  3.087  

0.45 2.173  2.233  2.287  2.351 2.406  2.464  2.505  2.542  2.576  2.608  2.640  2.677  2.715  2.759  2.809 2.861  2.911  2.949  2.973  3.003  

0.46 2.110  2.168  2.221  2.284 2.338  2.395  2.436  2.474  2.507  2.539  2.571  2.606  2.642  2.684  2.731 2.781  2.829  2.866  2.891  2.922  

0.48 1.991  2.046  2.098  2.157 2.210  2.264  2.306  2.344  2.378  2.409  2.440  2.473  2.506  2.543  2.586 2.631  2.676  2.712  2.739  2.769  

0.50 1.883  1.934  1.984  2.040 2.090  2.143  2.185  2.223  2.257  2.288  2.318  2.350  2.380  2.414  2.453 2.494  2.535  2.570  2.598  2.628  

0.55 1.646  1.690  1.734  1.782 1.828  1.875  1.915  1.953  1.987  2.019  2.048  2.077  2.104  2.132  2.163 2.197  2.230  2.262  2.291  2.320  

0.60 1.452  1.490  1.528  1.569 1.609  1.650  1.688  1.724  1.758  1.790  1.819  1.847  1.871  1.897  1.923 1.951  1.979  2.008  2.037  2.064  

0.65 1.292  1.324  1.357  1.391 1.426  1.462  1.497  1.531  1.563  1.594  1.622  1.649  1.673  1.697  1.721 1.745  1.770  1.796  1.824  1.849  

0.70 1.159  1.185  1.214  1.243 1.273  1.304  1.335  1.366  1.397  1.426  1.453  1.479  1.503  1.526  1.548 1.570  1.592  1.617  1.643  1.666  

0.80 0.952  0.971  0.992  1.013 1.035  1.058  1.082  1.107  1.132  1.157  1.181  1.205  1.227  1.248  1.269 1.288  1.308  1.329  1.351  1.372  

0.90 0.800  0.814  0.830  0.845 0.861  0.879  0.897  0.916  0.936  0.956  0.976  0.997  1.016  1.036  1.055 1.073  1.090  1.109  1.128  1.146  

1.00 0.684  0.695  0.707  0.719 0.731  0.745  0.758  0.773  0.789  0.805  0.821  0.838  0.855  0.871  0.888 0.904  0.920  0.936  0.953  0.969  

1.10 0.591  0.601  0.611  0.621 0.631  0.641  0.652  0.664  0.676  0.688  0.701  0.715  0.729  0.743  0.758 0.772  0.785  0.799  0.814  0.828  

1.20 0.516  0.525  0.534  0.542 0.551  0.559  0.568  0.578  0.587  0.597  0.608  0.619  0.630  0.642  0.654 0.666  0.678  0.690  0.702  0.715  

1.30 0.454  0.462  0.470  0.478 0.485  0.493  0.500  0.508  0.516  0.525  0.533  0.542  0.551  0.561  0.570 0.580  0.591†  0.602  0.612  0.623  

1.40 0.401  0.408  0.416  0.423 0.431  0.437  0.444  0.451  0.458  0.465  0.472  0.480  0.487  0.495  0.502 0.511  0.521  0.530  0.539  0.548  

1.50 0.356  0.364  0.371  0.378 0.384  0.391  0.397  0.403  0.409  0.416  0.422  0.428  0.435  0.442  0.450 0.456†  0.463  0.470  0.478  0.486  

1.60 0.318  0.325  0.332  0.338 0.345  0.351  0.357  0.362  0.368  0.374  0.379  0.385  0.391  0.397  0.405 0.411  0.415  0.421  0.428  0.435  

1.70 0.285  0.291  0.298  0.304 0.310  0.316  0.321  0.327  0.332  0.337  0.343  0.348  0.353  0.358  0.363 0.367  0.374  0.380  0.386  0.392  

1.80 0.257  0.263  0.269  0.275 0.281  0.286  0.291  0.297  0.302  0.307  0.311  0.316  0.321  0.325  0.332 0.337  0.340  0.345  0.350  0.355  

1.90 0.233  0.238  0.244  0.249 0.255  0.260  0.265  0.270  0.274  0.279  0.284  0.288  0.293  0.297  0.299 0.304  0.310  0.314  0.319  0.324  

2.00 0.211  0.216  0.222  0.227 0.232  0.237  0.241  0.246  0.250  0.255  0.259  0.264  0.268  0.272  0.272 0.277  0.284  0.288  0.292  0.296  

2.50 - 0.142 - - - - 0.159 0.163 0.166 0.170 0.173 - 0.179 0.183 0.186 0.189 - - - - 

3.00 - 0.101 - - - - 0.113 0.115 0.118 0.120 0.122 - 0.127 0.130 0.132 0.134 - - - - 

3.50 - 0.076 - - - - 0.084 0.086 0.088 0.090 0.091 - 0.095 0.097 0.098 0.100 - - - - 

4.00 - 0.059 - - - - 0.066 0.067 0.068 0.069 0.071 - 0.073 0.075 0.076 0.078 - - - - 

5.00 - 0.039 - - - - 0.043 0.044 0.045 0.045 0.046 - 0.048 0.049 0.050 0.051 - - - - 

6.00 - 0.027 - - - - 0.030 0.031 0.031 0.032 0.033 - 0.034 0.034 0.035 0.036 - - - - 
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C.4. Revised tables of neutral atoms 61 – 80  

s (Å⁻¹) 61. Pm 62. Sm 63. Eu 64. Gd 65. Tb 66. Dy 67. Ho 68. Er 69. Tm 70. Yb 71. Lu 72. Hf 73. Ta 74. W 75. Re 76. Os 77. Ir 78. Pt 79. Au 80. Hg 

0.00 16.243  15.897  15.563  15.266  14.974  14.641 14.355  14.080  13.814  13.557  13.486  13.177  12.856  12.543  12.263  11.987  11.718 10.813  10.573  10.964  

0.01 - - 15.486  - - - - - - - - - - - - - - - 10.559  10.948  

0.02 - - 15.260  - - - - - - - - - - - - - - - 10.511  10.897  

0.03 - - 14.898  - - - - - - - - - - - - - - - 10.434  10.813  

0.04 14.99  14.70  14.425  14.30  13.90  13.64 13.57  13.16  12.92  12.70  12.74  12.55  12.31  12.06  11.83  11.59  11.37 10.55  10.328  10.698  

0.05 14.39  14.12  13.867  13.81  13.37  13.14 13.14  12.70  12.48  12.28  12.38  12.23  12.01  11.80  11.60  11.39  11.18 10.40  10.195  10.555  

0.06 13.72  13.48  13.253  13.27  12.81  12.60 12.66  12.19  12.00  11.81  11.95  11.85  11.69  11.51  11.34  11.15  10.96 10.23  10.040  10.387  

0.07 13.03  12.81  12.611  12.70  12.22  12.03 12.15  11.66  12.16 11.67 12.17 11.68 12.18 11.69 12.19 11.70 12.20 11.71 12.21 11.72 

0.08 12.33  12.14  11.963  12.11  11.62  11.44 11.61  11.11  10.96  10.80  11.03  11.02  10.95  10.83  10.73  10.59  10.45 9.82  9.673  9.989  

0.09 11.65  11.49  11.329  11.52  11.02  10.87 11.08  10.58  10.44  10.29  10.55  10.59  10.55  10.47  10.40  10.29  10.17 9.60  9.467  9.766  

0.10 11.00  10.86  10.722  10.95  10.45  10.32 10.55  10.06  9.93  9.80  10.08  10.16  10.15  10.10  10.05  9.98  9.88 9.37  9.251  9.533  

0.11 10.40  10.27  10.150  10.39  9.91  9.79 10.05  9.56  9.45  9.33  9.62  9.73  9.75  9.74  9.71  9.65  9.58 9.13  9.028  9.291  

0.12 9.833  9.722  9.618  9.871  9.407  9.303 9.562  9.095  8.994  8.892  9.180  9.308  9.363  9.369  9.366  9.334  9.281 8.882  8.799  9.045  

0.13 9.316  9.218  9.128  9.382  8.942  8.848 9.108  8.662  8.571  8.480  8.762  8.907  8.982  9.011  9.028  9.016  8.982 8.636  8.568  8.796  

0.14 8.843  8.758  8.678  8.926  8.512  8.429 8.681  8.262  8.180  8.098  8.370  8.525  8.616  8.663  8.697  8.702  8.686 8.389  8.337  8.547  

0.15 8.413  8.336  8.267  8.505  8.121  8.045 8.284  7.895  7.821  7.746  8.001  8.163  8.266  8.327  8.376  8.396  8.395 8.145  8.106  8.299  

0.16 8.020  7.953  7.891  8.114  7.761  7.693 7.917  7.557  7.490  7.421  7.660  7.822  7.933  8.006  8.067  8.099  8.111 7.904  7.877  8.055  

0.17 7.661  7.602  7.548  7.754  7.430  7.370 7.577  7.247  7.185  7.123  7.343  7.502  7.617  7.699  7.769  7.813  7.836 7.667  7.652  7.815  

0.18 7.332  7.280  7.232  7.422  7.128  7.073 7.262  6.962  6.905  6.849  7.047  7.202  7.321  7.408  7.485  7.537  7.570 7.436  7.431  7.579  

0.19 7.029  6.983  6.942  7.114  6.849  6.800 6.971  6.698  6.646  6.595  6.774  6.922  7.040  7.132  7.213  7.272  7.313 7.210  7.214  7.350  

0.20 6.749  6.710  6.673  6.828  6.591  6.547 6.700  6.454  6.407  6.360  6.520  6.660  6.776  6.870  6.954  7.019  7.067 6.991  7.003  7.128  

0.22 6.247  6.218  6.191  6.316  6.127  6.092 6.213  6.017  5.978  5.938  6.063  6.185  6.295  6.388  6.475  6.547  6.604 6.572  6.598  6.702  

0.24 5.806  5.787  5.768  5.868  5.720  5.693 5.788  5.632  5.601  5.568  5.664  5.768  5.867  5.957  6.043  6.117  6.180 6.181  6.216  6.305  

0.25 5.605  5.589  5.574  5.664  5.534  5.510 5.595  5.457  5.428  5.398  5.483  5.578  5.672  5.759  5.843  5.917  5.982 5.995  6.035  6.116  

0.26 5.413  5.402  5.390  5.472  5.358  5.337 5.412  5.290  5.265  5.238  5.312  5.399  5.487  5.571  5.653  5.727  5.792 5.817  5.859  5.934  

0.28 5.059  5.055  5.030  5.117  5.030  5.016 5.075  4.981  4.961  4.940  4.996  5.069  5.147  5.224  5.301  5.372  5.437 5.478  5.525  5.591  

0.30 4.737  4.739  4.740  4.796  4.731  4.723 4.771  4.699  4.685  4.669  4.712  4.772  4.840  4.910  4.981  5.049  5.113 5.164  5.214  5.272  

0.32 4.443  4.450  4.456  4.504  4.457  4.454 4.494  4.440  4.430  4.419  4.453  4.503  4.563  4.626  4.691  4.755  4.816 4.873  4.924  4.976  

0.34 4.173  4.185  4.195  4.238  4.205  4.206 4.240  4.200  4.195  4.188  4.215  4.258  4.310  4.366  4.425  4.485  4.543 4.603  4.654  4.702  

0.35 4.047  4.060  4.072  4.113  4.086  4.089 4.121  4.087  4.084  4.078  4.103  4.143  4.191  4.245  4.301  4.359  4.415 4.475  4.526  4.572  

0.36 3.925  3.940  3.954  3.993  3.971  3.976 4.007  3.978  3.976  3.973  3.996  4.033  4.078  4.129  4.182  4.237  4.293 4.352  4.403  4.447  

0.38 3.697  3.715  3.731  3.767  3.755  3.763 3.790  3.771  3.773  3.773  3.793  3.825  3.865  3.910  3.959  4.010  4.061 4.120  4.169  4.211  

0.40 3.486  3.506†  3.525  3.559  3.554  3.565 3.591  3.579  3.583  3.586  3.604  3.632  3.668  3.709  3.753  3.800  3.848 3.905  3.952  3.991  

0.42 3.292  3.314  3.335  3.367  3.368  3.380 3.405  3.399  3.406  3.411  3.429  3.454  3.486  3.523  3.563  3.606  3.651 3.704  3.750  3.787  

0.44 3.114  3.137  3.159  3.189  3.194  3.209 3.233  3.232  3.241  3.248  3.265  3.288  3.317  3.350  3.387  3.427  3.468 3.518  3.562  3.597  

0.45 3.029  3.053  3.075  3.105  3.113  3.128 3.151  3.153  3.162  3.170  3.187  3.209  3.237  3.269  3.304  3.342  3.382 3.430  3.472  3.507  

0.46 2.948  2.973  2.995  3.025  3.034  3.050 3.073  3.076  3.086  3.095  3.111  3.133  3.159  3.190  3.224  3.260  3.299 3.345  3.386  3.420  

0.48 2.796  2.821  2.844  2.872  2.884  2.901 2.924  2.930  2.942  2.952  2.968  2.988  3.013  3.041  3.072  3.105  3.141 3.184  3.223  3.256  

0.50 2.655  2.680  2.703  2.730  2.745  2.763 2.785  2.793  2.806  2.818  2.834  2.853  2.876  2.902  2.930  2.961  2.994 3.034  3.070  3.102  

0.55 2.346  2.371  2.394  2.419  2.457  2.456 2.477  2.490  2.505  2.518  2.534  2.551  2.571  2.592  2.616  2.641  2.669 2.701  2.732  2.760  

0.60 2.089  2.113  2.156  2.138  2.178  2.197 2.216  2.232  2.248  2.263  2.278  2.294  2.311  2.330  2.349  2.371  2.394 2.420  2.446  2.471  

0.65 1.872  1.895  1.917  1.937  1.958  1.977 1.995  2.012  2.028  2.043  2.058  2.073  2.089  2.105  2.122  2.140  2.160 2.181  2.203  2.225  

0.70 1.688  1.709  1.730  1.749  1.770  1.788 1.805†  1.823  1.839  1.854  1.868  1.882  1.896  1.911  1.926  1.942  1.959 1.976  1.995  2.015  

0.80 1.391  1.411  1.429  1.446  1.465  1.482 1.497  1.515  1.530  1.545  1.558  1.571  1.583  1.596  1.608  1.621  1.634 1.647  1.661  1.676  

0.90 1.164  1.181  1.198  1.213  1.231  1.246 1.260  1.276  1.291  1.305  1.317  1.329  1.341  1.352  1.363  1.374  1.385 1.396  1.407  1.419  

1.00 0.985  1.000  1.016  1.030  1.045  1.060 1.073  1.088  1.101  1.114  1.126  1.138  1.148  1.159  1.169  1.179  1.189 1.198  1.208  1.218  

1.10 0.842  0.856  0.870  0.883  0.897  0.910 0.922  0.935  0.948  0.960  0.971  0.982  0.993  1.003  1.012  1.022  1.031 1.040  1.048  1.057  

1.20 0.727  0.739  0.752  0.763  0.776  0.787 0.799  0.811  0.822  0.833  0.844  0.854  0.864  0.874  0.883  0.892  0.901 0.909  0.918  0.926  

1.30 0.634  0.644  0.655  0.666  0.676  0.687 0.698  0.708  0.719  0.729  0.739  0.748  0.758  0.767  0.776  0.784  0.793 0.801  0.809  0.816  

1.40 0.557  0.566  0.575  0.583†  0.595  0.604 0.614  0.623  0.632  0.642  0.651  0.660  0.668  0.677  0.685  0.694  0.702 0.709  0.717  0.724  

1.50 0.494  0.502  0.511  0.519  0.527  0.535 0.544  0.552  0.560  0.569  0.577  0.585  0.593  0.601  0.609  0.617  0.624 0.632  0.639  0.646  

1.60 0.442  0.449  0.457  0.463  0.470  0.478 0.485  0.492  0.500  0.507  0.515  0.522  0.530  0.537  0.544  0.551  0.558 0.565  0.572  0.579  

1.70 0.398  0.404  0.409  0.416  0.423  0.429 0.436  0.442  0.449  0.455  0.462  0.469  0.475  0.482  0.489  0.495  0.502 0.508  0.514  0.521  

1.80 0.360  0.366  0.372  0.377  0.382  0.388 0.394  0.399  0.405  0.411  0.417  0.423  0.429  0.435  0.441  0.447  0.453 0.459  0.465  0.471  

1.90 0.328  0.333  0.337  0.343  0.348  0.353 0.358  0.363  0.368  0.373  0.379  0.384  0.389  0.395  0.400  0.406  0.411 0.416  0.422  0.427  

2.00 0.301  0.305  0.307  0.313  0.318  0.322 0.327  0.331  0.336  0.341  0.345  0.350  0.355  0.360  0.365  0.370  0.374 0.379  0.384  0.389  

2.50 - - 0.209 - - - - - - - - - - - - - - - 0.256 0.259 

3.00 - - 0.150 - - - - - - - - - - - - - - - 0.184 0.186 

3.50 - - 0.113 - - - - - - - - - - - - - - - 0.139 0.141 

4.00 - - 0.087 - - - - - - - - - - - - - - - 0.108 0.110 

5.00 - - 0.057 - - - - - - - - - - - - - - - 0.071 0.072 

6.00 - - 0.040 - - - - - - - - - - - - - - - 0.050 0.050 
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C.5. Revised tables of neutral atoms 81 – 98  

s (Å⁻¹) 81. Tl 82. Pb 83. Bi 84. Po 85. At 86. Rn 87. Fr 88. Ra 89. Ac 90. Th 91. Pa 92. U 93. Np 94. Pu 95. Am 96. Cm 97. Bk 98. Cf   

0.00 12.109  12.597  13.096  13.368  13.473  13.492  18.715  20.561 20.484  20.115  19.568  19.119  18.759  18.191  17.840  17.710  17.406  16.841   

0.01 - 12.573  13.070  - - 13.470  - - - - - 19.047  - - - - - -   

0.02 - 12.494  12.989  - - 13.403  - - - - - 18.825  - - - - - -   

0.03 - 12.366  12.857  - - 13.292  - - - - - 18.470  - - - - - -   

0.04 11.71  12.193  12.678  12.95  13.09  13.139  17.14  18.94 19.10  18.92  18.37  17.999  17.70  17.10  16.80  16.80  16.53  16.28   

0.05 11.51  11.979  12.456  12.74  12.89  12.949  16.41  18.15 18.41  18.33  17.77  17.436  17.16  16.55  16.28  16.33  16.08  15.85   

0.06 11.27  11.730  12.197  12.49  12.65  12.724  15.64  17.31 17.64  17.66  17.11  16.805  16.55  15.95  15.70  15.80  15.58  15.37   

0.07 12.22 11.73 12.23 11.74 12.24 11.75 12.25 11.76 12.26 11.77 12.27 11.78 12.28 11.79 12.29 11.80 12.30 11.81   

0.08 10.72  11.155  11.595  11.90  12.08  12.187  14.13  15.54 16.01  16.19  15.66  15.436  15.25  14.65  14.47  14.66  14.48  14.30   

0.09 10.42  10.840  11.264  11.57  11.76  11.884  13.42  14.69 15.19  15.43  14.92  14.738  14.58  14.00  13.84  14.06  13.91  13.75   

0.10 10.12  10.516  10.921  11.22  11.43  11.565  12.77  13.88 14.40  14.68  14.20  14.052  13.92  13.37  13.24  13.47  13.33  13.20   

0.11 9.81  10.186  10.571  10.87  11.08  11.232  12.16  13.12 13.64  13.95  13.51  13.389  13.28  12.76  12.65  12.90  12.78  12.66   

0.12 9.500  9.855  10.219  10.509  10.729  10.892  11.605  12.419 12.923  13.255  12.850  12.756  12.665  12.191  12.095  12.344  12.241  12.135   

0.13 9.195  9.527  9.869  10.153  10.375  10.546  11.093  11.776 12.253  12.594  12.228  12.157  12.085  11.653  11.572  11.817  11.729  11.637   

0.14 8.896  9.203  9.523  9.798  10.021  10.199  10.620  11.187 11.632  11.972  11.646  11.595  11.540  11.149  11.083  11.319  11.243  11.164   

0.15 8.603  8.888  9.186  9.449  9.671  9.854  10.180  10.648 11.058  11.388  11.102  11.069  11.029  10.679  10.626  10.848  10.784  10.716   

0.16 8.320  8.581  8.857  9.109  9.328  9.512  9.770  10.155 10.528  10.845  10.597  10.579  10.551  10.243  10.200  10.407  10.353  10.294   

0.17 8.046  8.285  8.539  8.779  8.991  9.177  9.386  9.702 10.038  10.339  10.128  10.122  10.104  9.836  9.803  9.993  9.948  9.898   

0.18 7.781  7.999  8.233  8.459  8.666  8.849  9.023  9.285 9.586  9.868  9.691  9.696  9.688  9.457  9.433  9.605  9.568  9.527   

0.19 7.526  7.724  7.939  8.151  8.350  8.531  8.681  8.899 9.168  9.430  9.285  9.299  9.300  9.102  9.086  9.241  9.212  9.178   

0.20 7.282  7.461  7.658  7.856  8.046  8.223  8.356  8.540 8.780  9.022  8.906  8.928  8.936  8.770  8.760  8.900  8.878  8.850   

0.22 6.822  6.969  7.132  7.303  7.474†  7.639  7.754  7.891 8.083  8.287  8.221  8.254  8.275  8.163  8.164  8.277  8.266  8.249   

0.24 6.399  6.520  6.654  6.800  6.952  7.102  7.208  7.318 7.474  7.645  7.617  7.659  7.689  7.619  7.631  7.721  7.720  7.713   

0.25 6.201  6.310  6.432  6.567  6.709  6.852  6.954  7.055 7.196  7.353  7.341  7.387  7.420  7.368  7.384  7.465  7.468  7.466   

0.26 6.011  6.110  6.221  6.345  6.477  6.612  6.712  6.807 6.935  7.079  7.081  7.129  7.165  7.129  7.148  7.222  7.229  7.231   

0.28 5.654  5.736  5.828  5.933  6.047  6.166  6.261  6.347 6.455  6.578  6.600  6.652  6.694  6.683  6.708  6.770  6.784  6.793   

0.30 5.327  5.395  5.472  5.560  5.658  5.762  5.852  5.931 6.025  6.129  6.167  6.221  6.266  6.274  6.304  6.358  6.378  6.393   

0.32 5.025  5.083  5.148  5.222  5.305  5.397  5.480  5.555 5.637  5.727  5.775  5.830  5.878  5.899  5.933  5.981  6.006  6.026   

0.34 4.746  4.797  4.852  4.915  4.987  5.065  5.141  5.212 5.285  5.364  5.418  5.473  5.523  5.553  5.591  5.635  5.664  5.687   

0.35 4.614  4.662  4.714  4.772  4.838  4.912  4.984  5.053 5.122  5.196  5.252  5.307  5.357  5.391  5.429  5.472  5.502  5.528   

0.36 4.488  4.533  4.581  4.636  4.697  4.765  4.834  4.900 4.966  5.036  5.093  5.148  5.197  5.235  5.274  5.316  5.347  5.374   

0.38 4.249  4.290  4.333  4.380  4.433  4.492  4.555  4.616 4.675  4.738  4.796  4.850  4.899  4.940  4.981  5.021  5.055  5.084   

0.40 4.028  4.066  4.104  4.146  4.192  4.244  4.300  4.356 4.410  4.466  4.524  4.576  4.625  4.669  4.710  4.749  4.784  4.815   

0.42 3.823  3.858  3.893  3.931  3.972  4.017  4.067  4.118 4.168  4.218  4.275  4.325  4.372  4.417  4.459  4.497  4.532  4.565   

0.44 3.632  3.665  3.698  3.732  3.769  3.808  3.854  3.901 3.946  3.992  4.046  4.094  4.140  4.185  4.226  4.263  4.299  4.333   

0.45 3.541  3.573  3.606  3.639  3.673  3.711  3.754  3.798 3.842  3.885  3.938  3.985  4.030  4.076  4.116  4.152  4.189  4.222   

0.46 3.454  3.485  3.517  3.548  3.582  3.617  3.658  3.700 3.742  3.784  3.835  3.881  3.925  3.970  4.010  4.046  4.082  4.116   

0.48 3.288  3.318  3.348  3.378  3.408  3.441  3.477  3.516 3.554  3.592  3.641  3.685  3.727  3.771  3.810  3.844  3.880  3.914   

0.50 3.133  3.162  3.191  3.219  3.248  3.277  3.311  3.346 3.381  3.416  3.462  3.503  3.543  3.586  3.624  3.657  3.693  3.726   

0.55 2.789  2.816  2.842  2.868  2.893  2.918  2.945  2.974 3.003  3.032  3.071  3.106  3.141  3.179  3.213  3.244  3.277  3.309   

0.60 2.497  2.522  2.546  2.570  2.593  2.616  2.639  2.663 2.687  2.712  2.744  2.775  2.805  2.839  2.869  2.897  2.927  2.957   

0.65 2.248  2.271  2.293  2.315  2.337  2.358  2.378  2.399 2.421  2.442  2.470  2.495  2.522  2.551  2.578  2.603  2.630  2.657   

0.70 2.035  2.055  2.076  2.096  2.116  2.135  2.154  2.173 2.193  2.212  2.235  2.257  2.280  2.306  2.330  2.352  2.376  2.400   

0.80 1.692  1.708  1.725  1.742  1.758  1.775  1.791  1.808 1.824  1.840  1.857  1.875  1.893  1.912  1.930  1.949  1.968  1.987   

0.90 1.431  1.444  1.457  1.471  1.485  1.499  1.513  1.527 1.541  1.554  1.568  1.582  1.597  1.611  1.626  1.641  1.657  1.673   

1.00 1.228  1.239  1.249  1.260  1.272  1.283  1.295  1.307 1.318  1.330  1.342  1.353  1.365  1.377  1.389  1.402  1.415  1.427   

1.10 1.066  1.075  1.084  1.093  1.102  1.112  1.122  1.132 1.142  1.152  1.161  1.171  1.181  1.191  1.201  1.212  1.222  1.233   

1.20 0.934  0.942  0.949  0.957  0.965  0.974  0.982  0.990 0.999  1.007  1.016  1.024  1.033  1.041  1.049  1.058  1.067  1.076   

1.30 0.824  0.831  0.838  0.846  0.853  0.860  0.867  0.874 0.882  0.889  0.896  0.904  0.911  0.918  0.926  0.933  0.941  0.948   

1.40 0.731  0.738  0.745  0.752  0.758  0.765  0.771  0.778 0.784  0.791  0.797  0.803  0.810  0.816  0.823  0.830  0.836  0.843   

1.50 0.653  0.659  0.666  0.672  0.678  0.684  0.690  0.696 0.702  0.708  0.714  0.720  0.725  0.731  0.737  0.743  0.748  0.754   

1.60 0.585  0.591  0.598  0.603  0.609  0.615  0.621  0.626 0.632  0.637  0.643  0.649  0.653  0.659  0.664  0.669  0.674  0.679   

1.70 0.527  0.533  0.538  0.544  0.550  0.555  0.561  0.566 0.571  0.576  0.581  0.585  0.591  0.596  0.601  0.606  0.611  0.615†   

1.80 0.476  0.482  0.488  0.493  0.498  0.503  0.508  0.513 0.518  0.523  0.528  0.534  0.537  0.542  0.547  0.551  0.555  0.560   

1.90 0.432  0.438  0.443  0.448  0.453  0.458  0.463  0.468 0.472  0.477  0.481  0.485  0.490  0.495  0.499  0.503  0.507  0.511   

2.00 0.394  0.399  0.404  0.409  0.413  0.418  0.423  0.427 0.432  0.436  0.440  0.443  0.449  0.453  0.457  0.461  0.465  0.469   

2.50 - 0.265 0.268 - - 0.278 - - - - - 0.297 - - - - - -   

3.00 - 0.190 0.192 - - 0.199 - - - - - 0.212 - - - - - -   

3.50 - 0.144 0.145 - - 0.150 - - - - - 0.159 - - - - - -   

4.00 - 0.112 0.113 - - 0.117 - - - - - 0.124 - - - - - -   

5.00 - 0.073 0.074 - - 0.077 - - - - - 0.082 - - - - - -   

6.00 - 0.052 0.052 - - 0.054 - - - - - 0.058 - - - - - -   
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Synopsis A two- or three-variable-parameter function is empirically derived for incorporating atom-

localised and non-local phenomenological absorption into quantitative electron diffraction and imaging. 

Abstract An accurate formalism for describing phenomenological absorption of electrons by matter 

is indispensable when it comes to quantitative simulations of electron microscope images and 

diffraction patterns.  The model of Bird & King (1990), embodied in the ATOM subroutine written in 

Fortran77, has become ubiquitous where phenomenological absorption is included in electron scattering 

simulations.  The present work develops an equation that is a robust and close fit to the Bird & King 

model across all elements (Z = 1 to 98), Debye-Waller factors (B = 0.05 Å2 to 2.0 Å2), scattering angles 

(s = 0 Å-1 to 6.0 Å-1) and electron energies (E0 = 1 keV to 1 MeV) covered by the ATOM subroutine.  

The motivation for doing this is not only to provide a functional description of absorption but also to 

provide a way of accounting for absorption fully in elastically filtered as well as unfiltered electron 

microscope images and diffraction patterns. 

Keywords: Electron scattering calculations; phenomenological absorption; quantitative 
electron diffraction and imaging. 

 

1. Introduction 

The highly dynamic process of electron scattering from even the thinnest material samples complicates 

the accurate simulation of electron microscope images and diffraction patterns.  The problem is 

considerably simplified if an electron-optical energy filter is used to exclude almost all of the 

inelastically scattered electrons.  With the advent of electron energy-loss spectrometers and energy-

filtered imaging with transmission electron microscopes (TEM) in the late 1980s and early 1990s, Bird 



Acta Crystallographica Section A    research papers 

2 

 

and King met the need for a rigorous description of phenomenological absorption in elastic electron 

scattering simulations through their ATOM subroutine (Bird & King, 1990). 

Phenomenological absorption collectively accounts for all electrons that are lost from the signal 

recorded in a TEM that is to be matched by simulations, irrespective of whether the intensities 

correspond to an image of the specimen or a diffraction pattern from it.  In the context of quantitative 

TEM, the matching of an experimental image or diffraction pattern with a simulated one allows 

fundamental materials properties to be accurately measured via refinement as variable parameters in 

pattern-matching processes.  Electrons lost from the signal to be matched can include those that have 

lost energy due to: 

  (i) core-shell excitations, 

  (ii) bremsstrahlung, 

  (iii) plasmon excitations, and 

  (iv) thermal diffuse scattering (TDS) arising from phonon excitation. 

Electron energy filters allow the removal of (i), (ii) and (iii) above but not (iv) due to the sub 0.1eV 

losses associated with TDS. 

In their treatment of phenomenological absorption, Bird and King went beyond early 

approximations which began simply by taking the absorption factors to be 10% of the elastic structure 

factor magnitudes (references needed).  Some works went beyond this approximation by trying to 

examine the effects of absorption on individual reflections in experimental convergent-beam electron 

diffraction (CBED) patterns (references needed).  With the advent of quantitative convergent-beam 

electron diffraction (QCBED), Bird and King identified and satisfied the need for a more complete 

analytical treatment of phenomenological absorption (Bird & King, 1990).  Their resulting ATOM 

subroutine became an intrinsic component of any QCBED software as well as a variety of general TEM 

image and diffraction pattern simulation programs (references needed). 

In the last 10 years, a new approach to quantitative TEM has been developed, out of the field 

of QCBED pattern matching, that does not require the use of energy-filtering electron optics (references 

needed).  Two different types of differential techniques have been developed that involve:  (a) 

differentiation with respect to specimen thickness (Nakashima, 2007; Nakashima & Muddle, 2010b), 

and (b) differentiation with respect to scattering angle (Nakashima & Muddle, 2010a; Nakashima & 

Muddle, 2010b).  In the development of this field, it was shown that both types of differentiation result 

in almost complete annulment of the diffuse, slowly varying inelastic signal in CBED patterns that 

contributes a significant background that is deleterious to QCBED pattern-matching measurements of 

bonding electron density-sensitive structure factors. 
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It was shown by Nakashima & Muddle (2010a) that any structure that remains in the 

background of CBED patterns that have been electron-optically filtered, simply mimics the structure of 

the elastic rocking curves within the reflection discs of the CBED patterns.  It is also well-known that 

unfiltered CBED patterns retain an angular intensity distribution contributed by electrons inelastically 

scattered by plasmon excitations, and that this also mimics the elastic intensity distribution, albeit with 

a slight amount of blurring (references needed).  As concluded in (Nakashima & Muddle, 2010b), 

differentiating an unfiltered CBED pattern with respect to thickness or scattering angle will therefore 

simply result in a differential intensity distribution that can be matched by an elastic scattering 

calculation that has been differentiated in the same way.  Because a calculated CBED pattern is always 

normalised to have the same signal magnitude as the experimental pattern before the " goodness of fit" 

is evaluated, the extra signal contributed by TDS and plasmon excitation in differential CBED patterns 

that have not been hardware energy filtered, is simply absorbed into this normalisation. 

This, however, leaves the approximation that the absorption factors can simply be carried over 

into QCBED pattern matching of unfiltered CBED patterns using the ubiquitous Bird and King ATOM 

subroutine.  In the pursuit of accuracy and precision in QCBED, such an approximation is difficult to 

justify because the absorption factors from ATOM that describe elastic scattering are incorporated into 

the scattering matrix or phase grating determination (depending on whether the Bloch wave or 

multislice formalisms are being used respectively) to calculate CBED patterns being matched to 

unfiltered (albeit differentiated) CBED data. 

The purpose of the present paper is to condense the full range of output from the Bird and King 

model for phenomenological absorption into a single equation that serves as a good approximation for 

describing absorption in energy-filtered CBED patterns.  This is to be followed by combining this 

expression with a separate one that accounts for the additional signal contributed by inelastically 

scattered electrons.   The form of the desired equation should show the separation of the contributions 

to phenomenological absorption so that future QCBED could in principle determine the relative 

magnitudes of the components. 

Bird and King’s ATOM subroutine deals entirely with absorption due to phonon excitation, i.e. 

TDS, which, via the use of an Einstein model in their work, is approximated as being localised to each 

atom (Bird & King, 1990).  They also describe the other contributions to absorption as being non-local 

and therefore irrelevant due to the process of normalisation.  Here we remove this approximation (also 

made by Nakashima and Muddle (2010b)) by considering all non-local contributions as a Dirac delta 

function centred on the origin of reciprocal space.  We therefore consider the treatment of absorption 

in the following form: 

𝑓"#$𝑍", 𝐵", 𝐸), 𝑠+ = 𝐴𝑓"#./.01/231$𝑍", 𝐵", 𝐸), 𝑠+ + 𝐶𝑓"#1/231$𝑍", 𝐵", 𝐸), 𝑠+,  (1) 
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where A and C are variable parameters and the first term summarises the non-local contributions, fj
’non-

local(Zj, Bj, E0, s), in the form of a Dirac delta function, whilst the second term describes the atom 

localised contribution, fj
’local(Zj, Bj, E0, s), which should be a close approximation to the model of Bird 

and King, fj
’B&K(Zj, Bj, E0, s), as calculated by their ATOM subroutine.  The absorption factor for the jth 

atom in the unit cell depends on the atom’s atomic number (Zj), its Debye-Waller factor at the relevant 

temperature (Bj), the incident electron energy (E0) and s (s = (sinθ)/𝜆). 

 

2. Analysis 

An empirical determination of the form of the second term in equation 1 is now described in detail.  

Considering not only Bird & King (1990) but also previous descriptions of phenomenological 

absorption (references needed), the inclusion of a Gaussian term is obviated.  Even the most primitive 

approximations used prior to the work of Bird and King suggest this because they set Vg’ = 0.1Vg 

(references needed).  Here, Vg is the structure factor of the crystal potential associated with scattering 

vector g in units of volts and Vg’ is the associated absorption factor.  Following this crude 

approximation, and given 

𝑉𝐠 = ∑ 𝑓"(𝑠)𝑒0?@A𝐠.𝐫D" 𝑒0EDFG ,       (2) 

where fj(s) is the atomic scattering factor for the jth atom and rj is its position in the unit cell, then, 

𝑉𝐠# = 0.1𝑉𝐠 = 0.1∑ 𝑓"(𝑠)𝑒0?@A𝐠.𝐫D" 𝑒0EDFG = ∑ 𝑓"#(𝑠)𝑒0?@A𝐠.𝐫D" 𝑒0EDFG ,  (3) 

and so, 

𝑓"#(𝑠) = 0.1𝑓"(𝑠).        (4) 

Given fj(s) is very well approximated by a sum of Gaussians in s (reference to IUCr tables), it 

follows that fj
’local(Zj, Bj, E0, s) would include a significant Gaussian term as a function of s. 

Bird & King (1990) and a number of other investigators (references needed) suggested that 

fj
’local(Zj, Bj, E0, s) may be Lorentzian in form in its tail region (higher values of s) so the approach 

adopted in this work is to test sums of Gaussians and Lorentzians in fitting a range of output from the 

ATOM subroutine, remembering that the present aim is not to replace the model of Bird and King, 

fj
’B&K(Zj, Bj, E0, s), but rather to encapsulated in a single function, fj

’local(Zj, Bj, E0, s), that approximates 

it well, i.e. fj
’local(Zj, Bj, E0, s) ≈ fj

’B&K(Zj, Bj, E0, s). 

Figure 1 plots fAl
’B&K(ZAl = 13, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) , i.e. the 

absorption factor for aluminium with 200 keV incident electrons over the full range of Debye-Waller 

factors and s calculable by ATOM.  Aluminium was chosen as the subject of figure 1 for no other reason 

than that it is the main test material examined in the sequel paper (Nakashima et al., 2018) which tests 
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the outcomes of the present paper.  The two-dimensional colour plot of fAl
’B&K as a function of both s 

(horizontal axis) and BAl (vertical axis) is shown in the middle panel and is constructed from a grid of 

200 x 200 pixels uniformly spanning the full range of BAl and s stated above.  Five different coloured 

lines (4 horizontal and 1 vertical) are drawn within this plot.  The single vertical (grey) line is the locus 

of s = 0 Å-1 from which the plot of fAl
’B&K as a function of BAl at s = 0 Å-1 is obtained as shown in the 

left panel of the figure.  The 4 horizontal lines correspond to the loci:  BAl = 0.197 Å2 (lilac), BAl = 0.334 

Å2 (green), BAl = 0.863 Å2 (blue) and BAl = 1.94 Å2 (red), and were chosen because these Debye-Waller 

factors correspond to temperatures attainable by liquid helium cooling (T = 10 K), liquid nitrogen 

cooling (T = 90 K), ambient conditions (T = 293 K) and in-situ annealing (T = 573 K for aluminium) 

experiments in TEMs.  It is along these four loci that fAl
’B&K as a function of s is plotted in the right panel 

of figure 1.  The positions of these lines in terms of BAl are also indicated in the plot of fAl
’B&K as a 

function of BAl at left. 

 

 

Figure 1 The Bird and King absorption factor for aluminium, fAl
’B&K, plotted at E0 = 200 keV over the 

range 0 Å-1 ≤ s ≤ 6 Å-1 and 0.05 Å2 ≤ BAl ≤ 2.0 Å2 with s along the horizontal axis and BAl along the 

vertical axis.  The magnitude of fAl
’B&K as computed by the ATOM subroutine is given by the colour 

scale beneath the central panel and this plot is constructed from a grid of 200 x 200 pixels uniformly 

spanning the full range of BAl and s specified above.  Profiles of fAl
’B&K as a function of s are plotted for 

four different temperatures in the right panel (T = 10 K, T = 90 K, T = 293 K and T = 573 K 

corresponding to typical temperature attainable with liquid helium cooling, liquid nitrogen cooling, 

ambient conditions and in situ annealing respectively).  The left panel shows fAl
’B&K as a function of BAl 

at s = 0 Å-1.  The coloured lines in the left and middle panels show where the corresponding coloured 

line plots in the right panel are located in these other plots. 

 

The most notable trends from figure 1 are that as the temperature (and Debye-Waller factor) 

increases, the absorption at s = 0 Å-1 increases whilst the tail of fAl
’B&K is very rapidly damped as s 
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increases.  This is readily explained by the increase in TDS with increasing temperature, meaning that 

the mean absorption will increase and thus, fAl
’B&K(s = 0 Å-1) will increase.  The increased thermal 

displacement of atoms at higher temperatures means that the temperature factor, 𝑒0EDFGfor all atoms, j, 

becomes rapidly smaller with increasing s due to the larger value of Bj at higher temperatures, thus 

damping fAl
’B&K very rapidly as s increases.  Note that ATOM-computed absorption factors, fAl

’B&K, 

already include the temperature factor (Bird & King, 1990).  Worth noting also is that fj
’B&K(Zj, Bj, E0, 

s) < 0 for some intermediate values of s.  This can be seen on close inspection of the right panel of 

figure 1, especially for the case of BAl = 1.94 Å2.  This is the case for fj
’B&K(Zj, Bj, E0, s) in many cases 

and although the magnitudes of the dips below 0 are small, they are not physically realistic.  The 

development of the function for fj
’local(Zj, Bj, E0, s) in this paper must avoid situations in which fj

’local(Zj, 

Bj, E0, s) < 0.  From the left panel of figure 1, it is also evident that fAl
’B&K(s = 0 Å-1) is approximately 

proportional to BAl
0.5.  This is informative in the choice of function to be used for fj

’local(Zj, Bj, E0, s), 

with the aim of closely approximating fj
’B&K(Zj, Bj, E0, s). 

The next step is to determine a suitable form for fj
’local(Zj, Bj, E0, s).  By experimenting with 

different combinations of Gaussians and Lorentzians, it was found that the best fit to the plot of 

fAl
’B&K(ZAl = 13, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) in figure 1 was obtained if one 

sets: 

𝑓"#1/231$𝑍", 𝐵", 𝐸), 𝑠+ = 𝑒0EDFG J𝑎𝐵"L𝑒02F
M + NFO

PQRFOSG
T,    (5) 

where a, b, c, d, f, g and h are refinable variable parameters.  Examining this function closely, the first 

term in the brackets is the Gaussian in terms of s and this term will dominate when s is small because 

the Lorentzian second term vanishes as s approaches 0.  The multiplier, Bj
b, is included in the Gaussian 

term as there is an obvious dependence of fj
’B&K(Zj, Bj, E0, s = 0 Å-1) on Bj

b in figure 1 where one might 

estimate that parameter b ≈ 0.5 for the case of aluminium with E0 = 200 keV as stated above.  The 

temperature factor, 𝑒0EDFG, modifies the entire function in the brackets. 

Figure 2(a) repeats the central plot in figure 1, which shows fAl
’B&K(ZAl = 13, 0.05 Å2 ≤ BAl ≤ 2.0 

Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) as a function of BAl and s.  Figure 2(b) shows fAl
’local(ZAl = 13, 0.05 

Å2 ≤ BAl ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) as a function of BAl and s after fitting equation 5 to 

the plot of figure 2(a).  From the values of the refined parameters listed in the caption to figure 2, the 

prediction that b ≈ 0.5 is satisfied in the present example for aluminium with 200 keV electrons.  

Furthermore, g ≈ 2 suggests that the Lorentzian term in equation 5 has even parity, which is a natural 

consequence of the radial symmetry expected from the absorption processes being accounted for.   

Figure 2(c) shows the map of the difference between figure 2(a) and 2(b), i.e. fAl
’B&K – fAl

’local.  

It is worth noting that the mismatch is at least an order of magnitude smaller than the individual 
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magnitudes of fAl
’B&K and fAl

’local.  In the process of optimising the fit between fAl
’B&K and fAl

’local, a 

mismatch parameter was minimised, which is defined as 

𝜒",VW = X
∑ JND,Y

Z[&]0ND,Y
Z^_`a^T

Gb
Ycd

∑ JND,Y
Z[&]T

Gb
Ycd

.       (6) 

This is the root-mean-square (RMS) fractional difference between fj
’B&K and fj

’local where the sums are 

over the i = 1 to n pixels that make up both images for element j with electrons of energy E0 in the 

generalised case.  For the present example of aluminium and 200 keV electrons, 𝜒e1,?))	ghi = 0.041 for 

figure 2(a) and (b) and this is reflected in figure 2(c). 

 

Figure 2 A comparison of (a) fAl
’B&K(ZAl = 13, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) 

and (b) fAl
’local(ZAl = 13, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) after fitting equation 5 

to the former.  The parameters producing the best fit of equation 5 to fAl
’B&K calculated by the ATOM 

subroutine are:  a = 0.048395, b = 0.51240, c = 1.49948, d = 1.69455, f = 0.0122095, g = 2.00334, h = 

0.8985707.  The difference map (c) is shown with a colour scale that spans magnitudes 10 times smaller 

than those in the individual images of fAl
’B&K and fAl

’local.  Graph (d) compares fAl
’B&K and fAl

’local along the 

black locus in (a) and (b) at s = 0 (as in figure 1) and graph (e) compares fAl
’B&K and fAl

’local along the 
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coloured loci at BAl corresponding to T = 10 K, T = 90 K, T = 293 K and T = 573 K as in figure 1, but 

only over the range 0 Å-1 ≤ s ≤ 3 Å-1 as values beyond s = 3 Å are vanishingly small. 

 

Figure 2(d) plots fAl
’B&K and fAl

’local as functions of BAl along the locus s = 0 Å-1 (black) and figure 

2(e) shows both fAl
’B&K and fAl

’local plotted as functions of s for the same values of BAl examined in figure 

1 but over the reduced range of 0 Å-1 ≤ s ≤ 3 Å-1 for the sake of magnifying the differences between 

fAl
’B&K and the fitted fAl

’local at low values of s.  From all of these plots, it appears that equation 5 with 

best-fit refined parameters a to h is a very close approximation to the ATOM subroutine and thereby, 

the Bird and King model for phenomenological absorption localised to each atom. 

Using the values of the best-fit parameters in the caption to figure 2, the relative contributions 

and forms of the terms in equation 5 can be examined.  This is done in figure 3 where the blue plot in 

figure 2(e), corresponding to ambient temperature (T = 293 K and BAl = 0.863 Å2), is decomposed into 

its different components as per equation 5. 

 

Figure 3 Plots of fAl
’B&K and the fitted fAl

’local showing the contributions of each term in equation 5.  

Magnifying the region 1 Å-1 ≤ s ≤ 3 Å-1 shows that the fAl
’B&K values calculated by the ATOM subroutine 

are negative at intermediate values of s.  Equation 5, which constitutes fj
’local and approximates fj

’B&K, 

does not become negative anywhere.  In the present case of aluminium (j = Al) and electrons with E0 = 

200 keV, the Lorentzian component dominates fAl
’local for values of s > 1.2 Å-1. 

 

At least for this case (aluminium at room temperature with 200 keV electrons), it appears that 

the Gaussian term is dominant for the lower values of s, which, in terms of elastic scattering, includes 

the components of the electrostatic potential distribution associated with bonding.  This suggests that 

techniques like quantitative convergent-beam electron diffraction (QCBED) which measure the 
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bonding-sensitive elastic structure factors of the crystal potential can reasonably approximate fj
’local with 

just a Gaussian.  In fact, QCBED using small Laue circle geometries is unlikely to be sensitive to the 

Lorentzian component of fAl
’local given in equation 5. 

Accepting equation 5 as a suitable and likely form for fj
’local(Zj, Bj, E0, s), it is important to 

establish whether the number of refineable variables can be reduced by replacing them with functions 

of the variables Zj, Bj, E0 and s.  As a first test, in the same manner as was done for aluminium and 200 

keV electrons in figure 2, the fitting of equation 5 to fj
’B&K(Zj, Bj, E0, s) from the ATOM subroutine was 

repeated for Al (Z = 13), Cu (Z = 29), Ag (Z = 47), Nd (Z = 60), Au (Z = 79) and U (Z = 92) and in 

each of these cases, with electron energies ranging from 1 keV ≤ E0 ≤ 1 MeV.  In other words, this 

meant that optimised sets of parameters and their associated RMS misfits {a, b, c, d, f, g, h, 𝜒",VW} were 

obtained as a function of both Zj and E0 from comparisons of fAl
’B&K(Zj, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0, 0 Å-

1 ≤ s ≤ 6 Å-1) and fAl
’local(Zj, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0, 0 Å-1 ≤ s ≤ 6 Å-1) for each of the elements given 

above and for 1 keV ≤ E0 ≤ 1 MeV.  The only difference in procedure for these refinements was that a 

100 x 100 grid of pixels spanning 0.05 Å2 ≤ Bj ≤ 2.0 Å2 and 0 Å-1 ≤ s ≤ 6 Å-1 was used instead of 200 x 

200 pixels as in figures 1 and 2. 

In performing these fits, it transpired that the parameters b, c, d, g and h are completely 

independent of E0 and only dependent on Zj, remaining constant during each refinement of equation 5 

in fitting fAl
’B&K(Zj, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0, 0 Å-1 ≤ s ≤ 6 Å-1) for any one element Zj.  Only the 

parameters a and f are dependent on E0 and their dependence on electron energy is plotted for each of 

the six elements given above, in figure 4. 

As becomes clear from figure 4, parameters a and f in equation 5 have the same form when 

plotted as a function of E0, independent of atomic number.  Their magnitudes increase with increasing 

atomic number.  A variety of asymptotic functions were tested in fitting a and f versus E0 with the 

following form yielding perfect fits in every case: 

𝑎	and	𝑓 = 𝑝 n𝑞 + pqrsW
t

P0pqrsW
tu,       (7) 

Where p, q, r and t are introduced as refineable variables in fitting equation 7 to the points in the plots 

of a and f versus E0 for each of the elements as shown in figure 4.  Thus, 12 fits were carried out and in 

all cases, the parameters q, r and t were found to be constant between different elements and between a 

and f versus E0.  It turned out that q = t = 0.5 and r = 0.0041225 in all cases and that only p changed 

from fit element to element and between a and f.  One can therefore express a and f as follows: 

𝑎 = 𝑚n0.5 + pqW.WWxdGGysW
W.y

P0pqW.WWxdGGysW
W.yu       (8) 

and 𝑓 = 𝑛 n0.5 + pqW.WWxdGGysW
W.y

P0pqW.WWxdGGysW
W.yu,       (9) 
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where m and n are retained as variable parameters that simply allow for different magnitudes of these 

functions as observed in figure 4. 

 

Figure 4 Graphs of parameters a and f in equation 5 as a function of the electron energy, E0, after 

fitting equation 5 to fAl
’B&K(Zj, 0.05 Å2 ≤ BAl ≤ 2.0 Å2, E0, 0 Å-1 ≤ s ≤ 6 Å-1) for Al (Z = 13), Cu (Z = 29), 

Ag (Z = 47), Nd (Z = 60), Au (Z = 79) and U (Z = 92).  The fitted functions for a versus E0 and f versus 

E0 all have the same form (given explicitly below the plots), independent of the element and independent 

of the parameter a or f.  The only difference is in the relative magnitudes of the functions so these are 

assigned new parameters m and n for the functions describing a and f respectively.  Note:  the functions 

for a and f versus E0 fit the plotted points perfectly without any mismatch at all. 

 

Substituting equations 8 and 9 into equation 5 builds in the energy dependence of fj
’local(Zj, Bj, 

E0, s) and equation 5 becomes: 

𝑓"#1/231$𝑍", 𝐵", 𝐸), 𝑠+ = 𝑒0EDFG {0.5 + pqW.WWxdGGy|sW

P0pqW.WWxdGGy|sW
} J𝑚𝐵"L𝑒02F

M + .FO

PQRFOSG
T. (10) 

The next step is to determine the dependence of the variable parameters m, n, b, c, d, g and h in 

equation 10 on atomic number, Zj.  Given the dependence on of fj
’local(Zj, Bj, E0, s) on E0 has already 

been dealt with completely, the electron energy for all future analyses is set to E0 = 200 keV.  The same 

approach as in figure 2 is now taken for all elements accommodated by the ATOM subroutine resulting 
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in a comparison between fj
’B&K(Zj, 0.05 Å2 ≤ Bj ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) and (b) fj

’local(Zj, 

0.05 Å2 ≤ Bj ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) for Zj = 1 to 98 (H to Cf).  Again, as with the 

examination of the dependence of fj
’local(Zj, Bj, E0, s) on E0, the only difference in procedure for these 

comparisons from that shown in figure 2 was that a 100 x 100 grid of pixels spanning 0.05 Å2 ≤ Bj ≤ 

2.0 Å2 and 0 Å-1 ≤ s ≤ 6 Å-1 was used instead of 200 x 200 pixels as was used for figures 1 and 2. 

For each element j, an optimal set of parameters and associated RMS misfit were returned, i.e. 

{mj, nj, bj, cj, dj, gj, hj, 𝜒",VW~?))	ghi}.  An overall assessment of the ability of equation 10 to approximate 

fj
’B&K(Zj, 0.05 Å2 ≤ Bj ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1), in other words, the ability of equation 

10 to approximate the entirety of the ATOM subroutine, can be gained by considering the mean RMS 

misfit, �̅�, averaged over all of the elements considered.  With all seven parameters, m, n, b, c, d, g and 

h, allowed to vary, �̅� = 0.0407±0.0007.  This figure can be regarded as the benchmark RMS misfit with 

all degrees of freedom in equation 10 available.  As each of the parameters, m, n, b, c, d, g and h, is 

replaced, the performance of equation 10 in approximating fj
’B&K(Zj, Bj, E0, s) is expected to deteriorate. 

The optimal parameters {mj, nj, bj, cj, dj, gj, hj} for each element are plotted as a function of Zj 

in figure 5.  The parameters are grouped into each of the graphs based on similar behaviours with respect 

to Z and functions have been found that give the best fit to the plot of each parameter. 

 

Figure 5 Plots of the variable parameters m, n, b, c, d, g and h as a function of Z after fitting equation 

10 to fj
’B&K(Zj, 0.05 Å2 ≤ Bj ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) obtained from the ATOM subroutine.  

Parameters have been grouped into plots based on similar behaviours with respect to Z.  In every case, 

functions have been found that best fit the refined values of each of the parameters as a function of Z 

and these are written explicitly into each plot. 

 

Parameters m and n are fitted quite well by the function: 

𝑙 = 𝑡1𝑍�^ ,        (11) 

where l = m or n and tl and ul are refined in the fit of equation 11 to m and n versus Z.  Parameters b, c 

and h in equation 10 have general trends in terms of Z that can be fitted with: 



Acta Crystallographica Section A    research papers 

12 

 

𝑙 = �^
PQ�^��^

,        (12) 

where l = b, c or h and the refinable fit parameters are tl, ul and vl.  The result of each fit of equation 11 

to m and n versus Z is written into the first graph in figure 5 for the red and blue sets respectively, whilst 

the results of each fit of equation 12 to b, c and h versus Z is written into the second graph in figure 5 

for the red, blue and green sets respectively.  Parameters d and g from equation 10 were fitted with 

constants, d = 1.83 and g =  2.00, as shown in the third graph in figure 5.  That g is 2 is rather 

unsurprising because this confirms the expected even parity of the Lorentzian component in fj
’local(Zj, 

Bj, E0, s) as a function of s. 

The plots of the individual points determined by fitting equation 10 to fj
’B&K(Zj, 0.05 Å2 ≤ Bj ≤ 

2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) for each element j show varying degrees of oscillation in addition 

to the general trends fitted by equation 11 in the cases of m, n, b, c and h and constants in the cases of 

d and g.  These oscillations are much more pronounced for b, c, h, d and g than for m and n.  An 

additional improvement in the fits might be obtained if a sine component were incorporated into each 

of the fits; however, given the periods of the oscillations seem to change with increasing Z as well and 

that the oscillations are not particularly regular in form, it was decided that the replacement functions 

for all seven parameters m, n, b, c, h, d and g should be kept as simple as possible if this does not result 

in a large deterioration in the fit of equation 10 to fj
’B&K(Zj, 0.05 Å2 ≤ Bj ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ 

s ≤ 6 Å-1) averaged over all elements j. 

Replacing m, n, b, c, h, d and g in equation 10 with the fitted functions detailed above results 

in: 

𝑓"#1/231$𝑍",𝐵", 𝐸), 𝑠+ = 𝑘𝑒0EDFG {0.5 + pqW.WWxdGGy|𝐸0

P0pqW.WWxdGGy|𝐸0
}    (13) 

�0.0012567𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��

𝑒
0 G.���x�d.��

dSW.d�W���D
W.x��d�

+
).)))��P�PJP.���P��D

d.xW�GQ�D
G.WxG��TFG

PQ).�))���D
W.�����Q�.��?�Fx

�. 

A proportionality constant, k, has been introduced as a means of fitting equation 13 to fj
’B&K(Zj, 0.05 Å2 

≤ Bj ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) for each element j in order to check of how well the 

function above approximates the entire ATOM subroutine.  Repeating the fitting process for all elements 

returned �̅� = 0.044±0.006, which is only very slightly increased in overall mismatch compared to the 

performance of equation 10 where �̅� = 0.0407±0.0007 with seven variable parameters.  Although the 

value of k was expected to be constant and close to 1 for all elements, this proportionality parameter 

added for the sake of the fitting process was seen to vary with respect to atomic number Z.  This is 

shown in figure 6.  This parameter is likely to be absorbing errors incurred by the substitution of 

parameters m and n in equation 10 with the fitted functions whose form in given in equation 11 because 

the fits (as seen in figure 5) were by no means perfect. 
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Figure 6 A plot of the proportionality constants k in equation 13 and k’ in equation 15 as a function 

of Z.  The general trend in k with respect to Z is fitted by equation 14, yielding the values of the 

parameters written into the equation in the plot at left.  In contrast k’ is seen to oscillate about 1. 

 

The form of the function fitted to k versus Z is: 

𝑘 = 𝑡$1 − 𝑒0���+,        (14) 

where t, u and v are fitting parameters whose final values are given in the left-most plot in figure 6.  

Substitution of this result into equation 13 returns: 

𝑓"#1/231$𝑍",𝐵", 𝐸), 𝑠+ = 𝑘′𝑒0EDFG {0.5 + pqW.WWxdGGy|𝐸0

P0pqW.WWxdGGy|𝐸0
} J1 − 𝑒0).��?���D

W.���
T  (15) 

�0.0012822𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��

𝑒
0 G.���x�d.��

dSW.d�W���D
W.x��d�

+
).)))�����JP.���P��D

d.xW�GQ�D
G.WxG��TFG

PQ).�))���D
W.�����Q�.��?�Fx

�, 

with the value of t = 1.0203 absorbed into the coefficients of the two terms in the main brackets of 

equation 15.  Again, a proportionality constant, k’, is retained to test equation 15 against fj
’B&K(Zj, 0.05 

Å2 ≤ Bj ≤ 2.0 Å2, E0 = 200 keV, 0 Å-1 ≤ s ≤ 6 Å-1) from the ATOM subroutine.  This time, the graph of 

k’ versus Z simply oscillates about k’ = 1 as seen in the plot on the right in figure 6.  As with previous 

parameters fitted with equations, the oscillations are not dealt with and it is at this point that the 

determination of fj
’local(Zj, Bj, E0, s) concludes. 

3. Discussion 

Revisiting equation 1, where the full expression for phenomenological absorption separates the 

components that are non-local and local to each atom, substitution of equation 15 for the local 

component gives: 

𝑓"#$𝑍", 𝐵", 𝐸), 𝑠+ = 𝐴𝑓"#./.01/231$𝑍", 𝐵", 𝐸), 𝑠+ + 𝐶𝑒0EDF
G {0.5 + pqW.WWxdGGy|sW

P0pqW.WWxdGGy|sW
}J1 − 𝑒0).��?���D

W.���
T

  (15) 
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�0.0012822𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��

𝑒
0 G.���x�d.��

dSW.d�W���D
W.x��d�

+
).)))�����JP.���P��D

d.xW�GQ�D
G.WxG��TFG

PQ).�))���D
W.�����Q�.��?�Fx

�, (16) 

where the parameter k’ in equation 15 is replaced by parameter C from equation 1.  At this point, the 

non-local component is replaced by a Dirac delta function in s: 

𝑓"#./.01/231$𝑍", 𝐵",𝐸), 𝑠+ = 	𝑘𝑒0P)
dGFG,      (17) 

where the multiplier of 1012 in the exponent is arbitrarily chosen just because it is a large number with 

respect to the range of s over which fj
’(Zj, Bj, E0, s) is considered significant.  The expression involves 

a proportionality constant, k, which can be absorbed into the parameter A in equation 16.  Using a Dirac 

delta function for fj
’non-local(Zj, Bj, E0, s) makes the approximation that the sum of all of the non-local 

contributions to the phenomenological absorption can be considered as adding a constant to fj
’(Zj, Bj, 

E0, s = 0).  This is equivalent to saying that the non-local contributions are uniformly distributed at all 

distances from the atoms in real space.  Testing this against experimental data using QCBED (reference 

paper II) is an opportunity for verifying how well this approximation holds in reality. 

Substituting equation 17 into equation 16 yields:  

𝑓"#$𝑍", 𝐵",𝐸), 𝑠+ = 𝐴𝑒0P)dGFG + 𝐶𝑒0EDFG �0.5 +
𝑒0).))�P??�|VW

1 − 𝑒0).))�P??�|VW
� J1 − 𝑒0).��?���D

W.���
T 

�0.0012822𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��

𝑒
0 G.���x�d.��

dSW.d�W���D
W.x��d�

+
).)))�����JP.���P��D

d.xW�GQ�D
G.WxG��TFG

PQ).�))���D
W.�����Q�.��?�Fx

�, (18) 

with k from equation 17 absorbed into parameter A in this equation.  This represents a two-parameter 

model for all phenomenological absorption that can be refined by an experimental technique such as 

QCBED.  However, if one were to apply equation 18 in its present form, the values of A and C obtained 

from refinements would not provide an immediate indication of the relative contributions of fj
’non-local(Zj, 

Bj, E0, s) and fj
’local(Zj, Bj, E0, s).  This can be seen if one considers fj

’(Zj, Bj, E0, s = 0): 

𝑓"#$𝑍", 𝐵", 𝐸), 𝑠 = 0+ = 

𝐴 + 0.0012822𝐶 {0.5 + pqW.WWxdGGy|sW

P0pqW.WWxdGGy|sW
}J1 − 𝑒0).��?���D

W.���
T𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��

. (19) 

The parameter C is modified by a factor that is dependent on Zj, Bj and E0, whilst A is not.  Therefore 

equation 18 must be factorised in a way that both A and C are modified by the same factors that are 

independent of s.  This factorisation transforms equation 18 into: 

𝑓"#$𝑍",𝐵",𝐸), 𝑠+ = 0.0012822𝑒0EDFG {0.5 + pqW.WWxdGGy|sW

P0pqW.WWxdGGy|sW
} J1 − 𝑒0).��?���D

W.���
T𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��
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⎝
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0 G.���x�d.��
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W.x��d�

+
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W.xG���	Q	).��?���D
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W.�xy��
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⎠

⎟
⎞

.   (20) 

In this form, at s = 0, 

𝑓"#$𝑍", 𝐵", 𝐸), 𝑠 = 0+ = 0.0012822(𝐴 + 𝐶) {0.5 + pqW.WWxdGGy|sW

P0pqW.WWxdGGy|sW
} J1 − 𝑒0).��?���D

W.���
T 𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��

,  (21) 

and therefore, the magnitudes of A and C obtained experimentally are directly comparable and 

representative of the relative magnitudes of the non-local and local contributions to phenomenological 

absorption respectively. 

 In principle, it would also be easy to further segment the contributions into Gaussian and 

Lorentzian contributions to the total phenomenological absorption.  If this is desired, then equation 20 

could be re-written as: 

𝑓"#$𝑍",𝐵",𝐸), 𝑠+ = 0.0012822𝑒0EDFG {0.5 + pqW.WWxdGGy|sW

P0pqW.WWxdGGy|sW
} J1 − 𝑒0).��?���D

W.���
T𝑍"P.�P�P𝐵"

W.�xy��
dSW.W���x��D

W.xWd��

  

¢𝐴𝑒0P)dGFG + 𝐶§𝑒
0 G.���x�d.��

dSW.d�W���D
W.x��d�

+ 𝐶¨
$).?�P���D

W.xG���	Q	).��?���D
qW.GW��+FG

JPQ).�))���D
W.�����Q�.��?�FxTED

W.�xy��
dSW.W���x��D

W.xWd��
£,   (22) 

where CG and CL are variable coefficients for the Gaussian and Lorentzian contributions respectively.  

This is taken to be the most general form of the function for fully describing phenomenological 

absorption as empirically derived in the present work.  Equation 20 is simply the case where C = CG = 

CL. 

 

4. Conclusion 

Using Bird’s and King’s ATOM subroutine, the present work has empirically developed a functional 

approximation to the atom-localised contribution to phenomenological absorption (see equation 15) and 

followed this up with an equation that approximates all contributions to absorption (see equations 20 

and 22).  This functional approximation can be used to replace the ATOM subroutine with a single line 

of code, but more importantly, it is written in a form where all contributions are separated such that 

their individual relative magnitudes could be refined using experimental data – in a QCBED experiment 

for example. 

With recent developments that allow TEM data collected without electron-optical energy 

filtering to be used quantitatively in techniques like QCBED, the availability of a fully flexible 

phenomenological absorption model where the non-local and local contributions can be refined as 

independent components becomes important.  Incorporating equation 22 into the calculations of 
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scattered intensities reduces the number of assumptions about what can and cannot be absorbed into the 

normalisation process (Nakashima & Muddle, 2010b).  The application of the presently determined 

phenomenological absorption function in differential QCBED without energy filtering removes errors 

incurred by using the Bird and King model via the ATOM subroutine because the normalisation process 

no longer needs to compensate for the unaccounted components.  Furthermore, as was pointed out in 

the example of aluminium, the ATOM subroutine often returns negative values for the absorption factor 

at intermediate values of s = (sinθ)/λ.  This is not the case for the present function as its form prohibits 

negative values of fj
’(Zj, Bj, E0, s). 

In the sequel paper (Nakashima et al., 2018) equation 22 and its more constrained equivalent, 

equation 20, are used to examine the effects of electron energy (E0), temperature (B), crystal orientation 

(s), atomic number (Z), specimen thickness, energy filtering and not energy filtering, on the refined 

magnitudes of each of the components that contribute to the total phenomenological absorption. 
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Electron Bonding Distribution in Copper (Draft) 
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Abstract 

Copper is one of the most anisotropic metals. Therefore, the bonding electron distribution in copper will have 

a significant trend, which cannot be simply described by the free electron gas model. However, results from 

previous experimental measurements and theoretical calculations had poor agreements. Here we show our 

findings of the bonding electron distribution in copper yielded by quantitative convergent beam electron 

diffraction and density function theory calculation.  

Introduction 

As taught in high school chemistry, strong chemical bonds are conventionally classified into three bonding 

types: covalent bond, ion bond and metal bond, by electronegativity. Nevertheless, this categorisation is 

questioned by some researchers 1-4 who suggest metallic bond being a subset of covalent bond. They indicate 

that the difference of electronegativity properties is more typical between ion bond and covalent/metal bond, 

while that between covalent and metallic bond is less significant, and many other aspects of electronic 

structure show no distinguishing difference between covalent bond and metallic bond. Apart from 

electronegativity that used to differ bonding types, however, due to limited resolution of the availab le 

techniques, detailed characteristics like interatomic bonding positions, shapes and charge density distribution 

of metallic bond is still very limited to date, which is mostly based on the classic free-electron cloud model 

that proposed in 1900 which is also taught in high school.  

Copper, being the first metal and the first alloy (incorporated with tin) used by human, is still one of greatest 

production metals and of great interests in the research community. Inspired by the successful bonding 

characterisation of aluminium 5, this work will try to reveal certain bonding characteristics of copper 

aluminium via quantitative convergent beam election diffraction (QCBED) and density function theory (DFT) 



calculation. By comparing the bonding difference between copper and aluminium, this work will also explain 

their difference in elastic isotropy. 

The concept of bonding is defined by the deformation charge density ∆ρ 

∆ρ = ρreal - ρIAM (1) 

where ρreal is the experimentally measured or theoretically calculated electron density distribution of real- life 

materials, and ρIAM is the electron density distribution of the theoretical ideally independent atom model (IAM) 

where bonding is missing. For simple and convenient representation of the three dimensional distribution of 

the electron density in a crystal, it can be expressed as a Fourier sum, 

𝜌(𝐫) = ∑ 𝐹𝐠 ∙ exp(−2𝜋𝑖𝐠 ∙ 𝐫)

𝐠

     (2) 

where Fg is the Fourier coefficients of the electron distribution, also known as (x-ray) structure factors. 𝐠 is 

the reciprocal lattice vector and 𝐫 is the real space vector in the unit cell. By combining Equations 1 and 2, we 

get  

∆𝜌(𝐫) = ∑(𝐹𝐠
𝑟𝑒𝑎𝑙 − 𝐹𝐠

𝐼𝐴𝑀) ∙ exp(−2𝜋𝑖𝐠 ∙ 𝐫)

𝐠

    (3) 

Hence, the bonding in a crystal can be expressed as structure factors differences between its real structure 

factors and ideal IAM structure factors.  

For copper, most of the bonding information is contributed by the three lowest-order structure factors, F111, 

F200 and F220, while the information lies in typically less than 1% differences between the real and IAM 

structure factors. For higher-order structure factors the charge deformation contribution become insignificant. 

Therefore, the key to solve the interatomic bonding distribution is to determine the low-order structure factors 

with high accuracy. 



Conventional x-ray diffraction, Pendellösung x-ray, neutron diffraction, critical voltage and QCBED were 

used to measure the structure factors of copper in the last 80 years 6-10. Experiments like conventional x-ray 

and neutron diffractions that based on the Kinematical (single scattering) theory suffer from extinction and 

anomalous scattering errors in low-order reflections, and critical voltage can only measure the ratio 

between two structure factors, thus potentially Pendellösung x-ray and QCBED, based on the Dynamica l 

(multiple scattering) theory, have great advantages to measure low-order structure factors accurately for 

bonding density distribution in copper. In actual practices, however, the Pendellösung method is limited by 

its severe specimen requirements which need large perfect single crystals to yield accurate results. While for 

QCBED, the electron beam is focused into a small spot on the specimen, which makes selecting a defect-free 

(e.g. single grain and no dislocation) region on a specimen to produce perfect diffractions possible. 

Experiments and DFT calculation 

In this work, we conducted experiments with two different methods of QCBED that based on the Bloch wave 

theory and the multislice theory respectively, and also used WIEN2K to perform a density function theory 

calculation. Being the two main steams of QCBED, the Bloch wave theory is preferred for analysis of perfect 

single crystals with a small unit cell due to its flexibility and accuracy, while the multislice theory has higher 

efficiency in computing time in a many-beam situation. 

Multislice 

For the multislice experiments, 118 diffraction patterns were collected with accelerate voltage of 200 kV and 

120 kV at room temperature (293 K), near three different major zone-axe (<100>, <110> and <112>, sensitive 

to target low-order structure factors), from different regions (thickness ranges from 600 to 2000 Å) of mult ip le 

polycrystalline samples. The samples were made of 99.9999% (6N) pure copper, and annealed at 530 °C for 

8 hours and then 150 °C for 4 hours to remove dislocations. Point spread function correction, noise 

characterisation and angular differential were used to eliminate point spread effect, digital signal noise and 

thermal diffuse scattering signals of collected CBED patterns. A modified version of the angular differentia l 

QCBED program was used for pattern-matching. The lattice parameter used for refinement is 3.61496 Å, and 

the Debye-Waller factor is 0.544 Å2.  



Bloch wave 

(The Bloch wave method is used by our collaborators, Jorg Wiezorek’s group. This paragraph will be written 

by them.)  

DFT calculation 

(The DFT calculations are done by Andrew Smith, and the detailed simulation setup is still being 

modifying.) 

Current Results and comparison with previous studies  

 



 

Figure 1 Charge density results of copper from studies since 1930 are summarised and plotted by their bonding density (e-/Å3) at the octahedral 

centre, tetrahedral centre and bridging centre in 3-dimension. (Top) Overview of all studies, and (bottom) zoom in view of clustered modern and 

recent study results. Noted values are taken from: a Friis et al., 2003 11, b Tabbernor et al., 1990 8, c Saunders et al., 1999 7, d Temkin et al., 1972 

9 and e Sirota, 1969 10.  

In Figure 1 (top), it is shown that previous charge distribution studies in copper have yielded diverse bonding 

characteristics in both absolute charge intensity and charge distribution. Despite of their absolute intensit ies, 

results from more than half of the studies show that the majority of the bonding densities locate between the 

nearest neighbour atoms; most of these studies further suggest that there are anti-bondings at the tetrahedral 

and/or octahedral sites. Tetrahedral dominant is also supported by a few studies. Only few band theory studies 

suggest the major bonding locates at the octahedral site.  

Relatively, as shown in Figure 1 (bottom), modern and recent studies have more consistent conclusions : 

QCBED and DFT researches by Friis et al. in 2005 6 and Saunders et al. in 1999 7, corrected neutron diffract ion 

results of Schneider (original experiment in 1981) 12 by Petrillo et al. 13, Pendellösung x-ray experiment by 

Smart and Humphreys in 1980 11, the two available critical voltage results in the 1980s 7,8, band theory 

calculation by Bagayoko in 1980 14 and QCBED and DFT results of this work have close agreement about the 

absolute bonding intensity. QCBED results of this work indicate that the dominant bonding in copper locates 



at the tetrahedral site, which is in good agreement to Saunders et al. QCBED results 7. DFT results of this 

work agree to previous DFT calculations done by Saunders et al. 7 and Friis et al. 6 respectively, and suggest 

that copper has a bridging-type bonding, and anti-bonding at the octahedral centre. QCBED study by Friis et 

al. 6 and rescaled neutron diffraction results of Schneider 13 also concluded bridge-type bonding similar to the 

DFT calculations.  

 

Table 1 Selected theoretical and experimental low-order structure factors of copper from key and recent studies. 

By comparing the low-order structure factors of our QCBED experiment and QCBED results of Friis et al. 6 

and Saunders et al. 7, it is shown that all QCBED experiments have approximate F200 and F220, while the 

structure factor F111 of Friis et al. 6 is significantly different from Saunders et al. 7 and our work. The main 

difference between Friis et al. 6 QCBED experiment and other QCBED experiments is they used the systematic 

row approach which involves only 1-dimensional line profile fitting, while Saunders et al. 7 and we applied 2-

dimensional zone-axis approaches that have more spatial constraint.  

Structure factors calculated by DFT tend to be lower compared to QCBED results and more different from 

the IAM values. This means that DFT calculations suggest a more significant charge deformation than 

QCBED experimental results. 

Discussion 

Conclusion 
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Abstract Atomic scattering factors are the very fundamental key to electron bonding computations 

as a pseudo-wavefunctions solution. During these computations, scattering factors at specific 

scattering angles are required and practically derived from interpolation to the tabulated values 

published in the International Tables for Crystallography (Brown et al., 2006; Colliex et al., 2006). 

This paper provides a FORTRAN function of an alternative method, which uses cubic spline for 

interpolation. Unlike other existing popular parameterisation interpolations, this new interpolation 

features scattering factor curves with exact fittings to the tabulated values. Simulations by quantitative 

convergent beam electron diffraction pattern-matching with different interpolation methods are also 

provided to show the improvement on electron bonding measuring with the new interpolation.  

Keywords: X-ray scattering factor; electron scattering factor; scattering factor 
parameterisation.  

1. Introduction 

Computational solutions to high energy electron microscopy diffraction and electron bonding 

calculations of crystalline materials are based on crystal potentials expressible in terms of atomic 

scattering factors. The most widely used atomic scattering factors were published by Doyle and 

Turner (1968). Their scattering factors with parameterisation interpolations have provided standard 

values for comparison between calculations and experiments. In particular, they provide a framework 

for the study of bonding by a treatment of the isolated atom/ion bonding and potential numerical 

calculation. Their publication (Doyle & Turner, 1968) covers 76 common atoms and ions, giving 

tables with 27 values of X-ray and electron scattering factors respectively for each atom and ion from 

0 to 6 Å-1 of s (sin𝜃 /𝜆). X-ray scattering factors from 0 to 2 Å-1 of s for other atoms and ions were 

calculated by Cromer and Waber (1968), and later the neutral atoms in these tables were extended to 6 
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Å-1 of s by Fox et al. (1989).  This collection of X-ray and electron scattering factors was later 

published in the International Tables for Crystallography (Brown et al., 2006; Colliex et al., 2006), 

forming tables that cover atoms and ions from number 1 to 98. The neutral atoms tables hold up to 62 

values from 0 to 6 Å-1 of s for both X-ray and electron scattering factors; while the ion tables hold up 

to 56 values from 0 to 2 Å-1 of s. Note that for atoms and ions that are not published by Doyle and 

Turner (1968), their electron scattering factors were converted from their X-ray values using the Mott-

Bethe formula. 

In practice, these scattering factor tables will be interpolated to return either X-ray or electron 

scattering factors for desired s. There are mainly two solutions: the original and more popular method 

called parameterisation (Doyle & Turner, 1968; Fox et al., 1989; Weickenmeier & Kohl, 1991; Peng 

et al., 1996; Kirkland, 1998; Lobato & Van Dyck, 2014), and polynomial interpolation (Bird & King, 

1990).  

Doyle and Turner (1968) also provided their parameterisation along with their 76 tabulated atoms/ions 

scattering factors, which uses four sets of Gaussian summations, for both X-ray and electron. 

Parameterisation then became the most popular interpolation method for scattering factors. Improved 

high angle electron scattering factor parameterisation was later published by Fox et al. (1989) for 2 ≤  

s ≤ 6 Å-1, while for s < 2 Å-1, it is suggested to use the Mott formula to derive electron scattering 

factors from the X-ray values. Similarly, Weickenmeier and Kohl (1991) published their 6-Gaussian-

summations parameterisation for electron scattering factors, intending to give better fitting at high 

scattering angles, covering neutral atoms from number 1 to 98. A FORTRAN subroutine FSCATT 

with their parameterisation implemented is also provided. The two parameterisations, one aims for 0 ≤ 

s ≤ 2 Å-1 and the other for 0 ≤ s ≤ 6 Å-1, with 5 Gaussian summations by Peng et al. (1996) for 

electron scattering factors of the 98 neutral atoms and their ions is currently included in the latest 

International Table of Crystallography (Colliex et al., 2006) as an updated standard. Note that only 

the 0 ≤ s ≤ 6 Å-1 parameterisation will be discussed for Peng et al. (1996) in this paper. There are also 

parameterisations using functions other than pure Gaussian. Kirkland (1998) has used 3 Lorentzian 

and 3 Gaussian summations to fit the electron scattering factors. As the most recent publication, 

Lobato and Van Dyck (2014) have provided a 5-Lorentzian summations and concluded the best fitting 

to the electron scattering factor table. 

Apart from parameterisation, a less popular interpolation method is polynomial interpolation. Bird 

and King (1990) published a FORTRAN subroutine, ATOM, which primarily aims to return both the 

real and imaginary components of electron atomic scattering factors, for neutral atoms included in the 

original publication of Doyle and Turner (1968). For the real component, ATOM uses Lagrange 

interpolating cubic to interpolate the electron scattering factors at specific s. Due to the nature of 

polynomial interpolation, ATOM can return a curve of electron scattering factors with perfect fitting to 

its embedded tabulated values. 
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Although all interpolation methods mentioned above intend to interpolate and fit either the X-ray or 

electron scattering factors by Doyle and Turner (1968), they still tend to yield significantly different 

scattering factors during interpolation, even for scattering factors at certain s that have tabulated 

values. If electron bonding and potential calculations involve such inaccurate scattering factors, the 

introduced errors may accumulate and vastly alter the calculated results. For example, in the routine 

of quantitative convergent beam electron diffraction (QCBED) of bonding density calculation, 

interpolated scattering factors of Doyle and Turner (1968) are used to derive bonding and potentials 

for ideal isolated atom models (IAM). During QCBED pattern-matching, only the several lowest 

order scattering factors of the IAM will be refined, while hundreds of higher order scattering factors 

are fixed to the interpolated values. The main reason is because major bonding information in real 

materials concentrates in the several lowest-order scattering factors, while higher-order scattering 

factors are theoretically identical to that of the IAM. Another reason is increased refining variables 

will vastly increase the computation time. If the interpolated scattering factors are not sufficiently 

accurate, the unchanging higher order scattering factors will have the lower order scattering factors 

refinement compromised, yielding incorrect results. Moreover, in the final stage of bonding density 

determination, the QCBED refined scattering factors will be subtracted by the IAM scattering factors 

to conclude the deformation density caused by the presence of bonding. This implies even if it is 

possible to refine all the scattering factors during QCBED pattern-matching, the final bonding 

deformation density cannot be measured correctly without an accurate IAM. 

In this paper, a cubic spline interpolation method and its FORTRAN function will be introduced. The 

biggest advantage of our cubic spline interpolation, compared to the popular parameterisation 

methods, is guaranteed to result perfect fitting to tabulated scattering factors as it is a polynomial 

interpolation. Comparing to the FORTRAN subroutine ATOM by Bird and King (1990), our function: 

1) uses cubic spline to interpolate, hence continuous derivatives, 2) also returns X-ray scattering 

factors, and 3) uses International Tables for Crystallography (Colliex et al., 2006) values, which has 

denser tabulated values and covers atom numbers from 1 to 98. Comparison of simulations by 

QCBED pattern-matching with the new cubic spline and other existing interpolations will be provided 

to demonstrate the reliability of this new method. 

2. Algorithm logic 

Our FORTRAN function is designed to return desired X-ray/electron scattering factors with inputs of 

atomic number (1-98) and s (0 – 6 Å-1). Our function covers the tabulated neutral atom X-ray and 

electron scattering factors in the International Tables for Crystallography (Brown et al., 2006; Colliex 

et al., 2006), which have 62 values for 0 ≤ s ≤ 6 Å-1 for most atoms from number 1 to 98 for both X-

ray and electron scattering factors. Some obvious errors in the table (e.g. mismatch to Doyle and 

Turner (1968), or local minimum/maximum that breaks curve trend) are corrected or set to be 
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neglected in the function. For a given s, our function will use the nearest four (two on both sides, 

except near s = 6 Å-1) tabulated values to interpolate and return the corresponding scattering factor, 

which guarantees exact matching of the tabulated values and provide a smooth curve with continuous 

derivatives. While s is close to 0, the spline will assume the curve is symmetrical at s = 0 Å-1.  

For atoms whose tabulated electron scattering factors are derived from their X-ray values, our 

function will first interpolate their tabulated X-ray values and then convert with the Mott formula 

when their electron scattering factors are required.  

3. Results and Discussion 

 

Figure 1 Relative errors of electron scattering factor curves by other methods for aluminium, using 

our cubic spline scattering factors as the reference. Since the curves of Fox et al. (1989), Kirkland 

(1998) and Lobato & Van Dyck (2014) have close values, they are mostly overlapping each other at 

higher scattering angles.  

As mentioned in the introduction, different parameterisation methods have various performance on 

fitting the tabulated X-ray and electron scattering factors as the popular solution. Generally, 

parameterisation with Gaussians have reasonably good fitting to X-ray scattering factors, while 

Lorentzian and hybrid parameterisation have better fitting to electron scattering factors. However, 

small errors remain even with the best parameterisation. Another solution to further reduce the curve-

fitting errors is to use polynomial interpolation. As shown in Figure 1, our cubic spline curve has 

perfect fitting to all the tabulated values and Bird and King’s Lagrange cubic interpolation has perfect 

fitting to tabulated values published by Doyle and Turner (1968), because polynomial interpolations 

are used. 



Journal of Applied Crystallography    computer programs 

5 

 

 

Figure 2 Comparison of CBED pattern-matching results with different scattering factor interpolation 

methods. a) A noise-free CBED pattern (pure aluminium, near the [110] axis) generated with our 

cubic spline and measured V111, V200, and V220 (Nakashima et al., 2011), which is used as the pattern-

matching target, and b) differences between the target pattern and patterns generated by different 

methods with the three lowest-order scattering factor refined. Due to restrictions of computation time, 

CBED pattern simulations and pattern-matching were conducted with scattering factors only up to 4.6 

Å⁻¹. 

 

To further demonstrate the differences of various methods and examine their reliabilities, QCBED 

simulations of a pure aluminium crystal generated with electron scattering factors of different 

methods were compared. The target CBED pattern to be refined was generated with our cubic spline 

and experimentally measured V111, V200, and V220 (Nakashima et al., 2011). The QCBED simulations 
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were conducted with the same routine as Nakashima et al. (2011). The three lowest-order structure 

factors (key to face-centred cubic metal) V111, V200, and V220 were refined for each method during 

pattern-matching. A phenomenological absorption curve was used and also refined. The target and 

refined CBED pattern calculations only involved scattering factors up to 4.6 Å-1 due to computational 

time restriction. The target and refined CBED patterns are shown in Figure 2. Structure factor 

refinement results are summarised in Table 1 and Figure 3. a) of Figure 2 is a simulated pure 

aluminium CBED pattern generated with our cubic spline, which was used as the target pattern for 

pattern-matching. In b) of Figure 2, it shows that with various methods and their scattering factors, the 

final calculated patterns can have obvious differences, which demonstrate the significance of even 

slightly different scattering factors. Although the lowest-order structure factors were refined, higher-

order structure factors were fixed while they are known to have different values to that of the target 

patterns. Therefore, mismatches between refined patterns of different methods and the target pattern 

will occur, resulting different refined structure factors to the known values. Goodness-of-fit of 

different methods’ pattern-matching are denoted as χ² in Table 1. χ² is defined as: 

𝜒2 =∑(𝐼𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝐼𝑖
𝑐𝑎𝑙𝑐)

2

𝑖

 

where . 𝐼𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

 is the target CBED intensity and 𝐼𝑖
𝑐𝑎𝑙𝑐 is the calculated CBED intensity to match the 

target for the ith pixel. When relating the goodness-of-fit of different methods’ scattering factor curve-

fitting (in Figure 1) and their CBED patterns structure factor refinements (in Table 1 and Figure 3), it 

is shown that methods with better fitting to the tabulated scattering factors also have better structure 

factor refinement results and lower mismatch between the target patterns and refined patterns (except 

Peng et al. (1996), because its scattering factors have good fitting at small s, while these simulations 

involved limited high scattering angle information due to computational time restriction), which can 

justify the reliability of our cubic spline interpolation. 

Table 1 Refinement results of different methods upon a simulated aluminium CBED pattern 

(shown in Figure 2) generated by our cubic spline scattering factors; electron structure factors in unit 

of volts.  

 
Doyle & 

Turner 

(1968) 

Fox et al. 

(1989) 

Bird & 

King 

(1990) 

Weicken

-meier & 

Kohl 

(1991) 

Peng et 

al. 

(1996) 

Kirkland 

(1998) 

Lobato 

& Van 

Dyck 

(2014) 

This 

work 

Known 

value 

V111 6.2295 6.2309 6.2303 6.2214 6.2311 6.2318 6.2311 6.2340 6.2340 

V200 5.2408 5.2410 5.2405 5.2300 5.2415 5.2420 5.2415 5.2416 5.2416 

V220 3.2032 3.2161 3.2143 3.2227 3.2177 3.2166 3.2161 3.2151 3.2151 

χ² 1.5123 0.0321 0.0210 13.7627 0.1322 0.0158 0.0275 0.0000 - 
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Figure 3 Refinement results of different methods on an aluminium CBED patterns generated by our 

cubic spline scattering factors (shown in Figure 2).  

Moreover, refined low-order scattering factors may compromise the mismatching higher-order 

scattering factors in order to follow the pattern-matching iteration, resulting in inaccurate scattering 

factor refinement, which is observed in Table 1 and Figure 3. Such problems will also exist in 

practical bonding experiments by QCBED. In QCBED bonding experiments, the bonding information 

of a real material is measured only within the lowest-order structure factors. Higher-order structure 

factors are identical to that of the un-bonded isolated-atom model that calculated by interpolation of 

the tabulated scattering factors. Therefore, without an accurate interpolation, the refined low-order 

scattering factors may be affected by the inaccurate higher-order scattering. Increasing the number of 

refining structure factors may reduce the effect of an inaccurate interpolation, however, it will 

multiple the computational resources and time. Eventually, for a bonding experiment, the resulting 

bonding will require the subtraction of the IAM from the measured experimental result, which makes 

the accuracy of the IAM vital.  

4. Concluding remarks 

Our FORTRAN function is capable of interpolating both X-ray and electron scattering factors of 

neutral atoms from atomic number 1 to 98 tabulated in the International Tables for Crystallography. 

Noting that for atoms with tabulated electron scattering factors converted from X-ray values by the 

Mott formula, their electron interpolation will start from interpolating their X-ray scattering factors 

and then be finished by the Mott formula conversion. Compared to existing popular parameterisations 

that use Gaussian/Lorentzian-like summations, our method returns identical scattering factors to the 
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tabulated values, while the continuity of the resulting curves and their derivatives is guaranteed. In 

addition to the perfect fitting to tabulated scattering factors, our QCBED pattern-matching simulations 

also confirm the reliability of our new interpolation.  
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Voids can significantly affect the performance of materials and a key question is

how voids form and evolve. Voids also provide a rare opportunity to study the

fundamental interplay between surface crystallography and atomic diffusion at

the nanoscale. In the present work, the shrinkage of voids in aluminium from 20

to 1 nm in diameter through in situ annealing is imaged in a transmission

electron microscope. It is found that voids first shrink anisotropically from a

non-equilibrium to an equilibrium shape and then shrink while maintaining their

equilibrium shape until they collapse. It is revealed that this process maximizes

the reduction in total surface energy per vacancy emitted. It is also observed that

shrinkage is quantized, taking place one atomic layer and one void facet at a

time. By taking the quantization and electron irradiation into account, the

measured void shrinkage rates can be modelled satisfactorily for voids down to

5 nm using bulk diffusion kinetics. Continuous electron irradiation accelerates

the shrinkage kinetics significantly; however, it does not affect the energetics,

which control void shape.

1. Introduction

A void is a volume of empty space inside matter, and as such it

is considered a fundamental defect (Smallman & Bishop,

1999). In solids, voids can form relatively easily under a wide

variety of conditions (Kiritani & Yoshida, 1963; Clarebrough

et al., 1967; Epperson et al., 1974; Nakajima, 1997; Kassner &

Hayes, 2003; Bourgeois et al., 2010; Xu et al., 2013). Voids tend

to have a deleterious effect on the mechanical and electrical

performance of materials (Nutt & Needleman, 1987;

Thomason, 1993; Gungor & Maroudas, 1999; Li et al., 2004;

Morgeneyer et al., 2008; Pande, 2012). There has also been a

growing interest in using voids as ‘negative particles’ to design

new materials for catalysis (Yin et al., 2004), electronics

(Yankovich et al., 2012) and plasmonics (Sigle et al., 2013).

In order to control void formation – whether to suppress or

promote it – it is crucial to understand the stability of voids

and their evolution under different conditions. Such an

understanding requires a detailed structural characterization

of voids and how they evolve during growth or shrinkage.

Particularly important is the regime corresponding to void

diameters at the lower end of the nanoscale, i.e. less than

20 nm, as this range is associated with the nucleation and early

stages of growth (Smallman & Bishop, 1999). In recent years,

there has been much interest in simulating the structure and

evolution of voids at this scale. For a seminal set of simula-

tions, see Woo et al. (1996), Marian et al. (2004, 2005), Uber-

uaga et al. (2007), Sun et al. (2009) and Nguyen & Warner

(2012). In contrast, experimental studies on the evolution of
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nanoscale voids have been surprisingly scarce (Ono & Kino,

2001; Kovács et al., 2011; Xu et al., 2013).

The structure of a void is defined by the surface that

encloses it. In crystalline materials, that surface consists of

lattice planes. The process of void growth or shrinkage

involves the capture or emission of vacancies across those

planes (Volin & Balluffi, 1968; Westmacott et al., 1968;

Smallman & Bishop, 1999; Xu et al., 2013). Voids formed by

quenching a very pure metal will progressively lose vacancies

into the matrix and shrink because a void is not thermo-

dynamically stable compared to the matrix with dispersed

vacancies at the equilibrium vacancy concentration. Void

shrinkage as a function of temperature was studied many years

ago for quenched aluminium and found to obey the kinetics of

vacancy-mediated bulk diffusion (Volin & Balluffi, 1968;

Westmacott et al., 1968), at least for voids with a diameter

larger than 10 nm, which was the smallest size that could be

measured with confidence in those early investigations. A

subsequent study (Ono & Kino, 2001) found evidence that

vacancy emission can be affected by the geometry of voids.

More recently, the formation of voids through the aggregation

of vacancies generated by an electron beam in magnesium was

determined to follow specific crystallographic stages (Xu et al.,

2013). To date, however, the mechanisms of vacancy emission

from a void and their relationship with crystal structure

remain unknown. Additionally, the shrinkage kinetics of sub-

10 nm voids have not been examined until now.

In the present work, we investigate the shrinkage of voids in

ultra-pure aluminium using in situ annealing in a transmission

electron microscope. Aluminium was chosen as a typical face-

centred cubic (f.c.c.) metal that, whether in its pure form or

alloyed with other elements, is commonly affected by voids

(Kassner & Hayes, 2003; Li et al., 2004). Void-containing

aluminium has also shown much promise as a substrate for

surface-enhanced Raman scattering (Sigle et al., 2013). Our

approach of characterizing the structure and evolution of

individual voids by transmission electron microscopy (TEM)

differs from that more commonly used where the average size

and shape of a large collection of voids is determined by small-

angle X-ray scattering (Haubold & Martinsen, 1978; Liu et al.,

1978; Fischer et al., 2010) or small-angle neutron scattering

(Saegusa et al., 1978). High-resolution TEM imaging in situ

enables the determination of structural changes of a single

void at the sub-nanoscale as a function of time and tempera-

ture during shrinkage. In particular, through an analysis of the

thermodynamics and kinetics of the process, we show that void

shrinkage is more complex than hitherto considered and,

significantly, an accurate explanation of the shrinkage process

must include a description of the truncated octahedral

geometry of the void. We also demonstrate that void shrinkage

is quantized via single crystallographic facets and that this

quantization has a very significant effect on the shrinkage

kinetics of sub-10 nm voids. Electron irradiation during the

entire shrinkage process was found to greatly accelerate the

shrinkage kinetics through a substantial reduction in the

diffusion energy barrier. However, the energetics, which

control the void shape, do not change.

2. Experimental procedures

The samples were in the form of discs 3 mm in diameter and

1 mm in thickness, punched from a sheet of 99.9999+ at.%

pure aluminium. They were heat treated at 823 K for 30 min in

a nitrate salt bath and quenched in water at room temperature.

This heat treatment led to the formation of voids. The TEM

specimens were made by mechanically grinding the discs and

electro-polishing them in a 67% methanol–33% nitric acid

mixture at 248 K and 13 V. These were examined by TEM

within days of being made.

Void shrinkage under thermal annealing was examined in

situ in a JEOL JEM 2100F field-emission gun transmission

electron microscope with 200 and 160 keV electrons. These

two values were chosen to explore both sides of the knock-on

damage threshold electron energy of 170 keV for bulk

aluminium (Hobbs, 1987). The in situ annealing was

performed using a Gatan 652 double-tilt heating holder at

various temperatures. Experiments using 200 keV electrons

consisted of isothermal annealing at 95, 293, 323, 373, 403 and

423 K. An additional experiment with 160 keV electrons

involved increasing the temperature from 293 to 443 K. In all

cases the specimens were continuously subjected to the elec-

tron beam with the same current density of�3 A cm�2, except

for two experiments. In these two experiments, performed at

200 keV, in order to identify the effect of electron irradiation

on the shrinkage mechanisms, we conducted annealing at 373

and 403 K with the beam off, apart from 10 s for image

acquisition every 30 min.

All specimens were examined in bright-field TEM mode,

along a h110i direction. In situ annealing of a specimen will tilt

the crystal slightly away from its zone axis owing to thermal

expansion caused by heating. This meant that, occasionally, we

had to adjust the specimen orientation to compensate for this

effect. Relatively thick regions (>70 nm) were selected to

ensure the voids were sufficiently far from the surface of the

sample in order to minimize possible surface oxidation as well

as enhanced diffusion due to proximity to a vacancy source/

sink. At each temperature the evolution of one void was

followed, except at 293 and 373 K, where the evolution of a

second void was also characterized. All images were recorded

on a Gatan Ultrascan 1000 CCD camera. Individual frames

were acquired at high resolution (2048 � 2048 pixels) and

movies were generated by continuous acquisition at lower

resolution (512� 512 pixels) with exposure times of 0.5–1 s to

generate movies through the digital video streaming plug-in of

the Gatan DigitalMicrograph software (http://www.gatan.

com/products/tem-analysis/gatan-microscopy-suite-software)

in association with Corel VideoStudio (http://www.

videostudiopro.com/en/).

3. Results

The shapes and sizes of voids observed before any annealing

or prolonged electron irradiation were consistent with

previous reports (Kiritani & Yoshida, 1963; Clarebrough et al.,

1967; Volin & Balluffi, 1968; Westmacott et al., 1968; Ono &
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Kino, 2001), namely truncated octahedra �20 nm in diameter.

Two examples are shown in Fig. 1(a). One of the voids is

shown at higher magnification in Fig. 1(b), revealing its char-

acteristic {002} and {111} facets. No other crystallographic

facets are visible. It can clearly be seen that the {111} facets are

larger than the {002} facets. We use the distances between

parallel facets, D
ð111Þ, D

ð111Þ and Dð002Þ, as marked on the TEM

image (see Fig. 1b), to characterize the size and aspect ratio of

the voids. The aspect ratio, r, is defined as the ratio of the

distances between parallel {111} and {002} facets, i.e.

r ¼ Df002g=Df111g. We found that all voids observed (about 50)

exhibited initial aspect ratios ranging from 1.1 to 1.5. These are

significantly larger than that corresponding to the equilibrium

void shape, r ¼ 1:06 (see x3.1.1). Fig. 1(c) presents a schematic

drawing of a truncated octahedron approximating the shape of

the voids observed experimentally: the largest facets are the

{111} facets (shown in blue) and the {002} facets (red). We now

present the results of our in situ annealing experiments.

3.1. Direct observation of void shrinkage by transmission
electron microscopy

3.1.1. A two-stage process. All our annealing experiments

(293, 323, 373 and 423 K, as well as the experiment with the

electron beam mostly off at 403 K under 200 keV electrons

and with ramping temperature under 160 keV electrons)

revealed that void shrinkage follows two well defined stages.

This is illustrated in Fig. 2. This figure presents TEM snapshots

of a void at different stages of its shrinkage when annealed at

373 K. During Stage I, the void shrinks anisotropically, by

shrinking in the h001i direction, and undergoes a reduction in

aspect ratio to a specific value, r0 ¼ 1:06� 0:04, as shown in

Figs. 2(a)–2(c). During Stage II, the void reduces its size

equally in all directions while keeping its aspect ratio constant

at r0 ¼ 1:06� 0:04, as shown in Figs. 2(d) and 2(e), until it is

fully dissolved into the matrix. The last moments of a void’s

life are shown in a movie and still pictures extracted from the

movie in the supporting information (see Fig. S1 and

Supplementary Movie 1). The void can be clearly observed

down to a diameter of 1.2 nm. The same behaviour was

observed for the other temperatures considered (see Fig. S2 in

the supporting information). In the annealing experiment at

403 K with the beam mostly off, the void also experienced

two-stage shrinkage, and the equilibrium shape at Stage II (see

Fig. S3 in the supporting information) is consistent with all

other cases investigated. The physical meaning of r0 will be

explained in x3.2.1.

The aspect ratio of a void determines the shrinkage mode.

This is explained in Fig. 3, which plots the measured distances

between the parallel facets as well as the deduced aspect ratios

for the same void shown in Fig. 2. It shows D
ð111Þ<D

ð111Þ

initially, and therefore Dð002Þ=D
ð111Þ>Dð002Þ=D

ð111Þ. D
ð111Þ does

not change during Stage I of the shrinkage process (left of the

dashed line in Fig. 3). In contrast, D
ð111Þ reduces once

Dð002Þ=D
ð111Þ reaches the equilibrium value of 1.06 � 0.04,

which occurs well before the other ratio, Dð002Þ=D
ð111Þ, equals

r0. Only when all aspect ratios reach this equilibrium value can

Stage II be said to have begun.

Throughout their evolution under annealing, voids have

their shape dominated by {111} and {002} facets. The {002}

facets were found to flatten [compare Fig. 2(a) with Figs. 2(b)–

2(e)]. Therefore we used these {111} and {002} facets to

characterize the geometry of the voids. Minor facets such as
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Figure 2
Evolution of a void shrinking at 373 K, as imaged during in situ TEM annealing. The shrinkage process follows two stages: first (a)–(c) a reduction in
aspect ratio to a specific value r0 = 1.06� 0.04, and second (d)–(e) a reduction in size with a constant aspect ratio r0 = 1.06� 0.04. These two stages were
observed to take place at all temperatures considered.

Figure 1
(a) TEM image showing two voids. The void framed is shown in (b) at
high resolution together with the notation used for characterizing the
shape and size of voids throughout the present study. (c) A truncated
octahedron with an aspect ratio typical of the voids observed. The images
and void model are all viewed along [110].



{112} and {110} were also observed [this is particularly visible

in Fig. 2(b)] but were disregarded in the following analysis for

the sake of simplicity.

Two additional observations are worth mentioning

regarding the overall evolution of voids subjected to

annealing. The first one is, in some cases (293 and 373 K), the

formation and growth of a dislocation loop a few seconds after

the void’s disappearance from view (see Supplementary

Movie 1). We believe that this is an electron irradiation effect

resulting in the clustering of the vacancies left in high

concentration shortly after the complete dissolution of the

void. The second observation is the rare presence of voids that

do not anneal out. This is the case for the upper void displayed

in Fig. 1(a) and Fig. S4 in the supporting information. This is

likely to be the result of TEM sample preparation and the

formation of a thick oxide shell at the surface of voids close to

the specimen surface. This shows that a void’s stability is

strongly affected by the chemistry of its surface.

3.1.2. A monolayer-by-monolayer process. Our in situ

annealing TEM study uncovered atomic level details

regarding the mechanisms of void shrinkage, and in particular

how atoms fill the void. We first consider Stage I, or the

reduction in the aspect ratio of the void. Fig. 4 shows six

snapshots taken from in situ annealing TEM movies spanning

�12 min. During this period, the void can be seen to shrink

five times by the same amount (<0.5 nm) through the move-

ment of two of its visible {002} facets, as shown in the

magnified insets. The four {111} facets viewed edge on did not

move in the present sequence. Owing to the limited spatial

resolution of the movie frames whose field of view was used to

image an entire void in its early stages, the quantum by which

the void shrinks could not be determined accurately in most

cases. However, a higher-magnification image of part of the

void (see Fig. S5 in the supporting information) clearly indi-

cates that this quantum is 0.2 nm, which is the {002} inter-

planar spacing. This reduction in void aspect ratio by taking

one monolayer at a time was observed to occur systematically

during the �3 h taken for the void to reach the start of Stage

II. The movement of the {002} facets one monolayer at a time

was too rapid for its origin to be determined.

We now examine Stage II, where void shrinkage takes place

in equal amounts in all directions. Fig. 5 shows a set of three

consecutive snapshots taken from an in situ annealing TEM

movie. An additional set of consecutive snapshots is shown in

Fig. S6 in the supporting information. Supplementary Movie 2

is the entire movie sequence from which these snapshots were

taken. In the images, the crystal lattice projected down the

h110i axis is clearly resolved. In most cases the void surface

can also be determined to within one lattice plane, be it a {111}

plane or a {002} plane. The movement of the six facets

projecting parallel to the viewing direction was tracked, as

indicated by the blue and red lines for the {111} and {002}

facets, respectively. As for Stage I, void shrinkage during Stage

II is found to take place one monolayer at a time: Fig. 5 shows

this for a {111} plane. Other monolayer decreases in void size

are shown in Fig. S6 in the supporting information. The

temporal resolution of our movies was not sufficient to allow

determination of the origin of the new atomic planes inside the

void. However, there is a clear temporal separation between

the appearance of a new atomic plane for different facets. This

suggests that facets move one at a time rather than all facets

moving in concert.

In order to determine whether there were any qualitative

changes in the mechanisms of void shrinkage due to electron

irradiation, we conducted one in situ experiment with 160 keV

electrons. We found that, as for 200 keV electrons, the

shrinkage takes place one atomic layer and one facet at a time

(see Fig. S7 in the supporting information).

3.2. Analysis of TEM observations

One key result of our TEM observations is the importance

of void geometry: the increase in the surface area of the {002}

facets during Stage I will inevitably lead to an increase in the

surface energy for these facets. This means a substantial
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Figure 3
(a) Plots of the distance between parallel facets, D

ð111Þ, D
ð111Þ and Dð002Þ,

and (b) the deduced aspect ratios Dð002Þ=D
ð111Þ and Dð002Þ=D

ð111Þ, as a
function of time for a void shrinking at 373 K (the same void as shown in
Fig. 2) The two-stage process is clearly apparent, as indicated by the
dashed line separating the two stages.



breakdown of the spherical approximation made in previous

studies (Volin & Balluffi, 1968; Westmacott et al., 1968; Ono &

Kino, 2001). Therefore, in order to investigate the changes in

total energy during void shrinkage across the two observed

stages, it is necessary to explicitly take into account the trun-

cated octahedral shape. This is shown in the next section. We

show how this treatment provides an explanation for the two-

stage process of void evolution and how it can lead to a

measure of the vacancy emission rate. The vacancy emission

rates deduced from our experiments are then compared with

values calculated from bulk diffusion kinetics. Significant

differences are observed, which show the strong effect of

electron irradiation.

3.2.1. Energetics of the two-stage shrinkage process. We

ignore the minor facets, only considering the {002} and {111}

facets, and assume that the void is a regular truncated octa-

hedron in order to simplify the analytical

derivation of the energetics (see the

supporting information for a detailed descrip-

tion of void geometry). An arbitrarily trun-

cated octahedron is also considered in the

supporting information and implemented in

our simulation program (Zhang & Liu, 2015).

The total energy E of a void consists of a

surface energy term and an elastic strain

energy term. For voids larger than 1 nm, the

elastic strain energy is negligibly small (West-

macott et al., 1968) and thus we only consider

the surface energy. The total energy E is

therefore

E ¼ �ð002ÞSf002g þ �ð111ÞSf111g; ð1Þ

where �ð002Þ and �ð111Þ are the surface energies

per unit area for the f002g and f111g surfaces

of aluminium, and Sf002g and Sf111g are the

surface areas of the corresponding facets. We

used the surface energies per unit area

obtained experimentally at 300 K from the

measurements of Allen et al. (2003) based on

Al–Xe interfacial tensions, �ð111Þ ¼ 6:6 �
0.3 eV nm�2 and �ð002Þ ¼ 6:9� 0:3 eV nm�2.

The surface energies per unit area are assumed constant

throughout the void shrinkage process.

The total energy E as well as the total surface energies

�ð002ÞSf002g and �ð111ÞSf111g for the f002g and f111g facets,

respectively, are plotted as a function of time in Fig. 6(a) for a

void annealed at 373 K. When the distances between the two

sets of parallel {111} facets measurable on the images, D
ð111Þ

and D
ð111Þ, differed, Df111g was taken as the average of these

two distances. One important consequence of the reduction

mainly in Df002g in the early part of Stage I is that the surface

area of these {002} facets and their corresponding surface

energies increase with time. However, the total energy of the

void actually decreases throughout the shrinkage, as one

would expect. This is because the increase in the surface area

of the f002g facets is more than compensated by the decrease

in the surface area of the f111g facets.
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Figure 5
Snapshots from an in situ annealing TEM movie at 373 K (the same void as shown in Fig. 2), showing that, during Stage II, void shrinkage takes place one
monolayer at a time (see yellow arrows). The three consecutive snapshots span a duration of 3 s and show the movement of a {111} facet into the void.
The void dimensions are indicated in terms of the number of {111} and {002} layer spacings, d111 and d002, respectively.

Figure 4
Snapshots from an in situ annealing TEM movie at 373 K (the same void as shown in Fig. 2),
showing that, during Stage I, shrinkage takes place in a quantized fashion. The blue lines
indicate the {111} facets edge on, and the red lines the {002} facets during the first snapshot
(a). The {002} facets move towards the centre of the void by a distance <0.5 nm in each
subsequent frame (b)–( f ).



In order to estimate the number of vacancies n that make up

a void, and therefore determine the vacancy emission rate, we

begin with the following equation that always holds exactly:

n ¼ Vvoid=�; ð2Þ

where Vvoid is the exact volume of the void and � is the

volume of a single vacancy, which is equivalent to the atomic

volume of 0.0166 nm3 for aluminium. In practice, we have no

way of knowing Vvoid, so we make the following approxima-

tion:

Vvoid ’ Vreg:t:oct:; ð3Þ

where Vreg:t:oct: is the volume of the regular truncated octa-

hedron with dimensions that most closely fit those of the void.

Equation (2) now becomes

n ’ Vreg:t:oct:=�: ð4Þ

This approximation is reasonable for voids of diameter

larger than about 10 nm, but degrades for voids below this

size. This is because this approximation does not correctly

account for the true volume of vacancies at the void surface. In

addition, the number of vacancies in the void becomes so

small that the irregularities associated with additional lattice

planes along particular facets as the void evolves make up a

significant perturbation in volume and shape from that of a

regular truncated octahedron. In other words, the quantiza-

tion of void volume with successive lattice planes when voids

are small (< 10 nm) cannot be ignored. In order to take this

quantization of void volume into account, we use a truncated

octahedron that is allowed to vary from a regular shape by

single lattice planes in each of the facets and count the lattice

sites accurately, including those at the surface. We call this the

quantized model, and in the following analyses, we present

results from both the continuum approximation [equation (4)]

and the quantized model.

The evolution of the number of vacancies inside the void as

a function of annealing time at 373 K is shown in Fig. 6(b).

Two sets of calculated data are shown in order to reflect the

uncertainty associated with unequal Df111g for Stage I (see

Fig. 3). The data align along straight lines, demonstrating that

the vacancy emission rate is constant for each of the two

stages. The deduced vacancy emission rates J are indicated in

each case. The vacancy emission rate is between three and ten

times larger during Stage II than during Stage I. This differ-

ence can be explained qualitatively by our observations that

during Stage I vacancies appear to leave the void only from

certain facets, the dominant ones being {002}, whereas during

Stage II vacancies leave from all facets.

To explain the two-stage shrinkage process, we now calcu-

late the change in energy per vacancy emitted as a function of

the aspect ratio, ð@E@r
@r
@nÞDf111g

, and as a function of the distance

between {111} facets, ð @E
@Df111g

@Df111g

@n Þr, using the continuum

approximation for the void volume [equations (4) and (S8) in

the supporting information]. The curves for the two energy

changes are plotted in Fig. 7 as a function of r.

We can determine which energy change is larger at a given

aspect ratio, r, and a given Df111g by examining the difference

M:

M ¼
@E

@r

@r

@n

� �
Df111g

�
@E

@Df111g

@Df111g

@n

� �
r

¼ ½�ð111Þr� �ð002Þ�B; ð5Þ

where the factor B (see the supporting information) is always

positive within the observed aspect ratio range of (1, 31=2).

Thus,
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Figure 6
(a) Total surface energy and surface energies of {002} facets and {111}
facets of a void (the same void as shown in Fig. 2) as a function of
annealing time at 373 K. (b) Number of vacancies within the void as a
function of annealing time at 373 K. The vacancy emission rates J are
indicated for each segment of the straight lines with an uncertainty of
�0:5 vacancy per second. The upper and lower limits deduced from the
TEM experiments are shown to indicate the uncertainty associated with
the extrapolation from the two-dimensional TEM image to a three-
dimensional object, as a result of unequal Df111g during Stage I. The
dashed line represents the separation between Stages I and II.



M

(> 0 if r>�ð002Þ=�ð111Þ;
¼ 0 if r ¼ �ð002Þ=�ð111Þ;
< 0 if r <�ð002Þ=�ð111Þ:

ð6Þ

It is the aspect ratio that characterizes the shrinkage stage.

As shown in Fig. 7, for aspect ratios, r, larger than the equi-

librium ratio, r0 ¼ �ð002Þ=�ð111Þ, the void will shrink so as to

reduce its aspect ratio to maximize its surface energy reduc-

tion per vacancy emitted. Since an increase in Df111g will

increase the void energy, the void will achieve a reduction in

aspect ratio by shrinking mainly along h001i. The value of the

aspect ratio r0 is, of course, that corresponding to the Wulff

construction (Wulff, 1901), also known as Herring’s equili-

brium shape (Herring, 1951). Experimentally we found that

this equilibrium aspect ratio value fluctuated around 1.06 �

0.04 during Stage II (see Fig. 3b). Measurements at various

temperatures give essentially the same value (see Fig. S2 in the

supporting information). This is consistent with the measured

aspect ratios of 1.05 for Xe-containing bubbles (Allen et al.,

2003) and 1.03 for He-containing bubbles (Nelson et al., 1965)

in Al after high-temperature annealing to reach equilibrium.

On the other hand there is variable agreement with first-

principles calculations of Al surfaces at 0 K, which yield values

of 1.12 (Jacobs et al., 2002), 1.09 (Kuznetsov et al., 1998) and

most recently 1.08 (Gupta et al., 2016).

We built a computer program to simulate an arbitrarily

truncated octahedron in an f.c.c. lattice and simultaneously

visualize the atomic layer-by-layer shrinkage of a void based

on our quantized model (Zhang & Liu, 2015). It assumes that

monolayer shrinkage always takes place at the facet that

maximizes the total energy reduction per vacancy emitted.

The simulation reveals that a void will first shrink aniso-

tropically to its equilibrium shape, as shown above analytically.

This holds true for any starting truncated octahedral void

shape, including voids with unequal distances between parallel

facets such as those experimentally observed. For Stage II,

however, the aspect ratio is found to fluctuate instead of

maintaining a constant value, in contrast to the prediction of

the continuum approximation (Fig. 7). As shown in Fig. 8(a),

this fluctuation reveals a ‘wave’ pattern with amplitude and

mean value both increasing as the void size decreases. This is

because monolayer shrinkage results in increasing departures

from the equilibrium aspect ratio as a void becomes smaller, as

demonstrated in Fig. 8(b). This effect is significant for void

diameters below�10 nm or�40 {111} atomic planes. This also

means that such small voids will not necessarily adopt the

exact equilibrium shape defined in equation (6). Quite inter-

estingly, a similar behaviour called the ‘magic shape effect’ is

exhibited by Pb nanoprecipitates in Al in order to minimize

elastic strain (Hamilton et al., 2007). Hamilton et al.’s and our

present work show in different ways that the shape and size

relationship in nano objects can be understood via an energy

analysis.

3.2.2. Vacancy emission rates from bulk diffusion kinetics.
As shown above, we have demonstrated experimentally that

the vacancy emission rate from a void is distinctly different for

Stage I and Stage II (see Fig. 6b). The phenomenon cannot be
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Figure 8
(a) Average aspect ratio as a function of average distance between {111}
facets in Stage II of void shrinkage: data points are obtained from the
simulation of quantized shrinkage as well as the 373 K annealing
experiment of Fig. 3. (b) Atomic models corresponding to three adjacent
quantized states (I, II and III) and viewed along h110i. Each arrow
indicates which monolayer will be removed in the next state.

Figure 7
Plots of the change in surface energy per vacancy emitted at 373 K for a
void starting with Df111g of 17 nm, for the cases of changing aspect ratio
(blue) and size (red) according to equation (5). This was calculated using
the continuum model. The insets are schematic diagrams illustrating void
shrinkage in terms of shape and size to maximize energy reduction per
vacancy emitted. (I) r>�ð002Þ=�ð111Þ and the void reduces in aspect ratio
with constant Df111g. (II) r ¼ �ð002Þ=�ð111Þ and the void reduces in Df111g

whilst maintaining its equilibrium aspect ratio. The grey arrows indicate
the change in void shape for Stage I and Stage II.



explained by the spherical model (Volin & Balluffi, 1968;

Westmacott et al., 1968; Crank, 1979). We now use a diffusion

equation similar to that developed earlier but apply it to the

truncated octahedral void geometry as follows (see derivation

in the supporting information). The vacancy emission rate can

be written as

dn

dt
¼

2SDs

�Dfhklg�
exp

dE=dn

kBT

� �
� 1

� �
; ð7Þ

where Ds is the self-diffusion coefficient to be measured and �
is the correlation factor for self-diffusion. For f.c.c. structures,

� = 0.781 (Volin & Balluffi, 1968). Dfhklg represents the

distance between major facets {hkl} and S is the activated

surface area for vacancy emission, which is mainly Sf002g for

Stage I, but both Sf002g and Sf111g for Stage II for a regular

truncated octahedron. Likewise, the change in energy per

vacancy emitted dE=dn is different for the two stages (see the

supporting information). kB is the Boltzmann constant and T

the temperature.

By fitting equation (7) to the experimental curves of void

size versus time, we calculate the self-diffusion coefficient for

each temperature. An example for 373 K is shown in Fig. 9.

The calculated self-diffusion coefficient as a function of

temperature is found to display an almost perfect Arrhenius

behaviour (see Fig. 10), as should be expected for mono-

vacancy mediated diffusion:

Ds ¼ D0 exp
�Q

kBT

� �
; ð8Þ

where D0 is the temperature-independent pre-factor and Q is

the activation energy for diffusion. Our measured activation

energy for diffusion (0.2 eV) is substantially lower than

literature values (1.3 eV) (Volin & Balluffi, 1968; Westmacott

et al., 1968). The pre-factor D0 = 2 nm2 s�1 is also much lower,

differing from the accepted value (1.76 � 1013 nm2 s�1) by 13

orders of magnitude. This is the well known effect of radia-

tion-enhanced diffusion (Dienes & Damask, 1958; Hobbs,

1987; Zhang et al., 2005). Here it is due to the high-energy

electron beam (200 keV) causing knock-on damage in the

aluminium crystal and, in particular, generating both vacan-

cies and interstitials, thus enhancing diffusion. The knock-on

damage threshold electron energy for aluminium is 170 keV

(Hobbs, 1987). The irradiation effect is most significant at low

temperatures, where the number of bulk thermal vacancies is

much smaller than the number of electron-generated vacan-

cies.

By turning off the electron beam and measuring the change

in void diameter during that time, we confirmed that the

deduced diffusivity is much closer to the accepted value for

bulk diffusion (see Fig. 10). Examination of almost the entire

shrinkage process at 403 K with the electron beam mostly off

confirmed that bulk diffusion controls the process. In the

373 K experiment with the beam mostly off, a void (diameter

�10 nm) reduced its size by one atomic layer within 30 min,

showing that the layer-by-layer shrinkage is a general

mechanism that operates with or without an electron beam.

Our experiment at 160 keV (below the knock-on damage

threshold for aluminium) and 433 K also yields a value for Ds

much closer to the bulk diffusion value of Volin & Balluffi

(1968).

With the diffusion coefficients fitted to take electron irra-

diation into account, we find that the calculated void size
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Figure 9
Calculated distance between parallel {111} facets, Df111g, as a function of
time for a void shrinking at 373 K under the electron beam. The
calculated curves are for the continuum approximation (black) and a
more accurate model taking into account the quantized evolution of
monolayer shrinkage and an irregular octahedral geometry (red). The
fitting of the continuum model gives Ds = 0.0018 nm2 s�1 and the void is
predicted to collapse after 297 min, while the quantized model yields Ds =
0.0020 nm2 s�1 and the void is predicted to collapse after 302 min. The
experimental data from Fig. 3(a), where the void was observed to vanish
after 309 min, are also shown.

Figure 10
Self-diffusion coefficient of aluminium as a function of the reciprocal of
the absolute temperature. The data consist of in situ annealing at 293, 323,
373, 423, 433 K under the electron beam and in situ annealing at 373 and
403 K with the electron beam mostly off. A comparison is made with the
accepted value of bulk diffusion in aluminium (Volin & Balluffi, 1968).



versus time fits the experimental curve quite well, as shown in

Fig. 9. Nevertheless, the calculations assuming a continuous

change in void size exhibit a notable departure from the

experimental data for void diameters less than 10 nm: void

shrinkage is observed to be remarkably slower than predicted,

by a very significant 12 min, compared with the total duration

of 109 min for Stage II. This characteristic was observed in all

our in situ annealing experiments. This cannot be explained by

uncertainties in measuring void dimensions, as voids remain

clearly measurable down to a diameter of 2 nm (see Fig. S1 in

the supporting information). Two reasons can be invoked to

explain this discrepancy: (1) the number of vacancies is

underestimated by equation (4); (2) the aspect ratio fluctuates

around the equilibrium value and has a shape–size relation-

ship, whereas the continuum approximation assumes a

constant aspect ratio. Both factors will lead to a greater energy

change per vacancy emitted dE=dn for the continuum model

[see equation (7)] and thus faster kinetics compared with

experimental observations. The quantized model, in contrast,

matches experimental observation well down to 5 nm and also

reduces the time discrepancy. However, for voids smaller than

5 nm, the calculations based on the quantized model still differ

from experiments. We briefly discuss the possible reasons for

this discrepancy in x4.

The vacancy emission rates calculated in equation (7)

provide information about void shrinkage under more general

conditions, as shown in Fig. 11. The conditions investigated are

higher temperatures, different void sizes and a diffusion

coefficient value for bulk diffusion unaffected by electron

irradiation. During Stage I, the curves exhibit a minimum at a

specific aspect ratio, or tipping point (see Fig. 11a). For a

typical void diameter of 17 nm, the minimum occurs at an

aspect ratio of �1.5. Above that value, the vacancy emission

rate increases dramatically with increasing aspect ratio. This is

because the energy reduction per vacancy emitted is high for

r> 1:5, whereas below that value, the emission rate decreases

only moderately with increasing aspect ratio. This may provide

an explanation for our observation that all voids had an aspect

ratio of no more than 1.5 before annealing. Our calculated

vacancy emission rate also shows that the tipping point is

strongly affected by temperature and void size. This may

explain other long-standing observations regarding void

formation, such as the fact that it is favoured by a relatively

slow quenching rate to a moderately high temperature (Martin

et al., 1997). It is also known that, under such conditions, voids

in copper will tend to display much larger sizes and higher

aspect ratios (Clarebrough et al., 1967). These observations

are consistent with our calculations: larger void sizes and

higher temperatures will lead to a tipping point corresponding

to larger aspect ratios.

The calculated vacancy emission rate for Stage II is rela-

tively constant for void diameters above �10 nm, but

increases exponentially for voids less than �7 nm in diameter

(see Fig. 11b). This differs markedly from the experimentally

observed vacancy emission rate, which is constant throughout

Stage II, including for voids as small as 1 nm (see Fig. 6a).

The quantized model has a noticeably lower vacancy

emission rate for voids of high aspect ratios in Stage I or small

sizes in Stage II. This difference yields a slower shrinkage rate

(see Fig. 9). However, for a sufficiently large void close to its

equilibrium aspect ratio, the two models converge.

4. Discussion

Our in situ annealing experiments in the transmission electron

microscope enabled the shrinkage of voids in pure aluminium

to be characterized accurately in terms of size, shape and

crystallography, for voids 20–1 nm in diameter. We found that

void shrinkage follows two stages. Stage I is distinctly aniso-

tropic, involving the movement of certain facets only. A

similar observation was made by Clarebrough et al. (1967) for
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Figure 11
Vacancy emission rates as a function of (a) aspect ratio during Stage I and
(b) distance between {111} facets Df111g during Stage II. Plots are
displayed for different Df111g distances [17 and 10 nm in (a)], different
temperatures, the continuum model, the quantized model, and the
diffusion coefficients corresponding to the in situ experimental conditions
and the accepted values for bulk aluminium. The upper and lower limits
are those deduced from experiment, as shown in Fig. 6(b). Note that in
the present figure (b) these two limits overlap.



voids in copper quenched in carbon monoxide: upon

annealing voids exclusively bound by {111} facets will develop

{110} and {002} facets, thus approaching an equiaxed shape. A

more extreme form of anisotropy was observed by Westma-

cott et al. (1968) in so-called ‘sausage-shaped voids’, elongated

voids that had nucleated on impurity inclusions in otherwise

pure aluminium. The voids were observed to shrink only in

their longitudinal dimension, with little change in their

diameter. Calculations based on bulk diffusion indicated that

the shrinkage kinetics of such voids were consistent with

vacancies only leaving the hemispherical cap of the voids. We

have shown that this anisotropic behaviour is simply the void

moving to its equilibrium shape in the most efficient way, i.e. in

the way that maximizes the decrease in energy per vacancy

emitted. This is therefore a general phenomenon that holds

true for any void that does not exhibit its equilibrium shape,

whether an inclusion is associated with it or not.

Our results clearly show that, before being subjected to

annealing (apart from the low-temperature annealing during

storage before the TEM observations), voids do not exhibit

their equilibrium shape. The reason for this is most likely to be

found in the growth process of voids, a process which remains

poorly understood. However, our study combining a detailed

experimental examination and a kinetics model taking into

account the truncated octahedral shape suggests an explana-

tion for the surprising uniformity of the aspect ratio of voids

prior to annealing. Vacancies are emitted from the {002} facets

at high rates until the aspect ratio reaches the commonly

observed value of�1.5. On the basis of our calculated vacancy

emission rates (see Fig. 11a), it is reasonable to suggest that

this phenomenon takes place during void formation, which

incorporates vacancy absorption and emission as competing

non-equilibrium processes, rather than in the short time the

TEM samples are stored before the examination. Indeed, the

emission rate changes significantly with aspect ratio only at

high temperatures (>423 K).

In previous studies (Volin & Balluffi, 1968; Westmacott et

al., 1968) bulk diffusion was found to fit the overall kinetics of

void shrinkage quite well. This is also supported by our

experiments, both under the electron beam and with the beam

turned off (see Fig. 10). A continuum model of the transport of

vacancies away from the void through bulk diffusion could

describe the observed void shrinkage kinetics satisfactorily for

a void diameter as small as 10 nm, provided the diffusion

parameters are modified to take into account the enhance-

ment caused by electron irradiation. For smaller voids

(diameter <10 nm), the agreement between calculations and

experiments improved when the quantization of void size and

shape was taken into account. However, the shrinkage kinetics

seems to be further slowed for void diameters smaller than

5 nm. This may be caused by the presence of molecules (e.g.

H2) trapped within the void. Such gas molecules may lower the

nucleation energy barrier of voids (Shimomura & Yoshida,

1967; Shimomura & Moritaki, 1981). For example, voids

formed by quenching in carbon monoxide or hydrogen

atmospheres were found in significantly higher number

densities compared with voids quenched in vacuum and did

not shrink following prolonged annealing at elevated

temperatures (Clarebrough et al., 1967). In the present work,

however, where water quenching was performed, it is unlikely

that the samples will contain noticeable levels of hydrogen, as

reported by previous authors (Shimomura & Yoshida, 1967).

In addition, the fact that the kinetics are observed to slow

down for sub-5 nm-diameter voids only suggests the gas

molecules are very few, if any. Therefore even if such gas

molecules were present in very small numbers and influenced

the kinetics for sub-5 nm voids, it is highly unlikely that they

would change the observed surface-driven anisotropy and

monolayer shrinkage. The discrepancy may also be the result

of other nanoscale effects: (1) a change in the formation

energy of vacancies generated at the surface; (2) a change in

the surface energy per unit area for a sub-5 nm void. Finally,

the effect of electron irradiation cannot be discounted, even

though the discrepancy in the kinetics of small voids was

observed for all temperatures and voltages.

While electron irradiation does not change the two-stage

nature of the shrinkage of voids and the energy associated

with the equilibrium shape, the shrinkage kinetics are greatly

accelerated. The radiation-enhanced diffusion activation

barrier was determined to be 0.2 eV in our in situ experiments,

a value substantially less than 1.3 eV for bulk diffusion in the

absence of radiation. The total activation barrier for diffusion

comprises the activation energies for vacancy formation and

vacancy migration, each �0.65 eV (Mehrer, 2007). It may

seem surprising that electron irradiation can enhance vacancy

diffusion to such a large extent; however, this can be under-

stood by noting that vacancy formation is initiated at surfaces,

including the surface of a void, and that it will be greatly

enhanced through the process of electron-beam-induced

sputtering (Egerton et al., 2010). Similarly, vacancy migration

can be strongly accelerated by electron irradiation (Banhart,

1999). We can estimate the sputtering rate s for our experi-

mental conditions. According to Egerton et al. (2010),

s ¼ ðJe=eÞ�a
1=3
0 , where Je is the current density of the electron

beam (�3 A cm�2 for our experiments), e is the charge of the

electron, a0 is the volume per atom and � is the sputtering

cross section. For aluminium and for 200 keV electrons, � ’
400 barn (1 barn = 10�28 m2) (Bradley & Zaluzec, 1989).

Using an atomic volume of 0.01661 nm3 for aluminium, we

obtain a sputtering rate of 0.002 nm s�1, or �3 atoms per

second (i.e. 3 vacancies per second leaving the void) for each

5 nm-wide {002} facet. For stage I, assuming only the {002}

facets emit vacancies and assuming the electron beam sputters

atoms at the same rate in all h001i directions, this yields a

sputtering rate of 18 vacancies per second. This is probably an

overestimation given that the electron beam will also generate

interstitials in the bulk (Egerton et al., 2010), which by

recombining with vacancies will slow down the effective

vacancy emission rate (Dienes & Damask, 1958). But the

beam-generated interstitials can be expected to be far fewer

than the beam-generated vacancies at the void surface. This

can explain why this rough estimate is of the same order of

magnitude as the vacancy emission rate measured experi-

mentally at 373 K, where electron-beam-generated vacancies
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are expected to dominate thermal vacancies (3–13 vacancies

per second; see Fig. 6). Similarly, for Stage II our estimate for

the sputtering rate is �50 vacancies per second based on the

model above, which is also larger but of the same order of

magnitude as the measured rate of 29 vacancies per second.

The discrepancy between the calculated and the measured

vacancy emission rate from a void may also be partly attrib-

uted to the additional activation barrier associated with

vacancy migration away from a void, although it can be

expected to be very low under the electron beam. These

simple calculations show that electron beam sputtering can

explain the dramatic enhancement in vacancy diffusion

observed.

Unfortunately, there is no way of avoiding the effect of

irradiation when performing such in situ annealing studies of

voids in pure Al, as the knock-on sputtering damage threshold

for Al is �65 keV (Egerton et al., 2010), and the threshold for

the acceleration of kinetics via vacancy migration is �10 keV.

These values correspond to the lowest electron beam energy

required to sputter or displace an Al atom at a free surface or

next to a vacancy (Hobbs, 1987), assuming the displacement

energy required is �3 eV for an Al atom at a surface and

0.65 eV for an Al atom next to a vacancy. The latter value is

the activation energy for vacancy migration. Nevertheless, it is

important to note that, although the electron beam accelerates

the kinetics of void shrinkage, it does not modify its

mechanisms. As mentioned earlier, a void not exposed to an

electron beam follows a distinct two-stage shrinkage beha-

viour as well as monolayer-by-monolayer shrinkage. It also

adopts the same equilibrium shape as a void subjected to

electron irradiation. Finally, electron irradiation may be

mitigated by the use of lower current density beams and more

sensitive detectors.

Alloys affected by voids in technological applications will

contain many more chemical elements than just aluminium.

Solute elements can be expected to interact with the surfaces

of voids and hence affect void growth and shrinkage beha-

viour. The present study should thus constitute a useful

reference for studies of voids in more complex systems.

5. Conclusion

We performed in situ transmission electron microscopy

annealing of voids in pure aluminium and found that void

shrinkage is a two-stage process. Voids first shrink aniso-

tropically before reaching their equilibrium shape, then shrink

isotropically until full dissolution into the matrix. This process

maximizes the decrease in energy per vacancy emitted. The

void reduction in size is quantized, taking place one atomic

layer and one facet at a time. With an explicit consideration of

geometry, modelling of the energetics and kinetics of void

shrinkage reproduced the experimentally observed changes in

shape and size quite well, for void diameters down to 5 nm,

provided the effect of electron irradiation was taken into

account. Electron irradiation greatly accelerates the shrinkage

kinetics but does not affect energetically controlled

phenomena such as void shape.
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