Investigation of Type I Interferon and Immune Signalling in Breast and Ovarian Cancer

By Zoë Rebecca Church Marks
MBBS PhD Candidate

A thesis submitted for the degree of Doctor of Philosophy at
Monash University in 2018
Centre for Innate Immunity \& Infectious Diseases
Hudson Institute of Medical Research
Faculty of Medicine, Nursing \& Health Sciences

Copyright notice

Notice 1

© Zoë Rebecca Church Marks 2018.

Under the Copyright Act 1968, this thesis must be used only under conditions of scholarly fair dealing. In particular, results or conclusions should not be extracted from it, nor should it be copied or closely paraphrased in whole or in part without prior written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

Notice 2

© Zoë Rebecca Church Marks 2018.

I certify that I have made all reasonable efforts to secure copyright permissions for third-party content included in this thesis and have not knowingly added copyright content to my work without the owner's permission.

Table of Contents

Table of Contents I
Declaration VI
List of Abbreviations VII
Thesis Including Published Works Declaration XV
Acknowledgements XVIII
Thesis Preface XX
Abstract. XXI
Chapter 1: Literature Review 1
1.1 Introduction 2
1.2 Metastasis, Tumour Dissemination \& Immunity 7
1.2.1 Routes of Metastasis 8
1.3 Overview of the Key Immune Cell Populations in Metastasis 10
1.3.1 T Lymphocytes 13
1.3.2 B Lymphocytes. 14
1.3.3 Natural Killer Cells 14
1.3.4 Monocytes/Macrophages 15
1.3.5 Platelets 16
1.4 The Role of the Tumour Microenvironment in Regulating
Tumour \& Immune Compartments 16
1.4.1 Chemokines 16
1.4.2 Glucose \& Metabolic Factors 17
1.4.3 Growth Factors 18
1.4.4 Interferons (IFN) 18
1.5 Type I IFNs 22
1.5.1 Type I IFN Signalling \& Regulation 22
1.5.2 Type I IFN Functions 25
1.5.3 Cell Intrinsic Anti-Tumour Effects of the Type I IFNs 28
1.5.4 Type I IFNs as Anti-Cancer Therapy 28
1.5.5 Type I IFN Production. 29
1.5.5.1 Type I Production: Lymphoid 30
1.5.5.2 Type I Production: Epithelial 30
1.5.5.3 Type I Production: Acute Phase 31
1.6 Constitutive Type I IFN Signalling \& Host Defence 32
1.6.1 Constitutive or Physiological Type I IFN 32
1.7 Type I IFN Signatures in PBMC \& Epithelial Tissue. 35
1.7.1 IFN Blood Signatures \& Disease 35
1.7.1.1 Systemic Lupus Erythematous 35
1.7.1.2 Mycobacterium Tuberculosis 36
1.7.2 A Constitutive IFN Signature in Mammary Epithelium 36
1.7.2.1 Constitutive Interferon Regulatory Factor 7 (IRF7) Expression 37
1.7.2.2 Constitutive IFN ε Signalling in the Female Reproductive
Tract Epithelium 41
1.8 Type I IFNs \& Cancer- Perspective on Breast Cancer 43
1.8.1 Metastasis from Breast Cancer 43
1.8.2 Breast Cancer Development \& Classification 44
1.8.3 Gene Signatures in Breast Cancer 45
1.8.4 Primary Breast Tumour Cells 46
1.9 Type I IFNs \& Cancer- Perspective on Ovarian Cancer 49
1.9.1 Mouse Models of Ovarian Cancer 49
1.9.2 Molecular Profiling 50
1.9.3 Type I IFNs \& Ovarian Cancer 51
1.10 Loss of Constitutive Type I IFN Signalling 51
1.11 Rationale for the Research 52
1.12 Project Aims 54
Chapter 2: Materials \& Methods 55
2.1 Ethics Statements 56
2.1.1 Human Ethics 56
2.1.2 Animal Ethics 56
2.2 Human Cohorts \& Sample Processing 57
2.2.1 Kathleen Cunningham Foundation Consortium of Research into Familial Breast Cancer (kConFab) 57
2.2.2 Control Human Fallopian Tube Samples 58
2.2.3 Ovarian Cancer TMAs 58
2.2.4 In Silico Analysis of Datasets Obtained from the Australian Ovarian Cancer
Study (AOCS) \& the Ovarian Cancer Database of the Cancer Science Institute of
Singapore (CSIOVDB). 58
2.3 Tissue Culture 59
2.3.1 PBMC Isolation \& Storage 59
2.3.2 Cancer Cell Lines \& Cell Culture 59
2.3.3 Cellular Stimulations 60
2.3.4 Cellular Growth Assays. 60
2.3.5 Migration Assays 61
2.3.6 Apoptosis Assays. 61
2.3.7 mRNA Extraction \& Purification 62
2.3.8 cDNA Synthesis 62
2.3.9 GADPH Polymerase Chain Reaction 62
2.3.10 Quantitative Real Time PCR (qRT-PCR) 63
2.4 Microarray Procedure 64
2.4.1 Agilent One-Colour Spike 64
2.4.2 cDNA Synthesis 65
2.4.3 Labelling \& Transcription 65
2.4.4 cRNA Purification \& Quantification 65
2.4.5 Chip Hybridisation 65
2.4.6 Microarray Slide Wash \& Scan 66
2.5 Microarray Analysis 66
2.6 Tissue Staining 68
2.6.1 Immunohistochemistry 68
2.6.2 Multiple Immunohistochemistry 69
2.6.3 Multispectral Analysis 70
2.7 Flow Cytometry 70
2.7.1 Immunophenotyping 70
2.7.2 Cytometric Bead Array (CBA) 71
2.7.3 Annexin V/PI 71
2.8 In Vivo Models 72
2.8.1 Mice 72
2.8.2 Intrabursal (orthotopic) Ovarian Cancer Model 72
2.8.3 Intraperitoneal (disseminated) Ovarian Cancer Model 72
2.8.4 Intraperitoneal Recombinant IFN Administration. 73
2.9 Statistical Analysis 73
Chapter 3 -Analysis of Systemic and Localised Responses Reveal Novel IFN and Immune Signalling in Breast Cancer Metastasis 74
3.1 Declaration 75
3.2 Prepared Manuscript: Analysis of Systemic and Localised Responses
Reveal Novel IFN and Immune Signalling in Breast Cancer Metastasis 77
Chapter 4 - Role of a Unique Type I Interferon, Interferon Epsilon, in
Suppressing Epithelial Ovarian Cancer 140
4.1 Declaration 141
4.2 Submitted Manuscript: Role of a Unique Type I Interferon, Interferon Epsilon, in Suppressing Epithelial Ovarian Cancer 143
Chapter 5- Discussion 211
5.1 Discussion 212
5.2 Constitutive Type I IFN Signaling in Cancer Development \&
Progression. 214
5.3 Detection of Local, Systemic \& Secondary IFN/Immune Signatures
during Metastasis 215
5.4 Anti-Metastatic Effects of Type I IFNs 218
5.4.1 Endogenous Type I IFN 218
5.4.2 Exogenous Type I IFN 220
5.5 Concluding Remarks 222
References 223
Appendix I - Primer Sequences 267
Appendix II- Microarray Quality Report 269
Appendix III- Differential Probe/Gene List from Chapter 3 273
Appendix IV-Patent: Interferon Epsilon, as an Anti-Cancer Agent 337

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis. The material in chapter 4 has been submitted for publication and the material in chapter 3 has not yet been submitted.

Signature:

Print Name: Zoë Rebecca Church Marks

Date: 24/01/2018

List of Abbreviations

ACD	Acid Citrate Destrose
ANOVA	Analysis of Variance
AOCS	Australian Ovarian Cancer Study
AP1	Activating Protein 1
BCS	Body Condition Score
BRCA1	Breast Cancer 1
BRCA2	Breast Cancer 2
C/DTC	Peripherally Disseminated Tumour Cells
CBA	Cytometric Bead Array
CCL2	Chemokine Ligand 2
CCR10	Chemokine Receptor 10
CCL18	Chemokine Ligand 18
CCL22	Chemokine Ligand 22
CCL28	Chemokine Ligand 28
CCR4	Chemokine Receptor 4
CD4	Cluster of Differentiation 4
CD8	Cluster of Differentiation 8
CD11b	Cluster of Differentiation 11b
CD11c	Cluster of Differentiation 11c
CD16	Cluster of Differentiation 16
CD20	Cluster of Differentiation 20
CD25	Cluster of Differentiation 25
CD41	Cluster of Differentiation 41
CD45	Cluster of Differentiation 45

CD45RO	Cluster of Differentiation 45 Varient, Marker of Active T-cells
CD56	Cluster of differentiation 56
CD69	Cluster of Differentiation 69
cDNA	Complementary DNA
cGAS	Cyclic GMP-AMP Synthase
CI	Baseline Cell Index
CK18	Cytokeratin 18
CO_{2}	Carbon Dioxide
cRNA	Complementary RNA
CSF1	Colony-Stimulating Factor 1
CSIOVDB	Ovarian Cancer Database of the Cancer Science Institute of Singapore
CTC	Circulating Tumour Cell
CXCL8	C-X-C Chemokine 8
CXCL9	C-X-C Chemokine 9
CXCL10	C-X-C Chemokine 10
CXCL14	C-X-C Chemokine 14
CXCR3	Chemokine Receptor 3
DAB	3,3'-Diaminobenzidine
DAPI	4', 6-Diamidino-2-Phenylindole Dihydrochloride
DC	Dendritic Cells
DEPC H20	Diethyl Pyrocarbonate Water
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethyl Sulfoxide
DNA	Deoxyribonucleic Acid
DTC	Disseminated tumour cell

EBNA1	Epstein-Barr Virus Nuclear Antigen 1
EBV	Epstein-Barr Virus
EDTA	Ethylenediaminetetraacetic Acid
EGF	Epidermal Growth Factor
ELF3	E74-Like Factor-3
EMT	Epithelial to Mesenchymal Transition
EOC	Epithelial Origin
eQTL	Quantitative Trait Loci
ER	Oestrogen Receptor
ER+/PR-	Oestrogen Receptor Positive/Progesterone Receptor Negative
ETS	E26 Transformation-Specific
FCS	Fetal Calf Serum
FFPE	Formalin Fixed Paraffin Embedded
FoxP3	Forkhead Box P3
FRT	Female Reproductive Tract
FT	Fallopian Tube
GAPDH	Glyceraldehyde 3-Phosphate Dehydrogenase
$\mathrm{H}_{2} \mathrm{O}_{2}$	Hydrogen Peroxide
HDI	High Dose Interferon
HER2	Human Epidermal Growth Factor Receptor 2
HGSC	High Grade Serous Ovarian Carcinoma
IBC	Invasive Breast Cancer
IFN	Interferon
IFNAR1-/-	Interferon- α / β Recptor 1 Null
IFNAR1/2	Interferon- α / β Recptor 1/2

IFNB1	Interferon Beta 1
IFNGR1/2	Interferon Gamma Receptor 1/2
IFNLR1	Interferon Lambda Receptor 1
IFN α	Interferon Alpha
IFN β	Interferon Beta
IFN γ	Interferon Gamma
$\mathrm{IFN} \mathrm{\varepsilon}$	Interferon Epsilon
IFNк	Interferon Kappa
IFN入	Interferon Lambda
$\mathrm{IFN} \omega$	Interferon Omega
IgG	Immunoglobulin G
$\mathrm{IKK} \varepsilon$	Inhibitor of NF-кB Subunit Epsilon
IL-6	Interleukin 6
IL-10	Interleukin 10
IL-10RB	Interleukin 10 Receptor, Beta Subunit
IL-12	Interleukin 12
IL-17	Interleukin 17
IP	Introperitoneal
IRF	Interferon Regulatory Factors
IRF3	Interferon Regulatory Factor 3
IRF7	Interferon Regulatory Factor 7
IRF9	Interferon Regulatory Factor 9
IRG	Interferon Regulated Gene
ISGF3	IFN Stimulated Gene Factor 3
JAK 1	Janus Kinase 1

JAK-STAT	Janus Kinase - Signal Transducers and Activators of Transcription
kCONfab	Kathleen Cunningham Foundation Consortium for Reasearch
	into Familial Breast Cancer
LPS	Lipopolysaccharides
Ly6C	Lymphocyte Antigen 6 Complex
Ly6G	Lymphocyte Antigen 6 Complex, Locus G6D
M1	M1 Macrophage
M2	M2 Macrophage
MCP-1	Monocyte Chemoattractant Protein-1
MDSC	Myeloid-Derived Suppressor Cells
MEC	Mammary Epithelial Cells
MET	Mesenchymal-Epithelial Transition
MHC	Major Histocompatibility Complex
MHCII	Major Histocompatibility Complex II
MIAME	Minimum Information Essential for Microarray Experiments
M-MLV	Moloney Murine Leukemia Virus
MOSEC	Murine ID8 Ovarian Epithelial Cancer Cells
MRD	Minimal Residual Disease
mRNA	Messenger RNA
MWT	Heated Microwave Treatment
NF-кB	Nuclear Factor Kappa, Enhancer of B Cells
NK	Natural killer Cell
NKG2D	Natural-Killer Group 2, Member D
NKT	Natural killer T Cells
NLR	Nod-Like Receptors

OCP	Oral Contraceptive Pill
OCRF	Ovarian Cancer Research Foundation
PAMP	Pathogen-Associated Molecular Patterns
Pan-CK	Pan Cytokeratin
PBMC	Preipheral Blood Mononuclear Cells
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
PD1	Programmed Cell Death Protein 1
pDCs	Plasmacytoid Dendritic Cells
PDGF	Platelet-Derived Growth Factor
PD-L1	Programmed Death Receptor Ligand 1
PDX	Patient Derived Xenograft
PI	Propidium Iodide
PI3K	Phosphatidylinositol 3-Kinase
Poly(A:U)	Polyadenylic-polyuriddylic Acid
Poly(I:C)	Polyinosinic-polycytidylic Acid
PR	Progesterone Receptor
PRR	Pattern Recognition Receptor
PTH-rP	Peptide Parathyroid Hormone-Related Peptide
qRT-PCR	Quantitative Real Time Polymerase Chain Reaction
RAG2-/-	Recombination Activating Gene 2 Null
RAG2-/-X	Recombinant Activating Gene 2 Null Cross with Common Cytokine
Xgammac-/-	Receptor Gamma Null
RANKL	NF-кB Ligand
RB1	Retinoblastoma Protein

RIG-I	Retinoic Acid-Inducible Gene I
RIN	RNA Integrity Number
RLH	RIG-1 Like Helicases
RNA	Ribonucleic Acid
RPMI	Roswell Parks Memorial Institute Media
RT	Reverse Transcriptase
RTCA	Real Time Cell Analysis
SLE	Systemic Lupus Erythematosus
SMa	Smooth Muscle Actin
SPF	Specific Pathogen Free
ssGSEA	Single sample gene set enrichment analysis
STAT1	Signal Transducers and Activators of Transcription 1
STAT2	Signal Transducers and Activators of Transcription 2
STAT3	Signal Transducers and Activators of Transcription 3
STAT4	Signal Transducers and Activators of Transcription 4
STAT5	Signal Transducers and Activators of Transcription 5
TAM	Tumour Associated Macrophage
TAP1	Transporter 1, ATP binding cassette subfamily B
TB	Mycobacterium Tuberculosis
TBK	TANK-Binding Kinase
TBST	Tris Buffered Saline with 0.05\% Tween
TGF α	Transforming Growth Factor Alpha
TGF β	Transforming Growth Factor Beta
TH1	CD4+ Helper Cells
TIL	Tumour Infiltrating Lymphocytes
TLR	Toll-Like Receptor

TLR7 Toll-Like Receptor 7
TLR9 Toll-Like Receptor 9
TMA Tissue Microarray
TNBC Triple Negative Breast Cancer
TNF α Tumour Necrosis Factor Alpha
TNM Tumour Node Metastasis
TP53 Tumour Protein 53
Treg Regulatory T cells
TYK2 Tyrosine Kinase 2
VEGF Vascular Endothelial Growth Factor

Thesis Including Published Works Declaration

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

This thesis includes 1 original paper submitted and under review at Cancer Discovery, a peer-reviewed journal, and 1 publication prepared for submission. The core theme of the thesis is the investigation of Interferon signalling in cancer progression in breast and ovarian cancer. The ideas, development and writing up of all the papers in the thesis were the principal responsibility of myself, the student, working within the Hudson Institute of Medical Research under the supervision of Professor Paul J. Hertzog.

The inclusion of co-authors reflects the fact that the work came from active collaboration between researchers and acknowledges input into team-based research. In the case of Chapters 3 and 4 my contribution to the work involved the following: collecting background information, devising experiments, conducting in vitro and in vivo experiments, analysis and interpretation of the data, writing and editing of the associated papers and manuscripts. See each Chapter for individual disclosure statements.

Publications submitted to Cancer Discovery

Marks Z.C., Mangan N.E., Tate M.D., Matthews A.Y., Rosli S., Bilandzic M., Christie E.L., Stephens A.N., Bowtell D.D.L., de Weerd N.A., Bourke N.M. \& Hertzog P.J. "Role of a unique type I interferon, interferon epsilon, in suppressing epithelial ovarian cancer", Submitted Manuscript.

Thesis Chapter	Publication Title	Status (published, in press, accepted or returned for revision, submitted)	Nature and \% of student contribution	Co-author name(s) Nature and \% of Co- author's contribution*	Coauthor(s), Monash student Y/N*
4	Role of unique type I interferon, interferon epsilon, in suppressing epithelial ovarian cancer.	Submitted (under review)	70\% Conceptualisation, acquisition of data, methodology, data analysis and interpretation and writing, reviewing and editing the manuscript.	Niamh E. Mangan 3\% *CMAI Michelle D. Tate 2\% */A Anthony Y. Matthews 4% * Sarah Rosli 1\% */ Maree Bilandzic 1\% *PM Elizabeth L. Christie 1% *AD Andrew N. Stephens $1 \% \text { *PM }$ David D.L. Bowtell 1\% *MDAC Nicole A. de Weerd 1% *PR Nollaig M. Bourke 7\% *CMAIRE Paul J. Hertzog 8\% * CMAIRE	N

*Conceptualisation (C) Methodology (M) Formal Analysis (A) Investigation Aspects (I) Writing (W) Review (R) Editing (E) Provision of Critical resources (P) Data curation (D)

I have renumbered sections of submitted or published papers in order to generate a consistent presentation within the thesis.

Student signature:

Date: 24/01/2018

The undersigned hereby certify that the above declaration correctly reflects the nature and extent of the student's and co-authors' contributions to this work. In instances where I am not the responsible author I have consulted with the responsible author to agree on the respective contributions of the authors.

Main Supervisor signature:

Date: 24/01/18

Acknowledgements

This thesis would not have been possible without the overwhelming support of a great many people. The past four years has taught me a considerable number of lessons, one of which is that the most fulfilling work comes side-by-side with others.

This wisdom can be in large part attributed to my Supervisor, Prof. Paul Hertzog, who champions collaborative work by promoting people as well as science. I'd like to say my warmest thanks for every opportunity I've experienced as a result of his guidance, encouragement \& incredible enthusiasm for life. There've been too many occasions to count, even occasionally spanning continents. I am truly grateful for everything, beyond measure.

I must also thank Dr Nollaig Bourke for adopting me as her first PhD student, I could not have been in safer hands. I would love to think I absorbed even a portion of her resilience and drive in the past few years, but I'll settle for all her advice, guidance \& care.

I need to extend thanks to everyone at CIIID, present and past. I was incredibly lucky to stumble upon the centre as a BMedSci student, not realising what a unique place it was. But I soon learned. Thank you to all who made it an enjoyable place to work and live. From the Hertzog Lab I must thank Niamh, Michelle, Tony, Jamie \& Sarah for helping with the work that has gone into this thesis, but thanks to everyone in the group. Additionally, it's likely that this thesis would not have been quite so enjoyable without drinks on a Friday night so to everyone who made an appearance over the years and raised a bottle, Cheers!

The desire to complete a PhD is undoubtedly a reflection of my admiration for my dad. He is in many ways one of the most curious people I know and continues to research all manner of things. I also look up to my brother Josh, who is effortlessly himself and who inspires me to be the same. To Dean, perhaps my most unexpected discovery, thank you for getting me through, sekoğas.

Finally,

In loving dedication of Hazel Church.
From her loss, I sought meaning.

Thesis Preface

The work presented in this thesis contains published and submitted manuscripts based on results arising from this study. Chapter 1 contains a review of the literature relevant to the topic of the thesis. Chapter 2 contains a general materials and methods for experiments performed as part of this thesis. Chapter 3 is an experimental chapter in the form of a manuscript that contains a paper prepared for submission. Chapter 4 is an experimental chapter in the form of a manuscript that has been submitted to Cancer Discovery. Chapter 5 is a general discussion of all the results presented in this thesis with relevant conclusions.

Abstract

The type I interferons (IFN) are a family of innate immune cytokines known to play vital roles in host defence. The direct \& indirect anti-tumour effects of these cytokines have led to considerable investigation into their role in cancer pathogenesis and their use as potential anti-cancer therapeutics. Despite this, the clinical use and benefit of type I IFN therapy has so far been limited to a select number of cancers such as melanoma and haematological malignancies. Notably, the success of IFN treatment has varied widely among patients and cancer types including many solid tumours where IFN therapy has exhibited poor efficacy and is largely restricted by dose-limited toxicity. The greater potential of these cytokines as anti-cancer agents has yet to be realised and to this end, there is a clear need to further understand the complexities of type I IFN signalling in cancer development and progression.

New insights into the molecular pathways underlying cancer progression reveal further evidence of dysregulated type I IFN signalling. Specifically, the presence of constitutive IFN signalling in mammary epithelium as well as primary breast tumours has been shown to be suppressed in bone metastases. Here, suppression of constitutive IFN was characterised as a critical mechanism of immune evasion facilitating successful breast cancer metastasis, although the processes underlying this metastatic pathway remained unclear. Meanwhile, a distinct type I IFN, IFN ε, has been characterised as constitutively expressed in epithelial cells of the female reproductive tract (FRT), with previously unexplored anti-tumour properties, potentially critical in restricting FRT malignancies such as ovarian cancer. The significance of continuous IFN activity in the pathogenesis and additionally, the metastasis of these tumours remains to be characterised. The central aims of this thesis were to use these two models of cancer, breast and ovarian, to firstly: determine whether characterising IFN

signatures in peripheral blood could provide further insight into cancer metastasis or derive novel biomarkers for patient stratification; and secondly: to investigate the previously unknown anti-tumour potential of a distinctly constitutive type I IFN, IFN ε.

In breast cancer, this work investigated local, systemic and distant signatures to characterise the processes underlying metastasis and map a continuum of disease progression from normal tissue to metastases. Blood transcriptomics revealed a strong enrichment of platelet activity, T cell suppression and broad IFN involvement, which were further investigated by multiplexed staining of tumour tissue to correlate key immune-tumour cell interactions with metastatic potential. In ovarian cancer, this work demonstrated patterns of constitutive IFN ε expression never before characterized - in the tissue of origin of high grade serous ovarian carcinomas (HGSC). In addition, this study demonstrated the first evidence of the loss of constitutive IFN ε in human HGSC development and has also revealed IFN ε to be an effective anti-metastatic therapy in mouse models of orthotopic and disseminated ovarian cancer, through both intrinsic and extrinsic pathways of tumour suppression providing the basis for the use of IFN ε as an anti-cancer therapy.

Thus, this thesis contributes to the knowledge of constitutive type I IFN in tumorigenesis and tumour progression and demonstrates the potential use of endogenous IFN signalling and immune signatures for patient stratification in cancer progression as well as targeted anti-metastatic exogenous IFN therapy.

CHAPTER 1: LITERATURE REVIEW

'I have so much I want to tell you, and nowhere to begin.'*

1.1 Introduction

Cancer occurs when a cell loses the regulatory mechanisms that govern basic survival resulting in uninhibited growth, loss of biological function \& the ability to evade cell death. There are currently over 4 million cancer-related publications worldwide (Pubmed 2017) and 2,957 clinical cancer trials ongoing in Australia (1), making it one of the most widely researched areas of drug discovery \& development. The magnitude of investigation into this disease process is driven by the inescapable fact that when a rogue cell is able to grow unchallenged, multiply in situ \& spread to distant organs, it is likely to overwhelm the body \& kill its host.

The processes involved in carcinogenesis, initially described as intrinsic properties acquired by or common to almost all cancers (2), include the ability to sustain growth via autocrine feedforward loops through secreting growth factors such as platelet-derived growth factor (PDGF) \& transforming growth factor alpha (TGF α) (3). Additionally, intrinsic properties common to cancers include sustained angiogenesis, limitless proliferative potential, the ability to evade cell death \& anti-growth signals, and the potential to invade surrounding tissue \& metastasise to secondary sites (2). Recently, two additional hallmarks have been identified (Figure 1.1): the ability to reprogram cellular metabolism \& the evasion of immune detection \& destruction $(2,4)$. By acquiring these properties, tumour cells are able to bypass the regulatory signals that govern homeostasis. Considering that the progression of cancer cells in the body is dependent on avoiding the immune system to propagate and survive, the cancer cells mirror the spread of a pathogen, as it masks itself from host defences \& accordingly, these two diseases share a vital enemy - the host immune system.

[^0]

Figure 1.1: The Hallmarks of Cancer.
These hallmarks describe the key properties common to all cancer cells and required for tumour cell survival and progression in the body (image adapted from (4))

The immune system, and the vast array of cell types, signals and secreted factors that it comprises, is capable of a complex repertoire of responses to different pathogens and pathogenic stimuli. Both innate immunity, which until recently was regarded as a broad, firstline response including dendritic cells (DC), natural killer cells (NK) and natural killer T cells (NKT), and adaptive immunity, traditionally viewed as a more sophisticated and finely-tuned response involving T \& B lymphocytes, are vital components of host defence. It has long been established that both innate \& adaptive cells are present in the tumour microenvironment, are able to interact with tumour cells and influence disease outcome (5).

Our understanding of the role of the immune system in cancer is rapidly expanding and with it, an appreciation of its duality - on the one hand tumour-supressing, and on the other tumour promoting. In some instances, specific immune cells such as regulatory T cells (Treg) and myeloid derived suppressor cells (MDSC) have demonstrated to have regulatory functions that are vital in establishing an immunosuppressive microenvironment in solid tumours including ovarian cancer (6). This immunosuppressive microenvironment diminishes the antitumour activity of other immune cells, \& instead either directly or indirectly facilitates effector T cell exhaustion (7). In these cases, the presence of tumour infiltrating lymphocytes (TIL) does not necessarily correlate with a positive prognosis for the patient, rather the specific ratios of subsets of TILs may better predict outcome (8-10). In addition to regulatory immune cells, the immune system appears to shape a heterogeneous tumour into a more resistant phenotype. Through eliminating tumour cells that are easily detected by immune cells the immune system protects against early-stage, immune-naïve malignancy, however in doing so it facilitates the survival of less immunogenic cells, which are more likely to evade immune control \& metastasise (11). This process constitutes the basic principles of cancer immune-editing (1216).

Born out of the observation that tumours grow more readily in immunodeficient mice \& demonstrate higher immunogenicity (17) the theory of immune-editing is described in terms of three distinctly chronological stages shown in Figure 1.2. The first stage is elimination where innate \& adaptive immune cells detect and destroy microscopic tumour formation, followed by the second stage termed equilibrium, a subclinical period where tumour cells of low immunogenicity that have survived elimination remain dormant and are subject to constant immune-driven selective pressure (18). The final stage is escape, where less immunogenic tumour sub-clones or tumour cells that have evolved strategies for immunosuppression are able to metastasise (11). Despite their primary anti-tumour functions, cells of both innate \& adaptive immunity are able to play a vital role in shaping tumour progression. Methods for harnessing the immune system's primary ability to suppress tumour cells while more effectively targeting tumour-acquired immunosuppression constitute the principle aims of successful immunotherapy. These strategies involve boosting anti-tumour immunity by activating endogenous T cells, depleting immunosuppressive cells, targeting tumour antigens, modulating cytokines to boost anti-tumour response including type I interferon therapies and inducers, or inhibiting immune checkpoints (19).

This thesis explores the role of endogenous, constitutive host defence proteins, the type I interferons, in cancer progression and aims to further characterise the anti-tumour, immunotherapeutic potential of these cytokines.

Figure 1.2: The three stages of immunoediting and the various immune cells and cytokines that contribute.

The interaction between tumour cells and host immune cells designated into three distinct stages, elimination, in which immune cells detect and destroy some tumour cells; equilibrium, in which the surviving tumour cells remain dormant; and escape, in which tumour cells of low immunogenicity evade immune detection and invade secondary tissue. A number of host immune cells and cytokines are active in each stage (image adapted from (5)).

1.2 Metastasis, Tumour Dissemination \& Immunity

Successful cancer therapies, such as surgical resection or chemotherapies, have shown improvements in patient outcomes. Interestingly, these therapeutic strategies have seen the greatest clinical benefit in patients that have their cancer subtype localised in the primary organ. Indeed, such diseases as breast cancer and melanoma have survival outcomes of over 90% if localised in the primary site. Significantly, these prognoses drop drastically if there is presence of metastasis with survival rates plummeting to under 20% for these same cancer subtypes (20-22). This has led to the overwhelming cause of death in these patients to be mass organ failure that has occurred due to the metastatic burden. The impact of metastasis on survival necessitates a shift to focus on prevention of the spread from primary sites to distal organs. One such approach is indirect suppression of the primary tumour cell spread through therapeutically inducing immune activation to counter the immunosuppressive microenvironment created by the cancer cells limiting its potential to metastasise.

The onset of metastasis is quite complex, firstly cells from the primary tumour must undergo a series of migratory steps that involve cell autonomous processes. This often reflects an altered gene expression and distinct mutational burden of metastatic tumour cells compared to matched primary populations, as well as recruitment of both local and systemic host immune cell populations. This enables safe voyage of migrating tumour cells and prepares a supportive environment for distant metastases. The cell intrinsic processes required for tumour cells to migrate and disseminate involve phenotypic changes described as epithelial to mesenchymal transition (EMT) (23), whereby tumour cells undergo de-differentiation associated with a stem cell phenotype $(24,25)$, as well as a re-differentiation process termed mesenchymal-epithelial transition (MET) (26-28). These processes allow a very select proportion of tumour cells to leave the primary site, survive transit through blood, lymphatics or other compartments to
colonise distant sites and ultimately, lead to death. Understanding these processes and targeting this very small proportion of cancer cells remains one of the biggest challenges facing therapeutic innovation in cancer.

1.2.1 Routes of Metastasis

Cancer cells do not always spread via the same physiological processes. In fact, the Greek term 'metastasis' translates as 'rapid transition from one point to another' (Oxford University Press 2017), hints at the 'what', 'where' and 'when' of tumour spread, but omits 'how' cells are able to do this, and thus it is used to describe a number of distinct pathways by which migrating tumour cells travel from the primary site. A well-established characterisation of these pathways are hematogenous and/or lymphatic metastasis, where tumour cells migrate from the primary tumour via the blood stream or lymphatic drainage. This process requires a number of migratory steps shown in Figure 1.3 (29).

In short, a select population of tumour cells located at the leading edge of the tumour invade the lymphatic or vascular systems, evade immunosurveillance ${ }^{*}$ (30), survive transit to the site of metastasis, then adhere to endothelial cells of the vascular wall and undergo extravasation before colonising secondary tissue (31, 32). Hematogenous metastasis is a frequent and fatal pathway of spread for many malignancies including breast cancer where metastases often occur in bone and lung (33).

[^1]

Figure 1.3: Multistep process of metastasis from primary tumour to secondary organs. A) First primary tumour cells undergo proliferation. B) The primary tumour is highly vascular and develops a network of blood vessels through angiogenesis. C) Primary tumour cells may then detach from the tumour mass and invade into either the lymphatic or vascular systems depending on the primary tumour type. D) This enables transport to distant sites. E) Tumour cells adhere to the luminal surface of vessels then invade into secondary organs where they undergo proliferation and establish macrometastases (image adapted from (34)).

In malignancies that arise in tissues within the peritoneal cavity such as ovarian cancer, rather than travel via the blood or lymphatics, ovarian cancer cells more frequently undergo transcoelomic spread. Here, various processes including blockage of the lymphatic drainage \& increased vascular leakage leads to the accumulation of ascites fluid in the peritoneal cavity into which cancer cells on the growing edge of the primary tumour simply shed and are able to disseminate freely throughout the peritoneum. The peritoneal cavity provides an environment rich in immune cells, cytokines and secreted factors (35) and therefore, a unique microenvironment for tumour cells (36).

Importantly, circulating tumour cells remain vulnerable to host defence, indeed each migratory step undertaken by a cancer cell may be rate limiting if the host environment including local \& systemic immunity is able to inhibit further progression (34). This illustrates that the immune system and the factors that regulate it, are collectively one of the most critical defence systems against the fundamental cause of cancer fatality.

1.3 Overview of the Key Immune Cell Populations in Metastasis

Many immune cell types have been implicated in various stages of metastasis \& tumour dissemination. While it is well established that the adaptive immune system, specifically T cells, actively contribute to the process of immune-editing, more recent studies have investigated the role of the innate immunity in regulating tumour cell immunogenicity and metastasis (37). Using RAG2-/- $\mathrm{x} \gamma \mathrm{c}-/-$ mice deficient in cells of both adaptive and innate immune systems compared to RAG2-/- mice lacking only adaptive immune cells (17, 38), it was demonstrated that tumour incidence was highest when both immune systems were absent and that tumours derived from these mice had the highest rate of rejection when transplanted into an immunocompetent host (37). This suggests that the degree of tumour cell susceptibility
to immune suppression is affected by the immune status of the environment from which the tumour cells are derived.

Both immune systems must be present for successful tumour suppression (37). However, the mechanisms utilised by tumour cells to successfully evade or suppress different immune cells vary widely. This is largely a reflection of a complex and dynamic relationship involving an array of immune cell types, which directly or indirectly interact with tumour cells and may, depending on finely-tuned signalling and the surrounding environmental factors, suppress or promote tumour progression. Additionally, some tumours demonstrate immune naïve or 'cold' phenotypes while others have extensive immune infiltrate or 'hot' phenotypes, which demonstrates an immune privileged environment (shown in Figure 1.4). These data emphasise the importance of tailoring therapy to the individual tumour and its specific immune environment.

Figure 1.4: Distinct immune phenotypes of tumour microenvironment.
In an effort to develop and target effective immunotherapies as well as satisfy a growing need for precision medicine, extensive molecular characterisations of individual tumours have been performed. These reveal complex heterogeneity of immune phenotypes of tumours and their microenvironments, reflected by both detection of infiltrating immune populations as well as transcriptional signatures of tumour cells. This image shows the distinction between immunologically sparse or 'cold' tumours compared to tumours with a high proportion of infiltrating immune cells or 'hot' tumours. These phenotypes may be used to stratify treatment for patients. (Image adapted from (39)).

Below is a brief overview of some of the key immune cell populations involved in regulating tumour progression, however, knowledge of the full repertoire of immune responses to cancer continues to expand. For the purposes of this thesis, a select proportion of these cells are outlined:

1.3.1 T Lymphocytes

Several cancers have demonstrated susceptibility to the anti-tumour effects of the adaptive immune system where the presence of TILs in the primary tumour correlates with improved survival. Whether the same effector cells are able to successfully inhibit primary tumour cells, circulating cells, or peripherally disseminated tumour cells (C/DTCs) and if so how some CTCs are able to escape this, is less clear. Anti-tumour T cells include CD8+ cytotoxic and CD4+ helper $\left(\mathrm{T}_{\mathrm{H}} 1\right)$ cells that are well established components of the anti-tumour immune response, however immune-driven tumour suppression cannot be solely attributed to either cell type. CD4+ lymphocytes are often involved in priming responses either as a result of interaction with major histocompatibility complex II (MHC-II) expressed on tumour cells themselves or MHC-II on antigen presenting cells such as dendritic cells whereas Tregs have been found to play a key role in suppressing effector cells to contribute to an immune suppressive tumour microenvironment.

CD8+ lymphocytes demonstrate well-established anti-tumour effects including host rejection of transplantable tumours (40), suppression of highly antigenic tumour cells (17) and suppression of tumour growth during the equilibrium stage of immunoediting (18). They also have a vital impact on the efficacy of some anti-cancer therapeutics including radiotherapy (41) and cytokine therapy such as recombinant IFN $(42,43)$. The presence of CD8+ T cell infiltrate in metastases has been found to indicate patient prognosis in some cancers $(44,45)$. However, the survival benefit or disadvantage differs between cancer types and may be a reflection of
the specific tumour-associated phenotypes of CD8+ T cells in found in different tumour microenvironments including dysfunctional and senescent CD8+ T cells (46).

1.3.2 B Lymphocytes

Primary tumour B cell infiltrate has correlated with improved patient outcomes in a number of human cancers including melanoma, pharyngeal carcinoma and ovarian cancer (47-49). In metastases from human high grade serous ovarian carcinoma (HGSC), B cell infiltrate in metastatic stroma was associated with a strong memory phenotype and correlated with increased T cell-dependent anti-tumour responses (50). The anti-tumour effects of lymphocytes have generally been linked to their ability to prime DCs with immunoglobulin G (IgG) bound tumour antigen and in turn, promote DC-activation of cytotoxic cells (51). A subset of B cells has also been found to have regulatory or immunosuppressive effects on antitumour immunity and aid in tumour progression (52). Tumour cells themselves are able to promote switching of B cell phenotypes through production of transforming growth factor β (TGF- β) and drive B cell secretion of immunosuppressive factors such as interleukin 10 (IL-10) as well as promote B cell expression of immune checkpoints, cell surface proteins which inhibit immune activation and suppress anti-tumour immunity such as programmed death receptor ligand 1 (PD-L1) $(53,54)$.

1.3.3 Natural Killer Cells

Natural killer (NK) cells are part of the innate immune system and are known for their ability to protect against pathogens either by targeted cell lysis or cytokine production (55). These lymphocytes are classified according to their expression of cell surface markers such as cluster of differentiation 56 (CD56) and CD16 in humans, which correspond to its phenotype. In cancer, NK cells act as sensors and suppressors of tumour spread. NK cells detect tumour cells in a number of ways including deficiency in MHC I expression on the surface of tumour cells,
detection of stress ligands which activate NK cells via their naturally killer group 2D (NKG2D) receptor or detection of tumour antigens (56). Once activated, NKs are able to release cytolytic granules containing granzyme B and perforin, and initiate tumour apoptosis (57). Tumour cells must therefore maintain expression of MHC-I to evade NK-mediated lysis, however, they must also simultaneously avoid presentation of tumour-associated antigens in the context of MHCI, which would in turn drive the anti-tumour functions in effector T cells.

1.3.4 Monocytes/Macrophages

Macrophages are phagocytes that are part of the innate, nonspecific response to pathogens, however, they have the capacity to help activate adaptive immune cells. In cancer, macrophages have been broadly studied, which has led to the classification by anti-tumour or tumour-associated phenotypes. They are often simply characterised as type 1 (M1) or type 2 (M2) phenotypes, describing polar ends of a spectrum of functional phenotypes adopted by macrophages as a result of environmental factors including tumour-derived cytokines (58). M1 cells suppress tumours and pathogens, produce large amounts of pro-inflammatory cytokines such as IFN γ, interleukin 12 (IL-12) and tumour necrosis factor alpha (TNF- α), and highly express MHC molecules. M2 phenotypes secrete TGF- β and IL-10 to suppress immune responses, and promote angiogenesis through secretion of growth factors including vascular endothelial growth factor (VEGF) as well as interleukins such as IL-17. In other instances, M2 macrophages or pro-tumorigenic macrophages are indicated by the term tumour-associated macrophages (TAMs). Additionally, immature myeloid cells are often associated with protumorigenic/M2 properties. The term 'myeloid-derived suppressor cell' (MDSC) is used to describe these cells in terms of origin but also their immune-suppressive phenotype (59, 60). MDSCs are able to promote tumour growth and suppress anti-tumour immunity through several processes including expression of PD-L1 and recruiting of Tregs (61). The
classification and effect of these cells are at times overlapping and depend on tissue localisation as well as molecular \& functional phenotype.

1.3.5 Platelets

Platelets are small, non-nuclear blood cells that are predominantly involved in blood clotting in response to injury. However, these cells have been shown to secrete a vast range of factors that can promote tumour survival including pro-angiogenic growth factors such as VEGFs and platelet derived growth factor (PDGF) (reviewed in (62)). Increasing evidence demonstrates a key role played by platelets during tumour metastasis. In peripheral blood, platelets are able to interact directly with circulating tumour cells and protect them from immune suppression including elimination by NK cells, a phenomenon that has been identified in a number of cancers as well as a general increase in platelet activity in the blood of cancer patients (62-65). These activated platelets form cross-links that allow them to aggregate with tumour cells and thus, effectively shield tumour cells from immune suppression in circulation. In addition, platelets promote tumour intrinsic pro-metastatic processes such as EMT (66).

1.4 The Role of the Tumour Microenvironment in Regulating Tumour \& Immune Compartments

1.4.1 Chemokines

Chemokines are a large subfamily of cytokines known for their vital role in lymphoid development and immune trafficking. However, in the context of cancer, chemokines are able to recruit immune cells into \& function within the tumour microenvironment (reviewed in (39, 67)). In this environment, these small proteins may be secreted by tumour cells as well as immune and stromal cells. They in turn, regulate migration of immune cells including antitumour effector populations such as $\mathrm{CD} 8+\mathrm{T}$ cells, $\mathrm{T}_{\mathrm{H}} 1$ cells \& NK cells which all express the

C-X-C motif chemokine receptor 3 (CXCR3) receptor and migrate in response to chemokine (C-X-C motif) ligand 9 (CXCL9) \& CXCL10. Additionally, chemokines have been shown to recruit regulatory immune cells such as Tregs which express CC chemokine receptor 4 (CCR4) \& CCR10 and migrate in response to chemokine (CC motif) ligand 22 (CCL22) produced by macrophages \& tumour cells (6), and CCL28 in hypoxic conditions (68), respectively. Chemokines directly regulate tumour cell intrinsic function such as pro-proliferative (CCL2) and pro-invasiveness (CCL18), while others suppress tumours by inhibiting proliferation (CXCL14) and promoting immunogenicity (CXCL8). Thus, chemokines contribute to the complex signalling occurring in the tumour microenvironment and have the capacity to regulate tumour progression both directly, by targeting tumour cell intrinsic function, but also indirectly, by recruiting immune cells.

1.4.2 Glucose \& Metabolic Factors

The metabolic niche of the tumour microenvironment can have a considerable effect on the function of infiltrating immune cells. CD8+ T cells have been shown to require aerobic glycolysis, the process of converting glucose into lactate in the presence of oxygen, for optimal effector function including production of IFN γ and granzyme B (69). These cells must compete with the tumour for glucose, which is rapidly metabolised by tumour cells themselves undergoing aerobic glycolysis (70). The demand for glucose can therefore limit T cell function in the tumour microenvironment as tumour cells glucose-restrict surrounding immune cells leading to hypo-responsive T cells which fail to suppress even highly antigenic tumours (71). Further, tumour cell-derived lactate can impair effector T cell metabolism \& function by blocking their lactic acid export leading to a significant decrease in proliferation \& cytokine production as well as cytotoxic function (72).

1.4.3 Growth Factors

Soluble growth factors such as epidermal growth factor (EGF), VEGF and transforming growth factors (TGF $\alpha \& \beta$) are proteins, which under normal physiological conditions, such as embryogenesis \& wound repair, can be secreted by immune cells, the epithelium, the endothelium and/or stroma to signal via transmembrane receptors on neighbouring cells in a paracrine manner (3). In tumour cells however, normal paracrine growth factor signalling is often replaced by an intrinsic ability to both secrete and respond to self-produced growth factor - an autocrine mechanism of sustained growth or clonal expansion (73). Additionally, tumour cells may overexpress growth factor receptors to maintain a hyper-responsive phenotype, for example, in breast cancer cells overexpressing human epidermal growth factor receptor 2 (HER2) (74), has been associated with more aggressive, highly metastatic tumours (75).

1.4.4 Interferons (IFN)

Another family of secreted proteins capable of regulating both tumour cell intrinsic and immune cell function, are the IFNs. These cytokines were first characterised by their antiviral properties and are named for their ability to suppress viral replication via what is known as an 'interference' reaction (76). To date, three major types of IFNs have been identified, each of which signal via specific cognate cell surface receptors: type I (including 13 distinct IFN α 's, IFN β, IFN ε, IFN κ \& IFN ω), which signal via IFNAR1/2 and are the most widely active type of IFNs, capable of being produced by \& signal to most cells of the body. Type II (IFN γ), which signals via IFNGR $1 / 2$ and whose expression is somewhat more restricted to T cells and NK cell predominantly; \& type III (three subtypes of IFN λ), which, while expressed by a broad range of cell types, has limited effects due to sparse expression of their cognate receptors IFNLR1 \& IL-10R β (77).

All IFNs have the capacity to elicit an anti-tumour response either directly, by regulating tumour intrinsic function or indirectly, by regulating an anti-tumour immune response. In fact, the long-established anti-tumour properties of IFNs have led to their use in clinical trials of melanoma (78-87), renal cell carcinoma (88, 89), colorectal cancer (90, 91), pancreatic cancer (92), prostate cancer (93), breast cancer (94-96) (extensively reviewed in (97)) \& ovarian cancer (98-104). A selection of trials using type I IFNs are listed in Table 1.1. However, the success and routine administration of IFN therapy in cancer has been limited due to the cytotoxic side effects associated with high dose IFN (HDI) therapy which include flulike symptoms, nausea, anorexia and depression.

In an effort to maximise the efficacy of IFN therapy while avoiding toxicity, agonists of the IFN pathway have been trialled as a way of inducing an IFN response in vivo without administering exogenous protein. Trails using pattern recognition receptor (PRR) agonists polyadenylic-polyuridylic acid (poly(A:U)) and polyinosinic-polycytidylic acid (poly(I:C)) in solid tumours $(105,106)$ demonstrated efficacy against non-metastatic, operable tumours with only mild toxicity. The use of IFN pathway agonists may prove to be an improved form of IFN therapy, however further trials are needed to understand the full mechanism of action and characterise their potential benefits over recombinant IFN.

Table 1.1 An overview of clinical trials of type I IFNs in cancer

Recombinant IFN			
Cancer	Agent	Response	Ref
Melanoma	IFN α-2b	Prolonged relapse-free survival $(p=0.0023)$ and OS (0.0237) Dose modification due to toxicity in majority of patients	Kirkwood et al. 1996 (78)
	High dose IFN α-2b	RFS \& OS benefit $(\mathrm{p}=0.0015$ \& $\mathrm{p}=0.009)$	Kirkwood et al. 2001 (79)
	High dose IFN α-2b	11/20 patients had objective clinical response, 3/20 had complete pathological response Responders had increased endotumoural CD11c+ \& CD3+ cells and fewer CD83+ cells	Moschos et al. $2006 \text { (80) }$
	```IFN }\beta\mathrm{ ( }6\times1\mp@subsup{0}{}{5}\mathrm{ IU continuous IV daily)```	No significant effect on overall patient outcome and no side effects	Voelter-   Mahlknecht et al. $2006 \text { (81) }$
	PEGylated IFN $\alpha$ - 2 b (induction $6 \mathrm{ug} / \mathrm{kg}$ per week for 8 weeks, then maintenance $3 \mathrm{ug} / \mathrm{kg}$ )	RFS benefit with $\operatorname{IFN}(H R=0.82, p=0.01)$ Treatment discontinued due to toxicity in $31 \%$ of patients	Eggermont et al. 2008 (82)
	```IFN-\beta1a (12-18\times106 IU s.c. daily)```	No overall clinical benefit   Severe adverse effects in $13 / 21$ patients	Borden et al. 2011 (83)
	Low dose IFN β (3×10^{6} IU/day s.c. for 10 days)	RFS \& OS benefit in IFN compared to observation groups ($\mathrm{p}=0.024 \& \mathrm{p}=0.029$)	Aoyagi et al. 2012 (84)
	Intermittent high dose IFN α - 2b compared to standard HDI (20x10 ${ }^{6}$ IU 5xweekly IV)	No survival benefit for iHDI compared to standard HDI Safety \& quality of life improved in iHDI	Mohr et al. 2015 (85)
	High dose IFN $\alpha-2 \mathrm{~b}$ compared to complete lymph node dissection	No DFS or OS benefit in patients with or without tumour-positive sentinel lymph nodes at start of trial	McMasters et al. $2016 \text { (86) }$
	IFN $\alpha-2 \mathrm{~b}$ ($10 \times 10^{6} \mathrm{IU}$ initial 4week regime with $5-10 \times 10^{6} \mathrm{IU}$ 12 - 24 month follow up treatment)	RFS ($p=0.0008$), DMFS ($p=0.0003$) \& OS ($\mathrm{p}=0.0007$) for 25 month regime in patients with ulcerated primary tumours	Eggermont et al. 2016 (87)
$\begin{array}{ll} \text { Renal cell } \\ \text { carcinoma } \end{array}$	Naptumomab estafenatox (Nap) + IFN α (9 million units s. c. three times weekly compared to IFN monotherapy	Median overall survival of 17 months and no difference between treatment groups No severe toxicities. Stratifying patients showed survival benefit in a select subgroup	Hawkins et al. $2016 \text { (88) }$
Colorectal cancer		Combination induced significantly more IFN γ producing T cells (patients previously successfully treated for metastatic disease)	Zeestraten et al. 2013 (90)

	IFN $\quad\left(3 \times 10^{6} \quad \mathrm{IU}\right) \quad$ in combination with 21 urviving-2B80-88 plus IFA	4/8 patients had two-fold increase in CTL	Kameshima et al. 2011 (91)
Pancreatic cancer	IFNQ (3x10 IU$) \quad$ in combination with 21urviving-2B80-88 plus IFA	50% of patients had positive clinical responses and positive immunological effects seen in CD8+ T lymphocytes	Kameshima et al. $2013 \text { (92) }$
Prostate cancer	IFN α-2b/13-cis retinoic acid with paclitaxel or mitoxantrone, estramustine or vinorelbine (MEV)	IFN therapy had lower response rates and overall survival than MEV-treated patients IFN significantly decreased quality of life compared to MEV $(\mathrm{p}=0.01)$	DiPaola et al. 2010 (93)
Breast cancer	Partially purified HuIFN β 3-6 $x 10^{6} \mathrm{U}$ i.m. daily	Moderate toxicity reported and 16% pathological response	Borden et al. 1982 (94)
	Fibroblast IFN $\beta 6-60 \times 10^{6} \mathrm{U}$ for at least 6 weeks	No responses were seen and moderate to severe toxicity was frequent	$\begin{aligned} & \text { Bruntsch et al. } \\ & 1984(95) \end{aligned}$
	IFN $\alpha-2 a$ in combination with IL2 $7.5 \times 10^{6} \mathrm{U}$ 3xweekly s.c.	Moderate toxicity and low pathological response rates	Kimmick et al. $2004 \text { (96) }$
Ovarian Cancer	IP IFN-2 α alternated with cisplatin to treat minimal residual disease	7/14 patients demonstrated complete remission via laparotomy median follow up 22 months with minimal toxicity	Nardi et al. 1990 (98)
	Stage III minimal disease patients treated with weekly i.p. carboplatin and IFN $\alpha-2 b$ (30 million units) for 12 weeks	Mild toxicity commonly reported and 5 patients had severe dose-limiting reactions. 91% of patients with tumours $<5 \mathrm{~mm}$ had complete responses.	Frasci et al. 1994 (99)
	Determine the maximum tolerated dose of i.p. IFN $\alpha-2 \mathrm{~b}$ in combination with i.v. cisplatin plus cyclophosphamide	No patients completed the planned schedule. Toxicity was reported in all patients and doselimiting myelosuppression disrupted treatment cycles. The maximum tolerated dose was 20 million units a week apart	Moore et al. 1995 (100)
	IFN-2 $\alpha \quad\left(25 \times 10^{6} \quad \mathrm{U}\right)$ in combination with carboplatin i.p. for 3 x 28 day courses	Toxicity was more frequent and severe in IFN treated patients with no significant survival or progression-free benefit	Bruzzone et al. 1997 (101)
	IFN α in combination with continuous cyclosporine infucion and carboplatin	In recurrent ovarian cancer $3 / 84$ patients showed a partial response. 9 patients stable for >4 months. Toxicity reported as nausea, headache, myelosuppression. Combination not recommended further.	Morgan et al. 2007 (102)
	Pegintron (IFN α) in combination with gemcitabine and p53 synthetic long peptide vaccine	No patients experienced dose-limiting toxicity, though reports of nauseas, mild-moderate fatigue and flu-like symptoms. Combination therapy increased circulating CD4+ \& CD8 + T cells but not Tregs	$\begin{aligned} & \text { Dijkgraaf et al. } \\ & 2015(103) \end{aligned}$

Abbreviations: RFS = relapse-free survival, OS = overall survival, DMFS = distant metastasis free survival, IU = international units, $\mathrm{IV}=$ intravenous, $\mathrm{IP}=$ intra-peritoneal, s.c. $=$ subcutaneous, $\mathrm{HDI}=$ high dose $\mathrm{IFN}, \mathrm{iHDI}=$ intermittent HDI

The type I IFNs are known to be critical in immunosurveilance and specifically, immune elimination (reviewed in (107)). Evidence suggests that the potent anti-tumour effects of type I IFNs reflect their action on host immune cells predominantly, rather than tumour cells. Specifically, experiments performed by Dunn et al. using highly immunogenic sarcomas demonstrated that mice treated with specific antibodies against the type I IFN receptor developed progressive tumour growth while mice with intact receptor signalling were able to reject tumours (108). Additionally, tumours deficient in the type I IFN receptor were predominantly rejected when transplanted into naïve mice. In tumours that progressed, restoring type I IFN receptor signalling did not achieve tumour rejection.

Fine-tuning the clinical efficacy of exogenous IFN therapy lies in an improved understanding of their endogenous role and mechanisms of action. These include their tumour cell intrinsic and extrinsic effects. The central thesis \& experimental data contained within this body of work explores these unanswered questions, and will hereafter focus on the anti-tumour properties, endogenous protection and pre-clinical efficacy of members of the type I IFN family.

1.5 Type I IFNs

1.5.1 Type I IFN Signalling \& Regulation

All type I IFNs signal via the Janus kinase - signal transducers and activators of transcription (JAK-STAT) pathway (99), shown in Figure 1.5. Type I IFNs bind to interferon alpha receptor (IFNAR) chains, IFNAR1 and IFNAR2, which are pre-associated with the kinases tyrosine kinase 2 (TYK2) and JAK1, respectively (109). Once these two JAKs are activated, they phosphorylate residues on the receptors; allowing STAT2 to bind to the intracellular portion of the IFNAR2 chain and subsequently recruit STAT1 (110).

Figure 1.5: Type I IFN signalling via the JAK-STAT pathway
Type I IFNs bind to IFNAR receptor chains on the cell surface and activate the JAK-STAT signalling cascade. Once the receptor chains are phosphorylated by TYK2 and JAK1, STAT2 binds to the intracellular portions of IFNAR receptor chains and recruits STAT1 to form a heterodimer, which dissociates from the receptor chains. STAT1/STAT2 then bind IRF9 to form ISGF3, which translocates to the nucleus, binds to promoter sequences and induces IFN regulated gene expression (image adapted from (97)).

Both STATs bind together and undergo phosphorylation to become a heterodimer, which dissociates from IFNAR receptor chains and together with interferon regulatory factor 9 (IRF9), form the transcription factor known as IFN stimulated gene factor 3 (ISGF3) (111). Once ISGF3 has translocated to the nucleus, it induces gene expression (112). Importantly, type I IFNs do not exclusively signal via the STAT1/STAT2 pathway; indeed, many other IFN signalling pathways exist. These vary depending on tissue and pathophysiological state and may contribute to anti-tumour activity $(77,113,114)$ with pathways shown to involve STAT4 (115), STAT3 and STAT5 (116) as well as non-STAT molecules such as mitogen-activated protein kinase p38 and phosphatidylinositol 3-kinase (PI3K) (117), others remain to be characterised. Type I IFN signalling results in the regulation (induction and suppression) of expression of thousands of IFN regulated genes (IRGs), which encode the effector proteins of the IFN response mediating antiviral, cell growth regulation, survival and immune activation activities (118).

Microarrays and more recently RNA-Seq are powerful technologies that enables simultaneous genome-wide expression analysis on a single sample. Such analysis has enabled the extensive study of IFN-driven pathways and subsequently, resulted in the characterisation of IRGs. The INTERFEROME database is a compilation of microarray datasets performed on cells or organisms following stimulation with type I, II \& III IFNs and provides a complete list of IRGs with accompanying tools/features to characterise IRG regulation pathways (119). This computational tool has the capacity to reveal IFN signatures across different diseases including chronic viral infection, autoimmune disorders, bacterial infection and various types of cancer $(113,114)$. These analyses have shaped an understanding of the myriad of biological pathways regulated by type I IFNs leading to identification of IFN mechanism and may constitute effective biomarkers of disease states.

1.5.2 Type I IFN Functions

Since their discovery in 1957, IFNs have been shown to exhibit pleiotropic activity within cells (120). Of the many functions of type I IFNs it is their anti-tumour capabilities that have the potential to combat cancer. Type I IFNs are known to act in an anti-tumour capacity both directly, by acting upon tumour cells $(121,122)$; and indirectly, through immune cell activation (123) as well as affecting cells in the tumour microenvironment (115) (summarised in Figure 1.6).

Recently, many studies have investigated the indirect anti-malignant capacity of type I IFNs, indeed large emphasis now revolves around the immunomodulatory actions of type I IFNs and how they contribute to cancer immunosurveillance (124) (summarised in Table 1.2). As touched on earlier, of the immune response. Specifically, tumour cells from mice deficient in both IFNAR1 and IFNGR1 were not rejected when type I IFN sensitivity was restored, however restored sensitivity to type II IFN facilitated tumour rejection (108). Additionally, type I IFNs were shown to target host hematopoietic cells to enhance anti-tumour responses, emphasising the indirect action of type I IFNs in cancer suppression, as distinct from IFN γ, which directly targets both tumour and host cells $(108,125,126)$. A selection of these antitumour immunoregulatory effects are summarized in Table 1.2.

Figure 1.6: Intrinsic \& Extrinsic anti-tumour actions of type I IFN.
Type I IFN anti-tumour activities are facilitated through expression of IRGs, many of which encode specific effector proteins with anti-malignant function. For instance, IRGs such as p15 and Cyclin D have been shown to exhibit anti-proliferative activity through their regulation of cell cycle (108), while pro-apoptotic function include the IRGs Bak and Bax (127) and protein kinase $R(P K R)$ (128) (image adapted from (97)).

Table 1.2 The anti-tumour immunoregulatory effects of the type I IFNs.

Immune cell type	IFN action on cell	Reference
NK cells	Increase cytotoxicity \& effector function Promote proliferation	Biron et al Annu. Rev Immunol 1999 (129) Biron et al. J Leukoc Biol 1984 (130)
Dendritic cells	Increase activation \& cross presentation	Schiavoni et al. Front Immunol 2013 (131)
Effector T lymphocytes	Increase activation Promote effector function Increase proliferation	Marrack et al. J Exp Med 1999 (132) Curtsinger \& Mescher Curr Opin Immunol 2010 (133), Fuertes et al. J Exp Med 2011 (134) Zhang et al. Immunity 1998 (135)
B lymphocyte	Increase activation and lower threshold for induction Increase antibody response Promote antibody class switching	Braun et al. Int Immunol 2002 (136) Le Bon et al. J Immunol 2006 (137) Swanson J Exp Med 2010 (138)
T regulatory cells	Decrease activity immunosuppressive	Pace et al. J Immunol 2010 (139)

1.5.3 Cell Intrinsic Anti-Tumour Effects of the Type I IFNs

The type I IFNs are also capable of regulating several cell intrinsic processes that are vital for tumour survival and progression including proliferation, apoptosis, expression of tumour antigens, migration and invasion (reviewed in (97)). Early in vitro studies demonstrated that the direct anti-proliferative effects of type I IFNs on tumour cell lines, specifically breast cancer cell lines treated with lymphoblastoid IFN, prolonged all cell cycle phases (140). IFN α has been shown to upregulate p21, an inhibitor of cyclin dependent kinases, on prostate cancer cell lines and inhibit cell cycle (141).

The type I IFNs are also able to regulate both pathways of apoptotic cell death including the death receptor mediated pathway involving caspase 8 activation and the mitochondrial pathway involving the release of cytochrome c which activates cytoplasmic caspases (142144). Additionally, type I IFNs are able to promote tumour antigen presentation on the surface of tumour cells (145) and upregulate proteins associated with antigen presentation such as transporter 1, ATP binding cassette subfamily B member (TAP1) (146). Finally, type I IFNs have been shown to modulate the expression of immune checkpoints on tumour cells including PD-L1 (147). Thus, type I IFNs directly regulate tumour cell function and immunogenicity

1.5.4 Type I IFNs as Anti-Cancer Therapy

One of the earliest human trials of recombinant IFN α in cancer was against Kaposi's sarcoma (123). Additional trials have since used IFN α alone and as adjuvant therapy against malignancies such as chronic myeloid leukaemia (148), renal cell carcinoma $(149,150)$ and melanoma (151-155), among others (156, 157). Treatment with IFN α alone demonstrated some anti-tumour capacity when treating a portion of these malignancies, however its efficacy varies between cancer types and is limited by the significant adverse effects that accompany
long-term IFN therapy such as fever, headache, myalgia, nausea and fatigue and signs of autoimmunity $(158,159)$.

Early trials of type I IFNs in breast cancer used treatment with IFN α as adjuvant therapy in human patients $(160,161)$. These trials demonstrated some positive results, Gutterman et al.'s study resulted in 6 of 17 breast cancer patients exhibiting partial remission ($>50 \%$ tumour size reduction) when treated with intramuscular $\operatorname{IFN} \alpha(94,162)$ and Borden et al. had similar results with 5 of 23 patients demonstrating partial responses to intra muscular IFN α (162). Despite these initial results, however subsequent in vivo studies trialling type I IFNs alone or as adjuvant therapy have been largely unsuccessful (94).

Crucially it must be acknowledged that in many studies there was a limited capacity for therapeutic response as only primary tumour response was examined and patients were treated at an advanced stage disease. For example, Kimmick et al.'s study used adjuvant subcutaneous IFN α treatment against 40 human metastatic breast tumours in vivo $(96,163,164)$. No complete responses were observed and only one patient exhibited a partial response (3\%, C. I. $0-16)(96)$. However, given that this patient cohort comprised women post-chemotherapy for inoperable metastatic breast cancer, it was unlikely that any clinical benefit would be observed. As previously mentioned, another obstacle to measuring IFN efficacy is their severe doselimiting cytotoxic effects.

1.5.5 Type I IFN Production

Type I IFNs production can occur in most cell types of the body under the control of a diverse range of stimuli. The cells and localisation of type I IFN production are important determinants of the physiological role of IFN and in the context of cancer, the ability of type I IFNs to regulate intrinsic or extrinsic tumour suppression.

1.5.5.1 Type I IFN Production: Lymphoid

Plasmacytoid dendritic cells (pDCs) are major producers of type I IFNs, in particular in response to viral RNA \& DNA that stimulate toll-like receptor 7 (TLR7) and TLR9, respectively (165-167). However, pDCs may also produce type I IFNs in response to hostderived signals, for instance, during wound healing and in response to injury (168). Indeed, almost all cell types can produce type I IFNs in response to pattern recognition receptor (PRR) activation, these include TLRs, which detect bacterial lipopolysaccharides (TLR1, 2, 4, 5, 6) or nucleic acids (TLR3, 7, 8, 9); RIG-I like helicases (RLHs) in response to viral nucleic acids; cyclic GMP-AMP synthase (cGAS); Nod-like receptors (NLRs); and C-type lectins. Regarding pathogen-driven type I IFN production, macrophages, NK cells, DCs, lymphocytes and fibroblasts are capable of producing type I IFNs, predominantly an acute phase response.

1.5.5.2 Type I IFN Production: Epithelial

Epithelial cells provide a physical barrier against pathogenic entry and colonisation of the host. Mucosal epithelial cells including those that line the luminal surfaces of the respiratory, gastrointestinal and female reproductive tracts have been shown to produce type I IFNs as part of the local first line of defence against invading pathogens. Epithelial type IFN production is likely regulated by ETS factor binding sites in the IFN ε promoter such as ELF3 (E74-like factor-3) important for terminal differentiation of intestinal epithelium (169). These transcriptional regulators may account for unconventional cell type specific patterns of expression, for instance, constitutive expression of IFN β in bronchial epithelial cells has been reported as critical for late anti-viral responses and viral clearance (170). Moreover, IFN β may be produced by the gastrointestinal epithelium to protect against bacterial infection and the more recently characterised type I IFN, IFN ε, is produced by the epithelial lining of the female
reproductive tract and has been shown to protect against viral and bacterial sexually transmitted infections (171).

1.5.5.3 Type I IFN Production: Acute Phase

Type I IFN production can be triggered by a variety of 'danger' signals. The best characterised inducers of IFN are conserved components of pathogens referred to as pathogen-associated molecular patterns (PAMPs), particularly PAMPs of viral or bacterial origin (96). These stimuli are detected by PRRs and activate signal transduction pathways leading to activation of transcription factors, such as nuclear factor kappa, enhancer of B cells (NFкB) and interferon regulatory factors (IRFs), which induce pro-inflammatory cytokines and IFNs, respectively (122). The stimuli for IFN production during tumourigenesis remains unknown, but could involve a number of pathways. Other 'danger' signals that induce IFN include DNA from dying cells and immune complexes in autoimmune diseases (122).

Acute phase IFN production in response to pathogen involves a rapid, usually transient, expression of IFN genes (122). These genes are regulated transcriptionally upon activation by signalling molecules such as IRFs \& NF-kB that bind to specific IFN gene promoter sequences (172). To date, nine interferon regulatory factors (IRFs) have been recognised: IRF1, IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8 and IRF9 (173). IRFs were originally characterised in IFN induction, however, it is now known that IRFs are critical within host immunity with IRF5 and IRF9 shown to facilitate T helper 1 development (174) and STAT signalling, respectively (175). IRFs \& NF-kB are considered major transcriptional regulators of type I IFN expression in response to pathogens, however it is important to consider that not all type I IFN promoters comprise different binding sites that potentially provide further insight into alternate patterns of expression of these IFNs.

1.6 Constitutive Type I IFN Signalling \& Host Defence

Type I IFN signalling is rarely detected at high constitutive levels in human tissues in the absence of a pathogenic stimulus. However, constitutive type I IFN signalling and activity has been found to be critical in the body where it has been implicated as a vital tissue resident component preventing pathogenic invasion via priming immune responses or suppressing metastatic spread of cancer cells. In 1981, Bocci described an 'acute' and 'physiological' IFN response (176) and suggested not only that locally, physiologically produced IFN may be critical for homeostasis, but that the age-associated progressive decline of constitutive IFN may favour the development of diseases such as cancer. At the time, the hypothesis of constitutive IFN production was difficult to prove due to an inability to detect evidence of peripheral IFN activity and a lack of understanding of what constituted a non-pathogenic inducer of IFN.

1.6.1 Constitutive or Physiological Type I IFN

In fact, while type I IFN productions is often classified as a transient process in response to pathogenic or cell death signalling, type I IFN signalling has been described as a physiological process that involves constitutive cytokine production which aids in maintaining homeostasis. In addition to typical IRF binding sites, the IFNB1 gene promoter contains NF-kB \& activating protein 1 (AP1) binding sites (97). Physiological expression of IFN β can be found in myeloid cells upon stimulation with colony-stimulating factor 1 (CSF1) (177) and in osteoclasts in response to receptor activator of NF-kB ligand (RANKL) via the AP1 pathway (178).

Constitutive IFN β has also been detected in mononuclear phagocytes in the colon, where it has been shown to be important for producing anti-inflammatory signals, promoting Treg function and maintaining gut homeostasis (179). Additionally, high constitutive IFN β has been detected in murine thymus and been implicated to regulate T cell development (180).

Furthermore, in the female reproductive tract, constitutive IFN ε (whose promoter contains ELF3 and hormone receptor binding sites) is under hormonal regulation and expression of IFN ε in the epithelial tissue, which fluctuates across the menstrual cycle positively correlating with peaks in oestrogen and negatively correlating with progesterone (171). This initial evidence provides insight into the role of constitutive IFN in maintaining homeostasis and protecting against infections, however, the physiological role of IFN production in preventing tumourigenesis remains poorly understood and is a considerable focus of investigation for this thesis.

To study the role of constitutive IFN in host defence particularly tumour suppression, it is critical to consider discrete components of the IFN production \& signalling cascade (Figure 1.7). Firstly, understanding how IFN production is induced in the absence of pathogenic stimuli and whether this involves classical PRR signalling or alternative pathways (such as CSF1 and RANKL Figure 1.7, Box 1). Secondly, it is unknown how physiological or constitutive IFN production is regulated transcriptionally (Figure 1.7, Box 2) or when constitutive IFN production is detectable and in which cells. Furthermore, the mechanism of action on these cells or peripheral cell populations remains poorly understood (Figure 1.7, Box 3). Finally, there is scope to investigate a constitutive IFN signature and identify IRGs regulated by physiological IFN signalling and the differences compared to the acute phase response genes (Figure 1.7, Box 4).
'It is suggested that the physiological interferon response, although previously overlooked, has great biological importance because production of interferon at strategic sites can maintain active defence systems essential for survival.'

- Bocci V. Biol Rev 1981

Figure 1.7: The discrete components of constitutive IFN signalling.

1) Inducers and their receptors which are involved in detecting signals which drive constitutive IFN signalling are likely to be cell type specific and remain poorly defined. 2) The transcriptional signals driving constant IFN expression such as IRF7 which in turn is an IRG and is involved in a positive feedforward loop with type I IFNs. 3) Detection of constitutive type I IFN, specific subtypes and their distinct expression and modes of action have yet to be fully characterised across tissues of the body. 4) Downstream products of constitutive IFN signalling, for example, expression of specific IRGs constituting a constitutive IFN signature. Image adapted from (181).

1.7 Type I IFN Signatures in PBMC \& Epithelial Tissue

Human peripheral blood comprises a mixed population of cells. Peripheral blood mononuclear cells (PBMCs) include monocytes/macrophages, B \& T lymphocytes and NK cells. Gene expression in peripheral blood has been shown to indicate disease progression in a number of infections (174), autoimmune diseases (182) and cancers (183). Primary tumour IFN signatures have been investigated in a number of cancer types including renal cell carcinoma, melanoma and hepatocellular carcinoma as well as haematological malignancies, however there is a distinct lack of literature on IFN signatures in peripheral blood cells for solid tumours. One study investigated IFN-regulated gene expression in PBMCs of melanoma patients (184) and some of the IRGs found to be expressed in PBMCs of melanoma patients included STAT1, STAT2, IFIT1, IFIT2 and OAS3. However, this study focused on dose response and used these genes merely as an indication of IFN response rather than characterising an IFN signature in human PBMCs. In the absence of appropriate cancer studies, IFN signatures in peripheral blood cells of non-cancer disease states, including autoimmunity and infection, provide an insight into the genes controlled by IFN in circulating blood cells, disease progression and can be studied with respect to their possible importance in cancer.

1.7.1 IFN Blood Signatures in Disease

1.7.1.1 Systemic Lupus Erythematous

Variations in IFN signatures that occur from patients with the same disease state have been correlated to disease severity. Baechler et al. performed gene expression analysis on the PBMCs of 48 patients diagnosed with systemic lupus erythematosus (SLE) compared to non-disease control samples. Of the 161 genes up regulated in SLE, 23 genes associated with

IFN were overexpressed and were subsequently used as an IFN gene expression 'signature' (184). Interestingly, expression intensity of this signature seemed to correlate with the severity of disease, patients demonstrating higher levels of IFN stimulated gene expression were more likely to have more clinical disease manifestations or multiple organ involvement ($\mathrm{p}<0.0002$) (183). Bennett et al. also identified an IFN signature in PBMCs taken from paediatric patients with SLE (183). These SLE studies demonstrate that in a disease where production of IFN is considered to contribute to the pathological process, a resulting IRG signature is detectable in PBMCs. Critically, this work has led to a clinical program of blocking type I IFN signalling in patients who are stratified by signature.

1.7.1.2 Mycobacterium Tuberculosis

Berry et al. demonstrated a similar application of systemic IFN signatures in Mycobacterium tuberculosis (TB), though rather than simply comparing diseased blood signatures to healthy samples they used two disease states; active and latent TB, as well as healthy controls (185). Of the 393 genes they identified as up regulated in active TB, a third were shown to be IRGs in the INTERFEROME database (182), suggesting the importance of IFN in this disease process and further, identifying variations in IFN signatures as an indication of severity of disease.

These examples demonstrate the successful use of IFN signatures in peripheral blood of diseased patients to indicate disease progression and severity. This boosts the feasibility of finding a signature of constitutive IFN signalling in cancer metastasis, which may guide precision therapy to suppress tumour progression.

1.7.2 A Constitutive IFN Signature in Mammary Epithelium

1.7.2.1 Constitutive Interferon Regulatory Factor 7 (IRF7) Expression

A major advancement in the understanding of breast cancer metastasis was a study by our lab in collaboration with the Parker lab at Peter MacCallum Institute in 2012 by demonstrating the importance of the IRF7 pathway in suppressing breast cancer metastasis to bone through a combination of gene expression and ontological analysis $(42,120)$. Using mice that develop primary breast tumours and distant metastases when inoculated orthotopically (into the mammary tissue from which the tumour originated) with the breast cancer cell-line 4T1.2, Bidwell et al. analysed gene expression in tumour cells purified from bone metastases compared to primary breast tumour cells. A list of genes down regulated in bone metastases were analysed using the INTERFEROME database, an online database pooling IRGs from publically available microarray datasets (42).

Of the 2,500 genes down regulated in bone metastases, 540 were identified as IRGs and a further 208 had predicted IRF7-binding sites in their proximal promoter sequences (113, 114). Additionally, Bidwell et al. analysed human datasets of primary breast tumours and known first sites of distant metastases, and found a linear correlation between expression of the 208 putative IRF7 target genes and bone metastasis-free survival, demonstrating a preliminary translation of the findings into human data. Bidwell et al. then went on to perform immunohistochemical staining using IRF7 antibodies on sections from both primary breast tumours and matched bone metastases.

Expression of IRF7 was found to be present in primary breast tumour cells but absent in bone metastases (42). IRF7 is a transcription factor known to be a major regulator of IFN production in both systemic innate and local adaptive immune responses (42). The IRF7 gene was first investigated in the context of Epstein-Barr virus latency, due to the role played by IRF7 protein in transcriptionally regulating EBV nuclear antigen 1 (EBNA1) expression $(186,187)$. IRF7 shares the highest sequence homology with IRF3 and as such their pathways
and effector protein functions overlap to an extent (188). IRF7 is induced when exposed to a number of stimuli including viral infection, IFNs and lipopolysaccharides (LPS) (189). As an inducible factor IRF7 is rarely constitutively expressed in most cells, the exception being pDCs (190) that express high levels of IFNs very rapidly (191), and mammary epithelium, which Bidwell et al. demonstrated in human tissue through immunohistochemical staining, however, the mechanism of constitutive expression in this tissue remains unknown (42).

IRF7 can be regulated in two ways; either induced by type I IFN or activated via phosphorylation in response to viral and bacterial infection (165). It is important to acknowledge that IRF7 and type I IFN contribute to a positive feedback loop (shown in Figure 1.8) and as such these two pathways for IRF7 regulation are not mutually exclusive. When exposed to a virus, various transcription factors, including IRF7, are activated via PRR activated cascades (192). These cascades involve activation of the kinases IKK ξ and TBK, which phosphorylate IRF7 (192). Activated IRF7 then dimerises, translocates to the nucleus and binds to various promoters to induce the expression of type I IFNs (193). Production of IRF7 is subsequently induced via IFNAR receptor binding and activation of the STAT signalling pathway. This loop will remain active until the stimulus is cleared from the cell (192).

IRF7 emerged as a key regulator of type I IFN production in both the innate and adaptive immune systems largely through IRF7 knockout mice (IRF7-/) experiments (194). When examining both cytosolic viral detection and TLR pathways, IRF7-/ mice have been shown to be consistently more susceptible to viral infection correlating with a decrease in IFN α / β production (187). Sato et al. demonstrated that IFN expression in response to viral stimulus was completely absent in mice lacking both IRF7 and IRF3 (187). Restoration of normal IFN responsiveness was only observed when both factors were reintroduced, reflecting the critical role both IRF7 and IRF3 play in regulating type I IFN (186).

Figure 1.8: Positive Regulatory loop involving IRF7 \& type I IFN.
Type I IFN and IRF7 are engaged in a positive regulatory loop, which is initiated when a PRR detects pathogenic stimuli and subsequently stimulates a signalling pathway. Intracellular kinases are activated and in turn phosphorylate IRF7, which then dimerises and translocates to the nucleus to bind to various promoter sequences and induce type I IFN expression. Type I IFN is then secreted out of the cell and binds to cell surface receptors IFNAR1/IFNAR2, which initiate the JAK-STAT pathway. Activation of the JAK-STAT pathway results in induction of IRF7 expression. If IRF7 is phosphorylated it will lead to further IFN production. This regulatory loop will continue until the pathogen stimuli is removed (image adapted from (192)).

Other studies using $I R F 7^{-/-}$mice have further investigated IRF7 signalling in vivo, for instance, Honda et al. showed that without IRF7, induction of IFN β was diminished compared to wild type, and IFN α was completely inhibited (186). Subsequently, IRF7 was shown to play a significant role in type I IFN induction in a number of cells via different mechanisms (187, 189). Induction of IFN α via cytosolic PRRs has been shown to rely on both IRF7 and IRF3 while type I IFN induction in pDCs utilises toll-like receptors (TLR7 and TLR9) that rely exclusively on $\operatorname{IRF} 7(189,195)$. In comparison to other types of dendritic cells, pDCs constitutively expresses large amounts of IRF7 (187), which likely accounts for the distinctly large amounts of type I IFNs produced by these cells (191). IRF7 has been shown to induce a broader range of type I IFNs than IRF3. One study demonstrated that IFN β and two IFN α subtypes (IFN $\alpha 1$ and IFN $\alpha 2$) were inducible through either IRF7 or IRF3 expression, while a further three IFN α subtypes (IFN $\alpha / 7 / 7 / 14$) were exclusively induced by IRF7 (196).

Given the known indirect anti-tumour function of type I IFNs through immune cell stimulation (190), it was hypothesized that the absence of IRF7 in bone metastases may correspond with decreased type I IFN activation of host immune cells. Restoring IRF7 should therefore increase type I IFN levels and subsequent immune cell mediated suppression of bone metastasis. Bidwell et al. demonstrated that restoring IRF7 either through overexpression of IRF7, or treating with recombinant type I IFN did not have any effect on primary tumour growth, however, it did result in reduced spinal metastases. Indeed 60% of non-IRF7 overexpressing mice had spinal metastases while no spinal metastases were detected in IRF7overexpressing mice. Restoring IRF7 by treating mice with IFN α for 5 weeks prolonged survival compared to those treated with saline (42). Importantly, restoring IRF7 was only able to suppress bone metastases in mice with an intact IFN signalling pathway, Bidwell et al. showed that Irf7over-expression in Ifnar1-/- mice did not suppress bone metastasis (115). This highlights that type I IFN-induced signalling in 'host' cells is essential for suppressing bone
metastasis and agrees with evidence that type I IFN anti-tumour effects are predominantly enacted via effects on host cells rather than tumour (108).

Bidwell et al. examined the relationship between type I IFNs and immune cells in eliciting this anti-tumour response by showing that mice treated with IFN α for 6 weeks had much lower levels of immune-suppressing cells (myeloid-derived suppressor cells) in their bone marrow and peripheral blood compared to mice treated with saline. Additionally, mice over-expressing Irf7 had increased populations of CD4+ and CD8+ T lymphocytes and NK cells in their peripheral blood compared to non-overexpressing mice, suggesting that Irf7driven IFN stimulates immune cell proliferation in the blood stream. Additionally, they showed that mice over-expressing Irf7 yet deplete of immune cells (CD8+ T and NK cells) did not have significantly reduced metastasis-free survival compared to non-immunocompromised mice.

Together these findings support the hypothesis that IRF7 inducing type I IFNs in primary breast tumour cells leads to the secretion of IFN into the blood, resulting in activation of host immune cells, which then suppress metastatic cells, though much remains unclear about this pathway. For example, at what point in the metastatic pathway to bone is IRF7 lost. Despite these unknowns, Bidwell et al. have demonstrated the importance of constitutive Irf7 in facilitating immune-driven suppression of bone metastases.
1.7.2.2 Constitutive IFNE Signalling in the Female Reproductive Tract Epithelium

A recent study by our lab provided the latest characterisation of a novel member of the type I IFNs, IFN ε (9). Previously, the IFN ε gene had been located on chromosome 9p in the type I IFN locus (12). It shares roughly 30% sequence homology with IFN α and IFN β, and in vitro studies demonstrated IFN ε signals through the characteristic type I IFN receptors IFNAR1 and IFNAR2 (68), however its potential anti-tumour properties have not been addressed.

Interestingly, unlike other type I IFNs, which remain at undetectable levels or lowly constitutively expressed in cells until pathogen-induced, IFN ε has been found to be highly constitutively expressed primarily in organs of the female reproductive tract (FRT) such as uterus, cervix vagina and ovary $(9,12)$. IFN ε expression is localised to luminal and glandular epithelial cells of the FRT and is unaltered in the absence of haemopoietic cells, which traditionally express other type I IFNs.

Regulation of IFN ε is distinct from other type I IFNs. Unlike Ifn α and $\operatorname{Ifn} \beta$, Ifn ε expression is largely unaltered in response to pathogenic stimuli $(9,12,69,70)$ Instead, Ifn ε expression significantly varies across stages of the murine estrous cycle, with expression levels 3-fold higher during estrus than diestrus, an expression pattern that is reflected in human tissue during the menstrual cycle (9). This indicates that unlike other type I IFNs, Ifn ε is hormonally regulated, which provides novel insight in respect to ovarian cancer, a disease where for previously unknown reasons hormonal based contraception was shown to decrease the lifetime risk of developing disease (71). Furthermore, post-menopausal women are the highest at-risk group for developing ovarian cancer, correlating with almost undetectable expression of the potentially anti-tumour IFN ε (9).

The generation of Ifne-/- mice allowed for investigation into the role of Ifne in the physiology and pathology of the FRT. Primary uterine epithelial cells from knockout mice proliferate in vitro at significantly higher levels compared to WT (Hertzog lab, unpublished), consistent with the intrinsic, anti-proliferative functions of this new type I IFN. These data, in conjunction with the unique expression profile of Ifn ε in the FRT and its ability to signal via IFNARs to elicit typical type I IFN functions, suggest that Ifne may play a key role in both intrinsic and extrinsic suppression of FRT malignancies such as ovarian cancer.

The suppression of constitutive IFN signalling has recently been shown to be important in breast tumour progression in the mammary gland, yet the role of IFN ε in breast homeostasis
and cancer development remains poorly understood. Nevertheless, it is a compelling argument that constitutive IFN ε in the FRT may guard against FRT tumour development and hence suppression of its constitutive signalling may be important for tumour progression in both FRTspecific malignancies, the most fatal of which is epithelial ovarian cancer. Therefore, these two cancers constitute common models for investigation of two critical examples of the importance of constitutive type I IFN in tissue homeostasis and its loss in tumourigenesis.

1.8 Type I IFNs \& Cancer- Perspective on Breast Cancer

Breast cancer is currently the number one cancer affecting Australian women and second most commonly diagnosed cancer worldwide (42). In 2012, 1.67 million cases were diagnosed and 522,000 breast cancer fatalities were reported achieving the fifth highest overall cancer mortality rate (197). Primary breast tumours have shown to be treatable however, there are few therapeutic options that are effective on distant metastases, the formation of which are a hallmark of end stage cancer and ultimately, are the cause of breast cancer fatality (197).

1.8.1 Metastasis from Breast Cancer

Two common sites of metastasis from breast cancer are lung and bone (198) and both are associated with severely reduced survival, mainly due to their difficulty to treat. Of these two, bone metastasis is linked to the worst overall patient survival (198). Bone metastasis occurs as a result of the general metastatic pathway previously discussed, and is a process by which circulating tumour cells invade the bone marrow cavity and ultimately destroy the normal bone architecture (199). The majority of breast cancer bone metastases are osteolytic, which involves stimulation of osteoclasts that destroy normal bone tissue (200). Many factors influence this specific metastatic pathway including the stimulation of osteoclasts by
production of tumour peptide parathyroid hormone-related peptide (PTH-rP), resulting in bone destruction (200). This site of metastasis of breast cancer is a clear example of the devastation of metastatic spread in cancer. It is largely incurable, but it is also associated with severe bone pain, increased risk of pathological fractures and can significantly decrease quality of life for the patient (201).

1.8.2 Breast Cancer Development \& Classification

Normal mammary gland tissue contains a network of ductal branches spreading outwards from the nipple, which are comprised of mammary epithelial cells (MECs) (201). During pregnancy and lactation, these cells undergo ordered proliferation, which is reversible during involution, when widespread-programmed cell death restores breast tissue to pre-pregnancy morphology (202). This contrasts to the unrestrained epithelial cell division that occurs during breast tumour oncogenesis $(203,204)$. This pathological process is thought to result from a combination of genetic abnormalities and epigenetic factors (5).

Generally, breast cancer can be classified as invasive or non-invasive (205). Ductal carcinoma in situ is a non-invasive breast tumour, which arises in and is confined to mammary ducts (198). Among invasive breast cancers (IBCs), those expressing features of both ductal and lobular disease are known as invasive mammary carcinomas, which expand beyond the ductal system and invade the healthy surrounding tissue (198). These tumours are more likely to metastasise to distant organs and thus are associated with poorer prognosis (206).

Despite the use of clinical and histological classifications of breast cancer, which include the Tumour Node Metastasis (TNM) staging system (198) and histological Grades I, II and III to indicate spread and degree of differentiation, respectively (207), it remains difficult to accurately predict the behaviour \& likely progression of each tumour and thus, survival for each patient. As with all solid malignancies, breast cancer is a heterogeneous disease (208) and
despite a range of therapeutic options such as surgery, chemotherapy and radiation, not all tumours will respond to standard treatments calling for further molecular classification of each individual tumour (209).

One class of the molecular features that allows for personalised treatment of breast cancer is hormone receptor status. The vast majority of breast cancers are luminal characterised by expression of oestrogen (ER) and progesterone receptors (PR). For this reason, luminal cancers are associated with better prognosis (209) as they are responsive to receptor-targeted therapies. Inversely, non-luminal cancers are ER and PR negative. These subsets of breast cancer can further be divided based on expression of human epidermal growth factor receptor type 2 (HER2). HER2 negative cancers often have a worse clinical outcome due to poorer levels of tumour cell differentiation (210). Breast tumours that lack all three of these receptors are termed 'triple negative'. This subset accounts for $10-20 \%$ of breast cancers and is generally associated with the worst patient prognosis. These tumours exhibit rapid aggressive growth and are associated with an increased metastatic risk. The molecular features of triple negative cancers are poorly understood and targeted therapies have yet to be developed. Currently, chemotherapy is the only systemic therapeutic option for triple negative breast cancers and it is often difficult to predict whether these tumours will be responsive.

1.8.3 Gene Signatures in Breast Cancer

In the past two decades, many gene expression studies have performed genome-wide analysis of thousands of women with breast cancer (211) shown in Table 1.3. Of these studies, most have investigated gene expression in primary tumours, rather than peripheral blood signatures, and none have specifically focused on IFN signatures. However, collectively they provide a valuable resource for future data mining.

1.8.4 Primary Breast Tumour Cells

It is important to note that breast cancers of the same stage, histological grade and hormone receptor status often produce different clinical outcomes and for this reason, a number of studies have used gene signatures in primary breast tumour cells to investigate prognosis. Ascierto et al. performed transcriptional analysis of primary human breast tumour cells from 17 patients grouped according to number of years of relapse-free survival (1-5 years and >7 years) (212-217). Of the genes expressed in these tumour cells, STAT1 was among a number of genes found to be the best predictors of relapse-free survival ($\mathrm{p}<0.001$), which, as STAT1 is a known IRG and a driver of IRGs (218), indirectly implicates an IFN pathway involvement in breast cancer outcomes.

Another study analysed gene expression in 98 primary breast tumours in an attempt to classify tumours according to their likelihood of metastasising (218). They were able to cluster these primary tumours into two discrete groups according to the similarities in gene expression and correlate gene expression to follow-up data on clinical outcome (219). Importantly, 70% of the primary tumours in the first group came from patients who were diagnosed with metastatic breast cancer within 5 years while only 34% of patients in the second group had metastatic disease in the same time period (219), shaping the basis of a 'poor-prognosis' gene expression group compared to a 'good-prognosis' equivalent. Functional annotation of the genes upregulated in the poor prognosis signature identified enrichment of genes involved in invasion and metastasis, however they did not report on genes downregulated in poor prognosis that may have exhibited immune function. Collectively, these studies demonstrate the importance of gene signatures to predict prognosis in primary breast tumours and metastatic potential, some of which implicate the role of IFN in tumour suppression.. However, few studies have investigated gene signatures in peripheral blood of breast cancer patients as an indication of prognosis (Table 1.3).

Table 1.3: Breast cancer signature studies; investigating gene expression in breast cancer primary tumours or peripheral blood cells of breast cancer patients

Study	Tissue type	Signature Type or Definition
First Author (ref)		
Sharma et al. (219)	PBMCs	Early detection of BC
Aaroe et al. (220)	PBMCs	Early detection of BC
Tudoranet al. (221)	PBMCs	Identify differential signature in TNBC
Ascierto et al. (209)	Primary tumour	Identify relapse-free survival signature
Van t'Veer et al. (218)	Primary tumour	Identify poor-prognosis signature
Minn et al. (219)	Primary tumour	Predict metastasis to lung
Kang et al. (222)	Primary tumour	Predict metastasis to bone
Perou et al. (223)	Primary tumour	Classification of tumours based on molecular phenotype
Gruvberger et al. (212)	Primary tumour	Classification of ER positive tumours
Martin et al. (214)	Primary tumour	Classification of tumours
Gatza et al. (215)	Primary tumour	Classification of tumours
Wang et al. (224)	Primary tumour	ClinicoMolecular Triad Classification
Curtis et al. (225)	Primary tumour	METABRIC - clustering 2,000 primary tumours

The prognosis of breast cancer patients is only partially informed on by the primary tumour. Tumour cells are known to interact with surrounding tissue and circulating blood cells to elicit responses that may either promote or suppress tumour growth. The immune system has a large part to play in tumour regulation, suppression and even promotion. The direct and indirect interaction between primary breast tumour cells and the immune system may therefore be crucial in determining prognosis. Additionally, even when successful suppression of primary tumour is achieved, few therapeutic options are effective on distant breast metastases (20).

Two common sites of metastasis from breast cancer are lung and bone (226). Bone metastasis is a process by which circulating tumour cells invade the bone marrow cavity and ultimately destroy the normal bone architecture (198). Bone metastases are osteolytic or oestoblastic in nature, however the majority of breast cancer bone metastases are osteolytic, which involves stimulation of osteoclasts that destroy normal bone tissue (200). Many factors influence this specific metastatic pathway including the stimulation of osteoclasts by production of tumour peptide PTH-rP, resulting in bone destruction. This process is a hallmark of advanced breast cancer with devastating consequences for the patient (201), including severe bone pain, increased risk of pathological fractures and can significantly decrease quality of life for the patient (227).

Currently, there is a distinct lack of studies investigating stratification of breast cancer patients based on their peripheral blood status. Furthermore, no studies have yet focused on IFN regulated gene signatures in breast cancer, despite the clear hormonal regulation of IFN ε, which may serve as a regulator of immune responses and a possible pathway for tumour suppression.

1.9 Type I IFNs \& Cancer- Perspective on Ovarian Cancer

ℓ
Ovarian cancer is a complex, heterogeneous disease comprising a number of molecularly distinct tumours that arise not only from ovarian cells but from cells of the fallopian tubes or surrounding tissue as well (228). Projections of tumour incidence from 1982-2006 estimated that 1,434 new cases of ovarian cancer would be diagnosed in Australia in 2015 (229). Many of these women will already have advanced stage disease at first presentation and of those who respond to treatment, more than half will relapse and die within 5 years (229).

The vast majority of ovarian cancers are of epithelial origin (EOC), together having the fourth highest female cancer fatality rate (228). EOC is classified based on histological subtype including mucinous, clear cell, endometrioid and serous carcinomas, each of which are associated with a distinct morphology, mutational profile, cell of origin \& prognosis. Serous carcinomas are the most commonly diagnosed EOC and there is increasing evidence to suggest this EOC is derived from the secretory epithelial lining of the distal fallopian tube (230-233). The standard therapeutic options, surgical resection and platinum-based chemotherapy, are often ineffective as many women with advanced disease are not surgical candidates and chemoresistence leads to increasing rates of recurrence (228).

1.9.1 Mouse Models of Ovarian Cancer

To date, a number of mouse models have been used to study epithelial ovarian cancer (234238). Patient-derived xenograft (PDX) models, that use single-cell suspensions injected subcutaneously or IP, have demonstrated successful EOC formation, ascites and metastasis (239), however this model is dependent on an immunocompromised host and thus, is inappropriate for investigation into the role of IFN signaling in immunoregulation of EOC. Connolly et al. developed a transgenic model of EOC, however tumour
formation was only seen in half of the mice and may not accurately model human disease (237). A syngeneic, orthotopic mouse model of EOC has been successfully used to establish EOC formation as well as metastatic IP lesions and extensive ascites (236, 238). This model not only allows for the study of tumour formation in an immunocompetent host environment, but also utilizes intrabursal injections of murine ID8 ovarian epithelial cancer cells (MOSEC) that directly interact with ovarian stroma during tumourigenesis, therefore more closely mimicking human disease than previously used intraperitoneal injections.

1.9.2 Molecular Profiling

Extensive molecular profiling of ovarian cancers has shown that mutations in BRCA1/2 genes confer significantly increased risk of high-grade serous carcinoma (HGSC), the most common and lethal EOC (240). BRCA1 \& BRCA2 are both documented IFN regulated genes (25) and play important roles in the homologous recombination repair pathway of DNA (241), somatic and germline mutations of which contribute to overall chromosomal instability. Molecular profiling has also identified that HGSC with higher expression of immuneassociated genes such as CD8A, Granzyme B and CXCL9, designated the immunologic subtype, demonstrate the best overall survival (242), highlighting the potential benefit of immune-driven suppression in this cancer, evident at a transcriptional level.

Further molecular based analysis has revealed similarities in the mutational profile of basal-like breast cancers and serous ovarian cancers with high frequency of TP53, BRCA1 \& BRCA2 mutations, down-regulation of RB1 and the amplification of cyclin E1 is common to both (243). Additionally, while the role of hormones in ovarian cancer tumourigenesis remains unclear, there is evidence of poor prognosis in PR negative patients irrespective of ER expression (244), which bears similarities to reports of poor prognosis in breast cancer patients with either triple negative breast cancer (TNBC) or oestrogen receptor positive/progesterone
receptor negative (ER+/PR-) cancers (245).

1.9.3 Type I IFNs \& Ovarian Cancer

Clinical trials using type I IFNs, specifically IFN α and IFN β, in ovarian cancer have been underwhelming, largely due to the dose-limiting toxicity preventing high-dose therapy in late stage disease (246-254). Some success has been reported using intraperitoneal IFN α in the treatment of malignancy ascites from ovarian cancer $(255,256)$ (listed in Table 1.2) and while the mechanisms underlying IFN's efficacy against ascites remain unclear, they likely involve both intrinsic (acting directly on tumour cells) and extrinsic (acting indirectly via activation of anti-tumour immune cells) IFN pathways of tumour suppression. What we learned from our breast cancer work (published by Bidwell et al.,) was that in general terms it is important to understand the role of IFNs in disease pathogenesis in order to best direct therapy (i.e. in that case metastases therapy administered in an adjuvant setting is efficacious). Furthermore, examining immunomodulation at different stages of therapy in addition to direct effects on tumour cells may hold the key to IFN efficacy.

1.10 Loss of Constitutive Type I IFN Signalling

There is evidence that components of constitutive type I IFN signaling are detectable in the local tissue of origin of both breast and ovarian cancers, however the significance of continuous IFN activity in the pathogenesis of these diseases and additionally, the metastasis of these tumours, remains to be characterized. Therefore, we have an opportunity to study firstly the consequences of the loss of constitutive type I IFN in these tissues, develop a method of measurement of constitutive IFN activity, and implement a course action for cancer patients in an effort to suppress fatal metastasis.

1.11 Rationale for the Research

The direct \& indirect anti-tumour effects of type I interferons (IFN), along with convincing evidence of dysregulated IFN signalling in cancer - for instance, the presence of constitutive IFN signalling in tumourigenesis \& its loss in metastases, make these cytokines attractive candidates for a role in suppressing tumourigenesis and agents for cancer therapy. Limited only by our understanding of the role of finely-tuned IFN signalling \& function in cancer, further investigation into these processes may hold the key to developing better therapeutics for these devastating diseases.

The IFNs are a family of innate immune cytokines so named for their ability to 'interfere' with viral replication (257). It is now known that type I IFNs induce pleiotropic activities within cells, in fact, they are potent regulators of many distinct biological processes not limited to anti-viral immunity. Importantly, endogenous IFNs exhibit anti-tumour functions both intrinsically, through regulation of anti-proliferative $(258,259)$, pro-apoptotic $(260,261)$ pathways and potentially modifying the immunogenicity of tumour cells, and extrinsically, by activating anti-tumour immune cells (167), mechanisms which many tumours evolve strategies to evade. Exogenous IFNs have been trialled in the treatment of a number of different malignancies, however the success of IFN treatment has varied widely and in particular, IFNs have exhibited poor efficacy against some solid tumours such as breast cancer and ovarian cancer. Additionally, HDI is limited by severe systemic side effects (125).

New insights into IFN signalling provide a case for a role in development and potential therapy of breast and other malignancies such as ovarian cancers that are highly prevalent among women worldwide and both associated with high fatality rates, thus representing unmet medical needs. Furthermore, it is likely that within these patient populations, at least a proportion could benefit from IFN immunotherapy, however, it is difficult to predict and
monitor this particular subset of patients. To solve this problem, there is a need to better understand the role of IFNs in the development of these tumours. Recent work has identified that an unexpected, critical defect in IFN signalling, specifically the loss of a constitutive IFN signature, promotes breast cancer metastasis to bone (7), a lethal end-stage of disease progression.

Meanwhile, the discovery and characterisation of a novel type I IFN, IFN ε, whose constitutive expression in the FRT (171), unusual regulation and likely classical type I IFN anti-tumour properties led to the hypothesis that this novel type I IFN may play a critical role in the pathogenesis of cancer originating in the FRT organ system. Moreover, the potential benefit of IFN immunotherapy in breast and ovarian cancers warrants further investigation, particularly with a targeted focus on treating or suppressing metastases. Constitutive expression of this IFN in the FRT implies a tissue-specific tolerance that may potentially bypass the main obstacle to IFN therapy in cancer, the severe dose-limiting side effects. The ability to devise IFN signatures, based on new understanding of the pathophysiological role of type I IFNs and its mechanism of signalling and gene regulation, may enable the identification of patients who would benefit from IFN based immunotherapy.

1.12 Research Aims

1. In breast cancer - a model where constitutive IFN signaling activates anti-tumour immunity - determine whether type I IFN blood signatures provide further insight into the metastatic processes and/or represent a biomarker for stratifying patients.
2. In ovarian cancer - a model where constitutive IFN regulation of anti-tumour immunity has not yet been established - investigate whether this is the case and specifically, if constitutively expressed IFN ε, has a role in the development and/or treatment of epithelial ovarian cancer.

Chapter 2: MATERIALS \& Methods

2.1 Ethics Statements

2.1.1 Human Ethics

The study was approved by the Human Research Ethics Panel at Monash Health in accordance with the ethical guidelines of the 1975 Declaration of Helsinki. Approval provided access to utilise patient samples \& data previously collected and stored by the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) tissue bank (262) (NMA Reference No. LNR/16/MonH/194) and the use of patient samples collected and stored by the Ritchie Centre Human Tissue Bank (HREC 01067B/14227L) for this study. Additionally, We Department■oflDefence Human Ethics Committee (NR115246A) approved the use of patient samples in this study collected and stored by both the Ovarian Cancer Research Foundation (OCRF) and the Australian Ovarian Cancer Study (AOCS). Written informed consent had previously been obtained from all participants to utilise these samples for research purposes in accordance with the ethical and scientific principles set out by the National Health and Research Council of Australia.

2.1.2 Animal Ethics

All animal experimentation presented in this thesis, was approved by the Monash Animal Ethics Committee (Project No. MMCA/2015/61). Subsequently, two minor amendments to these ethics were sought and granted (June 2016 and July 2016). Any data obtained from animals described herein compile with these approvals.

2.2 Human Cohorts \& Sample Processing

2.2.1 Kathleen Cunningham Foundation Consortium of Research into Familial Breast Cancer (kConFab)

Human samples collected and stored by kConFab (262) (Project No. 157) including preserved PBMCs and tissue microarray (TMA) samples were obtained for analysis. For breast cancer patient PBMC processing, the chief selection criteria applied was the diagnosis of at least one additional metastatic site prior to blood collection, whilst exclusion criteria included other types of primary cancer present in patients other than breast cancer. Furthermore, family pedigree data from kConFab was used to select at least one of two controls from within the same family which were: i) breast cancer patients who had not been diagnosed with metastasis and/or ii) donors who had not been diagnosed with cancer. From this, a total of 231 PBMC samples were selected, these consisted of samples from patients with metastatic breast cancer $(\mathrm{n}=28)$, patients with non-metastatic breast cancer $(\mathrm{n}=36)$ and unaffected donors $(\mathrm{n}=29)$, collectively representing 35 families. All participants had been previously recruited and consented by trained kConFab research nurses to give $9-10 \mathrm{mls}$ peripheral blood collected in acid citrate destrose (ACD) tubes. All blood was kept at room temperature until processed and processed within 24-48 hours of collection. The kConFab bio-specimen protocol for processing for PBMC isolation and storage is described in Section 2.3.1.

For breast cancer tissue staining and analysis, TMA slides cut from formalin fixed paraffin embedded (FFPE) blocks containing primary tumour biopsies from 231 breast cancer patients were obtained from kConFab . Of these, 20 patients had been diagnosed with metastatic tumours and 211 patients had been diagnosed with primary breast cancer only.

Tissue cores from patients were arranged on TMAs in grids containing $60-120$ cores each, a single tissue core per patient.

2.2.2 Control Human Fallopian Tube Samples

Human fallopian tube specimens were obtained with approval from the Institutional Human Research Committee to access samples from the Ritchie Centre Human Tissue Bank collected from women undergoing hysterectomy. Samples were collected by a trained research nurse and stored in phosphate-buffered saline (PBS) at $4^{\circ} \mathrm{C}$ and processed within 24 hrs. To process for histology, excess surrounding tissue was cut away from the fallopian tubes and discarded. Fallopian tube tissue was then fixed for 24 hours in 10% neutral buffered formalin (Orion Laboratories, Australia), then washed in 70% ethanol, and taken to the Monash Histology Facility for processing (paraffin-embedding) and sectioning.

2.2.3 Ovarian Cancer TMAs

TMA slides containing sectioned biopsies from low grade and high grade serious carcinomas were obtained from the Ovarian Cancer Research Foundation (OCRF) in collaboration with the Ovarian Cancer Biomarkers Lab at the Hudson Institute of Medical Research.

2.2.4 In silico Analysis of Datasets Obtained from Australian Ovarian Cancer Study (AOCS) \& the Ovarian Cancer Database of the Cancer Science Institute of Singapore (CSIOVDB)

RNAseq data containing 93 human high grade serous carcinoma (HGSC) samples and 7 human fallopian tube epithelium collected and processed by the Australian Ovarian Cancer Study (263) was analysed in collaboration with the Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre. Additional analysis was then performed on microarray data
consisting of 707 ovarian cancer samples made publically available online by the Ovarian Cancer Database of the Cancer Science Institute of Singapore (CSIOVDB) (264).

2.3 Tissue Culture

2.3.1 PBMC Isolation \& Storage

As per the kConFab bio-specimen collection protocol for PBMC isolation and storage, blood was centrifuged 1300-1500 rpm for 10-15 minutes to separate plasma, then transferred into a 50 ml falcon tube containing 10mls Roswell Parks Memorial Institute (RPMI) media (Life Technologies, USA) before being layered onto 3 mls Ficoll-Paque ${ }^{\mathrm{TM}}$ PLUS (GE Healthcare Bio-sciences, USA) and immediately centrifuged at 1600 rpm for 30 minutes without a brake. Separated PBMCs were then collected using a sterile pipette and mixed with 10 mls RPMI media and centrifuged at 1600 rpm for 10 minutes. Supernatant was then discarded and PBMCs frozen in sterile solution containing 70\% RPMI, 20\% (v/v) fetal calf serum (FCS, Life Technologies, USA) and 10% DMSO. PBMCs were frozen and stored at $-70^{\circ} \mathrm{C}$.

2.3.2 Cell lines \& Cell Culture

Ovarian cancer lines ID8 (murine; Roby KF, et al., Carcinogenesis 2000), CAOV3 (human; ATCC, Virginia), and OVCAR4 (human; National Cancer Institute) were used for in vitro assays. ID8 \& OVCAR4 cell lines were cultured in RPMI 1640 (GibcoBRL, Ontario, Canada) while the CAOV3 were cultured in DMEM (GibcoBRL) supplemented with 4\% (ID8) or 10% (CaOV3, OVCAR4) heat-activated fetal calf serum (FCS; GibcoBRL). All cells were incubated at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \%(\mathrm{v} / \mathrm{v})$ carbon dioxide $\left(\mathrm{CO}_{2}\right)$. Cells were confirmed Mycoplasma negative according to MycoAlert ${ }^{\text {TM }}$ PLUS Mycoplasma Detection Kit (ratio <1; Lonza, Basel).

2.3.3 Cellular Stimulations

Viable cells were counted using trypan blue on a haemacytometer under a bright field microscope (Nikon, Japan). Cell lines were plated (1.5×10^{5} cells/well) in 12 well plates, 24 hours prior to stimulation with recombinant IFN ε or IFN β (see appendix I for recombinant protein production) at $0-1000 \mathrm{IU} / \mathrm{ml}$ with resuspension buffer (see Appendix I) or vehicle control (PBS). Cells were then incubated at $37^{\circ} \mathrm{C}$ for 3 hrs prior to harvesting.

2.3.4 Cellular Growth Assays

Cellular proliferation was performed on the xCELLigence platform (ACEA Biosciences, Inc., San Diego, CA, USA) for real-time cell analysis (RTCA). $50 \mu 1$ of cell culture medium was initially added to each well in a 96 well E- plate (ACEA Biosciences, Inc.) for the impedance background measurement. Cells were then added (ID8 -6×10^{3} cells $/$ well, CAOV3 \& OVCAR4 -1×10^{5} cells/well) to a volume of $100 \mu \mathrm{l}$ in serum-free culture media and allowed to adhere overnight. Recombinant IFN or vehicle control was diluted in culture media supplemented with serum and added to the cells up to a final volume of $200 \mu \mathrm{~L}$. The E-Plates were incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ and impedance measured on the RTCA system at 15 minute time intervals for up to 72 hours with or without treatment. For data analysis, the baseline cell index (CI) was determined by subtracting the CI for a cell-containing well from the CI of a well with only culture media. To facilitate the statistical evaluation of the results, impedance measurements from each well were normalised to the time of stimulation with IFN, termed 'normalised cell index'. Three independent experiments were performed in technical quadruplicate and analysed for doubling-time \& slope ($1 / \mathrm{hr}$) of growth curves, indicative of rate of proliferation, using RCTA software (265).

2.3.5 Migration Assays

Migration assays were performed and analysed for a provisional patent on IFN ε as an anticancer therapeutic. The results are presented in the patent specification (in Thesis Appendices). To perform single cell tracking assays, ID8 cells were plated in serum free media at 2.5×10^{4} cells/well in a 48 well plate and allowed to adhere overnight. Individual cells were then tracked via fluorescence to measure the overall distance travelled by each cell (track length) and direct displacement length from the initial to final position of each cell (track displacement) over 12 hours. The mean distance travelled was then compared in technical triplicate.

To further assess cellular migration, scratch assays were utilized to measure the percentage surface area closure of a scratch (empty space) over 12 hours. ID8 cells were plated in a 48 well plate and allowed to reach confluence and the coated wells were scratched using a P10 filter tip (Axygen Scientific, California). Cells were stained using CellTrace ${ }^{\mathrm{TM}}$ CFSE Cell Proliferation Kit (ThermoFischer Scientific, Massachusetts) as per the manufacturer's instructions, then washed in PBS and treated with recombinant IFN. Fluorescent images were captured every 30 minutes for 12 hours using a confocal microscope and analysed using Imaris software.

2.3.6 Apoptosis Assays

ID8 cells were plated in a 12 well plate $\left(3.5 \times 10^{4}\right.$ cells/well) in 2 mls of media and left to adhere overnight. Cells were stimulated with recombinant murine Ifn ε or vehicle control for 48 hours. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ was used a positive control for induction of apoptosis at a concentration of $1-5 \mathrm{mM}$. Following stimulation, cells were trypsinised and washed in PBS and analysed for the proportions of live cells and apoptotic cells using flow cytometry (see Section 2.7.3).

2.3.7 mRNA Extraction \& Purification

Frozen PBMCs were thawed briefly prior to RNA extraction. Total cellular RNA was extracted using Trizol (GIBCO/BRL, Invitrogen) and further purified over Qiagen miRNeasy Mini columns as per manufacturer's instructions (Qiagen Inc, Germany), including an oncolumn DNase digestion using the QIAGEN RNase-free DNase Set (Qiagen Inc, Germany) according to manufacturer's instructions. RNA samples with an RNA integrity number (RIN) ≥ 7.0 by Bioanalyzer assessment were of an acceptable quality for microarray analysis.

For cell lines, RNA was extracted using a QIAGEN RNeasy mini-kit (Invitrogen, USA) as per the manufacturer's protocol. Cells were harvested in 1% betamercaptoethanol in RLT buffer and homogenized using a 1 mL syringe and a 23-gauge needle. RNA was on-column DNase treated using the QIAGEN RNase-free DNase Set (Qiagen Inc, Germany) according to manufacturer's instructions. RNA yield and quality was then assessed using a NanoDrop® ${ }^{\circledR}$ ND-1000 spectrophotometer and stored at $-80^{\circ} \mathrm{C}$.

2.3.8 cDNA Synthesis

A total of 500 ng of RNA was made up to $7 \mu \mathrm{l}$ with diethylpyrocarbonate (DEPC) treated Milli-Q $\mathrm{H}_{2} \mathrm{O}$. For low yield RNA samples, 500 ng of RNA was concentrated to a volume $>7 \mu \mathrm{l}$ using a rotational-vacuum-concentrator (Christ, Germany). RNA was then reverse-transcribed into cDNA using M-MLV reverse transcriptase (Promega, USA), according to manufacturer's instructions. cDNA samples were stored at $-20^{\circ} \mathrm{C}$. A negative reverse transcriptase control was included for each sample.

2.3.9 GAPDH Polymerase Chain Reaction

A GAPDH PCR was performed on cDNA samples and reverse transcriptase negative controls were included to ensure there was no genomic DNA contamination of samples.
$1 \mu \mathrm{l}$ of cDNA was added to 5 X GoTaq Green buffer, magnesium chloride, forward and reverse GAPDH primers, 10 mM dNTPs, GoTaq enzyme (Promega, USA) and a total volume of $25 \mu \mathrm{l}$ was made up with DEPC treated $\mathrm{H}_{2} \mathrm{O}$. All PCR reactions were carried out in a MyCycler ${ }^{\text {TM }}$ Thermal Cycler (BIO-RAD) using the following cycle reaction conditions:

- Denaturation: $94^{\circ} \mathrm{C}, 2$ minutes 1 cycle
- Denaturation: $94^{\circ} \mathrm{C}, 30$ secs
- Annealing: $55^{\circ} \mathrm{C}, 30$ secs

35 cycles

- Extension: $72^{\circ} \mathrm{C}, 30$ secs
- Extension: $72^{\circ} \mathrm{C}, 7$ minutes

1 cycle

Each PCR product was then loaded onto a 1.5% agarose gel and run at 100 V for 30 minutes.

2.3.10 Quantitative Real Time PCR (qRT-PCR)

Primers were designed to be intron-spanning where possible. Primers were designed using Primer Express® v3.0 software (Applied Biosystems, USA). Each reaction was performed in a total of $10 \mu \mathrm{l}$ comprising $2 \mu \mathrm{l}$ of cDNA, $5 \mu \mathrm{l}$ Sybr Green PCR Master Mix (Applied Biosystems, USA), $0.2 \mu \mathrm{l}$ of each 10 mM stocks of relevant forward and reverse primers and DEPC $\mathrm{H}_{2} \mathrm{O}$. Samples were loaded in triplicate onto a MicroAmp ${ }^{\text {TM }}$ Optical 384well reaction plate and sealed with MicroAmp ${ }^{\mathrm{TM}}$ Optical adhesive film. Additionally, two RT negative reactions and a no transcript control were included on each plate. Amplification of a single PCR product was confirmed by analysing dissociations curves and visualisation on agarose gels. For a list of primers sequences see appendix II.

All reactions were processed using a 7900HT Fast Real Time PCR machine (Applied Biosystems, USA) using the following thermal cycling protocol: $50^{\circ} \mathrm{C}$ for 2 minutes, $95^{\circ} \mathrm{C}$ for

10 minutes followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 15 seconds and $60^{\circ} \mathrm{C}$ for 1 minute. Cycle threshold (Ct) values for all probes were exported and data analysis was carried out using the $2-\Delta \Delta \mathrm{CT}$ method (266). For figures, gene amplifications were normalized to the expression of 18 S , an internal control gene stably expressed in cells. Then values of fold-change were expressed relative to value for untreated samples (which was 1).

2.4 Microarray Procedure

The processing of samples, RNA extraction and performance of microarray analysis were performed according to MIAME**-compliant protocols as described in M\&M section and in the attached report (in Thesis Appendices). These data are routinely formatted ready for uploading into 'Array Express' at the time of publication.
** MIAME $=$ Minimum Information Essential for Microarray Experiments

2.4.1 Agilent One-Colour Spike

Microarray was performed at the Monash Health Translational Precinct, Medical Genomics Facility. Agilent One-Colour Spike-In kit was used to provide positive controls for monitoring microarray processing. Briefly, 100 ng of mRNA was diluted in a total volume of $1.5 \mu \mathrm{l}$ with RNase-free $\mathrm{H}_{2} \mathrm{O}$. The Agilent One-Colour Spike mix was prepared by heating to $37^{\circ} \mathrm{C}$ for 5 minutes. Three-fold serial dilutions of the Spike mix (Agilent Technologies, USA) were prepared and $2 \mu \mathrm{l}$ was added to each $1.5 \mu \mathrm{l}$ mRNA sample along with $1.8 \mu \mathrm{I}$ T promoter primer to a final volume of 5.3μ l. The samples were denatured by incubating at $65^{\circ} \mathrm{C}$ for 10 minutes followed by ice for 5 minutes and a pulse/spin.

2.4.2 cDNA synthesis

cDNA master mix was made up with $2 \mu 15 \mathrm{X}$ first strand buffer, $1 \mu 10.1 \mathrm{M}$ DTT, $0.5 \mu \mathrm{l} 10 \mathrm{mM}$ dNTP mix and $1.2 \mu \mathrm{l}$ AffinityScript RNase Block Mix (Agilent Technologies, USA). $4.7 \mu \mathrm{l}$ cDNA mix was added to each RNA sample making a total volume of $10 \mu 1$. Each sample was mixed by pipetting and incubated in a $40^{\circ} \mathrm{C}$ water bath for 2 hours. To heat inactivate, each sample was heated at $70^{\circ} \mathrm{C}$ for 15 minutes followed by ice for 5 minutes and a pulse/spin. Samples were stored at $-20^{\circ} \mathrm{C}$ until the next step.

2.4.3 Labeling \& Transcription

Transcription mix was made up with $0.75 \mu \mathrm{l}$ nuclease free water, $3.2 \mu \mathrm{l} 5 \mathrm{X}$ Transcription buffer, $0.6 \mu \mathrm{l} 0.1 \mathrm{M}$ DTT, $1 \mu \mathrm{l}$ NTP mix, $0.21 \mu \mathrm{l}$ T7 RNA polymerase blend and $0.24 \mu \mathrm{Cy} 3-$ CTP. A total of 6μ of transcription mix was then added to each RNA sample making a total of $16 \mu \mathrm{l}$. Each sample was mixed by pipetting and incubated in a $40^{\circ} \mathrm{C}$ water bath for 2 hours.

2.4.4 cRNA Purification \& Quantification

A QIAGEN RNeasy mini kit (QIAGEN, USA) was used to purify Cy3 labelled cRNA as per the manufacturer's instructions. $1 \mu \mathrm{l}$ of cRNA was read by Nanodrop using the RNA-40.Cy3 microarray measurement. Requirements were yield $>0.825 \mu \mathrm{~g}$ and specific activity >6.0 $\mathrm{pmol} / \mu \mathrm{g}$.

Yield $(\mu \mathrm{g}$ cRNA $)=\mathrm{ng} / \mu \mathrm{l}$ cRNA $\times 30 \mu \mathrm{l}$ (elution volume) $/ 1000$
Specific activity $=[(\mathrm{pmol} / \mathrm{ng} \mathrm{Cy} 3) /(\mathrm{ng} / \mu \mathrm{l}$ cRNA $)] \times 1000$

2.4.5 Chip Hybridisation

$8 \times 60 \mathrm{~K}$ microarrays were performed through hybridizing via the Agilent Gene Expression Hybridization Kit (Agilent Technologies, USA). Fragmentation mix made up with 600 ng of

Cy3 labelled cRNA was added to $5 \mu \mathrm{l}$ 10X Blocking agent and $1 \mu \mathrm{l}$ 25X Fragmentation buffer. Fragmentation mix was then made up to a total volume of $25 \mu l$ with water. The samples were incubated at $60^{\circ} \mathrm{C}$ for 30 minutes and then immediately iced for 1 min . Each reaction was stopped by adding $25 \mu \mathrm{l} 2 \mathrm{X}$ GE Hybridisation buffer. The samples were then centrifuged at $13,000 \mathrm{rpm}$ for 1 minute. $40 \mu \mathrm{l}$ of sample was placed on ice and then used immediately for hybridisation onto the microarray slide. Samples were hybridized at $67^{\circ} \mathrm{C}$ for 17 hours at 20 rpm.

2.4.6 Microarray Slide Wash \& Scan

Disassembly of the slides and an initial wash was performed at room temperature in GE wash buffer 1 (GE Healthcare, USA) with washes performed for 1 minute. A second wash was performed in pre-warmed GE wash buffer 2 (GE Healthcare, USA) for 1 minute. The microarray slide was removed slowly from the second wash and scanned immediately. The slide was loaded into a Version B slide holder (Agilent Technologies, USA) and scanned in a G2505B Series Microarray scanner (Agilent Technologies, USA) using the one-colour scan setting for $8 \times 60 \mathrm{~K}$ microarray slides (61x21.6 scan region, $3 \mu \mathrm{~m}$ scan resolution, 20 bit Tiff, dye channel was set to green and green PMT selected at 100%). The scanned microarray slides were analysed by the Feature Extraction Software 9.5.3.1 (Agilent Technologies, USA) and log intensity values for each spot were calculated.

2.5 Microarray Analysis

Microarray analysis was performed by Dr Linden J Gearing (CIIID Bioinformatics group) using R (v3.4.3). The data and accompanying sample annotation was imported and processed using the limma package (v3.32.10) (267). Probe annotation was obtained from GEO using the GEOquery package (v2.42.0), with the GEO
platform identifier GPL21185. For data normalisation, 'normexp' background correction and quantile normalisation were performed. Probes were filtered out using the microarray negative control probes. For each sample, the 95% percentile of expression for the negative controls was calculated. Any probes with expression values at least 10% greater than this were taken as expressed in that sample. Probes were kept only if they were expressed in greater than or equal to 28 samples (the number of samples in the smallest group). Finally, any remaining duplicate probes (with the same ID and therefore the same sequence) were then averaged using 'avereps'. These steps reduced the number of probes from 62,976 to 32,801 .

Array weights were calculated using an intercept design matrix (268) and were incorporated into the linear model. Samples were grouped according to tumour type, Unaffected, Primary (non-metastatic breast cancer) or Metastasis (metastatic breast cancer), using family as a blocking factor. This was to adjust tumour type for differences between families. Moderated t-statistics were calculated using the 'eBayes' method (269). The Benjamini-Hochberg adjustment method and 'global' multiple-testing method were used to adjust P-values for probes and across contrasts between the different tumour types. Differentially expressed probes were selected with an adjusted P-value <0.05.

For gene set enrichment, Entrez gene IDs were used as identifiers and competitive gene set testing was performed using 'camera' (270) from the limma package using a set of transcriptional modules $(271,272)$. The ssGSEA method was used to assign a score to each sample (273), based on its expression of the module gene sets, using the GSVA package (274). For analysis of IRG expression, the INTERFEROME database (114) was searched for genes up-regulated in human blood cells more than twofold. The resulting genes were matched with microarray probes by Entrez gene ID.

2.6 Tissue Staining

2.6.1 Immunohistochemistry

Human fallopian tubes, mouse organs and tumour samples were fixed for 24 hours in 10% neutral buffered formalin (Orion Laboratories, Australia), then washed in 70\% ethanol, and taken to the Monash Histology Facility for processing and sectioning. Samples were embedded in paraffin and sectioned at $4-\mu \mathrm{m}$ thickness using a microtome. Sections were stained for Haematoxylin and Eosin by the Monash Histology Facility with subsequent sequential sectioning. To investigate tissue expression of proteins of interest histological sections were deparaffinised and rehydrated. Antigen retrieval was performed by heat in 10 mM Tris $/ 1 \mathrm{mM}$ EDTA (pH 9.0) for 6 minutes. After inhibition of endogenous peroxidase activity with 3% ($\mathrm{vol} / \mathrm{vol}$) hydrogen peroxide, tissues were blocked in CAS-Block ${ }^{\mathrm{TM}}$ (ThermoFisher Scientific) for 1 hour. Tissues were then incubated overnight at $4^{\circ} \mathrm{C}$ with relevant antibodies: anti-IFN ε (1:210; Novus Biologicals, Colorado), anti-SMa (1:100; Dako Omnis, Santa Clara), anti-Ck18 (1:50; Dako Omnis) and rabbit IgG (1:200; Vector Laboratories, California) or mouse IgG1 (1:37; Vector Laboratories) as isotype controls. Biotinylated anti-rabbit or anti-mouse IgGs (both 1:250 dilution; Vector Laboratories) were diluted in the same buffer and incubated for 1 hour. Slides were then washed in 0.05% Tween/PBS and incubated with avidin and biotinylated horseradish peroxidase (VECTASTAIN ${ }^{\circledR}$ Elite ${ }_{\circledR}$ ABC Kit, Vector Laboratories) as per the manufacturer's instructions. Slides were washed with 0.05% Tween/PBS then incubated with diaminobenzidine tetrahydrochloride (DAB; DAB+ Substrate Chromogen System, Dako Omnis) as per the manufacturer's instructions. Sections were counterstained with Haematoxylin for 45 seconds then dehydrated and placed under coverslip with dibutylphthalate dolystyrene xylene (DPX; Merck, Germany). Staining intensity was
calculated using the positive pixel analysis tool in Imagescope software or the Aperio Cell Imaging Software.

Multiplexed staining using the Opal protocol was performed by Natasha K. Brockwell at the Cancer Microenvironment and Immunology Lab, La Trobe University. Firstly, tissue microarrays (TMAs) generated by kConFab were de-paraffinized in histolene and rehydrated in ethanol. Antigen retrieval was performed as per antibody specifications in either pH 6.0 or pH 9.0 (Perkin Elmer) using heated microwave treatment (MWT). Antibodies, blocking buffers, secondary antibodies, opal fluorophores and diluents used were from the Opal 7 Tumor Infiltrating Lymphocyte (TIL) kits (Perkin Elmer) except CD20 was swapped for CD 41 and staining was performed as per manufacturers protocol. Following pH 9.0 heated MWT, slides were blocked for 10 minutes and then incubated with anti-CD8 (1:200) for 1 hr in a humidified chamber at room temperature (RT). Slides were washed with TBST (tris buffered saline $+0.05 \%$ tween (v/v)) before addition of secondary antibody for 10 minutes followed by further washing and incubation with Opal-570 TSA (1:50) diluted in amplification diluent for 10 minutes. Slides were then subjected to heated MWT with pH 6.0 buffer and staining was performed as per above with anti-FoxP3 (1:100) and Opal-620. Slides were subjected to heated MWT (15 minutes at 20% power) with pH 6.0 buffers and staining performed as above except primary antibody, anti-CD41(1:250) was left on overnight at 4 degrees in a humidified chamber, staining resumed as per normal the following day with Opal-540 being used. Slides were subjected to heated MWT pH 6.0 and staining was performed as above with anti-CD45RO (1:150) and Opal 650. Slides were subjected to heated MWT with pH 6.0 and staining performed as per above except primary antibody, anti-pan-CK (1:500) was left on overnight at 4 degrees in a humidified chamber, staining resumed as per normal the following day with Opal-690. Slides were subjected to
heated MWT pH 9.0 and staining was performed as per above with anti-CD4 (1:150) and Opal 520. Slides were then subjected to heated MWT pH 6.0 and stained with DAPI solution for 3 minutes. Slides were then ounted using VECTASHIELD HardSet Antifade mounting medium (Vectorlabs). Slides were then imaged using the VECTRA microscope (PerkinElmer) where whole slide scans were performed and regions of interest captured at 200x magnification.

2.6.3 Multispectral Analysis

InForm image analysis software (Perkin Elmer) was used to spectrally unmix and analyse images. Briefly, InForm was trained to segment tissue regions within each individual TMA core between tumor epithelium and surrounding stroma compartments, using DAPI and nuclei size (275). The core was further segmented into individual cells using DAPI staining. Cell scoring was based on expression of said marker and scoring was given as percentage positivity per tissue section, with cells being classed as either single or double positive. H scores were also generated for cytokeratin and CD41 positive tumour cells.

2.7 Flow Cytometry

2.7.1 Immunophenotyping

Peritoneal exudate cells were isolated from C57BL6/J mice by flushing the peritoneal cavity with 5 ml ice cold PBS. Cell pellets were obtained by centrifugation at $1,000 \mathrm{rpm}$ for 5 mins and stained for surface antigen expression using a panel of monoclonal antibodies directly conjugated with fluorochromes. In order to prevent non-specific binding, cell surface receptors were blocked with Anti-mouse CD16/CD32 Fcy III/II Receptor blocking antibody (BD PharMingen, California). Surface cell staining was performed with the various combinations of fluorochrome-labelled antibodies: panel 1 - APC conjugated CD45, APC-Cy7 conjugated

CD8, FITC conjugated NK-1.1, PE conjugated CD69, Pacific Blue conjugated CD4; panel 2 APC conjugated CD25, APC-Cy7 conjugated CD8, FITC conjugated CD45, PE conjugated Pan CK, PE-Cy7 conjugated CD4 and Pacific Blue conjugated FoxP3; panel 3 - APC conjugated CD45, APC-Cy7 conjugated CD11b, FITC conjugated Ly6C, PE conjugated I-Ab, PE-Cy7 conjugated CD11c and Pacific Blue Ly6G. Cells were analysed using a FACSCanto ${ }^{\text {TM }}$ II flow cytometer (BD Biosciences) and Flo-Jo software.

2.7.2 Cytometric bead array (CBA)

Cytometric bead array (BD CBA Mouse Inflammation Kit; BD Pharmingen) was used to determine cytokine levels in the supernatant of peritoneal exudate cells from mice injected with ID8 cells as per the manufacturer's instructions. FACSCanto ${ }^{\mathrm{TM}}$ II flow cytometer (BD Biosciences) and Flo-Jo software were used to examine levels of MCP-1, IFN γ, IL-6, IL-10, IL-12p70, or TNF- α.

2.7.3 Annexin V/PI

Following cell stimulation and trypsinisation, single cell suspensions were stained with FITC conjugated Annexin V and propidium iodide (PI). Cells were stained using the FITC Annexin V Apoptosis Detection kit II (BD Biosciences, New Jersey), as per the manufacturer's instructions and analysed by flow cytometry using a FACSCanto ${ }^{\text {TM }}$ II flow cytometer (BD Biosciences) and Flo-Jo software. The different phases of apoptosis were defined as i) live cells (Annexin V-/PI-), ii) early apoptotic (Annexin V+/PI-), iii) late apoptotic (AnnexinV+/PI+), and iv) necrotic cells (Annexin V-/PI+) (Andree HA, et al., J Biol Chem 1990).

2.8 In Vivo Models

2.8.1 Mice

IFN $\varepsilon^{-/-}$(171) and Ifnar1 $1^{-/}$(276) on a C57BL6/J background and wild-type mice (Monash Animal Research Facility) were housed in standard specific pathogen free (SPF) conditions.

2.8.2 Intrabursal (orthotopic) Ovarian Cancer Model

Female (10 weeks of age) C57BL6/J wild-type (Ifn $\varepsilon+/+$) and Ifn ε deficient mice (Ifn $\varepsilon^{-/}$) were anaesthetized by inhalation of isoflurane (5% in oxygen) in an induction chamber, and anesthesia maintained at 2.5-3.0\% isoflurane delivered via nosecone during all procedures. Mice were subcutaneously injected with the analgesic Carprofen ($5 \mathrm{mg} / \mathrm{kg}$) prior to surgery. A small incision was made at the dorso-medial position directly above the ovarian fat pad, with a secondary small incision through the peritoneal wall. The ovarian fat pad was externalised and stabilized with a bull clip, and a dissecting microscope was used to locate the oviduct in the exposed ovary. ID8 cells $\left(1 \times 10^{6}\right)$ were injected underneath the left ovarian bursa. The peritoneal wall was sutured closed using $6 / 0$ suture prior to topical Bupivacaine administration and closure of the incision closed with surgical staples. Analgesia (Carprofen $5 \mathrm{mg} / \mathrm{kg}$ body weight) was provided in drinking water for 3 days thereafter. Mice were monitored for body weight, Body Condition Score (BCS) and culled within 13 weeks post-ID8 injection.

2.8.3 Intraperitoneal (disseminated) Ovarian Cancer Model

Female (6 to 8 weeks of age) C57BL6/J wild-type (Ifn $\varepsilon+/+$) mice were injected intraperitoneal with 5×10^{6} ID8 cells. Mice were monitored for body weight, body condition score (BCS) and clinical signs and culled 8 weeks post-ID8 injection. At autopsy, the overall spread and tumour burden of each mouse was documented (number of tumour nodules, sites of nodule deposits
recorded and photographed), ascites fluid was drained from the peritoneum for volume measurement and cell counts and tissue harvested (spleen, diaphragm, peritoneal wall, mesenteric fat, female reproductive tract) for weight measurements and immunohistochemical analysis.

2.8.4 Intraperitoneal Recombinant IFN Administration

IFN treatments were commenced 3 days post-intraperitoneal ID8 cell injections. Mice either received recombinant murine Ifne injected intraperitoneally 3 times a week at a dose of $500 \mathrm{IU} / \mathrm{injection}$ or $\operatorname{Ifn} \beta$ at $500 \mathrm{IU} /$ injection or vehicle for 8 weeks. At autopsy, the orthotopic 'primary" tumour was collected along with metastases (diaphragmatic \& peritoneal), spleen, ascites fluid (volume and cell counts) and peritoneal lavage and samples weighed, photographed and processed for immunohistochemical analysis.

2.9 Statistical Analysis

Data were graphed in GraphPad Prism 7. Significance for parametric data were determined using Student's Unpaired T Test or one-way ANOVA and non-paramteric data were determined using Mann-Whitney t test. Differences were considered significant if the P value was <0.05 and significance is indicated as $* \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01, * * * \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$. Specific details of statistical data are indicated for each figure.

CHAPTER 3:

Analysis of Systemic and Local
Responses Reveals Novel IFN
and Immune Signatures in Breast Cancer

3.1 Declaration

Monash University

Declaration for Thesis Chapter 3

Declaration by candidate

In the case of Chapter 3, the nature and extent of my contribution to the work was the following:

Nature of contribution	Extent contribution	of (\%)
Acquisition of data, analysis and interpretation and writing, reviewing and editing the manuscript	70%	

The following co-authors contributed to the work. If co-authors are students at Monash University, the extent of their contribution in percentage terms must be stated:

Name	Nature Contribution	Extent of contribution (\%) Authors Only
Linden J. Gearing	See statement below	
Natasha K. Brockwell		
Jodee A. Gould		
kConFab		
Nollaig M. Bourke		
Belinda S. Parker		
Paul J. Hertzog		

AUTHOR CONTRIBUTIONS

Conception and Design: Z.C.M, L.J.G, N.M.B., B.S.P and P.J.H

Development of Methodology: Z.C.M, L.J.G., N.K.B., B.S.P and P.J.H.

Acquisition of Data: Z.C.M, L.J.G., N.K.B., J.A.G., kCONfab and P.J.H.

Analysis and Interpretation of Data: Z.C.M, L.J.G. and P.J.H.

Writing, Review and/or Editing of the Manuscript: Z.C.M, L.J.G, N.K.B., N.M.B and P.J.H.

Study Supervision: N.M.B, B.S.P and P.J.H.

The undersigned hereby certify that the above declaration correctly reflects the nature and extent of the candidate's and co-authors' contributions to this work.

Candidate's Signature			

3.2 Analysis of Systemic and Local Responses Reveal Novel IFN and Immune Signatures in Breast Cancer Metastasis

Zoë C. Marks, Linden J. Gearing, Natasha K. Brockwell, Jodee A. Gould, The Kathleen Cunningham Foundation Consortium for research into Familial Breast Cancer, Nollaig M. Bourke, Belinda S. Parker and Paul J. Hertzog, Prepared Manuscript

Analysis of systemic and local responses reveals novel IFN and immune signatures in breast cancer metastasis

Zoe C. Marks ${ }^{1,2}$, Linden J. Gearing ${ }^{1}$, Natasha K. Brockwell ${ }^{3}$, Jodee A. Gould ${ }^{1}$, The Kathleen Cunningham Foundation Consortium for research into Familial Breast Cancer ${ }^{4}$, Nollaig M. Bourke ${ }^{5}$, Belinda S. Parker ${ }^{3}$, Paul J. Hertzog ${ }^{1}$
${ }^{1}$ Centre for Innate Immunity and Infectious Diseases; Hudson Institute of Medical Research; Clayton, Victoria, 3168; Australia.
${ }^{2}$ Department of Molecular and Translational Science; Monash University; Clayton, Victoria, 3168; Australia.
${ }^{3}$ Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University; Bundoora, Victoria, 3083; Australia.
${ }^{4}$ Peter MacCallum Cancer Centre; Melbourne, Victoria, 3000; Australia.
${ }^{5}$ Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute; Trinity College Dublin; The University of Dublin, College Green, Dublin 2; Ireland

* Correspondence:

Acknowledgements:

We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab . kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia

ACKNOWLEDGEMENTS

This work was supported by project grants from the National Health and Medical research Council of Australia (NHMRC) to PJH,. ZCM is supported by an Australian Postgraduate Award; PJH is supported by NHMRC Senior Principal Research fellowship.

In conducting research using animals, the investigators adhered to the laws of Australia and received ethical approval for this research from the Monash University Animal Ethics Committee A.

In conducting research using human tissues, the investigators adhered to the laws of Australia and receive ethical approval for this research from the Monash Health Human Research Ethics Committee (ratified by the Monash University Human Research Ethics Committee).

The authors would like to acknowledge Rebecca Smith for assistance with preparation of the manuscript.

This work is supported from the Operational Infrastructure Fund of the State Government of Victoria.

AUTHOR CONTRIBUTIONS

ZRM was involved in conceptualisation, methodology, formal analysis, investigation aspects of the project and in writing the original draft, review and editing the manuscript

LJG - formal analysis, data synthesis, graphic design, contribution to original manuscript, review

NKB - investigation, formal analysis, contribtuion to original manuscript
JAG - investigation, formal analysis, contribtuion to original manuscript, review
kConFab - conceptualisation, sample and data provision
NMB - conceptualisation, methodology, formal analysis, investigation, contribution to original draft, review and editing manuscript, supervision and acquisition of funding

BSP - conceptualisation, methodology, formal analysis, resources, contribution to original draft, review and editing manuscript, supervision and acquisition of funding

PJH- conceptualisation, methodology, formal analysis, resources, contribution to original draft, review and editing manuscript, supervision and acquisition of funding
*All authors had input into review or editing the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Abstract

The processes that govern breast cancer metastasis remain poorly understood and is the overwhelming cause of death in breast cancer patients. Previous evidence published by our lab revealed a constitutive type I IFN signature, driven by IRF7, which was present in mammary epithelium and primary breast tumours, but lost in bone metastases. Restoring this IFN pathway regulated peripheral anti-tumour immunity and suppressed metastases, however it remained unclear at what point on the metastatic pathway this signalling could be detected and whether this signature may indicate metastatic potential or immune processes occurring in the primary or metastatic sites. In this study, we investigated local, systemic and distant signatures during breast cancer metastasis by analysing blood transcriptomics from matched familial breast cancer patients and multiplex staining of primary and secondary tumour microarrays. We demonstrate the benefit of using familial controls for transcriptomic analysis and identify distinct 'metastasis-associated' blood signatures enriched in platelet activity, T cell suppression and a broad contribution of IFN signalling. We also demonstrate distinct cell signatures in primary and secondary breast tumour tissue, which reflect transcriptional changes seen in the blood. These findings contribute to a greater insight into the processes underlying breast cancer metastasis from local through to distant sites, and support future development of the use of blood transcriptomics to classify breast cancer patient prognosis.

INTRODUCTION

Considerable advances in screening, diagnosis, classification and treatment of primary breast cancers have improved patient outcomes, however breast cancer metastases remain both difficult to predict and treat, and therefore constitute the overwhelming cause of death for patients (1). Thus, there is an urgent need to better understand the processes underlying breast cancer metastasis down to the molecular events occurring not only at the primary tumour site, but also in the systemic vasculature and secondary organs.

Genomic analyses including transcriptomics continue to reveal key pathways in breast cancer pathogenesis and progression (2-6). In fact, we previously showed that in comparison to primary breast tumours, bone metastases express a distinct transcriptome. Further characterisation of this bone metastasis signature revealed a key regulatory pathway involved in breast cancer pathogenesis, specifically metastases, an improved understanding of which may provide insight into potential biomarkers and novel therapy (7). Our experiments revealed interferon regulatory factor 7 (IRF7), a transcription factor known to be a major regulator of type I IFN signalling (8, 9), was unexpectedly highly expressed in primary breast tumours, where it regulated the expression of numerous immunoregulatory genes including the type I IFNs. Moreover, IRF7 expression and a cluster of genes predicted to be regulated by IRF7 were substantially decreased in bone metastases. Through a series of investigations, it was shown that primary tumour cells produced IRF7-driven type I IFNs, which acted on immune cells to prevent metastasis, most specifically to bone. Conversely, loss of this pathway was essential for metastases. Furthermore, expression of the IRF7/IFN pathway in primary tumour samples was found to correlate with patient prognosis, demonstrating that while it showed no impact on the primary breast tumour, the anti-metastatic effects of this pathway have a significant clinical benefit (7).

In order to better understand the mechanisms underlying this pathway and identify potential clinical biomarkers, it is important to establish whether this IFN production detectable locally in primary tumours, is reflected systemically. How the IFN pathway impacts the cells in peripheral blood, the cells known to be key in regulating metastasis (10), is unknown. These findings prompted the following questions: i) does IFN produced by primary tumour cells induce an 'IFN signature' in peripheral blood cells, and ii) could other signatures be identified in peripheral blood, which may or may not be related to IRF7 or IFN, that would modify or reflect the metastatic potential of primary tumour cells and thus, patient prognosis?

Blood transcriptomic analysis has proved a useful tool in characterising disease severity and prognosis in a range of diseases including breast cancer (11-14), however to date, there has been no targeted investigation of the role of this IFN pathway in metastatic blood signatures. We herein aim to further our understanding of these processes by characterising peripheral blood transcriptomes in breast cancer patients with or without metastases, and correlate with immune and cellular infiltrate in primary and metastatic breast tumours to examine each stage and location during the process of metastasis.

METHODS

Patient Cohort- The study was approved by the Human Research Ethics Panel at Monash Health in accordance with the ethical guidelines of the 1975 Declaration of Helsinki. This authorised the use of patient samples \& data previously collected and stored by the Kathleen Cunningham Foundation Consortium for research into Familial Breast Cancer (kConFab) tissue bank (15) (NMA Reference No. LNR/16/MonH/194, kConFab Project No. 157) including preserved peripheral blood mononuclear cells (PBMCs) and tissue microarray (TMA) samples. Written informed consent had previously been obtained from each participant
for research purposes in accordance with the ethical and scientific principles set out by the National Health and Research Council of Australia.

From the available kConFab patient cohort (15), a subset of cases was selected for this study. The chief selection criteria were breast cancer patients who had a known diagnosis of at least one site of metastasis prior to blood collection. Exclusion criteria included other types of primary cancer other than breast cancer. Additionally, family pedigree data from kConFab was used to select at least one of two controls from within the same family, i) breast cancer patients who had not been diagnosed with metastasis and/or ii) donors who had not been diagnosed with cancer. From this, a total of 231 PBMC samples were selected, these consisted of samples from patients with metastatic breast cancer ($\mathrm{n}=28$), patients with non-metastatic breast cancer ($\mathrm{n}=36$) and unaffected donors $(\mathrm{n}=29)$, collectively representing 35 families. All participants had been previously recruited and consented by trained kConFab research nurses to give 9-10 ml peripheral blood collected in Acid Citrate Dextrose (ACD) tubes. All blood was kept at room temperature until processed within 24-48 hours of collection. As per the kConFab bio-specimen collection protocol for PBMC isolation and storage, blood was centrifuged 1300-1500 rpm for 10-15 mins to separate plasma, then transferred into a 50 ml falcon tube containing 10 ml Roswell Parks Memorial Institute (RPMI) media (Life Technologies, USA) before being layered onto 3 ml Ficoll-Paque ${ }^{\mathrm{TM}}$ PLUS (GE Healthcare Bio-sciences, USA) and immediately centrifuged at 1600 rpm for 30 mins without a brake. Separated PBMCs were then collected using a sterile pipette and mixed with 10 ml RPMI media and centrifuged at 1600 rpm for 10 mins. Supernatant was then discarded and PBMCs frozen in sterile solution containing 70\% RPMI, 20\% (v/v) fetal calf serum (FCS, Life Technologies, USA) and 10% DMSO. PBMCs were frozen and stored at $-70^{\circ} \mathrm{C}$.

For breast cancer tissue staining and analysis, TMA slides constructed from formalin fixed paraffin embedded (FFPE) blocks containing primary tumour biopsies from 231 breast
cancer patients were obtained from kConFab . Of these, 20 patients had been diagnosed with metastatic tumours and 211 patients had been diagnosed with primary breast cancer only. Tissue cores from patients were arranged on TMAs in grids containing $60-120$ cores each, a single tissue core per patient.

RNA Extraction \& Chip Hybridisation- The processing of samples, RNA extraction and performance of microarray analysis were performed according to MIAME**-compliant protocols as described in M\&M section and in the attached report (in thesis Appendices). These data are routinely formatted ready for uploading into 'Array Express' at the time of publication.
** MIAME = Minimum Information Essential for Microarray Experiments
Frozen PBMCs were thawed briefly prior to RNA extraction. Total cellular RNA was extracted using Trizol (GIBCO/BRL, Invitrogen) and further purified over Qiagen miRNeasy Mini columns (Qiagen Inc.). Bioanalyzer assessment (Agilent Technologies) was used to measure RNA quality and samples with an RNA integrity number (RIN) ≥ 6.0 were of an acceptable quality for microarray (Schroeder et al. 2006). Purified Cy3-labelled cRNA was generated and hybridized onto Agilent arrays, Agilent-072363 SurePrint G3 Human GE v3 $8 x 60 \mathrm{~K}$ microarrays (Agilent Technologies) at $67^{\circ} \mathrm{C}$ for 17 hours at 20 rpm .

Microarray slide wash \& scan- Disassembly of the slides was performed at room temperature in GE wash buffer 1. The microarray slide was then washed at room temperature in GE wash buffer 1 for 1 minute. The second wash was performed in pre-warmed GE wash buffer 2 for 1 minute. The microarray slide was removed slowly from the second wash and scanned immediately. The slide was loaded into a Version B slide holder (Agilent Technologies, USA) and scanned in a G2505B Series Microarray scanner (Agilent Technologies, USA) using the one-colour scan setting for 8 x 60 K microarray slides (61×21.6 scan region, $3 \mu \mathrm{~m}$ scan resolution,

20-bit Tiff, dye channel was set to green and green PMT selected at 100\%). Feature Extraction Software 9.5.3.1 (Agilent Technologies, USA) was used to analyse the scanned images and log intensity values for each spot were calculated.

Microarray and Statistical Analysis- Microarray analysis was performed using R (v3.4.3). The data and accompanying sample annotation was imported and processed using the limma package (v3.32.10) (16). Probe annotation was obtained from GEO using the GEOquery package (v2.42.0), with the GEO platform identifier GPL21185. For data normalisation, 'normexp' background correction and quantile normalisation were performed. Probes were filtered out using the microarray negative control probes. For each sample, the 95% percentile of expression for the negative controls was calculated. Any probes with expression values at least 10% greater than this were taken as expressed in that sample. Probes were kept only if they were expressed in greater than or equal to 28 samples (the number of samples in the smallest group). Finally, data from any remaining duplicate probes (with the same ID and therefore the same sequence) were then averaged using 'avereps'. These steps reduced the number of probes from 62,976 to 32,801 . Array quality weights were calculated using an intercept design matrix (17) and were incorporated into the linear model. Samples were grouped according to tumour type, 'Unaffected', 'Primary' (non-metastatic breast cancer) or 'Metastasis' (metastatic breast cancer), using family as a blocking factor. This was to adjust tumour type for differences between families. Alternatively, potential confounding clinical variables were tested in the linear model instead of family. Moderated t-statistics were calculated using the 'eBayes' method (18). The Benjamini-Hochberg adjustment (BHadjusted) method and 'global' multiple-testing method were used to adjust P-values for probes and across contrasts between the different tumour types. Differentially expressed probes with an adjusted P-value <0.05 were selected for further analysis.

For gene set enrichment, Entrez gene IDs were used as identifiers and competitive gene set testing was performed using 'camera' (19) from the limma package using a collection of transcriptional modules $(20,21)$. The ssGSEA method was used to assign a score to each sample (22), based on its expression of the module gene sets, using the GSVA package (23). Gene ontology (GO) analyses were performed using the PANTHER Classification System (24). For analysis of IRG expression, the INTERFEROME database V 2.0 (25) was searched for genes up- or down-regulated more than twofold in human cells in response to recombinant IFN stimulation. The resulting genes were matched with microarray probes by Entrez gene ID.

Multiplex immunohistochemistry- Multiplexed staining using the Opal protocol was performed at the Cancer Microenvironment and Immunology Lab, La Trobe University. Firstly, tissue microarrays (TMAs) generated by kConFab were de-paraffinized in histolene and rehydrated in ethanol. Antigen retrieval was performed as per antibody specifications in either pH 6.0 or pH 9.0 (Perkin Elmer) using heated microwave treatment (MWT). Antibodies, blocking buffers, secondary antibodies, opal fluorophores and diluents used were from the Opal 7 Tumor Infiltrating Lymphocyte (TIL) kits (Perkin Elmer) except CD20 was swapped for CD41 and staining was performed as per manufacturers protocol. Following pH 9.0 heated MWT, slides were blocked for 10 minutes and then incubated with anti-CD8 (1:200) for 1 hr in a humidified chamber at room temperature (RT). Slides were washed with TBST (tris buffered saline $+0.05 \%$ tween (v / v)) before addition of secondary antibody for 10 minutes followed by further washing and incubation with Opal-570 TSA (1:50) diluted in amplification diluent for 10 minutes. Slides were then subjected to heated MWT with pH 6.0 buffer and staining was performed as per above with anti-FoxP3 (1:100) and Opal-620. Slides were subjected to heated MWT (15 minutes at 20% power) with pH 6.0 buffers and staining performed as above except primary antibody, anti-CD41(1:250) was left on overnight at 4 degrees in a humidified
chamber, staining resumed as per normal the following day with Opal-540 being used. Slides were subjected to heated MWT pH 6.0 and staining was performed as above with antiCD45RO (1:150) and Opal 650. Slides were subjected to heated MWT with pH 6.0 and staining performed as per above except primary antibody, anti-pan-CK (1:500) was left on overnight at 4 degrees in a humidified chamber, staining resumed as per normal the following day with Opal-690. Slides were subjected to heated MWT pH 9.0 and staining was performed as per above with anti-CD4 (1:150) and Opal 520. Slides were then subjected to heated MWT pH 6.0 and stained with DAPI solution for 3 minutes. Slides were then counted using VECTASHIELD HardSet Antifade mounting medium (Vectorlabs). Slides were then imaged using the VECTRA microscope (PerkinElmer) where whole slide scans were performed and regions of interest captured at 200x magnification.

Multispectral analysis- InForm image analysis software (Perkin Elmer) was used to spectrally unmix and analyse images. Briefly, InForm was trained to segment tissue regions within each individual TMA core between tumor epithelium and surrounding stroma compartments, using DAPI and nuclei size (26). The core was further segmented into individual cells using DAPI staining. Cell scoring was based on expression of said marker and scoring was given as percentage positivity per tissue section, with cells being classed as either single or double positive. H scores were also generated for cytokeratin and CD41 positive tumour cells.

RESULTS

Patient clinical information- A total of 64 breast cancer patients and 29 unaffected donors were included in this study (Table 1). Of the breast cancer patients, 28 patients had been diagnosed with metastatic breast cancer (for the purposes of this study these patients will be referred to as the 'metastasis' group) and 36 patients had been diagnosed with only primary breast cancer (and as such will be referred to as the 'primary' group). Patient information and clinical data was used to inform experimental design and transcriptome analysis (Table 1 and Table 2). Additionally, samples were selected using kConFab family pedigree records so that sets of patients from within the same family could be used as familial controls. In total, 23 complete family sets were selected, each included one breast cancer patient with metastases ('metastasis' group), one female relative with primary breast cancer ('primary group) and one female relative without cancer ('unaffected' group) (Table 3). The remaining 24 patients used in the study come from 12 incomplete family sets from which at least one patient ('metastasis', 'primary' or 'unaffected') was selected. By using familial controls, we were able adjust patient groups for differences between families before applying statistics.

As shown in Table 1 and Table 2, of the 13 clinical parameters studied, only 4 were significantly different across patient groups. These included the number of patient deaths, age at blood sampling, menopausal status and oral contraceptive (OCP) use (Table 1.) Three of these parameters including age, menopause and OCP, were only significantly different in unaffected donors compared to breast cancer patients and showed no difference between breast cancer groups with or without metastases. In comparison to unaffected donors, 70.3% of breast cancer patients were over 50 years old and only 5.6% were younger than 40 years, compared to 34.5% and 48.3% of unaffected donors, respectively (Fisher's Exact test $\mathrm{p}=0.0015$) (Table 1). Additionally, 62.5% of breast cancer patients compared to 24.1% of unaffected donors were post-menopausal at the time of blood sampling (Fisher's Exact test $\mathrm{p}=0.0008$) and none
of the breast cancer patients used the OCP compared to 17.2% of unaffected donors (Fisher's Exact Test $\mathrm{p}=0.0023$). These variables were subject to analysis as potential confounding factors and will be discussed below.

With the exception of one patient in the 'metastasis' group, all patient samples came from females, none of whom were pregnant or taking the oral contraceptive pill at the time of blood collection (Table 1). As expected, a significantly higher proportion of breast cancer patients were deceased (42%) compared to unaffected donors (all of whom were alive at the time of analyses). Of the deceased breast cancer patients, 81.5% patients were from the 'metastasis' group compared to 18.5% 'primary' patients. Cancer was determined the cause of death (COD) for 17 patients from the 'metastasis' group compared to 2 of the 'primary' patients, thus patients with unknown COD were removed from survival analyses ($\mathrm{n}=1$ 'metastasis' patient and $\mathrm{n}=2$ 'primary' patient). Unsurprisingly, breast cancer patients with metastasis had poorer survival (63\%) compared to patients without metastases (6\%) (Fisher's Exact test $\mathrm{p}<0.00001$), highlighting the lethality of metastatic spread of breast cancer. Importantly, within the breast cancer patient groups, no significant difference was seen in any clinical information including primary histological type, treatment received or interval between last treatment and blood collection (Table 2) and therefore, these parameters were not considered confounding variables in the comparison of blood transcriptomic evidence of the metastatic potential of primary tumours.

Potential confounding variables in transcriptome analyses- Peripheral blood mononuclear cells (PBMCs) from each patient were assessed for gene expression using microarrays. Multidimensional scaling (MDS) analyses were used to examine the distribution of samples (Fig. 1A), which demonstrated that the majority of samples plotted in close proximity with no clear separation between sample groups.

We also interrogated the data by adjusting for potential confounding variables to see what impact this had on the number of significantly differentially expressed probes. These variables included patient age at time of blood collection ('age'), which we knew to be significantly lower in unaffected donors compared to both cancer groups (Fig. 1B), as well as the gender of the patients ('gender'), the matched family set they belonged to ('family'), the array chip the sample was run on ('chip'), the patients' OCP use ('OCP') and menopausal status at the time of blood collection ('menopause') and the length of time PBMCs were kept frozen prior to this study ('storage time') (Fig. 1C). A total of 648 probes (219 up-regulated probes and 429 downregulated probes) were significantly differentially expressed between 'metastasis' samples and 'unaffected' samples when patient group was the sole variable considered in the model (Fig. 1C, right-hand column). This was the largest set of differentially expressed probes between any of the patient groups and thus, encompasses the largest variance in the experiment. Adjusting for other variables such as storage time, gender and chip had little impact on differential probe expression and were not considered confounding variables. In contrast, age, menopause and OCP each had a noticeable impact on differential probe expression and combining a third variable into the analysis ('group' + 'age' + 'chip') negated all differentially expressed probes indicating that the model needed more sample power to incorporate this many variables. The effect of age (which also correlates with menopausal status and OCP use) could not be delineated from the presence of cancer. However, there was no significant difference in ages of patients in either breast cancer group, thus any potential effect of age did not impact the key analysis of differences between 'metastasis' and 'primary'.

Additionally, analysis of variables demonstrated that adjusting for family set data yielded the highest number of differentially expressed probes between 'metastasis' and 'unaffected' patient groups: a total of 1,397 probes (524 upregulated probes and 823 downregulated probes) (Fig. 1C). A comparison of paired and unpaired analysis results is
shown in Supplementary Fig. 1, demonstrating an increase in differentially expressed probes for all group comparisons when the samples are matched by familial controls. Family sets therefore provided a method of controlling for population variance and was adopted for all subsequent analyses, a distinct strength of this study.

Peripheral blood signatures in metastatic breast cancer- The expression of a total of 32,801 probes were compared across each of our patient groups using moderated t-statistics and adjusted P values (BH-adjusted with 'global' multiple-testing adjustment). Differentially expressed probes were determined by an adjusted P value <0.05. A comprehensive list of differentially expressed probes, corresponding transcript names, fold changes and P values are listed in Supplementary Table S1-S6** Overall, our analysis identified 171 probes with differential expression in PBMCs from 'primary' compared to 'unaffected' donors (29 upregulated and 142 downregulated probes) (Fig. 2Ai) while 1,397 probes were differentially expressed in PBMCs from 'metastasis' patients compared to 'unaffected' donors (524 upregulated and 823 downregulated probes) (Fig. 2Aii) and 146 probes differentially expressed between 'metastasis' and 'primary' breast cancer patients (123 upregulated and 23 downregulated probes) (Fig. 2Aiii). These differentially expressed probes were plotted in Venn diagrams to identify those that were expressed significantly higher (Fig. 2Bi) or lower across one or more groups (Fig. 2Bii). The genes in each comparison are listed in Supplementary Table S7-S16. Collectively, Supplementary Tables 1-16 contain lists of probes and gene IDs in the respective categories from which individual examples can be identified as having associations to cancer. For the purposes of this study we have directed our focus to the overall processes reflected by these gene sets.

[^2]Gene ontology enrichment analyses were performed on each gene set using PANTHER overrepresentation tests. Biological processes were considered significantly enriched by Fisher's exact test with FDR correction $\mathrm{p}<0.05$. This analysis revealed that among the 73 genes expressed higher in PBMCs from 'metastasis' patients compared to 'primary' and ‘unaffected' patients (including PDGFA, TSPAN33 and XK (Table S10)), the most significantly enriched biological terms included 'platelet degranulation', 'blood coagulation', 'coagulation' and 'hemostasis' (Fig. 2Ci, Supplementary Table 17). Similar processes were enriched in the 350 genes expressed significantly higher in blood from 'metastasis' patients compared to 'unaffected' donors (Supplementary Table 18), suggesting that blood from patients with metastatic breast cancer shows more platelet activation, aggregation, degranulation, endothelial cell proliferation, blood coagulation and hemostasis compared to blood from women without cancer and blood from breast cancer patients whose tumour is not yet circulating or forming macro-metastases. In contrast, the only set of genes expressed at lower levels in group comparisons large enough to return a significant ontology enrichment was the set of 594 genes expressed lower in PBMCs from 'metastasis' patients compared to 'unaffected' donors (Fig, 2Bii). Gene ontology analyses found the biological processes overrepresented in this gene set were predominantly molecular processes vital for cell function including 'gene expression', 'RNA metabolic process' and 'transcription' (Fig. 1Cii) as well as many processes involved in biosynthesis and cellular metabolic pathways (Supplementary Table 19). As expected, similar cellular and metabolic processes were the predominant ontologies significantly underrepresented (fold enrichment $<1, \mathrm{FDR}<0.05$) in genes expressed higher in PBMCs from 'metastasis' patients compared to 'unaffected' donors (Supplementary Table 18). While the only underrepresented ontology in genes expressed lower in PBMCs from 'metastasis' patients compared to 'unaffected' donors was 'response to stimulus' (Fig. 2Cii).

Collectively, these ontologies depict a biological snapshot of the processes occurring in the blood during breast cancer metastasis including an increase in platelet activity, blood coagulation and growth of vasculature, and a decrease in cell transcription and metabolic processes.

Platelets and T cell enriched blood signatures in breast cancer metastasis- To better understand the biological processes underlying the distinct blood signatures during breast cancer metastasis, competitive gene set testing was performed using a set of co-dependent immune-focused transcriptional modules $(20,21)$, to identify those modules that were significantly enriched in the comparisons between the three groups. Probes were annotated by their corresponding set of co-dependent genes or module (listed in Supplementary Table 1 6). Similar to the results of PANTHER gene ontology analyses (which identified platelet activity \& blood coagulation as the most enriched biological processes during breast cancer metastases), the most prevalent cellular immune modules identified were attributed to platelets. 'M1.1_Platelets' were the most significantly positively enriched module found in PBMCs from patients with metastatic breast cancer compared to both unaffected donors (Fig. 3Ai,) and nonmetastatic breast cancer (Fig. 3Aii,), which further validated the findings of PANTHER enrichment. 'Inflammation' was also significantly positively enriched in metastatic breast cancer compared to both other patient groups (Fig. 3Ai, ii) and other modules including 'cell cycle' and 'mitochondrial stress response' were significantly enriched in PBMCs from 'metastasis' patients compared to 'primary' patients (Fig. 3Aii). In contrast, T cell modules were significantly negatively enriched in PBMCs from 'metastasis' patients compared to both 'unaffected' donors (Fig. 3Ai) and 'primary' patients (Fig. 3Aii). Additionally, 'interferon' modules were significantly negatively enriched gene sets in metastatic breast cancer compared to non-metastatic (Fig. 3Aii), however no individual probes from the 'M1.2_Interferon' or
'M3.4_Interferon' modules were significantly differentially expressed. Analyses revealed that this enrichment reflected a global decrease in IFN signalling in PBMCs from patients with metastases, likely due to a collection of IFN-related transcripts showing similar trends in lower expression.

To complement this analysis, gene sets were compared by single sample gene set enrichment analysis (ssGSEA) assigning an enrichment score to each patient across all three groups and thus demonstrate a continuum of disease progression from unaffected to primary cancer to metastases (Fig. 3Bi,ii). This demonstrates the progressive increase in platelet signatures and decrease in T cell signatures throughout disease progression. Similarly, an analysis of individual genes is exemplified by including transcripts such as TSPAN33, a member of the tetraspanin family identified in platelet membrane proteomics (27) (Fig. 3Ci), and $E D A R$, ectodysplasin-A receptor for T cell signatures (Fig. 3Cii).

Together, these enrichment analyses contribute further to our appreciation of the molecular events occurring in peripheral blood cells which reflect the metastatic process of breast cancer. Specifically, these data suggest an environment whereby platelet activity is increased, T cells and potentially other known anti-tumour cell populations are suppressed along with a broad suppression of IFN signalling, which may reflect a continuing process of disease progression.

Interferon signalling in blood during breast cancer metastasis- We used a series of analyses to further investigate interferon-related differences in blood signatures from metastatic and non-metastatic breast cancer. Probes differentially expressed in PBMCs from 'metastasis' patients compared to 'primary' patients were plotted on a heat map showing the relative expression compared to the average expression across all samples in each patient group (Fig. 4). Hierarchical clustering was used to separate these 146 probes into 5 clusters ($\mathrm{C} 1-\mathrm{C} 5$),
each of which contained probes with similar expression patterns across the experiment (Fig. 4, right y axis). Aligned with these clusters are the immune-focused modules to which each transcript was assigned (Fig 4. left y axis). We also used the INTERFEROME, an online tool developed by the Hertzog Lab comprising an extensive catalogue of published IFN experiments and characterising an exhaustive list of genes which constitute a transcriptional IFN response across a range of conditions, in vitro and in vivo, as well as different species and different subtypes of $\operatorname{IFN}(25,28)$. This database contains over 4,000 genes that are potentially IFN regulated. As such it represents a broader definition of IFN responsive genes and thus, a more in-depth interrogation of IRG enrichment than the transcriptional modules defined above. We used this tool to search our differentially expressed probe lists for IFN responsive genes and thus, broadly characterise peripheral IFN signalling during breast cancer metastasis. The total 131 genes differentially expressed in metastatic compared to non-metastatic breast cancer were searched against the INTERFEROME database to determine which were IFN-regulated genes (IRGs). Genes were considered IRGs if they existed in the INTERFEROME database with a 2 -fold increase or decrease in response to IFN treatment. Table 4 provides an abbreviated list of each cluster, the total number of probes in each, examples of genes within each cluster and whether these genes were determined IRGs by the INTERFEROME (the full set of clusters are listed in Supplementary Table 20). In total, 50 out of 131 (38.2\%) differentially expressed genes in PBMCs from 'metastasis' patients compared to 'primary' patients were identified as IRGs (45 expressed higher and 5 expressed lower in 'metastasis' patients) (Supplementary Table 25 \& 26).

Further INTERFEROME analyses revealed that a total of 412 out of 1,210 (34.0\%) genes differentially expressed in PBMCs across any of our patient groups were identified as IRGs (Fig. 5A, Supplementary Table 21-26). The total 412 differentially expressed genes in our study identified using the INTERFEROME as IRGs were plotted in a Venn diagram for
comparison (Fig. 5Bi). This revealed that distinct subsets of IRGs were expressed in PBMCs according to patient pathology (a full list of these subgroups is available in Supplementary Table 27). A subset of 28 IRGs were significantly differentially expressed in PBMCs from breast cancer patients regardless of metastases and thus constitute a 'cancer-associated' signature including $A T M$, a known breast cancer susceptibility gene (29). A subset of 15 IRGs were differentially expressed solely in 'primary' patients compared to 'unaffected' donors and thus were considered as a chronic disease IRG subset, including genes such as GBP1 \& GBPIL1 which have been associated with vascular dysfunction in chronic inflammatory diseases (30). Additionally, three distinct subsets of 'metastasis'-associated IRGs were identified: 319 that were solely differentially expressed in 'metastasis' patients compared to 'unaffected' donors (an acute cancer/disease-associated subset); 37 that were differentially expressed in 'metastasis' patients compared to both other groups (a 'metastasis-specific' subset); and 12 that were expressed differentially between 'metastasis' and 'primary' patients but that did not differ to 'unaffected'. All metastasis-associated subsets of IRGs were combined (312 'cancer-associated’ IRGs, 36 'metastasis-specific' IRGs and 12 'non-primary cancer-associated' IRGs) and analysed using PANTHER for gene ontology enrichment. Interestingly, the most significantly enriched ontologies amongst IRG expression in the blood during metastasis remained platelet activation, degranulation and hemopoiesis pathways (Fig. 4Bii, Supplementary Table 28), demonstrating that IFN signalling may play a role in the systemic processes vital to metastasis in less well-characterised IFN functions.

Collectively these data demonstrate that transcriptional signatures indicate the vast molecular processes occurring in peripheral blood of patients with metastatic breast cancer. Specifically, these signatures demonstrate differences in systemic IFN signalling with a global decline in well-characterised IFN module expression during breast cancer metastasis, while in contrast, revealing an enrichment of IRGs contributing to metastasis-associated pathways such
as platelet activity. This highlights the vital role IFN signalling may play during disease progression and the importance of characterising broad-spectrum IFN responses as a means to better understand the complex processes underlying metastasis and potentially develop novel biomarkers.

Distinct cell signatures reflect the metastatic potential of primary breast tumours- To understand the local molecular processes underlying breast cancer metastasis from the primary tumour and to contextualise our findings in peripheral blood, we stained tissue microarrays (TMAs) using multiplex immunohistochemistry to visualise different cell populations in primary tumour samples from 231 breast cancer patients (TMAs accessed via kConFab (15)). Of these, 211 breast cancer patients had not been diagnosed with metastases and 20 patients either had already been diagnosed with metastases at the time of tissue collection or went on to develop metastatic cancer. This was an opportunity to examine cell differences in primary breast tumours that may drive metastasis or indicate metastatic potential, and be reflected systemically by our metastasis-associated signatures. Within the limitations of this study, priority was given to the analysis of established cell markers including pan-cytokeratin (panCK) for tumour cells (31), CD8 for CD8+ T cells (32), CD45RO for activation of effector cells or memory phenotype (33), CD41 for platelets (34), CD4 for CD4+ T cells and FoxP3 (35). Direct markers of IFN response for multiplex analysis require further development at the time of preparation of this thesis. The combination of these allowed us to translate our findings in peripheral blood signatures by investigating the most significantly positively and negatively enriched blood cell pathways in primary tissue.

Here we show, composite (multispectral stain overlaying all markers) and "pathology" (deconvoluted single CD45RO+ stain) images of multiplex staining from three representative TMA cores taken from patients with non-metastatic breast cancer (i - iii) or patients with
metastatic breast cancer (iv - vi). The composite images show the overall tissue architecture of each core including the spatial relationship between tumour cells (CK +) and stromal tissue as well as the concentration of immune cells in the stroma and density of cellular content. By comparing the composite morphology of non-metastatic primary tumours (Fig. 6Ai-iii) and primary tumour with metastatic potential (Fig. 6Aiv-vi) there was a trend towards nonmetastatic tumours forming large, clustered tumour nodules some of which were double positive for epithelial and platelet markers (CK + CD41+), suggesting that in some cases platelets may aggregate around or coat primary tumour cells. Overall, the structure of nonmetastatic primary tumours was well-organised with frequent evidence of immune infiltrate in the stroma surrounding tumour nodules. The stroma often stained positive for CD8 T cells (CD8+), which displayed a high frequency of activation (CD8+CD45RO+) (Fig. 6Ai-iii). By deconvoluting CD45RO + cells into a single stain, we found that immune activation was present within the stroma of non-metastatic primary tumours, often occurring in concentrated areas of immune infiltrate. In contrast, primary tumours with metastatic potential, showed distinct tissue morphology (Fig. 6Aiv-vi). These tumours ($\mathrm{CK}+$) were more diffusely distributed across the tissue core, with scattered tumour clusters, usually containing fewer tumour cells per cluster, yet overall demonstrating more $\mathrm{CK}+$ cells per tissue core than non-metastatic primary tumours. The structure of the tumour microenvironments was disorganised in primary tumours with metastatic potential and showed some CD8+ stroma, however there were significantly fewer total CD8 T cells per stromal region compared to non-metastatic tumours as well as fewer activated CD8 T cells and no clear arrangement or distinction between tumour clusters and stroma.

As expected, the patient tissue cores varied in an extent in tumour content and structure difficult to quantify by visual observation alone. We therefore used multispectral analyses to systematically quantify staining positivity for each marker across all patient samples. For
tumour and platelet markers, the percentage of positive cells per total cells in each tissue core was calculated and for immune markers, the percentage of positive cells per cells in the stromal region was calculated. Overall, primary breast tumours with metastatic potential (MP) had significantly higher proportions of tumour cells per core (Fig. 6Bi), which corresponded with a trend towards an increase in tumour-associated platelets (Fig. 6Bii) compared to nonmetastatic (Non-M) primary breast tumours. In contrast, MP primary tumours had a significantly lower proportion of stromal CD8+ T cells (Fig. 6Biii), which were also less activated demonstrating a lower proportion of CD8+CD45RO+ cells compared to Non-M primary tumours (Fig. 6Biv). Further classification of the six representative patient cores (i vi) showed a trend towards Non-M primary tumour samples having a higher stromal content per tissue core (average 77.44% per core), longer metastasis-free survival (average 7,550 days) and overall prognosis (average 33% of patients deceased) compared to 56.8% stroma per core, 4,106 days MFS and 66% mortality for patients with MP primary tumours, respectively (Fig. 6C). This integration of clinical and cell signature data, while needing further expansion beyond this study, demonstrates the potential benefit and application of these signatures in understanding the nature of each tumour and stratifying patients based on metastatic potential.

Taken together, these data show distinct differences in the tissue architecture, proportion of cell types and spatial relationship between cells in primary breast tumours as an indication of metastatic potential. Primary breast tumours which have already or are certain to metastasise and thus have high metastatic potential, have disorganised tumour clusters throughout the tissue, which also stain positive for platelets, sparse stromal regions containing few total effector T cells as well as poor activation in contrast to primary non-metastatic tumours. Overall, these local cell signatures reflect our systemic transcriptome data which demonstrated that in PBMCs from patients with metastatic breast cancer there was a strong enrichment of platelet activity partially regulated by our broadly classified IFN responsive genes, a
suppression of T cell signalling as well as a suppression of a subset of well-characterised IFN signalling and cellular functions such as transcription and metabolism, which may prevent processes such as immune activation. Here, we demonstrate that systemic transcriptome data may indeed reflect processes occurring at the primary tumour site and indicate metastatic potential.

Distant metastases maintain an immunocompromised status and lose platelet signature- To

 correlate our data on local cell signatures in the primary tumour and systemic transcriptomic data with the processes occurring at the site of distant metastases, we investigated the same panel of cell marker staining in TMAs containing secondary/metastatic tumour samples alongside our primary tumour cohort. Given the difficulty of accessing metastases from terminally ill patients the study was limited at this stage to staining secondary tumours from 7 breast cancer patients (in technical replicates $n=1-3$, each averaged). Figure 7 shows composite images, score maps (a comparison of CK+CD41+ overlap) and deconvoluted pathology images for CK+ and CD41+ cells of multispectral stains in secondary tumour and primary tumour samples divided into metastatic potential (MP) tumours and non-metastatic (Non-M) tumours. The example secondary tumour shown shows a well-established tumour mass with densely populated tumour cells growing in close proximity and a distinct lack of extracellular space or stromal tissue and immune infiltrate in contrast to primary tumour samples (Fig. 7A). The overlapped score map shows the breakdown of CK+CD41- cells (shown in red), CD41+CK- cells (green), double positive cells (yellow) and double negative cells (blue), combined with individual pathology stains demonstrates that secondary tumour samples generally showed a higher proportion of tumour cells $(\mathrm{CK}+$) that were negative for the platelet marker (CD41-), which corresponded with an overall decrease in the proportion of CD41 + cells in comparison to primary breast tumours. As expected, individual patient samplesvaried to an extent and thus we did not rely solely on visual observation. These observations were combined with multispectral analyses which revealed that, in contrast to primary breast tumours, secondary breast tumours showed a significant reduction in total platelets (CD41+) (Fig. 7Bi) and more specifically, a decrease in tumour cells positive for platelet marker staining (CK+CD41+) (Fig. 7Bii), and inversely, an increase in tumours cells negative for platelet marker staining (CK+CD41-) (Fig. 7Biii). Additionally, we found that secondary tumour samples demonstrated a similar immune infiltrate pattern to primary tumours with metastatic potential with a trend towards a decrease in total CD4+ T cells (Fig. 7iv) as well as trend towards a decrease in total CD8+ T cells (Fig. 7Bv) and activated CD8+ T cells (CD8 +CD45RO+) (Fig. 7Bvi).

Interestingly, these data on cell signatures in distant secondary tumours partly align with our findings in local and systemic metastatic signatures, which reveal a decrease in infiltrating T cells in primary breast tumours that metastasise and loss of T cell signatures in peripheral blood cells from breast cancer patients with metastasis compared to patients with non-metastatic breast cancer. Here, we see a similar trend in few infiltrating immune cells, potentially reflective of an established immunosuppressive microenvironment. In contrast, secondary tumours show a decrease in the overall platelet signature that was enriched in both primary tumour tissue staining and peripheral signatures from patients with metastatic breast cancer. This may suggest that the role of platelets in promoting metastasis and the close physical association between tumour cells and platelets throughout the initiation and systemic circulation of breast cancer metastasis is no longer required once tumour cells seed secondary sites, supported by an immunosuppressed microenvironment. These data further contribute to our knowledge of the distinctions between local, systemic and secondary signatures during metastasis.

DISCUSSION

The processes involved in breast cancer metastasis occur as co-ordinated molecular events located not only at the primary tumour site, but also throughout the metastatic pathway including in the peripheral vasculature and secondary organs. These processes, driven by cells at the primary tumour site, in circulation and at the site of micro-metastases, may already be at work long before medical detection or intervention (36-39), and overwhelmingly contribute to patient mortality. Gene expression profiling studies have provided insight into the severity and prognosis of several cancers including breast cancer ($2-4,6,11,12,40,41$), however most of these have focused on characterising the primary tumour transcriptome and thus, omitted the corresponding events occurring systemically as well as at secondary sites. Our lab and collaborators previously characterised a specific IFN signature present in primary tumour cells, the loss of which was critical in suppressing systemic anti-tumour immune responses and facilitating breast cancer metastasis to bone (7). Our aim here was to further characterise this pathway, specifically investigate whether the presence of this signature in primary tumour cells would influence the systemic transcriptome or metastatic tumour signatures, and thus provide a mapped pathway analysis of breast cancer metastasis that would both inform our understanding of processes occurring in the circulation and generate a systemic signature that could serve as a disease biomarker.

One of the strengths of the analyses of blood transcriptomics in this study was the use of matched familial samples, which allowed for paired analyses across patient groups. As we showed, the use of paired familial samples enabled an increased analytical power of transcriptomic differences across groups of human samples in part, because a proportion of the human transcriptome is highly heritable $(42,43)$. By incorporating paired familial controls into our analyses, we found more than a 2-fold increase in the number of differentially expressed probes detected in PBMCs from patients with metastatic breast cancer compared to
unaffected donors, and most importantly, almost an 8-fold increase in detection of differentially expressed probes between breast cancer patients with or without metastases. This suggests that studies investigating blood transcriptomics in breast cancer may benefit from familial controls, which have not previously been adopted.

Overall, we identified gene expression signatures in peripheral blood immune cells (PBMCs) associated with breast cancer metastasis. Among genes significantly up-regulated in blood from metastatic compared to non-metastatic breast cancer patients and unaffected donors, several biological processes were enriched (FDR <0.05) including platelet degranulation (GO:0002576), blood coagulation (GO:0007596, GO:0050817) and hemostasis (GO:0007599). Too few genes were down-regulated in blood from metastatic patients compared to non-metastatic patients for gene enrichment analyses to be performed. However, in comparison to unaffected donors, genes down-regulated in blood from metastatic patients were significantly enriched in gene expression/transcription (GO:0010467, GO:0006351, GO:0097659) and RNA metabolic process (GO:0016070), while the only significantly negatively enriched process among down-regulated genes was response to stimulus (GO:0050896).

Platelet degranulation leads to the secretion of growth factors and lipids into the blood. This in turn recruits more platelets which form aggregates as well as promote blood coagulation, two of the key processes required to shield circulating tumour cells from immune detection and aid adherence to endothelial surfaces at secondary site for metastasis $(44,45)$. Increased platelet activity has been identified in a number of cancers including breast cancer (46) and associated with poor prognosis (47). Our findings align with previous evidence to suggest this pathway is active and enriched in blood during breast cancer metastasis. Additionally, our data agree with previous reports that cell processes such as metabolism are
suppressed in peripheral blood signatures in breast cancer (11) and may reflect the broad metabolic changes observed during cancer (48).

Immune cells effect tumour spread at each stage of the metastatic pathway: i) during primary tumour development and growth in situ; ii) during migration and circulation of tumour cells in systemic vasculature; and iii) in successful colonisation of secondary tissue. The significant contribution of the cells of immune system to this process has both the potential to suppress, but also aid tumour metastasis. Characterisation of the properties of both paradoxical roles of the immune system are the subject of much investigation. We investigated the contribution of the immune system to our metastatic blood signature through gene module enrichment (20,21). This analysis firstly, validated a significant enrichment of platelet signatures in the blood of metastatic breast cancer patients in comparison to both nonmetastatic patients and unaffected donors, which corresponded with a mild increase in inflammation. It also validated the suppression of cell processes such as cell cycle (M3.5, M4.7) and protein synthesis (M4.3), however in addition it identified a significant suppression in several T cell modules (M4.1, M4.15) as well as multiple well-characterised interferon (IFN) modules (M3.4, M1.2). IFNs are known to have potent anti-tumour effects, in part through activation of anti-tumour immune responses including T cells (49), which we previously demonstrated in preventing breast cancer bone metastasis (7). In our previous study, expression of IFN in primary breast tissue had no impact on primary growth, instead having a purely anti-metastatic effect via peripheral immune activation. Our present data on suppression of systemic IFN/immune signatures in patients with metastatic compared to non-metastatic breast cancer further corroborate the processes occurring systemically during metastasis.

Further investigation of IFN signalling via the INTERFEROME tool for expansive identification of IFN response genes demonstrated that while well-defined IFN modules were systemically suppressed during metastasis, IFN signalling was a considerable component of
the metastasis-associated blood signature found in breast cancer patients. Furthermore, the most significantly enriched biological processes represented by the GO's of these lesscharacterised IRGs associated with metastasis- were platelet degranulation, activation (GO:0030168) and blood coagulation as well as cell-cell adhesion (GO:0034109) and cell junction assembly and organisation (GO:0034329, GO:0034330). The higher number of genes identified by the INTERFEROME analysis suggests that not only is classical IFN signalling suppressed systemically during metastasis, in support of our previous findings, but that broader, less characterised IFN signalling contributes to the processes critical for successful tumour cell circulation such as key platelet-related pathways: activation and the promotion of epithelial-mesenchymal-like transition (EMT) and adhesion to endothelial surfaces for extravasation (50).

Finally, we combined our blood transcriptomics data with multiplex immune staining in primary breast tumours divided by metastatic potential and secondary tumour samples. Interestingly, the vast majority of primary breast tumour nodules stained positive for a platelet marker, CD41, suggesting that platelets were in fact present in most primary breast tumours prior to or regardless of metastatic burden. Primary breast tumours with metastatic potential demonstrated a significantly higher proportion of tumour cells with a trend towards a higher proportion of double positive $\mathrm{CK}+\mathrm{CD} 41+$ tumours. These findings correspond with previous detection of platelets surround primary tumour samples in pancreatic cancer (51). Additionally, in breast cancer, platelet staining in primary tumours correlated with response to chemotherapy (52), suggesting that the local presence of platelets coating tumour cells may occur much earlier than detection of macro-metastases and aid in survival and progression of the primary tumour. In contrast, this platelet cell signature was significantly reduced in secondary tumour samples, demonstrated by reduced numbers of both individual total platelet and tumour-associated platelet staining in metastases samples as well as an increase in non-
coated tumour cells. This may reflect the fact that once seeded in secondary sites, which may even have been platelet-primed for colonisation $(53,54)$, tumour cells no longer rely as heavily on platelet aggregation and signalling to survive. We also found decreases in total CD4+ and CD8+ T cells as well as activated CD8+ T cells in both primary breast tumours with metastatic potential as well as secondary tumours, supporting our hypothesis that immune activity (potentially IFN-driven) is suppressed during successful metastatic pathways.

CONCLUSION

This study investigates local, systemic and distant signatures during breast cancer metastasis and reveals significant differences in metastasis-associated peripheral blood transcriptomic signatures in breast cancer patients matched to familial controls including an enrichment of platelet activity, T cell suppression and a broad contribution of IFN signalling. We show a distinct cell signatures in primary and secondary breast tumour tissue, which reflect changes seen in the blood and provide a map of metastasis from local through to distant sites. Further interrogation of signatures in breast cancer will likely provide greater insight into the mechanisms including cell subsets, signals and secreted factors underlying these changes and potentially support the development of "liquid biopsy" for classifying metastatic potential.

REFERENCES

1. Downs-Holmes C, Silverman P. Breast Cancer: overview \& updates. Nurse Pract. 2011;36(12):20-6.
2. Ascierto ML, Kmieciak M, Idowu MO, Manjili R, Zhao Y, Grimes M, et al. A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat. 2012;131(3):871-80.
3. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436(7050):518-24.
4. van t'Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):5306.
5. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346-52.
6. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):53749.
7. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224-31.
8. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature.

2005;434(7034):772-7.
9. Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, et al. Distinct and essential roles of transcriptions factors IRF-3 and IRF-7 in response to viruses for IFN- α / β gene induction. Immunity. 2000;13(4):539-48.
10. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155-67.
11. Aaroe J, Lindahl T, Dumeaux V, Saebo S, Tobin D, Hagen N, et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Res. 2010;12(1):R7.
12. Sharma P, Sahni NS, Tibshirani R, Skaane P, Urdal P, Berghagen H, et al. Early detection of breast cancer based on gene-expression patterns in peripheral blood cells. Breast Cancer Res. 2005;7(5):R634-44.
13. Tudoran O, Virtic O, Balacescu L, Pop L, Dragla F, Eniu A, et al. Differential peripheral blood gene expression profile based on Her2 expression on primary tumors of breast cancer patients. PLoS One. 2014;9(7):e102764.
14. Mohr S, Liew CC. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med. 2007;13(10):422-32.
15. Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1).
16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
17. Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, et al. Empirical array quality weights in the analysis of microarray data. BMC Bioinformatics. 2006;7.
18. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics. 2016;10(2):946-63.
19. Wu D, Smyth GK. Camera: A competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40(17).
20. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, et al. A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus. Immunity. 2008;29(1):150-64.
21. Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcriptional repertoire analyses. Nature Reviews Immunology. 2014;14(4):271-80.
22. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108-12.
23. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14.
24. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the panther classification system. Nat Protoc. 2013;8(8):1551-66.
25. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013;41(Database issue):D1040-6.
26. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma in Situ, Metastatic Tumor Deposits and Areas for Further Research. Adv Anat Pathol. 2017;24(5):235-51.
27. Lewandrowski U, Wortelkamp S, Lohrig K, Zahedi RP, Wolters DA, Walter U, et al. Platelet membrane proteomics: a novel repository for functional research. Blood. 2009;114(1): $10-9$.
28. Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. 2009;37(Database issue):D852-7.
29. Ahmed M, Rahman N. ATM and breast cancer susceptibility. Oncogene. 2006;25(43):5906-11.
30. Hammon M, Herrmann M, Bleiziffer O, Pryymachuk G, Andreoli L, Munoz LE, et al. Role of guanylate binding protein-1 in vascular defects associated with chronic inflammatory diseases. J Cell Mol Med. 2011;15(7):1582-92.
31. Lu S-H, Tsai W-S, Chang Y-H, Chou T-Y, Pang S-T, Lin P-H, et al. Identifying cancer origin using circulating tumor cells. Cancer Biol Ther. 2016;17(4):430-8.
32. Appay V, van Lier RAW, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: Consensus and issues. 2008;73A(11):975-83.
33. Hu G, Wang S. Tumor-infiltrating CD45RO(+) Memory T Lymphocytes Predict Favorable Clinical Outcome in Solid Tumors. Sci Rep. 2017;7(1):10376.
34. Galindo M, Gonzalo E, Martinez-Vidal MP, Montes S, Redondo N, Santiago B, et al. Immunohistochemical detection of intravascular platelet microthrombi in patients with lupus nephritis and anti-phospholipid antibodies. Rheumatology (Oxford). 2009;48(8):1003-7.
35. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumorinfiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022-9.
36. Pantel K, Alix-Panabieres C. Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. BoneKEy reports. 2014;3:584.

37. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific

 biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329-40.38. Braun S, Naume B. Circulating and disseminated tumor cells. J Clin Oncol. 2005;23(8):1623-6.
39. Bidard FC, Kirova YM, Vincent-Salomon A, Alran S, de Rycke Y, Sigal-Zafrani B, et al. Disseminated tumor cells and the risk of locoregional recurrence in nonmetastatic breast cancer. Ann Oncol. 2009;20(11):1836-41.
40. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A. 1999;96(16):9212-17.
41. Dumeaux V, Ursini-Siegel J, Flatberg A, Fjosne HE, Frantzen JO, Holmen MM, et al. Peripheral blood cells inform on the presence of breast cancer: a population-based casecontrol study. Int J Cancer. 2015;136(3):656-67.
42. Wright FA, Sullivan PF, Brooks AI, Zou F, Sun W, Xia K, et al. Heritability and genomics of gene expression in peripheral blood. Nat Genet. 2014;46(5):430-7.
43. Huan T, Liu C, Joehanes R, Zhang X, Chen BH, Johnson AD, et al. A systematic heritability analysis of the human whole blood transcriptome. Hum Genet. 2015;134(3):34358.
44. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123-34.
45. Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev. 2014;33(1):231-69.
46. Blann AD, Gurney D, Wadley M, Bareford D, Stonelake P, Lip GY. Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagul Fibrinolysis. 2001;12(1):43-50.
47. Taucher S, Salat A, Gnant M, Kwasny W, Mlineritsch B, Menzel R-C, et al. Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb Haemost. 2003;89(6):1098-106.
48. Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer. 2002;2(11):862-71.
49. Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: Implications for cancer therapy. Nature Reviews Cancer. 2016;16(3):131-44.
50. Gay LJ, Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553-4.
51. Miyashita T, Tajima H, Makino I, Nakagawara H, Kitagawa H, Fushida S, et al. Metastasis-promoting role of extravasated platelet activation in tumor. J Surg Res. 2015;193(1):289-94.
52. Ishikawa S, Miyashita T, Inokuchi M, Hayashi H, Oyama K, Tajima H, et al. Platelets surrounding primary tumor cells are related to chemoresistance. Oncol Rep. 2016;36(2):78794.
53. Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J, et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 2004;114(12):1714-25.
54. Leblanc R, Lee SC, David M, Bordet JC, Norman DD, Patil R, et al. Interaction of platelet-derived autotaxin with tumor integrin alphaVbeta3 controls metastasis of breast cancer cells to bone. Blood. 2014;124(20):3141-50.

Table 1. Characteristics of the human cohort used for PBMC transcriptome analyses including breast cancer patients and unaffected donors.

	Breast Cancer N (\%)			Unaffected N (\%)	Fisher Exact test	
	Metastases		Total		Metastasis V Primary	CancerVUnaffected
	Yes 'Metastasis'	No 'Primary'				
	28 (43.7)	36 (56.3)	64 (100.0)	29 (100.0)		
Gender					0.4375	>0.9999
F	27 (96.4)	36 (100.0)	63 (98.4)	29 (100.0)		
M	1 (3.6)	0 (0.0)	1 (1.6)	0 (0.0)		
Deceased					<0.00001	<0.00001
Y	22 (78.6)	5 (13.9)	27 (42.2)	0 (0.0)		
N	6 (21.4)	31 (81.1)	37 (57.8)	29 (100.0)		
Cancer COD	N (\% of deceased)					
Y	17 (77.3)	2 (40.0)	19 (70.4)	NA	0.5212	NA
N	4 (18.2)	1 (20.0)	5 (18.5)	NA		
Unknown	1 (4.5)	2 (40.0)	3 (11.1)	NA		
At time of sampling						
Age (years)					0.7858	0.0015
0-50	9 (32.2)	10 (27.8)	19 (39.7)	19 (48.3)		
51-90	19 (67.8)	26 (72.2)	45 (70.3)	10 (34.5)		
Pregnant					>0.9999	>0.9999
Y	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)		
N	28 (100.0)	36 (100.0)	64 (100.0)	29 (100.0)		
Menopause					0.2979	0.0008
Y	20 (71.8)	20 (55.6)	40 (62.5)	7 (24.1)		
N	8 (28.2)	16 (44.4)	24 (37.5)	22 (75.9)		
OCP					>0.9999	0.0023
Y	0 (0.0)	0 (0.0)	0 (0.0)	5 (17.2)		
N	28 (100.0)	36 (100.0)	64 (100.0)	24 (82.8)		

*Data are expressed as number of participants and percentage of the total cohort for each column (unless otherwise specified). F - female, M - male, COD - cause of death, Y - yes, N-no, OCP - oral contraceptive pill. Significance was determined by Fisher's Exact Test and P values are indicated.

Table 2. Clinical information of breast cancer patients used for PBMC transcriptional analyses.

	$\begin{aligned} & \text { Breast Cancer } \\ & \text { N(\%) } \end{aligned}$			Fisher Exact Test
	Metastases		Total	
	Yes	No		
	28 (43.7)	36 (56.3)	64 (100.0)	0.2158
Clinical nodal status				
NO	12 (42.9)	13 (36.1)	25 (39.1)	0.6145
N1	5 (17.9)	5 (13.9)	10 (15.6)	0.7367
N2-3	2 (7.1)	2 (5.6)	4 (6.2)	>0.9999
Unknown	9 (32.1)	16 (44.4)	25 (39.1)	0.4392
Primary clinical tumour grade				
1	2 (7.1)	7 (19.4)	9 (14.1)	0.2778
II	6 (21.4)	13 (36.1)	19 (29.7)	0.2729
III	9 (32.1)	6 (16.7)	15 (23.4)	0.2338
Unknown	11 (39.3)	10 (27.8)	21 (32.8)	0.4232
Primary histological type				
Ductal	22 (78.6)	26 (72.2)	48 (75.0)	0.7718
Lobular	3 (10.7)	3 (8.3)	6 (9.4)	>0.9999
Other	2 (7.1)	3 (8.3)	5 (7.8)	>0.9999
Unknown	1 (3.6)	4 (11.1)	5 (7.8)	0.3753
Primary breast cancer subtype				
Luminal A	3 (10.7)	4 (11.1)	7 (10.9)	>0.9999
Luminal B	1 (3.6)	1 (2.8)	2 (3.1)	>0.9999
HER2+	1 (3.6)	1 (2.8)	2 (3.1)	>0.9999
Basal-like	2 (7.1)	0 (0.0)	2 (3.1)	0.1875
Unknown	21 (75.0)	30 (83.3)	51 (79.7)	0.5342
Treatment received				
Chemotherapy	10 (35.7)	10 (27.8)	20 (31.2)	0.4310
Radiation	12 (42.9)	13 (36.1)	25 (39.1)	0.6145
Anti-hormone	14 (50.0)	13 (26.1)	27 (42.2)	0.3134
Other	2 (7.1)	2 (5.6)	4 (6.2)	>0.9999
None	6 (21.4)	10 (27.8)	16 (25.0)	0.7718
Time between treatment \& sampling				
0-1 years	6 (21.4)	5 (13.9)	11 (17.2)	0.5127
1-5 years	10 (35.7)	8 (22.2)	18 (28.1)	0.2717
>5 years	5 (17.9)	10 (27.8)	15 (23.4)	0.3904

[^3]Figure 1.

Figure 1. Analysis of transcriptional variance and confounding variables in PBMC microarray. Microarray analysis was performed using PBMCs from breast cancer patients with metastases ('metastasis'), breast cancer patients with no metastases ('primary') and unaffected donors. (A) Multidimensional scaling (MDS) plot shows the relationship between individual samples based on transcriptional similarity, coloured by patient group and shaded by array quality weighting. (B) Plot shows ages of individual patients in each group at time of blood collection. (C) Heat map shows significantly differentially expressed probes in PBMCs from 'metastasis' patients compared to unaffected donors ('group' analysis, right hand column) along with adjustment for potential confounding variables (shown on the x axis). Each column shows the probes that were significantly differentially expressed incorporating the indicated variables into the linear model. Probes are coloured by whether they significantly regulated (+1) or downregulated (-1). Significance was determined using BH-adjusted P value $<$ 0.05 .

Table 3. Distribution of human samples across patient pathology and matched family groups.

Patient Pathology			No. of families	No. of samples				
Metastases	Primary	Unaffected		1				
0	1	0	3	1				
1	1	0	2	6				
0	2	0	2	4				
1	0	1	1	23				
0	1	1	1	69				
1	2	1	35	3				
0	Total			9				
								3

*A total of 93 PBMC samples were used for transcriptome analyses. These samples came from breast cancer patients with and without metastatases ('metastases' and 'primary' groups, respectively) and unaffected donors. Overall, the samples used in the study came from 35 matched family groups, the majority of which were represented by one sample per pathology group.

Figure 2.

A

B
i
Genes Up

Genes Down

Primary v Unaffected Metastasis v Unaffected

Metastasis v Primary

C i 73 genes 'up' in Metastasis v Primary/Unaffected

GO biological process	Fold Enrichment	FDR
learning (GO:0007612)	13.76	$1.90 \mathrm{E}-02$
platelet degranulation (GO:0002576)	12.45	$4.70 \mathrm{E}-02$
blood coagulation (GO:0007596)	8.65	$3.56 \mathrm{E}-02$
coagulation (GO:0050817)	8.59	$2.49 \mathrm{E}-02$
hemostasis (GO:0007599)	8.5	$2.01 \mathrm{E}-02$

Primary v Unaffected Metastasis v Unaffected

Metastasis v Primary

GO biological process	Fold Enrichment	FDR
gene expression (GO:0010467)	1.64	$6.52 \mathrm{E}-05$
RNA metabolic process (GO:0016070)	1.64	$2.20 \mathrm{E}-04$
transcription, DNA-templated (GO:0006351)	1.62	$7.46 \mathrm{E}-03$
nucleic acid-templated transcription (GO:0097659)	1.62	$6.83 \mathrm{E}-03$
response to stimulus (GO:0050896)		

Figure 2. Changes in PBMC transcriptomes during breast cancer metastasis. (A) i-iii) Plots show differentially expressed probes in PBMCs from i) breast cancer patients with no metastases ('primary') compared to unaffected donors; ii) breast cancer patients with metastases ('metastasis') compared to unaffected donors; and iii) 'metastasis' compared to 'primary' breast cancer patients. Probes are plotted on a $\log _{2}$ scale for fold change and expression. Probes significantly higher are coloured in green ('up') and probes expressed significantly lower are coloured red ('down') for each comparison. The number and direction of differentially expressed probes are indicated for each comparison. Significance was determined using a BH-adjusted P-value <0.05. (B) Venn diagrams show the overlap between i) genes expressed significantly higher 'genes up' in any comparison and ii) genes expressed significantly lower in any comparison. (C) i) The top 5 most enriched gene ontologies in 73 gene 'up' in 'metastasis' compared to 'primary' and 'unaffected'. GO terms are ranked by fold enrichment. Significance determined by Fisher Exact with FDR <0.05.

Figure 3.

Figure 3. Immune module enrichment in blood during breast cancer metastasis. Analysis of module gene set expression using competitive gene set testing. (A) i-iii) Graphs show gene modules enriched in PBMCs from i) 'metastasis' breast cancer patients compared to 'primary'patients; ii) 'metastasis' compared to 'unaffected' donors; and iii) 'primary' breast cancer patients compared to 'unaffected' donors. Enriched modules are listed on the y axis and ranked by false discovery rate. The length of each bar shows the $-\log _{10}(F D R)$ for the gene set. The width of each bar shows the relative gene set size and the colour shows the average log fold change of the probes in gene set (red indicates that the gene set is positively enriched; blue that the gene set is negatively enriched; yellow indicates that the average log fold change is zero). (B) i-ii) Plots show ssGSEA-assigned gene set scores for each sample based on the expression of genes within a set of interest. Plots shows individual samples within each patient group linked to other members of the same family (lines are coloured by $\log _{2}$ fold change, dotted lines indicate samples with only two family members). Samples are shaded by array weighting. Mean scores per group are indicated. (C) i-ii) Plots show transcript expression for TSPAN33 \& EDAR across groups. Significance was determined using a BH-adjusted P-value $<$ 0.05 and indicated on each plot.

Figure 4.

Figure 4. Clustered blood signatures in breast cancer metastasis. Heat map shows hierarchical clustering ($\mathrm{Cl}-\mathrm{C}$) and the expression of 146 probes significantly differentially expressed in 'metastasis' patients compared to 'primary' patients. Samples are arranged by group indicated on the x axis and corresponding gene set modules for each probe are displayed on the left y axis. the significance and direction of probe expression for each comparison is indicated in the y axis. Probes show expression level relative to the average of each probe across all the samples. Significance was determined using a BH-adjusted P-value <0.05.

Table 4. Clustered probes differentially expressed in blood during breast cancer metastasis.

Cluster	No. of probes	Genes of interest	Module	IFN regulated gene in Interferome database
C1	1	KCNJ2	Other	Yes
C2	22	GXYLT1 AQR MRPS18C BCDIN3D	Other Mitochondrial Resp. Other Other	Yes
C3	49	XK TREML1 ALOX12 F13A1 EGF FAXDC2 NRGN ASAP2 ACRBP TMEM40 ABLIM3 TGFB1I1 PBX1	Erythrocytes Platelets Platelets Platelets Platelets Erythrocytes Platelets Platelets Platelets Platelets Platelets Other Erythrocytes	Yes Yes
C4	56	ATP2C1 TFPI MAX R3HDM4 TNNC2 TSAN33 GRAP2 MMD HDGF ACTN1 TRIM10 HIST1H2AG	Other Platelets Other Erythrocytes Platelets Platelets Platelets Platelets Other Inflammation Erythrocytes Platelets	Yes Yes
C5	18	KLF6 FOSB ADRA1A CBX7	Other Other Cell Cycle Other	Yes Yes Yes Yes

Figure 5.

B i

Differentially expressedIRGs

II. 'Cancer-associated'IRGs

ii
Combined 368 metastasis-associated IRGs

GO biological process	Fold Enrichment	FDR
platelet degranulation (GO:0002576)	9.13	$1.16 \mathrm{E}-08$
homotypic cell-cell adhesion (GO:0034109)	7.87	$3.74 \mathrm{E}-02$
platelet activation (GO:0030168)	5.76	$1.29 \mathrm{E}-03$
cell junction assembly (GO:0034329)	5.05	$1.39 \mathrm{E}-02$
regulation of muscle contraction (GO:0006937)	4.5	$2.48 \mathrm{E}-02$
cell junction organization (GO:0034330)	4.38	$6.10 \mathrm{E}-03$
blood coagulation (GO:0007596)	3.96	$1.14 \mathrm{E}-03$
coagulation (GO:0050817)	3.94	$1.08 \mathrm{E}-03$

Figure 5. Distinct peripheral interferon signatures in breast cancer metastasis. A) Heat map shows IRGs that were significantly differentially expressed across any patient group comparison and were present in the INTERFEROME database query (human blood cell genes up- or down- regulated ≥ 2 fold in response to IFN treatment). The direction of regulation of the gene within the INTERFEROME is shown on the left y axis as well as whether the probe was significantly up or down in the three comparisons between the groups and the corresponding gene set modules for each gene. Probes are expressed as fold change (log2). Significance was determined using a BH-adjusted P-value <0.05. (B) i) Venn diagram shows the overlap between IRGs that were significantly differentially expressed across each group comparison and arrows point to descriptive term for each set. ii) Table shows the top 8 most enriched gene ontologies in combined 368 'metastasisassociated' IRGs. GO terms are ranked by fold enrichment. Significance determined by Fisher Exact with FDR <0.05.

Figure 6.
Composite
A

iii

Composite

vi

[^4]

C

Patient	Primary Tumour Group	Stromal region	Metastasis-free survival (days)	Mortality
i	Non-M	73.03%	9885	Deceased
ii	Non-M	82.78%	5131	Alive
iii	Non-M	76.51%	7633	Alive
iv	MP	58.69%	4397	Deceased
v	MP	48.43%	7434	Alive
vi	MP	63.39%	488	Deceased

Figure 6. Local cell signatures in primary breast tumours reflect metastatic potential. Tissue microarrays from primary breast tumours were multiplex stained for a panel of markers: panCK, CD41, CD4, FoxP3, CD8, CD45RO and DAPI. (A) Images show composite (all markers) and pathology (deconvoluted CD45RO+) stains from i - iii) three non-metastatic breast cancer patients and ivvi) three breast cancer patients with metastatic potential. (B) i - ii) Graphs show quantification of mutlispectral analysis using InForm software for percentage positive cells per total cells in the core for panCK+ and CD41+, or per stromal content for CD8+ and CD8 $\mathrm{CD} 45 \mathrm{RO}+$. (C) Table shows patient number, tumour group, percentage of stromal cells per tissue core, number of days until diagnosis with metastasis (MFS) or time of tissue biopsy (for non-metastatic patients) and recorded patient mortality at time of study. Scale bars for IHC images black $=100 \mathrm{um}$. Significance was determined by Mann-Whitney t tests ${ }^{*}{ }^{*} p<0.01$, ${ }^{*} p<0.05$.

Figure 7.

A
Primary Tumour

Composite: \quad panCK \quad CD41
CD8
Score Map:

B

Figure 7. Distant signatures in breast cancer metastases. Tissue microarrays from secondary and primary breast tumours multiplex stained for a panel of markers: panCK, CD41, CD4, FoxP3, CD8, CD45RO and DAPI. (A) Images show composite (all markers) and pathology (deconvoluted CD45RO+) stains from $i-$ iii) three non-metastatic breast cancer patients and iv-vi) three breast cancer patients with metastatic potential. (B) i - ii) Graphs show quantification of mutlispectral analysis using InForm software for percentage positive cells per total cells in the core for panCK + and CD41+, or per stromal content for CD8+ and CD8+CD45RO+. (C) Table shows patient number, tumour group, percentage of stromal cells per tissue core, number of days until diagnosis with metastasis (MFS) or time of tissue biopsy (for non-metastatic patients) and recorded patient mortality at time of study. Scale bars for IHC images black=100um. Significance was determined by Mann-Whitney t tests ${ }^{* * * * p} p<0.0001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

Supplementary Figure 1.

Supplementary Figure 1. Increased analytical power of analyses of blood transcriptomics using matched familial controls. i-iii) Plots show differentially expressed probes analysed using unpaired analyses of PBMCs from i) breast cancer patients with no metastases ('primary') compared to unaffected donors; ii) breast cancer patients with metastases ('metastasis') compared to unaffected donors; and iii) 'metastasis'compared to 'primary'breast cancer patients.
$i v-v i)$ Plots show differentially expressed probes analysed using familial paired analyses of PBMCs from from the same patient comparison as (i-iii). Probes are plotted on a $\log _{2}$ scale for fold change and expression. Probes significantly higher are coloured in green ('up') and probes expressed significantly lower are coloured red ('down') for each comparison. The number and direction of differentially expressed probes are indicated for each comparison.

CHAPTER 4:

Role of a Unique Type I Interferon, Interferon Epsilon, in Suppressing Epithelial Ovarian Cancer

4.1 Declaration

Monash University

Declaration for Thesis Chapter 4

Declaration by candidate

In the case of Chapter 4, the nature and extent of my contribution to the work was the following:

Nature of contribution	Extent contribution	of (\%)
Acquisition of data, analysis and interpretation and writing, reviewing and editing the manuscript	70%	

The following co-authors contributed to the work. If co-authors are students at Monash University, the extent of their contribution in percentage terms must be stated:

Name	Nature of Contribution	Extent of contribution (\%) Authors Only
Niamh E. Mangan	See statement below	
Michelle D. Tate		
Anthony Y. Matthews		
Sarah Rosli		
Maree Bilandzic		
Elizabeth L. Christie		
Andrew N. Stephens		
David. D.L. Bowtell		
Nicole A. de Weerd		
Nollaig M. Bourke		
Paul J. Hertzog		

AUTHOR CONTRIBUTIONS

Conception and Design: Z.C.M, N.E.M, D.D.L.B, N.M.B and P.J.H

Development of Methodology: Z.C.M, N.E.M, M.D.T, A.Y.M, M.B, A.N.S, N.A.dW, N.M.B and P.J.H.

Acquisition of Data: Z.C.M, N.E.M, M.D.T, S.R, N.M.B and P.J.H.

Analysis and Interpretation of Data: Z.C.M, N.E.M, M.D.T, E.L.C, D.D.L.B, N.M.B and P.J.H.

Writing, Review and/or Editing of the Manuscript: Z.C.M, N.M.B and P.J.H.

Study Supervision: N.M.B and P.J.H.

The undersigned hereby certify that the above declaration correctly reflects the nature and extent of the candidate's and co-authors' contributions to this work.

Candidate's Signature				Date 24/01/2018
Main Supervisor's Signature				Date 24/01/2018

4.2 Role of a Unique Type I Interferon, Interferon Epsilon, in Suppressing Epithelial Ovarian Cancer

Zoë C. Marks, Niamh E. Mangan, Michelle D. Tate, Anthony Y. Matthews, Sarah Rosli, Maree Bilandzic, Elizabeth L. Christie, Andrew N. Stephens, David D.L. Bowtell, Nicole A. de Weerd, Nollaig M. Bourke and Paul J. Hertzog. Submitted Manuscript.

Role of a unique type I interferon, interferon epsilon, in suppressing epithelial ovarian cancer

Zoe C. Marks ${ }^{1,2}$, Niamh E. Mangan ${ }^{1}$, Michelle D. Tate ${ }^{1}$, Antony Y. Matthews ${ }^{1}$, Sarah Rosli ${ }^{1}$ Maree Bilandzic ${ }^{2,3}$, Elizabeth L. Christie ${ }^{4}$, Andrew N. Stephens ${ }^{2,3}$, David D.L. Bowtell ${ }^{4}$, Nicole A. de Weerd ${ }^{1}$, Nollaig M. Bourke ${ }^{1,5,6,}$ \& Paul J. Hertzog ${ }^{1,2,6, *}$
${ }^{1}$ Centre for Innate Immunity and Infectious Diseases; Hudson Institute of Medical Research; Clayton, Victoria, 3168; Australia.
${ }^{2}$ Department of Molecular and Translational Science; Monash University; Clayton, Victoria, 3168; Australia.
${ }^{3}$ Centre for Cancer Research; Hudson Institute of Medical Research; Clayton, Victoria, 3168; Australia.
${ }^{4}$ Cancer Genomics and Genetics Program; Peter McCallum Cancer Centre; Melbourne, Victoria, 3000; Australia.
${ }^{5}$ Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute; Trinity College Dublin; The University of Dublin, College Green, Dublin 2; Ireland

[^5]* Correspondence:

ACKNOWLEDGEMENTS

This work was supported by project grants from the National Health and Medical research Council of Australia (NHMRC) to PJH, MDT, DDLB. ZCM is supported by an Australian Postgraduate Award; MB and ANS are supported by the Ovarian Cancer Foundation of Australia; NEM is supported by a Fielding Foundation Fellowship; PJH is supported by NHMRC Senior Principal Research fellowship.

This work was also supported by the United States of America's Office of the Assistant Secretary of Defense for Health Affairs through the Ovarian Cancer Research Program under Award No. W81XWH-15-1-0106. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States of America's Department of Defense.

In conducting research using animals, the investigators adhered to the laws of Australia and received ethical approval for this research from the Monash University Animal Ethics Committee A and the United States of America's Department of Defense.

In conducting research using human tissues, the investigators adhered to the laws of Australia and receive ethical approval for this research from the Monash Health Human Research Ethics Committee (ratified by the Monash University Human Research Ethics Committee).

The authors would like to acknowledge Rebecca Smith for assistance with preparation of the manuscript.

This work is supported from the Operational Infrastructure Fund of the State Government of Victoria.

AUTHOR CONTRIBUTIONS

ZRM was involved in conceptualisation, methodology, formal analysis, investigation aspects of the project and in writing the original draft, review and editing the manuscript NEM - conceptualisation, methodology, formal analysis and investigation of experiments MDT - investigation, formal analysis

AYM - provisional of critical resources
SR - investigation

MB - resources and methodology
ELC - Formal analysis and data curation
ANS - resources and methodology
DDLB - methodology, data curation and analysis, and conceptualisation
NAdW -provision of resources and review of manuscript
NMB - conceptualisation, methodology, formal analysis, investigation, contribution to original draft, review and editing manuscript, supervision and acquisition of funding PJH- conceptualisation, methodology, formal analysis, resources, contribution to original draft, review and editing manuscript, supervision and acquisition of funding *All authors had input into review or editing the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Summary:

IFN ε is a distinct type I interferon (IFN), uniquely regulated and constitutively expressed in female reproductive tract epithelium, where it protected from infection. We present the first evidence of anti-tumour functions of IFN ε. Epithelial IFN ε was reduced in high grade serous carcinoma (HGSC); residual expression correlated with survival. In orthotopic ovarian cancer models, mice lacking endogenous IFN ε had increased peritoneal metastases and exogenous IFN ε suppressed metastases in models of developing, established and advanced cancer. The mechanism of action of IFN ε was in part, via direct tumour cell growth suppression, shown in vitro and in $\mathrm{IFNAR}^{-/}$mice. Furthermore, both endogenous and exogenous $\mathrm{IFN} \varepsilon$ regulated immune response inducing activation and expression of PD1/PDL1. Collectively our data demonstrates a critical role for IFN ε in the development and potential treatment of HGSC.

Significance:

HGSC is the most lethal reproductive tract cancer with late stage peritoneal metastases and poor treatment options resulting in a poor survival. We demonstrate a new cytokine involved in tumour development and potential treatment. IFN ε, is unique type I IFN constitutively expressed in the FRT epithelium from which HGSC arise, had intrinsic and extrinsic antitumour activities. We showed the first evidence for the suppressive role of endogenous IFN ε in models of tumourigenesis and progression. In preclinical, orthotopic models our recombinant IFN $\varepsilon \square$ inhibited \square via mechanisms including direct effects on tumour cells. The distinct characteristics of IFN ε especially its tolerated, continuous expression in the FRT, and correlation of endogenous levels with improved survival, make it an attractive therapeutic option, fit for purpose in that location. Additionally, IFN ε activates immune effector cells and
stimulates PD1 and PDL1 expression, making it also, an attractive candidate for combination therapy.

INTRODUCTION

Understanding the inventory and mechanism of action of factors that modulate the development and pathogenesis of tumours is key to devising new treatments in particular for intractable cancers. Ovarian cancer is the most lethal female reproductive cancer (U.S. Cancer Statistics Working Group, 2017). Epithelial ovarian cancer is a complex, heterogeneous disease comprising a number of molecularly distinct tumour types arising in the peritoneal cavity (Jayson et al., 2014; Tothill et al., 2008; Vaughan et al., 2011), the most common of which are high grade serous carcinomas (HGSC). Currently, standard therapy includes debulking surgery and platinum-based chemotherapy, however ovarian tumours often develop platinum resistance (Patch et al., 2015). Furthermore, due to the lack of effective screening for this disease and a predominance of vague, abdominal symptoms, many women first present with late-stage, metastatic disease associated with malignant ascites. These factors contribute to an estimated 5 -year survival rate which is usually below 50%. Consequently, a greater understanding of the pathogenesis of this disease to facilitate novel targeted therapies is urgently needed to improve outcomes for HGSC.

The type I interferons (IFNs) are a family of cytokines known to have pleiotropic functions including the ability to exhibit anti-cancer effects via tumour cell intrinsic and extrinsic immunomodulatory signalling (Parker et al., 2016). While these anti-cancer properties have held promise in the clinical treatment of cancer, the successes have been limited to haematological malignancies such as leukaemia (Anguille et al., 2011) and solid tumours such as melanoma (Akman et al., 2014; Ascierto et al., 2014; Kirkwood et al., 2001; Mocellin et al., 2010; Pasquali and Mocellin, 2010). Indeed, to date, type I IFN therapy has yielded little clinical benefit against ovarian cancer (Alberts et al., 2006; Berek et al., 1985; Berek et al., 1999; Bruzzone et al., 1997; Frasci et al., 1994; Hall et al., 2004; Markman et al., 2004;

Markman et al., 1992; Moore et al., 1995; Willemse et al., 1990), restricted by the same issues that limit high dose IFN use in other solid malignancies. These reflect the biological function of type I IFNs - evolved as potent, rapidly-responding, acute acting, innate immune cytokines that protect the host from invading pathogens but whose sustained presence or excessive amounts are toxic. It is likely that the conventional members of this family are therefore limited in their use as high-dose, long-term therapies required to eradicate diffuse, metastatic tumours.

IFN ε is a distinct type I IFN that appears to have evolved to protect mucosa, particularly in the female reproductive tract (FRT), by novel mechanisms (Fung et al., 2013; Hardy et al., 2004). We have demonstrated it to be a type I IFN that signals through Ifnar1 and Ifnar2 activating the JAK-STAT pathway to induce conventional IFN regulated genes (IRGs) and associated anti-viral, anti-bacterial and immunoregulatory activities using in vitro assays (Stifter et al., 2017). Unlike conventional IFNs, our studies have shown it constitutively expressed in endometrial epithelium and regulated by hormones (Fung et al., 2013). We characterised its role in protecting the FRT from infection by mechanisms including regulation of immune effector cells (Fung et al., 2013) that are also important in anti-tumour immunity. However, the anti-tumour properties of IFN ε have not been previously addressed, so we herein examined the role of this well tolerated IFN ε in the development of ovarian cancer. We demonstrate for the first time that IFN ε has anti-tumour intrinsic and extrinsic actions. Specifically, we demonstrate that IFN ε is constitutively and strongly expressed within the epithelium of the fallopian tube which contains the putative cell of origin of HGSC, the secretory epithelial cells (Perets et al., 2013), that this expression is lost in HGSC and this suppression correlates with poor survival. We show that IFN ε has anti-proliferative, proapoptotic effects on ovarian cancer cells in vitro and have generated compelling data using in vivo mouse models of ovarian cancer, that endogenous and exogenous IFN ε strongly inhibit
the growth of metastatic ovarian cancer through cell intrinsic as well as extrinsic anti-tumour effects by modulating immune responses.

RESULTS

Reduced expression of Fallopian tube epithelial IFNz in High Grade Serous Ovarian cancer

correlates with poor prognosis

To identify the potential role of IFN ε in ovarian cancer, it was important to first characterise its endogenous expression in human fallopian tube (FT) epithelium which contains secretory epithelial cells (SEC), which are the putative cells of origin of many HGSCs (Kurman and Shih Ie, 2011). Using immunohistochemistry, we showed IFN ε expression in apparently all epithelia including the SEC (Fig. 1A, panels i-ii). This expression pattern was similar to that of an epithelial marker, cytokeratin 18 and contrasted with smooth muscle actin (SMa), which stained predominately non-epithelial tissue (Sup. Fig1). We next confirmed this expression by analyzing a transcriptome dataset of human FT secretory cells and primary FT epithelium for expression of IFNs (Fig. 1A iii), demonstrating that IFN ε was the only IFN highly and constitutively expressed in these cells (Fig 1A iii) (Fung et al., 2013; Bourke et al, unpublished).

This constitutive expression of IFN ε was significantly suppressed in human HGSCs compared to normal FT epithelium. This was first demonstrated by staining of tissue microarrays for IFN ε which showed suppressed expression in low grade serous carcinoma (LGSC) \& HGSC both qualitatively (Fig. 1B i,ii) and quantitatively (Fig 1Biii). Secondly, we found significantly lower IFN ε transcript levels in the Australian Ovarian Cancer Study cohort (Patch et al., 2015) of HGSC samples from 93 patients (Fig. 1C i, ii). Other type I IFNs such as IFN β were essentially undetectable in normal and tumour epithelium (Figure 1Ci). Thirdly, we validated these findings by analyzing microarray data from an external cohort of a publically available, Cancer Science Institute of Singapore Ovarian Cancer Database (Tan et
al., 2015) of 707 samples of ovarian cancer and non-tumour tissues (Fig. 1Di). These analyses confirm the expression of IFN ε in FT epithelium and its loss in HGSC.

To determine whether IFN ε expression has an impact on clinical outcome, we interrogated clinical survival data on both the HGSC AOCS cohort of 93 cases and the CSIOVDB cohort of 707 cases. We identified that high IFN ε expression HGSC correlates with increased progression-free and overall survival in both cohorts (Fig. 1Ciii and 1Dii, iii). Taken together these data demonstrate that IFN ε a unique type I IFN constitutively expressed in normal epithelium, supressed in ovarian cancer where the lower levels correlate with poor prognosis.

IFNE has potent anti-tumour effects in a syngeneic, orthotopic model of ovarian cancer

Since the above data implies IFN ε has anti-tumour properties and in the absence of any prior studies to demonstrate this, we first investigated IFN ε activity in an in vivo, syngeneic, orthotopic model of ovarian cancer. The murine ovarian cancer cells, ID8 are injected, into the intrabursal space in the ovaries of immunocompetent mice (Greenaway et al., 2008;). This model enables the assessment of the direct and indirect anti-tumour effects of IFN ε via tumour cell intrinsic and extrinsic (immunoregulatory) mechanisms on the 'primary' orthotopic tumour growth in the bursa and the different stages and locations of metastatic spread and growth in the peritoneal cavity.

Treatment with intraperitoneal injections of recombinant murine (rmu) IFN ε significantly suppressed, in a dose-dependent manner, the growth of peritoneal metastases. This was evident firstly in the development of malignant, haemorrhagic ascites (Fig. 2A,) - a key characteristic of end-stage disease in the model that closely mimics the progression of human disease. Secondly, IFN ε significantly reduced metastatic tumour deposits throughout
the peritoneal cavity quantified as tumour burden score in the mesentery and total number of metastases throughout the peritoneum (Fig. 2B, Ci, iii). Thirdly, IFN ε also reduced haemorrhaging in the peritoneal cavity (Fig. 2A, Cii), another indication of advanced stage disease. Interestingly, despite marked reduction of tumour spread, IFN ε had little effect on orthotopic, primary tumour growth with only a slight reduction in primary tumour size or weight (Fig. 2Di, ii), which did not reach significance (Fig 2 Dii). These results constitute the first demonstration that IFN ε clearly has anti-tumour actions and that these are against ovarian cancer metastases.

Since conventional type I IFNs can exert their anti-tumour actions via immune cell recruitment and activation, we investigated IFN ε induction of these parameters in this model. Tumour bearing mice had increased numbers and proportions of total leukocytes, $\mathrm{CD} 4^{+}, \mathrm{CD}^{+}$ and B lymphocytes as well as NK cells compared to non-tumour bearing mice (NT) (Supplementary Fig. 2A, B). A manual correlation of all parameters of 'primary' and metastatic tumour burden and responses of immune cells highlighted that this immunogenic tumour model triggered host defences, marked by elevated levels of immune cells that strongly correlated with disease progression in our model (Sup. Fig. 2B, 3- correlations with disease scoring). Crucially, while total immune cell numbers reflected more the presence of disease rather than differences between treatment groups, mice treated with IFN ε had significantly higher proportions of activated immune cells and expression of checkpoint molecules, demonstrated by induction of CD 69 and PD-1 on $\mathrm{CD} 4^{+} \mathrm{T}$ cells, $\mathrm{CD} 8^{+} \mathrm{T}$ cells, NK cells and B cells (Fig. 2Eiiv). Indeed, disease suppression by IFN ε correlated with activation of certain cell types, including $\mathrm{CD}^{+} \mathrm{CD}^{2} 9^{+} \mathrm{PD}^{+} \mathrm{T}$ cells and $\mathrm{B} 220^{+} \mathrm{CD} 69^{+} \mathrm{B}$ cells (Sup. Fig. 3A and B). These results show that tumour elicits a significant immune cell recruitment, but these immune cells appear not to be effective at clearing tumour burden unless activated by IFN ε treatment. Thus,
we demonstrate for the first time, that the novel type I IFN ε has potent anti-tumour and immune activation activity in vivo.

In order to demonstrate the anti-tumour actions of $\operatorname{IFN} \varepsilon$ in a more clinically relevant setting, we examined its activity on an established tumour and compared activity to a conventional type I IFN, IFN β. Remarkably, delaying onset of IFN treatment by 4 weeks (to allow more established orthotopic tumours to form) did not diminish overall IFN ε efficacy. Delayed-onset IFN ε therapy suppressed peritoneal spread of ovarian cancer as evident from mesenteric tumour burden, peritoneal haemorrhaging and overall metastatic score (Fig 3B); but was ineffective at suppressing orthotopic 'primary' tumour development (Fig. 3A). In contrast, mice receiving delayed-onset IFN β therapy did not exhibit reduced primary or peritoneal tumour burden (Fig. 3A). Strikingly, IFN ε treatment was also significantly more effective than IFN β at activating the majority of peritoneal immune populations, inducing CD69 and or the checkpoint molecule, PD1 on $\mathrm{CD} 4^{+}$and $\mathrm{CD} 8^{+} \mathrm{T}$ cells and B cells, whereas both IFNs significantly activated NK cells (Fig. 3Ci - iv).

Thus $\operatorname{IFN} \varepsilon$ demonstrates anti-tumour activity on the peritoneal spread of both developing and established ovarian cancer, more so than equivalent units of IFN β; and furthermore, IFN ε activates immune cells including CD4 and CD8 T cells and NK cells and expression of checkpoint markers.

IFNe suppresses ascites and metastasis in a model of advanced ovarian cancer

Since the vast majority of HGSCs present as late-stage metastatic disease, we assessed the efficacy of exogenous IFN ε treatment in a model recapitulating this advanced disease by injecting ID8 cells directly into the peritoneum. Mice displayed extensive disseminated tumour growth throughout the peritoneum, with adhesions \& growth of tumour nodules on multiple
organs mimicking the characteristic spread of ovarian cancer in humans such as to the peritoneal wall, throughout the mesentery and on the diaphragm (Fig. 4A) as well as hemorrhagic malignant ascites. Treatment with IFN ε significantly suppressed peritoneal tumour dissemination in this model with reduced tumour growth in the mesentery (Fig. 4A, B \& Sup. Fig 4) and fewer tumour nodules adhered to diaphragm and peritoneal wall (Fig. 4A \& 4Bi). Additionally, IFN ε treated mice showed reduced malignant ascites development whereby peritoneal fluid was reduced in volume (Fig. 4Bii), markedly less hemorrhagic (Fig. 4Biii), and contained fewer circulating epithelial tumour cells (Fig. 4Biv). IFN ε treatment resulted in lower levels of inflammatory cytokine levels, such as the chemokine MCP1 (CCL2) (Supplementary Fig. 4). Strikingly, administration of IFN β had no effect on ascites tumour growth by any measure (Fig. 4).

Similar to our results in our orthotopic ovarian cancer model, we found that in this advanced tumour model, total immune cells such as leukocytes, CD^{+}and $\mathrm{CD}^{+} \mathrm{T}$ cells correlated with the presence of advanced disease in mice injected i / p. with ovarian tumour cells, but that these populations did not differ between treatment groups (Sup. Fig. 5C). However, IFN ε treatment significantly increased the proportion of activated $\mathrm{CD} 4^{+}$and CD^{+} T cells in the peritoneum of these mice (Fig. 4Ci-iv), typified by CD25 or CD69 and PD1 induction on CD4 T cells (Fig 4Ci-iii) and CD8 T cells (Fig 4Civ), which correlated with decreases in overall tumour burden and ascites development.

Endogenous and exogenous IFNE regulate immune cells in vivo

Together the above results demonstrate that IFN ε maintains efficacy against peritoneal spread of developing, established and advanced models of ovarian cancer, however the mechanism of action, specific to IFN ε not shared with IFN β, was unknown. Since conventional type I IFNs
can exert anti-tumour actions either directly on tumour cells or indirectly via immune cells, we first sought to define the hitherto unknown, intrinsic, in vivo immunomodulatory effects of IFN ε, independently of the presence of a tumour, but in the peritoneal cavity, the site of ovarian cancer metastasis. IFN ε treatment did not regulate $\mathrm{CD}^{+} \mathrm{T}$ cell numbers and showed only a small but significant increase in $\mathrm{CD}^{+}{ }^{+} \mathrm{CD} 4^{-}$cells (Sup Fig 6) but did activate CD4 cell expression of PD1, CD69 and CD25 (Fig 5A). IFN ε treatment also increased total peritoneal leukocytes, inflammatory macrophages and dendritic cells (Sup. Fig. 6B).

We next determined whether endogenous IFN ε regulated immune cells in the peritoneum which could impact on tumour development at this site, by comparing WT and IFNe-/- mice. While there was no significant difference in the number of peritoneal leukocytes or total T cells, in $\mathrm{IFN}^{-/-}$compared to WT mice, consistent with data above, there were fewer NK cells (Fig. 5B, Sup. Fig. 6). Furthermore, there were increased levels of activated cells including NK, and CD4T cells expressing CD69 and or PD1(Fig 5B), which were lower in the IFN ε null mice. These results show that endogenous IFN ε maintains the levels and activation status of certain peritoneal immune cells, suitable for immune surveillance.

Endogenous IFNe suppresses ovarian cancer metastases

We next investigated whether endogenous IFN ε played a role in tumourigenesis by comparing orthotopic tumour development \& dissemination in WT and IFN $\varepsilon^{-/-}$mice. By 13 weeks postID8 implantation, $\mathrm{IFN} \mathrm{\varepsilon}^{-/-}$mice developed peritoneal haemorrhaging \& ascites accumulation, large nodular orthotopic tumours and multiple metastatic tumour deposits throughout the peritoneal cavity (Fig. 6A-C). Strikingly, tumour cells disseminated throughout the peritoneum more readily in the absence of endogenous $\operatorname{IFN} \varepsilon$ as shown by increased peritoneal metastases by all three measures (Fig. 6B and Cii-iv), whereas the 'primary' orthotopic tumour growth (fig 6B) was similar in WT and IFN $\varepsilon^{-/}$mice as demonstrated by similar ovarian weight
(Fig 6Ci). To gain insight into the effect of this endogenous IFN ε in early tumour development, we compared tumour burden in mice 6 weeks post-ID8 implantation at which time, $\mathrm{IFN} \mathrm{\varepsilon}^{-/}$mice developed relatively small, less nodular orthotopic tumours (Fig. 6D). However, although we showed there was no significant difference in primary tumour weight between WT and $\mathrm{IFN} \mathrm{\varepsilon} \varepsilon^{-/}$mice at this early stage (Fig. 6Ei), we demonstrated an increase in tumour dissemination and metastatic growth in $\mathrm{IFN} \varepsilon^{-/}$mice, as measured by increased tumour metastases on the peritoneal wall \& total metastases found in the peritoneal cavity (Fig. 6Eii, iii).

At 6 weeks post-tumour implantation, $\mathrm{IFN} \varepsilon^{-/-}$mice had increased numbers of total leukocytes, CD4 and CD8 lymphocytes compared to their non-tumour bearing (NT) genotype controls (Sup. Fig. 7), an increase which was not seen in WT mice. Our data suggest that a combination of the presence of a tumour plus the absence of suppressive signals from endogenous IFN ε, resulted in increased tumour growth. Importantly, $\mathrm{IFN} \mathrm{\varepsilon}^{-/}$mice had significantly lower proportions of activated immune cells than WT mice demonstrated by markers expressed on CD4 and CD8 T cells including CD69 as well as PD1 (Fig. 6F). These data demonstrate that although there is no significant effect of the absence of endogenous IFN ε at the site of tumour cell implantation, endogenous IFN ε signaling does influence the activation state of immune cells and suppresses the tumour-elicited influx of immune cells. These differences conferred by endogenous IFN ε signaling have a significant impact on the ability of tumour cells to disseminate throughout the peritoneum and establish macrometastases on peritoneal tissues.

Differentiating direct and indirect anti-tumour effects of IFNE on peritoneal metastases

In order to further dissect the mechanism of action of exogenous and endogenous IFN ε in the ovarian cancer models, we characterised tumour development in mice lacking IFNAR1 (Ifnar 1% mice), where the immune cells cannot respond to type I IFN. At 8 weeks post-ID8 injection, Ifnar1 ${ }^{-/-}$mice demonstrated characteristic peritoneal haemorrhaging, ascites accumulation and nodular tumour deposits throughout the mesentery and adhered to the peritoneal wall (Fig. 7A \& B). There were several indications of more advanced disease in tumour-bearing Ifnar1 $1^{-/}$mice relative to WT mice, in particular, a larger number of epithelial peritoneal tumour cells (Fig 7Bii), total peritoneal leukocytes (Fig 7Ci)), CD4 and CD8 cells (Fig. 7Cii and iii). In addition, there were trends towards increases in ascites volume (Fig 7Biii) and peritoneal haemorrhage (Fig 7Biv).

Crucially, exogenous IFN ε significantly suppressed overall tumour metastatic burden (Fig. 7A \& Bi) in Ifnar1 ${ }^{-1}$ mice. Consistent with previous data, the proportion of activated cells such as CD69 positive CD4 cells and B220 positive cells was not affected (Sup. Fig $8 \mathrm{~A}, \mathrm{~B}$) indicating that this is a direct effect of IFN ε. By contrast, the numbers of CD4, CD8 cells were still reduced by exogenous $\operatorname{IFN} \varepsilon$ in the Ifnar $1^{-/-}$mice, indicating that this effect occurs via the tumour cells (the only IFN responsive cells present) (Fig 7Cii, iii) consistent with data generated above showing indirect immunoregulatory role of exogenous IFN ε on the levels of anti-tumour immune cells.

Overall these results indicate that firstly, that endogenous IFN signalling via IFNAR1, likely by IFNe, suppresses tumour development, consistent with data in the section above. Secondly, the anti-tumour efficacy of exogenous IFN ε treatment is still evident in Ifnar1 null mice indicating a direct action by this IFN on tumour cells.

IFNE regulates intrinsic anti-tumour activities on ovarian cancer cells

While the mechanism of IFN ε-driven tumour suppression in this model is suggested to be via direct, tumour intrinsic mechanisms, these had not been demonstrated for this IFN. Therefore, we sought to define the repertoire of direct anti-tumour effects of IFN ε in vitro in the mouse ovarian cancer cell line ID8. Treatment of ID8 cells with rmuIFN ε significantly regulated expression of genes involved in cancer-related biological pathways including immune response, PDL1, Tap1; cell death, Casp1 \& Bcl-2; cell cycle, Ccne1 \& Cdc20 (Fig. 8A) and chemotaxis, Cxcl10 (Sup. Fig. 9). Recombinant muIFN ε exhibited a dose-dependent antiproliferative effect as shown by diminished growth rate \& prolonged doubling time measured using xCELLigence (Fig. 8B), which was further confirmed using MTT assay (Fig. 8C). Additionally, $\operatorname{rmuIFN} \varepsilon$ induced of increased apoptosis in these cells as demonstrated by increased Annexin V/PI staining (Fig. 8D, E). Collectively, these results demonstrate that murine ovarian cancer cells respond to direct stimulation with recombinant IFN ε through classical IFN signaling pathways including induction of IRGs involved in cancer-related pathways. Regulation of such pathways also correlates with functional assays demonstrating that in vitro, $\operatorname{IFN} \varepsilon$ has intrinsic anti-cancer properties including anti-proliferative and proapoptotic effects, which may therefore, be one of its mechanisms of action in vivo, consistent with the results from Ifnar null mice presented above.

In order to consolidate that these indications from our mouse model were relevant to human ovarian cancers, and given the strong clinical indications for a tumour suppressive role for IFN $\varepsilon \square$ in women with ovarian cancer (Fig 1), and in the absence of published data on the anti-tumour properties of this relatively new cytokine, we tested its direct anti-tumour effects on human ovarian cancer cell lines. We used our recombinant human IFN ε (rhIFN ε) on two
human ovarian cancer cell lines, CaOV3 \& OVCAR4, shown previously to be representative of human HGSC (Domcke et al., 2013). Firstly, we showed that these cells were directly responsive to rhIFN ε stimulation, which elicited a dose-dependent induction of classical IRGs such as ISG15 and IFIT1, as did IFN β (Sup. Fig 9), Accordingly, since these data showed that rhIFN ε exerted classical type I IFN signaling, we determined the anti-tumour effects using functional assays; the results showed that rhIFN ε regulated cellular proliferation and directly suppress human ovarian cancer cell growth. IFN ε had significant dose-dependent antiproliferative effects on both cell lines over $48 \& 72$ hours as measured by doubling times (Sup. Fig 10). These results suggest that novel IFN\& may prolong survival in HGSC by regulating tumour cell intrinsic pathways as indicated in our preclinical animal models.

DISCUSSION

IFN ε is the most recently discovered type I IFN (Fung et al., 2013; Hardy et al., 2004), whose constitutive expression in FRT epithelium was known to play a critical role in the regulation of local immune responses that protect against FRT infections (Fung et al., 2013). This IFN is a member of the type I IFN family of cytokines whose other 'classical' members (IFN α, β, etc.) exert anti-tumour responses by direct action on tumour cells or indirect activation of immune responses. However, despite its distinct biological expression and activity, there have been no previous investigations into the role of IFN ε during tumourigenesis or as a cancer therapy. Aiming to address this, we here demonstrate the first evidence for IFN ε as an endogenous tumour suppressor and effective anti-tumour therapeutic in an aggressive FRT tumour - epithelial ovarian cancer, and we elucidate aspects of its mechanism of action.

In the ID8 orthotopic model, exogenous IFN ε treatment caused a marked reduction in overall disease progression \& metastatic tumour burden, despite little effect on 'primary' orthotopic ovarian tumour growth. This effect on metastasis not primary tumour, is consistent with evidence in other cancer models such as breast cancer, where IFN α treatment bears no effect on orthotopic, primary tumour development but was critical in suppressing specific pathways of metastatic spread (Bidwell et al., 2012). These data might be explained on a pharmacokinetic basis whereby this cytokine has better access to cells undergoing metastatic spread relative to restricted access to target cells in the primary solid tumour, or differences in the nature of tumour cells growing in a solid mass and the immune cell infiltrate (Parker et al., 2016). It is well-established that the peritoneal cavity provides a self-contained compartment rich in immune cells, cytokines and secreted factors (Capobianco et al., 2017) and thus, peritoneal tumours are therefore afforded a unique microenvironment whereby metastatic trajectory can be determined by a number of mechanisms (Mitra, 2016; Worzfeld et al., 2017); and collectively, depict an
environment of balanced immune suppression and activation (Charbonneau et al., 2013) - all of which suggest that the peritoneum may be a particularly suitable place for IFN ε action.

While we demonstrate that IFN ε has the capacity to directly modulate tumour cell proliferation and survival in vivo and in vitro, as well as to modulate the immune response, one of the key findings from this study is the ability of IFN ε to directly exert anti-tumour effects by regulating tumour cell intrinsic functions. This was demonstrated in vivo using Ifnar1 ${ }^{-/}$mice (where the immune cells cannot respond to the IFN), yet IFN ε was still effective, at least in part. This was supported by gene induction and antiproliferative effects of $\operatorname{IFN} \square$ zin vitro using representative human cell lines. Furthermore, IFN ε stimulation of cultured ID8 cells regulated the expression of critical genes involved in cancer-related biological pathways including immune regulation (PD-L1), cell cycle \& cell death genes and chemotaxis (e.g. CXCL10). IFN ε also regulated the corresponding biological effects such as inhibition of proliferation and activation of apoptosis in those cell lines as well as tumourderived immunoregulatory factors such as CXCL10. CXCL10 expression correlates with decreased tumour burden in mice (K Au et al., 2017), improved survival in human HGSC (Bronger et al., 2016), and is usually responsible for recruitment of activated T cells and NK cells into sites of inflammation (Lande et al 2003) and thus may contribute to the tumour cell extrinsic actions of IFN ε defined herein, that complement its intrinsic actions.

While the ID8 orthotopic model elicits an influx of immune cells into the peritoneum these immune cells appear not effective at clearing tumour burden. Importantly, if activated, as shown here with IFN ε treatment (but interestingly not IFN β), these cells can mount effective anti-tumour responses capable of suppressing metastatic peritoneal tumour spread from the
orthotopic 'primary' tumour. Indeed, we demonstrate that IFN ε has potent immunoregulatory effects in vivo whereby it activates effector cells including CD4, CD8, NK and B cells, as evidenced by the markers CD69 and CD25. Total tumour-infiltrating lymphocytes have been shown to correlate with improved survival in human disease (Zhang et al., 2003), however subsequent investigations have highlighted the prognostic importance of distinguishing the proportions of suppressive cells such as regulatory T cells from effector immune responses (Curiel et al., 2004). Others have used the ID8 syngeneic mouse model of ovarian cancer to study tumour infiltrating leucocytes (TIL) exhaustion and combined blockade of check point inhibitors, PD1 or PD-L1, with myeloid- targeted vaccinations and found that upregulated effector T cell signaling cleared the majority of tumour (Duraiswamy et al., 2013a). PD-L1 expression on tumour cells and macrophages, positively correlated with TILs and improved outcome in HGSC (Webb et al., 2016). Most recently, epigenetic therapy using the ID8 mouse model demonstrated tumour suppression and increased immune activation in a type I IFNdependent manner (Stone et al., 2017) and suggest this may be a key method to sensitise suppressed microenvironment to checkpoint blockade therapy. Here using the same model, we show that IFN ε not only effectively cleared tumour burden, but also directly regulated expression of PD-L1 on tumour cells and PD1 on immune cell populations. Therefore, IFN ε may constitute an effective immunotherapy with a potential additive efficacy in combination with therapies that simultaneously target the PD-L1/PD1 axis checkpoint inhibitors.

The data herein constitute compelling evidence not only that exogenous IFN ε inhibits tumour growth in the peritoneum, but also that endogenous IFN ε suppresses tumourigenesis. 1) IFN ε is constitutively expressed in the putative cell of origin of HGSC, human fallopian tube epithelium (Ducie et al., 2017; Perets and Drapkin, 2016); 2) this expression is decreased in a significant proportion of $\mathrm{HGSCs} ; 3$) in preclinical mouse models, loss of $\mathrm{IFN} \varepsilon$ ($\mathrm{IFN} \mathrm{\varepsilon} \varepsilon^{-/}$mice)
or the ability to respond to $\operatorname{IFN} \varepsilon$ (IFNAR1-/- mice) results in increased tumours in the peritoneum and reduced levels of activated immune cells (Fig 6). There are several possible mechanisms underlying loss of IFN ε expression in ovarian tumours. Interestingly, IFN ε loss has also been characterized in the FRT of post-menopausal women who lack the reproductive hormones which normally regulate IFN ε expression (Fung et al., 2013). Postmenopausal women are in fact the highest at-risk group for ovarian cancer development (Howlander et al 2017). Conversely, use of the combined oral contraceptive pill significantly reduces the risk of serous carcinoma (Webb et al., 2017; Webb and Jordan, 2017; Wentzensen et al., 2016), suggesting that enhanced regulation of IFN\& may prevent tumourigenesis. Since this is not consistent with the rest of our data, this observation may reflect an IFN ε - independent effect of hormones. Importantly, we have recently characterized the regulation of constitutive IFN ε to be mediated by the transcription factor E74-like factor 3 (ELF3), an epithelial-specific Ets factor (Fung et al. unpublished). In support of this, ELF3 was recently identified as a positive prognostic marker in transcriptome analysis of epithelial components of human ovarian tumours (Yeung et al., 2017), which corresponds with our in silico analysis indicating that expression of $I F N \varepsilon$ transcript is a predictor of disease-free survival in two independent human ovarian cancer cohorts (AOCS \& CSIOVDB) and may suggest a key upstream signal in IFN ε regulation worthy of further investigation in ovarian cancer. Loss of endogenous IFN ε in a (high) proportion of HGSCs may in fact demonstrate a key driving factor in the development and progression of these tumours and critically, may also identify patients who may most benefit from recombinant IFN ε therapy in a disease where prolonged disease-free survival following surgery has a significant cumulative effect (Kurta et al., 2014).

Strikingly, IFN ε showed a marked difference from IFN β in many aspects of this study, namely loss in human tumours and its correlation with improved survival; inhibition of tumour and
activation of immune response after delayed IFN ε treatment, inhibition of tumour growth and activation of immune response in an advanced ovarian cancer metastasis model, in vitro inhibition of proliferation and regulation of apoptosis, and in vivo immune cell activation (e.g. CD25 and PD1 surface expression). This reflects critical differences in their respective receptor interactions and binding affinities (Stifter et al., 2017). This vital difference in efficacy may also reflect the distinct biological roles of these two type I IFNs. Conventional type I IFNs (α 's and β) have evolved to act as acute phase cytokines produced mostly by inflammatory cells in a transient manner to avoid toxicity. By contrast, IFN ε has evolved as a constitutive, protective cytokine expressed by normal epithelia where continuous action is tolerated, perhaps even preferred. These properties make IFN ε a unique type I IFN cytokine, fit for purpose to protect the reproductive tract from tumourigenesis and our data also support it as a potential therapeutic alone or in combination, for HGSC.

METHODS

Cell lines \& cell culture- Ovarian cancer lines ID8 (murine; Roby KF, et al., Carcinogenesis 2000), CAOV3 (human; ATCC, Virginia), and OVCAR4 (human; National Cancer Institute) were used for in vitro assays. ID8 \& OVCAR4 cell lines were cultured in RPMI 1640 (GibcoBRL, Ontario, Canada) and CAOV3 in DMEM (GibcoBRL) supplemented with 4% (ID8) or 10% (CaOV3, OVCAR4) heat-activated fetal calf serum (FCS; GibcoBRL). All cells were cultured at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \%(\mathrm{v} / \mathrm{v})$ carbon dioxide $\left(\mathrm{CO}_{2}\right)$. Cells were confirmed Mycoplasma negative according to MycoAlert ${ }^{\mathrm{TM}}$ PLUS Mycoplasma Detection Kit (ratio <1; Lonza, Basel).

Interferons- Recombinant murine IFN ε and IFN β were expressed in-house in insect cells, affinity purified and quality controlled by physicochemical procedures and bioactivity was determined by a reporter assay calibrated against an international IFN α / β reference standard in a cytopathic effect-reduction bioassay as described elsewhere (Stifter et al., 2017). Recombinant human IFN α was expressed in E.Coli, purified by affinity and gel filtration chromatography, and refolded and tested to have endotoxin levels <0.01 units per my using the limulus assay (S. Lim, de Weerd and Hertzog et al., unpublished).

Cell stimulations- Cell lines were plated $\left(1.5 \times 10^{5}\right.$ cells $/$ well $)$ in a 12 well plate in normal media 24 hour prior to stimulation with recombinant IFN ε or IFN β at $0-1000 \mathrm{IU} / \mathrm{ml}$ or PBS as vehicle controls. Cells were then incubated at $37^{\circ} \mathrm{C}$ for 3 hrs prior to mRNA extraction.

Cell growth assays- Cellular proliferation was measured using the xCELLigence system (ACEA Biosciences, Inc., San Diego, CA, USA) for real-time cell analysis (RTCA). Fifty microliters of cell culture medium was added to each well in a 96 well E- plate (ACEA

Biosciences, Inc.) for the impedance background measurement. Cells were then added (ID8 6×10^{3} cells/well, CAOV3 \& OVCAR4 -1×10^{5} cells/well) to a volume of $100 \mu \mathrm{~L}$ in serum-free culture media and allowed to adhere overnight. Recombinant IFN or vehicle was added to the cells up to a final volume of $200 \mu \mathrm{~L}$ of normal culture media. The E-Plates were incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ and impedance measured on the RTCA system at 15 -minute time intervals for up to 72 hours with or without treatment. For data analysis, the baseline cell index (CI) is determined by subtracting the CI for a cell-containing well from the CI of a well with only culture media. To facilitate the statistical evaluation of the results, impedance measurements from each well were normalised to the time of stimulation with IFN, termed 'normalised cell index'. We performed three independent experiments in technical quadruplicate and analysed for doubling-time \& slope ($1 / \mathrm{hr}$) of growth curves, indicative of rate of proliferation, using RCTA software.

Apoptosis assays-ID8 cells were plated in a 12 well plate (3.5×10^{4} cells $/$ well) in 2 ml and left to adhere overnight. Cells were stimulated with recombinant murine Ifn ε or vehicle control for 48 hours. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ was used a positive control for induction of apoptosis at $1-5 \mathrm{mM}$. Following stimulation, cells were trypsinised and washed in PBS. Single cell suspensions were stained with FITC conjugated Annexin V and propidium iodide (PI) using the FITC Annexin V Apoptosis Detection kit II (BD Biosciences, New Jersey), as per the manufacturer's instructions and analysed by flow cytometry using a FACSCanto ${ }^{\text {TM }}$ II flow cytometer (BD Biosciences) and Flo-Jo software. The different phases of apoptosis were defined as i) live cells (FITC-labelled Annexin V-/PI-), ii) early apoptotic (FITC-labelled Annexin $\mathrm{V}+/ \mathrm{PI}-$), iii) late apoptotic (FITC AnnexinV+/PI+), and iv) necrotic cells (FITC Annexin V-/PI+) (Andree HA, et al., J Biol Chem 1990).

Immunohistochemistry-Human fallopian tubes, mouse organs and tumour samples were fixed for 24 hours in 10% neutral buffered formalin, then washed in 70% ethanol, and embedded in
paraffin. Tissue was sectioned at $4-\mu \mathrm{m}$ thickness and stained for $\mathrm{H} \& E$, smooth muscle actin (SMa), cytokeratin 18(Ck18) \& IFNع. Briefly, histological tissue sections were deparaffinised and rehydrated. Antigen retrieval was performed by heat in $10 \mathrm{mM} \mathrm{Tris} / 1 \mathrm{mM}$ EDTA (pH 9.0) for 6 mins. After inhibition of endogenous peroxidase activity with 3% (vol/vol) hydrogen peroxide, tissues were blocked in CAS-Block ${ }^{\mathrm{TM}}$ (ThermoFisher Scientific) for 1 hour. Tissues were then incubated overnight at $4^{\circ} \mathrm{C}$ with anti-IFN ε ($1: 210$; Novus Biologicals, Colorado), anti-SMa (1:100; Dako Omnis, Santa Clara), anti-Ck18 (1:50; Dako Omnis) and rabbit IgG (1:200; Vector Laboratories, California) or mouse IgG1 (1:37; Vector Laboratories) as isotype controls. Biotinylated anti-rabbit or anti-mouse IgGs (both 1:250 dilution; Vector Laboratories) were diluted in the same buffer and incubated for 1 hour. Slides were then washed in 0.05% Tween/PBS and incubated with avidin and biotinylated horseradish peroxidase (VECTASTAIN ${ }^{\circledR}$ Elite ${ }_{\circledR}$ ABC Kit, Vector Laboratories) as per the manufacturer's instructions and washed again. Slides were then incubated with diaminobenzidine tetrahydrochloride (DAB; DAB+ Substrate Chromogen System, Dako Omnis) as per the manufacturer's instructions. Sections were counterstained with Haematoxylin for 45 seconds then dehydrated and placed under coverslip with dibutylphthalate dolystyrene xylene (DPX; Merck, Germany). Staining intensity was calculated using the positive pixel analysis tool in Imagescope software.

Immunophenotyping_Single cell suspensions were obtained from peritoneal lavage cells of C57BL/J mice studied for surface antigen expression using a panel of monoclonal antibodies directly conjugated with fluorochromes. In order to prevent non-specific binding, cell surface receptors were blocked with Anti-mouse CD16/CD32 Fcy III/II Receptor blocking antibody (BD PharMingen, California). For surface staining, cells were stained with the various combinations of fluorochrome-labelled antibodies: panel 1 - APC conjugated CD45, APC-Cy7 conjugated CD8, FITC conjugated NK-1.1, PE conjugated CD69, Pacific Blue conjugated

CD4; panel 2 - APC conjugated CD25, APC-Cy7 conjugated CD8, FITC conjugated CD45, PE conjugated Pan CK, PE-Cy7 conjugated CD4 and Pacific Blue conjugated FoxP3; panel 3 - APC conjugated CD45, APC-Cy7 conjugated CD11b, FITC conjugated Ly6C, PE conjugated I-Ab, PE-Cy7 conjugated CD11c and Pacific Blue Ly6G. Cells were analysed using a FACSCanto ${ }^{\mathrm{TM}}$ II flow cytometer (BD Biosciences) and Flo-Jo software.

Cytometric bead array (CBA)-Cytometric bead array (BD CBA Mouse Inflammation Kit; BD Pharmingen) was used to determine levels of MCP-1, IFN γ, IL-6, IL-10, IL-12p70, and TNFα. in the supernatant of peritoneal exudate cells from mice injected with ID8 cells (see intraperitoneal model of ovarian cancer below) as per the manufacturer's instructions. A FACSCanto ${ }^{\text {TM }}$ II flow cytometer (BD Biosciences) and Flo-Jo software was used to examine levels of MCP-1, IFN γ, IL-6, IL-10, IL-12p70, or TNF- α.

Mice- IFN $\varepsilon^{-/}$(Fung K, Mangan N, et al., Science 2013) and Ifnar1 ${ }^{-1-}$ (Hwang, Hertzog et al., PNAS 1995) on a C57bl6 background and wild-type mice (Monash Animal Research Facility) were housed in standard specific pathogen free (SPF) conditions.

Intrabursal (orthotopic) ovarian cancer model- Female mice (10 weeks of age) were anaesthetized by inhalation of isoflurane (5% in oxygen) in an induction chamber, and anesthesia maintained at 2.5-3.0\% isoflurane delivered via nosecone during all procedures. Mice were subcutaneously injected with Carprofen $(5 \mathrm{mg} / \mathrm{kg})$ prior to surgery. A small incision was made at the dorso-medial position directly above the ovarian fat pad, with a secondary small incision through the peritoneal wall. The ovarian fat pad was externalised and stabilized with a bull clip, and a dissecting microscope used to locate the oviduct in the exposed ovary. ID8 cells $\left(1 \times 10^{6}\right)$ were injected underneath the left ovarian bursa. The peritoneal wall was sutured closed using $6 / 0$ suture prior to topical Bupivacaine administration and closure of the incision closed with surgical staples. Analgesia (Carprofen $5 \mathrm{mg} / \mathrm{kg}$ body weight) was provided
in drinking water for 3 days thereafter. Mice were monitored for body weight, Body Condition Score (BCS) defined as: BCS 1 Thin - Skeletal structure prominent and vertebral bodies protruding, BCS 2 Under-conditioned - segmentation of vertebral column evident but not protruding, and BCS3 Well-conditioned - vertebrae not evident without palpation, as well as clinical signs (see Appendix C) and culled 13 weeks post-ID8 injection.

Intraperitoneal (disseminated) ovarian cancer model-Female (6 to 8 weeks of age) mice were injected intraperitoneally with 5×10^{6} ID8 cells. Mice were monitored for body weight, BCS and clinical signs and culled 8 weeks post-ID8 injection. At autopsy, the overall spread and tumour burden of each mouse was documented (number of tumour nodules, sites of nodule deposits recorded and photographed), ascites fluid was drained from the peritoneum for volume measurement and cell counts and tissue harvested (spleen, diaphragm, peritoneal wall, mesenteric fat, female reproductive tract) for weight measurements and immunohistochemical analysis. All analysis of mice phenotypes was performed blinded.

Intraperitoneal recombinant IFN therapy__ IFN treatments were commenced 3 days postintraperitoneal ID8 cell injections. Mice either received recombinant murine Ifnc injected intraperitoneally 3 times a week at a dose of $500 \mathrm{IU} /$ injection or $\operatorname{Ifn} \beta$ at $500 \mathrm{IU} /$ injection or vehicle for 8 weeks. At autopsy, the orthotopic 'primary" tumour was collected along with metastases (diaphragmatic \& peritoneal), spleen, ascites fluid (volume and cell counts) and peritoneal lavage and samples weighed, photographed and processed for immunohistochemical analysis.

Statistical analysis-Data were graphed in GraphPad Prism 7. Significance for parametric data were determined using Student's Unpaired T Test and non-paramteric data were determined using Mann-Whitney t test. Differences were considered significant if the P value was <0.05
and significance is indicated as ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$. Details of statistical data are indicated for each figure.

References.

Akman, T., Oztop, I., Unek, I. T., Koca, D., Unal, O. U., Salman, T., Yavuzsen, T., Yilmaz, A. U., Somali, I., Demir, N., and Ellidokuz, H. (2014). Long-term outcomes and prognostic factors of high-risk malignant melanoma patients after surgery and adjuvant high-dose interferon treatment: a single-center experience. Chemotherapy 60, 228-238.

Alberts, D. S., Markman, M., Muggia, F., Ozols, R. F., Eldermire, E., Bookman, M. A., Chen, T., Curtin, J., Hess, L. M., Liebes, L., et al. (2006). Proceedings of a GOG workshop on intraperitoneal therapy for ovarian cancer. Gynecologic oncology 103, 783-792.

Anguille, S., Lion, E., Willemen, Y., Van Tendeloo, V. F., Berneman, Z. N., and Smits, E. L. (2011). Interferon-alpha in acute myeloid leukemia: an old drug revisited. Leukemia 25, 739748.
U.S. Cancer Statistics Working Group. (2017). United States Cancer Statistics: 1999-2014 Incidence and Mortality Web-based Report. In, (Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute).

Ascierto, P. A., Chiarion-Sileni, V., Muggiano, A., Mandala, M., Pimpinelli, N., Del Vecchio, M., Rinaldi, G., Simeone, E., and Queirolo, P. (2014). Interferon alpha for the adjuvant treatment of melanoma: review of international literature and practical recommendations from an expert panel on the use of interferon. Journal of chemotherapy 26, 193-201.

Berek, J. S., Hacker, N. F., Lichtenstein, A., Jung, T., Spina, C., Knox, R. M., Brady, J., Greene, T., Ettinger, L. M., Lagasse, L. D., and et al. (1985). Intraperitoneal recombinant alpha-interferon for "salvage" immunotherapy in stage III epithelial ovarian cancer: a Gynecologic Oncology Group Study. Cancer research 45, 4447-4453.

Berek, J. S., Markman, M., Stonebraker, B., Lentz, S. S., Adelson, M. D., DeGeest, K., and Moore, D. (1999). Intraperitoneal interferon-alpha in residual ovarian carcinoma: a phase II gynecologic oncology group study. Gynecologic oncology 75, 10-14.

Bidwell, B. N., Slaney, C. Y., Withana, N. P., Forster, S., Cao, Y., Loi, S., Andrews, D., Mikeska, T., Mangan, N. E., Samarajiwa, S. A., et al. (2012). Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nature Medicine 18, 1224-1231.

Bronger, H., Singer, J., Windmuller, C., Reuning, U., Zech, D., Delbridge, C., Dorn, J., Kiechle, M., Schmalfeldt, B., Schmitt, M., and Avril, S. (2016). CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. British journal of cancer 115, 553-563.

Bruzzone, M., Rubagotti, A., Gadducci, A., Catsafados, E., Foglia, G., Brunetti, I., Giannessi, P. G., Carnino, F., Iskra, L., Rosso, R., et al. (1997). Intraperitoneal carboplatin with or without interferon-alpha in advanced ovarian cancer patients with minimal residual disease at second look: a prospective randomized trial of 111 patients. G.O.N.O. Gruppo Oncologic Nord Ovest. Gynecologic oncology 65, 499-505.

Capobianco, A., Cottone, L., Monno, A., Manfredi, A. A., and Rovere-Querini, P. (2017). The peritoneum: healing, immunity, and diseases. The Journal of pathology 243, 137-147. Charbonneau, B., Goode, E. L., Kalli, K. R., Knutson, K. L., and Derycke, M. S. (2013). The immune system in the pathogenesis of ovarian cancer. Critical reviews in immunology 33, 137-164.

Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J. R., Zhang, L., Burow, M., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature medicine 10, 942-949.

Domcke, S., Sinha, R., Levine, D. A., Sander, C., and Schultz, N. (2013). Evaluating cell lines as tumour models by comparison of genomic profiles. Nature communications 4, 2126.

Ducie, J., Dao, F., Considine, M., Olvera, N., Shaw, P. A., Kurman, R. J., Shih, I. M., Soslow, R. A., Cope, L., and Levine, D. A. (2017). Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nature communications 8,990 .

Duraiswamy, J., Freeman, G. J., and Coukos, G. (2013a). Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer research 73, 6900-6912.

Duraiswamy, J., Kaluza, K. M., Freeman, G. J., and Coukos, G. (2013b). Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer research 73, 3591-3603.

Frasci, G., Tortoriello, A., Facchini, G., Conforti, S., Persico, G., Mastrantonio, P., Cardone, A., and Iaffaioli, R. V. (1994). Carboplatin and alpha-2b interferon intraperitoneal combination as first-line treatment of minimal residual ovarian cancer. A pilot study. European journal of cancer 30A, 946-950.

Fung, K. Y., Mangan, N. E., Cumming, H., Horvat, J. C., Mayall, J. R., Stifter, S. A., De Weerd, N., Roisman, L. C., Rossjohn, J., Robertson, S. A., et al. (2013). Interferon-epsilon protects the female reproductive tract from viral and bacterial infection. Science 339, 10881092.

Greenaway, J., Moorehead, R., Shaw, P., and Petrik, J. (2008). Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecologic oncology 108, 385-394.

Hall, G. D., Brown, J. M., Coleman, R. E., Stead, M., Metcalf, K. S., Peel, K. R., Poole, C., Crawford, M., Hancock, B., Selby, P. J., and Perren, T. J. (2004). Maintenance treatment with interferon for advanced ovarian cancer: results of the Northern and Yorkshire gynaecology group randomised phase III study. British journal of cancer 91, 621-626.

Hardy, M. P., Owczarek, C. M., Jermiin, L. S., Ejdeback, M., and Hertzog, P. J. (2004). Characterization of the type I interferon locus and identification of novel genes. Genomics 84, 331-345.

Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). (2016) SEER Cancer Statistics Review, 1975-2014, National Cancer Institute. Bethesda

MD, https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.

Hwang* SY, Hertzog* PJ, Holland KA, Sumarsono SH, Tymms MJ, Hamilton JA, Whitty G, Bertoncello I, Kola I. (1995). A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc Natl Acad Sci U S A. 92(24):11284-8

Jayson, G. C., Kohn, E. C., Kitchener, H. C., and Ledermann, J. A. (2014). Ovarian cancer. Lancet 384, 1376-1388.

K Au, K., Peterson, N., Truesdell, P., Reid-Schachter, G., Khalaj, K., Ren, R., Francis, J. A., Graham, C. H., Craig, A. W., and Koti, M. (2017). CXCL10 alters the tumour immune microenvironment and disease progression in a syngeneic murine model of high-grade serous ovarian cancer. Gynecologic oncology 145, 436-445.

Kirkwood, J. M., Ibrahim, J. G., Sosman, J. A., Sondak, V. K., Agarwala, S. S., Ernstoff, M. S., and Rao, U. (2001). High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage

IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 19, 2370-2380.

Kurman, R. J., and Shih Ie, M. (2011). Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Human pathology 42, 918-931.

Kurta, M. L., Edwards, R. P., Moysich, K. B., McDonough, K., Bertolet, M., Weissfeld, J. L., Catov, J. M., Modugno, F., Bunker, C. H., Ness, R. B., and Diergaarde, B. (2014). Prognosis and conditional disease-free survival among patients with ovarian cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 32, 4102-4112.

Lande R., Giacomini E., Grassi T., Remoli M. E., Iona E., Miettinen E., Julkunen I and Coccia E.M. (2003). IFN- $\alpha \beta$ Released by Mycobacterium tuberculosis-Infected Human Dendritic Cells Induces the Expression of CXCL10: Selective Recruitment of NK and Activated T Cells. J. Immunol 170 (3) 1174-1182.

Markman, M., Belinson, J., Webster, K., Zanotti, K., Morrison, B., Jacobs, B., Borden, E., and Lindner, D. (2004). Phase 2 trial of interferon-beta as second-line treatment of ovarian cancer, fallopian tube cancer, or primary carcinoma of the peritoneum. Oncology 66, 343346.

Markman, M., Berek, J. S., Blessing, J. A., McGuire, W. P., Bell, J., and Homesley, H. D. (1992). Characteristics of patients with small-volume residual ovarian cancer unresponsive to cisplatin-based ip chemotherapy: lessons learned from a Gynecologic Oncology Group phase II trial of ip cisplatin and recombinant alpha-interferon. Gynecologic oncology 45, 3-8.

Mitra, A. K. (2016). Ovarian Cancer Metastasis: A Unique Mechanism of Dissemination. In Tumor Metastasis, K. Xu, ed. (DOI: 10.5772/64700: InTech).

Mocellin, S., Pasquali, S., Rossi, C. R., and Nitti, D. (2010). Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. Journal of the National Cancer Institute 102, 493-501.

Moore, D. H., Valea, F., Walton, L. A., Soper, J., Clarke-Pearson, D., and Fowler, W. C., Jr. (1995). A phase I study of intraperitoneal interferon-alpha 2 b and intravenous cis-platinum plus cyclophosphamide chemotherapy in patients with untreated stage III epithelial ovarian cancer: a Gynecologic Oncology Group pilot study. Gynecologic oncology 59, 267-272.

Parker, B. S., Rautela, J., and Hertzog, P. J. (2016). Antitumour actions of interferons: implications for cancer therapy. Nature reviews Cancer 16, 131-144.

Pasquali, S., and Mocellin, S. (2010). The anticancer face of interferon alpha (IFN-alpha): from biology to clinical results, with a focus on melanoma. Current medicinal chemistry 17, 3327-3336.

Patch, A. M., Christie, E. L., Etemadmoghadam, D., Garsed, D. W., George, J., Fereday, S., Nones, K., Cowin, P., Alsop, K., Bailey, P. J., et al. (2015). Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489-494.

Perets, R., and Drapkin, R. (2016). It's Totally Tubular....Riding The New Wave of Ovarian Cancer Research. Cancer research 76, 10-17.

Perets, R., Wyant, G. A., Muto, K. W., Bijron, J. G., Poole, B. B., Chin, K. T., Chen, J. Y., Ohman, A. W., Stepule, C. D., Kwak, S., et al. (2013). Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer cell 24, 751-765.

Stifter, S. A., Matthews, A. Y., Mangan, N. E., Fung, K. Y., Drew, A., Tate, M. D., Soares da Costa, T. P., Hampsey, D., Mayall, J., Hansbro, P. M., et al. (2017). Defining the distinct, intrinsic properties of the novel type I interferon, epsilon. J Biol Chem. Nov 29. [Epub ahead of print]

Stone, M. L., Chiappinelli, K. B., Li, H., Murphy, L. M., Travers, M. E., Topper, M. J., Mathios, D., Lim, M., Shih, I. M., Wang, T. L., et al. (2017). Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proceedings of the National Academy of Sciences of the United States of America.

Tan, T. Z., Yang, H., Ye, J., Low, J., Choolani, M., Tan, D. S., Thiery, J. P., and Huang, R. Y. (2015). CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype. Oncotarget 6, 43843-43852.

Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S., Johnson, D. S., Trivett, M. K., Etemadmoghadam, D., Locandro, B., et al. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 51985208.

Vaughan, S., Coward, J. I., Bast, R. C., Jr., Berchuck, A., Berek, J. S., Brenton, J. D., Coukos, G., Crum, C. C., Drapkin, R., Etemadmoghadam, D., et al. (2011). Rethinking ovarian cancer: recommendations for improving outcomes. Nature reviews Cancer 11, 719725.

Webb, J. R., Milne, K., Kroeger, D. R., and Nelson, B. H. (2016). PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecologic oncology 141, 293-302.

Webb, P. M., Green, A. C., and Jordan, S. J. (2017). Trends in hormone use and ovarian cancer incidence in US white and Australian women: implications for the future. Cancer causes \& control : CCC 28, 365-370.

Webb, P. M., and Jordan, S. J. (2017). Epidemiology of epithelial ovarian cancer. Best practice \& research Clinical obstetrics \& gynaecology 41, 3-14.

Wentzensen, N., Poole, E. M., Trabert, B., White, E., Arslan, A. A., Patel, A. V., Setiawan, V. W., Visvanathan, K., Weiderpass, E., Adami, H. O., et al. (2016). Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 34, 2888-2898.

Willemse, P. H., de Vries, E. G., Mulder, N. H., Aalders, J. G., Bouma, J., and Sleijfer, D. T. (1990). Intraperitoneal human recombinant interferon alpha-2b in minimal residual ovarian cancer. European journal of cancer 26, 353-358.

Worzfeld, T., Pogge von Strandmann, E., Huber, M., Adhikary, T., Wagner, U., Reinartz, S., and Muller, R. (2017). The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Frontiers in oncology 7, 24.

Yeung, T. L., Leung, C. S., Wong, K. K., Gutierrez-Hartmann, A., Kwong, J., Gershenson, D. M., and Mok, S. C. (2017). ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget 8, 16951-16963.

Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. The New England journal of medicine 348, 203-213.

Figure 1.

Figure 1. Suppressed expression of Fallopian tube epithelial IFNe in High Grade Serous Ovarian cancer correlates with poor prognosis. (A) i-ii) Immunohistochemical (IHC) staining of human fallopian tube cross sections for $I F N \varepsilon$, using rabbit anti-hu IFNe, or (image insert) rabbit IgG control. iii) mRNA expression of IFNs in human fallopian tube epithelium (RNAseq data derived from AOCS control samples, Cancer Genomics and Genetics Program at Peter MacCallum Cancer Centre ${ }^{23}$). (B) IHC staining for IFNe in i) low grade serous carcinoma, ii) high grade serous carcinoma representative of participants plotted in iiii) staining intensity of $I F N \varepsilon$ detection in $n=20$ human FT control epithelium, $n=6$ low grade, $n=30$ high grade serous carcinoma \& $n=28$ ungraded serous samples analysed using positive pixel analysis in Imagescope software to quantify staining intensity in epithelial derived tissue components. Data are expressed as mean intensity scores for each sample stained in technical duplicates on tissue microarrays, analysed using individual Mann-Whitney tests, **p<0.01, **** $\ll 0.0001$. (C) i-ii) Plot showing normalised expression (by RNAseq analysis) of IFN\& \& IFNß in AOCS samples ($n=93$ HGSC samples and $n=7$ FT epithelium). ii) Individual expression for IFNE, median expression in tumour samples indicated by dotted line. iii) Disease-free survival for AOCS cohort determined by expression of IFNE above or below the median. D) i) mRNA expression of IFN in CSIOVDB cohort ${ }^{24}$. ii) Disease-free survival for CSIOVDB cohort determined by expression of IFNE and IFNB (iii) above or below the median. Scale bars for IHC images black $=100 \mathrm{um}$, dashed $=20 \mathrm{um}$.

Figure 2.

A

$\mathrm{IFN} \varepsilon$

B i

C

ii Haemorrhage Score

iii Total Metatases

D i PBS

ii Left Ovarian Weight

Figure 2. Anti-tumour activity of IFNe in a preclinical orthotopic model of ovarian cancer. ID8 cells were implanted into C57BL6J mice via intrabursal injection (1×10^{6} cells/mouse) to form orthotopic ovarian tumours \& peritoneal metastases. (A) Images show peritoneal haemorrhagic ascites development in mice treated with PBS (left) compared to 500IU recombinant murine IFNE (right) $3 x$ weekly via i.p. injections. NT is non tumour bearing mice. (B) Characteristic haemorrhaging \& metastatic tumour deposits throughout the peritoneal cavity (black arrows \& dotted outlines) of i) PBS- compared to ii) IFNE-treated mice. (C) i) Scoring of mesenteric tumour burden, ii) scoring of red blood cell content of lavage samples, iii) quantification of total number of metastatic deposits found in the peritoneal cavity of mice treated with PBS, 50 or $500 \mathrm{iu} / \mathrm{ml}$ IFNe. (D) i) Images show excised ovaries and uterine horn of PBS- and IFNE- treated mice, (ii) weights of orthotpic tumour-bearing ovaries are graphed. (E) Peritoneal lavage samples stained for immune markers and measured by multi-coloured flow cytometry proportion of activated leukocytes including i) activated CD4 T cells (CD69+PD1+), ii - iv) CD8 T cells, NK cells \& B cells (all CD69+). Data are presented as individual data points with median, $n=6$ mice per treatment. Significance was determined by Student's T test ${ }^{* * * * p}<0.0001$, ${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

Figure 2.
A

B i

ii

iii
Total Metastases

ii

iii

iv

Figure 3. Delayed onset IFNe effectively suppresses pre-established orthotopic ovarian tumours. ID8 cells were implanted into C57BL6J mice via intrabursal injection (1×10^{6} cells/mouse) to form orthotopic 'primary' ovarian tumours \& peritoneal metastases for 4 weeks prior to commencing recombinant IFNE or IFN β therapy (500IU/dose i.p. injected $3 x$ weekly for an additional 4 weeks). (A) Weights of excised left ID8-implanted ovaries compared to right PBS-implanted non-tumour controls. (B) i) Scoring of mesenteric tumour burden, ii) scoring of red blood cell content of peritoneal lavage samples, iii) quantification of total number of metastatic deposits found in the peritoneal cavity. (C) Peritoneal lavage samples stained for immune markers and measured by multi-coloured flow cytometry - proportion of activated leukocytes including i) activated CD4 T cells (CD69+PD1+), ii-iv) CD8 T cells, NK cells \& B cells (all CD69+). Data are presented as median of individual data points, $n=6$ mice per treatment. Significance was determined by Student's T test ${ }^{* * * * p<0.0001,}$ ${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

Figure 4.

Figure 4. IFNe suppresses ascites \& metastasis in a model of advanced ovarian cancer. Dissemination \& tumour growth of ID8 cells 8 -weeks post-intraperitoneal injection of IFNE or IFNB into C57BL6J mice. (A) Characteristic nodule formation throughout the mesentery (black dotted outlines; top row) and adhered to the peritoneal wall (black arrows; top row) and diaphragm (black arrows; bottom row) of mice injected with ID8 cells then treated with i.p. i) PBS, ii) IFNB or iii) IFNe at 500IU/dose 3 times weekly for 8 weeks. (B) i) Quantified metastatic nodules on the peritoneal wall, ii) volume of ascites drained from the peritoneum, iii) number of red blood cells in ascites fluid measured by Sysmex Cell Counter, and iv) number of epithelial (pan-CK+) tumour cells in peritoneal lavage fluid measured by flow cytometry. (C) Peritoneal lavage samples from C57BL/6J mice 8 weeks postintraperitoneal injection with ID8 cells stained for immune markers and measured by multi-coloured flow cytometry. Proportion of activated leukocytes in these mice including i-iii) activated CD4 T cells (CD25+, CD69+ or PD1+), and iv) CD8 T cells (CD69+). Data are presented as median of individual data points, $n=5$ mice per IFN treatment group, $n=5$ non-tumour bearing mice, and $n=3$ tumour-bearing mice treated with PBS. Significance was determined by Student's T test ${ }^{* * * *} p<0.0001,{ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

Figure 5.

Figure 5. Endogenous and exogenous IFNE regulate immune cells in vivo. Peritoneal lavage samples from non-tumour bearing C57BL6J mice stained for immune cell identification and activation markers and measured by multi-coloured flow cytometry. (A) $i-v i$) WT mice treated with PBS, IFN β or IFNE (500IU/dose i.p. injected 3 times weekly for 8 weeks). (B) i-vi) WT compared to IFNe ${ }^{-/}$mice. Leukocyte populations include total leukocytes (CD45+), NK cells (CD45+NKp46+), dendritic cells (CD45+CD11c+CD11b-) and inflammatory monocytes (CD45+CD11b+Ly6C+) and proportions of activated CD4 T cells (CD25+, CD69+ or PD1+) in these mice. Data are presented as median of individual data points, $n=3$ mice per genotype comparison group (endogenous $I F N \varepsilon$) and $n=5$ mice per i.p. treatment group (exogenous IFNz). Significance was determined by Student's T test ${ }^{* * *} p<0.001,{ }^{* *} p<0.01$, ${ }^{*} p<0.05$.

Figure 6.

Figure 6. Endogenous IFNE suppresses ovarian cancer metastases. Mouse ovarian cancer cells (ID8) were injected into the left ovarian bursa of female C57BL/6 wild-type (IFNE ${ }^{+/+}$) and IFNe deficient mice (IFN $\varepsilon^{-/}$). A-B) At 13 weeks post-intrabursal ID8 injection WT \& IFNغ ${ }^{-/}$mice demonstrate advanced haemorrhagic ascites \& primary tumours. (C) i) Weights of excised left ID8implanted ovaries compared to right PBS-implanted non-tumour controls, ii) number of red blood cells in peritoneal lavage samples, iii) number of metastatic nodules adhered to the peritoneal wall, iv) quantification of total number of metastatic deposits found in the peritoneal cavity. (D) Orthotopic tumour growth at 6 weeks post-intrabursal ID8 injection WT \& IFNع-- mice. (E) i) Weights of excised left ID8-implanted ovaries compared to PBS-implanted non-tumour controls, ii) number of metastatic nodules adhered to the peritoneal wall, iii) quantification of total number of metastatic deposits found in the peritoneal cavity. (F) Immunophenotyping flow cytometry was performed on peritoneal cells from WT \& IFN ε^{--}mice 6 weeks post-intrabursal ID8 injection. Proportion of activated leukocytes in these mice including i-ii) activated CD4 T cells (PD1+CD69+) \& iii) CD8 T cells (CD69+). Data are presented as median of individual data points, $n=3$ non-tumour bearing mice per genotype, 13-week model: $n=6$ ID8-injected mice per genotype, 6-week model: $n=8$ WT ID8-injected mice and $n=7$ IFNE-/- ID8injected mice. Significance was determined by Student's T test $* * * p<0.001$, **p<0.01, ${ }^{*} p<0.05$.

Figure 7.

Figure 7. The mechanism of IFN suppression of peritoneal anti-tumour immunity. . Dissemination \& tumour growth of ID8 cells 8 -weeks postintraperitoneal injection into WT or Ifnar1-/- C57BL6J mice. (A) Characteristic nodule formation throughout the mesentery (black dotted outlines) and adhered to the peritoneal wall (black arrows) and diaphragm (black arrows) of i) WT mice or ii) Ifnarl-/- mice injected with ID8 cells then treated with i.p. PBS or IFNe at 500IU/dose 3 times weekly for 8 weeks. (B) i) quantified total metastatic nodules ii) number of epithelial (pan-CK+) tumour cells in peritoneal lavage fluid measured by flow cytometry, iii) volume of ascites drained from the peritoneum, iv) number of red blood cells in ascites fluid measured by Sysmex Cell Counter. (C) Peritoneal lavage samples from C57BL6J mice 8 weeks post- intraperitoneal injection with ID8 cells stained for immune markers and measured by multicoloured flow cytometry. i) Total live leukocytes (CD45+), ii) CD4 T cells \& iii) CD8 T cells (CD69+). Data are presented as median of individual data points, $n=5$ mice per IFN treatment group, $n=5$ non-tumour bearing mice, and $n=3$ tumour-bearing mice treated with PBS. Significance was determined by Student's T test ${ }^{* * * *} p<0.0001,{ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

Figure 8.

D

Figure 8. Direct anti-tumour effects of IFNe on murine ovarian cancer cells in vitro. (A) Graphs show expression of PD-L1, Tap1, Casp1, Bcl-2, Ccnel and Cdc20 in response to stimulation of ID8 cells with 1000 IU/ml IFNE (light grey bar) or IFN β (dark grey bar) for 3 hours. Gene expression was measured by qRT$P C R$, expression calculated by dCT standardised to $18 s$ and relative expression show here determined in relation to expression at t0. Data are presented as mean +/- SEM of $n=3$ independent experiments, each done in technical triplicates. (B) Plots show inhibition of proliferation of ID8 cells treated with 100-1000 IU/ml of IFNE (top panel) or IFNB (bottom panel) for 48 hours. Cell proliferation was measured by xCELLigence. Graphs show the mean cell index across each well +/SD. (C) Plot shows inhibition of proliferation of ID8 cells treated with 0-1000 IU/ml of IFNE (dark grey bars) or IFNß (light grey bars) for 48 hours. Cell proliferation was measured by MTT assay. Plot shows the proliferation measured as end point absorbance and calculated as percentage of untreated cells $+/-$ SEM.(D) Scatter plots show induction of apoptosis (Annexin V-FITC/PI staining) in ID8 cells treated with 50-500 IU/ml of IFNe or PBS for 48 hours measured by flow cytometry. (E) Graphs show Annexin V-FITC/PI staining for i) necrotic cells (FITC-PI+), ii) late apoptotic/dead cells (FITC+PI+), iii) early apoptotic cells (FITC+PI-) and iv) live cells (FITC-PI-). Data shown as percentage positive cells after treatment with IFN ε or IFN β relative to PBS-treated. Data are presented as mean +/- SEM. All experiments done using ID8 cells, $n=3$ independent experiments done in technical triplicates (RT-PCR, xCELLigence, MTT) or duplicates (Annexin V/PI). Significance was determined by Student's T test ${ }^{* * * * p<0.0001, ~}{ }^{* * *} p<0.001$, ${ }^{* *} p<0.01,{ }^{*} p<0.05$.

Supplementary Figure 1.

Supplementary Figure 1. IFN expression co-localises with cytokeratin-18 in the human fallopian tube epithelium. (A) Images show immunohistochemical staining of human fallopian tube cross sections for i) IFNe, using rabbit anti-hu IFNe, ii) cytokeratin-18, iii) smooth muscle actin. Representative of $n=10$ fallopian tube samples. Scale bars 100um.

Supplementary Figure 2.

Supplementary Figure 2. Dose response of anti-tumour activity of IFNe in an orthotopic model of ovarian cancer. ID8 cells were implanted into C57BL6J mice via intrabursal injection (1×10^{6} cells/mouse) to form orthotopic 'primary' ovarian tumours and peritoneal metastases. (A) Additional disease quantification including volumes of excised left ID8-implanted ovaries compared to PBS-implanted non-tumour controls, red blood cell content of peritoneal ascites \& lavage fluid, volume of peritoneal ascites and total number of leukocytes in peritoneal fluid of tumour-bearing mice treated with a doserange of IFNE compared to PBS and non-tumour controls. (B) Peritoneal lavage samples stained for immune markers and measured by multi-coloured flow cytometry - total number of leukocytes populations including CD4 T cells (CD45+CD4+CD8-), CD8 T cells (CD45+CD8+CD4-), B cells (CD45+B220+) \& NK cells (CD45+NKp46+). Data are shown as median of individual data points, $n=6$ mice per treatment. Significance was determined by Student's T test ${ }^{* * * *} p<0.0001$, ${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

Supplementary Figure 3.

		Haemorrhage Score	lesentery Score	CD8	MCP1	Total Mets	CD4	CD11cMHCII	IL6	CD11bly6G	NK Cells	CD11bly6C	TNF
Tumour burden	Mesentery Score	0.91		0.78	0.79	0.74	0.70	0.55	0.51	0.42	0.30	0.24	0.47
	Haemorrhage Score		0.91	0.84	0.84	0.70	0.78	0.60	0.51	0.54	0.42	0.39	0.34
	Total Mets	0.70	0.74	0.47	0.57		0.43	0.40	0.37	0.40	0.08	0.24	0.23
Total Immune Cells	CD4	0.78	0.70	0.91	0.70	0.43		0.71	0.55	0.47	0.74	0.39	0.40
	CD8	0.84	0.78		0.82	0.47	0.91	0.63	0.74	0.64	0.70	0.50	0.47
	B Cells	0.21	0.17	0.46	0.10	-0.08	0.57	0.51	0.01	0.02	0.50	0.10	0.06
	NK Cells	0.42	0.30	0.70	0.50	0.08	0.74	0.67	0.57	0.64		0.64	0.26
	CD11bLy6C	0.39	0.24	0.50	0.56	0.24	0.39	0.55	0.60	0.90	0.64		0.14
	CD11bLy6G	0.54	0.42	0.64	0.67	0.40	0.47	0.42	0.81		0.64	0.90	0.26
	CD11cMHCII	0.60	0.55	0.63	0.52	0.40	0.71		0.24	0.42	0.67	0.55	0.07
Immune Activation	CD4 PD1	-0.02	-0.06	0.16	0.01	-0.15	0.41	0.66	-0.20	-0.09	0.49	0.21	-0.10
	CD4 CD69	0.25	0.13	0.30	0.01	-0.02	0.52	0.45	-0.02	0.05	0.45	0.06	0.05
	CD4 CD25	-0.04	0.03	0.11	-0.08	-0.08	0.38	0.55	-0.22	-0.19	0.43	0.01	-0.01
	CD4 Foxp3	0.03	0.06	0.19	0.01	-0.08	0.47	0.44	-0.12	-0.13	0.52	-0.02	0.15
	CD4 CD25+ Foxp3+	0.02	0.11	0.15	-0.06	-0.01	0.42	0.51	-0.19	-0.20	0.44	-0.08	0.02
	CD4 CD25-Foxp3+	0.03	0.02	0.19	0.04	-0.10	0.44	0.36	-0.07	-0.08	0.52	0.01	0.21
	CD4 CD25 + Foxp3-	-0.23	-0.23	-0.07	-0.13	-0.25	0.08	0.42	-0.22	-0.06	0.21	0.33	-0.11
	CD4 CD69+ PD1+	-0.52	-0.45	-0.39	-0.31	-0.36	-0.30	-0.05	-0.25	-0.26	-0.18	0.01	-0.05
	CD4 PD1+ Foxp3-	-0.40	-0.36	-0.30	-0.24	-0.26	-0.07	0.20	-0.33	-0.32	0.05	-0.05	-0.18
	CD4 PD1+ Foxp3+	-0.24	-0.21	-0.24	-0.15	-0.13	-0.04	0.19	-0.28	-0.21	0.16	-0.07	-0.05
	CD4 PD1-Foxp3+	-0.28	-0.11	-0.25	-0.26	-0.14	-0.03	-0.06	-0.27	-0.39	0.05	-0.40	0.09
	B220+ CD69+	-0.53	-0.49	-0.23	-0.34	-0.39	-0.30	-0.11	-0.21	-0.12	0.02	0.03	-0.10
	NK CD69+	-0.21	-0.25	0.02	-0.06	-0.22	0.13	0.41	-0.04	0.15	0.63	0.32	0.00
	CD11bintMHCllint	0.21	0.26	0.03	0.05	0.43	0.20	0.41	-0.18	-0.10	0.01	-0.06	-0.19
Cytokines	IFNgamma	-0.12	-0.07	-0.11	-0.01	0.01	-0.11	-0.19	0.03	-0.03	-0.16	-0.07	0.32
	LL6	0.51	0.51	0.74	0.68	0.37	0.55	0.24		0.81	0.57	0.60	0.46
	1110	0.12	0.12	0.18	0.25	-0.11	0.14	0.00	0.14	0.12	0.18	0.11	0.28
	IL12	-0.40	-0.24	-0.22	-0.34	-0.21	-0.15	-0.38	-0.17	-0.33	-0.17	-0.35	0.23
	MCP1	0.84	0.79	0.82		0.57	0.70	0.52	0.68	0.67	0.50	0.56	0.50
	TNF	0.34	0.47	0.47	0.50	0.23	0.40	0.07	0.46	0.26	0.26	0.14	
		1/A						1/B			2		
		High tumour correlation AND MCP1/IL6 AND total immune counts - Negative immune activation						Moderate tumour correlation AND total immune			Weak tumour correlation - high total immune		

Supplementary Figure 3. Correlations between immune cell populations, inflammatory cytokines and tumour burden in a model of ovarian cancer. ID 8 cells implanted into C57BL6J mice via intrabursal injection (1x106 cells/mouse), forming orthotopic ovarian tumours \& peritoneal metastases over 8 weeks. $A-B$) Tables show Pearson r correlations between various parameters determining tumour burden (mesentery \& haemorrhage score, total metastatic nodules), total immune cell populations (CD4+ \& CD8+ T cells, B cells, NK cells, monocytes, neutrophils, dendritic cells), markers of immune activation (PD1, CD69, CD25, MHCII) and inflammatory cytokines IFN , IL6, IL10, IL12, MCP1, TNF) as measured at endpoint. Correlations are coloured if $p<0.05$, blue $r<0$, yellow $r<0.5$, orange $0.5>r<0.7$, red $r>0.8$. Correlations were calculated on results from $n=6$ PBS-treated, IFNE-treated \& IFN β-treated mice. Non-tumour bearing mice were excluded from analysis.

Supplementary Figure 4.

Supplementary Figure 4. Anti-tumour activity of IFNe compared to IFNB in a model of ovarian cancer. Dissemination \& tumour growth of ID8 cells 8-weeks post-intraperitoneal injection into C57BL6J mice. (A) Scoring of mesenteric tumour burden mice injected with ID8 cells then treated with IP PBS, IFNB or IFNE at 500IU/dose 3 times weekly for 8 weeks. (B) The concentration of cytokines MCP-1, IL-6 \& IL-10 detected in peritoneal fluid by cytometric bead array. (C) Peritoneal lavage samples from C57BL6J mice 8 weeks postintraperitoneal injection with ID8 cells stained for immune markers and measured by multicoloured flow cytometry. Total leukocyte populations in these mice including total leukocytes (CD45+), CD4 T cells (CD45+ CD4+CD8-), CD8 T cells (CD45+CD8+CD4-). Cytokine bead array data are shown as mean +/- SEM, otherwise shown as median of individual data points, $n=5$ mice per IFN treatment group, $n=5$ non-tumour bearing mice, and $n=3$ tumourbearing mice treated with PBS. Significance was determined by Student's T test ${ }^{* * * *} p<0.0001,{ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$

Supplementary Figure 5.

A

Supplementary Figure 5. IFNe effectively suppresses tumour progression in mice with pre-existing 4 week-old orthotopic ovarian cancer. ID8 cells were implanted into C57BL6J mice via intrabursal injection (1x106 cells/mouse) to form orthotopic ovarian tumours \& peritoneal metastases over 4 weeks prior to commencing recombinant IFNE or IFN β therapy (500IU/dose i.p. injected $3 x$ weekly for additionally 4 weeks). (A) Additional disease quantification including volumes of excised left ID8-implanted ovaries compared to PBS-implanted non-tumour controls, red blood cell content of peritoneal ascites \& lavage fluid, volume of peritoneal ascites and total number of leukocytes in peritoneal fluid of tumour-bearing mice treated with 500IU/ml of IFNe or IFN β compared to PBS and non-tumour controls. (B) Peritoneal lavage samples stained for immune markers and measured by multi-coloured flow cytometry - total number of leukocytes populations including CD4 T cells (CD45+CD4+CD8-), CD8 T cells (CD45+CD8+CD4-), B cells (CD45+B220+) \& NK cells (CD45+NKp46+). Data are shown as median of individual data points, $n=6$ mice per treatment. Significance was determined by Student's T test ${ }^{* * * * p<0.0001 \text {, }}$ ${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

Supplementary Figure 6.

Supplementary Figure 6. Endogenous and exogenous IFNe regulates immune cells in mice. Peritoneal lavage samples from non-tumour bearing C57BL6J mice stained for immune markers and measured by multi-coloured flow cytometry. (A) Wild-type compared to IFNE knock out mice. (B) Wild-type mice treated with PBS, $I F N \beta$ or $I F N \varepsilon$ ($500 I U /$ dose i.p. injected 3 times weekly for 8 weeks). Leukocyte populations include CD4+ and CD8+ T lymphocytes. Data are shown as median of individual data points, $n=3$ mice per genotype comparison group (endogenous $I F N \varepsilon$) and $n=5$ mice per i.p. treatment group (exogenous IFNE). Significance was determined by Student's T test ${ }^{* * *} p<0.001$, ${ }^{* *} p<0.01$, ${ }^{*} p<0.05$.

Supplementary Figure 7.

A

Supplementary Figure 7. Early-stage orthotopic models of murine ovarian cancer in mice lacking endogenous IFN. Female C57BL/6 wild-type (Ifne +/+) and Ifne deficient mice (Ifne -/-) were intrabursally injected with 1×10^{6} mouse ovarian cancer cells (ID8) into the left ovarian bursa. Immunophenotyping flow cytometry was performed on peritoneal cells from WT \& Ifnを deficient mice 6 weeks post-intrabursal ID8 injection. Total number of peritoneal lavage leukocytes, C4 T cells (CD45+CD4+CD8-) and CD8 T cells (CD45+CD8+CD4-) were detected by immunostaining and flow cytometry. Data are shown as median of individual data points, $n=3$ non-tumour bearing mice per genotype, $n=8$ WT ID8injected mice and $n=7$ Ifne-/- ID8-injected mice. Significance was determined by Student's T test ${ }^{* * *} p<0.001,{ }^{*}{ }^{*} p<0.01,{ }^{*} p<0.05$.

Supplementary Figure 8.

Supplementary Figure 8. The mechanism of IFN modulation in peritoneal antitumour immunity. Quantified total volume of ascites and red blood cells in peritoneal fluid of WT mice or Ifnar 1-/- mice injected intrabursally with ID8 cells then treated with i.p. PBS, IFN β or IFNe at 500IU/dose 3 times weekly for 8 weeks. (A) CD4 T cells and (B) Number of platelets in peritoneal fluid quantified by immunostaining flow cytometry and Sysmex Cell Counter, respectively. Data are shown as median of individual data points, $n=5$ mice per IFN treatment group, $n=5$ non-tumour bearing mice, and $n=3$ tumour-bearing mice treated with PBS. Significance was determined by Student's T test ****p<0.0001, ${ }^{* * *} p<0.001$, ${ }^{* *} p<0.01,{ }^{*} p<0.05$.

Supplementary Figure 9.

A

Supplementary Figure 9. Induction of IRGs in ID8 cells by IFNE \& IFN Graph shows a 3 hour dose response of 10-1000 IU/ml IFNE (left panels shown in black) and IFN β (right panels in grey) induction of Cxcl10, Ifitl and Isg15. Gene expression was measured by qRT-PCR, expression calculated by dCT standardised to $18 s$ and relative expression shown here determined in relation to expression at t0. Data are shown as mean $+/-S E M$ of $n=3$ independent experiments, each done in technical triplicates. Significance was determined by Student's T test ${ }^{* * * * p<0.0001 .}$

Supplementary Figure 10. Direct anti-tumour activity of IFNe in vitro on human ovarian cancer cell lines. (A) Graphs show doubling times of CaOV3 \& OVCAR4 cells treated with $1-1000 \mathrm{IU} / \mathrm{ml}$ of $I F N \varepsilon$ for 48 hours. Cell proliferation was measured using xCELLigence and displayed as doubling time. Data are representative of $n=3$ independent experiments, shown as mean $+/-$ SEM. Significance was determined by Student's T test $* * * * p<0.0001$, ${ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$.

CHAPTER 5: DISCUSSION

'Little by little, one travels far.'†

5.1 Overview

Metastases are the most difficult to treat and subsequently, most lethal consequence of cancer growth, whereby a select population of discrete tumour cells are able to steal into the human body and colonise distant sites. The collection of processes facilitating the survival and spread of these tumour cells may in fact stem from intrinsic properties common to all cancers including the ability to regulate cell proliferation, cell death, vascular growth, reprogramming cell metabolism, invading surrounding tissue and evading immune elimination (2, 4). Type I IFN signalling has been linked to each of these cellular processes as a key family of regulatory cytokines in caner with the ability to regulate both tumour cell intrinsic functions and also tumour extrinsic immune responses (97).

The promise of these anti-tumour properties has led to use of exogenous IFN α and IFN β to be utilised in clinical trials against cancer. As a result, type I IFN therapy has proved clinically beneficial in haematological malignancies (277) these benefits were partly attributed to direct effects on circulating tumour cells $(278,279)$. IFN therapy has shown some promise in solid tumours as well, such as melanoma, where adjuvant treatment of late-stage disease improved relapse-free and overall survival (79, 280-283). However, despite its promise, broad therapeutic application of type I IFN has largely been limited by adverse clinical effects including HDI-associated cytotoxicity that include flu-like symptoms, anorexia and even depression. Evidence of a selective benefit in treating with type I IFN in an adjuvant setting compared to advanced metastatic disease (281) has been interpreted as a demonstration of the immunoregulatory anti-tumour effects on disseminated tumour cells or minimal residual

[^6]disease (MRD) (97), however this remains to be established. Further characterisation of type I IFN signalling is needed to understand its role in cancer and effectively harness its anti-tumour effects.

Endogenous IFN plays a vital role in regulating the tumour microenvironment and can be produced either by tumour cells themselves, stromal cells or immune cells (42, 284). In breast cancer, dysregulation in endogenous type I IFN signalling has been detected in immune cells (285) and identified as a vital mechanism by which tumour cells suppress anti-tumour immune responses and thus, are able to spread (42). This study also highlights the successful use of exogenous IFN as a substitute for deficient or compromised IFN signalling. This suggests the potential benefit of developing IFN-associated biomarkers to identify patients that may respond to anti-metastatic IFN replacement therapy. Constitutive IFN signalling has been detected in epithelial cells of the female reproductive tract (FRT), where a distinct member of the type I IFN family, IFN ε, is constitutively expressed (171). This constitutive IFN ε signalling has been shown to regulate epithelial function and protect against pathogens via immune regulation (171), however prior to this study its role in FRT malignancies remained unknown.

Using breast and ovarian cancer as models, the aims of this thesis were to study the loss of constitutive type I IFN in these tissues, investigate detection of constitutive type I IFN activity and investigate the anti-metastatic effects of type I IFN. Subsequently, the work presented in this thesis contributes some of the first evidence of the importance of constitutive type I IFN signalling during specific pathways of cancer development and metastatic dissemination, detection of broad, systemic IFN activity during metastasis and effective anti-metastatic therapy.

5.2 Constitutive Type I IFN Signalling in Cancer Development \& Progression

One of the key findings of this thesis was the detection of constitutive IFN ε expression in human fallopian tube (FT) epithelium, presented in Chapter 4. Prior to this, our Lab had reported IFN ε mRNA was constitutively expressed in both murine and human lower FRT and IFN ε protein expression was detected specifically in murine uterine epithelial cells (171). However, the expression of $\mathrm{IFN} \varepsilon$ in FT epithelium remained unknown. The immunohistochemistry data presented in this thesis, together with in silico analyses of human transcriptomic data, clearly show IFN ε is expressed in human FT epithelium. This finding constitutes the first evidence that type I IFN signalling is constitutively active among cells including the putative cell of origin of human HGSC (230-233). This finding complements evidence that type I IFN is constitutively expressed in normal mammary tissue from which breast tumours arise (42), highlighting that constitutive type I IFN signalling in the epithelium, may play an important role in restricting development of both cancers. Interestingly, the upstream regulation of constitutive IFN differs between these two sites: IRF7 drives expression of IFN in mammary epithelium, but is not responsible for constitutive IFN ε expression in FRT epithelium as the IFN ε promote lacks IRF binding sites and thus, is not regulated by PRR signalling (171).

Further analyses revealed that IFN ε mRNA and protein expression was significantly suppressed in human HGSC samples compared to normal FT epithelium and critically, stratifying HGSC patients based on IFN ε mRNA expression significantly correlated with patient disease-free survival. While further work will be required to explore the mechanisms underlying IFN ε suppression in ovarian cancer development and progression these data suggest that loss of endogenous constitutive IFN ε may be a key mechanism of tumour progression.

Given that IFN ε is regulated by hormones within the FRT (171), IFN ε loss may be a consequence of menopause. Incidence of ovarian cancer increases with age with median age at diagnosis of 63 years (286), the majority of new cases occur in postmenopausal women, in whom IFN ε expression is lost (171). Additionally, among premenopausal women there is evidence that oral contraceptive pill (OCP) use reduces the risk of ovarian cancer with a $20-30 \%$ reduction per 5 years of use (287), which may reflect an oestrogen-driven upregulation of IFN ε which is yet to be investigated.

5.3 Detection of Local, Systemic \& Secondary IFN/Immune Signatures during Metastasis

The finding that constitutive IFN signalling may be a key component in restricting development and progression of cancer highlights the need for methods of detecting and measuring IFN activity as a means of stratifying patients for personalised IFN therapy. To address this, we have performed transcriptomic analyses on peripheral blood cells from a cohort of familial breast cancer patients with or without metastases and unaffected donors each selected from matched family groups. The use of familial controls allowed for paired analyses of human samples, in lieu of obtaining multiple samples taken from the same patient across the course of metastasis, an invasive procedure for individuals with a life-threatening illness. In fact, the results of these analyses presented in Chapter 3, demonstrate that the use of familial paired analysis significantly increased analytical power of differential transcriptomic analyses. It is likely that this experimental design controls for reported population variance in the blood transcriptome $(288,289)$. There is evidence to suggest that a proportion of the human transcriptome is highly heritable (290), which can attributed to expression Quantitative Trait Loci (eQTL) and genetic polymorphisms that regulate gene expression (291-295).

The results in Chapter 3 demonstrate some of the key pathways active in local, systemic and distant tissue during breast cancer metastasis as detected by peripheral blood transcriptome analyses and multiplex tissue staining. Our aim was to detect and characterise an expression signature in blood as an indication of a loss of constitutive IFN activity and thus, metastatic potential. The results demonstrate that well-characterised interferon-related signatures were significantly negatively enriched in blood from patients with metastases compared to those without. This supports the hypothesis that the constitutive IFN signalling detectable in primary tumour cells is suppressed during tumour metastasis (42), though previously it was unknown whether this occurred prior to tumour intravasation, in circulation or post-extravasation.

Suppression of IFN signalling was accompanied by a significant systemic suppression in T cell gene enrichment during breast cancer metastasis. T cells have been shown to be critical in effecting IFN-driven anti-metastatic effects in breast cancer (42). Additionally, impairment of T cell function has been identified in peripheral blood lymphocytes from breast cancer patients (285) the mechanism of which has been suggested a loss of CD4+ Helper cells which in turn leads to less effector cell priming (296). In a murine ovarian cancer cell model, suppression of tumour dissemination was associated with increased CD8+ T cell activation (297). Therefore, the fact that IFN associated T cell activation is associated with metastases suppression across both our models suggests that immune regulation is indeed a critical antitumour mechanism in type I IFN suppression of tumour progression.

The findings of this thesis consistently suggest that anti-tumour immunoregulation driven by type I IFN signalling, both endogenous and exogenous, is critical in metastatic spread of both breast and ovarian cancer. Firstly, in breast cancer our blood transcriptome analyses and multiplex immune staining demonstrates that during metastasis or in tumours with assured metastatic potential, primary breast tumour cells are closely, physically associated with platelets. The role of platelets in chaperoning tumour cells throughout metastasis has been
shown in a number of cancers including breast cancer (62-65), where platelets have been detected trafficking tumour cells in the blood stream. Additionally, platelets in close proximity to cells within the primary tumour have been shown to promote chemoresistance (298) that our data corroborated as we observed the presence and close association between primary tumour cells and platelets. This association was present in primary tumours regardless of metastatic potential, though exclusively positively enriched in blood from breast cancer patients with metastases. This potentially indicates that platelets are recruited to the site of primary tumour long before the establishment and diagnosis of macro-metastases. This significance of this observation in terms of pathogenesis or diagnosis of metastases requires further investigation.

Platelets have been identified as key cells involved in priming pre-metastatic niches in secondary organs (299). In this study, platelet-tumour cell association was markedly reduced in a proportion of secondary breast tumours. This interaction potentially decreases as tumour cells establish macro-metastases in secondary organs and no longer require platelet aid, however further work is needed to explore this relationship further. Interestingly, we also found a plateletassociated phenotype in ovarian cancer dissemination. Haemorrhagic malignant ascites development in the peritoneal cavity is the end-stage of human ovarian cancer progression, in fact thrombocytosis, or high platelet counts \& activity, has been reported in roughly 30% of newly diagnosed women (300). Evidence in vitro demonstrates that co-culture with platelets acts as a chemoattractant and promotes migration in human ovarian cancer cells (301). In our mouse model of ovarian cancer dissemination, we found recombinant IFN ε treatment significantly reduced peritoneal haemorrhaging (an indirect association with platelet burden) which correlated with suppressed tumour dissemination.

Using the INTERFEROME tool, we were able to demonstrate that while modules of select numbers of well-characterised interferon genes were significantly negatively enriched among our metastatic and non-metastatic blood signatures, many broadly classified IFN
responsive genes were in fact contributing to the key biological enrichments demonstrated in blood during breast cancer metastasis. We were able to classify a subset of 'metastasisassociated' IRGs, which when divided into up or down regulation during metastasis, were in fact significantly positively enriched for platelet activity and negatively enriched for cell processes including metabolism and transcription.

Metabolic processes such as hypoxia are known to impact immune function in the tumour microenvironment, a growing field of research $(302,303)$. Recent work has shown that type I IFNs can activate immune cells via metabolic processes including fatty acid oxidation and oxidative phosphorylation (304). While further work is needed to explore potential IFNdriven pathways revealed in metastasis, the findings of this thesis highlights the complexity of IFN signalling and the array of biological functions effected by IRG expression. In future, combining these data with further gene set characterisation such as transcription factor binding site prediction (305) might reveal the specific IFN-associated pathways mediating these distinct effects and contribute to the growing body of knowledge on IFNs in cancer.

5.4 Anti-Metastatic Effects of Type I IFNs

5.4.1 Endogenous Type I IFN

As was demonstrated by Bidwell et al., constitutive IFN signalling present in primary breast tumour samples had no effect on the growth of the primary tumour itself, but rather the antitumour effects of type I IFN signalling suppressed bone metastasis (42). This is consistent with findings that IFN α therapy is more effective as an adjuvant therapy to surgery rather than a treatment for advanced metastatic disease (281). This potentially reflects that type I IFN therapy is most effective when able to exert immunoregulatory effects on target tumour cells $(97,306)$, rather than solely elicit a direct anti-proliferative or pro-apoptotic effect on tumour cells within established metastatic masses likely in the context of an immunosuppressive
microenvironment. Our data in IFNe-/- mice using an orthotopic ID8 model of murine ovarian cancer, demonstrates that endogenous IFN ε has little overt effect on primary 'orthotopic' tumour growth, but instead reduces peritoneal tumour dissemination. However, the tumour cells used in this study were not deficient in IFN ε and demonstrated low expression in vitro. Therefore, in future work it will be important to study tumour development in the absolute absence of IFN ε (by generating IFN $\varepsilon^{-/}$tumour cells using CRISPr/Cas9) and thus, delineate the role endogenous IFN ε expression in tumour cells and host cells.

Additionally, further characterisation of the effects of endogenous IFN ε could be discerned from genetically modifying tumour cells to overexpress IFN ε in this model or alternatively, using an IFN ε inducer to upregulate endogenous protein expression. Similar approaches have been trailed clinically using PRR agonists to induce type I IFN in several cancers with promising effects $(105,106,307)$, however further work is needed to identify potential therapeutic inducers of endogenous IFN ε, a potential area for drug development.

An important outcome from this work combined with further characterisation of antimetastatic effects of endogenous type I IFN, could be the identification of novel IFN biomarkers for cancer development and progression. Methods of patient stratification and targeted/precision therapy approaches in cancer are currently the subject of much investigation and development (308, 309). While many studies have utilised mutational profiles of tumours for patient stratification and outcome prediction, transcriptome data-mining and tumour phenotyping also demonstrate growing promise (310). Work presented in this thesis demonstrates the potential use of 'metastasis-associated' transcriptional blood signatures in breast cancer, which consist of IRGs and reflect cell profiles of primary and secondary tumours. Meanwhile, the loss of endogenous IFN ε in fallopian tube epithelial cells may prove to be a key method of stratifying women more likely to develop ovarian cancer. Combined with principles developed from previous mouse modelling of breast cancer metastasis, where
restoring the loss of endogenous IFN suppressed bone metastases (42), work from this thesis suggest a way of identifying patients who may benefit from replacement IFN therapy.

5.4.2 Exogenous Type I IFN

Improved knowledge of the endogenous anti-tumour properties of type I IFN helps guide more effective, targeted exogenous IFN-based therapy. This thesis applied knowledge of the endogenous functions of IFN ε, previously demonstrated during FRT infections (171) and tissue-specific expression of IFN ε, to investigate its role in FRT cancer and test its therapeutic potential. Here, recombinant IFN ε therapy showed that exogenous IFN ε had little effect on primary growth but marked reduction in peritoneal total metastases. This correlated with an increased in the activation status of a number of peritoneal immune populations such as CD4+ T cells, CD8+ T cells and NKs and thus, supports the proposal and observation that type I IFN efficacy against solid tumours lies in its anti-metastatic effects, at least in part due to extrinsic immunoregulatory effects. An interesting point of distinction in our findings came from the use of IFNAR1-/- mice, which maintained some ability to clear ovarian cancer metastases when treated with exogenous IFN ε and thus, demonstrate that the direct or cell intrinsic anti-tumour effects of the type I IFNs remain important in the anti-metastatic pathway of early ovarian cancer dissemination. Critically, these findings constitute the first evidence of IFN ε as an anticancer therapeutic and have subsequently formed the basis of a provisional patent on IFN ε as a means of treating cancer (refer to Thesis Appendices).

The clear potential for IFN ε as a therapy poses several key considerations for future drug development. The findings presented in this thesis demonstrate IFN ε as a potential single agent therapy for suppressing tumour dissemination in both orthotropic and advanced metastatic ID8 models of ovarian cancer. However, future work will need to expand on these findings using other ovarian cancer models. Importantly, the use of CRISPR/Cas9
gene editing has enabled the recent generation of ID8 sublines which bear a mutational profile similar to human ovarian cancer (both $\mathrm{Tp} 53-/-$ and $\mathrm{Brca} 2-/-$ lines) and result in more aggressive disease progression and exhibit distinct tumour microenvironments (238). These new models would provide critical tools for studying the effects of IFN ε in human disease. Additionally, future work should employ patient-derived xenografts (PDXs) and spontaneous murine tumour models arising from induced oncogenic mutations to provide more insight into the direct effects of recombinant human IFN ε on tumour cells (259).

To date type I IFNs have shown little benefit as single agent therapies in solid tumours, largely due to their severe dose-limiting side effects. The findings presented here, suggest that IFN ε is in fact well tolerated and can be used at effective doses in mice for at least two months. While further characterisation IFN ε tolerance is needed, its potential advantage in efficacy over toxicity may be a reflection of the key properties of IFN ε that make it a unique type I IFN. Recently, IFN ε has been shown to have a low affinity interaction with the type I IFN receptor (311), which may contribute to lower toxicity but also enable constitutive IFN activity while maintaining receptor expression on the target cell surface.

Finally, these findings highlight the potential for $\mathrm{IFN} \varepsilon$ as an adjunct therapy in cancer. Adjuvant type I IFN therapy has already demonstrated promise in combination with other standard cancer therapies including radiation, hormones and chemotherapy. Interestingly, response to chemotherapy appears to be dependent on successful induction of type I IFN production in malignant cells to activate anti-tumour immunity (312).

The findings reported here, demonstrate consistent IFN ε-driven immune activation in mouse models of early and late stage ovarian cancer progression and suggest that adjuvant $\mathrm{IFN} \varepsilon$ may further provide clinical benefit in combination with therapies that elicit antitumour immune responses as an additive activating signal. Alternatively, adjunct IFN ε
therapy could potentially be used to overcome immunosuppression when administered in combination with immune checkpoint inhibitors as demonstrated by IFNe-regulated PD1 and PD-L1 expression on tumour and immune cells, respectively. These applications require further investigation but critically, the efficacy and tolerance of IFN ε cancer therapy, demonstrated for the first time in this thesis, constitute an exciting area for novel IFN therapy in cancer, which has the potential to supress disseminated peritoneal disease and thus significantly improve patient outcome.

5.5 Concluding Remarks

The central aim of this thesis was to explore the role of constitutive type I IFN in tumour development and progression. In breast cancer, a model where constitutive type I IFN is critical for suppression of metastasis, this work investigated local, systemic and distant signatures that revealed key processes occurring in breast cancer metastasis and mapped these as a continuum of disease progression from normal tissue to primary tumour to metastases.

In ovarian cancer, a tumour model where constitutive type I IFN had not previously been investigated, the work presented here demonstrated patterns of constitutive IFN ε expressed never before characterized - in the tissue of origin of HGSC. In addition to the first evidence of the loss of constitutive IFN ε in human HGSC development, this work has for the first time revealed IFN ε to be an effect anti-metastatic therapy in mouse models of orthotopic and disseminated ovarian cancer. The results of which are now the basis for the use of IFN ε as an anti-cancer therapy, not only in ovarian cancer, but with the potential to be used as a distinct, novel type I IFN therapy in any malignancy. This work contributes to the fundamental knowledge of the role of type I IFN in tumorigenesis and tumour progression, the implications of which provide means for patient stratification and could reimagine type I IFN therapy at the forefront of cancer immunotherapy.

REFERENCES

1. Cancer Australia. Australian Cancer Trials [Internet]. Surry Hills NSW:

Cancer Australia; 2018 [updated 2018 Jan 22; cited 2018 Jan 23]. Available from:
http://www.australiancancertrials.gov.au/search-clinical-trials/.
2. Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100:57-70.
3. Witsch E, Sela M, Yarden Y. Roles for growth factors in cancer progression. Physiology (Bethesda). 2010;25(2):85-101.
4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
5. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235-71.
6. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942-9.
7. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;131(6):492-9.
8. Sato E, Olson SH, Ahn J, Bundy B, Nishikaway H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high $\mathrm{CD} 8+/$ regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(51):18538-43.
9. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with metaanalysis. Br J Cancer. 2011;105(1):93-103.
10. Li J, Wang J, Chen R, Bai Y, Lu X. The prognostic value of tumor-infiltrating T lymphocytes in ovarian cancer. Oncotarget 2017;8(9):15621-31.
11. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991-8.
12. Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91-128.
13. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329-60.
14. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137-48.
15. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565-70.
16. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 2014;27C:16-25.
17. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFN gamma and lymphocytes prevent primary tumour development and shape tumour immunogenecity. Nature. 2001;410(6832):1107-11.
18. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450(7171):903-7.
19. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64.
20. Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. The Oncologist. 2004;9:606-16.
21. Parise CA, Caggiano V. Breast Cancer Survival Defined by the ER/PR/HER2 Subtypes and a Surrogate Classification according to Tumor Grade and Immunohistochemical Biomarkers. J Cancer Epidemiol. 2014;2014:469251.
22. Shaikh WR, Dusza SW, Weinstock MA, Oliveria SA, Geller AC, Halpern AC. Melanoma Thickness and Survival Trends in the United States, 1989 to 2009. J Natl Cancer Inst. 2016;108(1).
23. Brabletz T. EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell. 2012;22(6):699-701.
24. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelialmesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):70415.
25. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8):e2888.
26. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22(6):725-36.
27. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192-206.
28. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx 1. Cancer Cell. 2012;22(6):709-24.
29. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003;3(6):453-8.
30. Burnet FM. Immunological aspects of malignant disease. Lancet. 1967;1(7501):11714.
31. Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 2009;26(10):1023-37.
32. Li D-M, Feng Y-M. Signaling mechanism of cell adhesion molecules in breast cancer metastasis: Potential therapeutic targets. Breast Cancer Res Treat. 2011;128(1):7-21.
33. Weigelt B, Hu Z, He X, Livasy C, Carey LA, Ewend MG, et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res. 2005;65(20):9155-8.
34. Fidler IJ. The organ microenvironment and cancer metastasis. Differentiation. 2002;70(9-10):498-505.
35. Capobianco A, Cottone L, Monno A, Manfredi AA, Rovere-Querini P. The peritoneum: healing, immunity, and diseases. J Pathol. 2017;243(2):137-47.
36. Charbonneau B, Goode EL, Kalli KR, Knutson KL, Derycke MS. The immune system in the pathogenesis of ovarian cancer. Crit Rev Immunol. 2013;33(2):137-64.
37. O'Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 2012;209(10):1869-82.
38. Mazurier F, Fontanellas A, Salesse S, Taine L, Landriau S, Moreau-Gaudry F, et al. A Novel Immunodeficient Mouse Model-RAG2 gamma Cytokine Receptor Chain Double Mutants-Requiring Exogenous Cytokine Administration for Human Hematopoietic Stem Cell Engraftment Common. J Interferon Cytokine Res. 1999;19(5):533-41.
39. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559-72.
40. Udono H, Mieno M, Shiku H, Nakayama E. The roles of CD8+ and CD4+ cells in tumour rejection. Jpn J Cancer Res. 1989;80(7):649-54.
41. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71(7):2488-96.
42. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224-31.
43. Gresser I, Maury C, Carnaud C, De Maever E, Maunoury M-T, Belardelli F. Antitumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant friend erythroleukemia cells. VIII. Role of the immune system in the inhibition of visceral metastases. Int J Cancer. 1990;46(3):468-74.
44. Remark R, Alifano M, Cremer I, Lupo A, Dieu-Nosjean MC, Riquet M, et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin Cancer Res. 2013;19(15):407991.
45. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012;72(5):1070-80.
46. Apetoh L, Smyth MJ, Drake CG, Abastado JP, Apte RN, Ayyoub M, et al. Consensus nomenclature for CD8(+) T cell phenotypes in cancer. Oncoimmunology.

2015;4(4):e998538.
47. Ladanyi A, Kiss J, Mohos A, Somlai B, Liszkay G, Gilde K, et al. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother. 2011;60(12):172938.
48. Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G. Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer. 2009;9:292.
49. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27- memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res. 2012;18(12):3281-92.
50. Montfort A, Pearce O, Maniati E, Vincent BG, Bixby L, Bohm S, et al. A Strong Bcell Response Is Part of the Immune Landscape in Human High-Grade Serous Ovarian Metastases. Clin Cancer Res. 2017;23(1):250-62.
51. Carmi Y, Spitzer MH, Linde IL, Burt BM, Prestwood TR, Perlman N, et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature. 2015;521(7550):99-104.
52. Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol. 2017;14(8):662-74.
53. Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dhar D, et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature. 2015;521(7550):94-8.
54. Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG. PD-L1hi B cells are critical regulators of humoral immunity. Nature communications. 2015;6:5997.
55. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633-40.
56. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7-19.
57. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388-400.
58. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549-55.
59. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67(1):425; author reply 6.
60. Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017;5(1):3-8.
61. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016;37(3):208-20.
62. Menter DG, Tucker SC, Kopetz S, Sood AK, Crissman JD, Honn KV. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev. 2014;33(1):231-69.
63. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123-34.
64. Blann AD, Gurney D, Wadley M, Bareford D, Stonelake P, Lip GY. Increased soluble P-selectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. Blood Coagul Fibrinolysis. 2001;12(1):43-50.
65. Taucher S, Salat A, Gnant M, Kwasny W, Mlineritsch B, Menzel R-C, et al. Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb Haemost. 2003;89(6):1098-106.
66. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576-90.
67. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540-50.
68. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475(7355):226-30.
69. Cham CM, Driessens G, O'Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol. 2008;38(9):2438-50.
70. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14.
71. Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015;162(6):1229-41.
72. Fischer K, Hoffman P, Voelkl S, Meivenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109(9):3812-9.
73. Sporn MB, Todaro GJ. Autocrine Secretion and Malignant Transformation of Cells. N Engl J Med. 1980;303(15):878-80.
74. Burstein HJ. The Distinctive Nature of HER2-Positive Breast Cancers. N Engl J Med. 2005;353(16):1652-4.
75. Tan M, Yao J, Yu D. Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res. 1997;57(6):1199-205.
76. Isaacs A, Lindenmann J. Virus Interfernce. I. The Interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258-67.
77. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8-32.
78. Kirkwood J, Strawderman M, Ernstoff MS, Smith T, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 1996;14(1):7-17.
79. Kirkwood J, Ibrahim J, Sosman JA, Sondak VK, Agarwala S, Ernstoff MS, et al. High-Dose Interferon Alfa-2b Significantly Prolongs Relapse-Free and Overall Survival Compared With the GM2-KLH/QS-21 Vaccine in Patients With Resected Stage IIB-III Melanoma: Results of Intergroup Trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370-80.
80. Moschos SJ, Edington HD, Land SR, Rao UN, Jukic D, Shipe-Spotloe J, et al. Neoadjuvant Treatment of Regional Stage IIIB Melanoma With High-Dose Interferon Alfa2b Induces Objective Tumor Regression in Association With Modulation of Tumor Infiltrating Host Cellular Immune Responses. J Clin Oncol. 2006;24(19):3164-71.
81. Voelter-Mahlknecht S, Mahlknecht U, Letzel S, Fierlbeck G. Phase 2 trial of the continuous IV administration of interferon-beta in patients with disseminated malignant melanoma. Skinmed. 2006;5(6):271-6.
82. Eggermont AM, Suciu S, Santinami M, Testori A, Kruit WH, Marsden J, et al. Adjuvant therapy with pegylated interferon alfa- 2 b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. The Lancet. 2008;372(9633):117-26.
83. Borden EC, Jacobs B, Hollovary E, Rybicki L, Elson P, Olencki T, et al. Gene regulatory and clinical effects of interferon β in patients with metastatic melanoma: A phase II trial. J Interferon Cytokine Res. 2011;31(5):433-40.
84. Aoyagi S, Hata H, Homma E, Shimizu H. Sequential local injection of low-dose interferon-beta for maintenance therapy in stage II and III melanoma: A single-institution matched case-control study. Oncology. 2012;82(3):139-46.
85. Mohr P, Hauschild A, Trefzer U, Enk A, Tilgen W, Loquai C, et al. Intermittent highdose intravenous interferon alfa-2b for adjuvant treatment of stage III melanoma: Final analysis of a randomized phase III dermatologic cooperative oncology group trial. J Clin Oncol. 2015;33(34):4077-84.
86. McMasters KM, Jr., Egger ME, Edwards MJ, Ross MI, Reintgen DS, Noyes RD, et al. Final Results of the Sunbelt Melanoma trial: A multi-institutional prospective randomized phase III study evaluating the role of adjuvant high-dose interferon alfa-2b and completion lymph node dissection for patients staged by sentinel lymph node biopsy. J Clin Oncol. 2016;34(10):1079-86.
87. Eggermont AMM. Adjuvant ipilimumab in stage III melanoma: New landscape, new questions. Eur J Cancer. 2016;69:39-42.
88. Hawkins RE, Gore M, Shparyk Y, Bondar V, Gladkov O, Ganev T, et al. A randomized phase II/III study of naptumomab estafenatox + IFN α versus IFN α in renal cell carcinoma: Final analysis with baseline biomarker subgroup and trend analysis. Clin Cancer Res. 2016;22(13):3172-81.
89. Artaç M, Çoşkun HŞ, Korkmaz L, Koçer M, Turhal NS, Engin H, et al. Using Interferon Alfa Before Tyrosine Kinase Inhibitors May Increase Survival in Patients With Metastatic Renal Cell Carcinoma: A Turkish Oncology Group (TOG) Study. Clin Genitourin Cancer. 2016;14(4):e347-e53.
90. Zeestraten ECM, Speetjens FM, Welters MJP, Saadatmand S, Stynenbosch LFM, Jongen R, et al. Addition of interferon- α to the p53-SLP ${ }^{\circledR}$ vaccine results in increased production of interferon- γ in vaccinated colorectal cancer patients: A phase I/II clinical trial. Int J Cancer. 2013;132(7):1581-91.
91. Kameshima H, Tsuruma T, Torigoe T, Takahashi A, Hirohashi Y, Tamura Y, et al. Immunogenic enhancement and clinical effect by type-I interferon of anti-apoptotic protein, survivin-derived peptide vaccine, in advanced colorectal cancer patients. Cancer Sci. 2011;102(6):1181-7.
92. Kameshima H, Tsuruma T, Kutomi G, Shima H, Iwayama Y, Kimura Y, et al. Immunotherapeutic benefit of α-interferon (IFN α) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci. 2013;104(1):124-9.
93. DiPaola RS, Chen YH, Stein M, Vaughn D, Patrick-Miller L, Carducci M, et al. A randomized phase II trial of mitoxantrone, estramustine and vinorelbine or bcl-2 modulation with 13-cis retinoic acid, interferon and paclitaxel in patients with metastatic castrateresistant prostate cancer: ECOG 3899. J Transl Med. 2010;8.
94. Borden EC, Holland JF, Dao TL, Gutterman JU, Wiener L, Chang YC, et al. Leukocyte-derived interferon (alpha) in human breast carcinoma. The American Cancer Society phase II trial. Annuls of Internal Medicine. 1982;97(1):1-6.
95. Bruntsch U, Groos G, Tigges FJ, Hofschneider PH, Gallmeier WM. Lack of response in nine patients with breast cancer treated with fibroblast interferon. Cancer Chemother Pharmacol. 1984;13(1):39-42.
96. Kimmick G, Ratain MJ, Berry D, Woolf S, Norton L, Muss HB, et al. Subcutaneously administered recombinant human interleukin- 2 and interferon alfa- 2 a for advanced breast cancer: a phase II study of the Cancer and Leukemia Group B (CALGB 9041). Invest New Drugs. 2004;22(1):83-9.
97. Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: Implications for cancer therapy. Nature Reviews Cancer. 2016;16(3):131-44.
98. Nardi M, Cognetti F, Pollera CF, Della Giulia M, Lombardi A, Atlante G, et al. Intraperitoneal recombinant alpha-2-interferon alternating with cisplatin as salvage therapy for minimal residual-disease ovarian cancer: A phase II study. J Clin Oncol. 1990;8(6):103641.
99. Frasci G, Tortoriello A, Facchini G, Conforti S, Persico G, Mastrantonio P, et al. Carboplatin and a-2b Interferon Intraperitoneal Combination as First-line Treatment of Minimal Residual Ovarian Cancer. A Pilot Study. Eur J Cancer. 1994;30A(7):946-50.
100. Moore DH, Valea F, Walton LA, Soper J, Clarke-Pearson D, Fowler WCJ. A Phase I Study of Intraperitoneal Interferon-a2b and Intravenous cis-Platinum plus Cyclophosphamide Chemotherapy in Patients with Untreated Stage III Epithelial Ovarian Cancer: A Gynecologic Oncology Group Pilot Study. Gynecol Oncol. 1995;59(2):267-72.
101. Bruzzone M, Rubagotti A, Gadducci A, Catsafados E, Foglia G, Brunetti I, et al. Intraperitoneal Carboplatin with or without Interferon-a in Advanced Ovarian Cancer Patients with Minimal Residual Disease at Second Look: A Prospective Randomized Trial of 111 Patients. Gynecol Oncol. 1997;65(3):499-505.
102. Morgan Jr RJ, Synold TW, Gandara D, Muggia F, Scudder S, Reed E, et al. Phase II trial of carboplatin and infusional cyclosporine with alpha-interferon in recurrent ovarian cancer: A California Cancer Consortium Trial. Int J Gynecol Cancer. 2007;17(2):373-8.
103. Dijkgraaf EM, Santegoets SJAM, Reyners AKL, Goedemans R, Wouters MCA, Kenter GG, et al. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon- $\alpha 2 b$ in patients with recurrent epithelial ovarian cancer. Ann Oncol. 2015;26(10):2141-9.
104. Lawal AO, Musekiwa A, Grobler L. Interferon after surgery for women with advanced (Stage II-IV) epithelial ovarian cancer. The Cochrane database of systematic reviews. 2013;6.
105. Jeung HC, Moon YW, Rha SY, Yoo NC, Roh JK, Noh SH, et al. Phase III trial of adjuvant 5-fluorouracil and adriamycin versus 5-fluorouracil, adriamycin, and polyadenylicpolyuridylic acid (poly A:U) for locally advanced gastric cancer after curative surgery: Final results of 15-year follow-up. Ann Oncol. 2008;19(3):520-6.
106. Kemeny N, Yagoda A, Wang Y, Field K, Wrobleski H, Whitmore W. Randomized trial of standard therapy with or without poly I:C in patients with superficial bladder cancer. Cancer. 1981;48(10):2154-7.
107. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6(11):836-48.
108. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, et al. A critical function for type I interferons in cancer immunoediting. Nat Immunol. 2005;6(7):722-9.
109. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227-64.
110. de Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and biological functions. J Biol Chem. 2007;282(28):20053-7.
111. Li X, Leung S, Kerr IM, Stark GR. Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol Cell Biol. 1997;17(4):2048-56.
112. Fu X-Y, Kessler DS, Veals SA, Levy DE, Darnell Jr. JE. ISGF3, the transcriptional activator induced by interferon a, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci U S A. 1990;87(21):8555-9.
113. Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. 2009;37(Database issue):D852-7.
114. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013;41(Database issue):D1040-6.
115. Grumbach IM, Mayer IA, Uddin S, Lekmine F, Majchrzak B, Yamauchi H, et al. Engagement of the CrkL adaptor in interferon alpha signalling in BCR-ABL-expressing cells. Br J Haematol. 2001;112(2):327-36.
116. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, et al. Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science. 2002;297(5589):2063.
117. Su L, David M. Distinct mechanisms of STAT phosphorylation via the interferonalpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J Biol Chem. 2000;275(17):12661-6.
118. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375-86.
119. Hertzog P, Forster S, Samarajiwa S. Systems biology of interferon responses. J Interferon Cytokine Res. 2011;31(1):5-11.
120. Forster S. Interferon signatures in immune disorders and disease. Immunol Cell Biol. 2012;90(5):520-7.
121. Swann JB, Smyth MJ. Immune surveillanc of tumours. J Clin Invest. 2007;117(5):1137-46.
122. Hertzog PJ, Williams BR. Fine tuning type I interferon responses. Cytokine Growth Factor Rev. 2013;24(3):217-25.
123. Clemens MJ. Interferons and apoptosis. J Interferon Cytokine Res. 2003;23(6):27792.
124. Zhang T, Sun HC, Zhou HY, Luo JT, Zhang BL, Wang P, et al. Interferon alpha inhibits hepatocellular carcinoma growth through inducing apoptosis and interfering with adhesion of tumor endothelial cells. Cancer Lett. 2010;290(2):204-10.
125. Bracarda S, Eggermont AM, Samuelsson J. Redefining the role of interferon in the treatment of malignant diseases. Eur J Cancer. 2010;46(2):284-97.
126. Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B, Schreiber RD, et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J Immunol. 2007;178(12):7540-9.
127. Sangfelt O, Erickson S, Castro J, Heiden T, Gustafsson A, Einhorn S, et al. Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins. Oncogene. 1999;18(18):2798-810.
128. Panaretakis T, Pokrovskaja K, Shoshan MC, Grander D. Interferon-alpha-induced apoptosis in U266 cells is associated with activation of the proapoptotic Bcl-2 family members Bak and Bax. Oncogene. 2003;22(29):4543-56.
129. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annu Rev Immunol1999. p. 189-220.
130. Biron CA, Sonnenfeld G, Welsh RM. Interferon induces natural killer cell blastogenesis in vivo. J Leukoc Biol. 1984;35(1):31-7.
131. Schiavoni G, Mattei F, Gabriele L. Type I interferons as stimulators of DC-mediated cross-priming: Impact on anti-tumor response. Front Immunol. 2013;4(DEC).
132. Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive. J Exp Med. 1999;189(3):521-9.
133. Curtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol. 2010;22(3):333-40.
134. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host type I IFN signals are required for antitumor $\mathrm{CD} 8+\mathrm{T}$ cell responses through $\mathrm{CD} 8\{$ alpha $\}+$ dendritic cells. J Exp Med. 2011;208(10):2005-16.
135. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity. 1998;8(5):591-9.
136. Braun D, Caramalho I, Demengeot J. IFn- α / β enhances BCR-dependent B cell responses. Int Immunol. 2002;14(4):411-9.
137. Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U, et al. Cutting edge: Enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol. 2006;176(4):2074-8.
138. Swanson CL, Wilson TJ, Strauch P, Colonna M, Pelanda R, Torres RM. Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J Exp Med. 2010;207(7):1485-500.
139. Pace L, Vitale S, Dettori B, Palombi C, La Sorsa V, Belardelli F, et al. APC activation by IFN- α decreases regulatory T cell and enhances Th cell functions. J Immunol. 2010;184(11):5969-79.
140. Balkwill F, Watling D, Taylor - Papadimitriou J. Inhibition by lymphoblastoid interferon of growth of cells derived from the human breast. Int J Cancer. 1978;22(3):258-65.
141. Hobeika AC, Subramaniam PS, Johnson HM. IFN α induces the expression of the cyclin-dependent kinase inhibitor p21 in human prostate cancer cells. Oncogene. 1997;14(10):1165-70.
142. Choi EA, Lei H, Maron DJ, Wilson JM, Barsoum J, Fraker DL, et al. Stat1-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand and the cell-surface death signaling pathway by interferon β in human cancer cells. Cancer Res. 2003;63(17):5299-307.
143. Thyrell L, Erickson S, Zhivotovsky B, Pokrovskaja K, Sangfelt O, Castro J, et al. Mechanisms of interferon-alpha induced apoptosis in malignant cells. Oncogene. 2002;21(8):1251-62.
144. Fulda S, Debatin KM. 5-Aza-2 ${ }^{\prime}$-deoxycytidine and IFN- γ cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene. 2006;25(37):5125-33.
145. Greiner JW, Hand PH, Schlom J, Noguchi P, Fisher PB, Pestka S. Enhanced Expression of Surface Tumor-associated Antigens on Human Breast and Colon Tumor Cells after Recombinant Human Leukocyte α-Interferon Treatment. Cancer Res. 1984;44(8):320814.
146. Heise R, Amann PM, Ensslen S, Marquardt Y, Czaja K, Joussen S, et al. Interferon alpha signalling and its relevance for the upregulatory effect of transporter proteins associated with antigen processing (TAP) in patients with malignant melanoma. PLoS One. 2016;11(1).
147. Schreiner B, Mitsdoerffer M, Kieseier BC, Chen L, Hartung HP, Weller M, et al. Interferon- β enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: Relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol. 2004;155(1-2):172-82.
148. Paredes J, Krown SE. Interferon- α therapy in patients with Kaposi's sarcoma and the acquired immunodeficienct syndrome. Int J Immunopharmacol. 1991;13(SUPPL. I):77-81.
149. Radin AI, Kim HT, Grant BW, Bennett JM, Kirkwood JM, Stewart JA, et al. Phase II study of alpha2 interferon in the treatment of the chronic myeloproliferative disorders (E5487): a trial of the Eastern Cooperative Oncology Group. Cancer. 2003;98(1):100-9.
150. Kiladjian JJ, Chomienne C, Fenaux P. Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia. 2008;22(11):1990-8.
151. Quesada JR, Rios A, Swanson D, Trown P, Gutterman JU. Antitumour activity of recombinant-derived interferon alpha in metastatic renal cell carcinoma. J Clin Oncol. 1985;3(11):1522-8.
152. Kirkwood JM, Harris JE, Vera R, Sandler S, Fischer DS, Khandekar J, et al. A randomized study of low and high doses of leukocyte α-interferon in matastatic renal cell
carcinoma: The American Cancer Society Collaborative Trial. Cancer Res. 1985;45(2):86371.
153. Muss HB, Costanzi JJ, Leavitt R, Williams RD, Kempf RA, Pollard R, et al. Recombinant alfa interferon in renal cell carcinoma: A randomized trial of two routes of administration. J Clin Oncol. 1987;5(2):286-91.
154. Kriegmair M, Oberneder R, Hostetter A. Interferon alfa and vinblastine versus medroxyprogesterone acetate in the treatment of metastatic renal cell carcinoma. Urology. 1995;45(5):758-62.
155. Mendiratta SK, Quezada A, Matar M, Thull NM, Bishop JS, Nordstrom JL, et al. Combination of interleukin 12 and interferon α gene therapy induces a synergistic antitumor response against colon and renal cell carcinoma. Hum Gene Ther. 2000;11(13):1851-62.
156. Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH, et al. Next generation of immunotherapy for melanoma. J Clin Oncol. 2008;26(20):3445-55.
157. Atkins MB, Hsu J, Lee S, Cohen GI, Flaherty LE, Sosman JA, et al. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin2, and interferon alfa- 2 b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2008;26(35):5748-54.
158. Agarwal C, Hembree JR, Rorke EA, Eckert RL. Interferon and retinoic acid suppress the growth of human papillomarvirus type 16 immortalized cervical eptihelial cells, but only
interferon suppresses the level of the human papillomavirus transforming oncogenes. Cancer Res. 1994;54:2108-12.
159. Kotredes KP, Gamero AM. Interferons as inducers of apoptosis in malignant cells. J Interferon Cytokine Res. 2013;33(4):162-70.
160. Young HA, Bream JH. IFN-gamma: recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol. 2007;316:97-117.
161. Ascierto PA, Gogas HJ, Algarra SM, Mohr P, Hansson J, Hauschild A. Adjuvant interferon alfa in malignant melanoma: an interdisciplinary and multinational expert review. Crit Rev Oncol Hematol. 2013;85(2):149-61.
162. Gutterman JU, Blumenschein GR, Alexanian R, Yap HY, Buzdar AU, Cabanillas F, et al. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma, and malignant lymphoma. Annuls of Internal Medicine. 1980;93(3):399406.
163. Macheledt JE, Buzdar AU, Hortobagyi GN, Frye DK, Gutterman JU, Holmes FA. Phase II evaluation of interferon added to tamoxifen in the treatment of metastatic breast cancer. Breast Cancer Res Treat. 1991;18(3):165-70.
164. Repetto L, Giannessi PG, Campora E, Pronzato P, Vigani A, Naso C, et al. Tamoxifen and interferon-beta for the treatment of metastatic breast cancer. Breast Cancer Res Treat. 1996;39(2):235-8.
165. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly P, Shah K, Ho S, et al. The nature of the prinicipal type 1 interferon-producing cells in human blood. Science. 1999;284(5421):1835-7.
166. Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol. 2001;2(12):1144-50.
167. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nature Reviews Immunology. 2015;15(7):405-14.
168. Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type i interferons. J Exp Med. 2010;207(13):2921-30.
169. Ng AYN, Waring P, Ristevski S, Wang C, Wilson T, Pritchard M, et al. Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology. 2002;122(5):1455-66.
170. Hsu ACY, Parsons K, Barr I, Lowther S, Middleton D, Hansbro PM, et al. Critical role of constitutive type i interferon response in bronchial epithelial cell to influenza infection. PLoS One. 2012;7(3).
171. Fung KY, Mangan NE, Cumming H, Horvat JC, Mayall JR, Stifter SA, et al. Interferon-epsilon protects the female reproductive tract from viral and bacterial infection. Science. 2013;339(6123):1088-92.
172. Levy DE, Marie I, Prakash A. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. Journal of Interferon and Cytokine Research : the official journal of the International Society for Interferon and Cytokine Research. 2002;22(1):87-93.
173. Lu R, Au W-C, Yeow W-S, Hageman N, Pitha P-M. Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon and silencing by hypermethylation. J Biol Chem. 2000;275(41):31805-12.
174. Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother. 2010;59(4):489-510.
175. Paun A, Bankoti R, Joshi T, Pitha PM, Stager S. Critical role of IRF-5 in the development of T helper 1 responses to Leishmania donovani infection. PLoS Pathog. 2011;7(1):e1001246.
176. Bocci V. Production and role of interferon in physiological conditions. Biol Rev Camb Philos Soc. 1981;56(1):49-85.
177. Hamilton JA, Whitty GA, Kola I, Hertzog PJ. Endogenous IFN- $\alpha \beta$ suppresses colonystimulating factor (CSF)-1-stimulated macrophage DNA synthesis and mediates inhibitory effects of lipopolysaccharide and TNF- α. J Immunol. 1996;156(7):2553-7.
178. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, et al. RANKL maintains bone homeostasis through c-fos-dependent induction of interferon- β. Nature. 2002;416(6882):744-9.
179. Kole A, He J, Rivollier A, Silveira DD, Kitamura K, Maloy KJ, et al. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. J Immunol. 2013;191(5):2771-9.
180. Lienenklaus S, Cornitescu M, Ziętara N, Łyszkiewicz M, Gekara N, Jabłońska J, et al. Novel reporter mouse reveals constitutive and inflammatory expression of IFN- β in vivo. J Immunol. 2009;183(5):3229-36.
181. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nature Reviews Immunology. 2015;15(2):87-103.
182. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, et al. An interferoninducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466(7309):973-7.
183. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.
184. Zimmerer JM, Lehman AM, Ruppert AS, Noble CW, Olencki T, Walker MJ, et al. IFN-alpha-2b-induced signal transduction and gene regulation in patient peripheral blood mononuclear cells is not enhanced by a dose increase from 5 to 10 megaunits/m2. Clin Cancer Res. 2008;14(5):1438-45.
185. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197(6):711-23.
186. Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, et al. Distinct and essential roles of transcriptions factors IRF-3 and IRF-7 in response to viruses for IFN $-\alpha / \beta$ gene induction. Immunity. 2000;13(4):539-48.
187. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 2005;434(7034):772-7.
188. Zhang L, Pagano JS. IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol Cell Biol. 1997;17(10):5748-57.
189. Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006;6(9):644-58.
190. Lin R, Genin P, Mamane Y, Hiscott J. Selective DNA Binding and Association with the CREB Binding Protein Coactivator Contribute to Differential Activation of Alpha/Beta Interferon Genes by Interferon Regulatory Factors 3 and 7. Mol Cell Biol. 2000;20(17):634253.
191. Izaguirre A, Barnes BJ, Amrute S, Yeow WS, Megjugorac N, Dai J, et al. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol. 2003;74(6):1125-38.
192. Marie I, Durbin JE, Levy DE. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998;17(22):6660-9.
193. Yang H, Lin CH, Ma G, Baffi MO, Wathelet MG. Interferon regulatory factor-7 synergizes with other transcription factors through multiple interactions with p300/CBP coactivators. J Biol Chem. 2003;278(18):15495-504.
194. Erickson AK, Gale M, Jr. Regulation of interferon production and innate antiviral immunity through translational control of IRF-7. Cell Res. 2008;18(4):433-5.
195. Hiscott J. Triggering the innate antiviral response through IRF-3 activation. J Biol Chem. 2007;282(21):15325-9.
196. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol. 2006;7(2):131-7.
197. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer Incidence and Mortality Worldewide Lyon, France: International Agency for Research on Cancer; 2013 [cited 2014 15/04/2014]. Available from: http://globocan.iarc.fr/.
198. Downs-Holmes C, Silverman P. Breast Cancer: overview \& updates. Nurse Pract. 2011;36(12):20-6.
199. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, et al. SEER Cancer Statisitcs Review, 1975-2011. 2013 April 2014.
200. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584-93.
201. Mundy GR. Mechanisms of bone metastasis. Cancer. 1997;80(8):1546-56.
202. Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol. 2011;3(3).
203. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6(2):R92-109.
204. Watson CJ, Oliver CH, Khaled WT. Cytokine signalling in mammary gland development. J Reprod Immunol. 2011;88(2):124-9.
205. Robert J. Comparative study of tumourigenesis and tumour immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol. 2010;34:915-25.
206. Australian Institute of Health and Welfare, Australian Association of Cancer Registeries, National Breast and Ovarian Cancer Centre. Breast cancer survival by size and nodal stutus in Australia. Canberra: AIHW; 2007. Contract No.: CAN 34.
207. Singletary SE. Revision of the American Joint Committee on Cancer Staging System for Breast Cancer. J Clin Oncol. 2002;20(17):3628-36.
208. Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer. 1957;11(3):359-77.
209. Tudoran O, Virtic O, Balacescu L, Pop L, Dragla F, Eniu A, et al. Differential peripheral blood gene expression profile based on Her2 expression on primary tumors of breast cancer patients. PLoS One. 2014;9(7):e102764.
210. Friedenreich CM, Woolcott CG, McTiernan A, Ballard-Barbash R, Brant RF, Stanczyk FZ, et al. Alberta physical activity and breast cancer prevention trial: sex hormone changes in a year-long exercise intervention among postmenopausal women. J Clin Oncol. 2010;28(9):1457-66.
211. Cooke T, Reeves J, Lanigan A, Stanton P. HER2 as a prognotic and predictive marker for breast cancer. Ann Oncol. 2001;12(SUPPL. 1):S23-S8.
212. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A. 1999;96(16):9212-17.
213. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52.
214. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 2001;61(16):5979-84.
215. Martin KL, Kritzman BM, Price LM, Koh B, Kwan CP, Zhang X, et al. Linking gene expression patterns to therapeutic groups in breast cancer. Cancer Res. 2000;60(8):2232-8.
216. Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A, et al. Identification of gene expression profiles that predict aggressive behaviour of breast cancer cells. Cancer Res. 2001;61(13):5168-78.
217. Sorlie T, Perou CM, Tibishirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869-74.
218. Ascierto ML, Kmieciak M, Idowu MO, Manjili R, Zhao Y, Grimes M, et al. A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat. 2012;131(3):871-80.
219. van t'Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):5306.
220. Sharma P, Sahni NS, Tibshirani R, Skaane P, Urdal P, Berghagen H, et al. Early detection of breast cancer based on gene-expression patterns in peripheral blood cells. Breast Cancer Res. 2005;7(5):R634-44.
221. Aaroe J, Lindahl T, Dumeaux V, Saebo S, Tobin D, Hagen N, et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Res. 2010;12(1):R7.
222. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436(7050):518-24.
223. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):53749.
224. Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, et al. A pathwaybased classification of human breast cancer. Proc Natl Acad Sci U S A. 2010;107(15):69949.
225. Wang DY, Done SJ, McCready DR, Boerner S, Kulkarni S, Leong WL. A new gene expression signature, the ClinicoMolecular Triad Classification, may improve prediction and prognostication of breast cancer at the time of diagnosis. Breast Cancer Res. 2011;13(5):R92.
226. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346-52.
227. Solomayer EF, Diel IJ, Meyberg GC, Gollan C, Bastert G. Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res Treat. 2000;59(3):271-8.
228. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. The Lancet. 2014;384(9951):1376-88.
229. AIHW. Ovarian cancer in Australia: an overview, 2010. Cancer series 52 Cat no CAN 482010.
230. Kurman RJ, Shih IM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer- Shifting the paradigm. Hum Pathol. 2011;42(7):918-31.
231. Perets R, Wyant G, Muto K, Bijron J, Poole B, Chin K, et al. Transformation of the

Fallopian Tube Secretory Epithelium Leads to High-Grade Serous Ovarian Cancer in Brca;Tp53;Pten Models. Cancer Cell. 2013;24(6):751-65.
232. Perets R, Drapkin R. It's totally tubular.... Riding the new wave of ovarian cancer research. Cancer Res. 2016;76(1):10-7.
233. Ducie J, Dao F, Considine M, Olvera N, Shaw PA, Kurman RJ, et al. Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nature communications. 2017;8(1).
234. Greenaway J, Moorehead R, Shaw P, Petrik J. Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol. 2008;108(2):385-94.
235. Connolly DC, Hensley HH. Xenograft and transgenic mouse models of epithelial ovarian cancer and non-invasive imaging modalities to monitor ovarian tumor growth in situ: applications in evaluating novel therapeutic agents. Curr Protoc Pharmacol. 2009;Chapter 14:Unit14 2.
236. Cho S, Sun Y, Soisson AP, Dodson MK, Peterson CM, Jarboe EA, et al. Characterization and evaluation of pre-clinical suitability of a syngeneic orthotopic mouse ovarian cancer model. Anticancer Res. 2013;33(4):1317-24.
237. Szabova L, Bupp S, Kamal M, Householder DB, Hernandez L, Schlomer JJ, et al.

Pathway-Specific Engineered Mouse Allograft Models Functionally Recapitulate Human Serous Epithelial Ovarian Cancer. Katoh M, ed. PLoS ONE. 2014;9(4):e95649. doi:10.1371/journal.pone. 0095649 .
238. Walton J, Blagih J, Ennis D, Leung E, Dowson S, Farquharson M, et al. CRISPR/ Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high grade serous carcinoma. Cancer research. 2016;76(20):6118-6129.
239. Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC.

Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther. 2004;10(6):1032-42.
240. Gilbert L, Basso O, Sampalis J, Karp I, Martins C, Feng J, et al. Assessment of symptomatic women for early diagnosis of ovarian cancer: results from the prospective DOvE pilot project. Lancet Oncol2012;13:285-91.
241. Venkitaraman AR. Cancer Suppression by the Chromosome Custodians, BRCA1 and BRCA2. Science. 2014;343(6178):1470-5.
242. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14(16):5198-208.
243. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70.
244. Sieh W, Kobel M, Longacre TA, Bowtell DD, deFazio A, Goodman MT, et al.

Hormonereceptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study. The Lancet Oncology. 2013;14(9):853-62.
245. Thakkar JP, Mehta DG. A review of an unfavorable subset of breast cancer: estrogen receptor positive progesterone receptor negative. Oncologist. 2011;16(3):276-85.
246. Berek JS, Hacker NF, Lichtenstein A, Jung T, Spina C, Knox RM, et al. Intraperitoneal Recombinant A-Interferon for "Salvage" Immunotherapy in Stage III Epithelial Ovarian Cancer: A Gynecologic Oncology Group Study. Cancer Res. 1985;45:4447-53.
247. Willemse PHB, De Vries EGE, Mulder NH, Aalders JG, Bouma J, Sleijfer DTH. Intraperitoneal human recombinant interferon alpha-2b in minimal residual ovarian cancer. Eur J Cancer Clin Oncol. 1990;26(3):353-8.
248. Marman M, Berek JS, Blessing JA, McGuire WP, Bell J, Homesley HD. Characteristics of Patients with Small-Volume Residual Ovarian Cancer Unresponsive to Cisplatin-Based ip Chemotherapy: Lessons Learned from a Gynecologic Oncology Group Phase II Trial of ip Cisplatin and Recombinant a-Interferon. Gynecol Oncol. 1992;45(1):3-8.
249. Frasci G, Tortoriello A, Facchini G, Conforti S, Persico G, Mastrantonio P, et al. Carboplatin and a-2b Interferon Intraperitoneal Combination as First-line Treatment of Minimal Residual Ovarian Cancer. A Pilot Study. Eur J Cancer. 1994;30A(7):946-50.
250. Bruzzone M, Rubagotti A, Gadducci A, Catsafados E, Foglia G, Brunetti I, et al. Intraperitoneal Carboplatin with or without Interferon-a in Advanced Ovarian Cancer

Patients with Minimal Residual Disease at Second Look: A Prospective Randomized Trial of 111 Patients. Gynecol Oncol. 1997;65(3):499-505.
251. Moore DH, Valea F, Walton LA, Soper J, Clarke-Pearson D, Fowler WCJ. A Phase I Study of Intraperitoneal Interferon-a2b and Intravenous cis-Platinum plus Cyclophosphamide Chemotherapy in Patients with Untreated Stage III Epithelial Ovarian Cancer: A Gynecologic Oncology Group Pilot Study. Gynecol Oncol. 1995;59(2):267-72.
252. Berek JS, Markman M, Stonebraker B, Lentz SS, Adelson MD, DeGeest K, et al. Intraperitoneal interferon- α in residual ovarian carcinoma: A phase II gynecologic oncology group study. Gynecol Oncol. 1999;75(1):10-4.
253. Markman M, Belinson J, Webster K, Zanotti K, Morrison B, Jacobs B, et al. Phase 2 trial of interferon-beta as second-line treatment of ovarian cancer, fallopian tube cancer, or primary carcinoma of the peritoneum. Oncology. 2004;66(5):343-6.
254. Hall GD, Brown JM, Coleman RE, Stead M, Metcalf KS, Peel KR, et al. Maintenance treatment with interferon for advanced ovarian cancer: results of the Northern and Yorkshire gynaecology group randomised phase III study. Br J Cancer. 2004;91(4):621-6.
255. Bezwoda WR, Golombick T, Dansey R, Keeping J. Treatment of Malignant Ascites due to Recurrent/Refractory Ovarian Cancer: the Use of Interferon-a or Interferon-a Plus Chemotherapy in vivo and in vitro. Eur J Cancer. 1991;27(11):1423-9.
256. Sartori S, Nielsen I, Tassinari L, Abbasciano V, Malacarne P. Evaluation of a standardized protocol of intracavitary recombinant interferon alpha- 2 b in the palliative
treatment of malignant peritoneal effusions. A prospective pilot study. Oncology. 2001;61(3):192-6.
257. Isaacs A, Lindenmann J. Virus Interfernce. I. The Interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258-67.
258. Gresser I, Bourali C, Levy JP, Fontaine-Brouty-Boye D, Thomas MT. Increased survival in mice inoculated with tumour cells and treated with interferon preparations. Proc Natl Acad Sci U S A. 1969;63(1):51-7.
259. Rehberg E, Kelder B, Hoal EG, Pestka S. Specific molecular activities of recombinant and hybrid leukocyte interferons. J Biol Chem. 1982;257(19):11497-502.
260. Thyrell L, Hjortsberg L, Arulampalam V, Panaretakis T, Uhles S, Dagnell M, et al. Interferon alpha-induced apoptosis in tumor cells is mediated through the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. J Biol Chem. 2004;279(23):24152-62.
261. Porta C, Hadj-Slimane R, Nejmeddine M, Pampin M, Tovey MG, Espert L, et al. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively. Oncogene. 2005;24(4):605-15.
262. Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1).
263. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature.

2015;521(7553):489-94.
264. Tan TZ, Yang H, Ye J, Low J, Choolani M, Tan DS, et al. CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype. Oncotarget. 2015;6(41):43843-52.
265. Ke N, Wang X, Xu X, Abassi YA. The xCELLigence system for real-time and labelfree monitoring of cell viability. Methods Mol Biol. 2011;740:33-43.
266. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-8.
267. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
268. Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, et al. Empirical array quality weights in the analysis of microarray data. BMC Bioinformatics. 2006;7.
269. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics. 2016;10(2):946-63.
270. Wu D, Smyth GK. Camera: A competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40(17).
271. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, et al. A Modular

Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus. Immunity. 2008;29(1):150-64.
272. Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcriptional repertoire analyses. Nature Reviews Immunology. 2014;14(4):271-80.
273. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108-12.
274. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14.
275. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma in Situ, Metastatic Tumor Deposits and Areas for Further Research. Adv Anat Pathol. 2017;24(5):235-51.
276. Hwang SY, Hertzog PJ, Holland KA, Sumarsono SH, Tymms MJ, Hamilton JA, et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc Natl Acad Sci U S A. 1995;92(24):11284-8.
277. Anguille S, Lion E, Willemen Y, Van Tendeloo VF, Berneman ZN, Smits EL. Interferon-alpha in acute myeloid leukemia: an old drug revisited. Leukemia. 2011;25(5):739-48.
278. Platanias LC. Interferons and their antitumor properties. J Interferon Cytokine Res. 2013;33(4):143-4.
279. Stein BL, Tiu RV. Biological rationale and clinical use of interferon in the classical BCR-ABL-negative myeloproliferative neoplasms. J Interferon Cytokine Res. 2013;33(4):145-53.
280. Akman T, Oztop I, Unek IT, Koca D, Unal OU, Salman T, et al. Long-term outcomes and prognostic factors of high-risk malignant melanoma patients after surgery and adjuvant high-dose interferon treatment: a single-center experience. Chemotherapy. 2014;60(4):228-38.
281. Ascierto PA, Chiarion-Sileni V, Muggiano A, Mandala M, Pimpinelli N, Del Vecchio M, et al. Interferon alpha for the adjuvant treatment of melanoma: review of international literature and practical recommendations from an expert panel on the use of interferon. J Chemother. 2014;26(4):193-201.
282. Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010;102(7):493-501.
283. Pasquali S, Mocellin S. The anticancer face of interferon alpha (IFN-alpha): from biology to clinical results, with a focus on melanoma. Curr Med Chem.

2010;17(29):3327-36.
284. De Lustig ES, Cortade de De La Pena N, Canonico A. Interferon in breast cancer. Tumori. 1977;63(2):155-62.
285. Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A. 2009;106(22):9010-5.
286. Howlander N, Noone AM, Krapcho M, Miller D, Bishop JS, Kosary CL, et al. SEER Cancer Statistics Review, 1975-2014. Bethesda, MD: National Cancer Institute; 2017 April 2017.
287. Moorman PG, Calingaert B, Palmieri RT, Iversen ES, Bentley RC, Halabi S, et al. Hormonal risk factors for ovarian cancer in premenopausal and postmenopausal women. Am J Epidemiol. 2008;167(9):1059-69.
288. Tabassum R, Nath A, Preininger M, Gibson G. Geographical, environmental and pathophysiological influences on the human blood transcriptome. Current genetic medicine reports. 2013;1(4):203-11.
289. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, et al. Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A. 2003;100(4):1896-901.
290. Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M, et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet. 2003;33(3):422-5.
291. Lloyd-Jones LR, Holloway A, McRae A, Yang J, Small K, Zhao J, et al. The Genetic Architecture of Gene Expression in Peripheral Blood. Am J Hum Genet. 2017;100(2):371.
292. Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, et al. Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet. 2008;82(3):631-40.
293. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, Attar-Cohen H, et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science. 2009;325(5945):1246-50.
294. Nica AC, Parts L, Glass D, Nisbet J, Barrett A, Sekowska M, et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS genetics. 2011;7(2):e1002003.
295. Price AL, Helgason A, Thorleifsson G, McCarroll SA, Kong A, Stefansson K. Singletissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals. PLoS genetics. 2011;7(2): 1001317.
296. Gruber I, Landenberger N, Staebler A, Hahn M, Wallwiener D, Fehm T. Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Res. 2013;33(5):2233-8.
297. Stone ML, Chiappinelli KB, Li H, Murphy LM, Travers ME, Topper MJ, et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci U S A. 2017;114(51):E10981-e90.
298. Ishikawa S, Miyashita T, Inokuchi M, Hayashi H, Oyama K, Tajima H, et al. Platelets surrounding primary tumor cells are related to chemoresistance. Oncol Rep.

2016;36(2):787-94.
299. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Premetastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302-17.
300. Stone RL, Nick AM, McNeish IA, Balkwill F, Han HD, Bottsford-Miller J, et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012;366(7):610-8.
301. Orellana R, Kato S, Erices R, Bravo ML, Gonzalez P, Oliva B, et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290.
302. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic Instruction of Immunity. Cell. 2017;169(4):570-86.
303. Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol. 2017;17(12):774-85.
304. Wu D, Sanin DE, Everts B, Chen Q, Qiu J, Buck MD, et al. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity. 2016;44(6):1325-36.
305. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34(Database issue):D108-10.
306. Slaney CY, Rautela J, Parker BS. The emerging role of immunosurveillance in dictating metastatic spread in breast cancer. Cancer Res. 2013;73(19):5852-7.
307. Hartman LL, Crawford JR, Makale MT, Milburn M, Joshi S, Salazar AM, et al.

Pediatric phase II trials of poly-ICLC in the management of newly diagnosed and recurrent brain tumors. J Pediatr Hematol Oncol. 2014;36(6):451-7.
308. Reuben A, Spencer CN, Prieto PA, Gopalakrishnan V, Reddy SM, Miller JP, et al. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ genomic medicine. 2017;2.
309. Salgado R, Moore H, Martens JWM, Lively T, Malik S, McDermott U, et al. Steps forward for cancer precision medicine. Nature reviews Drug discovery. 2018;17(1):1-2.
310. Jeong E, Moon SU, Song M, Yoon S. Transcriptome modeling and phenotypic assays for cancer precision medicine. Arch Pharm Res. 2017;40(8):906-14.
311. Stifter SA, Matthews AY, Mangan NE, Fung KY, Drew A, Tate MD, et al. Defining the distinct, intrinsic properties of the novel type I interferon, epsilon. J Biol Chem. 2017.
312. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, et al. Cancer cellautonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20(11):1301-9.

Appendix I - PRIMER SEQUENCES

Mouse

Isg15	F	TGAGAGCAAGCAGCCAGAAG
Isg15	R	ACGGACACCAGGAAATCGTT
Cxcl10	F	CTGAATCCGGAATCTAAGACCA
Cxcl10	R	GAGGCTCTCTGCTGTCCATC
Ifit1	F	TCAAGGCAGGTTTCTGAGGA
Ifit1	R	ACCTGGTCACCATCAGCATT
Cdc20	F	GTCACTCCGCTCGAGTAAGC
Cdc20	R	GCCCACATACTTCCTGGCTA
Tap1	F	CGCAACATATGGCTCATGTC
Tap1	R	GCCCGAAACACCTCTCTGT
Ccne1	F	CCTCCAAAGTTGCACCAGTT
Ccne1	R	AGAGGGCTTAGACGCCACTT
Bcl2	F	CCGGGAGAACAGGGTATGATAA
Ccl2	R	CCCACTCGTAGCCCCTCTG
Caspase1	F	ACGCCATGGCTGACAAGATCCTG
Caspase1	R	GGTCCCGTGCCTTGTCCATAGC
Capdh	F	CATGGCCTTCCGTGTTCCTA
Capdh	R	GCGGCACGTCAGATCCA
Cd274	F	CTGCAACACATCCTCCACAG
Cd274	R	AACGCCACATTTCTCCACAT

Human

I8S

F GTAACCCGTTGAACCCCATT

I8S
R CCATCCAATCGGTAGTAGCG

CXCL10 F TTCCTGCAAGCCATTTTGT
CXCL10 R TTCTTGATGGCCTTCGATTC

ISG15 F GCGAACTCATCTTTGCCAGT
ISG15 R AGCATCTTCACCGTCAGGTC

IFIT1 F AGCTTACACCATTGGCTGCT
IFIT1 R CCATTTGTACTCATGGTTGCTGT

18 May 2017

Quality Report - Reference Quotation - Breast Cancer

Dear Zoe Marks

The following quality report details methodologies used for your project.

Samples received from client: March 2017

Number of samples received: 95 total RNA samples

Microarray requested: Human Gene Expression v3 - $8 \times 60 \mathrm{~K}: 072363$

Label Protocol:

- Cyanine-3 (Cy3) labelled cRNA was prepared from 0.1ug total RNA using the One-Color Low input Quick Amp labelling Kit (Agilent) according to the manufacturer's instructions, followed by RNeasy column purification (Qiagen). Dye incorporation and cRNA yield were checked with the NanoDrop ND-1000 Spectrophotometer.

Hybridisation Protocol:

- 600 ng of Cy3 labeled cRNA (specific activity >6 pmol Cy3/ug cRNA) was fragmented at $60^{\circ} \mathrm{C}$ for 30 minutes in a reaction volume of 25ul containing $1 x$ Agilent fragmentation buffer and $2 x$ Agilent blocking agent following the manufacturer's instructions. On completion 25ul of $2 x$ Agilent gene expression hybridisation buffer was added and 42ul of sample hybridised for 17 hours at 650 C in a rotating Agilent hybridisation oven. After hybridisation, microarrays were washed 1 minute at room temperature with GE wash buffer 1(Agilent) and 1 minute with 370 C GE wash buffer 2(Agilent).

Scan Protocol:

- Slides were scanned immediately after washing on the Agilent C, DNA microarray scanner using one color scan settings for $8 \times 60 \mathrm{k}$ array slides; scan area $61 \times 21.6 \mathrm{~mm}$, scan resolution 3um, dye channel is set to Green and 20 bit Tiff.

Data Processing:

- The scanned images were analysed with Feature Extraction Software 11.0.1.1 (Agilent) using default parameters (protocol GE1-1100_Jul11 and Grid: (072363_D_F_20150612) to obtain background subtracted and spatially detrended Processed Signal intensities.

	Sample Name	Group	Feature Extracted files
1	04.002.0006 04/7673MH	1	257236314222_201703240945_SO1_GE1_1100_Jul11_1_1.txt
2	04.002.0007 04/7438JK	1	257236314212_201703240957_SO1_GE1_1100_Jul11_1_2.txt
3	04.002.0008 04/7496DE	1	257236314213_201703241009_SO1_GE1_1100_Jul11_1_3.txt
4	06.007.0495 06/8835JO	2	257236314212_201703240957_SO1_GE1_1100_Jul11_1_3.txt
5	06.007.0499 06/8882JM	2	257236314213_201703241009_SO1_GE1_1100_Jul11_1_4.txt
6	06.007.0503 06/8886KL	2	257236314222_201703240945_SO1_GE1_1100_Jul11_2_1.txt
8	06.004.0304 06/9829SW	4	257236314213_201703241009_SO1_GE1_1100_Jul11_1_2.txt
9	06.004.0305 07/10732JM	4	257236314222_201703240945_SO1_GE1_1100_Jul11_1_3.txt
10	06.004.0256 06/9751LF	4	257236314212_201703240957_SO1_GE1_1100_Jul11_2_1.txt
11	06.002.0246 06/9388ES	5	257236314222_201703240945_SO1_GE1_1100_Jul11_2_3.txt
12	06.002.0250 06/9437WR	5	257236314212_201703240957_SO1_GE1_1100_Jul11_2 4.txt
13	06.002.0146 06/9099ST	5	257236314213_201703241009_SO1_GE1_1100_Jul11_2_1.txt
14	99.005.0159 14/13837RW	6	257236314212_201703240957_SO1_GE1_1100_Jul11_2_2.txt
15	99.005.1222 09/11951AG	6	257236314222_201703240945_SO1_GE1_1100_Jul11_1_4.txt
16	99.0060258 98/1056KM	7	257236314213_201703241009_SO1_GE1_1100_Jul11_2_2.txt
17	99.006.0269 04/7007TW	7	257236314222_201703240945_SO1_GE1_1100_Jul11_2_2.txt
18	99.006 .0263 98/770MM	7	257236314212_201703240957_SO1_GE1_1100_Jul11_1_4.txt
19	01.008.0343 01/3781JC	8	257236314222_201703240945_SO1_GE1_1100_Jul11_2_4.txt
20	07.0080002 07/10362EM	8	257236314213_201703241009_SO1_GE1_1100_Jul11_1_1.txt
21	01.008.0344 01/3868HB	8	257236314212_201703240957_SO1_GE1_1100_Jul11_2_3.txt
23	03.010.0437 03/6762BM	9	257236314213_201703241009_SO1_GE1_1100_Jul11_2_3.txt
24	04.010.0289 04/7405AM	9	257236314222_201703240945_SO1_GE1_1100_Jul11_1_2.txt
7	99.002.0594 98/668PF	18	257236314212_201703240957_SO1_GE1_1100_Jul11_1_1.txt
22	99.002.0586 98/602AF	18	257236314213_201703241009_SO1_GE1_1100_Jul11_2_4.txt
25	06.006.0910 07/10062LR	10	257236314223_201704060841_SO1_GE1_1100_Jul11_1_1.txt
26	00.006.0968 07/10125DR	10	257236314217_201704060854_SO1_GE1_1100_Jul11_1_2.txt
27	06.006.0788 06/9916JL	10	257236314218_201704060906_SO1_GE1_1100_Jul11_1_3.txt
28	01.007.0501 01/4467JM	11	257236314223_201704060841_SO1_GE1_1100_Jul11_2_2.txt
30	01.007.0480 02/4628AM	11	257236314217_201704060854_SO1_GE1_1100_Jul11_2_3.txt
29	01.007.0475 01/4359DB	11	257236314218_201704060906_SO1_GE1_1100_Jul11_2_4.txt
32	00.003.1364 00/2584DM	13	257236314217_201704060854_SO1_GE1_1100_Jul11_1_3.txt
33	00.003.1353 00/2787FM	13	257236314218_201704060906_SO1_GE1_1100_Jul11_1_4.txt
34	00.003.1365 00/2616JH	13	257236314223_201704060841_SO1_GE1_1100_Jul11_2_1.txt
35	08.007.0168 14/13744HC	14	257236314217 201704060854_SO1_GE1_1100_Jul11_2_4.txt
36	09.007.0181 10/12174WC	14	257236314218_201704060906_SO1_GE1_1100_Jul11_2_2.txt
37	09.007.0179 10/12082AC	14	257236314223_201704060841_SO1_GE1_1100_Jul11_1_3.txt
38	01.009.0443 01/4337SC	15	257236314218_201704060906_SO1_GE1_1100_Jul11_1_2.txt
39	01.009.0457 02/4850KF	15	257236314223_201704060841_SO1_GE1_1100_Jul11_2_4.txt
40	01.009.0442 01/4229CK	15	257236314217_201704060854_SO1_GE1_1100_Jul11_1_1.txt
41	03.007.0429 03/6065MS	16	257236314218_201704060906_SO1_GE1_1100_Jul11_2_1.txt
42	03.007.0436 03/6189BG	16	257236314223_201704060841_SO1_GE1_1100_Jul11_1_2.txt
43	03.007.0435 03/6213JN	16	257236314217_201704060854_SO1_GE1_1100_Jul11_2_2.txt
31	04.004.0534 05/8019VK	17	257236314223_201704060841_SO1_GE1_1100_Jul11_1_4.txt
44	04.004.0533 05/7995JB	17	257236314217_201704060854_SO1_GE1_1100_Jul11_2_1.txt
45	04.004.0532 05/7957SJ	17	257236314218_201704060906_SO1_GE1_1100_Jul11_2_3.txt
46	00.005.0458 00/2687SS	19	257236314217_201704060854_SO1_GE1_1100_Jul11_1_4.txt
47	00.005.0464 00/2688CW	19	257236314218_201704060906_SO1_GE1_1100_Jul11_1_1.txt
48	00.005.0463 00/2646MP	19	257236314223_201704060841_SO1_GE1_1100_Jul11_2_3.txt

	Sample Name	Group	Feature Extracted files
49	06.003.02248 06/9131BR	12	257236314182_201704211102_SO1_GE1_1100_Jul11_1_2.txt
50	06.003.0237 06/9005LN	12	257236314192_201704211038_SO1_GE1_1100_Jul11_2_1.txt
51	02.006.0675 02/5115JE	20	257236314182_201704211102_SO1_GE1_1100_Jul11_1_3.txt
52	02.006.0643 02/5116JL	20	257236314192_201704211038_SO1_GE1_1100_Jul11_1_1.txt
53	02.006.0639 02/5114KA	20	257236314183_201704211050_SO1_GE1_1100_Jul11_2_3.txt
54	03.006.0785 03/6564JF	21	257236314192_201704211038_SO1_GE1_1100_Jul11_1_2.txt
55	03.006.0758 03/6711WG	21	257236314183_201704211050_SO1_GE1_1100_Jul11_2_1.txt
56	03.006.0750 03/6253HC	21	257236314182_201704211102_SO1_GE1_1100_Jul11_2_2.txt
57	01.006.0977 01/4426IW	22	257236314183_201704211050_SO1_GE1_1100_Jul11_1_3.txt
58	01.006.1012 01/4396AL	22	257236314182_201704211102_SO1_GE1_1100_Jul11_1_1.txt
59	01.006.0985 02/4641SD	22	257236314192_201704211038_SO1_GE1_1100_Jul11_1_3.txt
60	10.007.0342 10/12357IM	23	257236314183_201704211050_SO1_GE1_1100_Jul11_2_2.txt
61	10.007.0345 10/12439HU	23	257236314192_201704211038_SO1_GE1_1100_Jul11_2_4.txt
62	00.002.0703 00/3402AU	24	257236314182_201704211102_SO1_GE1_1100_Jul11_2_1.txt *
63	01.002.0184 06/9322AI	24	257236314183_201704211050_SO1_GE1_1100_Jul11_1_4.txt
64	00.002 .0723 01/3497MI	24	257236314192_201704211038_SO1_GE1_1100_Jul11_2_2.txt
65	02.009.0691 02/5606JW	25	257236314192_201704211038_SO1_GE1_1100_Jul11_2_3.txt
66	02.009.0692 02/5639MA	25	257236314183_201704211050_SO1_GE1_1100_Jul11_1_1.txt
67	02.009.0685 02/5707GP	25	257236314182_201704211102_SO1_GE1_1100_Jul11_1_4.txt
68	03.005.1077 04/7679PH	26	257236314183_201704211050_SO1_GE1_1100_Jul11_2_4.txt
69	03.005.1094 047735DC	26	257236314182_201704211102_SO1_GE1_1100_Jul11_2_3.txt
70	99.004.1017 05/7993CK	27	257236314192_201704211038_SO1_GE1_1100_Jul11_1_4.txt
71	99.004.1015 06/9410LM	27	257236314182_201704211102_SO1_GE1_1100_Jul11_2_4.txt
72	99.004.0976 98/104IA	27	257236314183_201704211050_SO1_GE1_1100_Jul11_1_2.txt *
73	01.888.1253 07/10706EA	28	257236316809_201705180952_SO1_GE1_1100_Jul11_1_1.txt
74	01.888.1250 07/10678 BO	28	257236316808_201705181005_SO1_GE1_1100_Jul11_2_2.txt *
75	04.006.1087 04/7797LM	29	257236316807_201705181017_SO1_GE1_1100_Jul11_1_2.txt
76	04.006.1098 10/12233KW	29	257236316809_201705180952_SO1_GE1_1100_Jul11_2_1.txt
77	04.006.1094 04/7732CW	29	257236316808_201705181005_SO1_GE1_1100_Jul11_1_4.txt
78	10.007.0149 10/12435SM	30	257236316809_201705180952_SO1_GE1_1100_Jul11_1_3.txt
79	05.007.0443 06/8870AS	30	257236316808_201705181005_SO1_GE1_1100_Jul11_1_1.txt
80	05.007.0434 06/8806NM	30	257236316807_201705181017_SO1_GE1_1100_Jul11_1_3.txt
81	99.008.0968 99/1671RP	31	257236316808_201705181005_SO1_GE1_1100_Jul11_1_2.txt
82	99.008.0976 08/11516LP	31	257236316807_201705181017_SO1_GE1_1100_Jul11_1_4.txt
83	02.005.1303 04/7490DP	32	257236316808_201705181005_SO1_GE1_1100_Jul11_2_1.txt
84	04.005.0421 04/7510FP	32	257236316807_201705181017_SO1_GE1_1100_Jul11_2_2.txt
85	02.005.1301 04/7368DO	32	257236316809_201705180952_SO1_GE1_1100_Jul11_1_2.txt
86	99.005.2064 99/1980LA	33	257236316807_201705181017_SO1_GE1_1100_Jul11_2_3.txt
87	99.005.2069 99/1976VA	33	257236316808_201705181005_SO1_GE1_1100_Jul11_1_3.txt
88	99.005.2099 99/2019LV	33	257236316809_201705180952_SO1_GE1_1100_Jul11_1_4.txt
89	15.007.129 15/14048VP	34	257236316809_201705180952_SO1_GE1_1100_Jul11_2_2.txt
90	15.007.115 15/14024AS	34	257236316807_201705181017_SO1_GE1_1100_Jul11_1_1.txt
91	00.008.0068 00/2822DR	35	257236316808_201705181005_SO1_GE1_1100_Jul11_2_3.txt
92	00.008.0067 00/3010JL	35	257236316809_201705180952_SO1_GE1_1100_Jul11_2_4.txt
93	00.008.0071 00/2448FL	35	257236316807_201705181017_SO1_GE1_1100_Jul11_2_1.txt
94	99.005.0290 04/14126MA	36	257236316807_201705181017_SO1_GE1_1100_Jul11_2_4.txt
95	99.005 .0243 04/7212HH	36	257236316808_201705181005_SO1_GE1_1100_Jul11_2_4.txt
96	99.004.0976 98/104IA	27repeat	257236316809_201705180952_SO1_GE1_1100_Jul11_2_3.txt

* QC metrics detected issues with these 3 samples.

Yours Sincerely

Ms Jodee Gould
Microarray Manager
Next Generation Sequencing Specialist
MHTP Medical Genomics Facility
Appendix III - Differentially Probe/Gene List From Chapter 3

ProbeName	GENE_SYMBOL	$\begin{aligned} & \text { Avg. } \log 2 \\ & \text { exp. } \end{aligned}$	$\log 2 \mathrm{FC}$	p.value	adjusted.p.value	GeneSets.Modules
A_23_P329261	KCNJ2	5.22	1.07	1.37E-05	0.006703865	M7.16_Not.Determined
A_22_P00024322	lnc-GBP6-1	6.60	0.65	4.71E-04	0.037246084	NA
A_23_P62890	GBP1	7.88	0.69	6.15E-04	0.042276045	M3.4_Interferon
A_24_P303091	CXCL10	5.09	1.31	3.37E-04	0.031967627	M1.2_Interferon
A_23_P105144	SCUBE2	4.14	0.46	1.34E-04	0.021010396	NA
A_33_P3343175	CXCL10	5.17	1.09	4.81E-04	0.037639737	M1.2_Interferon
A_33_P3310864		4.43	0.32	2.97E-04	0.030214105	NA
A_23_P374322	LACC1	4.64	0.45	3.88E-04	0.034025543	NA
A_19_P00320729	CDYL2	9.47	0.38	$3.55 \mathrm{E}-04$	0.03265178	NA
A_23_P74928	MR1	7.78	0.28	4.66E-04	0.037232052	M8.2_Not.Determined
A_33_P3286789		4.36	0.40	7.74E-06	0.005374337	NA
A_32_P44453	INPP1	6.61	0.37	4.14E-04	0.035419346	M8.45_Undetermined
A_32_P138004	FAM45A	10.62	0.27	2.42E-04	0.027608238	M7.1_Inflammation
A_23_P97795	ACBD5	10.21	0.29	7.67E-04	0.046792473	M8.37_Undetermined
A_21_P0000015	PARP9	9.83	0.50	7.44E-04	0.046141468	M3.4_Interferon
A_22_P00020739		4.56	0.34	$2.49 \mathrm{E}-04$	0.02784477	NA
A_24_P98555	FAM45A	7.97	0.27	6.71E-04	0.043937034	M7.1_Inflammation
A_23_P138680	IL15RA	8.88	0.46	$6.66 \mathrm{E}-04$	0.04390981	M9.23_Undetermined
A_21_P0008516	lnc-SIPA1L1-1	4.07	0.50	6.06E-04	0.04196584	NA
A_33_P3338071		4.80	0.55	4.46E-05	0.011787934	NA
A_23_P371865	CDYL2	6.66	0.40	4.86E-05	0.012138801	NA
A_33_P3332215	MUC1	4.26	0.28	2.92E-04	0.030056343	M7.29_Not.Determined
A_24_P287691	AP3S2	10.02	0.37	$4.59 \mathrm{E}-04$	0.037001062	NA

A_33_P3411628	CDKN2A	5.57	0.43	$4.18 \mathrm{E}-04$		0.035509032	NA
A_21_P0011804	LOC100507006	6.23	0.76			0.03855304	NA
A_24_P40626	GREM2	6.15	1.01			0.007842799	NA
A_23_P137856	MUC1	6.88	0.51			0.04755026	M7.29_Not.Determined
A_24_P42681	PSMD2	10.04	0.23			0.035909384	M6.17_Not.Determined
A_33_P3734384	Inc-MYO1G-1	8.69	0.43			0.041641944	NA
Supplementary Table 2. Probes down in 'Primary'v 'Unaffected'							
ProbeName	GENE_SYMBOL		$\text { Avg. } \log 2$ exp.	log2 FC	p.value	adjusted.p.value	GeneSets.Modules
A_23_P392470	NR3C2		7.11	-0.62	7.84E-04	0.047129627	M7.12_Undetermined
A_21_P0003889	FLJ36777		5.92	-0.24	5.38E-04	0.039927058	
A_33_P3262376	otud7a		6.96	-0.56	5.75E-04	0.04133617	NA
A_23_P170679	COL4A3		4.77	-0.66	$1.54 \mathrm{E}-04$	0.022495222	M9.6_Undetermined
A_23_P24922	LIPT2		8.21	-0.52	5.92E-04	0.041641944	M9.9_Undetermined
A_22_P00005659	LOC101060038		8.00	-1.11	$3.67 \mathrm{E}-07$	0.002123715	NA
A_33_P3227400	COL4A4		6.86	-0.85	$1.55 \mathrm{E}-04$	0.022509114	M9.32_Undetermined
A_21_P0007822	lnc-EIF2S3L.1-2		6.63	-0.86	$2.52 \mathrm{E}-04$	0.027889246	NA
A_33_P3294583	LOC256880		5.00	-0.46	$1.12 \mathrm{E}-04$	0.019191864	NA
A_23_P30163	KLF3-AS1		6.31	-0.59	4.40E-04	0.036162723	NA
A_33_P3715843	MGC40069		5.52	-0.60	3.42E-04	0.032169999	NA
A_33_P3272563	NMT2		8.10	-0.47	4.12E-04	0.035419346	M4.15_T.cells
A_33_P3311971			7.25	-0.49	5.63E-04	0.041061307	NA
A_32_P324933	LINC00282		5.29	-0.83	7.97E-04	0.04755026	NA
A_23_P204751	ASIC1		5.91	-0.81	$2.07 \mathrm{E}-04$	0.025822209	M9.11_Undetermined
A_33_P3391796	NOG		7.55	-1.16	$3.09 \mathrm{E}-05$	0.00994877	M8.25_Undetermined
A_33_P3387106			4.09	-0.32	4.20E-04	0.03557475	NA
A-21_P0006502	lnc-ZC3H12B-2		10.57 15.05	-0.53 -0.52	$2.03 \mathrm{E}-04$ $5.39 \mathrm{E}-04$	0.025604539 0.039978773	NA
A_33-P3423721	JPH3		15.05 9.57	-0.52 -1.11	$5.39 \mathrm{E}-04$ $7.85 \mathrm{E}-07$	0.039978773 0.002428258	NA M7.12 Undetermined
A_33_P3377239	LOC100270804		8.06	-0.42	4.56E-04	0.036809485	NA
A_33_P3329737			8.32	-0.55	$5.02 \mathrm{E}-04$	0.03855304	NA
A_21_P0006057			5.07	-0.78	$2.03 \mathrm{E}-05$	0.007912019	NA
A_22_P00013078	LINC01089		8.65	-0.40	$7.09 \mathrm{E}-04$	0.045198427	M5.11_Not.Determined\|M9.19_Undetermined
A_21_P0000208	SNORD22		10.37	-0.34	5.13E-04	0.038911264	NA
A_33_P3329356	lnc-HADH-1		6.64	-0.93	9.89E-06	0.006042892	NA
A_33_P3346972			7.00	-0.51	$8.74 \mathrm{E}-05$	0.016935314	NA
A-24_P9090	HNRNPDL		11.11 6.25	-0.37 -0.69	$7.65 \mathrm{E}-05$ $4.97 \mathrm{E}-04$	0.015714455 0.038361321	M5.8_Not.Determined\|M6.9_Not.Determined
A_33_P3306948	${ }_{\text {LRP6 }}$ LOC102723346		6.25 5.07	-0.69 -0.51	$4.97 \mathrm{E}-04$ $3.49 \mathrm{E}-04$	0.038361321 0.032411077	NA
A_22_P151059 $^{\text {A }}$	FAM90A1		5.92	-0.61	$3.49 \mathrm{E}-04$ $2.52 \mathrm{E}-06$	${ }_{0}^{0.00303939264}$	NA
A_23_P212511	TTC14		10.09	-0.28	7.23E-04	0.045598798	M9.7_Undetermined
A_21_P0010094	lnc-ARFGEF2-2		5.62	-0.24	$7.11 \mathrm{E}-04$	0.045198427	NA
A_22_P00022504	KRT73-AS1		4.25	-0.69	3.67E-05	0.010858652	NA
A_23_P211244	PRMT2		9.28	-0.44	$5.85 \mathrm{E}-04$	0.041641944	M7.18_Undetermined\|M9.17_Undetermined
A_23_P153676	TLE2		8.78	-0.55	4.70E-04	0.037246084	NA
A_21_P0002980	LOC100506990		7.30	-0.39	$8.14 \mathrm{E}-04$	0.048163559	NA
A-21_P0005923	LOC100506990		7.06 5.87	-0.43 -0.51	$2.40 \mathrm{E}-04$ $7.81 \mathrm{E}-04$	0.027601504 0.04707844	NA
A_33-P3253792	CXorf67		5.87 10.08	-0.51 -0.94	$7.81 \mathrm{E}-04$ $4.50 \mathrm{E}-05$	0.04707844 0.011787967	NA
	PIK3IP1-AS1		10.44	-0.60	4.30E-05 $7.38 \mathrm{E}-05$	0.015368244	NA
A_23_P133543	KLHL3		8.82	-0.48	5.43E-04	0.040136182	M4.1_T.cell
A_23_P209360	KLHL29		7.23	-0.85	3.13E-06	0.004301154	NA ${ }^{\text {a }}$
A_33_P3316313	MTERF4		9.82	-0.33	6.89E-04	0.0445019	NA

 M

[^7]
Supplementary Table 3. Probes up in 'Metastasis’ v 'Unaffected

C

$\sum^{\infty} \sum^{\infty} \sum^{\infty} \mathbb{Z}$

M

[^8]

[^9]

为 気

 H

[^10]

A_23_P19987	IGF2BP3	10.13	0.51	5.00E-04	3.85E-02		M7.16_Not.Determined
A_23_P113701	PDGFA	6.98	0.76	8.80E-05	$1.70 \mathrm{E}-02$		NA
A_33_P3416097	F13A1	7.57	0.81	$1.56 \mathrm{E}-04$	2.26E-02		M1.1_Platelets
A_33_P3343316	SH3BGRL2	7.09	0.76	$1.77 \mathrm{E}-04$	$2.39 \mathrm{E}-02$		NA
A_24_P40626	GREM2	6.15	0.86	$2.15 \mathrm{E}-04$	$2.62 \mathrm{E}-02$		NA
A_23_P137856	MUC1	6.88	0.60	1.25E-04	$2.01 \mathrm{E}-02$		M7.29_Not.Determined
A_24_P42681	PSMD2	10.04	0.26	$9.10 \mathrm{E}-05$	$1.72 \mathrm{E}-02$		M6.17_Not.Determined
A_33_P3734384	Inc-MYO1G-1	8.69	0.42	7.04E-04	$4.51 \mathrm{E}-02$		NA
Supplementary Table 4. Probes down in 'Metastasis' v 'Unaffected'							
ProbeName	GENE_SYMBOL		$\begin{aligned} & \text { Avg. log2 } \\ & \text { exp. } \end{aligned}$	$\log 2 \mathrm{FC}$	p.value	adjusted. p.value	GeneSets.Modules
A_23_P392470	NR3C2		7.11	-1.11	$2.85 \mathrm{E}-08$	$8.81 \mathrm{E}-04$	M7.12_Undetermined
A_23_P170679	COL4A3		4.77	-1.05	$2.64 \mathrm{E}-08$	8.81E-04	M9.6_Undetermined
A_23_P24922	LIPT2		8.21	-0.82	$2.90 \mathrm{E}-07$	1.91E-03	M9.9_Undetermined
A_22_P00005659	LOC101060038		8.00	-0.70	6.70E-04	4.39E-02	NA
A_33_P3227400	COL4A4		6.86	-1.28	7.40E-08	8.81E-04	M9.32_Undetermined
A_33_P3294583	LOC256880		5.00	-0.66	1.32E-07	1.09E-03	NA
A_23_P30163	KLF3-AS1		6.31	-0.88	$6.52 \mathrm{E}-07$	$2.34 \mathrm{E}-03$	NA
A_33_P3715843	MGC40069		5.52	-0.88	6.67E-07	$2.34 \mathrm{E}-03$	NA
A_33_P3272563	NMT2		8.10	-0.69	8.43E-07	$2.51 \mathrm{E}-03$	M4.15_T.cells
A_33_P3311971			7.25	-0.72	$1.26 \mathrm{E}-06$	$2.97 \mathrm{E}-03$	NA
A_32_P324933	LINC00282		5.29	-1.24	1.94E-06	3.62E-03	NA
A_33_P3391796	NOG		7.55	-1.59	6.36E-08	8.81E-04	M8.25_Undetermined
A_21_P0006502	lnc-ZC3H12B-2		10.57	-0.74	6.35E-07	$2.34 \mathrm{E}-03$	NA
A_23_P21495	FCGBP		9.57	-0.80	$1.91 \mathrm{E}-04$	$2.48 \mathrm{E}-02$	M7.12_Undetermined
A_33_P3377239	LOC100270804		8.06	-0.59	$2.18 \mathrm{E}-06$	3.63E-03	NA
A_33_P3329737			8.32	-0.78	2.52E-06	3.94E-03	NA
A_21_P0006057			5.07	-1.03	8.92E-08	8.81E-04	NA
A_33_P3329356	lnc-HADH-1		6.64	-1.20	$4.71 \mathrm{E}-08$	8.81E-04	NA
A_33_P3346972			7.00	-0.67	5.71E-07	$2.34 \mathrm{E}-03$	NA
A_24_P9090	HNRNPDL		11.11	-0.49	$5.00 \mathrm{E}-07$	$2.34 \mathrm{E}-03$	M5.8_Not.Determined\|M6.9_Not.Determined
A_33_P3306948	LRP6		6.25	-0.94	4.65E-06	4.41E-03	NA
A_22_P00014395	LOC102723346		5.07	-0.69	$3.24 \mathrm{E}-06$	$4.30 \mathrm{E}-03$	NA
A_23_P151059	FAM90A1		5.92	-0.79	$1.49 \mathrm{E}-08$	8.81E-04	NA
A_23_P212511	TTC14		10.09	-0.38	$8.47 \mathrm{E}-06$	5.57E-03	M9.7_Undetermined
A_22_P00022504	KRT73-AS1		4.25	-0.88	$3.10 \mathrm{E}-07$	1.91E-03	NA
A_23_P211244	PRMT2		9.28	-0.60	7.65E-06	5.37E-03	M7.18_Undetermined\|M9.17_Undetermined
A_23_P153676	TLE2		8.78	-0.73	6.86E-06	5.08E-03	NA
A_21_P0002980	LOC100506990		7.30	-0.52	1.40E-05	6.77E-03	NA
A_21_P0005923	LOC100506990		7.06	-0.56	3.61E-06	4.30E-03	NA
A_33_P3253792	CXorf67		5.87	-0.68	$1.40 \mathrm{E}-05$	6.77E-03	NA
A_33_P3883985	LMF1		10.08	-1.19	6.26E-07	$2.34 \mathrm{E}-03$	NA
A_23_P133543	KLHL3		8.82	-0.63	1.14E-05	6.24E-03	M4.1_T.cell
A_23_P209360	KLHL29		7.23	-1.04	4.29E-08	8.81E-04	NA
A_33_P3316313	MTERF4		9.82	-0.43	1.60E-05	7.28E-03	NA
A_22_P00006901	SCARNA10		10.66	-0.57 -0.33	5.05E-06	$4.47 \mathrm{E}-03$ $6.09 \mathrm{E}-03$	NA ${ }^{\text {N5, }}$ Not-Determined
A_23_P254978 A $33-\mathrm{P} 3273490$	TATDN1		7.80 6.42	-0.33 -0.57	$1.06 \mathrm{E}-05$ $1.81 \mathrm{E}-05$	$6.09 \mathrm{E}-03$ $7.72 \mathrm{E}-03$	M5.5_Not.Determined NA
A_33_P3319987	SCML4		7.11	-0.69	1.66E-05	$7.41 \mathrm{E}-03$	M9.25_Undetermined
A_21_P0000451	SNORD116-27		6.01	-0.59	8.48E-06	5.57E-03	NA
A_21_P0006503	ZC3H12B		5.69	-0.56	1.96E-05	7.84E-03	M9.11_Undetermined
A_33_P3307253	AK5		6.27	-0.95	2.11E-05	8.10E-03	M9.11_Undetermined
A_23_P120281	EDAR		5.02	-0.88	3.85E-06	4.35E-03	M4.1_T.cell
A_21_P0012654	LOC101928803		9.76	-0.58	1.62E-05	$7.30 \mathrm{E}-03$	NA
A_32_P208823	PLXDC1		6.88	-0.69	8.74E-06	5.61E-03	M9.5_Undetermined
A_22_P00000386	KLF3-AS1		5.59	-0.60 -0.78	3.29E-05	1.04E-02	NA
A_33_P3261408	TMIE		5.37	-0.78	6.26E-06	4.84E-03	NA
A_21_P0000882	RNF157-AS1		5.70	-0.96	4.23E-06	4.38E-03	NA
A_33_P3388618	TNK1		7.82	-0.65	$2.84 \mathrm{E}-05$	$9.48 \mathrm{E}-03$	NA
A_21_P0005656	LOC100506990 lnc-PRAGMIN.1-3		7.57 7.39	-0.52 -0.52	$3.72 \mathrm{E}-05$ $3.53 \mathrm{E}-05$	$1.09 \mathrm{E}-02$ $1.07 \mathrm{E}-02$	NA
A_21_P0013168	XLOC_12_013267		6.15	-0.70	1.60E-05	7.28E-03	NA

[^11]

[^12]

[^13]

品

[^14]

 וֹ

[^15]

[^16]

[^17]

 শ

[^18]

捅

[^19] N

[^20]Supplementary Table 5. Probes up in 'Metastasis' v 'Primary'

ProbeName	GENE_SYMBOL	$\begin{aligned} & \text { Avg. } \log 2 \\ & \text { exp. } \end{aligned}$	$\log 2 \mathrm{FC}$	p.value	adjusted.p.value	GeneSets.Modules	
A_22_P00003343	lnc-CBFA2T3-2	5.30	0.40	$2.5253 \mathrm{E}-05$	0.008874894	NA	
A_22_P00012949		4.91	0.36	$3.03571 \mathrm{E}-05$	0.009891479	NA	
A_33_P3323136	ENKUR	9.72	0.63	8.54534E-05	0.016790962	M6.14_Not.Determined	
A_33_P3264364	DNM3	9.87	0.66	0.000151958	0.022318099	M1.1_Platelets	
A_23_P316850	ODF3L2	9.02	0.51	0.000171473	0.02343541	NA	
A_19_P00811843	ARHGAP32	6.36	0.33	0.000181813	0.02420965	M8.25_Undetermined	
A_21_P0014395	Inc-ZNF100-2	6.15	0.92	0.000220292	0.026532879	NA	
A_21_P0010671	LYPLAL1-AS1	7.32	0.65	0.000257714	0.028169994	NA	
A_24_P10884	GRAP2	8.24	0.45	0.000286721	0.029782806	M1.1_Platelets	
A_23_P429998	FOSB	13.01	0.79	0.000307099	0.030555602	M8.69_Undetermined	
A_22_P00010905	LOC100294362	4.67	0.30	0.000333979	0.031926111	NA	
A_23_P167983	HIST1H2AC	11.54	0.62	0.000353675	0.032636681	M4.9_Not.Determined	
A_24_P215240	ENKUR	8.82	0.59	0.000353885	0.032636681	M6.14_Not.Determined	
A_23_P72668	SDPR	11.34	0.67	0.000375451	0.033418899	M1.1_Platelets	
A_23_P105957	ACTN1	11.42	0.48	0.00038699	0.034000884	M4.13_Inflammation	
A_33_P3377194	ADRA1A	10.60	0.41	0.000417394	0.035509032	M2.2_Cell.Cycle	
A_21_P0010663	XLOC_12_001206	12.01	0.40	0.000422257	0.03557475	NA	
A_33_P3262020	C8G	10.57	0.44	0.000465744	0.037232052	NA	
A_23_P7342	UGT2B10	4.94	0.35	0.00047441	0.037377879	NA	
A_22_P00012227	lnc-PPIA-1	9.78	0.40	0.00047612	0.037405978	NA	
A_23_P164047	MMD	11.91	0.53	0.000485953	0.037900665	M1.1_Platelets	
A_22_P00013904	LINC00856	9.30	0.44	0.000494851	0.038361321	NA	
A_23_P128084	ITGA7	10.52	0.45	0.000497824	0.038361321	NA	
A_33_P3292478	CCL16	10.54	0.44	0.000505315	0.038669168	NA	
A_33_P3324086	MCUR1	11.79	0.39	0.000515485	0.038912744	M8.51_Undetermined	
A_33_P3323699	NPPA	6.39	0.26	0.000525393	0.039285038	M9.51_Undetermined	
A_33_P3849275	FHL1	10.21	0.38	0.000593237	0.041641944	M1.1_Platelets	
A_22_P00024602	LOC101927437	5.09	0.25	0.00062244	0.042623498	NA	
A_22_P00010511	lnc-NBPF3-4	8.90	0.24	0.000645745	0.043391964	NA	
A_33_P3231677		8.20	0.52	0.000647744	0.043419556	NA	
A_21_P0001087	C1orf86	4.80	0.38	0.000673883	0.044059889	M5.8_Not.Determined	
A_23_P333951	DNAH14	4.99	0.37	0.000675025	0.044072389	NA	
A_33_P8911753	ITGA9-AS1	5.64	0.44	0.000728971	0.045718902	NA	
A_33_P3312754	LOC102467146	11.12	0.42	0.000762056	0.046691838	NA	
A_33_P3368339	NUTM2G	10.46	0.54	0.000771588	0.046870168	NA	
A_33_P3366754	LOC100128670	8.85	0.52	0.000774978	0.046949628	NA	
A_23_P96623	OPN1MW	5.70	0.36	0.00078098	0.04707844	NA	
A_22_P00011727		9.57	0.54	0.000784033	0.047129627	NA	
A_21_P0000337	SNORA55	5.73	0.34	0.000788772	0.047298947	NA	
A_21_P0014061	LINC00083	10.90	0.59	0.000797172	0.04755026	NA	
A_33_P3343845	CBX7	8.59	0.44	0.000852618	0.049353041	M7.18_Undetermined	
A_33_P3353343	SRRM2	9.71	0.39	0.000856626	0.049555918	M9.5_Undetermined	
A_24_P177553		5.44	0.51	0.000860374	0.049714259	NA	
A_23_P315286	R3HDM4	12.56	0.30	0.000862826	0.04979809	M3.1_Erythrocytes	
A_23_P131825	TNNC2	9.90	0.47	0.000865183	0.049849786	M1.1_Platelets	
A_33_P3370600	SMIM6	4.74	0.51	$7.51155 \mathrm{E}-06$	0.005356228	NA	
A_22_P00013971	$\operatorname{lnc-RTN2-1~}$	7.38	0.81	$1.76226 \mathrm{E}-05$	0.007707178	NA	
A_23_P309837	STON2	5.63	0.75	$2.34322 \mathrm{E}-05$	0.008477342	NA	
A_22_P00002271	lnc-C10orf31-2	4.78	0.41	$4.1651 \mathrm{E}-05$	0.011406166	NA	
A_24_P128308	KLF6	8.00	0.60	7.78918E-05	0.015824041	M7.2_Not.Determined\|M7.15_Undetermined	
A_32_P198923	YWHAZ	11.61	0.37	0.000106101	0.018644088	M4.9_Not.Determined\|M9.44_Undetermined	
A_33_P3258274	TFPI	5.93	0.69	0.000112723	0.019191864	M1.1_Platelets\|M8.39_Undetermined	
A_23_P151662	MAX	11.05	0.33	0.000122982	0.020080023	M6.14_Not.Determined\|M7.30_Undetermined	
A_33_P3322539	BEND2	8.01	0.63	0.00012366	0.020080023	NA	
A_23_P2414	SPX	7.04	0.72	0.000138721	0.021398959	NA P1 Plate	
A_24_P414658	HIST1H2AG	5.86	0.61	0.000149876	0.022135108	${ }^{\text {M1.1_Platelets }}$	
A_23_P90357	TBXA2R	9.28	0.69	0.000156193	0.022642288	M9.41_Undetermined	
A_23_P169437	LCN2	8.13	0.77	0.000165418	0.023023451	NA	
A_21_P0009522 A_33_P3341429	NEXN	5.10 8.10	0.52 0.63	0.000175569 0.000184127	0.023829656 0.024385843	NA M8.18_Undetermined	

[^21]Supplementary Table 6. Probes down in 'Metastasis' v 'Primary'

ProbeName	GENE_SYMBOL	$\text { Avg. } \log 2$ exp.	$\log 2 \mathrm{FC}$	p.value	adjusted.p.value	GeneSets.Modules
A_21_P0014136		5.27	-0.52	5.55729E-05	0.013209035	NA
A_23_P338233	BCDIN3D	7.97	-0.42	0.000360201	0.032910693	M7.24_Undetermined
A_23_P33607	TEFM	7.62	-0.30	0.000530189	0.039524401	NA
A_23_P501372	MIEF2	7.84	-0.29	0.000591139	0.041641944	NA
A_24_P548060		6.77	-0.68	0.000646891	0.043391964	NA
A_33_P3235731	LOC101930072	4.95	-0.43	0.00077579	0.046949628	NA
A_33_P3274194	KCNIP4	4.85	-0.46	$8.91633 \mathrm{E}-05$	0.017069908	NA
A_33_P3405168	MMAA	6.38	-0.43	0.000181499	0.02420965	NA
A_33_P3317576	DHFRL1	5.28	-0.50	0.000204162	0.025657969	NA
A_23_P81212	MRPS18C	10.71	-0.51	0.000207998	0.025822209	M5.13_Not.Determined
A_21_P0007249	RAB30-AS1	6.14	-0.35	0.000268684	0.028461171	NA
A_21_P0000830	RAB30-AS1	5.60	-0.33	0.000425118	0.035663183	NA
A_23_P336796	GXYLT1	6.81	-0.35	0.000462709	0.037168933	M7.3_Not.Determined
A_33_P3277527	LAMC3	4.08	-0.63	0.000635645	0.043010142	NA
A_33_P3214745	FBXO48	4.98	-0.38	0.00066379	0.043838211	NA
A_33_P3407314	PAXIP1-AS2	5.89	-0.47	0.000680255	0.044200216	NA
A_22_P00002000	FBXL19-AS1	5.69	-0.33	0.000683817	0.044298636	NA
A_24_P316305	AQR	8.70	-0.42	0.000837136	0.048975429	M6.2_Mitochondrial.Respiration
A_23_P218358	CDRT1	4.15	-0.36	0.000843117	0.049177224	NA
A_23_P26976	CHAD	4.41	-0.23	0.000865252	0.049849786	NA
A_21_P0002200	$\operatorname{lnc-QPCT-3~}$	4.23	-0.58	0.000868518	0.049921008	NA
A_23_P329261	KCNJ2	5.22	-0.89	0.000343207	0.032225735	M7.16_Not.Determined
A_22_P00024322	lnc-GBP6-1	6.60	-0.69	0.000416725	0.035509032	NA

(Ind

Thall


```
M
N
```


症

Supplementary Table 12. Genes down in ['Primary' v 'Unaffected'] ONLY

$\begin{array}{ll}\text { FLJ36777 } & \text { PIK3IP1-AS1 } \\ \text { OTUD7A } & \text { SDR39U1 } \\ \text { Inc-EIF2S3L.1-2 } & \text { lnc-TMED5-1 } \\ \text { ASIC1 } & \text { SDCCAG8 } \\ \text { JPH3 } & \text { CCDC7 } \\ \text { SNORD22 } & \text { ANTXRL } \\ \text { Inc-ARFGEF2-2 } & \text { SATB1 }\end{array}$

> Supplementary Table 13. Genes down in ['Primary'v 'Unaffected'] AND ['Metastasis'v 'Unaffected']

$$
\begin{array}{ll}
\text { NR3C2 } & \text { ZC3H12B } \\
\text { COL4A3 } & \text { AK5 } \\
\text { LIPT2 } & \text { EDAR } \\
\text { LOC101060038 } & \text { LOC101928803 } \\
\text { COL4A4 } & \text { PLDC1 } \\
\text { LOC256880 } & \text { TMIE } \\
\text { KLF3-AS1 } & \text { RNF157-AS1 } \\
\text { MGC40069 } & \text { TNK1 } \\
\text { NMT2 } & \text { Inc-PRAGMIN.1-3 } \\
\text { LINC00282 } & \text { XLOC_12013267 } \\
\text { NOG } & \text { SNORD116-29 } \\
\text { lnc-ZC3H12B-2 } & \text { TEPP } \\
\text { FCGBP } & \text { XLOC_12_009639 } \\
\text { LOC100270804 } & \text { ACTN1-AS1 } \\
\text { LINC01089 } & \text { SLC16A10 } \\
\text { lnc-HADH-1 } & \text { ATM } \\
\text { HNRNPDL } & \text { TCEA3 } \\
\text { Supplementary Table 14. Genes down in ['Metastasis'v v'Unaffected'] ONLY }
\end{array}
$$

NR3C2	ZC3H12B	NUCB2
COL4A3	AK5	LOC101927056
LIPT2	EDAR	FBXO15
LOC101060038	LOC101928803	lnc-DCTD-1
COL4A4	PLXDC1	HSPG2
LOC256880	TMIE	MMP28
KLF3-AS1	RNF157-AS1	Inc-AC009113.1-1
MGC40069	TNK1	MAML2
NMT2	lnc-PRAGMIN.1-3	CELA1
LINC00282	XLOC_12_013267	ATHL1
NOG	SNORD116-29	SDCBP2-AS1
lnc-ZC3H12B-2	TEPP	COPG2IT1
FCGBP	XLOC_12_009639	LMO7
LOC100270804	ACTN1-AS1	SPEG
LINC01089	SLC16A10	IGF1R
Inc-HADH-1	ATM	SLC5A2
HNRNPDL	TCEA3	SERINC5

[^22]

GO biological process .
blood coagulation, intrinsic pathway (GO:0007597)
copulation (GO:0007620)
negative regulation of neural precursor cell proliferation (GO:2000178) negative regulation of neural precursor cell proliferation (GO:2000178)
platelet aggregation (GO:0070527) lood coagulation, fibrin clot formation (GO:0072378)
actin filament polymerization (GO:0030041) ctin filament polymerization (GO:0030041)
oomotypic cell-cell adhesion (GO:0034109) platelet degranulation (GO:0002576)
platelet activation (GO:0030168)
egative regulation of protein depolymerization (GO:1901880)
nyelination (GO:0042552)
nsheathment of neurons (GO:0007272) myelination (GO:0042552)
ensheathment of neurons (GO:0007272)
xon ensheathment (GO:0008366)
protein polymerization (GO:0051258)
regulation of protein depolymerization (GO:1901879)
positive regulation of endothelial cell proliferation (GO:0001938)
negative regulation of supramolecular fiber organization (GO:1902904) negative regulation of supramolecula
blood coagulation (GO:0007596)
blood coagulation (GO:000759
coagulation (GO:0050817)
hemostasis (GO:0007599)
regulation of endothelial cell proliferation (GO:0001936) egulation of endothelial cell prolifera
cell-matrix adhesion (GO:0007160)
cell-substrate adhesion (GO:0031589) cell-substrate adhesion (GO:0031589) wound healing (GO:0042060)
response to organophosphorus (GO:0046683) regulation of wound healing (GO:0061041)
cell junction organization (GO:0034330) regulation of muscle contraction (GO:0006937) regulation of response to wounding (GO:1903034)
regulation of body fluid levels (GO:0050878) esponse to wounding (GO:0009611) cell-cell junction organization (GO:0045216)
actin filament organization (GO:0007015) regulation of supramolecular fiber organization (GO:1902903)
supramolecular fiber organization (GO:0097435)
positive regulation of cell migration (GO:0030335)
regulated exocytosis (GO:0045055)
blood circulation (GO:0008015) regulation of supramolecular fiber organization (GO:1902903)
supramolecular fiber organization (GO:0097435)
positive regulation of cell migration (GO:0030335)
regulated exocytosis (GO:0045055)
blood circulation(GO:0008015) blood circulation (GO:0008015) positive regulation of cell motility (GO:2000147)
circulatory system process (GO:0003013) circulatory system process (GO:0003013)
positive regulation of locomotion (GO:0040017) actin cytoskeleton organization (GO:0030036)
positive regulation of cellular component movement (GO:0051272) regulation of actin filament-based process (GO
(G) ctin filament-based process (GO:0030029)
xocytosis (GO:0006887) exocytosis (GO:0006887)
ell adhesion (GO:0007155) regulation of cytoskeleton organization (GO:0051493)
biological adhesion (GO:0022610) iological adhesion (GO:0022610)
regulation of anatomical structure size (GO:0090066)
cell-cell adhesion (GO:0098609) cell-cell adhesion (GO:0098609)
secretion (GO:0046903) secretion by cell (GO:0032940)
cytoskeleton organization (GO:0007010) cell activation (GO:0001775) regulation of cell migration (GO:0030334)
regulation of locomotion (GO:0040012) regulation of cell motility (GO:2000145)
regulation of cellular component movement (GO:0051270)
vesicle-mediated transport (GO:0016192) movement of cell or subcellular component (GO:0006928)
regulation of cell proliferation (GO:0042127)

$$
\begin{aligned}
& \begin{array}{l}
\text { NA } \\
\text { NA } \\
\text { NA } \\
\text { NA }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { M7.17_Undetermined|M8.36_Undetermined } \\
\text { M4.13_Inflammation }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { M7.16_Not.Determined } \\
\text { M2.3_Erythrocytes|M4.4_Not.Determined }
\end{array} \\
& \text { NA } \\
& \text { NA } \\
& \begin{array}{l}
\text { M8.51_Undetermined } \\
\text { M9.51_Undetermined }
\end{array} \\
& \text { M5.4_Not.Determined|M7.3_Not.Determined } \\
& \text { M4.4_Not.Determined }
\end{aligned}
$$

 を LINC00083風

$$
\text { Supplementary Table } 21 \text { IRGs up 'Primary' v 'Unaffected' }
$$

Ensembl Id	Gene Name
ENSG00000107897	ACBD5
ENSG00000157823	AP3S2
ENSG00000147889	CDKN2A
ENSG00000166446	CDYL2
ENSG00000169245	CXCL10
ENSG00000117228	GBP1
ENSG00000225492	GBP1P1
ENSG00000180875	GREM2
ENSG00000134470	IL15RA
ENSG00000151689	INPP1
ENSG00000123700	KCNJ2
ENSG00000153029	MR1
ENSG00000185499	MUC1
ENSG00000138496	PARP9
ENSG00000261128	RP11-18F14.2
ENSG00000175356	SCUBE2

Supplementary Table 22 IRGs down 'Primary' v 'Unaffected'

Ensembl Id	Gene Name
ENSG00000154027	AK5
ENSG00000110881	ASIC1
ENSG00000149311	ATM
ENSG00000133466	C1QTNF6
ENSG00000174807	CD248
ENSG00000169031	COL4A3
ENSG00000119772	DNMT3A
ENSG00000120915	EPHX2
ENSG00000141665	FBXO15
ENSG00000152795	HNRNPDL
ENSG00000140443	IGF1R
ENSG00000119771	KLHL29
ENSG00000146021	KLHL3
ENSG00000070018	LRP6
ENSG00000184384	MAML2
ENSG00000152465	NMT2
ENSG00000151623	NR3C2
ENSG00000091129	NRCAM
ENSG00000101751	POLI
ENSG00000122965	RBM19
ENSG00000182568	SATB1
ENSG00000164300	SERINC5
ENSG00000112394	SLC16A10
ENSG00000072195	SPEG
ENSG00000147003	TMEM27

tyrosine kinase, non-receptor, 1 [Source:HGNC Symbol;Acc:11940] thioredoxin reductase 3 [Source:HGNC Symbol;Acc:20667]
thioredoxin reductase 3 neighbor [Source:HGNC Symbol;Acc:33870] Description
4-aminobutyrate aminotransferase [Source:HGNC Symbol;Acc:23] ATP-binding cassette, sub-family C (CFTR/MRP), member 3 [Source:HGNC Symbol;Acc:54] ATP-binding cassette, sub-family C (CFTR/MRP), member 4 [Source:HGNC Symbol;Acc:55] alanine-glyoxylate aminotransferase [Source:HGNC Symbol;Acc:341] arachidonate 12-lipoxygenase [Source:HGNC Symbol;Acc:429] angiopoietin 1 [Source:HGNC Symbol;Acc:484] ankyrin repeat domain 9 [Source:HGNC Symbol;Acc:20096] Rho GTPase activating protein 6 [Source:HGNC Symbol;Acc:676] ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 [Source:HGNC Symbol;Acc:2721] autophagy related 2A [Source:HGNC Symbol;Acc:29028] B9 protein domain 2 [Source:HGNC Symbol;Acc:28636] BCL2-like 1 [Source:HGNC Symbol;Acc:992] BCL2-like 11 (apoptosis facilitator) [Source:HGNC Symbol;Acc:994] bone morphogenetic protein 6 [Source:HGNC Symbol;Acc:1073] chromosome 15 open reading frame 26 [Source:HGNC Symbol;Acc:26782] calcium binding protein 39 [Source:HGNC Symbol;Acc:20292] calmodulin 3 (phosphorylase kinase, delta) [Source:HGNC Symbol;Acc:1449] calmodulin-like 3 [Source:HGNC Symbol;Acc:1452] castor zinc finger 1 [Source:HGNC Symbol;Acc:26002] cell cycle progression 1 [Source:HGNC Symbol;Acc:24227] CD226 molecule [Source:HGNC Symbol;Acc:16961] CD9 molecule [Source:HGNC Symbol;Acc:1709]

ell division cycle 14B [Source:HGNC Symbol;Acc:1719]
cyclin-dependent kinase inhibitor 2A [Source:HGNC Symbol;Acc:1787] CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 2 [Source
cholesteryl ester transfer protein, plasma [Source:HGNC Symbol;Acc:1869]
C-type lectin domain family 1, member B [Source:HGNC Symbol;Acc:24356]
clusterin [Source:HGNC Symbol;Acc:2095]
c-Maf inducing protein [Source:HGNC Symbol;Acc:24319]
cAMP responsive element binding protein 3 -like 2 [Source:HGNC Symbol;Acc:23720]
cAMP responsive element binding protein 3-like 3 [Source:HGNC Symbol;Acc:18855]
CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatas
CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like [Source:HGNC Symbol;Acc:16890]
cathepsin A [Source:HGNC Symbol;Acc:9251]
cathepsin A [Source:HGNC Symbol;Acc::9251]
cortactin [Source:HGNC Symbol;Acc:3338]
chemokine (C-X-C motif) ligand 5 [Source:HGNC Symbol;Acc:10642]
cytochrome b5 reductase 3 [Source:HGNC Symbol;Acc:2873]
dual adaptor of phosphotyrosine and 3-phosphoinositides [Source:HGNC Symbol;Acc:16500] DENN/MADD domain containing 4C [Source:HGNC Symbol;Acc:26079]
diacylglycerol kinase, delta 130kDa [Source:HGNC Symbol;Acc:2851]
desmocollin 2 [Source:HGNC Symbol;Acc:3036]
DYX1C1-CCPG1 readthrough (non-protein coding) [Source:HGNC Symbol;Acc:43019] eukaryotic translation initiation factor 4 gamma, 3 [Source:HGNC Symbol;Acc:3298] ELOVL fatty acid elongase 7 [Source:HGNC Symbol;Acc:26292] endonuclease domain containing 1 [Source:HGNC Symbol;Acc:29129] endonuclease domain containing 1 [Source:HGNC Symbol;Acc:29129] erythropoietin receptor [Source:HGNC Symbol;Acc:3416] F11 receptor [Source:HGNC Symbol;Acc:14685]
coagulation factor XIII, A1 polypeptide [Source:HGNC Symbol;Acc:3531] coagulation factor II (thrombin) receptor [Source:HGNC Symbol;Acc:3537]
fumarylacetoacetate hydrolase (fumarylacetoacetase) [Source:HGNC Symbol;Acc:3579]
 ENSG00000081377 ENSG00000147889 ENSG00000101290 ENSG00000087237
 ENSG00000120885
 ENSG00000182158
 ENSG00000144677 ENSG00000064601

 ENSG00000100243 ENSG00000070190
 ENSG00000077044

 n
n
0
0
0
0
0
0
0
0
n
n

 ENSG00000187266
 ENSG00000124491
 ENSG00000103876
ENSG00000189319 ENSG00000143409 ENSG00000197601 ENSG00000170271
 ENSG00000129682
 ENSG00000196924
 ENSG00000107164

 ENSG00000102393 ENSG00000137198

 N
O.
O.
O
O
O
Un
Z
Z

 ENSG00000259207 ENSG00000082781

> ENSG00000069424 ENSG00000171385 ENSG00000067082 ENSG00000148346 ENSG00000106003 ENSG00000116977 ENSG00000119862 ENSG00000169756 ENSG00000240428 ENSG00000256977 ENSG00000257207 ENSG00000147650 ENSG00000093167 ENSG00000049323

 ENSG00000074416 ENSG00000175727 ENSG00000196611 ENSG00000130830 ENSG00000066697 ENSG00000100330

$$
\begin{aligned}
& \text { KCNAB2 } \\
& \text { KCND3 } \\
& \text { KLF6 } \\
& \text { LCN2 } \\
& \text { LFNG } \\
& \text { LGALS8 } \\
& \text { LGALSL } \\
& \text { LIMS1 } \\
& \text { LIMS1 } \\
& \text { LIMS3 } \\
& \text { LIMS3 } \\
& \text { LRP12 } \\
& \text { LRRFIP2 } \\
& \text { LTBP1 } \\
& \text { MAP1LC3B } \\
& \text { MAP2K3 } \\
& \text { MAP3K5 } \\
& \text { MAX } \\
& \text { MCUR1 } \\
& \text { MFAP3L } \\
& \text { MFSD2B } \\
& \text { MGLL } \\
& \text { MLXIP } \\
& \text { MMP1 } \\
& \text { MPP1 } \\
& \text { MSANTD3 } \\
& \text { MTMR3 }
\end{aligned}
$$

maturin, neural progenitor differentiation regulator homolog (Xenopus) [Source:HGNC Symbol;Acc:25457] mucin 1, cell surface associated [Source:HGNC Symbol;Ac:7508]
myosin light chain kinase [Source:HGNC Symbol;Acc:7590]
nexilin (F actin binding protein) [Source:HGNC Symbol;Acc:29557]
neurofibromin 1 [Source:HGNC Symbol;Acc:7765]
nuclear factor I/B [Source:HGNC Symbol;Acc:7785]
nucleolar protein 10 [Source:HGNC Symbol;Acc:25862]
neuroplastin [Source:HGNC Symbol;Acc:17867]
neurogranin (protein kinase C substrate, RC3) [Source:HGNC Symbol;Acc:8000] purinergic receptor P2X, ligand-gated ion channel, 1 [Source:HGNC Symbol;Acc:8533] 3'-phosphoadenosine 5'-phosphosulfate synthase 1 [Source:HGNC Symbol;Acc:8603] par-3 family cell polarity regulator [Source:HGNC Symbol;Acc:16051] pre-B-cell leukemia homeobox 1 [Source:HGNC Symbol;Acc:8632] proprotein convertase subtilisin/kexin type 6 [Source:HGNC Symbol;Acc:8569] phosphate cytidylyltransferase 1, choline, alpha [Source:HGNC Symbol;Acc:8754] platelet-derived growth factor alpha polypeptide [Source:HGNC Symbol;Acc:8799] platelet derived growth factor C [Source:HGNC Symbol;Acc:8801] PDZ and LIM domain 1 [Source:HGNC Symbol;Acc:2067] PDZ and LIM domain 7 (enigma) [Source:HGNC Symbol;Acc:22958] putative homeodomain transcription factor 1 [Source:HGNC Symbol;Acc:8939] pim-1 oncogene [Source:HGNC Symbol;Acc:8986]
phospholipase A2, group XIIA [Source:HGNC Symbol;Acc:18554] pleckstrin homology domain containing, family B (evectins) member 2 [Source:HGNC Symbol;Acc:19236] procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 [Source:HGNC Symbol;Acc:9082] PR domain containing 1, with ZNF domain [Source:HGNC Symbol;Acc:9346]
protein kinase, cAMP-dependent, regulatory, type II, beta [Source:HGNC Symbol;Acc:9392] protein S (alpha) [Source:HGNC Symbol;Acc:9456]
prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase) [Source:HGNC Symbol;Acc:9604]
 ENSG00000180354 ENSG00000185499
 ENSG00000162614

 ENSG00000156642
 ENSG00000108405 ENSG00000138801
 ENSG00000185630 ENSG00000140479 ENSG00000161217

 ENSG00000137193

 N
N
N
O
O
O
Un
Z

 ENSG00000095303
 ENSG00000127947 ENSG00000168297 ENSG00000041353 ENSG00000132359 ENSG00000072042 ENSG00000072422
 ENSG00000240912
 ENSG00000136021 ENSG00000115884
 ENSG00000184702 ENSG00000198478

 ENSG00000059377
issue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) [Source:HGNC Symbol;Acc:11760]
transforming growth factor, beta 1 [Source:HGNC Symbol;Acc:11766]
transmembrane protein 140 [Source:HGNC Symbol;Acc:21870]
transmembrane protein 189 [Source:HGNC Symbol;Acc:16735]
transmembrane protein 63B [Source:HGNC Symbol;Acc:17735]
transmembrane protein 91 [Source:HGNC Symbol;Acc:32393]
thymosin beta 15a [Source:HGNC Symbol;Acc:30744]
tropomyosin 1 (alpha) [Source:HGNC Symbol;Acc:12010]
triggering receptor expressed on myeloid cells-like 1 [Source:HGNC Symbol;Acc:20434]
tripartite motif containing 10 [Source:HGNC Symbol;Acc:10072]
tetraspanin 33 [Source:HGNC Symbol;Acc:28743]
etratricopeptide repeat domain 7B [Source:HGNC Symbol;Acc:19858]
ubulin, alpha 4a [Source:HGNC Symbol;Acc:12407]
ubiquitin-conjugating enzyme E2C [Source:HGNC Symbol;Acc:15937]
ubiquitin-like 4A [Source:HGNC Symbol;Acc:12505]
ubiquitin domain containing 1 [Source:HGNC Symbol;Acc:25683]
unc-51 like autophagy activating kinase 1 [Source:HGNC Symbol;Acc:12558] upstream transcription factor 2, c-fos interacting [Source:HGNC Symbol;Acc:12594]
vinculin [Source:HGNC Symbol;Acc:12665]
vascular endothelial growth factor C [Source:HGNC Symbol;Acc:12682]
von Willebrand factor [Source:HGNC Symbol;Acc:12726]
WD repeat domain 44 [Source:HGNC Symbol;Acc:30512]
WD repeat domain, phosphoinositide interacting 1 [Source:HGNC Symbol;Acc:25471]
tryptophan rich basic protein [Source:HGNC Symbol;Acc:12790] X-prolyl aminopeptidase (aminopeptidase P) 1, soluble [Source:HGNC Symbol;Acc:12822] zinc finger and BTB domain containing 16 [Source:HGNC Symbol;Acc:12930] zinc finger, AN1-type domain 3 [Source:HGNC Symbol;Acc:18019]

> ENSG00000003436 ENSG00000105329 ENSG00000146859 ENSG00000240849

 ENSG00000140416 7
\vdots
0
0.
0.0
0
0
0
nu ENSG00000204613 ENSG00000158457
 ENSG00000127824 ENSG00000175063 ENSG00000102178

 ENSG00000105698

 ENSG00000108039

Supplementary Table 24 IRGs down in 'Metastasis' v 'Unaffected'

> 3-hydroxybutyrate dehydrogenase, type 1 [Source:HGNC Symbol;Acc:1027]
butyrophilin, subfamily 3, member A2 [Source:HGNC Symbol;Acc:1139]
butyrophilin, subfamily 3, member A3 [Source:HGNC Symbol;Acc:1140]
beta-transducin repeat containing E3 ubiquitin protein ligase [Source:HGNC Symbol;Acc:1144]
chromosome 12 open reading frame 29 [Source:HGNC Symbol;Acc:25322]
chromosome 12 open reading frame 57 [Source:HGNC Symbol;Acc:29521]
chromosome 14 open reading frame 169 [Source:HGNC Symbol;Acc:20968]
chromosome 17 open reading frame 51 [Source:HGNC Symbol;Acc:27904]
chromosome 19 open reading frame 53 [Source:HGNC Symbol;Acc:24991]
chromosome 19 open reading frame 73 [Source:HGNC Symbol;Acc:25534]
chromosome 5 open reading frame 45 [Source:HGNC Symbol;Acc:30817]
cullin-associated and neddylation-dissociated 2 (putative) [Source:HGNC Symbol;Acc:30689]
coiled-coil domain containing 102B [Source:HGNC Symbol;Acc:26295]
coiled-coil domain containing 109B [Source:HGNC Symbol;Acc:26076]
coiled-coil domain containing 14 [Source:HGNC Symbol;Acc:25766]
coiled-coil domain containing 59 [Source:HGNC Symbol;Acc:25005]
chemokine (C-C motif) receptor 7 [Source:HGNC Symbol;Acc:1608]
CD248 molecule, endosialin [Source:HGNC Symbol;Acc:18219]
CD27 molecule [Source:HGNC Symbol;Acc:11922]
cell division cycle 25B [Source:HGNC Symbol;Acc:1726]
CDC42 small effector 2 [Source:HGNC Symbol;Acc:18547]
cyclin-dependent kinase 20 [Source:HGNC Symbol;Acc:21420]
centromere protein J [Source:HGNC Symbol;Acc:17272]
CCR4-NOT transcription complex, subunit 7 [Source:HGNC Symbol;Acc:14101]
cochlin [Source:HGNC Symbol;Acc:2180]
collagen, type IV, alpha 3 (Goodpasture antigen) [Source:HGNC Symbol;Acc:2204]
collagen, type V, alpha 2 [Source:HGNC Symbol;Acc:2210]
collagen, type VI, alpha 1 [Source:HGNC Symbol;Acc:2211]

> ENSG00000161267 ENSG00000186470 ENSG00000111801 ENSG00000166167 ENSG00000133641 ENSG00000111678
 ENSG00000212719 0
0
0
0
0
0
0
0
0
0
2 ENSG00000221916 ENSG00000161010 ENSG00000144712 ENSG00000150636 ENSG00000005059
 ENSG00000133773 ENSG00000126353 ENSG00000174807

 ENSG00000151849 ENSG00000198791 ENSG00000100473

 ENSG00000142156
COMM domain containing 6 [Source:HGNC Symbol;Acc:24015] crumbs homolog 3 (Drosophila) [Source:HGNC Symbol;Acc:20237] CSRP2 binding protein [Source:HGNC Symbol;Acc:15904]
cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kDa [Source:HGNC Symbol;Acc:2485] cytochrome P450, family 2, subfamily J, polypeptide 2 [Source:HGNC Symbol;Acc:2634] discoidin, CUB and LCCL domain containing 2 [Source:HGNC Symbol;Acc:24627] DnaJ (Hsp40) homolog, subfamily C, member 21 [Source:HGNC Symbol;Acc:27030] deoxyribonuclease I-like 3 [Source:HGNC Symbol;Acc:2959] DNA (cytosine-5-)-methyltransferase 3 alpha [Source:HGNC Symbol;Acc:2978 aspartyl aminopeptidase [Source:HGNC Symbol;Acc:2981] dedicator of cytokinesis 9 [Source:HGNC Symbol;Acc:14132] dynein, cytoplasmic 2, light intermediate chain 1 [Source:HGNC Symbol;Acc:24595] erythroid differentiation regulatory factor 1 [Source:HGNC Symbol;Acc:24640] EP300 interacting inhibitor of differentiation 3 [Source:HGNC Symbol;Acc:32961] eukaryotic translation initiation factor 1A, X-linked [Source:HGNC Symbol;Acc:3250] eukaryotic translation initiation factor 4E binding protein 3 [Source:HGNC Symbol;Acc:3290] enolase 3 (beta, muscle) [Source:HGNC Symbol;Acc:3354] enolase superfamily member 1 [Source:HGNC Symbol;Acc:30365]
 Fas apoptotic inhibitory molecule 3 [Source:HGNC Symbol;Acc:14315] family with sequence similarity 117, member B [Source:HGNC Symbol;Acc:14440] family with sequence similarity 149, member B1 [Source:HGNC Symbol;Acc:29162] family with sequence similarity 153, member C [Source:HGNC Symbol;Acc:33936] family with sequence similarity 178, member A [Source:HGNC Symbol;Acc:17814] family with sequence similarity 213, member A [Source:HGNC Symbol;Acc:28651] family with sequence similarity 216, member A [Source:HGNC Symbol;Acc:30180] F-box protein 15 [Source:HGNC Symbol;Acc:13617]
 ENSG00000188243 ENSG00000130545
 ENSG00000176102
 ENSG00000134716
 ENSG00000168724
 ENSG00000119772 ENSG00000123992
 ENSG00000138036 ENSG00000107938

 ENSG00000204677
 ENSG00000122378
 ENSG00000141665
fibroblast growth factor 9 [Source:HGNC Symbol;Acc:3687]
FERM domain containing 4A [Source:HGNC Symbol;Acc:25491] fucosyltransferase 8 (alpha $(1,6)$ fucosyltransferase) [Source:HGNC Sy GTPase, IMAP family member 7 [Source:HGNC Symbol;Acc:22404]
G protein-coupled receptor 155 [Source:HGNC Symbol;Acc:22951] G protein-coupled receptor 18 [Source:HGNC Symbol;Acc:4472] GTP-binding protein 8 (putative) [Source:HGNC Symbol;Acc:25007] histidine triad nucleotide binding protein 3 [Source:HGNC Symbol;Acc hexokinase domain containing 1 [Source:HGNC Symbol;Acc:23302] heterogeneous nuclear ribonucleoprotein D-like [Source:HGNC Symbol;Acc:5037] insulin-like growth factor 1 receptor [Source:HGNC Symbol;Acc:5465]
interleukin 16 [Source:HGNC Symbol;Acc:5980] importin 9 [Source:HGNC Symbol;Acc:19425]
ISY1-RAB43 readthrough [Source:HGNC Symbol;Acc:42969] integral membrane protein 2A [Source:HGNC Symbol;Acc:6173] kelch-like family member 29 [Source:HGNC Symbol;Acc:29404]
kelch-like family member 3 [Source:HGNC Symbol;Acc:6354] kelch-like family member 34 [Source:HGNC Symbol;Acc:26634] lactate dehydrogenase B [Source:HGNC Symbol;Acc:6541] ligase I, DNA, ATP-dependent [Source:HGNC Symbol;Acc:6598]
low density lipoprotein receptor-related protein 6 [Source:HGNC Syn low density lipoprotein receptor-related protein 6 [Source:HGNC Symbol;Acc:6698]
leucine-rich pentatricopeptide repeat containing [Source:HGNC Symbol;Acc:15714] leucine-rich pentatricopeptide repeat containing [Source:HGNC Symbol;Acc:15714]
leucine rich repeat neuronal 3 [Source:HGNC Symbol;Acc:17200]
leucine rich repeat neuronal 3 [Source:HGNC Symbol;Acc:17200]
LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae) [S melanoma antigen family D, 1 [Source:HGNC Symbol;Acc:6813]
LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae) [Source:HGNC Symbol;Acc:17874] mastermind-like 2 (Drosophila) [Source:HGNC Symbol;Acc:16259] mannosidase, alpha, class 1C, member 1 [Source:HGNC Symbol;Acc:19080]
malate dehydrogenase 1, NAD (soluble) [Source:HGNC Symbol;Acc:6970]

荡 ENSG00000102678 ENSG00000151474 ENSG00000033170 ENSG00000179144

 ENSG00000163607 ENSG00000111911

 ENSG00000198700 ENSG00000261796 ENSG00000078596 ENSG00000119771
 ENSG00000185915

 ENSG00000170860

 ENSG00000014641
methyltransferase like 21B [Source:HGNC Symbol;Acc:24936]
meningioma expressed antigen 5 (hyaluronidase) [Source:HGNC Symbol;Acc:7056]
MKL/myocardin-like 2 [Source:HGNC Symbol;Acc:29819]
modulator of apoptosis 1 [Source:HGNC Symbol;Acc:16658] mutS homolog 2 [Source:HGNC Symbol;Acc:7325]
MYC binding protein 2, E3 ubiquitin protein ligase [Source:HGNC Symbol;Acc:23386]
nucleosome assembly protein 1-like 3 [Source:HGNC Symbol;Acc:7639]
non-SMC condensin I complex, subunit D2 [Source:HGNC Symbol;Acc:24
non-SMC condensin I complex, subunit D2 [Source:HGNC Symbol;Acc:24305]
NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1, 6kDa [Source:HGNC Symbol;Acc:7705] NEL-like 2 (chicken) [Source:HGNC Symbol;Acc:7751]
ninein-like [Source:HGNC Symbol;Acc:29163]
N-myristoyltransferase 2 [Source:HGNC Symbol;Acc:7858]
nuclear pore complex interacting protein family, member A2 [Source:HGNC Symbol;Acc:41979] nuclear pore complex interacting protein family, member A5 [Source:HGNC Symbol;Acc:41980]
LOC339047 protein; Nuclear pore complex-interacting protein family member A3; Nuclear pore complex-
interacting protein family member A5; Protein PKD1P1 [Source:UniProtKB/TrEMBL;Acc:Q0P618] interacting protein family member A5; Protein PKD1P1 [Source:UniProtKB/TrEMBL;Acc:Q0P618]
nuclear receptor subfamily 3, group C, member 2 [Source:HGNC Symbol;Acc:7979] nuclear receptor subfamily 3, group C, member 2 [Source:HGNC Symbol;Acc:7979]
neuronal cell adhesion molecule [Source:HGNC Symbol;Acc:7994]
neuronal cell adhesion molecule [Source:HGNC Symbol;Acc:7994]
5'-nucleotidase, ecto (CD73) [Source:HGNC Symbol;Acc:8021]
O-sialoglycoprotein endopeptidase-like 1 [Source:HGNC Symbol;Acc:23075] [Source:HGNC Symbol;Acc:8587]
prostate androgen-regulated mucin-like protein 1 [Source:HGNC Symbol;Acc:24536]
protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2 [Source:HGNC
Symbol;Acc:15882]
phosphodiesterase 7B [Source:HGNC Symbol;Acc:8792]
PDZ domain containing 2 [Source:HGNC Symbol;Acc:18486]
PITPNA antisense RNA 1 [Source:HGNC Symbol;Acc:44116]
pleckstrin homology domain containing, family G (with RhoGef domain) member 4 [Source:HGNC
Symbol;Acc:24501]
Symbol;Acc:24501]
peptidase M20 domain containing 2 [Source:HGNC Symbol;Acc:21408]

> ENSG00000123427 ENSG00000198408 ENSG00000186260 ENSG00000165943
 ENSG00000095002
 ENSG00000186310
 ENSG00000109390
 t
O
D
O
O
O
品
 ENSG00000254852 ENSG00000183793

 ENSG00000128050
 ENSG00000203880 ENSG00000171408

 ENSG00000146281
ENSG00000101751 ENSG00000184271 ENSG00000132356 ENSG00000132600
 ENSG00000172780 ENSG00000197275 ENSG00000103479
 ENSG00000122965 ENSG00000163933

 ENSG00000151692 ENSG00000238923

 ENSG00000164300

 ENSG00000205060
solute carrier family 3 (amino acid transporter heavy chain), member 1 [Source:HGNC Symbol;Acc:11025] solute carrier family 46 (folate transporter), member 1 [Source:HGNC Symbol;Acc:30521] small nucleolar RNA, C/D box 109B [Source:HGNC Symbol;Acc:32774] SRY (sex determining region Y)-box 8 [Source:HGNC Symbol;Acc:11203] SPEG complex locus [Source:HGNC Symbol;Acc:16901] sarcospan [Source:HGNC Symbol;Acc:11322]
taste receptor, type 2, member 5 [Source:HGNC Symbol;Acc:14912] TBC1 domain family, member 10C [Source:HGNC Symbol;Acc:24702] TBC1 domain family, member 4 [Source:HGNC Symbol;Acc:19165] transcription factor 3 [Source:HGNC Symbol;Acc:11633] transcription factor-like 5 (basic helix-loop-helix) [Source:HGNC Symbol;Acc:11646] transforming growth factor, beta receptor II (70/80kDa) [Source:HGNC Symbol;Acc:11773] thioesterase superfamily member 4 [Source:HGNC Symbol;Acc:17947] thyroid hormone receptor, alpha [Source:HGNC Symbol;Acc:11796] transmembrane channel-like 8 [Source:HGNC Symbol;Acc:20474] transmembrane protein 116 [Source:HGNC Symbol;Acc:25084] transmembrane protein 27 [Source:HGNC Symbol;Acc:29437] tyrosine kinase, non-receptor, 1 [Source:HGNC Symbol;Acc:11940]
tropomyosin 2 (beta) [Source:HGNC Symbol;Acc: 12011] TRAF3 interacting protein 3 [Source:HGNC Symbol;Acc:30766] TSEN2 tRNA splicing endonuclease subunit [Source:HGNC Symbol;Acc:28422] Ts translation elongation factor, mitochondrial [Source:HGNC Symbol;Acc:12367] tetratricopeptide repeat domain 3 [Source:HGNC Symbol;Acc:12393] tetratricopeptide repeat domain 3 pseudogene 1 [Source:HGNC Symbol;Acc:23318] thioredoxin reductase 3 [Source:HGNC Symbol;Acc:20667] thioredoxin reductase 3 neighbor [Source:HGNC Symbol;Acc:33870] ubiquitin protein ligase E3D [Source:HGNC Symbol;Acc:21381] ubiquilin-like [Source:HGNC Symbol;Acc:28294]

SLC3A1
SLC46A1
SNORD109B
SOX8
SPEG
SSPN
TAS2R5
TBC1D10C
TBC1D4
TCF3
TCFL5
TGFBR2
THEM4
THRA
TMC8
TMEM116
TMEM27
UBK1
UBE3D
TPM2
TRAF3IP3
TSEN2
TSFM
TTCC3
TTC3P1
TXNRD3

 ENSG00000175463
 ENSG00000071564

 ENSG00000159445 ENSG00000126351 ENSG00000167895
 ENSG00000147003 ENSG00000174292

 ENSG00000182670

 ENSG00000175518

$$
\begin{aligned}
& \text { Description } \\
& \text { actinin, alpha }
\end{aligned}
$$

$$
\begin{aligned}
& \text { upstream binding transcription factor, RNA polymerase I [Source:HGNC Symbol;Acc:12511] } \\
& \text { ubiquitin specific peptidase } 13 \text { (isopeptidase T-3) [Source:HGNC Symbol;Acc:12611] } \\
& \text { wingless-type MMTV integration site family, member 7B [Source:HGNC Symbol;Acc:12787] } \\
& \text { zinc finger protein 204, pseudogene [Source:HGNC Symbol;Acc:12995] } \\
& \text { zinc finger protein 780A [Source:HGNC Symbol;Acc:27603] } \\
& \text { zinc finger, X-linked, duplicated B [Source:HGNC Symbol;Acc:13199] }
\end{aligned}
$$

$$
\text { actinin, alpha } 1 \text { [Source:HGNC Symbol;Acc:163] }
$$

arachidonate 12-lipoxygenase [Source:HGNC Symbol;Acc:429]

$$
\text { ankyrin repeat domain } 9 \text { [Source:HGNC Symbol;Acc:20096] }
$$

$$
\text { ArfG AP with SH3 domain, ankyrin repeat and PH domain } 2 \text { [Source:HGNC Symbol;Acc:2721] }
$$

$$
\text { BCL2-like } 11 \text { (apoptosis facilitator) [Source:HGNC Symbol;Acc:994] }
$$

$$
\text { chromobox homolog } 7 \text { [Source:HGNC Symbol;Acc:1557] }
$$

$$
\text { dynamin } 3 \text { [Source:HGNC Symbol;Acc:29125] }
$$

coagulation factor XIII, A1 polypeptide [Source:HGNC Symbol;Acc:3531] fatty acid hydroxylase domain containing 2 [Source:HGNC Symbol;Acc:1334] fibroblast growth factor 13 [Source:HGNC Symbol;Acc:3670] four and a half LIM domains 1 [Source:HGNC Symbol;Acc:3702] FK506 binding protein 1B, 12.6 kDa [Source:HGNC Symbol;Acc:3712] FBJ murine osteosarcoma viral oncogene homolog B [Source:HGNC Symbol;Acc:3797] H2B histone family, member S (pseudogene) [Source:HGNC Symbol;Acc:4762] homeodomain interacting protein kinase 2 [Source:HGNC Symbol;Acc:14402] histone cluster 1, H2ac [Source:HGNC Symbol;Acc:4733] histone cluster 1, H2bk [Source:HGNC Symbol;Acc:13954]
Kruppel-like factor 6 [Source:HGNC Symbol;Acc:2235]

[^23]lipocalin 2 [Source:HGNC Symbol;Acc:6526]
LIM and senescent cell antigen-like domains 1 [Source:HGNC Symbol;Acc:6616]
LIM and senescent cell antigen-like-containing domain protein 3; LIM and senesce
LIM and senescent cell antigen-like-containing domain protein 3; LIM and senescent cell antigen-like-containing domain
protein 3-like; Uncharacterized protein; cDNA FLJ59124, highly similar to Particularly interesting newCys-His protein;
cDNA FLJJ9109, highly similar to Particularly interesting newCys-His protein
[Source:UniProtKB/TrEMBLAcc:B4DPH6]
LIM and senescent cell antigen-like domains 3 [Source:HGNC Symbol;Acc:30047]
LIM and senescent cell antigen-like-containing domain protein 3; Uncharacterized protein; cDNA FLJ59124, highly similar
to Particularly interesting newCys-His protein; cDNA, FLJ79109, highly similar to Particularly interesting newCys-His
LIM and senescent cell antigen-like-containing domain protein 3; LIM and senescent cell antigen-like-containing domain
protein 3-like; Uncharacterized protein; cDNA FLJ59124, highly similar to Particularly interesting newCys-His protein;
cDNA, FLJJ91099, highly similar to Particularly interesting newCys-His protein
[Source:UniProtKB/TrEMBL;Acc:B4DPH6]
LIM and senescent cell antigen-like domains 3 [Source:HGNC Symbol;Acc:30047]
LIM and senescent cell antigen-like-containing domain protein 3; Uncharacterized protein; cDNA FLJ59124, highly similar
to Particularly interesting newCys-His protein; cDNA, FLJ79109, highly similar to Particularly interesting newCys-His protein [Source:UniProtKB/TrEMBL;Acc:B4DPH6]
MYC associated factor X [Source:HGNC Symbol;Acc:6913]
mitochondrial calcium uniporter regulator 1 [Source:HGNC Symbol;Acc:21097] major facilitator superfamily domain containing 2B [Source:HGNC Symbol;Acc:37207] monocyte to macrophage differentiation-associated [Source:HGNC Symbol;Acc:7153] membrane protein, palmitoylated 1,55kDa [Source:HGNC Symbol;Acc:7219] nexilin (F actin binding protein) [Source:HGNC Symbol;Acc:29557] neuroplastin [Source:HGNC Symbol;Acc:17867] neurogranin (protein kinase C substrate, RC3) [Source:HGNC Symbol;Acc:8000] pre-B-cell leukemia homeobox 1 [Source:HGNC Symbol;Acc:8632]
platelet-derived growth factor alpha polypeptide [Source:HGNC Symbol;Acc:8799] RAB27B, member RAS oncogene family [Source:HGNC Symbol;Acc:9767] SH3 domain binding glutamic acid-rich protein like 2 [Source:HGNC Symbol;Acc:15567] spermine oxidase [Source:HGNC Symbol;Acc:15862] stonin 2 [Source:HGNC Symbol;Acc:30652] tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) [Source:HGNC Symbol; Acc:11760] transmembrane protein 91 [Source:HGNC Symbol;Acc:32393] troponin C type 2 (fast) [Source:HGNC Symbol;Acc:11944] triggering receptor expressed on myeloid cells-like 1 [Source:HGNC Symbol;Acc:20434] tripartite motif containing 10 [Source:HGNC Symbol;Acc:10072]
tetraspanin 33 [Source:HGNC Symbol;Acc:28743]

LCN2
LIMS1
LIMS1 $\sum_{i=1}^{n} \sum_{j}^{n}$ $\stackrel{x}{2}$ E \sum_{\sum}^{∞} MPP1 NEXN NPTN
NRGN PBX1 PDGFA

 SH3BGRL2
㫫 $\sum_{i=1}^{D}$ N

 ENSG00000148346 ENSG00000169756 ENSG00000240428 ENSG00000256977 ENSG00000257207 ENSG00000125952 ENSG00000050393 ENSG00000205639 ENSG00000108960 ENSG00000130830
 ENSG00000156642 ENSG00000154146 ENSG00000185630
 Z
N
O
O
O
O
Z
Z

 ENSG00000198478

 ENSG00000003436 ENSG00000142046 \circ
$\stackrel{0}{0}$
0
0
0
0
0
0
0
0 ENSG00000161911 ENSG00000204613 ENSG00000158457
v. Non-primary
ACTN1
CBX7
DNM3
FHL1
FOSB
HIST1H2AC
MMD
TNNC2
CDRT1
FBXW10
MMAA
RP11-385D13.1

III. Acute cancer/disease- associated

Description
CMT1A duplicated region transcript 1 [Source:HGNC Symbol;Acc:14379]
F-box and WD repeat domain containing 10 [Source:HGNC Symbol;Acc:1211]
potassium inwardly-rectifying channel, subfamily J, member 2 [Source:HGNC Symbol;Acc:6263]
methylmalonic aciduria (cobalamin deficiency) cbIA type [Source:HGNC Symbol;Acc:18871]
Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:H0Y626]

ENSG00000165914

Ensembl Id	Gene Name
ENSG00000241322	CDRT1
ENSG00000171931	FBXW10
ENSG00000123700	KCNJ2
ENSG00000151611	MMAA
ENSG00000251537	RP11-385D13.1
Supplementary Table 27 Subgroups of IRGs	

II. Cancer-associated

Appendix IV - Patent: Interferon Epsilon, as an Anti-Cancer Agent

A METHOD OF TREATMENT

FIELD

[0001] The present invention relates to the field of cancer treatment and formulations useful for same.

BACKGROUND

[0002] Bibliographic details of the publications referred to by author in this specification are collected alphabetically at the end of the description.
[0003] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgement or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavor to which this specification relates.
[0004] Cancer is a complex, multifaceted, cellular disorder. It can lead to debilitating levels of disease with potentially significant morbidity and mortality rates. The economic cost to the healthcare sector in the treatment of cancer, not to mention the emotional burden to individuals and families, is substantial. Much effort has been invested in understanding cancer biology and endogenous and exogenous factors which retard its development. Despite great advances over the decades, further research is crucial in order to fully understand this disease.
[0005] Ovarian cancer, for example, is a complex, heterogeneous disease comprising a number of molecularly distinct tumors that arise not only from ovarian cells but also cells
of the fallopian tubes and/or surrounding tissue (Jayson et al. (2014) The Lancet 384(9951):1376-88). Many women are first diagnosed when they already have reached advanced stage disease and of those who respond to treatment, more than half will relapse and die within 5 years (AIHW. (2010) Cancer series 52 Cat No. CAN48).
[0006] The vast majority of ovarian cancers are of epithelial origin (EOC) and have the fourth highest female cancer fatality rate (Jayson et al. (2014) supra). EOC is classified based on histological subtype including mucinous, clear cell, endometroid and serous carcinomas, each of which is associated with a distinct morphology, mutational profile, cell of origin and prognosis. Serous carcinomas are the most commonly diagnosed EOC and there is increasing evidence to suggest that EOC is derived from the secretory epithelial lining of the distal fallopian tube. The standard therapeutic options, surgical resection and platinum-based chemotherapy, are often ineffective as many women with advanced disease are not surgical candidates and chemoresistence leads to increasing rates of recurrence (Jayson et al. (2014) supra).
[0007] Extensive molecular profiling of ovarian cancers has shown that mutations in BRCA1/2 genes confer significantly increased risk of high-grade serous carcinoma (HGSC), the most common and lethal EOC (Bowtell et al. (2010) Nature Rev Cancer 10(11):803-8). BRCA1 and BRCA2 are both documented interferon (IFN) regulated genes (IRGs) and play an important role in the homologous recombination repair pathway of DNA (Venkitaraman (2014) Science 343(6178):1470-5), somatic and germline mutations of which contribute to overall chromosomal instability. Molecular profiling has also identified that high grade serous carcinoma (HGSC) with higher expression of immune-associated genes such as CD8A, Granzyme B and CXCL9, designated the immunologic subtype, demonstrate the best overall survival (Tothill et al. (2008) Clin Cancer Res. 14(16):5198-208), highlighting the potential benefit of immune-driven suppression in this cancer, Molecular profiling has identified similarities in the mutational
profile of basal-like breast cancers and serous ovarian cancers with high frequency TP53, BRCA1 and BRCA2 mutations, down-regulation of RB1 and amplification of cyclin E1 common to both (Kobolt et al. (2012) Nature 490(7418):61-70). Additionally, while the role of hormones in ovarian cancer tumorigenesis remains unclear, there is evidence of poor prognosis in progesterone receptor (PR) negative patients irrespective of estrogen receptor (ER) expression (Sieh et al. (2013) The Lancet Oncology 14(9):853-62), which bears similarities to the reports of poor prognosis in breast cancer patients with either triple negative breast cancer (TNBC) or estrogen receptor positive/progesterone receptor negative (ER ${ }^{+} / \mathrm{PR}^{-}$) cancers (Thakkar and Mehta (2011) Oncologist 16(3):276-85). Much is still unknown about the common drivers in these two cancers, both have common elements of oncogene and tumor suppressor gene expression, hormone sensitivity and immune cell involvement.
[0008] There is a need to further examine the effect of immune modulation in regulating the development and ? treatment of ovarian cancer as well as other cancer types.
[0009] This is particularly the case with respect to the interplay between innate and adaptive immunity. The innate immune response represents pre-existing, inherent, first line and rapidly inducible defence to pathogens and responses to homeostatic cues (Mangan et al. (2007) Eur J Immunol 37(5):1302-12; Smith et al. (2007) J Immunol 178(7):4557-66). This is mediated through resident cells such as macrophages, natural killer (NK) and epithelial cells. Adaptive immune responses encompass the recognition, and response to antigens with elicited responses being gradual and specific, mediated through antibody secreting B lymphocytes and T helper and effector lymphocytes. The adaptive response is sculpted by the innate system. In the reproductive tract, both arms of the immune system must balance the presence of an allogenic fetus, essentially containing "foreign" proteins, with the control of harmful pathogens e.g. viruses and bacteria. It must also maintain homeostasis against a background of cyclical hormonal milieu and structural changes that occur in the mucosa.
[0010] The innate and adaptive immune cells of the female reproductive tract (FRT) produce cytokines and chemokines, thereby influencing various reproductive processes including sperm migration, fertilization, implantation, endometrial remodelling and immune response to infectious or other challenge (Salamonsen et al. (2007) Semin Reprod Med 25(6):437-44).
[0011] In its simplest form, the innate response includes physicochemical barriers such as mucous secretions, pH and redox state. In its most sophisticated form it is represented by the innate immune response which senses pathogens within minutes and starts a series of reactions, culminating in the production of products like antimicrobial defensins, NOS enzymes, chemokines that recruit and activate inflammatory cells and cytokines that modulate cell behavior. One family of modulators having pleiotropic activity is the type I interferons (IFNs).
[0012] Clinical trials for the treatment of ovarian cancer using type I IFNs, specifically IFN α and IFN β have been underwhelming, largely due to the dose-limiting toxicity preventing high-dose therapy in late stage disease as is the case with other solid tumours?? (Berek et al. (1985) Cancer Res. 45:4447-53; Willemse et al. (1990) Eur J Cancer Clin Oncol 26(3):353-8; Markman et al. (1992) Gynecol Oncol. 45(1):3-8; Frasci et al. (1994) Eur J Cancer 30(7):946-50; Bruzzone et al. (1997) Gynecol Oncol. 65(3):499-505; Moore et al. (1995) Gynecol Oncol. 59(2):267-72; Berek et al. (1999) Gynecol Oncol. 75(1):10-4; Markman et al. (2004) Oncology 66(5):343-6). Some success, however, has been reported using intraperitoneal IFN α in the treatment of malignancy ascites from ovarian cancer notwithstanding that the mechanisms underlying IFN's efficacy against ascites remain unclear (Berek et al. (1985) Cancer Res. 45:4447-53). It is important to understand the role of IFNs in disease pathogenesis in order to best direct therapy.
[0013] IFN epsilon (IFN ε) is a type I IFN (Fung et al. (2013) Science 339(123):10881092; Peng et al. (2007) Prot Expr Purif 53(2):356-362). The lfn ε gene is located on chromosome 9p in the type I IFN locus (Hardy et al. (2004) Genomics 84(2):331-45). IFN ε shares roughly 30% amino acid sequence homology with IFN α and IFN β, and in vitro studies demonstrated that IFN ε signals through the characteristic type I IFN receptors IFNAR1 and lFNAR2, however, its potential anti-tumor properties have hitherto not been addressed.
[0014] Interestingly, unlike other type I IFNs which remain at undetectable levels until pathogen-induced, IFN ε has been found to be constitutively expressed primarily in organs of the FRT such as uterus, cervix vagina and ovary. IFN ε produced by luminal and glandular epithelial cells of the FRT and is unaltered in the absence of hemopoietic cells..
[0015] Additionally, regulation of IFN ε is distinct from other type I IFNs. Unlike lfn α and lfn β, murine lfn ε expression is largely unaltered in response to pathogenic stimuli
[0016] Instead, IFN ε levels vary significantly across stages of the murine estrous cycle, with expression levels 30 -fold higher during estrus than diestrus, an expression pattern that is reflected in human tissue during the menstrual cycle. This indicates that unlike other type I IFNs, IFN ε is hormonally regulated.
[0017] There is a need to investigate the role of IFN ε in cancer biology.

SUMMARY

[0018] Nucleotide sequences are referred to by a sequence identifier number (SEQ ID NO). The SEQ ID NOs correspond numerically to the sequence identifiers $<400>1$ (SEQ ID NO:1), $<400>2$ (SEQ ID NO:2), etc. A Sequence Listing is provided after the claims. A summary of the sequence identifiers is provided in Table 2.
[0019] The present invention is predicated in part on the determination that IFN ε has a role in inhibiting cancer cells. Such an inhibition includes directly or indirectly inducing cancer cell death, including by apoptotic processes, as well as arresting OR SLOWING (? INHIBIT) development, proliferation, motility and/or migration of cancer cells. IFN ε may act directly on the cancer cell or it may induce immune response that via particular cell types of production of regulators or other factors which in turn induce a cytotoxic or cytostatic effect on cancer cells. Whilst the present invention was elucidated following an investigation of ovarian cancer, the findings apply to other cancers of the female reproductive tract (FRT) as well as cancers elsewhere in the body of female or male subjects in any mammals, in particular, humans.
[0020] Hence, the present invention provides a method for inhibiting viability, growth, development and spread of cancer cells in a subject including a human.
[0021] Accordingly, taught herein is a method for inhibiting a cancer cell in a subject, the method comprising contacting the cancer cell with an amount of interferon epsilon (IFN ε) or a functional natural or synthetic variant or hybrid form thereof or an modulator of lfne expression or IFN ε activity effective to directly or indirectly induce apoptosis of the cancer cell or inhibit cancer cell proliferation, motility and/or migration. This can lead to a reduction in the localized growth and invasion of cancer cells as well as their metastasis to other parts of the body.
[0022] Further enabled herein is a method for treating a subject with cancer, the method comprising administering to the subject an effective amount of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfne expression or IFN ε activity for a time and under conditions sufficient to directly or indirectly induce apoptosis of cancer cells or inhibit cancer cell proliferation, motility and/or mitigation.
[0023] The present specification is instructional on the use of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity in the manufacture of a medicament in the treatment of cancer in a subject. In an embodiment, taught herein is IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity for use in the treatment of cancer in a subject. The medicament includes an anti-cancer vaccine comprising IFN ε or its variant or hybrid or modulator as the primary active ingredient or where it acts as an adjuvant for another anti-cancer agent. Examples of other anti-cancer agents which may be used in conjunction with IFN ε or its variant or hybrid or modulator include antimetabolites, anti-tumor antibiotics, mitotic inhibitors, steroids, sex hormones or hormone-like drugs, alkylating agents, nitrogen mustard, nitrosoureas, hormone agonists and microtubular inhibitors. Recombinant cells may also be engineered to produce IFN ε or its variant, hybrid or modulator or recombinant viruses engineered to direct infected cells to produce IFN ε, its variant, hybrid or modulator.
[0024] Formulations comprising IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity and one or more carriers, adjuvants and/or excipients for use in the treatment of cancer. The IFN ε or its functional natural or synthetic variant or hybrid form thereof may also be used as a vaccine adjuvant in conjunction with an anti-cancer agent or cancer cell regulating molecules.
[0025] Abbreviations used herein are defined in Table 1.

Table 1

Abbreviations

Abbreviation	Definition
EOC	Epithelial origin
ER	Estrogen receptor
FCS	Fetal calf serum
FRT	Female reproductive tract
HGSC	High grade serous carcinoma
HuIFN ε	Human interferon epsilon
IFN	Interferon
IFN ε	Interferon epsilon
IRG	Interferon regulated gene
Ifn ε	Gene encoding IFN ε
LGSC	Low grade serous carcinoma
MuIFN ε	Mouse interferon epsilon
PEC	Peritoneal exudate cells
PR	Progesterone receptor
TNBC	Triple negative breast cancer

BRIEF DESCRIPTION OF THE FIGURES

[0026] Some figures contain color representations or entities. Color photographs are available from the Patentee upon request or from an appropriate Patent Office. A fee may be imposed if obtained from a Patent Office.
[0027] Figures 1A through C are graphical representations showing induction of interferon regulating genes (IRGs) in ID8 cells by IFN ε and IFN β. The graphs show a 3 hour dose response of 10-1000 IU/ml IFN ε (left panels shown in black) and IFN β (right panels in grey) induction of CXCL10 (A), lfit1 (B) and Isg15 (C). Gene expression is measured by qRT-PCR, expression calculated by dCT standardized to 18 s and relative expression shown here determined in relation to expression at t0. Data are shown as mean +/- SEM of $\mathrm{n}=3$ independent experiments, each done in technical triplicates. Significance was determined by Student's T test **** $\mathrm{p}<0.0001$.
[0028] Figures 2A through E are graphical representations showing regulation of genes involved in cancer-related biological functions. Graph shows expression of Bcl-2 (A), Ccne1 (B), Cdc20 (C), Tap1 (D) and Casp1 (E) in response to stimulation with $1000 \mathrm{IU} / \mathrm{ml}$ of IFN ε (middle bar?) or IFN β (right bar?) for 3 hours. Data are shown as mean +/- SEM of $n=3$ independent experiments, each done in technical triplicates. Significance was determined by Student's T test ${ }^{*} \mathrm{p}<0.05$, ${ }^{* *} \mathrm{p}<0.01$, ${ }^{* * *} \mathrm{p}<0.001,{ }^{* * * *} \mathrm{p}<0.0001$.
[0029] Figures 3A and B aGraphs show the mean cell index measurements, a correlate of cell number,at 30 min intervlals over the 72 h of treatment of ID8 cells with interferon; showing inhibition of ID8 cell proliferation by IFN ε (A) but not?? IFN β (B). Graphs show inhibition of proliferation of ID8 cells treated with 100-1000 IU/ml of: a) IFN ε; b) IFN β for 48 hours. Cell proliferation is measured by xCELLigence. Graphs show the mean cell index across each well +/- SD. Each cell index is normalized after 24 hours (arrow) of
cells plated in serum free media and compared to untreated and buffer-treated controls. Representative of $\mathrm{n}=3$ independent experiments each done in technical triplicate. Legend (a) - untreated (red), control (green), $100 \mathrm{IU} / \mathrm{ml}$ IFN ε (pink) and $1000 \mathrm{IU} / \mathrm{ml}$ IFN ε (blue); (b) untreated (red), control (green), $100 \mathrm{IU} / \mathrm{ml}$ IFN β (blue) and $1000 \mathrm{IU} / \mathrm{ml}$ IFN β (pink).
[0030] Figures 4A through C are graphical representations showing IFN induced inhibition of ID8 cell growth. ID8 cells were plated onto a 96 well E plate coated with electrodes to measure cell impedence. Cells were serum starved for 24 h then treated with $0-1000 \mathrm{IU} / \mathrm{ml}$ of either: (A) IFN ε; or (B) IFN β for 48 h . The cell index (CI - a measurement of impedance) was normalized to time of treatment and doubling time was calculated over 48h post treatment using the RTCA software. (C) the slope (1 hr representative of rate of proliferation) of the growth curves was also calculated from normalized Cl to 48 h post treatment using the RTCA software. Data representative of $\mathrm{n}=3$ independent experiments done in technical quadruplicate. Data are expressed as mean +SD of $\mathrm{N}=3$ independent experiments, analyzed using 2-way ANOVA with Sidak's multiple comparisons test, ****p,0.0001.
[0031] Figure 5 is a graphical representation showing that IFN ε treatment inhibits? cell migration of ID8 cells. ID8 cells were treated with 1-100 IU/ml of IFN ε or buffer control and migration was measured after 12h of treatment. Fetal calf serum (FCS) was used as the chemoattractant. Serum free media (SFM) was used as a negative control. Data are representative of one independent experiment, performed in technical triplicate, and expressed as mean + SD of technical replicates. Significance was determined using a oneway ANOVA with Tukey's multiple comparisons; ${ }^{*} \mathrm{p}<0.05$; ${ }^{* *} \mathrm{p}, 0.01 ;{ }^{* * *} \mathrm{p}<0.001$; ****p,0.0001.
[0032] Figures 6A through D are graphical representations showing that IFN ε treatment induces apoptosis of ID8 cells. Data show analysis of Annexin V/PI staining for ID8 cells
treated with 40-400 IU/ml of IFN ε for 4 hours compared to PBS and buffer treated controls. $\mathrm{H}_{2} \mathrm{O}_{2}$ is used as a positive control. (A) Live cells; (B) necrotic cells; (C) early apoptosis; (D) late apoptosis. Data are representative of $\mathrm{N}=3$ independent experiments, performed in technical duplicate, and expressed as mean +SD of technical replicates. Significance was determined using Student’s T test; *p,0.05; **p<0.01.
[0033] Figure 7 is a graphical representation of IFN ε staining intensity in benign human epithelium and serous carcinoma samples. Immunohistochemical staining for IFN ε expression in human control epithelium low grade (LG) and high grade (HG) serous carcinoma (SC) samples were analyzed using positive pixel analysis in Imagescope software to quantify staining intensity in epithelial derived tissue components. Data are expressed as intensity scores for each sample stained in technical duplicates. 'fields analysed per sample? on tissue microarrays., Data presented as a dot plot of $n=30$ samples of control epithelium (??) and epithelium from low ($\mathrm{n}=6$) and high grade serous carcinoma samples ($\mathrm{n}=70$), mean indicated by a bar. Data were analyzed using individual MannWhitney tests, ${ }^{* *} \mathrm{p}<0.01$, ${ }^{* * *} \mathrm{p}<0.001$.
[0034] Figures 8A through E are graphical representations of advanced disseminated ovarian cancer metastases from orthotopic primary tumor. At 13 weeks post-intrabursal ID8 injection WT and lfne deficient mice demonstrate advanced primary tumors and metastatic ovarian cancer. A-B) left ovaries and spleens were weighed from non-tumor and ID8 injected mice; C) ascites fluid was drained from the peritoneum; and E) measured for red blood cell content; D) number of metastatic deposits on the peritoneal wall were recorded. Data shows $n=3$ non-tumor bearing and $n=6$ ID8 injected mice per genotype, analyzed using unpaired Student's T test ${ }^{*} \mathrm{p}<0.05$.
[0035] Figure 9A through D are graphical representations showing the recombinant IFN ε regulates peritoneal immune cell populations in vivo. Healthy C57BL/6 wild-type mice (6
to 8 weeks of age) were treated with recombinant murine IFN ε or IFN β (at $500 \mathrm{IU} /$ dose) via intraperitoneal injection, three times weekly for 8 weeks. Peritoneal exudate cells were collected in PBS via peritoneal lavage and analyzed using flow cytometry for immune cell populations include: A) CD45+ CD8+ T cells; B) CD45+ CD4+ T cells; C) CD45+ CD11b+ Ly6C+ inflammatory monocytes; and D) CD45+ CD4+ PD1+ T cells. Data are presented as mean $+/-$ SEM of $\mathrm{n}=5$ mice per group, analyzed using unpaired Student T tests ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$.
[0036] Figures 10A through C are graphical representations showing that IFN ε suppresses malignant ascites development in a disseminated ovarian cancer model. A) image shows the volume of ascites drained from the peritoneum of mice 8 weeks post-ID8 injection treated with PBS, IFN ε or IFN β ($500 \mathrm{IU} /$ dose 3 times weekly); B) the number of epithelial (pan-cytokeratin positive) tumor cells in ascites fluid was measured using flow cytometry; C) the concentration of red blood cells in ascites fluid was measured using Sysmex Cell Counter. Data show n=3 PBS control mice and $n=5$ mice per treatment group, analyzed using unpaired Student's T test *p,0.05, **p,0.01, ${ }^{* * *} \mathrm{p}<0.001$.
[0037] Figures 11A through C are graphical representations showing changes in inflammatory cytokine levels in tumour bearing mice treated with IFNe or IFNb. Images show concentrations for MCP-1 (A), IL6 (B) and IL-10 (C) in ascites drained from the peritoneum of mice 8 weeks post-ID8 injection treated with PBS, IFN ε or IFN β (500 IU/dose 3 times weekly) measured by BD cytometric bead array (CBA). Data show are presented as mean $+/-$ SEM of $n=3$ PBS control mice and $n=5$ mice per treatment group, analyzed using unpaired Student T test ${ }^{*} \mathrm{p}, 0.05$.
[0038] Figure 12 is a graphical representation showing that recombinant IFN ε regulates peritoneal immune cell populations in a disseminated ovarian cancer model. C57BL/6 wild-type mice (6 to 8 weeks of age) were injected intraperitoneally with ID8 cells and
treated with recombinant murine IFN ε or IFN β (at $500 \mathrm{IU} /$ dose) via intraperitoneal injection, three times weekly for 8 weeks. Peritoneal exudate cells were collected in PBS via peritoneal lavage and analyzed using flow cytometry for immune cell populations. Data presented as mean $+/-$ SEM of $\mathrm{n}=5$ mice per group, analyzed using unpaired Student T tests ${ }^{*} \mathrm{p}<0.05$; ** $\mathrm{p}<0.01$.
[0039] Figures 13A through \mathbf{D} are graphical representations showing growth and ascites development in murine cancers of epithelial origin (EOC) treated with recombinant interferon. A) body weights of mice were monitored over 8 weeks post-ID8 cell injection and the percentage weight increase of each treatment group was calculated relative to the average of all mice on day 1 , distance from the mean weight at the start of the experiment was incorporated into the overall percentage increase of each mouse. B) overall growth curves measuring total body weight of mice 8-weeks post-ID8 cell injection treated with or without recombinant IFN 3 times weekly. C) abdominal circumferences were measured at 8weeks post-ID8 cell injection. D) total volume of ascites fluid was drained from the peritoneal cavity of each mouse 8-weeks post-ID8 cell injection. To determine significance across multiple groups an ordinary one-way ANOVA with Tukey's multiple comparisons test was performed (A) while unpaired Student T tests were used to compare two means (C and D) ${ }^{* * *} \mathrm{p}<0.001,{ }^{* *} \mathrm{p}<0.01,{ }^{*} \mathrm{p}<0.05$. Data presented as mean $+/-$ SEM of $\mathrm{n}=3-5$ mice per group.
[0040] Figures 14A through D are graphical representations showing evidence of the effect of IFN on systemic anemia, peritoneal hemorrhaging and splenomegaly in murine EOC. A) clinical signs of anemia in mice at 8-weeks post-ID8 cell injection include pallor of the hind paws which was graded, 0 - normal perfusion, 1 - slight pallor, 2 - extremely pale. B) peritoneal lavages were performed suing 5ml PBS and graded for hemorrhaging, 0 - no hemorrhaging to 3 - extensive hemorrhaging, dark red and completely opaque fluid. C) a cell count was performed on peritoneal exudate cells (PEC) including red blood cell
(RBC) count. D) splenic weights from mice 8-weeks post-ID8 cell injection. Data presented as mean $+/-$ SEM of $n=3-5$ mice per group. Significance was determined using unpaired Student's T tests ****p,0.0001, ${ }^{* *} \mathrm{p}<0.01,{ }^{*} \mathrm{p}<0.05$.
[0041] Figures 15A through F are graphical representations showing effects on tumor burden in murine EOC treated with recombinant IFN ε. A) the extent of mesenteric tumor burden was grade, 0 - no macroscopic disease to 4 - extensive tumor formation evident as a large nodular sub-phrenic tumor mass as well as countless tumor deposits throughout the mesentery. B) macroscopic tumor deposits attached to the peritoneal wall were counted. These included tumors of varied sizes. C) macroscopic tumor deposits attached to the diaphragm were counted. These included tumors of varied sizes. D) macroscopic tumor deposits attached to the liver lobes were counted. E) free-floating spheroids were counted. F) surface area measurements of the largest representative tumor nodule per mouse. Data presented as mean $+/-$ SEM of $n=3-5$ mice per group. Significance was determined using unpaired Student T tests ${ }^{* * *} \mathrm{p}<0.001,{ }^{* *} \mathrm{p}<0.01,{ }^{*} \mathrm{p}<0.05$

DETAILED DESCRIPTION

[0042] Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or method step or group of elements or integers or method steps but not the exclusion of any other element or integer or method steps or group of elements or integers or method steps.
[0043] As used in the subject specification, the singular forms "a", "an" and "the" include plural aspects unless the context clearly dictates otherwise. Thus, for example, reference to "a cancer cell" includes a single cancer cell, as well as two or more cancer cells; reference to "an IFN ε " includes a single IFN ε molecule, as well as two or more IFN ε molecules; reference to "the disclosure" includes single and multiple aspects taught by the disclosure; and so forth. Aspects taught and enabled herein are encompassed by the term "invention". Any variants and derivatives contemplated herein are encompassed by "forms" of the invention. All aspects of the invention are enabled across the width of the claims.
[0044] The present invention teaches the use of interferon epsilon (IFN ε) in the treatment of cancer in a subject. This includes a functional natural or synthetic variant or hybrid form of IFN ε. Further taught herein is the use of a modulator of lfn ε expression or IFN ε activity in the treatment of cancer. Hence, IFN ε or its functional natural or synthetic variant or hybrid form may act directly on a cancer cell or may act indirectly via innate or adaptive immune cells or regulators or processes induced by IFN ε.
[0045] Hence, enabled herein is the use of:
(i) natural purified IFN ε;
(ii) recombinant IFN ε;
(iii) a functional natural variant of IFN ε;
(iv) a functional synthetic variant of IFN ε;
(v) a hybrid of two or more IFN ε from different species; and/or
(vi) a modulator of lfn ε expression or IFN ε activity,
to directly or indirectly inhibit a cancer cell. The present invention may use any one of (i) through (vi), that is an agent selected from the group consisting of (i) through (vi), or use combination of two or more of (i) through (vi) to treat cancer.
[0046] The treatment of cancer comprises the inhibition of a single or multiple cancer cells. This comprises any one or more of directly or indirectly inducing apoptosis of a cancer cell, directly or indirectly acting as a cytotoxic agent, directly or indirectly inhibiting replication, growth, development, motility, proliferation, survival and/or migration of a cancer cell and/or directly or indirectly inducing cytostasis of a cancer cell.
[0047] In addition, the IFN ε or its functional natural or synthetic variant or modulator may directly or indirectly prevent localized growth or invasion of a cancer cell and/or prevent metastasis of cancer cells elsewhere in the body of a subject including regions distant to the original foci of cancer cell development.
[0048] The present invention arose in part from an investigation of ovarian cancer. However, the anti-cancer effects of IFN ε are applicable to any of a range of cancers including cancers derived from epithelial tissue, connective tissue, glandular tissue, embryonic tissue, blood borne cancers and cancers comprising hemopoietic cells, lymphatic tissue and bone marrow or cells from which such cells are derived. The present invention is not to be limited to the treatment of any one type of cancer or organ or anatomical compartment or region affected by cancer. Hence, the present invention extends to the treatment of cancers from any of the ovary, uterus, fallopian tube, endometrium, placenta, breast, testis, prostate, brain, stomach, liver, spleen, pancreas, thymus, colon, lung, kidney, heart, thyroid and smooth muscle. This is not intended to be
an exhaustive list but representative of the types of cancers that can be treated by IFN ε or a functional natural or synthetic variant or hybrid thereof or a modulator of IFN ε expression or activity.
[0049] In an embodiment, however, the present invention extends to cancer affecting the female reproductive tract (FRT) such as but not limited to ovarian cancer. As indicated above, the IFN ε or its functional natural or synthetic variant or hybrid form may act directly on a cancer cell inducing any one or more of apoptosis, cytoxicity, senescence, lysis or other form of cell death or may retard, inhibit or otherwise inhibit cell growth, proliferation, replication, development, migration or motility. The IFN ε or its functional natural or synthetic variant or hybrid form may also act indirectly on a cancer cell inducing any one or more of apoptosis, cytoxicity, senescence, lysis or other form of cell death or may retard, inhibit or otherwise arrest cell growth, proliferation, replication, development, migration or motility. Without limiting the present invention to any theory or mode of action, indirect activity includes the induction of innate and adaptive immune regulators and processes.
[0050] The subject being treated includes a human and a non-human mammal. Nonhuman animals include those useful in animal models. Hence, the present invention has applications in human and veterinary medicine and as a research tool.
[0051] Reference to a human subject includes a human of any gender or age. In an embodiment, the human is a female with a cancer affecting the FRT such as but not limited to ovarian cancer.
[0052] Whilst not intending to limit the scope of the present invention to any type of cancer, it extends to carcinoma, sarcoma, adenocarcinoma, blastoma, leukemia, lymphoma and myeloma. The term "cancer" is not to be construed as distinguish from a "tumor" and
both terms are used herein to mean the same cell type. A cancer may be of any grade and any stage, regardless of how the staging is classified. Hence, the cancer may be a solid tumor or blood or lymph fluid borne or bone marrow derived and may be defined in terms of cell type, location, tumor size, degree of local, regional or distant metastasis. For example, in relation to ovarian cancer, this may be serous, mucinous, clear cell or endometroid of high grade or low grade or a grade inbetween.
[0053] Accordingly, enabled herein is a method for inhibiting a cancer cell in a subject, the method comprising contacting the cancer cell with an amount of interferon epsilon (IFN ε) or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfne expression or IFN ε activity effective to indirectly or indirectly induce apoptosis of the cancer cell survival, proliferation, motility and/or migration.
[0054] Further enabled herein is a method for treating a subject with cancer, the method comprising administering to the subject an effective amount of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfne expression or IFN ε activity for a time and under conditions sufficient to induce apoptosis of cancer cells or inhibit cancer cell proliferation motility and/or migration.
[0055] Taught herein is the use of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or $\mathrm{IFN} \varepsilon$ activity in the manufacture of a medicament in the treatment of cancer in a subject.
[0056] Further taught herein is IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity for use in the treatment of cancer in a subject.
[0057] The IFN ε or its functional natural or synthetic variant or hybrid form may also be
employed as an adjuvant for use with an anti-cancer agent such as a chemotherapeutic agent, another type I interferon such as IFN α or IFN β or another biological molecule. By "adjuvant" in this context means that the IFN ε or variant or hybrid acts in synergy with another anti-cancer agent.
[0058] Hence, enabled herein is a method for inhibiting a cancer cell in a subject, the method comprising contacting the cancer cell with an amount of interferon epsilon (IFN ε) or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfne expression or IFN ε activity in combination with another anti-cancer agent effective to indirectly or indirectly induce apoptosis of the cancer cell survival, proliferation, motility and/or migration.
[0059] Further enabled herein is a method for treating a subject with cancer, the method comprising administering to the subject an effective amount of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity in combination with another anti-cancer agent for a time and under conditions sufficient to induce apoptosis of cancer cells or inhibit cancer cell proliferation motility and/or migration.
[0060] Taught herein is the use of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfne expression or IFN ε activity in combination with another anti-cancer agent in the manufacture of a medicament in the treatment of cancer in a subject. The medicament may be a single entity or a collocation of pharmaceutically effective agents which are used in combination with each other.
[0061] Reference to another anti-cancer agent includes but is not limited to an antimetabolite, an antitumor antibolite, a mitototoxic inhibitor, a steroid, a sex hormone or hormone-like drug, an alkylating agent, nitrogen mustard, nitrosourea, a hormone agonist
and/or a microtubular inhibitor.
[0062] Antimetabolites are substances that interfere with the body's chemical processes, such as creating proteins, DNA, and other chemicals needed for cell growth and reproduction; in cancer treatment, antimetabolite drugs disrupt DNA production, which in turn prevents cell division. Examples include Azaserine, D-Cycloserine, Mycophenolic acid, Trimethoprim, 5-fluorouracil, capecitabine, methotrexate, gemcitabine, cytarabine (ara-C) and fludarabine.
[0063] Antitumor antibiotics interfere with DNA by stopping enzymes and mitosis or altering the membranes that surround cells. These agents work in all phases of the cell cycle. Thus, they are widely used for a variety of cancers. Examples of antitumor antibiotics include dactinomycin, daunorubicin, doxorubicin (Adriamycin), idarubicin, and mitoxantrone.
[0064] Mitotic inhibitors are plant alkaloids and other compounds derived from natural products. They can inhibit, or stop, mitosis or inhibit enzymes for making proteins needed for reproduction of the cell. These work during the M phase of the cell cycle. Examples of mitotic inhibitors include paclitaxel, docetaxel, etoposide (VP-16), vinblastine, vincristine, and vinorelbine.
[0065] Steroids are natural and synthetic hormones that are useful in treating some types of cancer (lymphoma, leukemias, and multiple myeloma) as well as other illnesses. They can kill cancer cells or slow their growth. Examples include prednisone and dexamethasone.
[0066] Sex hormones, or hormone-like drugs, alter the action or production of female or male hormones. They are used to slow the growth of breast, prostate, and endometrial cancers, which normally grow in response to hormone levels in the body. Examples include anti-estrogens (tamoxifen, fulvestrant), aromatase inhibitors (anastrozole,
letrozole), progestins (megestrol acetate), anti-androgens (bicalutamide, flutamide), and LHRH agonists (leuprolide, goserelin).
[0067] Alkylating agents work directly on DNA to prevent the cancer cell from reproducing. As a class of drugs, these agents are not phase-specific (in other words, they work in all phases of the cell cycle). These drugs are active against chronic leukemias, non-Hodgkin's lymphoma, Hodgkin's disease, multiple myeloma, and certain cancers of the lung, breast, and ovary. Examples of alkylating agents include busulfan, cisplatin, carboplatin, chlorambucil, cyclophosphamide, ifosfamide, dacarbazine (DTIC), mechlorethamine (nitrogen mustard), and melphalan.
[0068] Nitrogen mustard in the form of its crystalline hydrochloride it is used as a drug in the treatment of Hodgkin's disease, non-Hodgkin's lymphomas, and brain tumors. Nitrogen mustards cause mutations in the genetic material of cells, thereby disrupting mitosis, or cell division. Cells vary in their susceptibility to nitrogen mustards, with rapidly proliferating tumor and cancer cells most sensitive; bone marrow, which produces red blood cells, is also sensitive, and depression of red blood cell production is a frequent side effect of nitrogen mustard therapy. The nitrogen mustards also suppress the immune response (see immunity). Other types include the aromatic mustards melphalan and chlorambucil, cyclophosphamide, HN1, bis-(2-chloroethyl), ethylamine; HN2, bis-(2-chloroethyl), methylamine and HN3, tris-(2-chloroethyl), amine.
[0069] Nitrosoureas act in a similar way to alkylating agents. They interfere with enzymes that help repair DNA. These agents are able to travel to the brain so they are used to treat brain tumors as well as non-Hodgkin's lymphomas, multiple myeloma, and malignant melanoma. Examples of nitrosoureas include carmustine (BCNU) and lomustine (CCNU).
[0070] Hormone agonists include leuprolide (Lupron, Viadur, Eligard) for prostate cancer, Goserelin (Zoladex) for breast and prostate cancers and Triptorelin (Trelstar) for ovarian
and prostate cancers and nafarelin acetate (Synarel).
[0071] Microtubule inhibitors include "Vinca" alkaloids, taxoids and benzimidazoles
[0072] Inducing lfn ε expression or IFN ε activity includes the use of IFN ε modulatory agents. Such agents include proteinaceous and non-proteinaceous agents. These agents may bind either the lfne nucleic acid or expression product itself (including mature or precursor forms of IFN ε) or modulate the expression of an upstream molecule, which upstream molecule subsequently modulates lfne expression or expression product activity. Accordingly, contemplated herein are agents which either directly or indirectly induce or modify lfne expression and/or IFN ε activity.
[0073] Without limiting the present invention in any way, lfne expression is known to be hormonally regulated. Accordingly, in one embodiment the use of estrogen and estrogen mimetics provides a useful means of upregulating IFN ε levels. In another example, TGF β can be utilized. Similarly bioinformatic analysis has identified glucocorticoid receptor response elements and Ets factor binding elements within the IFN ε promoter. The putative transcription factor binding site BRCA1 has also been identified in the human lfne promoter. Accordingly, molecules which activate transcription via these sites, such as Elf3 and Elf5, could be utilized to upregulate lfn ε expression.
[0074] The modulatory agents which are utilized in accordance with this aspect of the present invention may take any suitable form. For example, proteinaceous agents may be glycosylated or unglycosylated, phosphorylated or dephosphorylated to various degrees and/or may contain a range of other molecules used, linked, bound or otherwise associated with the proteins such as amino acids, lipid, carbohydrates or other peptides, polypeptides or proteins. Similarly, non-proteinaceous molecules may also take any suitable form. Both the proteinaceous and non-proteinaceous agents herein described may be linked,
bound otherwise associated with any other proteinaceous or non-proteinaceous molecules. For example, in one embodiment of the present invention the agent is associated with a molecule which permits its targeting to a localized region.
[0075] The term "expression" refers to the transcription and/or translation of a nucleic acid molecule. Reference to "expression product" is a reference to the product produced from the transcription and translation of a nucleic acid molecule. Reference to "modulation" should be understood as a reference to up-regulation or down-regulation. Generally, a modulator results in up-regulation of IFN ε synthesis.
[0076] "Variants" of the molecules herein described include fragments, parts, portions or derivatives either naturally occurring or synthetically prepared. Non-natural sources include, for example, recombinant or synthetic sources. By "recombinant sources" is meant that the cellular source from which the IFN ε is harvested has been genetically altered. This may occur, for example, in order to increase or otherwise enhance the rate and volume of production by that particular cellular source. Parts or fragments include, for example, active regions of IFN ε. Derivatives may be derived from insertion, deletion or substitution of amino acids. Amino acid insertional derivatives include amino and/or carboxylic terminal fusions as well as intrasequence insertions of single or multiple amino acids. Insertional amino acid sequence variants are those in which one or more amino acid residues are introduced into a predetermined site in the protein although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterized by the removal of one or more amino acids from the sequence.

Substitutional amino acid variants are those in which at least one residue in a sequence has been removed and a different residue inserted in its place. Additions to amino acid sequences include fusions with other peptides, polypeptides or proteins, as detailed above.
[0077] Variants also include fragments having particular epitopes or parts of the entire

IFN ε protein fused to peptides, polypeptides or other proteinaceous or non-proteinaceous molecules. Analogs of the molecules contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecules or their analogs.
[0078] A "variant" or "mutant" of IFN ε should be understood to mean molecules which exhibit at least some of the functional activity of IFN ε (i.e. direct or indirect anti-cancer activity) of which it is a variant or mutant. A variation or mutation may take any form and may be naturally or non-naturally occurring. In an embodiment, the variant is a hybrid of two or more IFN ε molecules. For example, an IFN ε derived from the species of the subject being treated may be modified to incorporate aspects of an IFN ε from another species or vice versa. In one example, murine IFN ε can have greater human IFNRI binding capacity than human IFN ε. Hence, a hybrid murine IFN ε which incorporates elements of human IFN ε to render it non-immunogenic (or vice versa) may be generated.
[0079] Variants include chemical and functional equivalents of IFN ε which include molecules exhibiting any one or more of the functional activities (i.e. direct or indirect anti-cancer activity) of the IFN ε, which functional equivalents may be derived from any source such as being chemically synthesized or identified via screening processes such as natural product screening. For example chemical or functional equivalents can be designed and/or identified utilizing well known methods such as combinatorial chemistry or high throughput screening of recombinant libraries or following natural product screening.
[0080] For example, libraries containing small organic molecules may be screened, wherein organic molecules having a large number of specific parent group substitutions are
used. A general synthetic scheme may follow published methods (e.g. Bunin et al. (1994) Proc. Natl. Acad. Sci. USA, 91:4708-4712; DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA, 90:6909-6913). Briefly, at each successive synthetic step, one of a plurality of different selected substituents is added to each of a selected subset of tubes in an array, with the selection of tube subsets being such as to generate all possible permutation of the different substituents employed in producing the library. One suitable permutation strategy is outlined in US. Patent No. 5,763,263.
[0081] There is currently widespread interest in using combinational libraries of random organic molecules to search for biologically active compounds (see for example U.S. Patent No. 5,763,263). Ligands discovered by screening libraries of this type may be useful in mimicking or blocking natural ligands or interfering with the naturally occurring ligands of a biological target. In the present context, for example, they may be used as a starting point for developing IFN ε analogs which exhibit properties such as more potent pharmacological effects. IFN ε or a functional part thereof may according to the present invention be used in combination libraries formed by various solid-phase or solution-phase synthetic methods (see for example U.S. Patent No. 5,763,263 and references cited therein). By use of techniques, such as that disclosed in U.S. Patent No. 5,753,187, millions of new chemical and/or biological compounds may be routinely screened in less than a few weeks. Of the large number of compounds identified, only those exhibiting appropriate biological activity are further analyzed.
[0082] With respect to high throughput library screening methods, oligomeric or smallmolecule library compounds capable of interacting specifically with a selected biological agent, such as a biomolecule, a macromolecule complex, or cell, are screened utilizing a combinational library device which is easily chosen by the person of skill in the art from the range of well-known methods, such as those described above. In such a method, each member of the library is screened for its ability to interact specifically with the selected
agent. In practising the method, a biological agent is drawn into compound-containing tubes and allowed to interact with the individual library compound in each tube. The interaction is designed to produce a detectable signal that can be used to monitor the presence of the desired interaction.
[0083] Analogs of IFN ε contemplated herein include, but are not limited to, modifications to side chains, incorporating unnatural amino acids and/or derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the analogues. The specific form which such modifications can take will depend on whether the subject molecule is proteinaceous or non-proteinaceous. The nature and/or suitability of a particular modification can be routinely determined by the person of skill in the art.
[0084] As indicated above, the present invention extends to a formulation wherein the IFN ε is a hybrid between human and murine IFN ε. Administration of the formulation comprising IFN ε or a functional natural or synthetic variant or hybrid thereof or a modulator of lfn ε expression or IFN ε activity alone or in combination with another anticancer agent of the present invention may also be referred to as a pharmaceutical composition. Such a formulation may be prepared by any convenient means. The components of the formulation are contemplated to exhibit anti-cancer activity when administered in an amount which depends on the particular case. The amount of IFN ε or variant, hybrid or modulator adequate to accomplish anti-cancer activity is defined as a "therapeutically effective dose" or "effective amount". The dosage schedule and amounts effective for this use, i.e., the "dosing regimen", will depend upon a variety of factors, including the stage of the disease or condition, the severity of the disease or condition, the general state of the patient's health, the patient's physical status, age, pharmaceutical formulation and concentration of active agent (e.g. IFN ε), and the like. In calculating the dosage regimen for a patient, the mode of administration is also taken into consideration.

The dosge regimen must also take into consideration the pharmacokinetics, i.e., the pharmaceutical composition's rate of absorption, bioavailability, metabolism, clearance, and the like. See, e.g., Egleton (1997) Peptides 18:1431-1439; Langer (1990) Science 249:1527-1533. A broad range of doses may be applicable. Dosage regimes may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily, weekly, monthly or other suitable time intervals or the dose may be proportionally reduced as indicated by the exigencies of the situation. In an example, an amount of from $10 \mathrm{Ul} /$ dose to $1,000,000 \mathrm{Ul} /$ dose may be administered 1 to 3 times a week per subject. Exemplary dosage regimes include $10,11,12,13,14,15,16$, $17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40$, $41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64$, $65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88$, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 IU/dose, 100, 200, 300, 400, 500, 600, 700, $800,900,1000 \mathrm{IU} /$ dose or $10^{3}, 10^{4}, 10^{5}, 10^{6} \mathrm{IU} /$ dose. This may be from $1,2,3,4,5,6$ or 7 times per week. Doses may also be calculated based on IU/kg body weight of the subject. In an embodiment, dosages are given by any convenient means.
[0085] The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion or may be in the form of a cream or other form suitable for topical application. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of superfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens,
chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.
[0086] Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.
[0087] The formulation may be administered in a convenient manner such as by the oral, intraperitoneal, intravenous, subcutaneous, inhaled, suppository routes or implanting (e.g. using slow release molecules). The formulation may be administered in the form of pharmaceutically acceptable nontoxic salts, such as acid addition salts or metal complexes, e.g. with zinc, iron or the like (which are considered as salts for purposes of this application). Illustrative of such acid addition salts are hydrochloride, hydrobromide, sulphate, phosphate, maleate, acetate, citrate, benzoate, succinate, malate, ascorbate, tartrate and the like. If the active ingredient is to be administered in tablet form, the tablet may contain a binder such as tragacanth, corn starch or gelatin; a disintegrating agent, such as alginic acid; and a lubricant, such as magnesium stearate.
[0088] The IFN ε or its variant, hybrid or modulator of the present invention can be combined with a pharmaceutically acceptable carrier (excipient) to form a pharmacological composition. Pharmaceutically acceptable carriers can contain a physiologically acceptable compound that acts to, e.g., stabilize, or increase or decrease the absorption or clearance rates of the pharmaceutical compositions of the subject invention. Physiologically acceptable compounds can include, e.g., carbohydrates, such as glucose, sucrose, or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins, compositions that reduce the clearance or hydrolysis of the peptides or polypeptides, or excipients or other stabilizers and/or buffers. Detergents can also used to stabilize or to increase or decrease the absorption of the pharmaceutical composition, including liposomal carriers. Pharmaceutically acceptable carriers and formulations for peptides and polypeptide are known to the skilled artisan and are described in detail in the scientific and patent literature.
[0089] As indicated above, the IFN ε may also be added as an adjuvant for another anticancer agent. In this regard, the "medicament" includes IFN ε or a variant or hybrid thereof alone or in combination with another anti-cancer agent.
[0090] Solid formulations can be used for enteral (oral) administration. They can be formulated as, e.g., pills, tablets, powders or capsules. For solid compositions, conventional nontoxic solid carriers can be used which include, e.g., pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed. A non-solid formulation can also be used for enteral administration. The carrier can be selected from various oils including those of petroleum, animal, vegetable or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, and the like. Suitable pharmaceutical
excipients include e.g., starch, cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk, glycerol, propylene glycol, water and ethanol.
[0091] The composition of the subject invention, when administered orally, can be protected from digestion. This can be accomplished either by complexing the composition with a composition to render it resistant to acidic and enzymatic hydrolysis or by packaging these molecules in an appropriately resistant carrier such as a liposome. Means of protecting compounds from digestion are well known in the art, see, e.g., Fix (1996) Pharm Res. 13:1760-1764; Samanen (1996) J. Pharm. Pharmacol. 48:119-135; U.S. Patent 5,391,377, describing lipid compositions for oral delivery of therapeutic agents (liposomal delivery is discussed in further detail, infra).
[0092] The composition of the present invention can also be administered in sustained delivery or sustained release mechanisms, which can deliver the formulation internally. For example, biodegradable microspheres or capsules or other biodegradable polymer configurations capable of sustained delivery of a peptide can be included in the formulations of the invention (see, e.g., Putney (1998) Nat. Biotechnol. 16:153-157).
[0093] For inhalation, the composition of the invention can be delivered using any system known in the art, including dry powder aerosols, liquid delivery systems, air jet nebulizers, propellant systems, and the like. See, e.g. Patton (1998) Biotechniques 16:141-143; product and inhalation delivery systems for polypeptide macromolecules by, e.g., Dura Pharmaceuticals (San Diego, CA) , Aradigm (Hayward, CA), Aerogen (Santa Clara, CA), Inhale Therapeutic Systems (San Carlos, CA), and the like. For example, the IFN ε formulation can be administered in the form of an aerosol or mist. For aerosol administration, the formulation can be supplied in finely divided form along with a surfactant and propellant. In another aspect, the device for delivering the formulation to
respiratory tissue is an inhaler in which the formulation vaporizes. Other liquid delivery systems include, e.g., air jet nebulizers.
[0094] The IFN ε can also be formulated in pharmaceutically acceptable compositions suitable for pulmonary or respiratory delivery to a patient. Particular formulations include dry powders, liquid solutions or suspensions suitable for nebulisation, and propellant formulations suitable for use in metered dose inhalers (MDI's). The preparation of such formulations is well described in the patent, scientific, and medical literatures, and the following descriptions are intended to be exemplary only.
[0095] Liquid formulations of IFN ε for use in nebulizer systems can include components to enhance or maintain chemical stability, including chelating agents, protease inhibitors, isotonic modifiers, inert gases, and the like.
[0096] For use in metered dose inhalers, the IFN ε of the present invention is dissolved or suspended in a suitable aerosol propellant, such as a chlorofluorocarbon (CFC) or a hydrofluorocarbon (HFC). Suitable CFC's include trichloromonofluoromethane (propellant 11), dichlorotetrafluoroethane (propellant 114), and dichlorodifluoromethane (propellant 12). Suitable HFC's include tetrafluoroethane (HFC-134a) and heptafluoropropane (HFC-227).
[0097] In an embodiment, for incorporation into the aerosol propellant, the IFN ε of the present invention is processed into respirable particles as described below for the dry powder formulations. The particles are then suspended in the propellant, typically being coated with a surfactant to enhance their dispersion. Suitable surfactants include oleic acid, sorbitan trioleate, and various long chain diglycerides and phospholipids.
[0098] Such aerosol propellant formulations may further include a lower alcohol, such as ethanol (up to 30% by weight) and other additives to maintain or enhance chemical stability and physiological acceptability.
[0099] Dry powder formulations typically comprises the IFN ε in a dry, usually lyophilized, form with a particular size within a preferred range for deposition within the alveolar region of the lung. Respirable powders of IFN ε within the preferred size range can be produced by a variety of conventional techniques, such as jet-milling, spray-drying, solvent precipitation, and the like. Dry powders can then be administered to the patient in conventional dry powder inhalers (DPI's) that use the inspiratory breath through the device to disperse the powder or in air-assisted devices that use an external power source to disperse the powder into an aerosol cloud. In the above description, reference to "IFN ε " includes its variants, hybrids and modulators.
[0100] In preparing pharmaceutical formulations of the present invention, a variety of modifications can be used and manipulated to alter pharmacokinetics and biodistribution. A number of methods for altering pharmacokinetics and biodistribution are known to one of ordinary skill in the art.
[0101] In an embodiment, modulation of the expression of lfn ε is achieved by directly effecting expression of $l f n \varepsilon$. This can be achieved by the introduction directly to cancer cells in a solid tumor of a construct with the gene comprising lfne which will allow for modulation of the levels of IFN ε upon expression or even de novo expression and thereby effect the biological functions for which it is directed. Hence, recombinant cellular or viral means may be employed to generate IFN ε or its variant, hybrid or modulator at or near or within cancer cells.
[0102] The present invention further contemplates a combination of methods in the treatment of cancer. For example, IFN ε treatment or treatment by a variant or hybrid or modulator of IFN ε may be used in combination with surgical or chemical ablation of a cancer or cancer-affected organ or tissue.

EXAMPLES

[0103] Aspects disclosed herein are further described by the following non-limiting Examples.

Methods

Cell lines and cell culture

[0104] Ovarian cancer lines ID8 (murine; Roby et al. (2000) Carcinogenesis 21(4):585591), CAOV3 (human; ATCC, USA), and OVCAR4 (human; National Cancer Institute, USA) were used for in vitro assays. ID8 \& OVCAR4 cell lines were cultured in RPMI 1640 (GibcoBRL, Ontario, Canada) and CAOV3 in DMEM (GibcoBRL) supplemented with $4 \% \mathrm{v} / \mathrm{v}$ (ID8) or $10 \% \mathrm{v} / \mathrm{v}$ (CaOV3, OVCAR4) heat-activated fetal calf serum (FCS; GibcoBRL). All cells were cultured at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{v} / \mathrm{v}$ carbon dioxide $\left(\mathrm{CO}_{2}\right)$. Cells were Mycoplasma negative according to MycoAlert (Trade Mark) PLUS Mycoplasma Detection Kit (ratio <1; Lonza, Basel).

Cell stimulation for gene expression studies

[0105] Cell lines were plated (1.5×10^{5} cells/well) in a 12 well plate 24 hour prior to stimulation with recombinant IFN ε or IFN β (described below) at $0-1000 \mathrm{IU} / \mathrm{ml}$ with resuspension buffer (described below) or PBS as vehicle controls. Cells were then incubated at $37^{\circ} \mathrm{C}$ for 3 hrs prior to mRNA extraction.

mRNA extraction and purification

[0106] RNA was extracted using a QIAGEN RNeasy mini-kit (Invitrogen, USA) as per the manufacturer's protocol (see appendix B for detailed protocol). Cells were harvested in betamercaptoethanol/RLT ($10 \mu \mathrm{l}$-ME per 1 ml of RLT buffer) and using a 1 mL syringe and a 23-gauge needle, each sample was syringed up and down ten times to homogenize
the cells. RNA was on-column DNase treated using the QIAGEN RNase-free DNase Set (Invitrogen, USA) according to manufacturer's instructions. RNA yield and quality was then assessed using a NanoDrop (Registered Trade Mark) ND-1000 spectrophotometer (acceptable ranges for RNA purity 260/280 ratio $\sim 2.0 \& 260 / 230$ ratio between $2.0-2.2$) and stored at $-80^{\circ} \mathrm{C}$.

cDNA synthesis

[0107] A total of 500ng of RNA was made up to $7 \mu \mathrm{l}$ with diethylpyrocarbonate (DEPC) treated Milli-Q $\mathrm{H}_{2} \mathrm{O}$. RNA was then reverse-transcribed into cDNA using M-MLV reverse transcriptase (Promega, USA), according to manufacturer's instructions. cDNA samples were stored at $-20^{\circ} \mathrm{C}$ until use

GAPDH polymerase chain reaction PCR)

[0108] A GAPDH PCR was performed on samples from cDNA synthesis in the presence or absence of reverse transcriptase enzyme (+/- RT). The absence of product generated by GAPDH PCR for negative RT samples ruled out the presence of genomic DNA contamination. An aliquot of $1 \mu \mathrm{l}$ of cDNA was added to 5 xgreen GoTaq buffer, magnesium chloride, forward and reverse GAPDH primers, 10mM dNTPs, GoTaq enzyme (Promega, USA) and a total volume of 25μ l was made up with DEPC treated $\mathrm{H}_{2} \mathrm{O}$.
[0109] All PCR reactions were carried out in a MyCycler (Trade Mark) Thermal Cycler (BIO-RAD) using the following cycle reaction conditions:

- Denaturation: $94^{\circ} \mathrm{C}, 2$ mins

1 cycle

- Denaturation: $94^{\circ} \mathrm{C}, 30$ secs
- Annealing: $55^{\circ} \mathrm{C}, 30$ secs
- \quad Extension: $72^{\circ} \mathrm{C}, 30$ secs
- \quad Extension: $72^{\circ} \mathrm{C}, 7 \mathrm{mins}$

[0110] Each PCR product was then loaded onto a 1.5% w/v agarose gel and run at 100 V for 30 minutes.

Quantitative real time PCR (qRT-PCR)

[0111] Primers were designed to be intron-spanning where possible. This ensures that cDNA band would be distinguished from genomic DNA on the basis of size. Primers were designed using Primer Express (Registered Trade Mark) v3.0 software (Applied Biosystems, USA). Each reaction was performed in a total of $10 \mu \mathrm{l}$ comprising $2 \mu \mathrm{l}$ of cDNA, $5 \mu \mathrm{l}$ Sybr Green PCR Master Mix (Applied Biosystems, USA), $0.2 \mu \mathrm{l}$ of each 10 mM stocks of relevant forward and reverse primers and DEPC $\mathrm{H}_{2} \mathrm{O}$. All gene amplifications were normalized to the expression of 18 S , an internal control gene stably expressed in cells. Samples were loaded in triplicate onto a MicroAmp (Trade Mark) Optical 384-well reaction plate and sealed with MicroAmp (Trade Mark) Optical adhesive film.

Additionally, two RT negative reactions were used as well as a no transcript control where DEPC treated $\mathrm{H}_{2} \mathrm{O}$ was used to replace cDNA. Amplification of a single PCR product was confirmed by analyzing dissociations curves and visualization on agarose gels. A list of primers sequences is provided in Table 2.

Table 2
Summary of sequence identifiers

GAPDH primers	
5' GAPDH primer	5'- GAACGGGAAGCTTGTCATCAA -3' (SEQ ID NO:1)
3' GAPDH primer	3'- CTAAGCAGTTGGTGGTGCAG -5' (SEQ ID NO:2)
qRT-PCR SYBR primers	
5' 18S primer	5'- GTAACCCGTTGAACCCCATT -3' (SEQ ID NO:3)
3' 18S primer	3'- CCATCCAATCGGTAGTAGCG -5' (SEQ ID NO:4)
Mouse	
5’ Isg15 primer	5'- TGAGAGCAAGCAGCCAGAAG -3' (SEQ ID NO:5)
3' Isg15 primer	3'- ACGGACACCAGGAAATCGTT -5' (SEQ ID NO:6)
5' Tap1 primer	5’ - CGCAACATATGGCTCATGTC - 3' (SEQ ID NO:7)
3' Tap1 primer	3' - GCCCGAAACACCTCTCTGT - 5' (SEQ ID NO:8)
5' Cdc20 primer	5' - GTCACTCCGCTCGAGTAAGC - 3' (SEQ ID NO:9)
3' Cdc20 primer	3' - GCCCACATACTTCCTGGCTA - 5' (SEQ ID NO:10)
5' Ccne1 primer	5' - CCTCCAAAGTTGCACCAGTT - 3' (SEQ ID NO:11)
3' Ccne1 primer	3' - AGAGGGCTTAGACGCCACTT - 5’ (SEQ ID NO:12)
5' Cxcl10 primer	5’- CTGAATCCGGAATCTAAGACCA -3' (SEQ ID NO:13)
3' Cxcl10 primer	3'- GAGGCTCTCTGCTGTCCATC -5' (SEQ ID NO:14)
5' Ifit1 primer	5'- TCAAGGCAGGTTTCTGAGGA -3' (SEQ ID NO:15)
3' Ifit1 primer	3'- ACCTGGTCACCATCAGCATT -5' (SEQ ID NO:16)
5' Casp1 primer	5' - ACGCCATGGCTGACAAGATCCTG - 3' (SEQ ID NO:17)
3' Casp1 primer	3' - GGTCCCGTGCCTTGTCCATAGC - 5' (SEQ ID NO: 18)
5’ Ifn ε primer	5’ - GAAACGGATTCCCTTCCAAT - 3’ (SEQ ID NO:19)
3 ' Ifn ε primer	3' - ACTGCTGGACTGACGAGCTT - 5' (SEQ ID NO:20)
Human	
5’ ISG15 primer	5'- GCGAACTCATCTTTGCCAGT -3' (SEQ ID NO:21)
3' ISG15 primer	3'- AGCATCTTCACCGTCAGGTC -5' (SEQ ID NO:22)
5' IFIT1 primer	5’ - AGCTTACACCATTGGCTGCT - 3' (SEQ ID NO:23)

```
3' IFIT1 primer 3' - CCATTTGTACTCATGGTTGCTGT - 5' (SEQ ID NO:24)
5' IFN\varepsilon primer 5' - AGGACACACTCTGGCCATTC -3` (SEQ ID NO:25)
3' IFN\varepsilon primer 3' - CTCCCAACCATCCAGAGAAA - 5' (SEQ ID NO:26)
```

[0112] All reactions were processed using a 7900HT Fast Real Time PCR machine (Applied Biosystems, USA) using the following thermal cycling protocol: $50^{\circ} \mathrm{C}$ for 2 minutes, $95^{\circ} \mathrm{C}$ for 10 minutes followed by 40 cycles of $95^{\circ} \mathrm{C}$ for 15 seconds and $60^{\circ} \mathrm{C}$ for 1 minute. Cycle threshold (Ct) values for all probes were exported and data analysis was carried out using the $2-\Delta \Delta \mathrm{CT}$ method. For figures, gene amplifications were normalized to the expression of 18S, an internal control gene stably expressed in cells. Then values of fold-change after IFN treatment, were expressed relative to value for untreated samples (which was 1).

Cellular growth assays

[0113] Cellular proliferation was measured using the xCELLigence system (ACEA Biosciences, Inc., San Diego, CA, USA) for real-time cell analysis (RTCA). Fifty microliters of cell culture medium was added to each well in a 96 well E- plate (ACEA Biosciences, Inc.) for the impedance background measurement. Cells were then added (ID8 -6×10^{3} cells/well, CAOV3 \& OVCAR4 -1×10^{5} cells/well) to a volume of $100 \mu \mathrm{~L}$ in serum-free culture media and allowed to adhere overnight. Recombinant IFN or vehicle was added to the cells up to a final volume of $200 \mu \mathrm{~L}$ of normal culture media. The EPlates were incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{v} / \mathrm{v} \mathrm{CO}_{2}$ and impedance measured on the RTCA system at 15 -minute time intervals for up to 72 hours with or without treatment. For data analysis, the baseline cell index (CI) is determined by subtracting the CI for a cellcontaining well from the CI of a well with only culture media. To facilitate the statistical evaluation of the results, impedance measurements from each well were normalized to the time of stimulation with IFN, termed 'normalized cell index'. Three independent experiments were performed in technical quadruplicate and analyzed for doubling-time and slope ($1 / \mathrm{hr}$) of growth curves, indicative of rate of proliferation, using RCTA software. Data was analyzed using 2-way ANOVA with Sidak’s multiple comparisons test, **** $<0.0001,{ }^{* * *} \mathrm{p}<0.001$.

Migration assays

[0114] For single cell tracking, ID8 cells were plated in serum free media at 2.5×10^{4} cells/well in a 48 well plate and left to adhere overnight. For scratch assays, ID8 cells were plated in a 48 well plate and allowed to reach confluence. Coated wells were scratched using a P10 filter tip (Axygen Scientific, California). Cells were stained using CellTrace (Trade Mark) CFSE Cell Proliferation Kit (ThermoFischer Scientific, Massachusetts) as per the manufacturer's instructions, then washed in PBS and treated with recombinant IFN. Fluorescent images were captured every 30 minutes for 12 hours using a confocal microscope and analyzed using Imaris software. For single cell tracking, individual cells were tracked via fluorescence to measure the overall distance traveled by each cell (track length) and direct displacement length from the initial to final position of each cell (track displacement) over 12 hours. Significance was determined by Student’s T test comparing the mean distances traveled 2.5×10^{4} cells plated in technical triplicate. For scratch assays, cellular migration was measured as the percentage surface area closure of the scratch (empty space) over 12 hours. Significance was determined by one-way ANOVA with Tukey's multiple comparisons; ${ }^{*} \mathrm{p}<0.05$, ${ }^{* *} \mathrm{p}<0.01$, ${ }^{* * *} \mathrm{p}<0.001$, **** $\mathrm{p}<0.0001$.

Apoptosis assays

[0115] ID8 cells were plated in a 12 well plate (3.5×10^{4} cells/well) in 2 ml and left to adhere overnight. Cells were stimulated with recombinant murine Ifne or vehicle control for 48 hours. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ was used a positive control for induction of apoptosis at $1-5 \mathrm{mM}$. Following stimulation, cells were trypsinized and washed in PBS. Single cell suspensions were stained with FITC conjugated Annexin V and propidium iodide (PI) using the FITC Annexin V Apoptosis Detection kit II (BD Biosciences, New Jersey), as per the manufacturer's instructions and analyzed by flow cytometry using a FACSCanto (Trade Mark) II flow cytometer (BD Biosciences) and Flo-Jo software. The different phases of apoptosis were defined as i) live cells (FITC Annexin V-/PI-), ii) early apoptotic (FITC Annexin V+/PI-), iii) late apoptotic (FITC AnnexinV+/PI+), and iv) necrotic cells (FITC Annexin V-/PI+).

Immunohistochemistry

[0116] Human fallopian tubes, mouse organs and tumor samples were fixed for 24 hours in $10 \% \mathrm{v} / \mathrm{v}$ neutral buffered formalin, then washed in $70 \% \mathrm{v} / \mathrm{v}$ ethanol, and embedded in paraffin. Tissue was sectioned at $4-\mu$ m thickness and stained for $\mathrm{H} \& \mathrm{E}$, smooth muscle actin (SMa), cytokeratin 18(Ck18) and IFNe. Briefly, histological tissue sections were deparaffinized and rehydrated. Antigen retrieval was performed by heat in 10 mM Tris/1 mM EDTA (pH 9.0) for 6 mins. After inhibition of endogenous peroxidase activity with $3 \% \mathrm{v} / \mathrm{v}$ hydrogen peroxide, tissues were blocked in CAS-Block [Trade Mark] (ThermoFisher Scientific) for 1 hour. Tissues were then incubated overnight at $4^{\circ} \mathrm{C}$ with anti-IFN ε (1:200; Novus Biologicals, Colorado), anti-SMa (1:100; Dako Omnis, Santa Clara), anti-Ck18 (1:50; Dako Omnis) and rabbit IgG (1:200; Vector Laboratories, California) or mouse IgG1 (1:37; Vector Laboratories) as isotype controls. Biotinylated anti-rabbit or anti-mouse IgGs (both 1:250 dilution; Vector Laboratories) were diluted in the same buffer and incubated for 1 hour. Slides were then washed in $0.05 \% \mathrm{v} / \mathrm{v}$ Tween/PBS and incubated with avidin and biotinylated horseradish peroxidase (VECTASTAIN (Registered Trade Mark) Elite (Registered Trade Mark) ABC Kit, Vector Laboratories) as per the manufacturer's instructions and washed again. Slides were then incubated with diaminobenzidine tetrahydrochloride (DAB; DAB+ Substrate Chromogen System, Dako Omnis) as per the manufacturer's instructions. Sections were counterstained with Haematoxylin for 45 seconds then dehydrated and placed under coverslip with dibutylphthalate dolystyrene xylene (DPX; Merck, Germany). Staining intensity was calculated using the positive pixel analysis tool in Imagescope software and significance was determined using Mann-Whitney tests, ${ }^{* *} \mathrm{p}<0.01,{ }^{* * * *} \mathrm{p}<0.0001$.

Immunophenotyping

[0117] Single cell suspensions were obtained from peritoneal lavage cells of C57BL/J mice studied for surface antigen expression using a panel of monoclonal antibodies
directly conjugated with fluorochromes. In order to prevent non-specific binding, cell surface receptors were blocked with Anti-mouse CD16/CD32 Fc γ III/II Receptor blocking antibody (BD PharMingen, California). For surface staining, cells were stained with the various combinations of fluorochrome-labeled antibodies: panel 1 - APC conjugated CD45, APC-Cy7 conjugated CD8, FITC conjugated NK-1.1, PE conjugated CD69, Pacific Blue conjugated CD4; panel 2 - APC conjugated CD25, APC-Cy7 conjugated CD8, FITC conjugated CD45, PE conjugated Pan CK, PE-Cy7 conjugated CD4 and Pacific Blue conjugated FoxP3; panel 3 - APC conjugated CD45, APC-Cy7 conjugated CD11b, FITC conjugated Ly6C, PE conjugated I-Ab, PE-Cy7 conjugated CD11c and Pacific Blue Ly6G. Cells were analyzed using a FACSCanto (Trade Mark) II flow cytometer (BD Biosciences) and Flo-Jo software.

Cytometric bead array (CBA)

[0118] Cytometric bead array (BD CBA Mouse Inflammation Kit; BD Pharmingen) was used to determine cytokine levels in the supernatant of peritoneal exudate cells from mice injected with ID8 cells (see intraperitoneal model of ovarian cancer below) as per the manufacturer's instructions. Flow cytometry was used to detect PE-conjugated detection antibodies forming sandwich complexes with capture beads for IL-8, IL-1 β, IL-6, IL-10, IL-12p70, or TNF- α. PE fluorescent intensities for each sandwich complex was acquired using a FACSCanto (Trade Mark) II flow cytometer (BD Biosciences) and Flo-Jo software.

Mice

[0119] The Ifnc ${ }^{-/-}$mice (Fung et al. (2013) supra) on a C57bl/6 background and wild-type mice (Monash Animal Research Facility, Monash University, Clayton, Australia) were housed in standard specific pathogen free (SPF) conditions.
[0120] Female (10 weeks of age) C57BL/6 wild-type (Ifne ${ }^{+/+}$) and Ifn ε deficient mice (Ifn $\varepsilon^{-/}$) were used in these experiments. Mice were anaesthetized by inhalation of isoflurane (5\% in oxygen) in an induction chamber, and anaesthesia maintained at 2.53.0\% isoflurane delivered via nosecone during all procedures. Mice were subcutaneously injected with Carprofen ($5 \mathrm{mg} / \mathrm{kg}$) prior to surgery. A small incision was made at the dorso-medial position directly above the ovarian fat pad, with a secondary small incision through the peritoneal wall. The ovarian fat pad was externalized and stabilized with a bull clip, and a dissecting microscope used to locate the oviduct in the exposed ovary. ID8 cells (1×10^{6}) were injected underneath the left ovarian bursa. The peritoneal wall was sutured closed using $6 / 0$ suture prior to topical Bupivacaine administration and closure of the incision closed with surgical staples. Analgesia (Carprofen $5 \mathrm{mg} / \mathrm{kg}$ body weight) was provided in drinking water for 3 days thereafter. Mice were monitored for body weight, Body Condition Score (BCS) defined as: BCS 1 Thin - Skeletal structure prominent and vertebral bodies protruding, BCS 2 Under-conditioned - segmentation of vertebral column evident but not protruding, and BCS3 Well-conditioned - vertebrae not evident without palpation, as well as clinical signs and culled 13 weeks post-ID8 injection. Do we need something on samples collected at experiments end? At autopsy, the overall spread and tumor burden of each mouse was documented (number of tumor nodules, sites of nodule deposits recorded and photographed), ascites fluid was drained from the peritoneum for volume measurement and cell counts and tissue harvested (spleen, diaphragm, peritoneal wall, mesenteric fat, female reproductive tract) for weight measurements and immunohistochemical analysis.

Intraperitoneal (disseminated) ovarian cancer model

[0121] Female (6 to 8 weeks of age) C57BL/6 wild-type (Ifne ${ }^{+/+}$) mice were used in these experiments. Mice were injected intraperitoneally with 5×10^{6} ID8 cells using a 30 -gauge needle. Mice were monitored for body weight, BCS and clinical signs and culled 8 weeks post-ID8 injection. At autopsy, the overall spread and tumor burden of each mouse was documented (number of tumor nodules, sites of nodule deposits recorded and
photographed), ascites fluid was drained from the peritoneum for volume measurement and cell counts and tissue harvested (spleen, diaphragm, peritoneal wall, mesenteric fat, female reproductive tract) for weight measurements and immunohistochemical analysis.

Intraperitoneal recombinant IFN therapy

[0122] IFN treatments were commenced 3 days post-intraperitoneal ID8 cell injections. Mice either received recombinant murine Ifne injected intraperitoneally 3 times a week at a dose of $2-500 I U / i n j e c t i o n ~ o r ~ I f n ~ \beta a t 500 I U / i n j e c t i o n ~ o r ~ v e h i c l e ~ f o r ~ 8 ~ w e e k s . ~ A t ~ a u t o p s y, ~$ the orthotropic 'primary" tumor was collected along with metastases (diaphragmatic \& peritoneal), spleen, ascites fluid (volume and cell counts) and peritoneal lavage and samples weighed, photographed and processed for immunohistochemical analysis.

Recombinant IFN production

Mouse

Production and purification of mulFNe

[0123] The generation and PCR screening of recombinant bacmids containing the IFN ε gene and baculovirus was carried out as described elsewhere . Briefly, PCR-positive colonies were expanded and recombinant bacmid isolated using an EndoFree Maxi-Prep kit according to the manufacturer's instructions (Qiagen). Recombinant baculovirus was generated by transfection of the purified bacmid into Sf9 insect cells and high titre baculovirus generated. IFN ε was expressed as a soluble protein and secreted into the culture media.
[0124] Insect cell expression supernatants were clarified of cells by centrifugation as described, supplemented with phenylmethanesulfonyl fluoride (PMSF) at a final concentration of 1 mM before dialysis against TBS (10 mM Tris- $\mathrm{HCl}, 150 \mathrm{mM} \mathrm{NaCl}$, pH8.0) overnight at $4^{\circ} \mathrm{C}$ using 12.5 kDa cut-off dialysis tubing (Sigma-Aldrich).

Particulates were removed by filtration of the dialysate through a $0.8 \mu \mathrm{~m}$ syringe driven filter (Sartorius). An anti-IFN ε monoclonal antibody affinity column was prepared by coupling 10 mg of anti-IFN ε antibody to 1 ml of AminoLink Plus resin according to the manufacturer's instructions (Thermo Scientific). The filtrate was applied to this column and then the column washed with five column volumes (CV) of TBS to remove nonspecifically bound proteins and rIFN ε eluted with 0.1 M Glycine pH 3.0 in 0.5 CV fractions. Collected fractions were immediately neutralized with $1 / 10^{\text {th }} \mathrm{CV}$ of 1 M Tris- HCl pH 8.0 and buffer exchanged by addition of 10x TBS (100 mM Tris- $\mathrm{HCl}, 1.5 \mathrm{M} \mathrm{NaCl}, \mathrm{pH} 8.0$). Protein containing fractions, as determined by absorbance at 280 nm , were further supplemented with $10 \% \mathrm{v} / \mathrm{v}$ glycerol. Purified IFN ε was subsequently further purified by gel filtration on a S75 10/30 size exclusion column (GE Healthcare) connected to an AKTA PrimePlus (GE Healthcare) using TBS pH8.0 containing 10\% v/v glycerol. Purified fractions were filter sterilized and stored at $4^{\circ} \mathrm{C}$ or snap-frozen in liquid nitrogen for longterm storage at $-80^{\circ} \mathrm{C}$.

Human

Production of huIFN ε using bacterial system

[0125] Human IFNe (tagless native 187 residue sequence) was expressed from a pET-28a expression vector (Novagen) in Escherichia coli BL21 (DE3). A single colony of the freshly transformed cells was inoculated into L-Broth containing $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin. The culture was grown overnight at $37^{\circ} \mathrm{C}$ with constant shaking at 250 rpm . After 16 h , the cell culture was diluted 50 -fold with fresh L-Broth containing $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin. The mixture was incubated with shaking at $37^{\circ} \mathrm{C}$ until the optical density $\left(\mathrm{OD}_{600}\right)$ reached 0.6 0.8 when the cells were induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The cells were allowed to grow for 3 h before harvesting by centrifugation at 5000 g for 15 mins. The cell pellets were frozen at $-20^{\circ} \mathrm{C}$ until further use.

Preparation of inclusion bodies

[0126] Frozen cells were thawed at room temperature for 30 mins. Each gram of cell pellet was resuspended with 10 mL of BugBuster Master Mix (Merck Millipore) with added 10 mM dithiothreitol (DTT), 5 mM ethylenediaminetetraacetic acid (EDTA) and $0.5 \% \mathrm{w} / \mathrm{v}$ complete Mini protease inhibitor cocktail tablet (Roche), and incubated at room temperature for 2 h with gentle agitation. The lysate was centrifuged at 30000 g for 20 mins, and the supernatant was decanted. The inclusion bodies (IBs) were then washed multiple times using different buffers (70 mL for each gram of IBs) all containing 10 mM DTT and 5 mM EDTA: (1) 1:10 diluted BugBuster Master Mix (with MilliQ water), (2) 10 mM tris(hydroxymethyl)aminomethane (Tris) buffer pH 8.0 with 150 mM NaCl and 2 M urea, (3) 10 mM Tris buffer pH 8.0 with 150 mM NaCl and $5 \% \mathrm{v} / \mathrm{v}$ Triton X-100. Each wash was followed by centrifugation of 30000 g for 20 mins to remove the supernatant. Thereafter, the IBs were washed twice with 10 mM Tris pH 8.0 with $150 \mathrm{mM} \mathrm{NaCl}(70$ mL for each gram of IB) to remove EDTA in the product. The IBs were then solubilized using buffer containing 6 M guanidine hydrochloride (Gdn-HCl) pH 7.4, 100 mM $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 10 mM Tris overnight at cold room under constant agitation. The resulting mixture was centrifuged at 30000 g for 20 mins , and the solution was $0.2 \mu \mathrm{~m}$-filtered.

Refolding of huIFN ε

[0127] DTT was added into the denatured huIFN ε solution at concentration of 5 mM , and the mixture was incubated at room temperature $\left(25^{\circ} \mathrm{C}\right)$ under mild agitation for 2 h . Thereafter, the mixture was chilled to $4^{\circ} \mathrm{C}$ before it was added dropwise into 50 volumes of refold buffer (20 mM phosphate buffer $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.8 \mathrm{M} \mathrm{L-Arginine} \mathrm{(L-}$ Arg) and $10 \mu \mathrm{M} \mathrm{CuSO}_{4}$) at $4^{\circ} \mathrm{C}$ with gentle stirring, and the refolding was allowed to proceed for 16 h .

Protein purification

[0128] EDTA was added into the refold mixture at 5 mM concentration, and the pH of the refold solution was adjusted to pH 6.0 before it was concentrated using both Vivaspin 200 tangential flow filter (MWCO 10 kDa) and Vivaspin 20 concentrator (MWCO 10 kDa) at $4^{\circ} \mathrm{C}$. The sample was then purified using gel filtration (HiLoad 16/60 Superdex 200) at flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ with 20 mM phosphate buffer pH 6.0 containing 150 mM NaCl and $0.8 \mathrm{M} \mathrm{L-Arg}$ as running buffer. Fractions containing huIFN ε were combined and 1 mL of anion-exchange resin (Q Sepharose fast flow) was added into it. The mixture was incubated at $4^{\circ} \mathrm{C}$ under constant agitation for 18 h . The flow through was then collected and concentrated using Vivaspin 20 concentrator.

Gel electrophoresis and Western blot

[0129] Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot were performed using Bolt Bis-Tris plus 4-12 \% gradient gel (Life Technologies) and Bolt MOPS SDS running buffer (Life Technologies) at 165 V for 50 mins. For SDS-PAGE analysis, the gel was stained with Coomassie Blue solution (0.25 \% w / v Coomassie Blue R-250, $50 \% \mathrm{v} / \mathrm{v}$ methanol and $10 \% \mathrm{v} / \mathrm{v}$ acetic acid) for 2 h before destained with solution containing $40 \% \mathrm{v} / \mathrm{v}$ ethanol and $10 \% \mathrm{v} / \mathrm{v}$ acetic acid. For western blot, protein bands were transferred to Immobilon-FL Polyvinylidene Difluoride (PVDF) membrane using Bolt transfer buffer (Life Technologies) at 30 V for 45 mins. The membrane was incubated in Odyssey blocking buffer (PBS) [LI-COR Biosciences] at room temperature for 1 h . The buffer was decanted and rabbit polyclonal anti-huIFN ε antibody (Novus Biological) at 1:500 dilution was added onto the membrane and incubated for 16 h at $4^{\circ} \mathrm{C}$. Thereafter, the antibody solution was removed and the membrane was washed three times with phosphate-buffered saline (PBS) pH 7.4 containing $0.1 \% \mathrm{v} / \mathrm{v}$ Tween 20. Anti-rabbit IgG (H\&L) (GOAT) antibody IR dye 800 conjugated (Rockland) at 1:1000 dilution was added onto the membrane and incubated at room temperature for 1 h . The membrane was washed as before with PBS pH 7.4 containing $0.1 \% \mathrm{v} / \mathrm{v}$ Tween 20. Western blot analysis was performed using Odyssey infrared imaging system (LI-COR Biosciences) using both 700 and 800 channels.

Endotoxin testing

[0130] Endotoxin levels in a sample were tested using limulus amebocyte lysate (LAL) test. The testing system and reagents were purchased from Charles River. Protein sample was first diluted 1:10 with LAL reagent water, and then further diluted 1:10 with Endotoxin-specific buffer. Sample was then loaded onto the LAL cartridge (sensitivity 0.05 to $5 \mathrm{EU} / \mathrm{mL}$ for neat sample) and the absorbance was recorded using Endosafe-PTS.

Circular dichrosim

[0131] Human IFN ε sample was prepared in 20 mM phosphate buffer pH 6.0 containing $500 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ EDTA and 10 \% v/v glycerol. Circular Dichroism (CD) experiments were performed at $25^{\circ} \mathrm{C}$ on a Jasco J-810 spectrometer equipped with a Peltier temperature-controlled water circulator. Spectra ranging from 190 to 250 nm was measured using 1 mm path length quartz cell, accumulation cycle of 3 runs, 1 nm bandwidth, 0.1 nm data pitch and 1 s data integration time. The data were analyzed using Jasco Spectra Manager.
[0132] Biological activity ($\mathrm{IU} / \mathrm{ml}$) of the huIFN ε sample was determined by comparison against a serial dilution of hIFN β protein of known activity.
[0133] Specific activity (IU/mg) of the refolded huIFN ε using this system is consistent with results obtained from an anti-viral protection assay (protection of WISH cells from infection with EMCV) and confirms: this refolded protein is biologically active; and the specific activity of huIFN ε is of a similar order of magnitude to that of muIFN ε expressed in an insect cell expression system (Table 3).

Table 3
Comparison of specific activity (IU/mg) of mouse and human interferon epsilon proteins as determined by either viral-protection assay or reporter cell line

Interferon	Method	$\underline{\text { Specific }}$ $\underline{\text { Activity }}$	$\underline{\text { Reference }}$
muIFN ε	Anti-viral protection assay (L929 cells and SFV)	2.1×10^{5}	Stifter, S. Unpublished data (Doctoral Thesis)
huIFN ε	Anti-viral protection assay (WISH cells and EMCV)	1.12×10^{4}	Experimental data
huIFN ε	Reporter cell line (HEK- Blue ${ }^{\mathrm{TM}}$)	5.26×10^{4}	Experimental data

[0134] Use of this reporter cell line has provided an easy and economical assay for the determination of the biological activity of huIFN ε and should simplify identification of monoclonal antibodies capable of neutralising this activity.
[0135] The final IFN ε formulation was in the following buffer that was used as the "vehicle control" in the in vivo and in vitro experiments: 20 mM phosphate buffer pH 6.0 containing 150 mM NaCl and $0.8 \mathrm{M} \mathrm{L-Arg}$ as running buffer.

EXAMPLE 1
 The role of IFN ε in ovarian cancer

[0136] The effects of treating both mouse and human tumor derived cell lines with recombinant IFN ε was assessed and compared the effects with other, conventional type I IFNs.
[0137] The mouse cell lines examined were the murine ovarian epithelial cell line, ID8s, which are used for in vivo experiments (Example 2) to enable the comparison of in vitro with in vivo anti-tumor effects.
[0138] Also examined are the effects of IFN ε on various human ovarian cancer cell lines. A number of human cell lines were used to investigate ovarian cancer in vitro, including OVCAR4 and CAOV3 cells. These represent cell lines that are classified as representative of high grade serous ovarian cancer (HGSC) as per systematic genomic comparison with tumor samples to be highly genetically similar to human HGSC (Domcke et al. (2013) Nature Communications 4:2126). Each of the cell lines used demonstrated the fundamental molecular characteristics of HGSC including a high fraction of genomic alterations, universal TP53 mutations and few, if any, other somatic mutations in proteincoding regions, and thus, represent some of the most suitable models for studying human ovarian cancer in vitro.

EXAMPLE 2
IFNE induces anti-tumor effects the murine ovarian cancer ID8 cell line
[0139] The aim was to use the ID8 cell line to characterize the anti-tumor effects of IFN ε in vivo in a murine model of ovarian cancer. Initially, it was important to confirm that this cell could indeed respond to type I IFNs, including IFN ε. ID8 cells were stimulated in vitro with different doses of either recombinant murine IFN ε or IFN β for 3h before quantification of three well characterized IFN regulated genes (IRGs), cxcl10, isg15 and ifit1 (Figure 1). IFN ε significantly induced expression of all three IRGs in a dose dependent manner, similar to IFN β (in IU/ml), thus confirming that these cells can respond to $\operatorname{IFN} \varepsilon$.
[0140] Having confirmed that ID8 cells can respond to IFN ε, next investigated was whether IFN ε could regulate the expression of IRGs-encoding proteins with roles in tumor-related properties, cell proliferation and apoptosis. It was found that treatment of ID8 cells with $1000 \mathrm{IU} / \mathrm{ml}$ of IFN ε significantly down-regulated the expression of bcl-2, ccne1 and cdc20, which encode for proteins with anti-apoptotic (bcl-2) and proproliferative functions (ccne1, cdc20) (Figure 2). Conversely, IFN\& significantly induced expression of the IRGs tap1 and casp1, genes which encode for pro-apoptotic proteins. Therefore, these data indicate that IFN ε regulated genes are involved in cell cycle, proliferation and apoptosis.
[0141] Next assessed was the effect of IFN ε on proliferation of ID8 cells using the Xcelligence (Registered Trade Mark) Real Time Cell Analysis (RTCA) system (Acea Biosciences), which allows real-time, label-free monitoring of cell proliferation. Therefore, it was possible to monitor proliferation of ID8 cells treated with IFN ε based on an impedance reading of cells in the wells every 30 mins. As cells proliferate, the impedance reading (cell index) increases. As evident in Figure 2, there is a dose-
dependent difference in cell index upon treatment with IFN ε (Figure 3A) or IFN β (Figure 3B).
[0142] From this software, this decrease can quantify cellular proliferation using two different measurements: (i) doubling time of the cells; and (ii) the slope of the growth curves of the cells indicative of growth rate. It was found that IFN ε treatment increased the doubling time of ID8 cells in a dose dependent manner, similar to what was observed for IFN β (Figures 4A and 4B). Also observed was a decrease in the slope of the growth curves of ID8 cells following treatment with IFN ε or IFN β (Figure 4C). Therefore, IFN ε treatment could significantly inhibit the proliferation of the murine ovarian cancer cell line.
[0143] Having observed that IFN ε treatment could decrease the proliferation of ID8 cell line, next analyzed was the effect on cell migration, as an indication of how IFN ε may affect metastasis of tumor cells. To do this, a fluorescent cell dye (CellTrace (Trade Mark) CSFE, ThermoFisher Scientific) was used to stain and track ID8 cell migration during a scratch assay. Using this method of analysis, the percentage migration of ID8 cells was calculated based on the closure of a 'scratch' as ID8 cells migrate from a confluent are to an open space over a 12 h period. It was found that treatment of the cells with IFN ε for 12 h could significantly decrease the percentage scratch closure (or migration) of ID8 cells thereby demonstrating that IFN ε affects the tumor-related in vitro activity of ID8 cell motility, which would have implications for the metastatic potential of these cells (Figure 5).
[0144] Since it was observed that IFN ε inhibited ID8 cell proliferation, mobility and migration, next assessed was whether IFN ε could induce apoptosis of ID8 cells. To do this, Annexin/PI staining of treated cells was used with FACS analysis to identify whether dying cells are undergoing early or late apoptosis or necrosis. It was found that IFN ε treatment decreased the number of live cells by roughly 40% in the assay and upon further
analysis that these cells were found to be in early \& late apoptosis, as indicated by cells staining positive for both Annexin V only and both Annexin V and PI, respectively. Importantly, no necrosis was observed with any dose of IFN ε assessed. The data from this FACS analysis is summarized in Figure 6.

EXAMPLE 3

The dysregulation of IFN ε in ovarian cancer development: patient samples

[0145] IFN ε expression was assayed in healthy vs ovarian cancer patients using immunohistochemistry in ovarian cancer patient samples. Tissue sections were formatted into tissue microarray (TMA) to minimize experimental error between staining. IHC analysis was commenced by staining sections from the healthy fallopian tube control samples obtained and generating control tissue blocks to stain along side the ovarian cancer patients. It was found that IFN ε is highly expressed in the epithelium of the healthy fallopian tube. As controls, epithelium was stained with cytokeratin 18 and the underlying stromal cells with smooth muscle actin (SMA).
[0146] These sections of healthy control fallopian tubes were used to generate control blocks containing up to 8 samples per block for side-by-side simultaneous staining along side ovarian cancer patient biopsy TMAs. These TMAs contain biopsies of high grade serous carcinomas, low grade serous carcinomas, benign hyperplasia and borderline epithelium from 106 patients. It was found that IFN ε expression is significantly suppressed in serous carcinoma samples compared to control benign epithelium (Figure 7).

EXAMPLE 4

The role of IFN ε in ovarian cancer development and therapeutic benefit: mouse models
[0147] The role of endogenous IFN ε in tumorigenesis of ovarian cancer was investigated.
[0148] C57BL/6 wild-type and lfne deficient mice were injected with ID8 cells into the left ovarian bursa. At 13 weeks post-injection these mice developed large orthotropic tumors and characteristic hemorrhagic ascites in the peritoneum associated with metastatic deposits on the peritoneal wall, diaphragm, spleen and mesentery. Importantly, this model of disease spread is characteristic of the progression and metastasis of advanced human ovarian cancer. At 13 weeks these mice had developed advanced disease and subsequently, it was found no difference in primary tumor size at this time between WT and $I f n \varepsilon^{-/}$mice (Figure 8). Instead, a trend was observed towards more advanced disseminated disease in lfn ε deficient mice including splenomegaly (Figure 8B), ascites volume (Figure 8C), number of metastatic peritoneal deposits (Figure 8D) and red blood cells in drained ascites fluid (Figure 8E). Primary tumors and metastatic deposits were collected for immunohistochemical analysis. Hematoxylin and eosin stains demonstrated mixed glandular morphology with interspersed fibroblast-like cells and adipose tissue as well as invasion into the diaphragm and spleen. This is further analyzed using multiplexing for immune cell panels.

EXAMPLE 5

Additional data from recombinant IFN ε therapy in a model of disseminated ovarian cancer

IFN ε induces anti-tumor effects in human ovarian cancer cells

[0149] As it was demonstrated that IFN ε has strong anti-tumor effects on a murine ovarian cancer cell line, next assessed was its effects on human ovarian cell line. As documented above, CaOV3 and OVCAR4 cells were chosen as these represent HGSC.
[0150] First, it was confirmed that these cell lines responded to type I IFN stimulation. CaOV 3 and OVCAR4 cells were treated with recombinant human IFN ε. IRG induction was measured after 3h of stimulation. It was found that both cell lines responded to type I IFN stimulation, although with different IRG induction observed across the different cell lines.
[0151] It was next determined if IFN ε stimulation altered the proliferation of human ovarian cancer cell lines using the xCELLigence RTCA system. It was found that human ovarian cancer cells treated with IFN ε had overall significantly lower cell index plots, had an increased doubling time and the slopes of their growth curves were significantly lower. This analysis demonstrates that IFN ε treatment decreased proliferation of human ovarian cancer cell lines. This anti-proliferative effect of IFN ε was demonstrated in CaOV 3 and OVCAR4.

Immunomodulatory effects of intraperitoneal recombinant IFNE therapy in healthy mice

[0152] Healthy C57BL/6 wild-type mice (6 to 8 weeks of age) were treated with recombinant murine IFN ε or IFN β (at $500 \mathrm{IU} /$ dose) via intraperitoneal injection, three times weekly for 8 weeks. Peritoneal exudate cells were collected in PBS via peritoneal lavage and analyzed using flow cytometry for immune cell populations. It was found that

IFN ε therapy significantly regulated immune cell populations known to be important in anti-cancer immunity as well las their activation status including CD8+ T cells (Figure 9A), activation of CD4+ T cells (Figure 9B), inflammatory monocytes (Figure 9C) and PD1+ expression on CD4+ T cells (Figure 9D).

Efficacy of intraperitoneal recombinant IFNe therapy in a model of disseminated

ovarian cancer

[0153] For a model of advanced disseminated ovarian cancer that accurately recapitulates the metastatic spread (diaphragm, peritoneal wall and mesentery) malignant ascites development, splenomegaly and anemia of human ovarian cancer an intraperitoneal ID8 mouse model was used. C57BL/6 wild-type mice (6 to 8 weeks of age) were intraperitoneally injected with ID8 cells (5×10^{6} cells per mouse). At 3 days post-injection mice commenced intraperitoneal recombinant IFN ε or IFN β therapy ($500 \mathrm{IU} /$ dose three times weekly) for 8 weeks. It was found that mice treated with IFN ε had significantly decreased tumor dissemination in the mesentery as well as fewer peritoneal and diaphragmatic deposits than PBS control mice or mice treated with IFN β.
[0154] Also found was that mice treated with IFN ε had significantly reduced ascites development (Figure 10A), with fewer detectable ascites tumor cells (Figure 10B) and a decreased red blood cell content (Figure 10C), indicative of less advanced disease. This was associated with suppressed inflammatory cytokine levels detectable in ascites fluid from these mice particularly MCP-1 (monocyte chemoattractant protein 1) [Figure 11] known to facilitate angiogenesis in this disease. Figure 12 provides data on the region of peritonea immune cell regulation by IFN ε in a disseminated ovarian cancer model.
[0155] The results are shown in Figures 13 to 15.

Figure 13
[0156] Figure 13A shows that by 8 weeks this model had progressed enough for diffuse tumor development (as shown by weight gain and upon culling the mice) as well as hemorrhaging of the peritoneal fluid, however, this time point caught the mice just prior to advanced ascites development. None of the treatment groups showed significant weight gain difference? compared to non-tumor bearing controls indicative of little ascites development. However, every treatment group except high dose IFN ε are trending towards significance compared to their own control. Additionally, significant differences can be seen between tumor-bearing treatment groups, showing the least amount of disease development in mice treated with 500 IU IFN ε.
[0157] Figure 13B, significantly steeper curves can be seen in the final 2 weeks (week 6 to week 8). This time point represents progression of the disease just prior to advanced ascites development. Only mice treated with high does IFN ε do not demonstrate a steeper growth rate than their non-tumor bearing controls in this period.
[0158] Figure 13C, none of the tumor-bearing mice showed significant differences across treatment groups, however, all of the treatment groups had significantly larger circumferences compared to their non-tumor bearing controls except mice treated with high dose IFN ε. This trend is somewhat reflected by the drained ascites volumes.
[0159] Figure 13D, shows the volume of ascites fluid drained from the peritoneal cavity of each mice at the experimental endpoint of 8 weeks. Mice treated with high does IFN ε constituted the only treatment group with significantly reduced ascites development (individual Mann-Whitney tests) and the only treatment group with tumor-bearing mice that had not yet developed ascites. All other tumor-bearing mice had started to develop ascites with the largest volume recorded from the low dose IFN ε group ($\sim 3.5 \mathrm{ml}$). At 8 weeks these mice are still in the early stages of ascites development.

Figure 15
[0160] Figure 15A shows the extent of tumor development and spread throughout the mesentery graded 0 to 4 (0 - no disease, 1 - very little obvious disease, some small tumor deposits upon exploration, 2 - obvious tumor but mainly localized to one deposit, 3 - large tumor nodule developed near spleen and some deposits throughout mesentery, 4 - large tumor nodule near spleen extending throughout the mesentery too numerous to count). Mice treated with high dose IFN ε were the only treatment group with significantly less disease present in the mesenteric region.
[0161] Figure 15B, mice treated with high dose IFN\& had the least peritoneal nodules.
[0162] Figure 15C, mice treated with high dose $\operatorname{IFN} \varepsilon$ had the least diaphragmatic nodules, however, some variability in the PBS control mice prevented significance for this group.
[0163] Figure 15D, liver nodules were not as detectable as other sites (peritoneum, diaphragm), however, there is still a trend for a reduction in mice treated with high does IFN ε.
[0164] Figure 15E is an early time point for the model by which the tumor had not had a chance to successfully adhere and colonize secondary sites. In the second model (which ran for 10 weeks with extensive ascites development), no spheroids were detected. As such spheroids may serve as a marker of less advanced disease in this model. In this current model, very few of these nodules were detected due to the reasonably advanced stage at 8 weeks (however, still earlier than last time) and while not significant, mice treated with high dose IFN ε are showing the highest prevalence of non-attached spheroids. Perhaps another indicator of how IFN ε may prevent the progression of this disease.
[0165] Figure 15F, given the varying size of some of the tumor deposits the surface area dimensions were measured of the largest single tumor nodule per mouse to see whether this would still reflect a trend towards IFN ε disrupting tumor growth. While there was some variability in the PBS controls ($\mathrm{p}=0.06$ with high dose IFN ε) high dose IFN ε significantly reduced the larges nodule compared to low dose IFN ε demonstrating a dose reduction in tumor growth.
[0166] Those skilled in the art will appreciate that the disclosure described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the disclosure contemplates all such variations and modifications. The disclosure also enables all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of the steps or features or compositions or compounds.
[0167] All patents, applications, publications, test methods, literature, and other materials cited herein are hereby incorporated by reference in their entirety as if physically present in this specification.

BIBLIOGRAPHY

AIHW (2010) Cancer series 52 Cat No. CAN48

Berek et al. (1985) Cancer Res. 45:4447-53

Berek et al. (1999) Gynecol Oncol. 75(1):10-4

Bowtell et al. (2010) Nature Rev Cancer 10(11):803-8

Bruzzone et al. (1997) Gynecol Oncol. 65(3):499-505

Bunin et al. (1994) Proc. Natl. Acad. Sci. USA, 91:4708-4712

DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA, 90:6909-6913

Domcke et al. (2013) Nature Communications 4:2126

Egleton (1997) Peptides 18:1431-1439

Fix (1996) Pharm Res. 13:1760-1764

Frasci et al. (1994) Eur J Cancer 30A(7):946-50

Fung et al. (2013) Science 339(123):1088-1092

Jayson et al. (2014) The Lancet 284(9951):1376-88

Kobolt et al. (2012) Nature 490(7418):61-70

Langer (1990) Science 249:1527-1533

Mangan et al. Eur J Immunol, 2007, 37(5):1302-12

Markman et al. (1992) Gynecol Oncol. 45(1):3-8

Markman et al. (2004) Oncology 66(5):343-6

Moore et al. (1995) Gynecol Oncol. 59(2):267-72

Patton (1998) Biotechniques 16:141-143

Peng et al. (2007) Prot Expr Purif 53:356-364

Putney (1998) Nat. Biotechnol. 16:153-157

Roby et al. (2000) Carcinogenesis 21(4):585-591

Salamonsen et al. Semin Reprod Med, 2007, 25(6):437-44

Samanen (1996) J. Pharm. Pharmacol. 48:119-135

Sieh et al. (2013) The Lancet Oncology 14(9):853-62

Smith et al. J Immunol, 2007, 178(7):4557-66

Thakkar and Mehta (2011) Oncologist 16(3):276-85

Tothill et al. (2008) Clin Cancer Res. 14(16):5198-208

Venkitaraman (2014) Science 343(6178):1470-5

Willemse et al. (1990) Eur J Cancer Clin Oncol 26(3):353-8

CLAIMS:

1. A method for inhibiting a cancer cell in a subject, said method comprising contacting the cancer cell with an amount of interferon epsilon (IFN ε) or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfne expression or IFN ε activity effective to indirectly or indirectly induce apoptosis of the cancer cell proliferation, motility and/or migration.
2. The method of Claim 1 wherein the IFN ε is derived from a species homologous to the species of the subject being treated.
3. The method of Claim 1 wherein the IFN ε is derived from a species heterologous to the species of the subject being treated.
4. The method of Claim 1 or 2 or 3 wherein the subject is a human.
5. The method of Claim 4 wherein the IFN ε is recombinant human IFN ε or a modulator of lfn ε expression.
6. The method of Claim 4 wherein the IFN ε is recombinant non-human IFN ε or a modulator of lfne expression.
7. The method of Claim 4 wherein the IFN ε is a hybrid between human and nonhuman IFN ε.
8. The method of Claim 7 wherein the IFN ε is a hybrid between human and murine IFN.
9. The method of any one of Claims 1 to 8 wherein the cancer cell is derived from epithelial tissue, connective tissue, glandular tissue, embryonic tissue, hemopoietic cells, lymphatic tissue or bone marrow or cells from which such cells are derived.
10. The method of Claim 9 wherein the cell is a cancer cell from the ovary, uterus, fallopian tube, endometrium, placenta, breast, testis, prostate, brain, stomach, liver, spleen, pancreas, thymus, colon, lung, kidney, heart, thyroid or smooth muscle.
11. The method of Claim 10 wherein the cell is an ovarian cancer cell.
12. The method of Claim 11 wherein the ovarian cancer cell is a low to high grade serous carcinoma cell.
13. The method of Claim 12 wherein the ovarian cancer cell is a high grade serous carcinoma cell.
14. The method of any one of Claims 1 to 13 wherein the IFN ε or functional natural or synthetic variant or hybrid form directly or indirectly induces apoptosis of the cancer cell.
15. The method of any one of Claim 1 to 14 wherein the IFN ε or variant, hybrid or modulator is used in combination with another anti-cancer agent.
16. The method of Claim 15 wherein the anti-cancer agent is selected from the group consisting of an antimetabolites, anti-tumor antibiotics, mitotic inhibitors, steroids, sex hormones or hormone-like drugs, alkylating agents, nitrogen mustard, nitrosoureas, hormone agonists and microtubular inhibitors.
17. The method of any one of Claims 1 to 16 wherein the amount of IFN ε or variant or hybrid is from $10 \mathrm{IU} /$ dose to $10^{6} \mathrm{IU} /$ dose.
18. A method for treating a subject with cancer, said method comprising administering to said subject an effective amount of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfne expression or IFN ε activity for a time and under conditions sufficient to induce apoptosis of cancer cells or inhibit cancer cell proliferation motility and/or migration.
19. The method of Claim 18 wherein the IFN ε is derived from a species homologous to the species of the subject being treated.
20. The method of Claim 18 wherein the IFN ε is derived from a species heterologous to the species of the subject being treated.
21. The method of Claim 18 or 19 or 20 wherein the subject is a human.
22. The method of Claim 21 wherein the IFN ε is recombinant human IFN ε or a modulator of lfn ε expression.
23. The method of Claim 21 wherein the IFN ε is recombinant non-human IFN ε or a modulator of lfne expression.
24. The method of Claim 21 wherein the IFN ε is a hybrid between human and nonhuman IFN ε.
25. The method of Claim 24 wherein the IFN ε is a hybrid between human and murine IFN ε.
26. The method of any one of Claims 18 to 25 wherein the cancer is a cancer of epithelial tissue, connective tissue, glandular tissue, embryonic tissue, hemopoietic cells, lymphatic tissue or bone marrow.
27. The method of Claim 26 wherein the cancer is in the ovary, uterus, fallopian tube, endometrium, placenta, breast, testis, prostate, brain, stomach, liver, spleen, pancreas, thymus, colon, lung, kidney, heart, thyroid or smooth muscle.
28. The method of Claim 27 wherein the cancer is ovarian cancer.
29. The method of Claim 28 wherein the ovarian cancer is a high grade serous carcinoma.
30. The method of any one of Claim 1 to 29 wherein the IFN ε or variant, hybrid or modulator is used in combination with another anti-cancer agent.
31. The method of Claim 30 wherein the anti-cancer agent is selected from the group consisting of an antimetabolites, anti-tumor antibiotics, mitotic inhibitors, steroids, sex hormones or hormone-like drugs, alkylating agents, nitrogen mustard, nitrosoureas, hormone agonists and microtubular inhibitors.
32. The method of any one of Claims 1 to 31 wherein the amount of IFN ε or variant or hybrid is from $10 \mathrm{IU} /$ dose to $10^{6} \mathrm{IU} /$ dose.
33. Use of IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or $\operatorname{IFN} \varepsilon$ activity in the manufacture of a medicament in the treatment of cancer in a subject.
34. IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity for use in the treatment of cancer in a subject.
35. Use of Claim 33 or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 34 wherein the IFN ε is derived from a species homologous to the species of the subject to be treated.
36. Use of Claim 33 or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 34 wherein the IFN ε is derived from a species heterologous to the species of the subject to be treated.
37. Use or $\operatorname{IFN} \varepsilon$ or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 34 or 35 or 36 wherein the subject is a human.
38. Use or $\operatorname{IFN} \varepsilon$ or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 37 wherein the IFN ε is recombinant human IFN ε.
39. Use or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 37wherein the IFN ε is recombinant non-human IFN ε.
40. Use or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 34wherein the IFN ε is a hybrid between human and non-human IFN ε.
41. Use or IFN\& or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 40 wherein the IFN ε is a hybrid between human and murine $\mathrm{IFN} \varepsilon$.
42. Use or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of any one of Claims 33 to 41 wherein the cancer is a cancer of epithelial tissue, connective tissue, glandular tissue, embryonic tissue, hemopoietic cells, lymphatic tissue or bone marrow.
43. Use or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 42 wherein the cancer is in the ovary, uterus, fallopian tube, endometrium, placenta, breast, testis, prostate, brain, stomach, liver, spleen, pancreas, thymus, colon, lung, kidney, heart, thyroid or smooth muscle.
44. Use or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity or a modulator of lfn ε expression or IFN ε activity of Claim 43 wherein the cancer is ovarian cancer.
45. Use or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 44 wherein the ovarian cancer is a high grade serous carcinoma.
46. Use or IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity wherein the use is an adjuvant for another anti-cancer agent.
47. Use or $\operatorname{IFN} \varepsilon$ or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity of Claim 46 wherein the anti-cancer agent is selected from the group consisting of an antimetabolites, anti-tumor antibiotics, mitotic inhibitors, steroids, sex hormones or hormone-like drugs, alkylating agents, nitrogen mustard, nitrosoureas, hormone agonists and microtubular inhibitors.
48. A formulation comprising IFN ε or a functional natural or synthetic variant or hybrid form thereof or a modulator of lfn ε expression or IFN ε activity and one or more carriers, adjuvants and/or excipients for use in the treatment of cancer.
49. The formulation of Claim 48 wherein the cancer is cancer of the ovary, uterus, fallopian tube, endometrium, placenta, breast, testis, prostate, brain, stomach, liver, spleen,
pancreas, thymus, colon, lung, kidney, heart, thyroid or smooth muscle.
50. The formulation of Claim 49 wherein the cancer is ovarian cancer.
51. The formulation of any one of Claims 41 to 50 in combination with an anti-cancer agent.
52. The formulation of Claim 51 wherein the anti-cancer agent is selected from the group consisting of an antimetabolites, anti-tumor antibiotics, mitotic inhibitors, steroids, sex hormones or hormone-like drugs, alkylating agents, nitrogen mustard, nitrosoureas, hormone agonists and microtubular inhibitors.

Figure 1

A

D

B

E

C

Cdc20
a)

Figure 3
A)

C)

Figure 4

Figure 5
A) Live Cells
B) Necrotic Cells

Figure 6

IFN ε

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

[^0]: * J. D. Salanger

[^1]: * The concept of 'immunosurveillance', introduced by Burnet in the 1960s, suggests that circulating lymphocytes patrol tissues \& play a key role in eliminating neoplastic or transforming cells, likely through recognition of tumour-associated antigens (Burnet FM. Lancet 1967).

[^2]: *For the purposes of this thesis the supplementary tables S1-S28 are located in the Appendices.

[^3]: *Data are expressed as number of participants and percentage of the total cohort for each column. Significance is determined by Fisher's Exact Test and P values are indicated.

[^4]: panCK CD41 CD8 CD45RO CD4 FoxP3 DAPI

[^5]: ${ }^{6}$ These authors contributed equally to this work.

[^6]: ${ }^{\text {a }}$ From the Spanish 'poco a poco, se va lejos'. Popularly attributed to J.R.R. Tolkien

[^7]:

[^8]:

[^9]:

[^10]:

[^11]:

[^12]:

[^13]:

[^14]:

[^15]:

[^16]:

[^17]:

[^18]:

[^19]:

[^20]:

[^21]:

[^22]: 要

[^23]: UBTF
 USP13
 WNT7B
 ZNF204P
 ZNF780A
 ZXDB
 $\begin{array}{ll}\text { Supplementary Table } 25 \text { IRGs up in 'Metastasis' } \text { 'Primary' } \\ \text { Ensembl Id } & \text { Gene Name } \\ \text { ENSG00000072110 } & \text { ACTN1 } \\ \text { ENSG00000108839 } & \text { ALOX12 }\end{array}$ ENSG00000156381 ANKRD9管 BCL2L11
 CBX7 \sum_{0}^{m} F13A1
 FAXDC2 FGF13
 FHL1 FKBP1B FOSB H2BFS HIST1H2AC HIST1H2BK N
 Nㅓㅔ

 N 운 ENSG00000108312 ENSG00000058056 ENSG00000188064 ENSG00000204789 ENSG00000197782 ENSG00000198455 | Supplementary Table 25 |
 | :--- |
 | Ensembl Id |
 | ENSG00000072110 |
 | ENSG00000108839 |
 | ENSG00000156381 |
 | ENSG00000151693 |
 | ENSG00000153094 |
 | ENSG00000100307 |
 | ENSG00000197959 |
 | ENSG00000124491 |
 | ENSG00000170271 |
 | ENSG00000129682 |
 | ENSG00000022267 |
 | ENSG00000119782 |
 | ENSG00000125740 |
 | ENSG00000234289 |
 | ENSG00000064393 |
 | ENSG00000180573 |
 | ENSG00000197903 |
 | ENSG00000136231 |
 | ENSG00000067082 |

