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ABSTRACT 

Traditional photocurrent measurement relies on wide-band direct measurement and 

amplification technique. Such a measurement technique may result in big and complex signal 

conditioning circuit especially for sensors that produce minute current with high output 

impedance. The traditional measurement also requires high quality power supply and careful 

shielding to minimise electromagnetic interference from the surrounding environment. 

Hence, it becomes costly to perform such measurement for sensors with low charge 

generation efficiency. In view of this, this research proposes a technique of using the 

statistical data obtained from the frequency response function (FRF) of a photosensor as an 

indirect light intensity measurement. The proposed research started with the initial works into 

the frequency response of the RC photodetector excited by noise utilizing best linear 

approximation (BLA) measurement methodology. Two excited signals, random phase 

multisine and Gaussian noise have been applied to activate the measurement circuit. The 

photocurrent was sourced from miniature solar cell and OPV cells respectively in tandem 

with different light irradiance from a dimmable LED light bulb. Results show that the 

standard deviation of the frequency response function (FRF) of the measurement circuit is a 

monotonic function of the photocurrent. Larger current due to higher light intensity produces 

wider spread of standard deviations. The correlation is generally valid across all frequency 

bands but much stronger at certain frequencies. The magnitude of the photocurrent can be 

deduced with reasonable accuracy by measuring the standard deviation of FRF at selected 

frequencies without resorting to the use of high-end current measuring instruments. This 

particular feature may be useful in sensor design because it allows noise sources with stable 

statistical characteristics to be used in the measurement circuit. The promising result provides 

hindsight to an indirect method to measure the response of sensors especially those sensors 

that produce minute electrical signal, thus avoiding environmental interference encountered 

in wide-band direct current measurement technique. The proposed technique is not limited to 

optical sensor, the method can be generalized to any sensor that produces electrical signal. 

The simplicity of the experimental setup and analysis of the proposed BLA measurement 

circuit suggests that it is possible to miniaturize the measurement circuit such that it can be 

embedded directly and be built as an integrated part of a particular photosensor. This will 

provide a complete low-cost solution for light intensity detection, especially for application in 

“on/off” switch control of electrical appliances. 
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CHAPTER 1 INTRODUCTION 

1.1 Background & Motivation 

Photocurrent measurement has been important to the design of various light sensing devices. 

Even though there are numerous light sensing technologies with wide spectrum of different 

techniques employed, the underlying physical principle of sensing remains the same. The 

general physical mechanism of light sensing can be summarized as follows: the photon 

excites certain molecules in the sensing element; in turn, this excitation generates secondary 

or higher order reaction that creates free flowing electric charges. The movement of the 

photon-generated electrical charge under an applied electrical field is called photocurrent. 

The amount of photocurrent is proportionately correlated to the amount of photons or light 

intensity that the sensing element is exposed to. By measuring and quantifying the 

photocurrent, the light intensity can be indirectly quantified. Using a spectrally selective 

sensor, the correlation between photocurrent and the photon intensity can be used to produce 

a colour sensor [1]. 

 

One of the difficulties in measuring the photocurrent is the low conversion efficiency and 

high output impedance of sensing materials [1], [2], [3]. With the exception of highly 

optimized solar cells, most photosensitive materials have a relatively low photoelectric 

conversion efficiency (PCE). The low power density of light and the low PCE generates a 

very small quantity of free electric charges. Majority of the photosensitive materials are not 

good conductors; the high impedance removes significant fraction of the free charges before 

they can be measured by an external measuring circuit. Thus, the amount of photocurrent that 

can be measured from external circuit is both very small and load dependent. This is an issue 

because small current measurement is susceptible to exogenous noise. In addition, the high 

output impedance causes the measurement to be sensitive to minute component drifts in the 

measurement circuits which significantly affects the overall robustness of the sensor.  

 

Currently, the only solution to overcome this measurement issue is to use material with high 

PCE. This approach relies on the advancement of material science and nano-fabrication 

technology, thus making the progress both expensive and highly uncertain. Furthermore, the 

standard sensor design requires electromagnetic interference (EMI) shielding and low drift, 

both of which results in a bulky and expensive measurement circuit.  



 

2 

 

 

Apart from fine-tuning the sensor layout to minimize the output impedance, there is very 

little scope of improvement from the engineering design perspective. The effectiveness of 

layout tuning is also bounded by the choice of sensing material. Therefore, this research aims 

to develop and propose an engineering solution to the photocurrent measurement problem 

that is independent of advancement in material science. Instead of drawing photocurrent 

directly to assess the light intensity, this research proposes to indirectly quantify the light 

intensity without drawing any significant photocurrent. This will therefore alleviate the 

problem of low conversion efficiency and high output impedance. The proposed method uses 

an active excitation signal to probe the sensor. The sensor interacts with the excitation signal 

through voltage instead of current. 

 

1.2 Research Problem 

Traditional photocurrent measurement works on wide-band direct measurement and 

amplification principle. Such technique may amplify noise coupled into the measurement 

circuit, require EMI shielding and complex signal conditioning circuitry. This is especially 

true for sensors with low charge generation capacity and high output impedance. The 

conventional technique is also costly as it needs top-notch equipment and high quality power 

supply. Hence, there is a need to find an alternative solution to address the photocurrent 

measurement problems faced by the optical sensors that produce minute photocurrent. The 

proposed alternative solution in this research is looking into the frequency domain 

measurement technique to find a correlation to the direct traditional photocurrent 

measurement technique. Instead of filtering noise in the measurement, the technique will 

couple onto an excitation noise source to produce the statistical measurement of 

nonlinearities present in the measurement circuit as an indirect strength indication of the 

measured photocurrent. 

 

1.3 Research Objectives 

The research aims to develop a frequency domain photocurrent measurement framework, and 

to prove the feasibility of using the technique as a low-cost solution for detecting light 

intensity. The research seeks to prove the concept, and the use of such technique in 

effectively overcoming the problems faced by present measurement technique. 
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To meet the aims of the research, two objectives are developed as below: 

1. To define the frequency domain photocurrent measurement methodology flow 

2. To design and construct a measurement circuit board 

3. To apply the measurement technique on photocurrent detection 

 

1.4 Research Hypothesis 

Photocurrent can be measured using frequency domain statistics based on statistical analysis 

of any nonlinear systems that can be modelled as Volterra series.. In this case, the standard 

deviation of frequency response function (FRF) is used as an indirect inference of light 

intensity. This noise excited measurement is particularly suitable for low power applications 

and can be generalized to any sensors especially those sensors with high output impedance 

and produce weak signal. The proposed measurement technique is low cost, does not require 

high quality power supply and EMI shielding. 

 

1.5 Contributions To Knowledge 

The novel measurement technique is based on introduction of noise excitation source to a 

signal measurement circuit, and statistical computation on the frequency response function 

(FRF) of the output signal. The proposed research looks into a total solution to the frequency 

domain photocurrent measurement. The work starts with a three-electrode measurement 

system where the excitation signal is applied via a different electrode rather than the input 

electrode for the photocurrent source. The research covers but not limited to the formulation 

of frequency domain photocurrent methodology flow, the design of the measurement circuit 

and technique, the statistical signal computation and analysis. The accuracy of the 

measurement technique is verified through measurement works on few optical sensors, and 

results compared with those obtained using conventional current amplification method. The 

standard deviations of FRF are used as an indicator of the strength of the measured physical 

signal without the needs for high quality dc or ac power supply. This technique allows the 

examination of sensors with very high output impedance at a fraction of setup cost for 

expensive equipment. 
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1.6 Organization of the Report 

Chapter 2 contains four sections which form the literature review component of this research. 

The first section reviews the physics of photocurrent generation. The equivalent circuit 

models, both static and dynamic models, are discussed in the second section. The 

photocurrent measurement techniques are then presented in the third section. The fourth 

section is dedicated to the discussion of nonlinear systems, in particular Volterra systems. 

This is followed by a section to provide overview of some of the works that have been carried 

out on Volterra systems over the years. The chapter is wrapped up in final section with a 

discussion to the various nonlinearity sources present in photocurrent. 

 

Chapter 3 describes the novel methodology framework for frequency domain photocurrent 

measurement. The chapter starts with the concept of best linear approximation, and the use of 

this approximation in estimating the variance of photocurrent measurement in frequency 

domain. The design of the measurement circuit with the use of random phase multisine and 

Gaussian noise as an excitation source to the measurement circuit is then introduced. A 

methodology flow chart is presented on the proper procedures to follow for the measurement 

technique to produce the correct results. 

 

Chapter 4 presents a theoretical investigation into the sources of nonlinearities that give rise 

to the peaks of standard deviations of frequency response function at certain frequencies. The 

nonlinearities come from the devices in generating the photocurrent as well as the 

measurement circuit itself. A Simulink model with the relevant Matlab scripts has been 

described. This is followed by the presentation of power spectral density plots on the standard 

deviations based on the simulated frequency response function. 

 

Chapter 5 first describes the experimental set-up of the proposed frequency domain 

photocurrent. This is followed by the measurement data obtained using miniature 

photovoltaic cell as a photocurrent source, first with mutltisine and then with Gaussian noise 

as the excitation signal to the photocurrent. Measurement data with organic photovoltaic cell 

as the source of photocurrent with Gaussian noise as the excitation signal is then presented. 

Regression analysis has been carried out on the dominant frequency for each set of 

experimental data. Analysis on the experimental results were given where necessary to 

explain the findings. 
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Chapter 6 is where conclusion is drawn with a summary of works done. Future possible 

works to be carried out are then briefly highlighted. 

 

Appendix A provides the additional simulation results whereas Appendix B includes 

additional experimental results not presented in the main body. Appendix C presents the 

electrical characterisation and fabrication conditions of the fabricated organic photovoltaic 

devices. Appendix D lists the Matlab scripts for excitation signal generation. Appendix E 

outlines the various Labview VI programs developed to carry out the experiments and to 

acquire the experimental data using National Instruments equipment. Matlab scripts to 

process the experimental data and formatting on the plots are included in Appendix F. Other 

Matlab scripts for data analysis are shown in Appendix G. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Background on Photocurrent 

Photocurrent is the electric current generated by a photosensitive device such as a 

photovoltaic cell, photocell, photodiode, etc. upon exposure to light as a result of either 

photovoltaic, photoconductive or photoemissive effect. The general physical mechanism of 

light sensing can be summarized as follows: the photon excites certain molecules in the 

sensing element; in turn, this excitation generates secondary or higher order reaction that 

creates free flowing electric charges. The movement of the photon-generated electrical charge 

under an applied electrical field is what constitutes the photocurrent. The photocurrent is 

directly proportional to intensity of radiation when a suitable radiation is used, and can be 

further enhanced by internal gain due to the interaction of photons and ions with an applied 

field. Photocurrent increases with accelerating potential until saturation current is reached at 

which the generated photocurrent is at maximum and does not increase further with 

increasing accelerating potential. On the other hand, there is a retarding potential called 

stopping potential at which no photocurrent is generated for a given frequency of incident 

light rays as illustrated in Fig. 2-1. 

 

Fig. 2-1. Photocurrent at different applied bias and light intensity 

 

2.1.1 Photovoltaic Effect 

For photovoltaic effect to take place, the optical detector must have a region in which 

majority carriers of the electrical conductivity are holes (i.e. p-type material) in abutment 

with a region with electrons as the majority carriers (i.e. n-type material) to form a p-n 

junction. When optical energy strikes the p-n junction, additional electron-hole pairs are 

thermally generated. The thermally generated holes are then swept to the p-side due to the 

presence of negatively ionised immobile acceptors at the p-side of space charge region (SCR) 
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while the thermally generated electrons are swept to the n-side due to the presence of 

positively ionised immobile donors at the n-side of SCR. These excited carriers subsequently 

recombine and return to steady state via an external circuit thus producing photocurrent in the 

return path as illustrated in Fig. 2-2. Photovoltaic current is thus generated as a result of the 

absorption of photons that creates a voltage difference across a p-n junction, that is the 

generation of photo voltage. 

 

Fig. 2-2. Photocurrent generation via photovoltaic effect 

 

2.1.2 Photoconductive Effect 

The electrical conductivity of a photoconductive material changes as a function of the 

irradiance. Thus, it leads to having increasing electrical conductivity with increasing intensity 

of the incident light resulting from increasing number of free carriers generated when photons 

are absorbed as illustrated in Fig. 2-3. An example will be light-dependent resistor (LDR) in 

which exposure to light reduces / increases the resistance of the material, depending on 

whether the resistance material is positive or negative correlated with light radiation. 

 

Fig. 2-3. Photocurrent generation via photoconductive effect 
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2.1.3 Photoemissive Effect 

Photoemissive effect occurs when energy supplied by incident light radiation. The incident 

photons release electrons from the conduction band of usually solid material such as doped 

silicon as illustrated in Fig. 2-4. A photoemissive cell, sometimes called photocell, emits 

photoelectrons from its light sensitive surface when photons with sufficient energy are made 

incident on it. 

 

Fig. 2-4. Photocurrent generation via photoemissive effect 

 

2.2 Equivalent Circuit Model of Photovoltaic Cell 

2.2.1 Photovoltaic Cell 

A photovoltaic (PV) cell is made out of two layers of semiconducting materials which are 

referred to as the p-type layer and n-type layer. A pn-junction is formed whenever a p-type 

material is abutted to an n-type material. The doping profile at the junction can take several 

shapes, with two popular doing profiles being the abrupt junction or linearly graded junction. 

 

2.2.2 Static I-V Characteristics 

An equivalent circuit is created for a PV cell to better understand the physical configuration 

of the elements of the cell as well as the electrical characteristics of each element. Fig. 2-5 

shows the conventional static equivalent circuit model without parasitic resistances. 

Photocurrent source Iph is connected in parallel with the diode. The diode is to model the 

current-voltage characteristics of the PV cell under dark condition. 
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Iph

+

-

Id

I

V

 

Fig. 2-5. Ideal conventional equivalent circuit model of a PV cell in the absence of parasitic 

resistances 

 

For this ideal equivalent circuit model, the externally measured current I can be related to 

photoelectric voltage V through the following expression: 

 𝐼 = 𝐼ph − 𝑓(𝑉) 

(2-1) 

where f(V) represents the dark I-V characteristics of PV cell. 

 𝑓(𝑉) = 𝐼𝑑 = 𝐼𝑜 ∙ (𝑒
(

𝑉

𝑛∙𝑉𝑇
)

− 1) 

(2-2) 

where Io is the diode saturation current, n is the ideality factor, and VT is the thermal voltage 

of a PV cell. 

 

Based on this ideal model, short-circuit current Isc is simply equal to Iph, and the open-circuit 

voltage can be obtained from: 

 𝑓(𝑉𝑜𝑐) = 𝐼𝑝ℎ = 𝐼𝑜 ∙ (𝑒
(

𝑉𝑜𝑐
𝑛∙𝑉𝑇

)
− 1)     →   𝑉𝑜𝑐 = 𝑛 ∙ 𝑉𝑇 ∙ 𝑙𝑛 (

𝐼𝑝ℎ

𝐼𝑜
+ 1) 

(2-3) 

 

However, a PV cell is always associated with parasitic resistances. Series resistance Rs 

accounts for the movement of current through the emitter and base of the PV cell, the contact 

resistance between the metal contact and the silicon and the resistance of the top and rear 

metal contacts [2]. On the other hand, shunt resistance Rsh is to model the power losses of PV 

cell due to manufacturing defects. Fig. 2-6 shows the static equivalent circuit model for a PV 

cell with parasitic series resistance Rs and shunt resistance Rsh [3]. Equation (2-2) can then be 

modified as: 

 𝐼 = 𝐼ph − 𝑓(𝑉 + 𝐼 ∙ 𝑅𝑠) − (
𝑉+𝐼∙𝑅𝑠

𝑅𝑠ℎ
) = 𝐼ph − 𝐼𝑜 ∙ (𝑒

(
𝑉+𝐼∙𝑅𝑠

𝑛∙𝑉𝑇
)

− 1) − (
𝑉+𝐼∙𝑅𝑠

𝑅𝑠ℎ
) 

(2-4) 
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RS

RshIph

+

-

Id Ish

I

V

 

Fig. 2-6. Conventional static equivalent circuit model of a PV cell with a diode, series 

resistance Rs and shunt resistance Rsh 

 

A second diode as shown in Fig. 2-7 can be added to more accurately predicting the 

performance of the photovoltaic cell at low irradiance levels. Two-diode model is introduced 

because one-diode model is not able to model the recombination in the junction at lower 

voltages as the ideality factor n approaches close to two [4], [5], [6]. 

RS

RshIph

+

-

Id1 Ish

I

V

Id2

 

Fig. 2-7. Static equivalent circuit model of a PV cell with two diodes, a series resistance Rs 

and a shunt resistance Rsh 

 

Equation (2-4) can then be modified as: 

 𝐼 = 𝐼ph − 𝑓′(𝑉 + 𝐼 ∙ 𝑅𝑠) − (
𝑉+𝐼∙𝑅𝑠

𝑅𝑠ℎ
) = 𝐼ph − 𝐼𝑑 − (

𝑉+𝐼∙𝑅𝑠

𝑅𝑠ℎ
) 

(2-5) 

where 

 𝐼𝑑 = 𝐼𝑑1 +  𝐼𝑑2 = 𝐼𝑜1 ∙ (𝑒
(

𝑉+𝐼∙𝑅𝑠
𝑛1∙𝑉𝑇

)
− 1) + 𝐼𝑜2 ∙ (𝑒

(
𝑉+𝐼∙𝑅𝑠
𝑛2∙𝑉𝑇

)
− 1) 

(2-6) 

and Io1 and Io2 are the diode saturation current while n1 and n2 are the ideality factor for diode 

1 and 2 respectively. 

 

2.2.3 Dynamic I-V Characteristics 

The conventional equivalent circuit model as shown in Fig. 2-6 and Fig. 2-7 is static in nature 

that precludes the transient behaviour of the photocurrent produced by the PV cell. The 
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conventional model has been developed based on the assumption that the photo-generated 

current Iph is constant for given incident light intensity and is independent of voltage. A 

dynamic behaviour with the modulation of photocurrent of PV cell as a function of voltage in 

reverse-biased mode can be attributed to the presence of a nonlinear depletion capacitance 

around the p-n junction. It has been reported that PV cell under dark condition is capacitive 

and can be equivalent to a parallel circuit consisting of a diode and its junction capacitance 

[7], [8], [9]. Based on Kirchhoff’s current law, it has been deduced that the ideal dynamic 

model of the PV cell must be parallel circuit composed of the photocurrent source, the diode 

and its equivalent capacitance. 

 

The modified equivalent circuit model for photovoltaic cell with dynamic behaviour used in 

this research is as shown in Fig. 2-8. The capacitive effect is due to the excess of minority 

carriers stored in the quasi-neutral region of a diode. These effects can be modelled by the 

use of a voltage and frequency dependent junction capacitance Cj. 𝐶𝐽  is made up of two 

components, namely the diffusion capacitance 𝐶𝑑 in forward bias mode, and the depletion 

capacitance which is also termed as the transition capacitance, 𝐶𝑡 in reverse bias mode. Refer 

to Section 2.6.2 for a more detailed explanation of 𝐶𝑑 and 𝐶𝑡. Ls is included to model the 

inductive effect due to the wiring of the PV cell [3]. 

Cj

RS

RshIph

+

-

Id1 Ish

Imod Iload

Vload

Id2

LS

+

-

Vmod

Ic

Cj

RS

RshIph

+

-

Id1 Ish

Imod Iload

Vload

Id2

LS

+

-

Vmod

Ic

 

 

Fig. 2-8. Dynamic equivalent circuit model of a PV cell with junction capacitance Cj 

 

The junction capacitance Cj can be determined by the use of equation (2-7) [10]. 

 𝐼𝑐 = 𝐶𝑗 ∙
𝑑𝑉𝑚𝑜𝑑

𝑑𝑡
+ 𝑉𝑚𝑜𝑑 ∙

𝑑𝐶𝑗

𝑑𝑡
 

(2-7) 

The capacitive current 𝐼𝑐 is the result of modulating excitation source 𝑉𝑚𝑜𝑑  across the pn-

junction and dynamic capacitive effect Cj of the pn-junction. The photocurrent Imod is time 

varying and is modulated by the use of an external excitation source in this case. Hence, the 

output current Iload is a dynamic function of the modulating photocurrent Imod. 
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2.3 Photocurrent Measurement Techniques 

This section presents the various direct current measurement techniques that had been 

reported in the past with regards to the photoelectrical response measurement of 

bacteriorhodopsin (bR) based photoreceptors. However, the techniques are not restricted to 

bR-based photoreceptors alone and can be generally applied to any optical sensors. 

 

When a bR-based photodetector is incorporated into an artificial membrane, illumination by a 

continuous light will generate a proton gradient across the membrane. This approach is used 

to measure the DC photoelectric effect of the photodetector. For AC photoelectric effect, a 

short pulse of light can be used to excite the photodetector to register a fast photoelectric 

response. 

 

The photoelectric output of bR-based photodetector has been examined as a function of 

differential light intensity in [5] as the rate of change in imaging light intensity. Fig. 2-9 

shows the response profile of photoelectric signals from a bR-based photoreceptor. The 

photoreceptor was exposed to green light supplied by a 150W Xenon arc lamp in 

combination with a bandpass filter (transmission > 470nm with peak at 540nm, maximum 

intensity of 5 – 10 mW/cm2). The light intensity was changed stepwise during irradiation by 

the use of neutral density filters. Its pattern as monitored by a photodiode is shown at the 

bottom of Fig. 2-9. Each step corresponds to an equivalent change in light intensity of ~ 2 

mW/cm2. The response appears differential against light intensity change. The polarity of the 

photo response changes at the rising and falling edges of the input step signal, which 

corresponds to the charge displacement inside the bR film. The peak of the differential 

response varies directly with changes in light intensity provided that saturation does not 

occur. The magnitude of such response is also dependent upon the wavelength of the incident 

light. 
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Fig. 2-9. Response profile of photoelectric signals from a bR-based photoreceptor [11] 

 

2.3.1 Current Amplification Technique 

In conventional method, photoelectric response of sensors is measured with current detection 

method. The weak photocurrent is amplified using operational amplifier as shown in Fig. 

2-10 [12]. The bR-based photodetector is connected to the inverting input of an op-amp. The 

load resistance Rf and capacitance Cf are connected on the feedback loop of the op-amp. 

 

Fig. 2-10. Simplified equivalent circuit of bR-based photodetector measured by photocurrent 

mode [12] 

 

Another readout circuit to measure the dynamic photoelectric response of the bR-based 

photodetector is as shown in Fig. 2-11 [13]. The bR-based photodetector goes directly to the 

non-inverting input of the precision op-amp LMC6061 which has input impedance of about 

10 TΩ. The conditioned signals were fed directly into a 2G sampling/s 100 MHz digital 

oscilloscope (Agilent 54825A). The photodetector together with the processing circuit was 

placed in a light sealed metal box to avoid environmental electromagnetic interference. A 
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tunable lamp was used as the light source to excite the photodetector. The measurements 

were performed at the room temperature. 

 

 
Fig. 2-11. Signal processing circuit to measure the dynamic photoelectric response of bR-

based photodetector [13] 

 

Miyasaka and Koyama [11] reported an amplification circuit with the use of dual operational 

amplifiers. Photocurrents produced at the photoreceptor are converted and amplified in the 

voltage mode by the two operational amplifiers as shown in Fig. 2-12. The amplified voltage 

is used to drive a LED for each photosensor for parallel image display. The photo response 

was found to be non-linear and appears to fit a hyperbola. It wasn’t known the mechanism for 

the non-linear relationship at that stage of investigation. 

 

Fig. 2-12. Signal transmission and amplification circuit for image display [11] 
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2.3.2 Charge Amplification Technique 

A charge amplifier is a current integrator which produces an output voltage in proportional to 

the integrated value of the input current. The circuit acts as a charge-to-voltage converter. 

While a current amplifier converts current to voltage by the use of a resistor, a charge 

amplifier converts electric charge to voltage by the use of a capacitor. Fig. 2-13Fig. 2-13 

shows the comparison of a current amplifier versus a charge amplifier [14]. A charge 

amplifier has been proposed to measure the photo response of a bR-based photoreceptor with 

ITO/bR/KCI/Au sandwiched structure. 

 
Fig. 2-13. Comparison of current amplifier versus charge amplifier [14] 

 

If the charge generating response is measured by current, a differential waveform is observed 

as current is defined as I = dq/dt, and the bR photoreceptor generates electric charges in 

proportional to the incident light intensity. In [14], a halogen lamp was projected on a bR-

based photodetector where the light intensity was 3.3 mW/cm2 for the first 2 seconds and 5.3 

mW/cm2 for the next 2 seconds as shown in Fig. 2-14(a). For the case of current detection, 

only differential response of the intensity has been obtained as shown in Fig. 2-14(b). In 

contrast, for the case of charge detection, the proportional response to the light intensity has 

been observed as shown in Fig. 2-14(c). Hence, the charge detection method is more accurate 

as the method is able to detect the proportional response of the photodetector in tandem with 

the light intensity. However, the accuracy of this method is subjected to circuit component 

variation and environmental noise just like the case for current detection method [11]. 
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Fig. 2-14. (a) Profile of light intensity, (b) output signal of bR-based photodetector measured 

with a current amplifier, (c) output signal of bR-based photodetector measured with a charge 

amplifier [14] 

 

2.3.3 Switched Integration Technique 

Based on current approach, bR sensors will be polarised by exposure to light and the state of 

polarisation is assessed by direct time-domain photocurrent measurement. Wang et al. [15] 

has proposed the design of using a switched integrator from IVC102 chip as a preamplifier 

for each sensing element as shown in Fig. 2-15. The three dashed boxes represent the 

simplified bR equivalent circuit model, switched integrator implemented using IVC102 chip 

and a sample & hold circuitry. The output of the photoreceptor is connected to the inverting 

input of the op-amp via a sample switch S1 while the non-inverting input is grounded, Switch 

S2 connected in parallel with the integrating capacitors to provide a discharging path. 

Amplified signal is connected to a holding capacitor via a readout switch S3. A PIC12F675 

microcontroller is programmed to provide the digital timings for S1 – S3 switches. To process 

each of the multiple photoreceptors, a multi-channel readout architecture is used. 

 

As the resistance of a bR element is in the range of 1010 – 1012 Ω, the test performance is 

highly dependence on the electronic circuitry used to condition and amplify the extremely 
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small signal. A highly optimized electronic circuit with high input-impedance and low noise 

amplification is thus desirable. 

 

Fig. 2-15. Switching integrator circuitry for measuring the photoelectric response of bR 

photoreceptor [15] 

 

2.3.4 MOS Transistor Amplification 

Jonhyun Shin et. al. [16] demonstrated the integration of bR film with a silicon n-channel 

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) to form a photordetector as 

shown in Fig. 2-16. The external resistance Rext is 100 MΩ which matches the resistance of 

the bR film. The photodetector circuit as shown in Fig. 2-16 has been biased for dc operation 

of the nMOS transistor with a drain-source voltage, Vds = 0.7 V. The excitation was provided 

by an unpolarized 594 nm light source from a He-Ne laser (0.8 W/cm2). The dc bias across 

the gate-source voltage, Vgs = 1.1 V, shifts the operating point of the transistor to the 

maximum gain. The time varying voltage generated across the bR film due to the pulsed 

photo-excitation is superimposed on Vgs. The circuit converts the photovoltage generated 

across the bR film into a useful photocurrent with a responsivity of 4.7 mA/W. However, this 

method requires the optimization of transistor parameters to achieve higher values of 

responsivity. 
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Fig. 2-16. Measuring photoelectric response of bR photoreceptor by incorporating an external 

resistance and a dc gate-source biasing voltage [16] 

 

2.4 Nonlinear System Modeling with Volterra Series 

A nonlinear system is generally any system that does not satisfy the superposition principle. 

The frequency domain analysis of nonlinear systems is much more complicated than that of 

linear systems as nonlinear systems usually have very complicated nonlinear behaviors such 

as super-harmonics, sub-harmonics, intermodulation, and even bifurcation and chaos. The 

frequency domain theory for linear systems can not directly be extended to nonlinear cases. 

The analysis of nonlinear systems in frequency domain has been conducted for many years 

[17], [18] in particular using Volterra series [19], [20]. An important aspect for nonlinear 

systems in the frequency domain is that there are always very complicated output frequencies 

appearing as super-harmonics, sub-harmonics, intermodulation and so on in the output 

spectrum. Using Volterra series to model the nonlinear systems can effectively account for 

theses super-harmonics and intermodulation in the output spectrum [21], [22]. This section 

will cover the theoretical basis of Volterra series to model the nonlinear system, its 

advantages and limitations. The next section will highlight some of the works that have been 

carried out over recent years using the expansion method of Volterra series in detecting 

nonlinearities. 

 

A Volterra series is a model for nonlinear behaviour similar to Taylor series except for its 

ability to capture the memory effects as compared to the Taylor series. Any system behaviour 

that can be modelled with Taylor series expansion is virtually a Volterra series system. The 

Taylor series is used to approximate the response of a nonlinear system to a given input if the 



 

19 

 

output of the system depends strictly on the input at that particular time. In contrast, the 

nonlinear output of a Volterra series system depends on the input to the system at all other 

times. Hence, Volterra series system has the ability to capture the memory effect of devices 

like capacitors and inductors. 

 

In general, Volterra series is a power series with memory. The Volterra series is basically an 

extension of linear convolution integral. The discrete time case of Volterra series can be 

expressed by equation (2-8) [23]. 

 𝑦(𝑘) = ℎ0 + ∑ ℎ1
𝑀
𝑚1=1 (𝑚1)𝑢(𝑘 − 𝑚1) + ∑ ∑ ℎ2

𝑀
𝑚2=1

𝑀
𝑚1=1 (𝑚1, 𝑚2)𝑢(𝑘 −

𝑚1)𝑢(𝑘 − 𝑚2) + ∑ ∑ ∑ ℎ3
𝑀
𝑚3=1

𝑀
𝑚2=1

𝑀
𝑚1=1 (𝑚1, 𝑚2, 𝑚3)𝑢(𝑘 − 𝑚1)𝑢(𝑘 − 𝑚2)𝑢(𝑘 −

𝑚3) +     

(2-8) 

where u(k) is the measured input, y(k) is the measured output, and hl(m1, …, ml) is the order 

of Volterra kernel which is essentially the order of nonlinear impulse response. Equation 

(2-8) can be regarded as a generalization of the traditional convolution description, e.g. the 

impulse response of linear systems. Most of earlier identification algorithms assume the use 

of Gaussian white noise and correlation methods to identify the first two linear and quadratic 

Volterra kernel. As the input needs to be white Gaussian noise, this imposes a severe 

restriction on the application of this model to many real processes. 

 

A systematic approach to the analysis and design of system output frequency response 

making use of system time domain model parameters is proposed by [24]. The system 

satisfies the conditions of bounded, smooth and continuous change of bound with respect to 

the input. In [24], output frequency response function (OFRF) based analysis allows the 

design and analysis of output frequency response of nonlinear Volterra systems to be 

conducted as a function of system time domain model parameters with respect to any specific 

input signal. Lang et al. [25] has proposed a multilevel excitation method required to excite 

the system under study many times by inputs of the same form but different intensities. By 

using this method, the estimation of the nonlinear OFRF can be implemented directly using 

the system input-output data. 

 

The more recent works on Volterra series focus on the conditions of series convergence 

which is not the focus of this research. The work of system modelling using Volterra series is 

not new. This work makes use of nonlinear systems that is amenable to the Volterra series 
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modelling, find the measurable effects and its potential use as a proxy of indirect 

measurement. 

 

2.4.1 Single-Input Volterra Series 

A generalization of input-output relation for linear systems is expressed in equation (2-9). 

 𝑦(𝑡) = ∫ ℎ(𝑡 − 𝜏)𝑥(𝜏)𝑑𝜏
+∞

−∞
  

(2-9) 

where h(t) is the impulse response function, x(t) is the input while y(t) is the output of the 

system. 

 

Fourier transform F of equation (2-9) is given as 

 𝑌(𝑤) = 𝐻(𝑤)𝑋(𝑤) 

(2-10) 

where X(w), H(w) and Y(w) are the Fourier transforms of x(t), h(t) and y(t) respectively. H(w) 

is called the Frequency Response Function (FRF) of the system which contains all the 

information about the system. 

 

Extended form of equation (2-9) can be represented by Volterra series [20]. 

 𝑦(𝑡) = 𝑦1(𝑡) + 𝑦2(𝑡) + 𝑦3(𝑡)  

(2-11) 

where 

 𝑦1(𝑡) = ∫ ℎ1(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
 

(2-12) 

 𝑦2(𝑡) = ∫ ∫ ℎ2(𝜏1, 𝜏2)𝑥(𝑡 − 𝜏1)𝑥(𝑡 − 𝜏2)𝑑𝜏1
+∞

−∞

+∞

−∞
𝑑𝜏2 

(2-13) 

 𝑦3(𝑡) = ∫ ∫ ∫ ℎ3(𝜏1, 𝜏2, 𝜏3)𝑥(𝑡 − 𝜏1)𝑥(𝑡 − 𝜏2)𝑥(𝑡 − 𝜏3)𝑑𝜏1
+∞

−∞

+∞

−∞
𝑑𝜏2

+∞

−∞
𝑑𝜏3 

(2-14) 

Functions ℎ1(𝜏), ℎ2(𝜏1, 𝜏2), ℎ3(𝜏1, 𝜏2, 𝜏3), … , ℎ𝑛(𝜏1, … , 𝜏𝑛), … are referred to as Volterra 

kernels which are generalizations of linear impulse response functions. 

 

[26] shows that Volterra kernels can be treated symmetric without loss of generality, i.e.

 ℎ2(𝜏1, 𝜏2) = ℎ2(𝜏2, 𝜏1). 

 𝑦2(𝑡) = ∫ ∫ ℎ2(𝜏1, 𝜏2) ∏ ((𝜏1, 𝜏2; 𝑡)2 𝑑𝜏1
+∞

−∞

+∞

−∞
𝑑𝜏2 

(2-15) 
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where 

 ∏ ((𝜏1, 𝜏2; 𝑡)2 = 𝑥(𝑡 − 𝜏1)𝑥(𝑡 − 𝜏2) 

(2-16) 

Function ℎ2(𝜏1, 𝜏2) can be canonically decomposed into symmetric and asymmetric parts, 

 ℎ2(𝜏1, 𝜏2) =  ℎ2
𝑠𝑦𝑚(𝜏1, 𝜏2) + ℎ2

𝑎𝑠𝑦𝑚(𝜏1, 𝜏2) 

(2-17) 

where 

 ℎ2
𝑠𝑦𝑚(𝜏1, 𝜏2) =

1

2
(ℎ2(𝜏1, 𝜏2) + ℎ2(𝜏2, 𝜏1)) 

(2-18) 

 ℎ2
𝑎𝑠𝑦𝑚(𝜏1, 𝜏2) =

1

2
(ℎ2(𝜏1, 𝜏2) − ℎ2(𝜏2, 𝜏1)) 

(2-19) 

Since ℎ2
𝑎𝑠𝑦𝑚(𝜏1, 𝜏2) ∏ (𝜏1, 𝜏2; 𝑡)2 = −ℎ2

𝑎𝑠𝑦𝑚(𝜏2, 𝜏1) ∏ (𝜏2, 𝜏1; 𝑡)2 , the overall integral will 

cancel out each other. 

 

Dual frequency domain representation for non-linear systems for higher order FRFs can be 

expressed as 

 𝐻𝑛(𝑤1, … , 𝑤𝑛) = ∫ … ∫ ℎ𝑛(𝜏1, … , 𝜏𝑛)𝑒−𝑖(𝑤1𝜏1+ … + 𝑤𝑛𝜏𝑛)+∞

−∞
𝑑𝜏1

+∞

−∞
…  𝑑𝜏𝑛 

(2-20) 

 ℎ𝑛(𝜏1, … , 𝜏𝑛) =
1

(2𝜋)𝑛−1 ∫ … ∫ 𝐻𝑛(𝑤1, … , 𝑤𝑛)𝑒𝑖(𝑤1𝜏1+ … + 𝑤𝑛𝜏𝑛)𝑑𝑤1 …  𝑑𝑤𝑛
+∞

−∞

+∞

−∞
 

(2-21) 

Dual frequency domain expression for equation (3-5) is given as 

 𝑌(𝑤) = 𝑌1(𝑤) + 𝑌2(𝑤) + 𝑌3(𝑤) + ⋯  

(2-22) 

where 

 𝑌1(𝑤) = 𝐻1(𝑤)𝑋(𝑤) 

(2-23) 

 𝑌2(𝑤) =
1

2𝜋
∫ 𝐻2(𝑤1, 𝑤 − 𝑤1)𝑋(𝑤1

+∞

−∞
)𝑋(𝑤 − 𝑤1)𝑑𝑤1 

(2-24) 

 𝑌3(𝑤) =
1

(2𝜋)2 ∫ 𝐻3(𝑤1, 𝑤2, 𝑤 − 𝑤1 − 𝑤2)𝑋(𝑤1
+∞

−∞
)𝑋(𝑤2)𝑋(𝑤 − 𝑤1 − 𝑤2)𝑑𝑤1𝑑𝑤2 

(2-25) 

 

2.4.2 Multi-Input Volterra Series 

Consider a nonlinear system excited at location a and b with input 𝑥(𝑎)(𝑡) and 𝑥(𝑏)(𝑡). 

The expression for the response at point j is 
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 𝑦(𝑗)(𝑡) = 𝑦1
(𝑗)(𝑡) + 𝑦2

(𝑗)(𝑡) + 𝑦3
(𝑗)(𝑡) + ⋯ 

(2-26) 

For the two-input case, the components are given by 

 𝑦𝑛
(𝑗)(𝑡) = ∫ … ∫ ℎ𝑛

(𝑗:𝑎𝑎…𝑎𝑎)
(𝜏1

+∞

−∞

+∞

−∞
, … , 𝜏𝑛)𝑥(𝑎)(𝑡 − 𝜏1) … 𝑥(𝑎)(𝑡 − 𝜏𝑛)𝑑𝜏1 … 𝑑𝜏𝑛 +

⋯ + ∫ … ∫ ℎ𝑛
(𝑗:𝑎𝑎…𝑏𝑏)

(𝜏1
+∞

−∞

+∞

−∞
, … , 𝜏𝑛)𝑥(𝑎)(𝑡 − 𝜏1) … 𝑥(𝑏)(𝑡 − 𝜏𝑛)𝑑𝜏1 … 𝑑𝜏𝑛 +

∫ … ∫ ℎ𝑛
(𝑗:𝑏𝑏…𝑏𝑏)

(𝜏1
+∞

−∞

+∞

−∞
, … , 𝜏𝑛)𝑥(𝑏)(𝑡 − 𝜏1) … 𝑥(𝑏)(𝑡 − 𝜏𝑛)𝑑𝜏1 … 𝑑𝜏𝑛   

(2-27) 

i.e. 

 𝑦1
(𝑗)(𝑡) = ∫ ℎ1

(𝑗:𝑎)(𝜏)𝑥(𝑎)(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
+ ∫ ℎ1

(𝑗:𝑏)(𝜏)𝑥(𝑏)(𝑡 − 𝜏)𝑑𝜏
+∞

−∞
  

(2-28) 

 𝑦2
(𝑗)(𝑡) = ∫ ∫ ℎ2

(𝑗:𝑎𝑎)(𝜏1, 𝜏2)𝑥(𝑎)(𝑡 − 𝜏1)
+∞

−∞

+∞

−∞
𝑥(𝑎)(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2 +

∫ ∫ ℎ2
(𝑗:𝑎𝑏)(𝜏1, 𝜏2)𝑥(𝑎)(𝑡 − 𝜏1)

+∞

−∞

+∞

−∞
𝑥(𝑏)(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2 +

∫ ∫ ℎ2
(𝑗:𝑏𝑎)(𝜏1, 𝜏2)𝑥(𝑏)(𝑡 − 𝜏1)

+∞

−∞

+∞

−∞
𝑥(𝑎)(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2 +

∫ ∫ ℎ2
(𝑗:𝑏𝑏)(𝜏1, 𝜏2)𝑥(𝑏)(𝑡 − 𝜏1)

+∞

−∞

+∞

−∞
𝑥(𝑏)(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2 

(2-29) 

 {ℎ2
(𝑗:𝑎𝑏)(𝜏1, 𝜏2) + ℎ2

(𝑗:𝑏𝑎)(𝜏2, 𝜏1)} → 2ℎ2
(𝑗:𝑎𝑏)(𝜏1, 𝜏2) 

(2-30) 

Dual frequency representation is given by 

 𝑌(𝑗)(𝑤) = 𝑌1
(𝑗)(𝑤) + 𝑌2

(𝑗)(𝑤) + 𝑌3
(𝑗)(𝑤) + ⋯ 

(2-31) 

 𝑌𝑛
(𝑗)(𝑤) = (

1

2𝜋
)𝑛−1 ∫ … ∫ 𝐻𝑛

(𝑗:𝑎𝑎…𝑎𝑎)
(𝑤1, 𝑤2, … , 𝑤 − 𝑤1

+∞

−∞

+∞

−∞
− ⋯ − 𝑤𝑛−1) ∙

𝑋(𝑎)(𝑤1)𝑋(𝑎)(𝑤2) … 𝑋(𝑎)(𝑤𝑛−1)𝑋(𝑎)(𝑤 − 𝑤1 − ⋯ − 𝑤𝑛−1)𝑑𝑤1 … 𝑑𝑤𝑛−1 + ⋯ +

(
1

2𝜋
)

𝑛−1

∫ … ∫ 𝐻𝑛
(𝑗:𝑎𝑎…𝑏𝑏)

(𝑤1, 𝑤2, … , 𝑤 − 𝑤1
+∞

−∞

+∞

−∞
− ⋯ − 𝑤𝑛−1) ∙

𝑋(𝑎)(𝑤1)𝑋(𝑎)(𝑤2) … 𝑋(𝑏)(𝑤𝑛−1)𝑋(𝑏)(𝑤 − 𝑤1 − ⋯ − 𝑤𝑛−1)𝑑𝑤1 … 𝑑𝑤𝑛−1 + ⋯ +

(
1

2𝜋
)𝑛−1 ∫ … ∫ 𝐻𝑛

(𝑗:𝑏𝑏…𝑏𝑏)
(𝑤1, 𝑤2, … , 𝑤 − 𝑤1

+∞

−∞

+∞

−∞
− ⋯ − 𝑤𝑛−1) ∙

𝑋(𝑏)(𝑤1)𝑋(𝑏)(𝑤2) … 𝑋(𝑏)(𝑤𝑛−1)𝑋(𝑏)(𝑤 − 𝑤1 − ⋯ − 𝑤𝑛−1)𝑑𝑤1 … 𝑑𝑤𝑛−1  

(2-32) 

Consider the object 𝑦3
(𝑗:𝑎𝑎𝑏)

 for the third order component of the output 

 𝑦3
(𝑗:𝑎𝑎𝑎𝑏)

= ∫ ∫ ∫ ℎ3
(𝑗:𝑎𝑎𝑏)(𝜏1, 𝜏2, 𝜏3) ∏ (𝜏1, 𝜏2, 𝜏3; 𝑡)(𝑗:𝑎𝑎𝑏)

3  
+∞

−∞

+∞

−∞

+∞

−∞
𝑑𝜏1𝑑𝜏2𝑑𝜏3 

(2-33) 

where 
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 ∏ (𝜏1, 𝜏2, 𝜏3; 𝑡) = 𝑥(𝑎)(𝑡 − 𝜏1)
(𝑗:𝑎𝑎𝑏)
3 𝑥(𝑎)(𝑡 − 𝜏2)𝑥(𝑏)(𝑡 − 𝜏3) 

(2-34) 

 

Volterra series expansion is a very useful and convenient modelling technique used in the 

analysis of a very wide class of both deterministic and stochastic nonlinear systems [20], 

[27]. With the existence of Volterra series expansion, the study of nonlinear systems in the 

frequency domain was initiated by the introduction of the concept of Generalized Frequency 

Response Functions (GFRFs) [28] as defined in equation (2-20). The GFRFs can be obtained 

by using the Harmonic probing method presented in section 2.4.3. 

 

2.4.3 Harmonic Probing Method 

Harmonic probing is a method based on Volterra series to determine the analytical form of 

the kernel transforms which was introduced by [29] for systems with continuous-time 

equations of motion, and by [30] for discrete-time systems. 

 

Periodic excitation of a single harmonic is given by 

 𝑥(𝑡) = 𝑒𝑖Ω𝑡 

(2-35) 

Based on equation (3-5), 

 𝑦(𝑡) = 𝐻1(Ω)𝑒𝑖Ω𝑡 + 𝐻2(Ω, Ω)𝑒𝑖2Ω𝑡 + 𝐻3(Ω, Ω, Ω)𝑒𝑖3Ω𝑡 + ⋯ 

(2-36) 

For multi-frequency excitations with “two-tone” input 

 𝑥(𝑡) = 𝑒𝑖Ω1𝑡 + 𝑒𝑖Ω2𝑡  

(2-37) 

then 

 𝑦(𝑡) = 𝐻1(Ω1)𝑒𝑖Ω1𝑡 + 𝐻1(Ω2)𝑒𝑖Ω2𝑡 + 𝐻2(Ω1, Ω1)𝑒𝑖2Ω1𝑡 + 2𝐻2(Ω1, Ω2)𝑒𝑖(Ω1+Ω2)𝑡 +

𝐻2(Ω2, Ω2)𝑒𝑖2Ω2𝑡 + 𝐻3(Ω1, Ω1, Ω1)𝑒𝑖3Ω1𝑡 + 3𝐻3(Ω1, Ω1, Ω2)𝑒𝑖(2Ω1+Ω2)𝑡 +

3𝐻3(Ω1, Ω2, Ω2)𝑒𝑖(Ω1+2Ω2)𝑡 + 𝐻3(Ω2, Ω2, Ω2)𝑒𝑖3Ω2𝑡 + ⋯ 

(2-38) 

For a more general periodic excitation, 

 𝑥(𝑡) = 𝑒𝑖Ω1𝑡 + 𝑒𝑖Ω2𝑡 … + 𝑒𝑖Ω𝑛−1𝑡 + 𝑒𝑖Ω𝑛𝑡   

(2-39) 

The amplitude of the output component at frequency (Ω1 + Ω2 + ⋯ + Ω𝑛−1 + Ω𝑛) is 

𝑛! 𝐻𝑛(Ω1 + Ω2 + ⋯ + Ω𝑛−1 + Ω𝑛) which forms the basis of harmonic probing algorithm. 
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2.4.4 Advantages of Volterra Series 

Volterra series is not an iterative method, hence it is capable of providing a closed form 

presentation of the distortion. Volterra series is a mathematically elegant method for a 

considerably large class of nonlinear systems frequently encountered in different fields, not 

restricting to a specific nonlinear unit or single nonlinear component. It basically holds for 

any bounded deterministic or stochastic input signals. With Volterra series expansion, the 

resulting GFRFs of nonlinear systems are similar to transfer functions of linear systems. The 

system characteristic parameters including model parameters and input magnitude, can be 

related to system output frequency response. The GFRFs can be recursively computed in 

terms of model parameters which greatly facilitate the nonlinear system analysis. Strong 

nonlinear behaviour such as chaos or bifurcation can also be investigated with the Volterra 

series based methods. 

 

2.4.5 Limitations of Volterra Series 

Volterra series is only applicable to “weakly nonlinear” systems whereby the infinite sum 

nonlinearities will converge rapidly. Volterra series is impractical in strongly nonlinear 

systems whereby the sum of “strongly nonlinearities” will diverge to render Volterra series 

expansion invalid. This is because the series relies on the polynomial models which may not 

cover all operating regimes with a reasonable number of terms. However, provided the 

polynomial model is locally modelled around the bias point with large signal amplitude 

range, it can still be very accurate. 

 

2.5 Output Spectrum of Volterra Systems 

Different nonlinearities can interact with each other such that the output harmonics become 

complicated due to crossing effects of different nonlinearities. However, the mechanism 

about what the crossing effect is and how the different output harmonics interact with each 

other is not explicitly studied and seldom reported. [31] has studied details of the interaction 

mechanism of super-harmonics and intermodulation in the output frequencies of Volterra 

systems due to different input nonlinearities under the assumption that the nonlinearities only 

exist in system input. The work has revealed explicitly in a general and analytical form to 

provide insight into the nonlinear behavior in the output spectrum of Volterra systems such as 

the periodicity and opposite property of the output super-harmonics and intermodulation 
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frequencies. When considering more complicated cases involving different nonlinearities 

existing in the input and output of the system, the periodicity of the output frequencies can 

still be observed but the interaction due to crossing effects at some frequencies between 

different output harmonics usually produce very complicated output spectrum. 

 

Different nonlinearities may have quite different effects on the system output spectrum and 

there will be many crossing effects at the same frequency from different nonlinearities. 

Nonlinearities of 𝑢(𝑡)3 and 𝑢(𝑡)𝑢(𝑡)2 are both input nonlinearity with nonlinear degree of 

three (3), can produce the same output frequencies according to [32]. However, the effect 

from different nonlinearities at the same frequency generation period may counteract with 

each other such that the output spectrum may be suppressed over some periods and enhanced 

in some others as shown in Fig. 2-17. 

 

Fig. 2-17. Output spectrum with input nonlinearity 𝑎𝑢(𝑡)5 𝑎𝑛𝑑 𝑏𝑢(𝑡)3𝑢(𝑡)2 when (a) 𝑎 =
1.3, 𝑏 = 0 and (b) 𝑎 = 0, 𝑏 = 0.1 [31] 

 

Reference [33] has provided a survey of the numerous nonlinear system techniques, such as 

but limited to test on superposition and homogeneity principles; distortion check on overlaid 

bode plot, Nyquist plot, Carpet plot; statistical checks on coherence function, correlation 

function, Hilbert transform, harmonic detection function, etc. The work has made use of a 

“quarter car” measurement setup of Fig. 2-18 which is a simplified representation of the 

suspension of one wheel of a car to investigate the existence and level of nonlinear distortions 

present in the system by employing those detection techniques under investigation. Of 

particular interest is the detection carried out using random phase multisine excitation [34], 

[35] with equation (2-40). The multisine excitation is a very fast nonlinear detection 



 

26 

 

technique that provides a detailed information of the FRF of the investigated system, absolute 

values of the amount, and the frequency localization of the even and odd nonlinear distortions 

in the entire output spectrum under investigation in one clear picture as shown in Fig. 2-19. 

 

 

Fig. 2-18. Schematic diagram of a “quarter car” [33] 

 

 𝑥(𝑡) = (
1

√𝑁
)(∑ 𝑋𝑘 ∙ 𝑒𝑗2𝜋(

𝑓𝑚𝑎𝑥
𝑁

)𝑘𝑡𝑁
𝑘=−𝑁 ) 

(2-40) 

with 𝑋𝑘 = 𝑋−𝑘
∗ = 𝑋(𝑘) ∙ 𝑒𝑗𝜑𝑘 , 𝑓𝑚𝑎𝑥  the maximum frequency of the excitation signal, 𝑁 ∈ the 

number of frequency components and the phases 𝜑𝑘 are a realization of an independent 

uniformly distributed random process on [0, 2π]. 

 

 

Fig. 2-19. Output spectrum of the system with even and odd nonlinear contributions at the 

intermediate lines obtained with a special odd multisine after compensation [33] 
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The main principle of this particular technique lies on only a well-chosen set of frequency 

lines are excited. This implies that some frequency lines are consciously not excited and be 

used instead as detection lines to qualify and quantify the nonlinear distortions on the 

neighbouring excited lines (called measurement lines). The even nonlinear disturbances are 

determined at the even frequency lines while the odd nonlinear distortions are determined at 

the unexcited odd frequency lines 

 

In [36] is proposed a method for estimating non-parametrically the dynamic part of the time-

variant FRF from known input and noisy output observations. The non-parametric 

representation of the dynamics of the time-variant FRF is obtained in two steps. The time-

variant FRF is first expanded in series with respect to time in accordance with equation (2-

41). 

 𝐺(𝑗𝑤, 𝑡) = ∑ 𝐺𝑟
∞
𝑟=0 (jw) ∙ 𝑓𝑟(𝑡),     𝑡 ∈ [0, 𝑇] 

(2-41) 

with 𝑓𝑟(𝑡), 𝑟 = 0, 1, …, a complete set of basis functions and T the experiment time. 𝐺𝑟(𝑗𝑤), 

𝑟 = 0, 1, …, are the complex coefficients of the series expansion which can be interpreted as 

FRFs of linear time-invariant systems. 

 

In second step, the infinite sum of equation (2-41) is approximated by a finite sum given by 

equation (2-42). 

 𝐺(𝑗𝑤, 𝑡) = ∑ 𝐺𝑟
𝑁𝑏
𝑟=0

(jw) ∙ 𝑓𝑟(𝑡),     𝑡 ∈ [0, 𝑇] 

(2-42) 

Representation given by equation (2-42) is parametric in the time variation as the basis 

functions 𝑓𝑟(𝑡) are known, and non-parametric in the unknown FRFs 𝐺𝑟(𝑗𝑤), 𝑟 =

0, 1, … , 𝑁𝑏. 

 

The experimental set-up is a time-variant second order bandpass filter as shown in Fig. 2-20. 

The circuit consists of a high gain operational amplifier (CA741CE), a JFET transistor 

(BF245B) with gate voltage 𝑝(𝑡), three resistors (𝑅1 = 𝑅2 = 10 𝑘Ω and 𝑅3 = 470 𝑘Ω), and 

two capacitors (𝐶1 = 𝐶2 = 10 𝑛𝐹). It is excited by a random phase multisine given by 

equation (2-43) with 𝐹 = 33387 harmonically related sine waves in the band 

[200 𝐻𝑧, 40 𝑘𝐻𝑧] where 𝑓𝑜 =
𝑓𝑠

𝑁𝑜
, 𝑁𝑜 = 217, 𝑓𝑠 = 156.25 𝑘𝐻𝑧, 𝑘1 = 168 and 𝑘2 = 33554. 
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The amplitudes 𝐴𝑘, 𝑘 = 𝑘1, 𝑘1 + 1, … , 𝑘2 are constant and chosen such that rms value of 

𝑢(𝑡) is 93 mV while the phases 𝜑𝑘, 𝑘 = 𝑘1, 𝑘1 + 1, … , 𝑘2 are randomly selected to a uniform 

[0, 2π) distribution. 

 

 

Fig. 2-20. Schematic diagram of second-order bandpass filter with time-varying resonance 

frequency and damping ratio [36] 

 

 𝑢(𝑡) = ∑ 𝐴𝑘
𝑘2
𝑘=𝑘1

sin (2𝜋𝑘𝑓𝑜𝑡 + 𝜑𝑘) 

(2-43) 

consisting of 𝐹 = 𝑘2 − 𝑘1 + 1 harmonically related sine waves with user defined 

deterministic amplitudes 𝐴𝑘, and randomly selected phases 𝜑𝑘 such that 𝐸[𝑒𝑗𝜑𝑘 ] = 0. 

 

Only 𝑁 =
7

8
𝑁𝑜 data points of the input 𝑢(𝑡) and the noisy output response 𝑦(𝑡) are used for 

estimating non-parametrically the time-variant FRF given by equation (2-42) over the 

measurement time 𝑇 = 𝑁 ∙ 𝑇𝑠 with 𝑇𝑠 =
1

𝑓𝑠
. The gate voltage varies between -1.54 V and -2.14 

V. Fig. 2-21 shows the plots of estimated FRFs and their variance based on the proposed 

indirect model. 
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Fig. 2-21. Estimated FRFs 𝐻𝑟(𝑗𝑤𝑘) (black) and their variance (grey) of the time-varying 

second-order bandpass filter based on indirect method [36] 
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2.6 Nonlinearities of Photocurrent 

2.6.1 Exponential Linearity 

The diode used in the equivalent circuit is to perform the dynamic resistance characteristics 

across a pn-junction [10]. The exponential diode equation as given by equation (2-2) is 

voltage dependent and has an exponential relationship between the current and the voltage 

across the pn-junction. The equation can be further expressed as a voltage-dependent current 

generator by a Taylor’s series expansion [37]: 

 𝐼𝑑 = 𝐾(𝑉𝑚𝑜𝑑 ) = 𝐾1𝑉𝑚𝑜𝑑 + 𝐾2𝑉𝑚𝑜𝑑
2 + 𝐾3𝑉𝑚𝑜𝑑

3  

(2-44) 

The Taylor’s series coefficients are given as 

 𝐾1 =
1

𝑅𝑟
 

(2-45) 

 𝐾2 =
1

2𝐼𝑑𝑅𝑟
2 

(2-46) 

 𝐾3 =
1

2𝐼𝑑
2𝑅𝑟

3 

(2-47) 

where 

 𝑅𝑟 is the reverse bias resistance across the pn-junction. 

 

2.6.2 PN-Junction Capacitance Nonlinearity 

The pn-junction capacitance 𝐶𝑗 is a nonlinear function of the applied bias voltage across the 

pn-junction. 𝐶𝑗 is made up of two components, namely the diffusion capacitance 𝐶𝑑, and the 

depletion capacitance (which is also termed as the transition capacitance) 𝐶𝑡. 

 

The diffusion capacitance Cd is due to the build-up of minority carriers charge around the 

metallurgical junction as the result of forward biasing the pn-junction. Cd is given by the 

change in the value of the stored charge ΔQ due to a change in either the forward current or 

forward voltage ΔV as given by equation (2-48) [38], [39]. 

 𝐶𝑑 =
∆𝑄

∆𝑉
= 𝐾𝑑 ∙ 𝐼𝑑𝑓 = 𝐾𝑑 ∙ 𝐼𝑠0 ∙ 𝑒

(
𝑉𝑠

𝑛𝑑∙𝑉𝑡
)
 

(2-48) 

where  

 𝐾𝑑 is the constant at a given temperature 
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 𝐼𝑑𝑓 = 𝐼𝑠0 ∙ 𝑒
(

𝑉𝑠
𝑛𝑑∙𝑉𝑡

)
 is the forward-biased diode current 

 𝐼𝑠 is the reverse saturation current or leakage current 

 𝑛𝑑 ≈ 1 − 2 is the diode Ideality Factor 

 𝑉𝑠 is the bias voltage of the pn-junction; 𝑉𝑠 = 𝑉𝑚𝑜𝑑  in this case 

 𝑉𝑡 =
𝑘∙𝑇

𝑞
 is the thermal voltage 

 k is the Boltzmann’s constant 

 T is the junction temperature in Kelvin 

 q is the electronic charge 

 

Fig. 2-22 shows the plot of diffusion capacitance as a function of biasing voltage from -0.6 V 

to 1 V across the pn-junction. The plot is generated with Is = 0.1 fF, nd = 2, Kd = 1000 µF/A 

at room temperature T at 300 K. 

 

 

Fig. 2-22. Diffusion capacitance as a function of biasing voltage across the pn-junction 

 

When a reverse bias is applied, mobile charge carriers move away from the metallurgical 

junction leaving behind immobile ions (negative ions in the p-region and positive ions in the 

n-region). This gives rise to space charge separation across the junction. In depletion region, 

the electric charges due to immobile positive and negative ions do not move from one place 

to another place. Instead, they exert electric field or electric force resulting in charge stored at 

the depletion region in the form of electric field. Thus, there exists a capacitance at the 

depletion region. 𝐶𝑡 can be generally expressed as [38], [39]: 
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 𝐶𝑡 =
𝐶𝑗0

(1−
𝑉𝑠

𝑉𝑏𝑖
)𝑚

 

(2-49) 

 𝑉𝑏𝑖 = 𝑉𝑡 ∙ ln (
𝑁𝐴∙𝑁𝐷

𝑛𝑖
) 

(2-50) 

where 

 𝐶𝑗0 is the zero-bias zero-biased junction capacitance when Vs = 0 

 m is the junction gradient coefficient; 
1

3
≤ 𝑚 ≤

1

2
, 𝑚 =

1

3
 for linearly graded junction; 

𝑚 =
1

2
 for step junction 

 𝑉𝑠 is the bias voltage of the pn-junction; 𝑉𝑠 = 𝑉𝑚𝑜𝑑  in this case 

 𝑉𝑏𝑖  is the built-in contact potential barrier across the pn-junction 

 𝑉𝑡 =
𝑘∙𝑇

𝑞
 is the thermal voltage 

 NA is the acceptor concentration 

 ND is the donor concentration 

 ni is the intrinsic carrier concentration 

 

To account for the discontinuity when 𝑉𝑠 = 𝑉𝑏𝑖 , P. Van Halen [40] derived an expression for 

the depletion capacitance as shown in (2-51) which this work will be based on. 

 𝐶𝑡 =
𝐶𝑗0

[1−
𝑉𝑠

𝑉𝑏𝑖
+

𝑉𝑡
2∙𝑉𝑏𝑖

∙𝑒
(

𝑉𝑠−𝑉𝑏𝑖
𝑉𝑡

)
]𝑚

 

(2-51) 

 

Fig. 2-23 shows the plot of depletion capacitance as a function of biasing voltage from -10 V 

to 0.6 V across the pn-junction. The plot is generated with Cj0 = 0.1 fF, Vbi = 0.65 V, 𝑚 =
1

3
 

(for linearly graded junction) at room temperature T at 300 K. 
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Fig. 2-23. Depletion capacitance as a function of biasing voltage across the pn-junction 

 

𝐶𝑡 increases with the area of pn-junction but decreases with the depth of depletion layer. 

Hence, photo devices with smaller active area are inherently having faster response time due 

to smaller junction capacitance. As depth of depletion layer increases with the applied reverse 

bias, the junction capacitance is commonly specified at zero external bias. Excessive reverse 

bias to photodiodes may cause device breakdown and degraded performance. Any applied 

reverse bias must be kept lower than the maximum rated value.  

 

When the pn-junction is in forward bias mode, 𝐶𝑑 is much larger than 𝐶𝑡. Hence, diffusion 

capacitance is only considered in forward biased diode. On the other hand, in the reverse 

biased mode, 𝐶𝑡 is the dominant component as for the case of normal lighting sensing mode 

of photo devices. 

 

2.6.3 Wire Inductive Nonlinearity 

Wires are used to make contact with the photovoltaic cell and the measurement circuit. The 

inductive effect produces current which is a nonlinear function of voltage and frequency 

dependent. The current generator can be represented as 𝑔(𝑉𝑙𝑜𝑎𝑑 , 𝑉𝑙𝑜𝑎𝑑 − 𝑉𝑚𝑜𝑑) which is 

derived as follows: 

 𝐼𝑙𝑜𝑎𝑑 =
𝑉𝑚𝑜𝑑−𝑉𝑙𝑜𝑎𝑑

𝑅𝑠+𝑅𝑝+𝑠𝐿𝑠
 

        = (
(𝑅𝑠+𝑅𝑝)−𝑠𝐿𝑠

(𝑅𝑠+𝑅𝑝)
2

+𝐿𝑠
2
) (𝑉𝑚𝑜𝑑 − 𝑉𝑙𝑜𝑎𝑑 ) 

(2-52) 
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CHAPTER 3 PROPOSED MEASUREMENT METHODOLOGY 

3.1 Proposed Approach 

Best linear approximation  (BLA) is introduced as the technique to approximate the 

behaviour of the nonlinear system. A system that can be represented by a Volterra series 

expansion will have average spectrum given by BLA if the excitation is Gaussian or any 

equivalent random excitation of sufficiently long excitation. Fig. 3-1 illustrates the concept of 

introducing noise as an excitation source to a nonlinear system to estimate the BLA of its 

transfer function. The BLA of the nonlinear system resembles the behavior of a linear system 

with the nonlinearities represented by an additive noise source. Fast Fourier Transform (FFT) 

is performed on the input and output signals in order to determine the frequency response 

function function (FRF). The residues or errors in the approximation is quantified by the use 

of standard deviation statistic. 

 

Fig. 3-1. Illustration of noise excited BLA of nonlinear system 

 

The aim of this work is not on using BLA technique for the purpose of system identification 

of nonlinear system. Rather, the BLA technique is adopted in a way to sort out the noise 

components of the system response. The output noise is then quantified by measuring the 

dispersion of the BLA values as outlined in Fig. 3-2. The measured standard deviation can 

then be used as an indirect gauge of the relative strength of the output signal. 

.  

Fig. 3-2. Separation of system’s BLA and its dispersion  

 

The BLA is obtained by averaging 1000 points of FRF values in this research. The equivalent 

moving average is in fact a simple low pass Finite Impulse Response (FIR) filter. The 

FFT
BLA + 

Standard Deviation
Noise
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illustration is using the transfer function of a low pass filter function. In fact, transfer 

functions of any other discrete filters can be used for the illustration. Fig. 3-3 shows the 

frequency response function of a 1000-point moving average filter as compared to different 

types of low pass Infinite Impulse Response (IIR) filters, namely 5-order Butterworth, 5-

order Chebyshev Type I & II, and Elliptic filter. Table 3-1. Characteristics of low pass filters 

for comparisonTable 3-1 provides the characteristics of those filters used for the comparison 

in this case. 

 

 

Fig. 3-3. Frequency plots of different types of low pass filters 

 

Table 3-1. Characteristics of low pass filters for comparison 

 

 

The idea here is that there are errors associated with the nonlinear system which can’t be 

completely modelled by the ideal transfer function as for the case of linear system. These 

errors are being exploited in this research as a gauge to the strength of the sensor’s signal 

under investigation. In this work, either random phase multisine with constant amplitude but 

Type of Low Pass Filter Order
Cut-off Frequency

(Hz)

Passband Ripple

(dB)

Stopband Attenuation

(dB)

Moving Averager 1000-point - - -

Butterworth 5 2010 30 -

Chebyshev Type I 5 2010 30 -

Chebyshev Type II 5 2010 - 30

Elliptic 5 2010 30 35
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random phase or white Gaussian noise is used as the excitation signal source to the nonlinear 

system under study. 

 

3.2 Best Linear Approximation 

3.2.1 Linear Approximation 

Linear models have been successfully applied to a wide range of modeling problems albeit 

with restrictive assumptions. Linear approximation offers the advantages of useful models 

that enable the application of many existing design techniques, and provide users with 

intuitive insights into the problem made mostly difficult and complicated with nonlinear 

modeling. For these reasons, linear approximation can be applied to a nonlinear system by 

choosing the operating range close to a particular approximating point as shown in Fig. 3-4 

where L(x) is the linear approximation to the nonlinear function f(x) at approximating point a 

in simple Mathematical expression. x1 is an input point close to the approximating point a. 

Based on this concept, a generalized linear framework can thus be developed for use in a 

nonlinear environment by sorting out non-linear distortions. 

 

Fig. 3-4. Graphical illustration of linear approximation 

 

3.2.2 Best Linear Approximation 

Best Linear Approximation (BLA) is a framework to deal with non-linear distortions in a 

linear modeling framework. BLA minimizes the mean square error between the measured 

output and the modelled output for a particular class of inputs as given by equation (3-1). 

 𝐺𝐵𝐿𝐴 = min 𝐸⌈𝑦(𝑡) − 𝐺(𝑎) ∙ 𝑢(𝑡)⌉2 

(3-1) 

where y(t) and u(t) are the measured output and input respectively, G(a) is the linear transfer 

function model and a is the shift operator. 
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Equation (3-1) is in fact equivalent to the classical FRF measurement based on cross-power 

and auto-power spectra measurements [41] as given by equation (3-2). 

 𝐺𝐵𝐿𝐴(Ω) =
𝑆𝑌𝑈(Ω)

𝑆𝑈𝑈(Ω)
 

(3-2) 

where SYU(Ω) is the cross-power spectrum between the output y and the input u, SUU(Ω) is the 

auto-spectrum of the input u, and Ω stands for discrete (Ω = 𝑒
−

𝑗𝑤

𝑓𝑠 = 𝑒
−

𝑗2𝜋𝑓

𝑓𝑠 ) or continuous 

time Ω = jω = j2πf frequency. 

 

A nonlinear system can thus always be represented by its best linear approximation GBLA 

followed by a noise source representing the nonlinear contributions of the system as shown in 

Fig. 3-5 [42]. 

 

Fig. 3-5. Representation of a non-linear system by a linear system for a random input [43] 

 

Signal YBLA(t) in Fig. 3-5 captures the part of y(t) that can be described by the best linear 

approximation GBLA as shown in equation (3-2). The nonlinear noise source with power 

spectrum SYs(Ω) captures all the remaining errors (a.k.a. “stochastic nonlinearities”) as shown 

in equation (3-3). 

 𝑌(Ω) = 𝑌𝐵𝐿𝐴(Ω) + 𝑌𝑆(Ω) = 𝐺𝐵𝐿𝐴(Ω) ∙ 𝑈(Ω) + 𝑌𝑆(Ω) 

(3-3) 

YBLA is not correlated with YS although it is no independent of Ys. The nonlinear contributions 

depend on the particular realization of the input signal U(Ω), and exhibit stochastic behaviour 

if the input signal U(Ω) is a random process. GBLA(Ω) can be estimated by averaging the 

measured FRFs for different input excitations. For Gaussian noise excitation, GBLA(Ω) and 

SYs(Ω) are completely determined by the auto-power spectrum of the input SUU(Ω). 
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3.2.3 Classification of Random Signals 

BLA depends upon the time domain characteristic (power distribution, e.g., normally, binary 

or uniformly distributed) and frequency domain characteristic (amplitude spectrum) of the 

excitation signals. To measure the linear system, we would normally apply an excitation 

source and determine the response of the system to the excitation. The excitation source can 

be as dedicated as multisine source with random phase to excite the system at certain user-

specified frequencies, or as simple as a normally distributed noise source. 

 

3.2.3.1 Random Phase Multisine 

A random phase multisine is a periodic broadband signal comprising of a sum of cosines with 

harmonically related frequencies, each with either constant or random amplitude Ak but a 

random phase ϕk as indicated by (3-4). 

 𝑢(𝑡) = ∑ 𝐴𝑘
𝑁
𝑘=1 𝑐𝑜𝑠 (2𝜋

𝑓

𝑁
𝑘𝑡 + 𝜙𝑘) 

(3-4) 

 

Period of the signal is given by T = 1/f. Amplitudes, Ak, of the (co-)sines and the base 

frequency 𝑓𝑜 =
𝑓

𝑁
 can be chosen arbitrarily while phases ϕk are usually selected to minimize 

the crest factor. The phases ϕk are independent random variables such that 𝐸{𝑒𝑗𝜙𝑘} = 0. This 

condition is satisfied when 𝜙𝑘  is uniformly distributed over [0, 2π). Theoretically, the 

number of frequencies N should approach infinity in order for a random multisine to become 

Gaussian. However, in practice, N > 20 is sufficient for smoothly varying amplitude 

distributions Ak [42], [43]. 

 

In [42] is shown that the classification of the nonlinearities into odd and even order is 

possible by carefully selecting the grid of excitation signals. If odd multisine is used to excite 

only odd lines, even nonlinearities will always transfer power to the even frequency bins 

while odd nonlinearities transfer power to the odd frequency bins according to: 

 𝑓𝑥,𝑜𝑑𝑑 + 𝑓𝑦,𝑜𝑑𝑑 = 𝑓𝑥+𝑦,𝑒𝑣𝑒𝑛 

(3-5) 

 𝑓𝑥,𝑜𝑑𝑑 + 𝑓𝑦,𝑜𝑑𝑑 + 𝑓𝑧,𝑜𝑑𝑑 = 𝑓𝑥+𝑦+𝑧,𝑜𝑑𝑑 

(3-6) 
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In the generation of random phase multisine for this work, the excitation frequency is varied 

from 10 Hz to 2010 Hz with a step size of 80 Hz and number of frequencies N set to 25. Fig. 

3-6 shows the simulated normalised time-domain plot and spectrum of a random phase multi-

sine with constant amplitude excitation signal using equation (3-4) in Matlab. 

 

 

Fig. 3-6. Time domain and spectrum of random phase multisine excitation signal 

 

A lower variance is obtained for BLA without affecting its value when using random odd 

multisines as the excitation signals. This is because even nonlinearities result in stochastic 

contribution on both the even and odd frequency lines which disappear in the averaging 

process as shown in equation (3-5). The impact of even nonlinearities on FRF measurements 

is merely a disturbing noise when odd lines of FRFs are measured. 

 

3.2.3.2 Gaussian Noise 

Gaussian noise is a statistical noise with a probability density function (PDF) equal to that of 

a normal distribution, also known as the Gaussian distribution. A Gaussian noise u(t) can be 

generated using a pseudo-random number generator as shown in (3-7). 

   
N
k kk rAOffsettu 1)(  

(3-7) 

where rk is a pseudo random number between 0 and 1, and Ak is the signal’s amplitude. Offset 

is the dc offset from 0 V. Fig. 3-7 shows the simulated normalised time-domain plot and 

spectrum of Gaussian excitation signal in frequency domain using equation (3-7) in Matlab. 
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As can be seen from Fig. 3-7(b), an ideal Gaussian noise source has a flat spectrum in 

frequency domain where every frequency band is equally excited with excitation strength 

distributed according to the Gaussian distribution. 

 

 

Fig. 3-7. Time domain and spectrum of Gaussian noise excitation signal 

 

3.2.4 Measuring the Best Linear Approximation 

In [42], the BLA has been carried out with normally distributed signals with a user-specified 

amplitude spectrum. There is no restriction of the generality of the approach. It is no problem 

at all to generate random multi-sines with a user-specified amplitude distribution and 

amplitude spectrum [44]. 

 

A straightforward approach to measure the linear system would be to apply a normally 

distributed noise excitation with a user specified power spectrum and to average this result 

over a large number of realizations of the input signal using the classical correlation methods 

[41] as shown in equation (3-8). 

 
)(

)(
)(

kUU

kYU
k

jS

jS
jG




   

(3-8) 
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Although this approach converges to the best linear approximation, it is very time consuming 

[44], [45]. In this research, an alternative approach is performed using the following rules: 

 

Rule 1: Use random phase multisine: As compared to random noise excitations, dips in the 

amplitude spectrum of the excitation are avoided and the desired amplitude spectrum is 

obtained in each realization of the signal [46]. 

 

Rule 2: Use odd signals that excite only the odd frequencies. This excludes the impact of 

even nonlinear distortions. These do not disturb the odd frequencies that are used to measure 

the linear approximation. 

 

For periodic excitations such as random phase multisine, the frequency response function 

(FRF, G(jωk)) is obtained by simple division of the output by the input spectrum [25] as 

shown in (3-9). However, in this research, the same measurement technique also applies to 

Gaussian noise excitation as a comparison to the case of using random phase multisine 

excitation. 

 
)(

)(
)(

k

k
k

jU

jY
jG




   

(3-9) 

 

3.2.5 Measurement Circuit 

The measurement circuit is basically comprised of a simple RC photodetector connected to 

an optical current source, e.g. a photovoltaic cell, as outlined in Fig. 3-8.  

 

Fig. 3-8. BLA measurement circuit 

 

Vph represents the equivalent voltage generated by optical current source due to illumination. 

Vph can be obtained from the optical current Iph and the source resistance Rs by applying 
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source transformation. An excitation voltage source Vex is connected across the output 

terminals of the circuit to provide either random phase multisine or Gaussian noise excitation 

signal to the circuit. Iex is the current from the excitation voltage source, Im is the output 

current of the RC network. 

 

By applying KVL at loop 1 & 2, and KCL at the output node of the circuit, it can be shown 

that the output voltage of the circuit, Vm is governed by the differential equation as given by 

equation (3-10). 

. 𝐴 ∙
𝑑𝑉𝑚

𝑑𝑉𝑡
+ 𝐵 ∙ 𝑉𝑚 − 𝐶 = 0 

(3-10) 

where 

 𝐴 = 𝑅𝑖 ∙ 𝑅𝑠 ∙ 𝑅𝑚 ∙ 𝐶𝑚 

 𝐵 = 𝑅𝑚 ∙ (𝑅𝑖 + 𝑅𝑠) + 𝑅𝑖 ∙ 𝑅𝑠 

 𝐶 = 𝑅𝑚 ∙ (𝑅𝑖 ∙ 𝑉𝑝ℎ + 𝑅𝑠 ∙ 𝑉𝑒𝑥) 

 

The BLA of the transfer function can be obtained non-parametrically by performing classical 

FRF measurement of the measurement circuit, i.e. the frequency domain of the output voltage 

Im over the frequency domain of input excitation voltage Vex.as a function of the photocurrent 

𝐼𝑝ℎ. In this case, the non-linear circuit can always be modelled by a linear system followed by 

a noise source representing the non-linear contributions. By construction, the noise source is 

uncorrelated but not independent of the excitation signal Vex. 
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3.3 Methodology Flow 

Fig. 3-9 shows the methodology flow chart in which BLA technique is applied to measure 

photocurrent in frequency domain. 

 

Measure the output voltage, Vout 

and excitation signal voltage, Vex

Are results satisfactory?

End

Yes

Perform FFT on the measured 

data

Compute FRFs, their means & 

standard deviations over the 

frequency bandwidth

No

Is Vout less than the 

open-circuit voltage, Voc

Determine device s I-V 
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Set output resistance of RC 
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Fig. 3-9. Frequency domain photocurrent measurement methodology flowchart 



 

44 

 

 

The first step to the measurement technique is to determine the current-voltage (I-V) curve 

for the photocurrent device. Based on the expected range of the photocurrent generated by the 

device, e.g. a PV cell, the output resistance, Rm needs to be set accordingly such that the 

output voltage, Vout, is operating in the photovoltaic mode, i.e. below the open-circuit voltage, 

Voc, which is the maximum voltage from a PV cell when the photocurrent generated by the 

PV cell is zero. This means to select an output voltage which is close to the PV cell’s 

maximum power point as shown in Fig. 3-10. In this region, the I-V characteristic is 

exponentially nonlinear and yet it is below Voc. 

 

Fig. 3-10. Operation of the PV cell near the maximum power point 

 

The input resistance of the RC photodetector, Ri needs to be set such that Iex is scaled down to 

only ~ 
1

10
 the strength of the output photocurrent, Iout. Iex needs to be weak as compared to Iout 

so that the irradiance effect on the photocurrent will not be masked by the relatively stronger 

Iex. 

 

Output voltage of RC photodector Vout is measured over a number of iterations, e.g. 1000 

times. The measured values are then converted to frequency domain for spectral analysis 

using FFT. 

 

Results of FRF means and standard deviation across the targeted frequency range are plotted 

and checked for consistency. If results are not satisfactory, then the whole process is repeated 

starting with the determination of Rm. 
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CHAPTER 4 THEORETICAL VALIDATION OF EXPERIMENTAL 

RESULTS 

4.1 Introduction 

This chapter serves to explain the development of a simulation model to simulate the 

measurement circuit. The chapter starts with the section to introduce the modelling of the 

measurement circuit with the sources of nonlinearities for the measurement circuit. This is 

followed by the presentation of the simulation results. 

 

4.2 Modelling of Measurement Circuit  

Fig. 4-1 shows the proposed equivalent circuit model for the photovoltaic cell coupled with a 

configurable RC photodetector. This is the complete overall outline of the circuit used in this 

work for the frequency domain photocurrent measurement. 

Output

Rm Cm

Ri

PV Dynamic Equivalent Circuit Model

Cj

Rs

RshIph
Vex

RC Photodetector

+

-

Id1 Ish

Imod

+

-

Vmod

+

-

Vout

Id2

Iex

Ic

Node 

1
Node 

2
Ls

+

-

Vload

Iload

Iout

 

Fig. 4-1. Measurement circuit for frequency domain photocurrent measurement 

 

The measurement circuit has two nodes, namely Node 1 and Node 2 as shown in Fig. 4-1. 

The nodal voltage is given as 𝑉1 = 𝑉𝑚𝑜𝑑  and 𝑉2 = 𝑉𝑜𝑢𝑡 respectively. There are three 

nonlinearities associated with this measurement circuit, namely exponential nonlinearity 

between the diode current and the voltage across it, junction capacitance nonlinearity and the 

nonlinearity due to wiring of photovoltaic cell. These nonlinearities are highlighted in Section 

2.6. 

 



 

46 

 

4.3 Matlab / Simulink Simulation Model of Measurement Circuit 

The equivalent circuit model of PV cell has been created in Simulink using components from 

Simscape toolbox. A custom Simscape component as shown in Appendix E.1Error! 

Reference source not found. has been created to model the diffusion capacitance arising 

from the build-up of minority carriers charge surrounding the forward bias pn-junction. The 

formula for the diffusion capacitance is as given by equation (2-48). Another custom 

Simscape component as shown in Appendix E.2Error! Reference source not found. has 

been created to model the junction capacitance arising from the space charge region 

surrounding the reverse bias pn-junction. The formula for the depletion capacitance is as 

given by equation (2-49). Fig. 4-2 shows the I-V characteristics while Fig. 4-3 shows the 

corresponding P-V characteristics of the pn-junction making use of the custom Simscape 

model for the diffusion and depletion capacitance. 

 

In this work, as a first cut approach, the Cj0 is assigned a value of 0.1 fF. The junction of the 

PV cell is assumed to be linearly graded with m assigned to 0.33. Fig. 4-4 shows the complete 

simulation model of the measurement circuit with the junction capacitance Cj added to it. The 

parameters for the model are set via a Matlab script file as shown in Appendix E.3Error! 

Reference source not found.. The parallel resistance Rsh is set to 10 kΩ while the series 

resistance Rs is set to 10 Ω. The components of RC photodetector are set to same values as 

used on the bench set-up with source resistance Rp = 1 Ω, output resistance Rm = 4.7 kΩ and 

output capacitance Cm = 1 µF. The current is set to 20 µA to simulate the case of the 

measurement circuit with a Gaussian noise excitation and an irradiance conditions that 

produces short-circuit current of 20 µA from the OPV cell. 
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Fig. 4-2. IV characteristics of the pn-junction using the custom Simscape models for 

diffusion and depletion capacitance 

 

 

Fig. 4-3. PV characteristics of the pn-junction using the custom Simscape models for 

diffusion and depletion capacitance 
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Filename: .\Monash\Research\Test\Simulation\Matlab\Circuit Analysis\pv_nonlinearity_sim_new.slx 

 

 

Fig. 4-4. Simulink simulation model of the PV equivalent circuit with RC photodetector for measuring the photocurrent in frequency domain 
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The junction capacitance Cj which comprises of both the diffusion capacitance Cd and 

depletion capacitance Ct can be seen to form a parallel-series RLC resonant circuit with the 

shunt resistance Rsh, the series combination of series resistance Rs, wire inductance Ls, 

resistance Rm and capacitance Cm of the RC photodetector as shown in Fig. 4-5. 

Rm CmCj

Rs

RshVs

Ish

Is

Ic

Ls

Ilrc

AC

 

Fig. 4-5. Generic equivalent circuit model of a parallel-series RLC circuit 

 

With an ac voltage source 𝑉𝑠 connected to the RLC circuit, the current response 𝐼𝑠 of the 

circuit can be determined as 

 𝐼𝑠 = 𝐼𝑐 + 𝐼𝑠ℎ + 𝐼𝑙𝑟𝑐  

                =
𝑉𝑠

𝑋𝐶𝑗

+
𝑉𝑠

𝑅𝑠ℎ
+

𝑉𝑠

𝑅𝑠+𝑋𝐿𝑠+𝑋𝐶𝑚 //𝑅𝑚
 

     = 𝑉𝑠 ∙ 𝑌 

where 

 Admittance, 𝑌 =
1

𝑋𝐶𝑗

+
1

𝑅𝑠ℎ
+

1

𝑅𝑠+𝑋𝐿𝑠+𝑋𝐶𝑚//𝑅𝑚
 

    = 𝑗𝑤𝐶𝑗 +
1

𝑅𝑠ℎ
+

1

𝑅𝑠+𝑗𝑤𝐿𝑠+
1

𝑗𝑤𝐶𝑚
//𝑅𝑚

 

(4-1) 

 

When the frequency of the ac voltage source is low (close to dc, 𝜔 → 0), reactance due to the 

junction capacitance 
1

𝑗𝑤𝐶𝑗
 and the capacitance 

1

𝑗𝑤𝐶𝑚
of the RC photodetector can be considered 

large while reactance of the wire inductance 𝑗𝜔𝐿𝑠 is almost zero (i.e. short-circuit). We have 

an equivalent circuit as shown in Fig. 4-6. 
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Rm
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RshVs

Ish
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Ic

Ilrc

AC

 

Fig. 4-6. Equivalent circuit model of a parallel-series RLC circuit at low frequency (close to 

dc) 

 

On the other hand, when the frequency of the ac voltage source is high (close to infinity, 𝜔 →

∞), reactance due to the junction capacitance 
1

𝑗𝑤𝐶𝑗
 and the capacitance 

1

𝑗𝑤𝐶𝑚
 of the RC 

photodetector can be considered to be almost zero (i.e. short-circuit) while reactance of the 

wire inductance 𝑗𝜔𝐿𝑠 is considered large (i.e. open-circuit). We have an equivalent circuit as 

shown in Fig. 4-7. In this case, almost zero current will flow from the ac voltage source to the 

output of the photo device. 

Rm

RS

RshVs

Ish

Is

Ic

Ilrc

AC

 

Fig. 4-7. Equivalent circuit model of a parallel-series RLC circuit at high frequency (close to 

infinity, 𝜔 → ∞) 

 

4.4 Modelling Simulation Results 

Fig. 4-8 shows the simulation results based on the Matlab / Simulink model as shown in Fig. 

4-4. In this case, the short-ciruit photocurrent Iph was set to 2 mA. For the RC photodetector, 

𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹. The plot shows that there is a dominant power spectral density 

(PSD) peak at around 1143 Hz within the frequency spectrum of 1 Hz to 2010 Hz. Other 

peaks occur at 999 Hz and 843 Hz in this case. This indicates that the simulation model 

which mimics the actual measurement circuit does indeed capture the presumed inherent 
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circuit nonlinearities and exhibits similar behaviours that help explain the observed trends in 

the plots of mean and standard deviation of FRF values computed based on measurement 

data. 

 

Fig. 4-9 shows the simulation results based on the same Matlab / Simulink model and 

conditions but with Gaussian noise excitation. The plot shows that there is a dominant PSD 

peak at around 32 Hz within the frequency spectrum of 1 Hz to 2010 Hz. Other peaks happen 

at 73 Hz and 1576 Hz in this case. 

 

For other simulated PSD plots with different combination values of 𝑅𝑚 and 𝐶𝑚 for the RC 

photodetector, refer to figures in Appendix A.1 for those with random phase multisine 

excitation and Appendix A.2 for those with Gaussian noise excitation. Table 4-1 summarizes 

the results for simulated plots of FRF standard deviations using the Matlab / Simulink model 

as shown in Fig. 4-4. 

 

Table 4-1. Summary of results for simulated plots of FRF standard deviations 

 

 

The peaks at different frequencies can be attributed to the interaction of nonlinearities present 

in the device and measurement circuit with the type of excitation source and RC 

photodetector, the parameter values used to model the resistances and capacitances associated 

with the photocurrent device and measurement circuit. 

 

R m  (Ω) C m  (F)

1k 1143 999, 843 Fig. 4-11

10k 694 1583, 1261 Fig. A-1

100k 1862 1595, 958 Fig. A-2

1k 1n 883 1781, 1190 Fig. A-3

1k 32 84, 1578 Fig. 4-12

10k 42 9 Fig. A-4

100k 25 55 Fig. A-5

1k 1n 1342 710, 1183, 486 Fig. A-6

1µ

1µ

Random Phase 

Multisine

Gaussian Noise

Excitation Signal

RC Photodetector
Dominant Frequency

(Hz)

Other Peak 

Frequencies

(Hz)

Comments



 

52 

 

 

Fig. 4-8. Simulation results of Matlab / Simulink model for 𝐼𝑝ℎ = 2 𝑚𝐴 with random phase 

multisine excitation (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. 4-9. Simulation results of Matlab / Simulink model for 𝐼𝑝ℎ = 2 𝑚𝐴 with Gaussian noise 

excitation (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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CHAPTER 5 EXPERIMENTAL RESULTS & ANALYSIS 

5.1 Experimental Set-up 

The validity of the proposed method is independent of the physics of the photocurrent 

generation. An off-the-shelf solar cell has been used to simulate the behaviour of a generic 

photosensor. Referring to Fig. 3-8, an excitation voltage source Vsupply is connected across the 

output terminals of the circuit to provide an excitation signal to the circuit. Iout, is the current 

supply by the excitation source. Iout will interact with Eph (or Is) through Im, the current 

passing through the RC load. The RC load is placed across the sensor to prevent excessive 

voltage build up across the terminals. Rm is designed to have large resistance value so that it 

does not create excessive loading condition on the sensor. This measurement configuration 

allows Vsupply to excite the sensor while the effective output terminal voltage of the sensor is 

being measured. Nonlinear response of the sensor with respect to Vsupply will be reflected 

indirectly through the measurement of Vm. The current sourcing capability of the sensor 

becomes a secondary factor under this setup. 

 

The BLA can be obtained non-parametrically by performing classical FRF measurement of 

the system. FRF is basically the spectrum of the output voltage Vm divided by the spectrum 

of input excitation voltage Vex. The excitation frequency was varied from 10 Hz to 2.01 kHz 

with a step size of 20 Hz. The sampling frequency is 40.96 kHz with a record length of 4096 

samples. 

 

A test circuit has been constructed as shown in Fig. 5-1 where a photocurrent device in the 

form of a miniature solar cell, photodiode, etc., has been used to provide photo-generated 

current Iph when illuminated by LED light bulbs. The test circuit was shielded in a black 

metal box as shown in Fig. 5-2. The measurements have been carried out using National 

Instruments PXI-5412 100 MS/s, 14-Bit Arbitrary Waveform Generator (niFgen), and PXI-

5112 100 MHz Digital Oscilloscope (niScope). VI programs were developed to generate the 

excitation signal using PXI-5412. Another VI program was developed to measure the output 

voltage Vm and excitation voltage Vsupply. The measurement is averaged across 1000 

independent realizations to estimate BLA and associated statistics. 
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Fig. 5-1. Test circuit for the FRF measurement 

 

 

Fig. 5-2. EMI shielding metal box for the FRF measurement 

 

The irradiance 𝐼𝑟 for the experiments has been set indirectly by measuring the short-circuit 

current 𝐼𝑝ℎ of the photocurrent device under test conveniently and accurately using a digital 

multimeter. 𝐼𝑝ℎ can be adjusted by controlling the current source coming from the dimmable 

LED light bulb via a rotary switch. A separate measurement was then carried out using 

Solarmeter® Digital PV Radiometer to provide the irradiance in 
𝑊

𝑚2 for each setting of 𝐼𝑝ℎ in 

mA for miniature inorganic photovoltaic cell (Fig. 5-3) and in µA for OPV cell (Fig. 5-4). 
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Fig. 5-3. Irradiance 𝐼𝑟 as a function of short-circuit current 𝐼𝑝ℎ of miniature photovoltaic cell 

 

 

Fig. 5-4. Irradiance 𝐼𝑟 as a function of short-circuit current 𝐼𝑝ℎ of OPV cell 

 

Fig. 5-3 yields a curve fitted linear equation as in equation (5-1) while Fig. 5-4 yields a curve 

fitted linear equation as shown in equation (5-1). 

 𝐼𝑟 = 6.2198 ∙ 𝐼𝑝ℎ + 0.1001 
𝑊

𝑚2 

(5-1) 

where 𝐼𝑝ℎ in mA 

 𝐼𝑟 = 0.4146 ∙ 𝐼𝑝ℎ + 0.2479 
𝑊

𝑚2 

(5-2) 
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where 𝐼𝑝ℎ in µA 

 

Based on equation (5-1), a look-up Table 5-1 has been created to provide the corresponding 

𝐼𝑟 value in 
𝑊

𝑚2 for each setting of 𝐼𝑝ℎ. Similarly, based on equation (5-2), a look-up Table 5-2 

has been created to provide the corresponding 𝐼𝑟 value in 
𝑊

𝑚2 for each setting of 𝐼𝑝ℎ for OPV 

cell. 

 

Table 5-1. Look-up Table for 𝐼𝑝ℎ versus 𝐼𝑟 for miniature photovoltaic cell 

Short-circuit Current, Iph (mA) Irradiance, Ir (W/m2) 

2 12.5 

3 18.8 

4 25.0 

5 31.2 

6 37.4 

7 43.6 

8 49.9 

9 56.1 
10 62.3 

 

Table 5-2. Look-up Table for 𝐼𝑝ℎ versus 𝐼𝑟 for OPV cell 

Short-circuit Current, Iph (µA) Irradiance, Ir (W/m2) 

20 8.5 

30 12.7 

40 16.8 

50 21.0 

60 25.1 

70 29.3 
80 33.4 

90 37.6 

 

5.2 Miniature Inorganic Photovoltaic Cell 

5.2.1 I-V Characteristic 

A miniature inorganic photovoltaic cell is used as one of the photocurrent devices under the 

BLA experiments. Fig. 5-5 shows the I-V plot for the miniature inorganic photovoltaic cell 

with the terminal voltages biased from -5 V to 2 V. The measurement was carried out using 

Keithley Model 2450 Source Measurement Unit. The photocurrent device has an open-circuit 
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voltage Voc ~= 1.5 V and is capable of producing few tens to hundreds milliampere of 

photocurrent depending on the irradiance of light. 

 

 

Fig. 5-5. I-V plot for miniature inorganic photovoltaic cell 

 

5.2.2 Random Phase Multisine Excitation Signal 

Fig. 5-6 and Fig. 5-7 show the BLA and standard deviation of the FRF respectively from 

random phase multisine excitation signal applied to the test set-up with miniature 

photovoltaic cell mounted. Results presented in Fig. 5-6 and Fig. 5-7 are measured at 𝑅𝑚 =

1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹. Both BLA (Fig. 5-6) and its uncertainty (Fig. 5-7) change with respect 

to the magnitude of photocurrent. However, the trend is more clearly distinguishable from the 

uncertainty measurement compared to the BLA measurement. 

 

In Fig. 5-6, significant fluctuation of BLA has been observed at excited frequency of 330 Hz 

(dominant) and 650 Hz respectively. This corresponds to the large uncertainty of FRF 

observed at the same excited frequencies as shown in Fig. 5-7. The FRF uncertainty as shown 

in Fig. 5-7 changes in tandem with the photo-generated currents. The stronger the current, the 

larger will be the value of the standard deviation. The changes of standard deviation values 

saturate at high current values. 

 



 

58 

 

 

Fig. 5-6. FRF mean plot with random phase multisine excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. 5-7. FRF standard deviation plot with random phase multisine excitation signal for 

miniature inorganic photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

The same trends albeit different fluctuation peaks at excited frequency of 1710 Hz (dominant 

frequency) and 1550 Hz respectively have been observed for another repeated set of random 

phase multisine excited measurements on miniature inorganic photovoltaic cell with 𝑅𝑚 =

1 𝑘Ω but 𝐶𝑚 = 1 𝑛𝐹 (Fig. B-5 and Fig. B-6 in APPENDIX B.1). These empirical 
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measurements demonstrate that the measurement of FRF statistics can be used as an indirect 

method of measuring photocurrent. 

 

5.2.3 Gaussian Noise Excitation Signal 

The measurements were repeated with Gaussian noise excitation signal. Fig. 5-8 and Fig. 5-9 

show the plots of mean and standard deviation values of FRF of the circuit with Gaussian 

noise excitation signal for 𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹. The Gaussian noise excited FRF is a 

wideband noise that excites every frequency band. Therefore, it has higher spectral resolution 

compared to multisine excitation. In this case, significant fluctuation of FRF mean values 

were observed at excited frequency of 730 Hz (dominant), 1050 Hz, and 1770 Hz 

respectively. The same trends albeit different fluctuation peaks at excited frequency of 490 

Hz (dominant), 1990 Hz, 1650 Hz and 410 Hz respectively have been observed for another 

repeated set of Gaussian noise excited measurements on miniature inorganic photovoltaic cell 

with 𝑅𝑚 = 1 𝑘Ω but 𝐶𝑚 = 1 𝑛𝐹 (Fig. B-11 and Fig. B-12 in APPENDIX B.2). 

 

 

Fig. 5-8. FRF mean plot with Gaussian noise excitation signal for miniature inorganic 

photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. 5-9. FRF standard deviation plot with Gaussian noise excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

The FRF uncertainty values change in tandem with the photo-generated currents, as the 

stronger the current, the larger will be the value of the standard deviation. Even without 

modeling the physical process involved in detail, the proposed FRF indirect photocurrent 

measurement technique seems to work well. 

 

The nonlinear photo-response of the photo device is first quantified by FRF measurements. 

The relationship between the FRF measurements and the magnitude of light irradiance can 

then be deduced through the regression analysis to obtain the photocurrent and then apply 

either equation (5-1) or (5-2) to obtain the irradiance of light in 
𝑊

𝑚2. The proposed method is 

inherently empirical in nature because the nonlinearity of the sensor under investigation is 

often poorly understood. Without a good model of nonlinearity, it is impossible to simulate 

the BLA and its associated uncertainty. 

 

5.2.4 Regression Analysis 

Fig. 5-10 shows the plots for photocurrent versus the standard deviation of FRFs on miniature 

inorganic photovoltaic cell with random phase multisine excitation signal at 330 Hz using 

linear, quadratic, cubic and an exponential function to fit the data. Equation of the curve fit is 

shown on the plots. 𝜎 represents the FRF standard deviation and 𝐼 represents the photocurrent 
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of the photo device. The residuals of the curve fittings are plotted in Fig. 5-11 while the 

fitness of curve fittings is tabulated in Table 5-3. Refer to Fig. 5-12, Fig. 5-13 and Table 5-4 

for regression plots and fitness data on miniature inorganic photovoltaic cell with Gaussian 

noise excitation source at 730 Hz. 

 

Fig. 5-10. Regression plots of standard deviation of FRFs for miniature inorganic 

photovoltaic cell with random phase multisine excitation signal at 330 Hz (𝑅𝑚 = 1 𝑘Ω and 

𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. 5-11. Residuals of regression plots for miniature inorganic photovoltaic cell with random 

phase multisine excitation signal at 330 Hz (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Table 5-3. Fitness of curve fittings for miniature inorganic photovoltaic cell with random 

phase multisine excitation signal at 330 Hz (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

 

Fig. 5-12. Regression plots of standard deviation of FRFs for miniature inorganic 

photovoltaic cell with Gaussian noise excitation signal at 730 Hz (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 =

1 µ𝐹) 

 

R m  (Ω) C m  (F)

Linear 9.5424 0.8410 0.8182

Quadratic 1.8852 0.9686 0.9581

Cubic 0.5949 0.9901 0.9841

Exponential 3.1128 0.9481 N. A.

SSE R-square
Adjusted

R-square

1µ

RC Photodetector
Excitation

Source

Dominant

Frequency

(Hz)

Type of 

Fit

Random 

Phase 

Multisine

3301k
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Fig. 5-13. Residuals of regression plots for miniature inorganic photovoltaic cell with 

Gaussian noise excitation signal at 730 Hz (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

Table 5-4. Fitness of curve fittings for miniature inorganic photovoltaic cell with Gaussian 

noise excitation signal at 730 Hz (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Based on the regression analysis, either a quadratic or cubic linear regression will provide a 

good fit depending on the trade-off between matching accuracy and number of coefficients 

for the fitted equation. A cubic linear regression plot in general will provide the best fit. The 

obtained regression function thus enables one-to-one mapping between the standard deviation 

𝜎 and photocurrent 𝐼. The obtained photocurrent 𝐼 can then subsequently applied to equation 

(5-1) to obtain the irradiance of light in 
𝑊

𝑚2. 

 

R m  (Ω) C m  (F)

Linear 9.0859 0.8486 0.8269

Quadratic 2.2397 0.9627 0.9502

Cubic 0.6320 0.9895 0.9831

Exponential 2.8351 0.9527 N. A.

SSE R-square
Adjusted

R-square

1µ

RC Photodetector
Excitation

Source

Dominant

Frequency

(Hz)

Type of 

Fit

Gaussian 

Noise
7301k
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5.3 Miniature Organic Photovoltaic Cell 

5.3.1 I-V Characteristic 

Few organic photovoltaic (OPV) cells were ordered and fabricated by Ossila Ltd in their 

Kroto Innovation Centre at The University of Sheffield. APPENDIX C presents the electrical 

characterisation and fabrication conditions of those samples. 

 

In this works, an OPV sample was selected from the batch of samples to act as the 

photocurrent source to the RC photodetector as an alternative light source to miniature 

inorganic solar cell. The sample was clipped with testing legs before inserting to the test 

board as shown in Fig. 5-14. 

 

 

Fig. 5-14. OPV cell with test legs 

 

Fig. 5-15 shows the J-V curves of three slight different process treatment of OPV cells with 

the terminal voltages biased from -1 V to 1 V under 100 
𝑚𝑊

𝑐𝑚2 (1 sun) AM1.5 test conditions. 

The photocurrent devices have an open-circuit voltage Voc ~= 0.83 - 0.89 V and are capable 

of producing few tens to hundreds microampere of photocurrent depending on the irradiance 

of light. 

 



 

65 

 

 

Fig. 5-15. J-V curves of OPV cell 

 

5.3.2 Gaussian Noise Excitation Signal 

For the experiments carried out on OPV cell, Gaussian noise was chosen as the excitation 

signal as the Gaussian noise excited FRF is a wideband noise that excites every frequency 

band. Therefore, it has higher spectral resolution compared to multisine excitation and has 

proven to work in previous experiments using miniature inorganic solar cell.  

 

As a single OPV cell provides the photocurrent in microampere range with the dimmer 

control, the input resistance of the RC photodetector was increased from 1 kΩ to 100 kΩ such 

that current due to the excitation signal is not too strong to interact with the photocurrent 

from the OPV cell. The output capacitance Cm is fixed at 1 µF as in the previous experiments. 

 

In Fig. 5-16, significant fluctuation of BLA has been observed at excited frequency of 450 Hz 

and 1370 Hz respectively. This corresponds to the large uncertainty of FRF observed at the 

same excited frequencies as shown in Fig. 5-17. However, in this case, the FRF uncertainty 

changes in reverse order with the photo-generated currents, as weaker current shows larger 

value of the standard deviation.  
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Fig. 5-16. FRF mean plot with Gaussian noise excitation signal for OPV cell (𝑅𝑚 = 1 𝑘Ω and 

𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. 5-17. FRF standard deviation plot with Gaussian noise excitation signal for OPV cell 

(𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

Upon further investigation with higher resistance at the output, i.e. 𝑅𝑚 = 4.7 𝑘Ω instead of 

1 𝑘Ω, it has been found that the trend reverses at the excited frequency of 890 Hz as shown in 

Fig. 5-18 and Fig. 5-19. Subsequent BLA measurements with larger 𝑅𝑚 = 10 𝑘Ω as shown 

in Fig. 5-20 and Fig. 5-21 show consistent results that the FRF uncertainty values changes in 

tandem with the photo-generated currents, as the stronger the current, the larger will be the 
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value of the standard deviation (refer to Fig. B-13 and Fig. B-14 in APPENDIX B.3 for the 

FRF mean and standard deviation plots with 𝑅𝑚 = 100 𝑘Ω). 

 

 

Fig. 5-18. FRF mean plot with Gaussian noise excitation signal for OPV cell (𝑅𝑚 = 4.7 𝑘Ω 

and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. 5-19. FRF standard deviation plot with Gaussian noise excitation signal for OPV cell 

(𝑅𝑚 = 4.7 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 



 

68 

 

 

Fig. 5-20. FRF mean plot with Gaussian noise excitation signal for OPV cell (𝑅𝑚 = 10 𝑘Ω 

and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. 5-21. FRF standard deviation plot with Gaussian noise excitation signal for OPV cell 

(𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

It is postulated that the reversal of trend is due to loading effect in which the current of OPV 

cell lies on the rather flat portion of the I-V curve as shown in Fig. 5-15 in reverse bias mode 

instead of the nonlinear exponential region in forward bias mode when the output resistance 

Rm is smaller than 4.7 kΩ. The transit of reverse to forward bias mode can happen when the 

voltage across the OPV cell is beyond its open-circuit Voc ~= 0.83 - 0.89 V as shown in Fig. 
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5-15. Nevertheless, the proposed FRF indirect photocurrent measurement technique proves to 

work even with OPV cell which produces current of few hundred magnitude order lower than 

that of the miniature inorganic photovoltaic cell reported in Section 5.1. 

 

5.3.3 Regression Analysis 

Fig. 5-22 shows the plots for photocurrent versus the standard deviation of FRFs on OPV cell 

with Gaussian noise excitation signal at 2010 Hz using linear, quadratic, cubic and an 

exponential function to fit the data. Equation of the curve fit is shown on the plots. 𝜎 

represents the FRF standard deviation and 𝐼 represents the photocurrent of the photo device. 

The residuals of the curve fittings are plotted in Fig. 5-23 while the fitness of curve fittings is 

tabulated as in Table 5-5. 

 

 

Fig. 5-22. Regression plots of standard deviation of FRFs for OPV cell with Gaussian noise 

excitation signal at 2010 Hz (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. 5-23. Residuals of regression plots for OPV cell with Gaussian noise excitation signal at 

2010 Hz (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

Table 5-5. Fitness of curve fittings for OPV cell with Gaussian noise excitation signal at 2010 

Hz (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

As for the case of miniature inorganic photovoltaic cell, either a quadratic or cubic linear 

regression will provide a good fit depending on the trade-off between matching accuracy and 

number of coefficients for the fitted equation. A cubic linear regression plot in general will 

provide the best fit. The obtained regression function thus enables one-to-one mapping 

between the standard deviation 𝜎 and photocurrent 𝐼. The obtained photocurrent 𝐼 can then 

subsequently applied to equation (5-2) to obtain the irradiance of light in 
𝑊

𝑚2. 

 

5.4 Correlation Test 

Correlation tests were carried out to find the correlation coefficients which indicate the 

relationship between the photocurrent and the computed standard deviations of FRFs, and to 

R m  (Ω) C m  (F)

Linear 661.5845 0.8425 0.8162

Quadratic 464.2545 0.8895 0.8452

Cubic 123.0740 0.9707 0.9487

Exponential 5374.1000 -0.2795 N. A.

SSE R-square
Adjusted

R-square

RC Photodetector
Excitation

Source

Dominant

Frequency

(Hz)

Type of 

Fit

Gaussian 

Noise
20101µ10k
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what extent the two variables move together. Table 5-6 shows the comparison of statistical 

parameters of Pearson and Kendall tau rank correlation tests. Pearson correlation test is a 

measure of the strength and direction of the linear relationship between two data sets, and is 

regarded as the best measure of correlation. Kendall tau rank is a measure of the portion of 

ranks that match between two data sets. 

 

All the three samples under study have Pearson product-moment correlation coefficient, rho, 

close to 1 indicating a high positive correlation between the photocurrent and the standard 

deviations of FRFs. The corresponding p-val is less than the significance level of 0.05. This 

indicates the rejection of the hypothesis that no correlation exists between the two variables. 

 

For Kendall's tau correlation test, the obtained tau coefficients are 1 or close to 1 indicating 

that the rankings of the photocurrent and the standard deviations of FRFs are the same. 

 

Table 5-6. Comparison of Statistical Parameters of Correlation Tests 

 

 

5.5 Summary of Experimental Results 

Whenever a photosensor is excited with an excitation signal, there always exists a dominant 

frequency in which the spread of standard deviation of FRFs is the largest. The existent of 

this dominant frequency depends on the interaction of the type of photosensor under test, the 

resistance and capacitance of the RC photodetector, and the type of excitation signal applied 

in the measurement circuit. Table 5-7 compares the dominant frequencies with the largest 

spread of standard deviation of FRFs across different combinations for the parameters of the 

measurement circuit. The table shows that different medium of photocurrent generation will 

produce different characteristics of the dominant frequency. The dominant frequency will 

vary with the output resistance 𝑅𝑚 and capacitance 𝐶𝑚 of the RC photodetector as well as the 

type of signal used for the excitation. 

Kendall

rho p-val tau

Miniature Inorganic 

Photovoltaic Cell

Random Phase 

Multisine
330 0.9170 0.0005 1.0000

Miniature Inorganic 

Photovoltaic Cell
Gaussian Noise 730 0.9212 0.0004 1.0000

Organic Photovoltaic 

(OPV) Cell
Gaussian Noise 2010 0.9179 0.0013 0.9820

Sample Excitation Source
Peak Frequency 

(Hz)

Pearson
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Table 5-7. Comparison of dominant frequencies in Frequency Domain Photocurrent 

Measurement 

 

 

  

R m  (Ω) C m  (F)

1k 330 650 Fig. 5-6, 5-7

10k 330 650 Fig. B-1, B-2

100k 330 650 Fig. B-3, B-4

1k 730 1050, 1770 Fig. 5-8, 5-9

10k 730 1050, 1770 Fig. B-7, B-8

100k 730 1050, 1770 Fig. B-9, B-10

Random Phase 

Multisine
1370 810, 1450, 570 Fig. B-5, B-6

Gaussian Noise 490 410, 2010 Fig. B-11, B-12

4.7k 890 NIL Fig. 5-18, 5-19

10k 2010 1370, 1690 Fig. 5-20, 5-21

100k 490 570 Fig. B-13, B-14

Organic Photovoltaic 

(OPV) Cell
Gaussian Noise 1µ

Miniature Inorganic 

Photovoltaic Cell

1µ

1k 1n

Random Phase 

Multisine

Gaussian Noise

Comments
Photocurrent

Device

RC Photodetector

Excitation Signal
Dominant Frequency

(Hz)

Other Peak 

Frequencies

(Hz)
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CHAPTER 6 CONCLUSION & FURTHER WORK  

6.1 Conclusion 

The proposed research presents the technique of using the FRF statistics of a photosensor to 

perform indirect light intensity measurement. The proposed method is different from the 

conventional method of wide-band direct photocurrent measurement. The method is 

potentially applicable to any sensor that are sensitive to output current loading. 

 

The proposed research started with the initial works into the frequency response of the RC 

photodetector excited by noise utilizing BLA measurement methodology. Two excited 

signals, random phase multisine and Gaussian noise have been applied to activate the 

measurement circuit. The photocurrent was sourced from miniature solar cell and OPV cells 

respectively. In both cases, the standard deviations of FRFs of output signal show a strong 

correlation with the incident light intensity. The correlation is generally valid across all 

frequency bands but much stronger at certain frequencies.  

 

The magnitude of the photocurrent can be deduced with reasonable accuracy by measuring 

the standard deviation of FRF at selected frequencies without resorting to the use of high-end 

current measuring instruments. This particular feature may be useful in sensor design because 

it allows noise sources with stable statistical characteristics to be used in the measurement 

circuit. The promising result provides hindsight to an indirect method to measure the 

response of sensors especially those sensors that produce minute electrical signal, thus 

avoiding environmental interference encountered in wide-band direct current measurement 

technique. The simplicity of the experimental setup and analysis suggests that it is possible to 

miniaturize the measurement circuit such that it can be embedded directly into the 

photosensor. 

 

The research work has defined the steps involved in carrying out the frequency domain 

photocurrent measurement as outlined in Fig. 3-9. This is to make sure the results obtained 

are valid and similar to what have been reported in this report. In order to obtain the 

experimental results, a measurement circuit board has been designed and constructed as 

shown in Fig. 3-8 and modelled for simulation as shown in Fig. 4-1. The proposed 

measurement technique on photocurrent detection has been successfully applied to obtain 
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results as tabulated in Table 5-7 These accomplished the three research objectives as listed in 

section 1.3. 

 

6.2 Future Work 

The idea of mixing noise source with a sensing signal, detect and statistically quantify the 

spread of the output response as an indirect way of measuring the signal can be explored to 

other types of sensor, not limiting to only photosensor. This research only looks into the 

photosensor and its signal as photocurrent. The field can be widened to cover sensors which 

produce weak signals, and to determine if the noise coupling measurement technique can be 

easily exploited to gauge the strength of the signals produced by those sensors.  

 

As shown in Table 5-7, the dominant frequency obtained from the frequency domain 

photoucurrent measurement vary with the medium of the photocurrent generation, output 

resistance Rm and capacitance Cm of the RC photodetector as well as the type of signal used 

for the excitation. More experimental works can be carried out in order to understand and 

establish the interaction between these measurement parameters so that the measurement 

technique can be fine-tuned in each separate case. 

 

The proposed BLA measurement circuit can be built as an integrated part of a particular 

photosensor. This will provide a complete low-cost solution for light intensity detection, 

especially for application in “on/off” switch control of electrical appliances. 

 

On the hardware implementation, a universal socket can be built to the measurement circuit 

board for the ease of mounting and unmounting of different types of photosensors. The RC 

photodetector can be made configurable by programming the switching array of resistances 

and capacitances to any required values with the use of a microcontroller. For ease of signal 

processing instead of porting the collected data from Labview to Matlab, analogue filter-

banks can be designed to extract the relevant spectral information and to perform 

approximate FRF computation on the circuit board. Alternatively, a more elaborated Labview 

VI program can be developed to complete the whole suite of signal processing from signal 

generation to the display of FRF statistics on the virtual front panel. 
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APPENDIX A FREQUENCY DOMAIN PHOTOCURRENT SIMULATION 

DATA 

A.1 Random-Phase Multisine Excitation 

 

 

Fig. A-1. Simulated PSD plot of FRF standard deviations with random phase multisine 

excitation signal for photovoltaic cell (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. A-2. Simulated PSD plot of FRF standard deviations with random phase multisine 

excitation signal for photovoltaic cell (𝑅𝑚 = 100 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. A-3. Simulated PSD plot of FRF standard deviations with random phase multisine 

excitation signal for photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 𝑛𝐹) 

 

A.2 Gaussian Noise Excitation with Miniature Inorganic Photovoltaic Cell 

 

 

Fig. A-4. Simulated PSD plot of FRF standard deviations with Gaussian noise excitation 

signal for photovoltaic cell (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. A-5. Simulated PSD plot of FRF standard deviations with Gaussian noise excitation 

signal for photovoltaic cell (𝑅𝑚 = 100 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. A-6. Simulated PSD plot of FRF standard deviations with Gaussian noise excitation 

signal for photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 𝑛𝐹) 
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APPENDIX B FREQUENCY DOMAIN PHOTOCURRENT 

MEASUREMENT DATA 

B.1 Random-Phase Multisine Excitation with Miniature Inorganic 

Photovoltaic Cell 

 

 

Fig. B-1. FRF mean plot with random phase multisine excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. B-2. FRF standard deviation plot with random phase multisine excitation signal for 

miniature inorganic photovoltaic cell (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. B-3. FRF mean plot with random phase multisine excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 100 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. B-4. FRF standard deviation plot with random phase multisine excitation signal for 

miniature inorganic photovoltaic cell (𝑅𝑚 = 100 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. B-5. FRF mean plot with random phase multisine excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 𝑛𝐹) 
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Fig. B-6. FRF standard deviation plot with random phase multisine excitation signal for 

miniature inorganic photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 𝑛𝐹) 

 

B.2 Gaussian Noise Excitation with Miniature Inorganic Photovoltaic Cell 

 

 

Fig. B-7. FRF mean plot with Gaussian noise excitation signal for miniature inorganic 

photovoltaic cell (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. B-8. FRF standard deviation plot with Gaussian noise excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 10 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. B-9. FRF mean plot with Gaussian noise excitation signal for miniature inorganic 

photovoltaic cell (𝑅𝑚 = 100 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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Fig. B-10. FRF standard deviation plot with Gaussian noise excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 100 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. B-11. FRF mean plot with Gaussian noise excitation signal for miniature inorganic 

photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 𝑛𝐹) 
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Fig. B-12. FRF standard deviation plot with Gaussian noise excitation signal for miniature 

inorganic photovoltaic cell (𝑅𝑚 = 1 𝑘Ω and 𝐶𝑚 = 1 𝑛𝐹) 
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B.3 Gaussian Noise Excitation with Organic Photovoltaic Cell 

 

 

Fig. B-13. FRF mean plot with Gaussian noise excitation signal for OPV cell (𝑅𝑚 = 100 𝑘Ω 

and 𝐶𝑚 = 1 µ𝐹) 

 

 

Fig. B-14. FRF standard deviation plot with Gaussian noise excitation signal for OPV cell 

(𝑅𝑚 = 100 𝑘Ω and 𝐶𝑚 = 1 µ𝐹) 
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APPENDIX C ORGANIC PHOTOVOLTAIC CELLS 

The fabrication works were carried out by Ossila Ltd in their Kroto Innovation Centre at The 

University of Sheffield on 21/05/2014 after receiving the order for the required samples and 

composition of the organic materials for the organic photovoltaic (OPV) cells. 

(click on the object to view the embedded pdf file) 
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APPENDIX D MATLAB SCRIPTS FOR EXCITATION SIGNAL 

GENERATION 

D.1 Random Phase Multisine Signal Generation 

Filename: .\Monash\Research\Test\Simulation\Matlab\multi_sine_rev_ss.m 

%Mfile for random phase multi-sine generation 

  
clear all; 
close all; 

clc; 
  
Len     = 2^12; 

T       = 1e-1; 
fs      = Len/T; 
Freq    = ([0:Len-1])*fs/Len; 

  
ptFreq  = (1:8:201); 
f0      = 1/T; 

f       = ptFreq*f0;   
A       = 0.3*ones(size(f)); 
  

Ts      = 1/fs; 
t       = (0:Ts:T-Ts); 
  

phi = pi-rand(size(f))*2*pi; 
%phi = pi-rand(1,1)*2*pi; 
  

vsupply = A*sin(2*pi*f'*t+repmat(phi',[1,Len])); 
 
vsupply_norm = vsupply./sqrt(mean(vsupply.^2)); 

  
VS  = fft(vsupply_norm)/Len; 
  

figure(1) 
set(gcf,'color','w') 
subplot(2,1,1) 

plot(t,vsupply_norm,'.') 
title('Random Phase Multi-Sine Plot', 'fontsize', 24, 'FontWeight', 'bold') 
xlabel('Time (s)', 'fontsize', 18, 'FontWeight', 'bold')  

ylabel('Amplitude', 'fontsize', 18, 'FontWeight', 'bold')  
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
grid on 

  
subplot(2,1,2) 
%stem(Freq, abs(VS))  % Double sided spectrum 

stem(Freq(1:Len/2), 2*abs(VS(1:Len/2)))  % Single sided spectrum 
title('Random Phase Multi-Sine Spectrum', 'fontsize', 24, 'FontWeight', 'bold') 
xlabel('Frequency (Hz)', 'fontsize', 18, 'FontWeight', 'bold')  

ylabel('Intensity', 'fontsize', 18, 'FontWeight', 'bold')  
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
grid on 

ylim([0,0.3]) 
  
pathName = 'C:\Temp\Matlab Data Files'; 

  
multisine_fname    = 'multisine.csv'; 
multisine_f2w = strcat(pathName, '\', multisine_fname); 
  

csvwrite(multisine_f2w, vsupply_norm); 
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D.2 Gaussian Noise Signal Generation 

Filename: .\Monash\Research\Test\Simulation\Matlab\gaussian_noise_rev_ss.m 

%Mfile for Gaussian noise generation 

  
clear all; 
close all; 

clc; 
  
Len     = 2^12; 

T       = 1e-1; 
fs      = Len/T; 
Freq    = ([0:Len-1])*fs/Len; 

  
ptFreq  = (1:8:201); 
f0      = 1/T; 

f       = ptFreq*f0; 
A       = 1; 
Offset  = 0; 

  
Ts      = 1/fs; 
t       = (0:Ts:T-Ts); 

  
vsupply = Offset + A*randn(1,Len); 
  

vsupply_norm = vsupply./sqrt(mean(vsupply.^2)); 
  
VS  = fft(vsupply_norm)/Len; 

  
figure(1) 
set(gcf,'color','w') 

subplot(2,1,1) 
plot(t,vsupply_norm,'.') 
title('Gaussian Noise Plot', 'fontsize', 24, 'FontWeight', 'bold') 

xlabel('Time (s)', 'fontsize', 18, 'FontWeight', 'bold') 
ylabel('Amplitude', 'fontsize', 18, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 

grid on 
  
subplot(2,1,2) 

%stem(Freq, abs(VS))  % Double sided spectrum 
stem(Freq(1:Len/2), 2*abs(VS(1:Len/2)))  % Single sided spectrum 
title('Gaussian Noise Spectrum', 'fontsize', 24, 'FontWeight', 'bold') 

xlabel('Frequency (Hz)', 'fontsize', 18, 'FontWeight', 'bold') 
ylabel('Intensity', 'fontsize', 18, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 

grid on 
ylim([0,0.2]) 
  

pathName = 'C:\Temp\Matlab Data Files'; 
  
gaussian_fname    = 'gaussian_noise.csv'; 

gaussian_f2w = strcat(pathName, '\', gaussian_fname); 
  
csvwrite(gaussian_f2w, vsupply_norm); 
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APPENDIX E MATLAB / SIMULINK MODEL OF MEASUREMENT 

CIRCUIT 

E.1 Custom Simscape Model for Diffusion Capacitance 

Filename: 

.\Documents\MATLAB\Simulink\+SimscapeCustomBlocks\+Electrical\diffusion_cap_new.s

sc 

component diffusion_cap_new 
% Diffusion Capacitance (New) 
% Diffusion capacitance of a semiconductor pn-junction; 

% Cd = Cd0 * exp(Vs/Vt-1) 
  
nodes 

    p = foundation.electrical.electrical; % +: left 
    n = foundation.electrical.electrical; % -: right 
end 

  
parameters 
    Kd = { 1000e-12, 'F' };              % Diffusion Capacitance at zero bias 

    Is = { 0.1e-15, 'F' };                  % Reverse saturation current or leakage current 
    nd = 2;                                    % Diode Ideality Factor 
    k = { 1.3806503e-23, 'J/K' };     % Boltzman constant 

    T  = { 300, 'K' };                       % Current Temperature 
    q = { 1.602176e-19, 'A*s' };      % Electron charge 
     

    r  = { 1e-6, 'Ohm' };          % Series resistance 
    g  = { 0, '1/Ohm' };           % Parallel conductance 
end 

  
variables 
    Cd  = { 0, 'F' };   % Capacitance 

    Vs = { 0, 'V' };  % Capacitor voltage 
    v = { 0, 'V' }; 
    i = { 0, 'A' }; 

end 
  
function setup 

    across(v, p.v, n.v); 
    through(i, p.i, n.i); 
     

    %if cd <= 0 
        %pm_error('simscape:GreaterThanZero','Capacitance') 
    %end 

    if g < 0 
        pm_error('simscape:GreaterThanOrEqualToZero','Parallel conductance') 
    end 

    if g == {inf, '1/Ohm'} 
        pm_error('simscape:LessThan','Parallel conductance','inf') 
    end 

    if r < 0 
        pm_error('simscape:GreaterThanOrEqualToZero','Series resistance') 
    end 

    if r == {inf, 'Ohm'} 
        pm_error('simscape:LessThan','Series resistance','inf') 
    end 

end 
  
equations 

    Cd == Kd*exp(Vs/(nd*k*T/q)-1); 
    v == i*r + Vs; 
    i == Cd*Vs.der + g*Vs; 

end 
  
end 
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E.2 Custom Simscape Model for Depletion Capacitance 

Filename: 

.\Documents\MATLAB\Simulink\+SimscapeCustomBlocks\+Electrical\depletion_cap_new.s

sc 

component depletion_cap_new 
% Depletion Capacitance (New) 

% Depletion (a.k.a Transition) capacitance of a semiconductor pn-junction, 
% Ct = Cj0 / (1 - Vs/Vbi)^m 
  

nodes 
    p = foundation.electrical.electrical; % +: left 
    n = foundation.electrical.electrical; % -: right 

end 
  
parameters 

    Cj0 = { 0.1e-15, 'F' };       % SCR Capacitance at zero bias 
    Vbi = { 0.65, 'V' };              % SCR built-in potential 
    m = 1/3;                           % Junction grading coefficient, ~ 0.33 - 0.5 

    k = { 1.3806503e-23, 'J/K' };     % Boltzman constant 
    T  = { 300, 'K' };                       % Current Temperature 
    q = { 1.602176e-19, 'A*s' };      % Electron charge 

     
    r  = { 1e-6, 'Ohm' };          % Series resistance 
    g  = { 0, '1/Ohm' };           % Parallel conductance 

end 
  
variables 

    Ct  = { 0, 'F' };   % Capacitance 
    Vs = { 0, 'V' };  % Capacitor voltage 
    v = { 0, 'V' }; 

    i = { 0, 'A' }; 
end 
  

function setup 
    across(v, p.v, n.v); 
    through(i, p.i, n.i); 

     
    %if cj <= 0 
        %pm_error('simscape:GreaterThanZero','Capacitance') 

    %end 
    if g < 0 
        pm_error('simscape:GreaterThanOrEqualToZero','Parallel conductance') 

    end 
    if g == {inf, '1/Ohm'} 
        pm_error('simscape:LessThan','Parallel conductance','inf') 

    end 
    if r < 0 
        pm_error('simscape:GreaterThanOrEqualToZero','Series resistance') 

    end 
    if r == {inf, 'Ohm'} 
        pm_error('simscape:LessThan','Series resistance','inf') 
    end 

end 
  
equations 

    Ct == Cj0/(1 - (Vs/Vbi) + (k*T/q)/(2*Vbi)*exp((Vs - Vbi)/(k*T/q)))^m; 
    v == i*r + Vs; 
    i == Ct*Vs.der + g*Vs; 

end 
  
end 
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E.3 Matlab Script for Set-up of Simulation Parameters 

Filename:  

.\Monash\Research\Test\Simulation\Matlab\Circuit Analysis\pv_nonlinearity_sim_setup.m 

clear all; 

close all; 

clc; 

  

set_param('rc_photodetector_vex_ind/Rsh', 'R', '10e+3'); 

set_param('rc_photodetector_vex_ind/Rs', 'R', '10'); 

set_param('rc_photodetector_vex_ind/Rp', 'R', '1'); 

set_param('rc_photodetector_vex_ind/Ri', 'R', '1'); 

set_param('rc_photodetector_vex_ind/Rm', 'R', '1e+3'); 

set_param('rc_photodetector_vex_ind/Cm', 'C', '1e-6'); 

set_param('rc_photodetector_vex_lcr_new/Ls', 'L', '90e-6'); 

 

set_param('rc_photodetector_vex_ind/Current Gain', 'K', '1/1e+5'); 

  

fs = 40.96e+3; % Sampling rate 

set_param('rc_photodetector_vex_ind/Sample and Hold', 'Ts', '1/fs'); 

  

%Set the irradiance 

G=200; 
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APPENDIX F LABVIEW VI PROGRAM DEVELOPMENT 

F.1 Labview VI Program for Random Phase Multisine Generation 

Filename: 

.\Monash\Research\Test\Measurement\LabVIEW\multisine_waveform_generation_rev3.vi 

 

Fig. E-1. Front panel of random phase multisine generation 
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Fig. E-2. Block diagram of random phase multisine generation 

 

 



 

99 

 

F.2 LABVIEW VI Program for Gaussian Noise Generation 

Filename: 

.\Monash\Research\Test\Measurement\LabVIEW\niFgen_Create_Gaussian_Noise_From_Da

ta.vi 

 

 

Fig. E-3. Front panel of Gaussian noise generation 
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Fig. E-4. Block diagram of Gaussian noise generation 

 

 



 

101 

 

F.3 LABVIEW VI Program for Automated Measurement & Data Collection 

Filename: 

.\Monash\Research\Test\Measurement\LabVIEW\niScope EX Save to File with FFT_rev2.vi 

 

 

Fig. E-5. Front panel for automated measurement and data collection 
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Fig. E-6. Block diagram of automated measurement and data collection 
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APPENDIX G MATLAB SCRIPTS TO PROCESS MEASUREMENT DATA 

G.1 Script for statistical computation on measurement data with random 

phase multisine excitation signal 

Filename: .\Monash\Research\Test\Simulation\Matlab\frf_xlsfile_loop_msine_1rc.m 

clear all; 
close all; 

clc; 
  
Len     = 2^12; 

T       = 0.1;                 %Input Signal Period = 0.1s 
f0      = 1/T;                 %Input Signal Frequency = 10Hz 
  

ptFreq  = [1:8:201]; 
f       = ptFreq*f0; 
  

fs      = Len/T;               %Sampling Frequency = 4096 x 10 = 40.96kHz  
  
Freq    = ([0:Len-1])/Len*fs; 

  
Ri      = 1e+3; 
Rs      = 1; 

  
NumLoop = 1000; 
  

IphList = [2 3 4 5 6 7 8 9 10];  %Photocurrent; set number of runs 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 
%File I/O 
pathName = 'C:\Temp\Labview\Labview Data Files 1k'; 

%pathName = 'C:\Temp\Labview\Labview Data Files 10k'; 
%pathName = 'C:\Temp\Labview\Labview Data Files 100k'; 
  

fileList_vm      = dir(fullfile(pathName, 'raw_ch0_vm_msine_1rc_*.csv')); 
 
mean_fname    = 'mean_frf_msine_1rc_1k.csv'; 

mean_f2w = strcat(pathName, '\', mean_fname); 
  
std_fname     = 'std_frf_msine_1rc_1k.csv'; 

std_f2w = strcat(pathName, '\', std_fname); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 
  
vsupply_f2r = strcat(pathName, '\', 'raw_ch1_vsupply_msine.csv'); 

vsupply_data = csvread(vsupply_f2r); 
  
for index = 1 : length(IphList) 

    Iph = IphList(index); 
         
    vm_f2r = fullfile(pathName, fileList_vm(index).name); 

    vm_data = csvread(vm_f2r); 
       
    isupply = (vsupply_data - vm_data)/Ri; 

  
    ISUPPLY = fft(isupply)/Len; 
  
    VSUPPLY = fft(vsupply_data)/Len; 

  
    for loop = 1 : NumLoop 
        I_BLA(loop,:) = ISUPPLY(loop,ptFreq+1)./VSUPPLY(loop,ptFreq+1); 

    end 
     
    I_BLA_Mean(index,:) = mean(I_BLA,1); 

    I_BLA_Std(index,:) = std(I_BLA,0,1); 
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    format short; 
    legendInfo{index} = ['Iph = ' sprintf('%0.3e',Iph)]; 

     
    m = {'+','o','*','.','x','s','d','^','v','>','<','p','h'}; 
    set_marker_order = @() set(gca(), ... 

    'LineStyleOrder',m, 'ColorOrder',[0 0 0], ... 
    'NextPlot','replacechildren'); 
  

    figure(1); 
    stem(Freq(ptFreq+1),abs(I_BLA_Mean)'); 
    xlabel('Frequency(Hz)'); 

    ylabel('Mean of FRFs'); 
    title('Mean of FRFs vs Frequency'); 
    n=get(gca,'Ytick'); 

    set(gca,'Yticklabel',sprintf('%0.5e |',n)); 
    legend(legendInfo,'location','NorthEastOutside'); 
    grid on; 

  
    figure(2); 
    stem(Freq(ptFreq+1),abs(I_BLA_Std)'); 

    xlabel('Frequency(Hz)'); 
    ylabel('Standard Deviation of FRFs'); 
    title('Standard Deviation of FRFs vs Frequency'); 

    n=get(gca,'Ytick'); 
    set(gca,'Yticklabel',sprintf('%0.5e |',n)); 
    legend(legendInfo,'location','NorthEastOutside'); 

    grid on; 
     
    drawnow; 

end 
  
m_I_BLA_Mean = [Freq(ptFreq+1);abs(I_BLA_Mean)]'; 

m_I_BLA_Std = [Freq(ptFreq+1);abs(I_BLA_Std)]'; 
  
csvwrite(mean_f2w, m_I_BLA_Mean); 

csvwrite(std_f2w, m_I_BLA_Std); 

 

G.2 Script for statistical computation on measurement data with Gaussian 

noise excitation signal 

Filename: .\Monash\Research\Test\Simulation\Matlab\frf_xlsfile_loop_gaussian_1rc.m 

clear all; 
close all; 
clc; 

  
Len     = 2^12; 
T       = 0.1;                 %Input Signal Period = 0.1s 

f0      = 1/T;                 %Input Signal Frequency = 10Hz 
  
ptFreq  = [1:2:201]; 

f       = ptFreq*f0; 
  
fs      = Len/T;               %Sampling Frequency = 4096 x 10 = 40.96kHz  

  
Freq    = ([0:Len-1])/Len*fs; 
  
Ri      = 1e+3; 

Rs      = 1; 
  
NumLoop = 1000; 

  
IphList = [2 3 4 5 6 7 8 9 10];  %Photocurrent; set number of runs 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
%File I/O 

pathName = 'C:\Temp\Labview\Labview Data Files 1k'; 
%pathName = 'C:\Temp\Labview\Labview Data Files 10k'; 
%pathName = 'C:\Temp\Labview\Labview Data Files 100k'; 
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fileList_vm      = dir(fullfile(pathName, 'raw_ch0_vm_gaussian_1rc_*.csv')); 
 

mean_fname    = 'mean_frf_gaussian_1rc_1k.csv'; 
mean_f2w = strcat(pathName, '\', mean_fname); 
  

std_fname     = 'std_frf_gaussian_1rc_1k.csv'; 
std_f2w = strcat(pathName, '\', std_fname); 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
  

vsupply_f2r = strcat(pathName, '\', 'raw_ch1_vsupply_gaussian.csv'); 
vsupply_data = csvread(vsupply_f2r); 
  

for index = 1 : length(IphList) 
    Iph = IphList(index); 
         

    vm_f2r = fullfile(pathName, fileList_vm(index).name); 
    vm_data = csvread(vm_f2r); 
      

    isupply = (vsupply_data - vm_data)/Ri; 
  
    ISUPPLY = fft(isupply)/Len; 

  
    VSUPPLY = fft(vsupply_data)/Len; 
  

    for loop = 1 : NumLoop 
        I_BLA(loop,:) = ISUPPLY(loop,ptFreq+1)./VSUPPLY(loop,ptFreq+1); 
    end 

     
    I_BLA_Mean(index,:) = mean(I_BLA,1); 
    I_BLA_Std(index,:) = std(I_BLA,0,1); 

    
    format short; 
    legendInfo{index} = ['Iph = ' sprintf('%0.3e',Iph)]; 

     
    m = {'+','o','*','.','x','s','d','^','v','>','<','p','h'}; 
    set_marker_order = @() set(gca(), ... 

    'LineStyleOrder',m, 'ColorOrder',[0 0 0], ... 
    'NextPlot','replacechildren'); 
  

    figure(1); 
    stem(Freq(ptFreq+1),abs(I_BLA_Mean)'); 
    xlabel('Frequency(Hz)'); 

    ylabel('Mean of FRFs'); 
    title('Mean of FRFs vs Frequency'); 
    n=get(gca,'Ytick'); 

    set(gca,'Yticklabel',sprintf('%0.5e |',n)); 
    legend(legendInfo,'location','NorthEastOutside'); 
    grid on; 

  
    figure(2); 
    stem(Freq(ptFreq+1),abs(I_BLA_Std)'); 
    xlabel('Frequency(Hz)'); 

    ylabel('Standard Deviation of FRFs'); 
    title('Standard Deviation of FRFs vs Frequency'); 
    n=get(gca,'Ytick'); 

    set(gca,'Yticklabel',sprintf('%0.5e |',n)); 
    legend(legendInfo,'location','NorthEastOutside'); 
    grid on; 

     
    drawnow; 
end 

  
m_I_BLA_Mean = [Freq(ptFreq+1);abs(I_BLA_Mean)]'; 
m_I_BLA_Std = [Freq(ptFreq+1);abs(I_BLA_Std)]'; 

  
csvwrite(mean_f2w, m_I_BLA_Mean); 
csvwrite(std_f2w, m_I_BLA_Std); 
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G.3 Formatting of FRF Mean Plots 

Filename: .\Monash\Research\Test\Simulation\Matlab\mean_multicolPlot_ma_rev.m 

clear all; 

close all; 
clc; 
  

%pathName = 'C:\Temp\Labview\Labview Data Files 1k'; 
%pathName = 'C:\Temp\Labview\Labview Data Files 10k'; 
pathName = 'C:\Temp\Labview\Labview Data Files 100k'; 

 
%mean_fname    = 'mean_frf_msine_1rc_1k.txt'; 
%mean_fname    = 'mean_frf_msine_1rc_10k.txt'; 

%mean_fname    = 'mean_frf_msine_1rc_100k.txt'; 
 
%mean_fname    = 'mean_frf_gaussian_1rc_1k.txt'; 

%mean_fname    = 'mean_frf_gaussian_1rc_10k.txt'; 
mean_fname    = 'mean_frf_gaussian_1rc_100k.txt'; 
  

mean_f2r = strcat(pathName, '\', mean_fname); 
  
[labels,freq,m] = readColData(mean_f2r,10,0); 

  
figure(1); 
set(gcf,'color','w'); 

plot(freq,m(:,1),'ro',freq,m(:,2),'bx',freq,m(:,3),'k+',freq,m(:,4),'rs',freq,m(:,5),'bd',freq,m(:,6),'kv',freq,m(:,7),'r^',freq,m(:,8),'b<',freq,
m(:,9),'kp'); 
xlim([10 2010]); 

  
xtick_label = csvread('multisine_freq.csv'); 
set(gca, 'xtick', xtick_label', 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on'); 

  
xlab = strcat(labels(1,:),' (Hz)'); 
xlabel(xlab, 'fontsize', 18, 'FontWeight', 'bold');                      % add axis labels and plot title 

ylabel('Mean of FRFs', 'fontsize', 18, 'FontWeight', 'bold'); 
title('Mean of FRFs vs Frequency', 'fontsize', 24, 'FontWeight', 'bold'); 
  

leg1 = '12.5 W/m^2'; 
leg2 = '18.8 W/m^2'; 
leg3 = '25.0 W/m^2'; 

leg4 = '31.2 W/m^2'; 
leg5 = '37.4 W/m^2'; 
leg6 = '43.6 W/m^2'; 

leg7 = '49.9 W/m^2'; 
leg8 = '56.1 W/m^2'; 
leg9 = '62.3 W/m^2'; 

  
legend(leg1, leg2, leg3, leg4, leg5, leg6, leg7, leg8, leg9, 'fontsize', 18, 'FontWeight', 'bold', 'location', 'NorthEastOutside'); 

 

G.4 Formatting of FRF Standard Deviation Plots 

Filename: .\Monash\Research\Test\Simulation\Matlab\std_multicolPlot_ma_rev.m 

clear all; 
close all; 
clc; 

  
%pathName = 'C:\Temp\Labview\Labview Data Files 1k'; 
%pathName = 'C:\Temp\Labview\Labview Data Files 10k'; 

pathName = 'C:\Temp\Labview\Labview Data Files 100k'; 
 
%std_fname    = 'std_frf_msine_1rc_1k.txt'; 

%std_fname    = 'std_frf_msine_1rc_10k.txt'; 
%std_fname    = 'std_frf_msine_1rc_100k.txt'; 
 

%std_fname    = 'std_frf_gaussian_1rc_1k.txt'; 
%std_fname    = 'std_frf_gaussian_1rc_10k.txt'; 
std_fname    = 'std_frf_gaussian_1rc_100k.txt'; 

 
std_f2r = strcat(pathName, '\', std_fname); 
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[labels,freq,m] = readColData(std_f2r,10,0); 
  

figure(2); 
set(gcf,'color','w'); 
plot(freq,m(:,1),'ro',freq,m(:,2),'bx',freq,m(:,3),'k+',freq,m(:,4),'rs',freq,m(:,5),'bd',freq,m(:,6),'kv',freq,m(:,7),'r^',freq,m(:,8),'b<',freq,

m(:,9),'kp'); 
xlim([10 2010]); 
  

xtick_label = csvread('multisine_freq.csv'); 
set(gca, 'xtick', xtick_label', 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on'); 
  

xlab = strcat(labels(1,:),' (Hz)'); 
xlabel(xlab, 'fontsize', 18, 'FontWeight', 'bold');                      % add axis labels and plot title 
ylabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold'); 

title('Standard Deviation of FRFs vs Frequency', 'fontsize', 24, 'FontWeight', 'bold'); 
  
leg1 = '12.5 W/m^2'; 

leg2 = '18.8 W/m^2'; 
leg3 = '25.0 W/m^2'; 
leg4 = '31.2 W/m^2'; 

leg5 = '37.4 W/m^2'; 
leg6 = '43.6 W/m^2'; 
leg7 = '49.9 W/m^2'; 

leg8 = '56.1 W/m^2'; 
leg9 = '62.3 W/m^2'; 
  

legend(leg1, leg2, leg3, leg4, leg5, leg6, leg7, leg8, leg9, 'fontsize', 18, 'FontWeight', 'bold', 'location','NorthEastOutside'); 
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APPENDIX H SIMULINK MODEL / MATLAB SCRIPTS FOR DATA 

ANALYSIS 

H.1 Matlab Script for Frequency Plots of Discrete Low Pass Filters 

Filename: .\Monash\Research\Test\Simulation\Matlab\discrete_filter_comparison.m 

clear all; 

close all; 
clc; 
  

% Moving Averager 
L=1000; 
bm=ones(1,L)/L; 

am=[1]; 
[hm, wm] = freqz(bm, am); 
  

f = 2.01e3;  % Cut-off frequency 
fs = 40.96e3;  % Sampling frequency 
  

% Butterworth - 5th order 
[bb, ab] = butter(5, 2*(f/fs)); 
[hb, wb] = freqz(bb, ab); 

  
% Chebyshev Type 1 - 5th order, 30dB passband ripple 
[bc1, ac1] = cheby1(5, 30, 2*(f/fs)); 

[hc1, wc1] = freqz(bc1, ac1); 
  
% Chebyshev Type 2 - 5th order, 30dB stopband attenuation 

[bc2, ac2] = cheby2(5, 30, 2*(f/fs)); 
[hc2, wc2] = freqz(bc2, ac2); 
  

% Elliptic - 5th order, 30dB passband ripple, 35dB stopband attenuation 
[be, ae] = ellip(5, 30, 35, 2*(f/fs)); 
[he, we] = freqz(be, ae); 

  
% Plotting 
figure(1) 

set(gcf, 'color', 'w') 
plot(fs*wm/(1e3*2*pi), mag2db(abs(hm)), 'ro') 
hold on 

plot(fs*wb/(1e3*2*pi), mag2db(abs(hb)), 'kx') 
hold on 
plot(fs*wc1/(1e3*2*pi), mag2db(abs(hc1)), 'b+') 

hold on 
plot(fs*wc2/(1e3*2*pi), mag2db(abs(hc2)), 'ks') 
hold on 

plot(fs*we/(1e3*2*pi), mag2db(abs(he)), 'md') 
axis([0 4 -90 0]) 
grid 

title('Comparison of Different Types of Low Pass Filter', 'fontsize', 24, 'FontWeight', 'bold') 
xlabel('Frequency (kHz)', 'fontsize', 18, 'FontWeight', 'bold') 
ylabel('Attenuation (dB)', 'fontsize', 18, 'FontWeight', 'bold') 

set(gca, 'box', 'off',  'fontsize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on', 'XMinorTick', 'on') 
legend('Moving Averager (1000point)', 'Butterworth', 'Chebyshev Type 1', 'Chebyshev Type 2', 'Elliptic') 

 

H.2 Matlab Script for Power Spectral Density Plot 

Filename: 

.\Monash\Research\Test\Simulation\Matlab\Circuit Analysis\fft_rc_photodetector.m 

close all; 
clear all; 
clc; 

  
% This is a good example on power spectral analysis of signal 
cstring='rgbcm'; % color string 
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fs = 40960;  % Sampling frequency 

 
load('Vout_20ma_multisine_1k_1u.mat') 
%load('Vout_20ma_multisine_10k_1u.mat') 

%load('Vout_20ma_multisine_100k_1u.mat') 
%load('Vout_20ma_multisine_1k_1n.mat') 
  

%load('Vout_20ma_gaussian_1k_1u.mat') 
%load('Vout_20ma_gaussian_10k_1u.mat') 
%load('Vout_20ma_gaussian_100k_1u.mat') 

%load('Vout_20ma_gaussian_1k_1n.mat') 
  
vout = Vout.signals.values(:,1); 

  
% Windowing 
nfft_vout = length(vout)-1; 

w1 = hanning(length(vout), 'periodic'); 
w_vout = w1.*vout; 
V = fft(w_vout, nfft_vout)/nfft_vout; 

  
load('Iout_20ma_multisine_1k_1u.mat') 
%load('Iout_20ma_multisine_10k_1u.mat') 

%load('Iout_20ma_multisine_100k_1u.mat') 
%load('Iout_20ma_multisine_1k_1n.mat') 
  

%load('Iout_20ma_gaussian_1k_1u.mat') 
%load('Iout_20ma_gaussian_10k_1u.mat') 
%load('Iout_20ma_gaussian_100k_1u.mat') 

%load('Iout_20ma_gaussian_1k_1n.mat') 
  
imod = Iout.signals.values(:,1); 

  
% Windowing 
nfft_imod = length(imod)-1; 

w2 = hanning(length(imod), 'periodic'); 
w_imod = w2.*imod; 
I = fft(w_imod, nfft_imod)/nfft_imod; 

  
Y = V./I; 
  

% Compute power spectral density 
Pyy = Y.*conj(Y); 
  

nfft = length(Y)-1; 
  
% Calculate the number of unique points 

NumUniquePts = ceil(nfft/2);  
  
f = (0:NumUniquePts-1)*fs/nfft;  

psd = 10*log10(2*Pyy(1:end/2)); 
mag = 20*log10(2*Y_mag(1:end/2)); 
  
figure(1) 

set(gcf,'color','w'); 
semilogx(f, psd) 
title('Power Spectral Density', 'fontsize', 24, 'FontWeight', 'bold') 

xlabel('Frequency (Hz)', 'fontsize', 18, 'FontWeight', 'bold') 
ylabel('PSD (db)', 'fontsize', 18, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on')    

grid on 

 

H.3 Script for Irradiance versus Short-Circuit Current Plot 

Filename: 

.\Monash\Research\Test\Simulation\Matlab\Circuit Analysis\interpolation_irradiance.m 

clear all; 
close all; 
clc; 
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load mpvc_irradiance; 
  

iph = 2 : 0.05 : 7; 
  
iph_mpvc_irradiance = mpvc_irradiance(:,1); 

irrad_mpvc_irradiance = mpvc_irradiance(:,2); 
  
int_irrad_mpvc_irradiance = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, iph, 'spline'); 

  
int_irrad_mpvc_2ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 2, 'spline'); 
int_irrad_mpvc_3ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 3, 'spline'); 

int_irrad_mpvc_4ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 4, 'spline'); 
int_irrad_mpvc_5ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 5, 'spline'); 
int_irrad_mpvc_6ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 6, 'spline'); 

int_irrad_mpvc_7ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 7, 'spline'); 
int_irrad_mpvc_8ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 8, 'spline'); 
int_irrad_mpvc_9ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 9, 'spline'); 

int_irrad_mpvc_10ma = interp1(iph_mpvc_irradiance, irrad_mpvc_irradiance, 10, 'spline'); 
  
% Polynomial fit 

p1 = polyfit(iph, int_irrad_mpvc_irradiance, 1); 
pfit1 = polyval(p1, iph); 
  

figure(1) 
set(gcf,'color','w') 
plot(iph, int_irrad_mpvc_irradiance, 'ro', iph, pfit1, 'k-') 

set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'XMinorTick', 'on', 'YMinorTick', 'on') 
title('Irradiance versus Short-circuit Photocurrent (mA)', 'fontsize', 24, 'FontWeight', 'bold') 
xlabel('Short-Circuit Current, Iph (mA)', 'fontsize', 18, 'FontWeight', 'bold')  

ylabel('Irradiance, Ir (W/m^2)', 'fontsize', 18, 'FontWeight', 'bold') 
ylim = get(gca, 'YLim');  
xlim = get(gca, 'XLim');  

text((xlim(1) + (xlim(2)-xlim(1))/8), (ylim(1) + (ylim(2) - ylim(1))*3/5), sprintf('Ir = %0.4f*Iph + %0.4f W/m^2', p1(1), p1(2)), 
'fontsize', 18, 'FontWeight', 'bold') 
  

load mpd_irradiance; 
  
iph2 = 40 : 0.05 : 100; 

  
iph_mpd_irradiance = mpd_irradiance(:,1); 
irrad_mpd_irradiance = mpd_irradiance(:,2); 

  
int_irrad_mpd_irradiance = interp1(iph_mpd_irradiance, irrad_mpd_irradiance, iph2, 'spline'); 
  

% Polynomial fit 
p2 = polyfit(iph2, int_irrad_mpd_irradiance, 1); 
pfit2 = polyval(p2, iph2); 

  
figure(2) 
set(gcf,'color','w') 

plot(iph2, int_irrad_mpd_irradiance, 'ro', iph2, pfit2, 'k-') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'XMinorTick', 'on', 'YMinorTick', 'on') 
title('Irradiance versus Short-circuit Photocurrent (\muA)', 'fontsize', 24, 'FontWeight', 'bold') 
xlabel('Short-Circuit Current, Iph (\muA)', 'fontsize', 18, 'FontWeight', 'bold')  

ylabel('Irradiance, Ir (W/m^2)', 'fontsize', 18, 'FontWeight', 'bold') 
ylim2 = get(gca, 'YLim');  
xlim2 = get(gca, 'XLim');  

text((xlim2(1) + (xlim2(2)-xlim2(1))/8), (ylim2(1) + (ylim2(2) - ylim2(1))*3/5), sprintf('Ir = %0.4f*Iph + %0.4f W/m^2', p2(1), p2(2)), 
'fontsize', 18, 'FontWeight', 'bold') 

 

H.4 Script for I-V Interpolation Plot 

Filename: .\Monash\Research\Test\Simulation\Matlab\Circuit Analysis\interpolation_iv.m 

clear all; 
close all; 

clc; 
 
load mpvc_iv_2ma; 

load mpvc_iv_5ma; 
load mpvc_iv_10ma; 
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vi = -5 : 0.001 : 2; 
  

v_mpvc_2ma = mpvc_iv_2ma(:,1); 
i_mpvc_2ma = mpvc_iv_2ma(:,2); 
  

v_mpvc_5ma = mpvc_iv_5ma(:,1); 
i_mpvc_5ma = mpvc_iv_5ma(:,2); 
  

v_mpvc_10ma = mpvc_iv_10ma(:,1); 
i_mpvc_10ma = mpvc_iv_10ma(:,2); 
  

ii_mpvc_2ma = interp1(v_mpvc_2ma, i_mpvc_2ma, vi, 'spline'); 
ii_mpvc_5ma = interp1(v_mpvc_5ma, i_mpvc_5ma, vi, 'spline'); 
ii_mpvc_10ma = interp1(v_mpvc_10ma, i_mpvc_10ma, vi, 'spline'); 

  
figure(1) 
set(gcf,'color','w') 

plot(vi, ii_mpvc_2ma, 'ro', vi, ii_mpvc_5ma, 'bx', vi, ii_mpvc_10ma, 'ks') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'XMinorTick', 'on', 'YMinorTick', 'on') 
title('I-V Curve of Miniature Inorganic Photovoltaic Cell', 'fontsize', 24, 'FontWeight', 'bold') 

xlabel('Bias Voltage (V)', 'fontsize', 18, 'FontWeight', 'bold')  
ylabel('Photocurrent (mA)', 'fontsize', 18, 'FontWeight', 'bold') 
%legend('2 mA', '5 mA', '10 mA', 'location', 'NorthEastOutside');  

legend('12.5 W/m^2', '31.2 W/m^2', '62.3 W/m^2', 'location', 'NorthEastOutside');  

 

H.5 Script for Regression Analysis 

Filename: .\Monash\Research\Test\Simulation\Matlab\linear_regression_analysis_k_new.m 

clear all; 

close all; 
clc; 
  

% Multisine Excitation 
%pathName = 'C:\Temp\Labview\Labview Data Files 1k'; 
%pathName = 'C:\Temp\Labview\Data Files MPVC_2'; 

 
%reg_fname    = 'reg_msine_1rc_1k_330hz.csv'; 
%reg_fname    = 'reg_msine_mpvc2_1370hz.csv'; 

 
% Gaussian Noise Excitation 
%pathName = 'C:\Temp\Labview\Labview Data Files 1k'; 

pathName = 'C:\Temp\Labview\Labview Data Files 10k (opv2)'; 
%pathName = 'C:\Temp\Labview\Data Files MPVC_G_1'; 
 

%reg_fname    = 'reg_gaussian_1rc_1k_730hz.csv'; 
reg_fname    = 'reg_gaussian_1rc_10k_opv_2010hz.csv'; 
%reg_fname    = 'reg_gaussian_mpvc_490hz.csv'; 

 
reg_f2r = strcat(pathName, '\', reg_fname); 
reg_data = csvread(reg_f2r); 

  
% Read in data 
i = reg_data(:,1); 

s = reg_data(:,2); 
  
% Polynomial fit 

p1 = polyfit(s, i, 1); 
pfit1 = polyval(p1, s); 
  

p2 = polyfit(s, i, 2); 
pfit2 = polyval(p2, s); 
  

p3 = polyfit(s, i, 3); 
pfit3 = polyval(p3, s); 
  

modelfun = @(p,x) p(1)*(exp(p(2)*x)); 
[coeff, R, ~, ~, MSE] = nlinfit(s, i, modelfun, [0,0.1]) 
pfit4 = coeff(1)*(exp(coeff(2)*s)-1); 

  
n = length(i);  % Number of observations 
d1 = length(p1); % Degree of polynomial; d = 1 for linear fit; d = 2 for quadratic fit; d = 3 for cubic fit 
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d2 = length(p2); 
d3 = length(p3); 

  
SStotal = (n - 1)*var(i); 
  

yresid1 = i - pfit1; 
SSresid1 = sum(yresid1.^2); 
rsq1 = 1 - SSresid1/SStotal; 

rsq1_adj = 1 - (SSresid1/SStotal)*(n - 1)/(n - d1); 
  
yresid2 = i - pfit2; 

SSresid2 = sum(yresid2.^2); 
rsq2 = 1 - SSresid2/SStotal; 
rsq2_adj = 1 - (SSresid2/SStotal)*(n - 1)/(n - d2); 

  
yresid3 = i - pfit3; 
SSresid3 = sum(yresid3.^2); 

rsq3 = 1 - SSresid3/SStotal; 
rsq3_adj = 1 - (SSresid3/SStotal)*(n - 1)/(n - d3); 
  

yresid4 = i - pfit4; 
SSresid4 = sum(yresid4.^2); 
rsq4 = 1 - SSresid4/SStotal; 

  
figure(1) 
set(gcf,'color','w') 

subplot(2, 2, 1), plot(s, i, 'ko'), hold on, plot(s, pfit1, 'k--'),grid off, title('1st Order Fit', 'fontsize', 24, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')  

%ylabel('Photocurrent (mA)', 'fontsize', 18, 'FontWeight', 'bold') 
ylabel('Photocurrent (\muA)', 'fontsize', 18, 'FontWeight', 'bold') 
ylim = get(gca, 'YLim');  

xlim = get(gca, 'XLim');  
%text((xlim(1) + (xlim(2)-xlim(1))*1/3), (ylim(1) + (ylim(2) - ylim(1))*4/5), sprintf('I = %0.2f\\sigma + %0.2f mA', p1(1), p1(2)), 
'fontsize', 16, 'FontWeight', 'bold')  

text((xlim(1) + (xlim(2)-xlim(1))*1/3), (ylim(1) + (ylim(2) - ylim(1))*4/5), sprintf('I = %0.2f\\sigma + %0.2f \\muA', p1(1), p1(2)), 
'fontsize', 16, 'FontWeight', 'bold') 
  

subplot(2, 2, 2), plot(s, i, 'ko'), hold on, plot(s, pfit2, 'k--'), grid off, title('2nd Order Fit', 'fontsize', 24, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')                       

%ylabel('Photocurrent (mA)', 'fontsize', 18, 'FontWeight', 'bold') 
ylabel('Photocurrent (\muA)', 'fontsize', 18, 'FontWeight', 'bold') 
ylim = get(gca, 'YLim');  

xlim = get(gca, 'XLim');  
%text((xlim(1) + (xlim(2)-xlim(1))*1/3), (ylim(1) + (ylim(2) - ylim(1))*4/5), sprintf('I = %0.2f\\sigma^2 + %0.2f\\sigma + %0.2f mA', 
p2(1), p2(2), p2(3)), 'fontsize', 16, 'FontWeight', 'bold')  

text((xlim(1) + (xlim(2)-xlim(1))*1/4), (ylim(1) + (ylim(2) - ylim(1))*4/5), sprintf('I = %0.2f\\sigma^2 + %0.2f\\sigma + %0.2f \\muA', 
p2(1), p2(2), p2(3)), 'fontsize', 16, 'FontWeight', 'bold') 
  

subplot(2, 2, 3), plot(s, i, 'ko'), hold on, plot(s, pfit3, 'k--'), grid off, title('3rd Order Fit', 'fontsize', 24, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')                       
%ylabel('Photocurrent (mA)', 'fontsize', 18, 'FontWeight', 'bold') 

ylabel('Photocurrent (\muA)', 'fontsize', 18, 'FontWeight', 'bold') 
ylim = get(gca, 'YLim');  
xlim = get(gca, 'XLim');  

%text((xlim(1) + (xlim(2)-xlim(1))*1/3), (ylim(1) + (ylim(2) - ylim(1))*1/6), sprintf('I = %0.2f\\sigma^3 + %0.2f\\sigma^2 + 
%0.2f\\sigma + %0.2f mA', p3(1), p3(2), p3(3), p3(4)), 'fontsize', 16, 'FontWeight', 'bold') 
text((xlim(1) + (xlim(2)-xlim(1))*1/3), (ylim(1) + (ylim(2) - ylim(1))*1/5), sprintf('I = %0.2f\\sigma^3 + %0.2f\\sigma^2 + 

%0.2f\\sigma + %0.2f \\muA', p3(1), p3(2), p3(3), p3(4)), 'fontsize', 16, 'FontWeight', 'bold') 
  
subplot(2, 2, 4), plot(s, i, 'ko'), hold on, plot(s, pfit4, 'k--'), grid off, title('Logarithmic Fit', 'fontsize', 24, 'FontWeight', 'bold') 

set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')                       
%ylabel('Photocurrent (mA)', 'fontsize', 18, 'FontWeight', 'bold') 

ylabel('Photocurrent (\muA)', 'fontsize', 18, 'FontWeight', 'bold') 
ylim = get(gca, 'YLim') 
xlim = get(gca, 'XLim')  

%text((xlim(1) + (xlim(2)-xlim(1))*1/3), (ylim(1) + (ylim(2) - ylim(1))*4/5), sprintf('I = %0.2f(e^{%0.2f\\sigma}-1) mA', coeff(1), 
coeff(2)), 'fontsize', 16, 'FontWeight', 'bold') 
text((xlim(1) + (xlim(2)-xlim(1))*1/3), (ylim(1) + (ylim(2) - ylim(1))*4/5), sprintf('I = %0.2f(e^{%0.2f\\sigma}-1) \\muA', coeff(1), 

coeff(2)), 'fontsize', 16, 'FontWeight', 'bold') 
  
figure(2) 
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set(gcf,'color','w') 
subplot(2, 2, 1), plot(s, yresid1, 'k*'), grid on, title('1st Order Residuals', 'fontsize', 24, 'FontWeight', 'bold') 

set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')                       
ylabel('Residuals', 'fontsize', 18, 'FontWeight', 'bold') 

  
subplot(2, 2, 2), plot(s, yresid2, 'k*'), grid on, title('2nd Order Residuals', 'fontsize', 24, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 

xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')                      
ylabel('Residuals', 'fontsize', 18, 'FontWeight', 'bold') 
  

subplot(2, 2, 3), plot(s, yresid3, 'k*'), grid on, title('3rd Order Residuals', 'fontsize', 24, 'FontWeight', 'bold') 
set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')                      

ylabel('Residuals', 'fontsize', 18, 'FontWeight', 'bold') 
  
subplot(2, 2, 4), plot(s, yresid4, 'k*'), grid on, title('Logarithmic Residuals', 'fontsize', 24, 'FontWeight', 'bold') 

set(gca, 'box', 'off', 'FontSize', 12, 'FontWeight', 'bold', 'YMinorTick', 'on') 
xlabel('Standard Deviation of FRFs', 'fontsize', 18, 'FontWeight', 'bold')                       
ylabel('Residuals', 'fontsize', 18, 'FontWeight', 'bold') 

 

H.6 Script for Correlation Test 

Filename: .\Monash\Research\Test\Simulation\Matlab\correlation_analysis.m 

clear all; 
close all; 

clc; 
  
% Multisine Excitation 

pathName1 = 'C:\Temp\Labview\Labview Data Files 1k'; 
reg_fname1    = 'reg_msine_1rc_1k_330hz.csv'; 
 

% Gaussian Noise Excitation 
pathName2 = 'C:\Temp\Labview\Labview Data Files 1k'; 
pathName3 = 'C:\Temp\Labview\Labview Data Files 10k (opv2)'; 

 
reg_fname2    = 'reg_gaussian_1rc_1k_730hz.csv'; 
reg_fname3    = 'reg_gaussian_1rc_10k_opv_2010hz.csv'; 

 
reg_f2r1 = strcat(pathName1, '\', reg_fname1); 
reg_data1 = csvread(reg_f2r1); 

  
reg_f2r2 = strcat(pathName2, '\', reg_fname2); 
reg_data2 = csvread(reg_f2r2); 

  
reg_f2r3 = strcat(pathName3, '\', reg_fname3); 
reg_data3 = csvread(reg_f2r3); 

  
% Read in data 
i1 = reg_data1(:,1);  % Multisine MPV 

s1 = reg_data1(:,2);  % Multisine MPV 
  
i2 = reg_data2(:,1);  % Gaussian MPV 

s2 = reg_data2(:,2);  % Gaussian MPV 
  
i3 = reg_data3(:,1);  % Gaussian OPV 

s3 = reg_data3(:,2);  % Gaussian OPV 
  
% Pearson's Correlation Test 

[rho1, pval1] = corrcoef(reg_data1);  % Multisine MPV 
[rho2, pval2] = corrcoef(reg_data2);  % Gaussian MPV 
[rho3, pval3] = corrcoef(reg_data3);  % Gaussian OPV 

  
skew1 = skewness(reg_data1);  % Multisine MPV 
skew2 = skewness(reg_data2);  % Gaussian MPV 

skew3 = skewness(reg_data3);  % Gaussian OPV 
  
kurt1 = kurtosis(reg_data1);  % Multisine MPV 

kurt2 = kurtosis(reg_data2);  % Gaussian MPV 
kurt3 = kurtosis(reg_data3);  % Gaussian OPV 
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% Kendall's Correlation Test 
[rho1k, pval1k] = corr(i1, s1, 'type', 'Kendall');  % Multisine MPV - Calculating Kendall's tau 

[rho2k, pval2k] = corr(i2, s2, 'type', 'Kendall');  % Gaussian MPV - Calculating Kendall's tau 
[rho3k, pval3k] = corr(i3, s3, 'type', 'Kendall');  % Gaussian OPV - Calculating Kendall's tau 
 




