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Abstract 

Global health is clearly facing a serious problem arising from multi-drug resistant (MDR) Gram-

negative bacteria. Cystic fibrosis (CF), which is lethal genetic disease, usually associated with 

bacterial infection caused by both MDR Gram-negative and positive bacteria, especially 

Pseudomonas aeruginosa. Patients with CF found to be at high risk because they repose on 

antibiotics regimen for a long period which results in the development of resistance to most of 

the clinically available antibiotics. Polymyxins, old antibiotics, considered as a last resort 

therapy of such infections. However, resistance to polymyxins can rapidly emerge with 

monotherapy. In addition, polymyxins are associated with high incidence of nephrotoxicity and 

neurotoxicity. Combination therapy of polymyxins with other antibiotics has the potential to 

minimise the emergence of resistance and ameliorate toxicity.  In overview, this thesis aims to 

assess the novel synergistic combination of polymyxin B and silver nanoparticles (silver NPs) 

against MDR Gram-negative bacteria associated with CF and shed light on mechanistic effects 

of polymyxin on the outer membrane sub-proteome and lipidomes of Klebsiella pneumoniae.  

In the first experimental chapter, the project aims to identify a superior in vitro polymyxin B 

combination with silver NPs against CF lung infection causative MDR Gram-negative bacteria. 

The combination was examined against polymyxin-susceptible and polymyxin-resistant Gram-

negative CF isolates including P. aeruginosa, Haemophilus influenzae, Burkholderia cepacia, 

Burkholderia pseudomallei, Stenotrophomonas maltophilia, K. pneumoniae and Acinetobacter 

baumannii. Silver NPs displayed a range of activities against the tested isolates. In static time-

kill studies, polymyxin B alone, silver NPs alone and the combination of polymyxin B and silver 

NPs were performed against two polymyxin-resistant P. aeruginosa CF isolates, one 

polymyxin-resistant A. baumannii isolate and one polymyxin-resistant K. pneumoniae isolate. 

polymyxin B monotherapy was ineffective against all isolates, while silver NPs showed some 

killing activity against P. aeruginosa. On the other hand, the combination demonstrated a 

significant synergistic killing activity against all four tested isolates. An artificial sputum media 

antibacterial assay was also employed to investigate the antibacterial activity of the combination 
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in CF relevant conditions. Under planktonic growth conditions, the combination and silver NPs 

monotherapy were effective against the polymyxin-resistant P. aeruginosa CF isolate FADDI-

PA066. Whereas, under biofilm growth conditions, neither the combination nor the 

monotherapies were active. 

Microorganisms, especially Gram-negative bacteria constitutively secrete outer membrane 

vesicles (OMVs) into the extracellular space. These vesicles play a role in bacterial virulence, 

inflammation, host immune stimulation, and antimicrobial resistance. In the second 

experimental chapter, comparative studies were performed on the proteome of OMVs isolated 

from both polymyxin-susceptible and -resistant K. pneumoniae isolates with and without 

polymyxin B (2mg/L) treatment. Polymyxin B treatment caused significant changes in the 

proteome of released OMVs, also the resistant strain produced OMVs proteins quantitatively 

differ from that of susceptible strain. Metabolic pathway analysis of the OMV proteome 

revealed that polymyxin B treatment of both susceptible and resistant K. pneumoniae isolates 

significantly reduced the expression of proteins (mainly enzymes) that participate in cationic 

antimicrobial peptide (CAMP) resistance pathways, -lactam antibiotic resistance and quorum-

sensing (QS) activities including iron uptake and detoxification. 

In the third tier of the project, comparative lipidomics studies were performed on OMVs isolated 

from polymyxin-susceptible and -resistant K. pneumoniae isolates pre-treated with a clinically 

relevant concentration of polymyxin B (2mg/L). Transmission electron microscopy (TEM) and 

dynamic light scattering (DLS) were initially used to study the effect of polymyxin B on the 

particle size of OMVs derived from polymyxin B pre-treated polymyxin-susceptible and -

resistant K. pneumoniae ATCC700721. TEM and DLS findings showed that OMVs secreted 

from polymyxin B treated strains were larger than those derived from control untreated strains. 

Lipidome analysis revealed that polymyxin B treatment resulted in production of OMVs rich in 

glycerophospholipis, fatty acyls and sphingolipids. Compare to untreated control, polymyxin B 

treatment of the polymyxin B susceptible strains significantly reduced most of these lipids in 

OMVs.  
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In the fourth tier of the project, comparative studies were performed on the outer membrane 

(OM) proteome of paired colistin-susceptible and extremely colistin-resistant K. pneumoniae 

ATCC 13883 strains to identify the key difference between outer membrane proteins (OMPs) 

of colistin-susceptible and –resistant strains. Notably, the OMPs (e.g. OmpA and W, non-

specific DNA-binding protein and Iron-binding ferritin-like antioxidant protein) of resistant 

strain quantitatively differ from that of susceptible strain. On the other hand, OMPs profiling of 

both colistin-susceptible and –resistant K. pneumoniae ATCC 13883 strains, using SDS-PAGE 

gels, showed no difference in OM porin proteins, particularly the efflux pumps OmpK35 and 

OmpK36. 

Overall, this thesis sheds new light on novel polymyxin-silver NP combinations for the 

treatment of CF associated chronic Gram-negative infections. Our lipidomic and proteomic data 

give a clear insight about the selective packaging of lipids and proteins in OMVs and OM of 

Gram-negative bacteria in response to polymyxin B treatment.  
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 Statement of the problem 

The emergence of MDR Gram-negative bacteria has evolved into a major global health crisis. 

Lack of novel antimicrobial agents and the continuous dwindling antibiotic pipeline augment 

this problem. In spite the fact that resistance to Gram-positive MDR bacteria is considered as a 

part of this public issue, new effective antibiotics for fighting these organisms have been 

recently approved by the U.S Food and Drug Administration (FDA). The treatment of Gram-

negative bacilli infections remains an outstanding obstacle. P. aeruginosa, B. cepacia, B. 

pseudomallei, A. baumannii and K. pneumoniae are among those highly resistant Gram-

negative superbugs that cause serious infection especially with chronic diseases such as CF to 

which novel, effective antibiotics are urgently required. As a result, there has been an increase 

in the usage of old antibiotics, such as the polymyxins. Although, polymyxins are considered as 

a last line antibiotics for these organisms, the toxicity and emerge resistance could limit their 

use. Therefore, the combination of polymyxins with other antibiotics is an option to increase 

the efficacy and minimize the resistance to these antibiotics. 

The optimal clinical application of polymyxins requires better understanding of their 

mechanism of action and bacterial resistance mechanisms. Omics studies (including proteomics, 

lipidomics and transcriptomics) are among the most efficient approaches for better 

understanding the mechanism of drug action and mechanism of bacterial resistance. These 

approaches are highly applicable nowadays to clarify the mechanisms of antibiotics-pathogen 

interaction. The central focus of this PhD thesis was to investigate the mechanism of the 

synergistic antibacterial activity of polymyxin B in combination with silver NPs against MDR 

pathogens that commonly associated with CF; and the mechanistic effects of polymyxin B on 

sub-proteome and lipidome of the extremely-drug resistant (XDR) K. pneumoniae. 
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 Bad bugs, no drugs 

Over the past few decades, antimicrobial resistance (AMR) has grown severely and the 

infections evoked by MDR bacteria are nowadays becoming an alarming public health crises as 

highlighted by many organisations such as the European Centre for Disease Prevention and 

Control (ECDC) and the US Centres for Disease Control and Prevention (CDC) (1-3). In 

addition to the shortage in antibiotic development and discovery (figure 1.1), many other factors, 

such as inappropriate and overuse of antibiotics, in the clinic and in agricultural, animal and 

environmental products, have strongly contributed in the development and spread of AMR 

(Figure 1.2) (4-6). Disconcertingly, it has been predicted that the AMR will continue to increase 

and by 2050 would result in a massive increase in  mortality rate (10 million people dying every 

year) and reduction in the global Gross Domestic Product (GDP) of about 2% to 3.5%  (Figure 

1.3) (7, 8). Recently, AMR was proclaimed as one of the major human health concerns (9). In 

addition, this antibiotic resistance is mainly resulted from the six highly resistant 

microorganisms simply known as “ESKAPE” (i.e. Enterococcus faecium, Staphylococcus 

aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter species). These 

pathogens are associated with high mortality and morbidity rate due to their resistance to most 

available antimicrobial agents (10, 11). Moreover, The CDC in association with the FDA and 

the National Institutes of Health (NIH) have prioritized the MDR Gram-negative pathogens into 

three major categories “Urgent”, “Serious” or “Concerning” threats (12). In early 2017, the 

world health organization (WHO) developed a priority list for antibiotic resistant pathogen to 

help in development and discovery of new and effective antibiotics, the pathogens were ranked 

into three priority criteria, critical (priority 1), high (priority 2) and medium (priority 3) (13). 

Urgent and coordinated action of different stakeholders (i.e. policy makers, public health 

authorities, regulatory agencies, pharmaceutical companies and the research community) is 

required to tackle AMR (3). “10 × '20” initiative, a campaign has been lunched by the  Infectious 

Diseases Society of America (IDSA) to develop and approve 10 effectively and safely 

administered antimicrobial agents by the year 2020 (14). This goal can be achieved by proper 
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worldwide collaboration of research community to improve the antibiotic development pipeline. 

Concomitantly, optimising the currently in use antibiotics would highly contribute in the 

reduction of antibiotic resistance (5).  Therefore, research nowadays focus on the last-line 

antimicrobial drugs (polymyxins) to improve their efficacy and reduce their toxicity has taken 

priority (15). The main MDR pathogens targeted in this thesis are P. aeruginosa, A. baumannii 

and K. pneumoniae; therefore, the following sections will include an overview of these 

dangerous human pathogens.  

 

 

Figure 1.1 Number of new systemic antibiotics approved by US Food and Drug Administration every 5 

years, from 1983 to 2012. (Figure modified from Spellberg et al.  (7) with permission). 
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Figure 1.2 Factors involved in the spread of antibiotic resistance, in the sectors: human medicine in the 

community and in the hospital, animal production and agriculture, and the environment. These sectors 

are also connected among them: misuse of antibiotics in human beings, animals and agriculture is the 

main responsible for the presence of resistant bacteria in the environment. (Figure adapted from 

Prestinaci et al. (4) with permission).   

 

 

 

Figure 1.3 Worldwide death per year attributable to antimicrobial resistance (AMR) by 2050. (A) 

Antibiotic resistance versus other major causes of death anticipated in 2050. Antibiotic resistance will 

be the main cause of the death (10 million people dying every year). (B) Comparison of AMR between 

different areas of the world. (Figure adapted from Premanandh et al. (8) with permission). 
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1.2.1 P. aeruginosa  

P. aeruginosa is an opportunistic Gram-negative bacillus that commonly infects 

immunocompromised and critically ill patients or those suffering from late stage malignant 

diseases (16-18). Notably, P. aeruginosa is primarily responsible of the life-threatening lung 

infection associated with CF (17, 19-21). Infections with MDR P. aeruginosa are usually 

associated with high morbidity and mortality rates (22, 23).  

P. aeruginosa able to counteract the action of most of antimicrobial compounds either by its 

intrinsic, acquired or adaptive resistance mechanisms and in some cases it can acquire multiple 

resistance mechanisms (24). Because of the ability of MDR P. aeruginosa to evolve resistance 

towards most of clinically available antibiotics, it remains as a clinical challenge (17). For 

example, once chronic infection in  the CF lung is established, MDR P. aeruginosa undergoes 

certain genetic modifications, including conversion from the nonmucoid to mucoid phenotype, 

downregulation of virulent factors and development of antibiotic resistance (Figure 1.4) (25-

27). In CF lung infections the situation is more complicated, long term use of antibiotics in the 

treatment of P. aeruginosa infection in CF patients encourage the pathogen to become more 

resistant compare to non-CF infections (28). Intrinsically, P. aeruginosa gains the antibiotic 

resistance from its low permeable OM (about 1/100 of the permeability of E. coli OM), and 

from constitutively expressed membrane efflux pumps and secretion of β-lactamases (29-31). 

In addition, this pathogen can acquire resistance genes that alter the antibiotic binding sites and 

genes responsible for production of antibiotic inactivating enzymes (28, 32). Moreover, 

environmental stressors induce P. aeruginosa to develop an adaptive resistance for example 

formation of biofilm that protect the pathogen from surrounding environment in FC lung (28). 

Biofilm formation is the common feature of mucoid P. aeruginosa. Colonisation of bacteria 

within the biofilm increase their ability to adapt to the stressful lung environment, protects them 

from the immune system, and improves their tolerance to the antibiotics through reduction of 

bacterial metabolic activities and entry into a dormant persister state (25-27, 33, 34). In terms 

of pathogenesis, P. aeruginosa is seldom the cause an infection in healthy subjects. In most 
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cases, the underlying illnesses (e.g. disruption of physical barriers and immune deficiency 

diseases) are required to initiate the infection by this organism (35). P. aeruginosa pathogenicity 

is initially established by attachment and colonisation in the site of infection through the surface 

components (flagella and pili), and then invasion of eukaryotic cells by secreted factors (type 

III secretion proteins, extracellular products, QS molecules, and alginate) (Figure 1.5) (17, 36-

38). It understood that P. aeruginosa undergoes extensive phenotypic and genotypic changes as 

the infection progress from acute to chronic phase; such modifications reflect the difference in 

pathogenicity between acute and chronic infections (39-41). Generally, isolates from chronic 

infection are less pathogenic compare to those from acute infection. Apparently, P. aeruginosa 

isolates in chronic infection loss their surface effectors (flagellum and pili) which are necessary 

for motility and adhesion and become avirulent in addition to the reduction of other extracellular 

virulent factors (24, 42). Most of the virulence factors associated with the acute and chronic P. 

aeruginosa infections are strongly driven by a QS, which is a complex cell-to-cell 

communication (43, 44). P. aeruginosa is able to communicate and establish its pathogenicity 

through three QS systems. The Las system which consists of a transcriptional regulator (LasR) 

and a synthase protein (LasI), the Rh1 system which consists of two proteins RhlI and RhlR, 

and the third system is QscR which is significantly homolog to LasR and RhlR (45). These 

sensing systems are operated through tiny membrane-diffusible molecules known as 

autoinducers, these autoinducers are acyl homoserine lactones (AHLs) and function in a 

concentration-dependent manner. The concentration of these molecules is directly proportional 

to the bacterial concentration, when both concentrations increase to a critical point, the 

autoinducers become sufficient to induce the activation of specific genes resulting in an 

organised response among the whole bacterial population (45, 46). As QS systems play crucial 

roles in P. aeruginosa pathogenicity, targeting these machineries provides a promising 

antimicrobial strategy (45, 47-49). Anti-QS effects of different classes of antimicrobial 

compounds have been investigated in P. aeruginosa CF lung infections (50-56). Macrolides 

antibiotics typically Azithromycin (AZM), at concentrations much lower than the minimal 
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inhibitory concentration (MIC), effectively attenuate the activity of QS systems and inhibit the 

production of several virulence factors (e.g.  proteases, DNase, lecithinase, and pyocyanin) (51, 

53, 54, 56). In addition to AZM, the third-generation cephalosporin (ceftazidime) and the 

fluoroquinoline antibiotic (ciprofloxacin) were shown to significantly suppressed the expression 

of QS-mediated P. aeruginosa virulence at sub-inhibitory concentrations (50). Conversely, the 

sub-inhibitory concentration of the cationic antimicrobial peptide colistin extensively 

upregulated the biosynthesis of P. aeruginosa quinolone signal (PQS) genes (55).  

 

Figure 1.4 P. aeruginosa infection within a CF lung. As infection proceeds from an acute to the chronic 

state, phenotypes associated with chronic infection (e.g., mucoidy) become predominate, while acute 

virulence factors are downregulated. (Figure modified from Okkotsu et al. (27) with permission). 
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Figure 1.5 Virulence factors associate with P. aeruginosa infection: surface factors include flagellum, 

pilus and LPS. While, secreted factors, include extracellular products, quorum-sensing molecules, type 

III secretion proteins and alginate. (Figure adapted from Sadikot et al. (17) with permission).  

 

 

1.2.2 A. baumannii  

A. baumannii is an opportunistic, aerobic, non-motile, and non-fermenting coccobacillus Gram-

negative that is clinically prevalent pathogen worldwide (57-59). Not unlike P. aeruginosa, 

MDR A. baumannii has been categorized as a “Serious Threat” by the CDC (12). In addition, 

WHO has grouped A. baumannii in priority 1 for targeting new antibiotic discovery (13). Beside 

their emerging antibiotic resistance, MDR A. baumannii species possess the capability to 

survive in different environmental settings particularly in the nosocomial setting, where 

antibiotic use is widespread (60-63). The probability of A. baumannii developing MDR is 

regrettably high among patients that undergo frequent and prolonged hospital stays, particularly 

solid organ transplant recipients due to them receiving of broad-spectrum antibiotics and 

immune suppression therapy (64, 65). It has been reported that A. baumannii establishes 

pathogenesis through a number of key factors including OmpA (a surface protein syn. Omp38), 

phospholipases (C and D), lipopolysaccharide (LPS), penicillin binding protein (PBP) and 

OMVs (59, 66, 67). Another important factor that contributes to A. baumannii’s virulence and 

survival in tough conditions is biofilm formation (68). Biofilms enable most A. baumannii 
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clinical isolates to adhere to the abiotic surfaces (e.g. urinary and venous catheters) which 

enhance their capability to cause nosocomial infections (69, 70).  

Both the rapid development of innate resistance mechanisms and acquisition of external genetic 

determinants makes A. baumannii a formidable pathogen (57, 71). Recently, some of A. 

baumannii strains exhibit resistance to almost all clinically available antibacterial agents, 

apparently via large genomic islands containing clusters of antibiotic resistance genes 

interspersed with genetic vehicles including plasmids, transposons and integrons (71-82). 

Enzymatic degradation is another most prevailing mechanism of resistance developed probably 

by all MDR A. baumannii strains, this mechanism is mediated by many antibiotic-inactivating 

enzymes (e.g. β-lactamases including metallo-β-lactamases and serine oxacillinases, AmpC 

cephalosporinases, acetyltransferases, nucleotidyltransferases and phosphotransferases) (57, 

83). In addition, MDR A. baumannii capable of developing a non-enzymatic resistance 

mechanism through alterations of antibiotic-targeting sites, modification of OM proteins, 

mutations of PBPs and overexpression of efflux pumps (57, 84-90). Resistance to the last line 

therapeutics such as the polymyxins has been increasingly reported in MDR A. baumannii, this 

resistance mechanism associated with mutations in the genes that responsible for biosynthesis 

pathway of lipid A or LPS loss (91-94). Moreover, some studies have shown that polymyxin-

susceptible A. baumannii isolates display polymyxin hetroresistance when treated with 

polymyxin due to the presence of subpopulation (95-98). 

 

1.2.3 K. pneumoniae 

K. pneumoniae, an Enterobacteriaceae family member, is non-motile, encapsulated, lactose-

fermenting, facultative anaerobic Gram-negative coccobacilli (99). Typically, K. pneumoniae 

is an opportunistic organism responsible for a high proportion of nosocomial infections 

including pneumonia, urinary tract infections, bloodstream infections, and soft tissue infections 

particularly in immunocompromised patients (100, 101). K.  pneumoniae carbapenemase (KPC) 

and New Delhi metallo-β-Lactamase (NDM) producing  K. pneumoniae, members of 
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Carbapenem-resistant Enterobacteriaceae (CRE), are resistant to the carbapenems (a class of 

β-lactam antibiotics) which have extended spectrum of activity compared to penicillins and 

cephalosporins (102). Some K. pneumoniae isolates produce extended-spectrum β-lactamase 

(ESBL) enzymes which enable these species to resist penicillins and cephalosporins but remain 

susceptible to carbapenems (103). Therefore, the CDC has categorised KPC- and NDM-

producing K. pneumoniae as an urgent threat, while ESBL- producing K. pneumoniae as serious 

level of threat (12). And according to WHO report in 2017, carbapenemase-producing K. 

pneumoniae isolates are listed in the critical priority for new antibiotics discovery and 

development (13). Hospital-acquired K. pneumoniae’s infections appear to be chronic due to 

their ability to form biofilm that protects the bacteria from human defence mechanisms and 

antibiotics activity (104); and the presence of phenotypic MDR K. pneumoniae that produce 

ESBL and carbapenemase enzymes (99, 105, 106). The virulence of K. pneumoniae evoked 

through a number of determinants including production of capsule polysaccharide (CPS), LPS, 

fimbriae, OM-derived proteins, iron acquisition and utilization of nitrogen (99).  Among these 

virulence factors, the CPS is the most important one and it is the characteristic feature of the 

hyper-virulent K. pneumoniae, it composed of an acidic polysaccharide and responsible for the 

hypermucoviscosity and colonisation of the invasive hyper-virulent K. pneumoniae (107, 108). 

The hyper-virulent K. pneumoniae isolates produce more than 78 capsular or K antigen 

serotypes particularly K1 and K2 serotypes (109-111). The severity of the invasive infection 

caused by hyper-virulent K. pneumoniae is directly proportional to the degree of 

hypermucoviscosity (112). The CPS protects the hyper-virulent K. pneumoniae from host 

defences by suppressing the host immune responses, increasing the resistance to the 

phagocytosis, suppressing the inflammatory processes, augmenting the resistance to the 

polycationic antimicrobial peptides and impairing the maturation of dendritic cells (DCs) (113-

119). Unlike other Gram-negative bacilli, life-threatening invasive infections caused by 

hypermucoviscous K. pneumoniae can be metastatic (i.e. spread to other organs) in some cases 

such as pyogenic liver abscess even in the presence of host defence mechanisms (120). In 
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addition to the production of β-lactamases, formation of biofilm and overproduction of CPS, 

MDR K. pneumoniae isolates can establish AMR through several other mechanisms including 

production of other enzymes such as macrolide esterases that inactivate macrolide antibiotics 

(121), and 16S rRNA methyltransferases which alter aminoglycosides binding sites (122); and 

overexpression of efflux pumps that render many antibiotic classes ineffective (123). Although 

colistin (polymyxin E) and polymyxin B are resorted as the last therapeutic option for the 

treatment of carbapenem-resistant K. pneumoniae (CRKP), surveillance reports have shown 17% 

and 43% resistance rate to colistin caused by CRKP in Taiwan and Italy respectively (124, 125). 

Therapeutically ESBL-producing K. pneumoniae isolates appear to be susceptible to 

Carbapenems, aminoglycosides, quinolones, third- and fourth-generation cephalosporins, and 

to combination of β-lactams/β-lactamase inhibitors (126). However, CRKP isolates, and due to 

the presence of plasmid mediated cross-resistance, are resistant to almost all antibiotic classes 

including all β-lactams even in the combination with β-lactamase inhibitors (127, 128). 

Tigecycline, tetracyclines, polymyxins and aminoglycosides are effective against infections 

caused by CRKP (129). Very recently, two novel combinations of lactam/β-lactamase 

(Ceftolozane/tazobactam and ceftazidime/avibactam) have been approved clinically for the 

treatment of serious infections evoked by both ESBL-producing K. pneumoniae and CRKP 

(130). 

 

 Polymyxins: an overview 

Polymyxins are cationic antimicrobial polypeptides firstly isolated from Paenibacillus 

polymyxa, a Gram-positive soil bacterium, in 1947 (131, 132), and approved for clinical use in 

the late 1950s (133). The use of these antibiotics was declined rapidly due to the reported side-

effects (particularly nephro- and neuro-toxicity) and the availability of safer antibiotic (e.g. β-

lactams and aminoglycosides); therefore, their clinical application waned in the 1970s (134). 

However, in 1990s and due to emerge of MDR Gram-negative bacteria, the use of polymyxins 

have been restored and they preserved as the last therapeutic option for these problematic 
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pathogens (135). Moreover, the re-establishment of polymyxins is largely due to their good anti-

Gram negative activity (136). 

 

1.3.1 Chemistry of polymyxins 

Polymyxins are lipopeptides that are amphipathic in nature (137). The pharmacological 

properties of polymyxins depend fundamentally on their physicochemical properties (15). The 

core structure of polymyxins composed of a polycationic peptide made up of 10 amino acids 

that is attached to N-terminal fatty acyl chain (Figure 1.6). These lipopeptides are characterised 

by the presence of both a cyclic heptapeptide ring and a linear tripeptide segment attached to 

the N-terminal fatty acyl chain (138, 139).  Although polymyxins (A, B, C, D and E) were 

originally discovered, only polymyxin B and colistin (polymyxin E) have been approved for 

clinical application (137).  Commercial preparations of polymyxin B and colistin used clinically 

consists of a diverse mixture of structurally related congeners that differ only in the substitution 

at N-terminus of their fatty acyl group and position 6 and 7 amino acids (138, 140). The only 

difference between polymyxin B and colistin is in replacement of D-phenylalanine in 

polymyxin B at position 6 with D-leucine in colistin (141, 142). Polymyxin B1 (6-methyl-

octanoyl fatty acyl) and polymyxin B2 (6-methyl-heptanoyl fatty acyl) are the main components 

of polymyxin B, while colistin A (6-methyl-octanoyl fatty acyl) and colistin B (6-methyl-

heptanoyl fatty acyl) are the main components of colistin (138, 140). The actual proportions of 

the components of both polymyxin B and colistin are highly variable between different 

manufacturers and even between patches of the same manufacturer (143, 144). Both of 

polymyxin B and colistin are available in distinctly different commercial formulation, 

polymyxin B is administered parenterally in its active sulphate salt form. While, colistin is 

commercially formulated as inactive sulfomethylated pro-drug known as colistimethate sodium 

(CMS) (145, 146). 
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Figure 1.6 Chemical Structure of polymyxin B, colistin and colistin prodrug (colistimethate). (A) 

Structures of polymyxin B1 and B2. (B) Structures of colistin A and B. (C) Structures of colistimethate 

A and B. Fatty acid: 6-methyloctanoic acid for colistin A and colistimethate A and 6-methylheptanoic 

acid for colistin B and colistimethate B. Dab: diaminobutyric acid; Leu: Leucine; Thr: Threonine; and γ 

is the amino group involved in the linkage. (Figure adapted from Kwa et al. (141) with permission). 

 

 

1.3.2 Mechanism of action of polymyxins  

Due to the structural similarities between polymyxin B and colistin, both of them exert identical 

mechanism of antimicrobial activity and narrow spectrum of activity against Gram-negative 

bacteria (131, 147). Although the researchers have suggested many models to explain the 

mechanism of action of polymyxins, the precise bactericidal mode of action of these 

lipopeptides is not fully understood (148-153).  What is well know is that the bacterial OM 

(particularly the LPS component) is the principal target of polymyxins (15, 154, 155). At this 

point, a detailed overview of the architecture of the Gram-negative bacterial OM is requisite for 

better appreciation of the putative mode of action of polymyxins (15, 155). Structural analysis 

of Gram-negative bacterial cell wall revealed that it composed of two membranous layers, an 
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asymmetric OM and a symmetric inner membrane (Figure 1.7A) (156). Further analysis 

showed that the OM built up of outer leaflet (predominantly made up of LPS) and inner leaflet 

(predominantly made up of glycerophospholipids) (156, 157). Basically, LPS consist of 

repeated sugar residues which made up the variable O-antigen, the rigid oligosaccharide moiety 

and lipid A anchor (156). Polymyxins are initially target lipid A part of LPS (15, 158). 

Structurally, lipid A is composed of β-1′-6-linked D-glucosamine (GlcN) disaccharide, which 

is enzymatically phosphorylated at the 1- and 4’ positions and acylated with six acyl chains 

(Figure 1.7B). Four of the six acyl chains are β-hydroxyacyl chains, which are attached directly 

to the glucosamine sugars and usually 12 to 14 carbons in length, the other two chains are 

attached to a β-hydroxyl group (155). Magnesium and Calcium divalent cations are responsible 

for bridging the neighboring LPS molecules (15). The complex quasi-crystalline nature of LPS 

monolayer together with its very low hydrophilicity (due to the hydrophobic lipid A anchor) 

contribute to the efficient permeability barrier property of Gram-negative bacterial OM against 

detrimental substances (159).  

 
Figure 1.7 Gram-negative bacterial cell envelope. (A) Membrane layers of the cell envelope, which 

composed of OM and inner membrane. The OM composed of outer asymmetric leaflet (predominantly 

LPS) and inner symmetric leaflet of phospholipids (Figure modified from Wyckoff et al. (160)). (B) The 

structure of the lipid A moiety. The lipid A part of LPS composed of β-1′-6-linked disaccharide of 

glucosamine. (Figure modified from Velkov et al. (155) with permission). Abbreviations: Kdo, 3-deoxy-
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D-manno-octulosonic acid; LPS, lipopolysaccharide; MDO, membrane-derived oligosaccharides; 

GluNAc, N-acetylglucosamine; MurNAc, N-acetylmuramic acid. 

 

Biophysical studies have led to the proposition of a number of models for the bactericidal action 

of polymyxins, however, the ‘self-promoted uptake’ hypothesis is the most accepted mechanism 

of action (Figure 1.8) (15). Generally, it has been proposed that polymyxins bind to the Gram-

negative bacterial OM and result in perturbation of the membrane integrity(161). In deep, due 

to their amphipathic nature, polymyxins initially interact with a specific OM binding site (the 

lipid A moiety) via electrostatic attraction followed by hydrophobic interaction with the OM 

leaflet, the results are membrane ultrastructural perturbations, osmotic imbalance, and 

consequently bacterial cell death (150, 151, 154). The electrostatic attraction occurs between 

the cationic diaminobutyric acid (Dab) residues of polymyxins and the anionic phosphate groups 

of lipid A, with subsequent competitive displacement of LPS stabilizing cations (Ca2+ and Mg2+). 

This interaction facilitates the insertion of hydrophobic N-terminal fatty acyl chain and amino 

acid residues at position 6 and 7 into the outer leaflet (137, 162).  Moreover, it has been 

suggested that polymyxins incorporate into the inner leaflet and cytoplasmic inner membrane 

resulting in destruction of membrane phospholipids and forming “pore-like aggregates” which 

increase the permeability of bacterial membrane and ultimately cell death (15, 162, 163).  
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Figure 1.8 The ‘self-promoted uptake’ pathway for plymyxin B interactions with lipid A. (A) The 

binding of polymyxin B to the divalent cationic binding site of LPS, and disrupting the membrane (B) 

Electrostatic interaction of polymyxin B and anionic surface of cytoplasmic membrane. (Figure adapted 

from Hancock REW,(163) with permission). 

 

 

Binding studies demonstrated that polymyxins have a binding affinity to 16S A-site of E. coli 

ribosomes, however, no translational changes have been noticed (164). Schindler et al. showed 

that polymyxin treatment of Salmonella typhimurium and E.coli results in production of 

membranous blebs (i.e. OM projections) and aggregation of nuclear material due to the 

significant accumulation of polymyxin within the bacterial cytoplasm (165).  Moreover, cell 

division is another process that is significantly affected by polymyxins treatment (166). Further 

investigations have demonstrated that polymyxins could induce cell death via generation of 

reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and hydroxyl radicals. 

Collectively, these ROS induce oxidative damage of DNA, lipid, and Fe-S dependent proteins 

inhibit respiratory enzymes such as NADH-quinone oxidoreductase, NADH cytochrome c and 

NADH dehydrogenase; and ultimately cause cell death (149, 167-169). However, bacterial 

death associated with polymyxin-induced ROS are still a subject of debate (170-172). 
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1.3.3 Mechanisms of polymyxin resistance 

The emergence of polymyxins resistance has been increased dramatically during the last 

decades due to the improper global use of polymyxins. The modification of outer membrane 

LPS, particularly lipid A domain, is the main encountered mechanism of polymyxin resistance 

in Gram-negative pathogens (173). The remodelling of lipid A has been observed in E. coli, P. 

aeruginosa, A. baumannii K. pneumoniae, and Salmonella enterica serovar Typhimurium (91, 

93). This lipid A remodelling is triggered by enzymatic addition of either cationic sugar moiety 

(4-amino-4-deoxy-L-arabinose), phosphoethanolamine, or galactosamine resulting in 

suppression of LPS affinity to polymyxins (91-93, 173, 174). In addition, polymyxins, as a 

membrane stressor, induce Gram-negative pathogens to fortify their OM by hepta-acylation of 

lipid A through the addition of palmitate at the R-2-hydroxymyristate of lipid A, the resulting 

hepta-acylated OM becomes less permeable to polymyxins (175, 176). Surprisingly, some lipid 

A deficient mutants of Neisseria meningitidis and A. baumannii have been demonstrated to be 

viable in spite of complete lack of LPS; therefore these mutants are naturally resistant to 

polymyxins (94, 177). These resistance mechanisms to polymyxins are driven  by dual 

component-component regulatory systems; however, the detailed molecular mechanism of 

resistance remains obscure due to the complexity of these regulatory systems (178). To date, 

about 143 two-component regulatory systems have been demonstrated in P. aeruginosa (179). 

Only PmrA/PmrB, PhoP/PhoQ, ParR/ParS, ColR/ColS and CprR/CprS systems are studied 

extensively due to their direct association with antibiotics (predominantly polymyxins) 

resistance (178, 180-185). The PhoPQ and PmrAB systems induce the modulation of 

arnBCADTEF LPS modification operon under Mg2+ starvation which in turn induce the 

insertion of 4-aminoarabinose sugar to lipid A that leads to the reduction in LPS negative charge 

and ultimately reduce the polymyxin-LPS binding affinity (178). Contradictorily to the above 

mentioned Mg2+-dependent regulatory systems (PhoPQ and PmrAB), Fernandez et al. have 

demonstrated a novel Mg2+-independent two-regulatory system (ParR-ParS) which is directly 

induced by cationic antimicrobial peptides (interestingly polymyxins). This regulatory system 
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extensively participates in the development of polymyxins adaptive resistance without 

contribution in the development of intrinsic resistance (184). In another study, Muller et al. 

revealed that, in addition to its role in the adaptive resistance to polymyxins through LPS 

modification, ParR-ParS system play an essential role in adaptation of P. aeruginosa to other 

different antibiotic classes such as aminoglycosides, fluoroquinolones, and β-lactams via 

distinctly different mechanisms of resistance (i.e. upregulation of efflux pump, and reduction of 

porin pathway) (186). Moreover, it has been shown that ParRS system of P. aeruginosa controls 

the regulation of both the efflux pump and the QS system in the absence of antimicrobial 

compounds (187). Consistently, Fernandez et al. have found that P. aeruginosa developed 

adaptive resistance to polymyins through the induction of cationic peptide resistance two-

component system (CprRS) independently of the ParRS system (188). 

Away from LPS modification, some Gram-negative bacteria exhibit resistance to polymyxins 

by other mechanisms, for example, P. aeruginosa and K. pneumoniae resist polymyxins by 

overexpression and production of anionic CPS which protects the bacterial OM from 

polymyxins and other antimicrobial peptides (117). Moreover, overproduction of OM efflux 

pump and biofilm formation are commonly linked to polymyxins and other antibiotics 

resistance (189). Besides that, Gram-negative bacteria produce OMVs which act as a decoy for 

polymyxins and other membrane stressors and thus protect the bacterial cell from their killing 

action (190). More recently, Liu et al. have reported for the first time a plasmid-incorporated 

MCR-1 gene in E. coli which is responsible for plasmid-mediated polymyxins resistance (191). 

Since that time, this new mechanism of polymyxins resistance has subjected to extensive studies 

in both human and animal models (192-194). The MCR-1 gene belongs to the family of 

phosphoethanolamine transferases; and it participates in the modification of bacterial LPS by 

incorporating phosphatidylethanolamine into lipid A moiety of the LPS (191, 195). Due to the 

aforementioned polymyxins resistance mechanisms, the urgent global action is needed at least 

to minimise the resistant to these last therapeutic resorts by MDR pathogens.  
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Table 1.1 Polymyxins resistance mechanisms in MDR Gram-negative bacteria. The table 

adaptive from Olaitan et al. (196) with permission. 

Resistance mechanism Genes involved Bacteria 

Modification of the lipid 

A or Kdo with 

aminoarabinose 

arnBCADTEF operon and pmrE Salmonella enterica, K. 

pneumoniae, E. coli, P. 

aeruginosa 

and Burkholderia 

cepacia complex 

Modification of the lipid 

A with 

phosphoethanolamine 

pmrC S. enterica, K. 

pneumoniae, E. 

coli and A. baumannii 

Activation of LPS-

modifying operon by 

mutations in TCSs 

pmrA/pmrB and or phoP/phoQ S. enterica, K. 

pneumoniae, P. 

aeruginosa and A. 

baumannii 

Inactivation 

of phoP/phoQ negative 

feedback regulator 

mgrB K. pneumoniae 

Modification of the Kdo 

with 

phosphoethanolamine 

eptB, phoP/phoQ and mgrR E. coli 

Increased acylation of 

lipid A enhancing its 

modification with 

aminoarabinose 

lpxM S. enterica, K. 

pneumoniae and E. coli 

Trapping of polymyxins 

by capsule 

 K. pneumoniae and P. 

aeruginosa 

Efflux pump acrAB and kpnEF K. pneumoniae 

Loss of LPS lpxA, lpxC and lpxD A. baumannii 

Glycosylation of lipid A 

with hexosamine 

 A. baumannii 

Acquired/adaptive 

resistance to polymyxins 

through LPS modification 

with aminoarabinose 

colR/colS, cprR/cprS and parR/parS P. aeruginosa 

Overexpression of outer 

membrane protein OprH 

oprH P. aeruginosa 

 

1.3.4 Pharmacokinetics and pharmacodynamics (PK/PD) of polymyxin B and colistin 

Commercially, colistin is available either as colistin sulphate (mainly for topical application) or 

as an inactive prodrug of sodium salts of colistin methanesulfonate (CMS) (generally for 

parenteral use). For inhalation use, both forms are convenient. In contrast, polymyxin B is used 

parenterally in its active sulfate salt (145, 197, 198). Chemically, CMS is formulated by hiding 

the primary amines of the Dab residues with methanesulfonate groups which carry negative 

charges at physiological pH (146). Our group has performed diligent PK/PD studies of 
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polymyxin B and colistin in an effort to optimise their clinical use (199-201). Although 

Polymyxin B and colistin are structurally similar to each other and excrete the same in vitro 

antimicrobial actions however in vivo, they exhibit remarkably different PK profiles (198).  

Polymyxins exhibit negligible oral and dermal bioavailability due to their large particle size, 

therefore, they are administered parenterally (intravenously and intramuscularly) for serious 

systemic infections or by nebulization for pulmonary infections (133, 162, 197, 198).  

Unlike colistin, CMS is unstable and inactive neither in vitro nor in vivo; and it is slowly 

converted to colistin and a number of methanesulphonate derivatives after parenteral 

administration. Another PK difference is that CMS mainly undergoes renal excretion, while 

colistin is excreted predominantly via other routes (Figure 1.9) (133). Zavascki et al. and 

Abdelraouf et al. have reported that polymyxin B excreted renally in less than 1% of its 

administered dose (Figure 1.9) (202, 203).  

Time-kill studies have shown that polymyxins (polymyxin B and colistin) exert their rapid 

antibacterial activity against Gram-negative bacteria in a concentration-dependent manner; 

however, the bacterial growth recovery occurs rapidly (199-201, 204). It is very likely that 

resistance to polymyxin could quickly emerge due to the existence of polymyxin-resistance 

subpopulation (heteroresistance) within the polymyxin-susceptible colony. This 

heteroresistance possibly results from prolong polymyxins therapy therefore proper monitoring 

of the resistance during polymyxin treatment is guaranteed (95, 96, 205). 

Although, some animal studies have shown that antibacterial activity of polymyxins can be 

measured by calculating the ratio of the area under unbound plasma concentration-time curve 

to MIC (fAUC/MIC) which is the PK/PD index. However, these data are clinically inapplicable 

due to the shortage of the information on the unbound plasma concentration of polymyxins in 

patients (206, 207). 

Garonzik et al. have suggested that CMS/colistin combination might be the best approach to 

achieve the desired plasma colistin concentration instead of CMS monotherapy which is unable 

to provide adequate colistin concentration in the plasma, particularly when the MIC of the 
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infecting bacteria is >0.5 mg/L and the creatinine clearance is >70 ml/min/1.73 m2 (208). In this 

study, CMS was administered daily by IV infusion to a total of 105 patients in a dose range of 

200 mg colistin base activity (CBA) which equals to about 6.666 million units (MU) of CMS, 

the average steady-state plasma concentration of formed colistin was 0.48 – 9.38 mg/L (median: 

2.36 mg/L) (Figure 1.10). The inadequate concentration of formed colistin in the plasma is due 

to the slow biotransformation of CMS to colistin, therefore considering of a loading dose and 

long dose interval is vital to achieve the steady-state plasma concentration of formed colistin 

rapidly (209). In contrast to CMS, a clinical study conducted on 24 critically ill patients had 

revealed that the PK of polymyxin B is profoundly affected by total body weight and that kidney 

function does not affect the required polymyxin B daily dose and the total body clearance (210). 

To date limited PK/PD data are available for all clinically used polymyxins, therefore more data 

about polymyxins PK/PD from clinical studies are urgently needed to optimise their dosage 

regimen particularly in critically ill patients. 

 

Figure 1.9 Illustration of polymyxins clearance pathways. The relative thickness of the arrows represents 

the degree of renal and non-renal clearance of the three clinically available polymyxins (CMS, colistin 

and polymyxin B) in individual with healthy kidneys. (Figure modified from Nation et al. (146) with 

permission). 
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Figure 1.10 Steady-state plasma concentration-time profiles of CMS-derived colistin. The data obtained 

from 105 critically ill patients including 89 not on renal replacement, 12 on intermittent haemodialysis, 

and 4 on continuous renal replacement therapy. The administered daily dose of CMS was in a range of 

200 mg CBA. (Figure adapted from Garonzik et al. (208) with permission). 

 

1.3.5 Toxicity: nephrotoxicity and neurotoxicity 

Clinically, polymyxins-induced nephrotoxicity and neurotoxicity have been reported following 

parenteral administration of polymyxins in several studies conducted during the 1960s and 

1970s (211-214). Nephrotoxicity of parenterally administered polymyxins is the most common 

and essential dose-limiting adverse effect, and it was the cause of their early replacement by 

other antibiotics which were considered ‘less’ toxic (e.g., gentamicin and second- and third-

generation cephalosporins) (197, 215, 216). Koch-Weser et al. have reported that during 317 

courses of IV CMS conducted on 288 patients, nephrotoxicity and neurotoxicity occurred in 

20.2% and 7.3% respectively (212). The administration of polymyxin B in higher intramuscular 

doses and the existence of dibucaine hydrochloride in the intramuscular formulation of CMS 

are the significant causes of polymyxins-induced nephrotoxicity and neurotoxicity (134). 

Recent comparative studies found that the rate of nephrotoxicity is higher with CMS/colistin 

than that observed with polymyxin B (possibly due to the intracranial conversion from CMS 

and partially methanesulfonate derivatives) (217, 218). Moreover, Falagas et al. had suggested 

that the frequency and severity of polymyxins-induced toxicities are less than what has been 

reported in early investigations, these observations might be due to the fact that the 
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intramuscularly administered CMS in recent studies was used intravenously in old reviews 

(134). Recently, studies conducted on patients in intensive care unit (ICU) demonstrated that 

about 14.3%-18.6% of colistin-treated patients experienced impaired renal function (219, 220). 

In spite of their toxicities, polymyxins proved to be safer than other treatments. Garnacho-

Montero et al. have performed a comparative study on patients with ventilator-associated 

pneumonia evoked by A. baumannii, the renal failure observed in 24% of patients treated with 

IV CMS compare to 42% of patients received IV imipenem/cilastatin (221). In a clinical study, 

Hartzell et al. had revealed that although CMS therapy associated with mild renal dysfunction, 

however the permanent renal damage and the need for renal replacement therapy or cessation 

of the treatment are not necessarily occurred (222).  The most common clinical manifestations 

of polymyxin-induced renal insufficiency are the elevation of serum creatinine level and 

reduction in creatinine clearance, haematuria, proteinuria, cylindruria, or oliguria (139), in 

addition to the development of acute tubular necrosis in some cases (223). It has been suggested 

that the nephrotoxic effect of polymyxins is concentration-dependent and includes loss of 

membrane integrity, which permits the entry of ions and water resulting in cell rupture (224, 

225). Moreover, colistin had been demonstrated to be an essential promoter of the trans-

epithelial conductance of the urinary bladder epithelium (226). Polymyxin-induced 

nephrotoxicity could be exacerbated by co-administration of other nephrotoxic compounds (e.g., 

diuretics) (212, 227). Furthermore, early clinical studies had reported that the incidence of 

polymyxin-induced neurotoxicity was dose-dependent and less than that of nephrotoxicity. 

Predominantly, paraesthesia and respiratory apnoea are the most common polymyxin-induced 

neurotoxic effects (212, 228). In contrast, studies over the past two decades demonstrated that 

there is no association of neuromuscular blockade or apnoea with polymyxins treatment (219, 

220, 229). Polymyxins inhibit the release of acetylcholine to the synaptic cleft by interfering 

with the presynaptic receptors, resulting in neuromuscular blockage (230). Another proposed 

mechanism of polymyxin-induced neurotoxicity suggested that polymyxins competitively and 

shortly inhibit acetylcholine release followed by prolonged depolarisation phase which is 
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accompanied by depletion of calcium ion (231). The neurotoxic effects of polymyxins could be 

aggravated by several factors such as hypoxia, renal impairment, myasthenia gravis and 

concomitant administration of polymyxins with muscle-relaxants, narcotics, sedatives, 

anaesthetic drugs, or corticosteroids (232-234). 

 

1.3.6 Polymyxins combination therapy 

Evidence from clinical studies revealed that the combination of antibiotics is a promising 

approach to eradicate MDR Gram-negative bacteria and significantly lower the mortality rate 

compared to monotherapy (235-237). In many observational studies that had been conducted in 

intensive care unit (ICU) on patients with bacteraemia, surgical site infections, pneumonia, and 

septic shock, about 25% - 50% of the patients have been subjected to a combination of 

antimicrobial therapy (238). Hilf et al., in a multicentre comparative study, have reported that 

the combination of antibiotics significantly reduced the mortality rate compared to antibiotic 

monotherapy (27% versus 47%) in patients with P. aeruginosa bacteraemia (239). Another 

retrospective clinical study of malignancies-associated P. aeruginosa bacteraemia, the cure 

rates, which “defined as eradication of all signs and symptoms of pseudomonal infections”, 

were 72% and 29% for both combination and monotherapy respectively (240). On the contrary, 

in other comparative studies, there was no difference in mortality rate or cure rate between the 

combination and the monotherapy against MDR Gram-negative bacteria (241-244). Therefore, 

the clinical efficacy and safety of antimicrobial combination therapy are still needed to be 

carefully evaluated particularly in term of the adverse toxic effects, emerge of resistance and 

the cost of the treatment course (238).   

Due to the rapidly emerged polymyxin resistance and high mortality rate (47-67%) 

accompanying polymyxin monotherapy, therefore the use of these antibiotics as monotherapy 

is a non-optimal solution to eradicate MDR Gram-negative pathogens (245-247). Combination 

of polymyxins with other antimicrobial compounds is an alternative strategy to polymyxin 

single therapy, and such technique becomes increasingly utilised in clinical situations (248). 
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Interestingly, combining polymyxins with antibiotics from other classes demonstrates 

synergistic activity against most of the problematic MDR Gram-negative pathogens; and gives 

a chance to reduce the concentration of each compound which in turn decreases the probability 

of the occurrence of adverse effects (162, 249). In vitro analysis showed that colistin plus 

carbapenems (particularly doripenem) synergistically kill MDR P. aeruginosa, K. pneumoniae 

and A. baumannii (250-252). Clinically, the combination therapies (colistin + tigecycline and 

colistin + tigecycline + meropenem) against bloodstream infections caused by KPC- producing 

K. pneumoniae resulted in significantly higher survival rate (69.7% and 87.5% respectively) 

compare to 45.7% survival rate with colistin or tigecycline monotherapy (253). In vitro studies 

conducted by Zusman et al. and Ly et al. demonstrated that polymyxins and carbapenems 

combinational therapy against A. baumannii, P. aeruginosa and K. pneumoniae significantly 

reduce the development of polymyxin resistance (254, 255). Similarly, in vitro studies showed 

that polymyxins and rifampicin combinations exerted a synergistic antimicrobial activity 

against MDR Gram-negative pathogens (256-258). However, Durante-Mangoni et al. and 

Pogue et al. in multi-centre, randomised clinical studies have revealed that there was no 

difference in mortality rate between colistin monotherapy and the combination of colistin and 

rifampicin in critically ill patients with XDR A. baumannii (259, 260). Despite the in vitro 

synergistic activity of the combination of polymyxins and other antibiotics, clinical observations 

have shown that polymyxins and other antibiotics co-therapy could significantly improve the 

microbiological clearance rate but showed no difference in improvement of clinical outcome 

compare to polymyxins alone (259-263). The possible explanation of this lacking in the clinical 

cure is the shortage in available PK/PD data of the combination therapy and the inadequate 

translation of the in vitro synergies into proper clinical outcomes; therefore further clinical 

studies to evaluate the PK/PD and toxicity parameters are highly guaranteed (260, 261). 
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 Outer membrane vesicles (OMVs): an overview  

Microorganisms particularly Gram-negative bacteria constitutively secrete spherical bi-layered 

membranous structures, which are ranging between 20 and 200 nm in diameter, collectively 

named Outer membrane vesicles (OMVs) (157, 264). Historically, these OMVs have been 

reported for the first time in Vibrio cholera bacteria-free filtrate in 1959 (265). Later in 1965 

and 1966, these vesicles were also reported in cultures of E. coli after growing in media contains 

less lysine and they were described as LPS-rich globe-shaped “bags” (266, 267). Later, it has 

been found that almost all Gram-negative pathogens secrete these membrane-associated 

spherical structures; therefore they were called ‘membrane vesicles’, ‘extracellular vesicles’, 

‘outer membrane fragments’ or ‘blebs’ (268-272). To date, the most acceptable historical name 

is the outer membrane vesicles (273). Structurally, these nanoparticles composed of lipids and 

proteins derived mainly from the OM and periplasm (274). The LPS and phospholipids (such 

as glycerophospholipids, sphingolipids and glycerolipids) are the principal lipid contents of the 

OMVs. Additionally, several other studies showed that OMVs contain proteins derived from 

cytoplasmic membrane and cytoplasm, genetic components (mostly DNA and RNA), virulence 

factors (e.g., toxins, adhesive and invasive enzymes), metabolites and signalling compounds 

such as QS molecules (264, 275-278). Among the OM derived proteins, Kesty et al. have 

detected a number of proteins incorporated abundantly in OMVs such as OmpA, OmpC, and 

OmpF (279). Consistently, alkaline phosphatase and AcrA (a protein component of efflux 

pump), which are examples of periplasmic proteins, have also been detected in OMVs (274). 

Interestingly, the OMVs and bacterial OM are highly similar in term of their lipid profiles, 

however little known about the types and the ratio of OMVs lipid into that of OM (280). 

Therefore, one of the aims of this Ph.D. study is to evaluate the lipid composition of OMVs in 

the presence and absence of the membrane stressor (polymyxin B).  
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1.4.1 Mechanisms of OMVs biogenesis: 

Although the OMVs have been studied extensively, however the precise mechanism (s) of 

OMVs production by Gram-negative bacteria have not been fully understood (280). To date, 

four rational models for biogenesis of OMVs are proposed (Figures 1.11 and 1.12). The first 

model suggests that OMVs are initiated when a localised expansion of OM occurs faster than 

that of the underlying peptidoglycan layer which in turn results in losing the integrity of the 

envelope and separation of the peptidoglycan due to a weakness in lipoprotein cross-linkages 

(281, 282). This model is supported by evidence that the lipoprotein contents of E. coli MOVs 

are significantly lower than that of corresponding bacterial cell which indicates that the OMVs 

are generated at the weak sites of OM-peptidoglycan linkage such as cell division regions (281). 

Another supporting evidence showed that the lipoprotein contents of P. aeruginosa OM are less 

than that of E. coli, thus the OMVs production by P. aeruginosa cells is usually higher than that 

produced by E. coli (283, 284). Further supporting observations demonstrated that mutations in 

genes encoding Tol-Pal system (a system responsible for OM-peptidoglycan cross-linking and 

OM integrity) of Gram-negative bacteria increases OM vesiculation (285, 286). In addition, 

Song et al. found that V. cholera overproduces vrrA gene, which is a small non-coding RNA 

gene, in response to stressful environmental conditions. Overexpression of these vrrA genes 

increases the production of OMVs via reduction of the OmpA (287). The second MOVs 

generation model is linked to the periplasmic accumulation of peptidoglycan fragments (272). 

During the turnover of peptidoglycan, fragments of low molecular weight peptidoglycan are 

generally accumulated in the cytoplasmic space prior to their cytoplasmic translocation by 

permease enzyme; and some of these fragments have been observed in secreted vesicles (272, 

288, 289). This peptidoglycan accumulation applies a turgor pressure on Porphyromonas 

gingivalis OM resulting in bulging of the membrane and releasing of OMVs (272). To support 

this model, Zhou et al. examined the released OMVs from P. gingivalis and observed that these 

OMVs contain a muramic acid which is one of the peptidoglycan constituents (272). Another 

study had been conducted by Hayashi et al. to support this model, they found that mutation of 
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peptidoglycan hydrolase could lead to the accumulation of peptidoglycan intermediates within 

the periplasmic space which inhibit the degradation of the cell wall components of P. gingivalis 

and increase the production of OMVs (290). Despite the supporting pieces of evidence, this 

model remains a subject of debate because no study yet performed to correlate the exerted turgor 

pressure on the OM with the level of peptidoglycan inside the OMVs of P. gingivalis; and 

whether the peptidoglycan fragments are present in other strains or they are a species-specific 

fragments (284). The third model proposed the presence of molecules, namely B-band LPS and 

the PQS (Pseudomonas quinolone signal) molecules, that induce the curvature of the OM (291, 

292). Some earlier studies showed that the presence of truncated LPS in OM of P. aeruginosa 

and Salmonella induces blebbing of the membrane (293, 294). Subsequently, further studies 

have been conducted based on these observations to confirm that the electronegativity of B-

band LPS in P. aeruginosa MO induces electrostatic repulsion, which provokes membrane 

blebbing and ultimately OMVs formation (291). Molecular analysis of different strains of P. 

aeruginosa demonstrated that they carry different phenotypes of LPS (e.g., A+B+, A-B+, A+B- 

and A-B-); and the hypervesiculated strains display the negatively charged A-B-band LPS (295). 

Therefore, the enrichment of OMVs with negatively charged B-band LPS rather than positively 

or neutrally charged LPS provides a supporting evidence for this model (291, 295-297). In 

addition, it has been shown that PQS molecules play an important role in blebbing of P. 

aeruginosa OM and release of OMVs (284). These molecules destabilize Mg2+/Ca2+ salt bridges 

of the LPS via sequestering the positive charges of the divalent cations and induce a repulsion 

of LPS molecules, which results in membrane blebbing and vesiculation (298). The addition of 

external Mg2+ to P. aeruginosa culture increases the production of OMVs, which gives further 

supporting evidence for the role of PQS molecules in enhancing OMVs biogenesis (284).  This 

third model had been proposed by Kuehn et al. based on all of these observations (299). 

However, this model is a species-specific because it was conducted mostly on P. aeruginosa; 

and some other strains such as O-antigen mutant strains of P. gingivalis lack B-band LPS (300, 

301). Although, in all of these three proposed models, OMVs are the products of envelope 
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instability, however a contradictory observation has been seen with E. coli OMVs production. 

A genetic study performed on E. coli by McBroom et al. revealed that OMVs biogenesis is 

uncorrelated to membrane instability (302), therefore OMVs production could be a combination 

of different mechanisms rather than single one.    

 

Figure 1.11 Suggested models for OMVs biogenesis. First model: OMVs production is initiated at OM 

specific regions where the OM expands quicker than underlying peptidoglycan layer as a result of 

lipoprotein lacking. Second model:  inefficient cytoplasmic translocation of peptidoglycan fragments 

results in accumulation of these fragments in the periplasmic space and subsequently increasing OM 

blebbing. Third model: PQS-Mg2+ interaction in P. aeruginosa induces charge-to-charge repulsion and 

OM blebbing. PG, peptidoglycan; IM, inner membrane. (Figure adapted from Mashburn-Warren et al. 

(284) with permission). 
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More recently, Roier et al. have proposed a novel general model for the biogenesis of OMVs 

(303). In this model, OMVs production depends on the accumulation of phospholipid in 

bacterial OM which requires the involvement of the phospholipid transport system (ATP-

binding VacJ/Yrb ABC transport system). Mutation of VacJ/Yrb gene induces overproduction 

of OMVs in Haemophilus influenzae and V. cholera (303). The authors also found that this 

mechanism of OMVs biogenesis is affected by iron availability, where low iron level 

downregulate OMVs level. This phospholipid-associated model could be a general model for 

all Gram-negative bacteria and acts in conformity with previously mentioned models. In 

addition, it overcomes the species-specific limitation associated with those models (303).   

 

 

Figure 1.12 Phospholipid-based general model for biogenesis of Gram-negative bacterial OMVs. First 

step: phospholipid accumulated in the outer layer of MO as a result of suppression of vacJ and/or yrb 

genes which induces outward membrane blebbing. Second step: membrane blebbing is further induced 

by LPS-associated ionic interaction. Third step: enrichment of the liberated OMVs with phospholipids. 

(Figure adapted from Roier et al. (303) with permission). 

 

 

1.4.2 Principal components of OMVs: 

Structural and chemical analysis of OMVs cargo showed that they contain mainly proteins and 

lipids; in addition to some nucleic acids, metabolites and QS molecules (273). OMVs proteomic 
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analysis has been performed extensively in different Gram-negative bacterial strains and found 

that there is some difference between OMVs proteins and proteins of other cellular parts (282). 

Mass-spectrometric analysis of OMVs proteome has revealed that OMVs proteins come 

predominantly from OM and periplasmic proteins (304, 305). In addition, several other studies 

conducted on different strains showed that some proteins in OMVs are cytoplasmic and 

cytoplasmic membrane proteins (264, 278, 306). Functionally, OMVs proteins have been sorted 

into multiple functional classes including OM structural protein, transporters, porins, enzymes 

and stress response proteins (278, 280).  OMVs are considered as an important extracellular 

reservoir for many enzymes (e.g. peptidases, nucleases, proteases and β-lactamases) (278, 307-

309). Although, it has been found that sorting of the proteins into OMVs differs by the difference 

in growth phases at which the OMVs are harvested, and by the presence or absence of stressors, 

however, the mechanism of protein sorting is yet unclear (310).  Similarly, lipidomic studies 

showed that the main lipid component of OMVs are LPS and phospholipids (273). The anionic 

B-band of LPS is the predominant component of the OMVs outer leaflet but not the neutral A-

band or the whole LPS molecule (291, 311). By MS analytical study, Haurat et al. have found 

that lipid A was sorted in OMVs from P. gingivalis in its deacetylated form which is different 

from that of the parent cell (300), however, both OM and OMVs lipid profile were similar in a 

related species (Bacteroides fragilis) (312). Moreover, the OMVs membrane also contains 

phospholipids and they differ from that of the OM of the parent bacteria (311, 313). In P. 

aeruginosa, the abundant phospholipid in OM is phosphatidylethanolamine whereas in OMVs 

is phosphatidylglycerol (314). Furthermore, saturated fatty acyl chains were also found in 

relatively higher amount in OMVs compared to OM which increase the rigidity of OMVs (314, 

315). In addition to the proteins and lipids, the cargo of OMVs also contains many other 

bioactive molecules such as DNA (circular plasmid DNA, linear plasmid DNA, phage DNA 

and chromosomal DNA), RNA, ions, signalling molecules, peptidoglycan muramic acid and 

other metabolites (269, 275, 291, 316, 317). 
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1.4.3 Functions of OMVs: 

OMVs act as a decoy for many toxins, adhesins, and immunomodulatory substances, therefore 

they play an essential role in the pathophysiology of bacteria (Figure 1.13) (279, 291, 318-321). 

An example of toxins that have been demonstrated in OMVs are Heat labile enterotoxin from 

enterotoxigenic E. coli, VacA from Helicobacter pylori, Shiga toxin from Shigella dysenteriae, 

ClyA from enterohemorrhagic E. coli and hemolysin from Salmonella typhi (274, 279, 319-

323). Surprisingly, some of these OMVs-incorporated toxins become more advantageous than 

their cellular counterparts (273), Wai et al. have demonstrated that the periplasmic inactive 

ClyA monomer becomes active ClyA oligomer within the OMVs which is essential for 

polymerisation of the monomer (320). In addition, OMVs-packed adhesins facilitate the 

adhesiveness of OMVs to the host cell membrane and delivery of OMVs contents into the 

mammalian cell either by fusion or by uptake mechanism (279, 324, 325). Simultaneously, 

OMVs increase the lifespan of their cargo by protecting them from host destroying enzymes 

and antibodies (326). Several studies have reported that OMVs modulate host immune system 

by delivering various immunomodulatory proteins and lipids (327-329). Moreover, it has been 

suggested that OMVs augment bacterial virulence by enhancing biofilm formation and co-

aggregation of bacterial cells, but the exact mechanism of this actions need to be investigated 

(273, 330, 331). 

Interestingly, OMVs play a crucial role in bacterial responses to chemical and physical stressors 

and nutritional starvation (273). As an attempt to overcome the stressful effects of temperature, 

antibiotics, bacteriophages or antibodies, bacteria try to increase the production of OMVs 

suggesting their role in titrating these stressors (264, 302, 328). OMVs protect bacteria from the 

action of antibiotics either by their cargo of antibiotic-degrading enzymes such as β-lactamase 

and gentamycin-inactivating enzymes or by sequestering the antibiotics such as polymyxins and 

other membrane-active antibiotics (190, 291, 313, 332). Furthermore, a proteomic study 

conducted by Park et al. reported that P.s aeruginosa growing in biofilms secretes OMVs 

enriched with drug-targeting proteins, such as efflux pump proteins, compared to OMVs 
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isolated from planktonic P. aeruginosa. Such finding provides another explanation for the role 

of these vesicles in drug resistance (333). Besides that, bacteria produce OMVs concentrated 

with essential metal ions, complex biomolecules-degrading enzymes and ATP synthesis 

machinery which make OMVs rich source for bacterial nutrition during the starvation (264, 

278). In another function, OMVs act as a weapon to kill another bacteria, for example Gram-

negative bacteria secretes OMVs to kill Gram-positive in mixed communities (334). Various 

studies have demonstrated that OMVs carry bacteriolytic enzymes such as peptidoglycan 

hydrolases and endopeptidase which capable of distinguishing and targeting the non-self-cells 

in polymicrobial environments (157, 335). Also Kadurugamuwa et al. have observed that 

OMVs could be used as antibiotic reservoirs to deliver the drug in high concentration at the site 

of infection which might be a promising approach to reduce the antibiotic resistance and assure 

the access of antibiotic to the target site (291). Very recently, Kim et al. have reported that 

OMVs could potentially destroy the fully established tumour cell via induction of long-term 

immune response. This phenomenon depends on the OMVs-induced production of cytokines 

and interferon-γ that capable of killing cancer cells without detectable harmful effects (336). 
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Figure 1.13 Proposed pathophysiological functions of OMVs isolated from Gram-negative bacteria. The 

predicted functions were obtained from the proteomic analysis of pathogenic and non-pathogenic 

bacterial OMVs. (Figure adapted from Lee et al. (280) with permission). 

 

 

 Proteomics: an overview  

Although the first simple proteomic analysis and protein mapping started in 1975 using two-

dimensional-polyacrylamide gel electrophoresis (2DPAGE) (337-339). However, the term 

“proteomics” have been introduced to the molecular biology for the first time in 1995 to 

characterise the complete cellular proteins in global-scale techniques (340). In early proteomic 

studies, the 2DPAGE was utilised extensively to identify bacterial proteins, but due to lack of 

the sensitivity of protein sequencing and time consumption, this technology never satisfied the 

proteomic analysis of complex biological samples even with the introducing of micro-

sequencing technologies (341). By the development of mass spectrometry (MS) approach, the 

proteomic field entered a new era (342). Fortunately during the 1990s, and with the emergence 

of complete genomic sequencing, the high-sensitivity high-throughput MS-based facility 

became highly applicable in proteomic studies (343). Interestingly, the central dogma of MS-

based proteomic procedure is the liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS). In this platform, the enzymatic digestion of complex proteins and 
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production of peptides occurs prior to chromatographic separation and MS identifications (344). 

Nowadays, thousands of proteins can be measured within a short time using the futuristic 

proteomic techniques (345). As a part of metabolomics, the proteomics should be connected 

and communicated with other omic studies such as genomics, which focuses on genetic mapping 

and gene array; and lipidomics, which investigates the structural and functional changes of lipids. 

These associations of omic studies provide a complete set of information about changes in 

metabolic pathways that associated with pathophysiological conditions (Figure 1.14) (346). 

 

Figure 1.14 Schematic presentation of the communication of the lipidome with genome, proteome, 

transcriptome and metabolome. Lipids can regulate protein function and gene transcription as part of a 

dynamic interaction (Figure adapted from Koriem et al. (347) with permission). 

 

1.5.1 Types of Proteomics 

Currently, several analytical studies are grouped under the rubric of proteomics (Figure 1.13). 
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1.5.1.1 Protein expression proteomics 

Expression proteomics is usually employed to quantitatively analyse protein expression mainly 

when there is a variability in protein samples. The comparison of protein expression for the total 

or part of proteome can be performed by using such technique, and the information achieved 

from this proteomics studies can be utilised in the identification of disease-associated proteins 

or discovery of novel signalling proteins (348). 

 

1.5.1.2 Structural proteomics 

This type of proteomics aims to physically identify the cell map through mapping out the 

structure of proteins in protein complexes or proteins within particular subcellular organelles 

(349). Besides, these proteomic studies endeavour to characterise the entire proteomes within 

the complex protein samples, identify the subcellular localisation of the proteins, and determine 

proteins interactions. Collectively, the data obtained from structural proteomics aid in revealing 

the role of proteins in cell architecture and unique characterisation (348). 

 

1.5.1.3 Functional proteomics 

This proteomics is a general term covers many proteomics technologies such as affinity 

chromatography for isolation of distinct proteomes or sub-proteomes for further studies. 

“Functional proteomics” give a high opportunity for better understanding of protein signalling, 

mechanism of diseases and protein-drug interactions (348). 

 

1.5.2 Biological applications of proteomics 

Proteomics is highly applicable in all biological systems (Figure 1.14). 

 

1.5.2.1 Identification of Protein Complexes 

Identification of proteins is considered as one of the major applications of proteomics in the 

biological field and provides detailed information about protein complexes, which can be 
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utilised in further investigations. Isolation and identification of proteins by proteomic studies 

depend on protein-specific criteria. Importantly, the identified proteins give an idea about the 

results of subsequent analysis such as the validity of the applied biochemical methods (348). 

 

1.5.2.2 Protein Expression Profiling 

Proteomics is broadly applied to study the expression profiling of proteins. The determination 

of signalling proteins or disease-specific proteins can be achieved merely by expression 

profiling via proteomics approach. Expression profiling is usually performed by using two-

dimensional electrophoresis (2-DE), isotope-coded affinity tags (ICAT), or protein array (348). 

Protein expression profiling of bacteria could provide a comprehensive idea about actual cellular 

responses to a wide variety of stressors including antibiotics from different classes, and push 

forward the antibiotic discovery process (350).   

1.5.2.3 Protein Phosphorylation 

Protein phosphorylation is a common Posttranslational modification process occurs virtually in 

almost all biological systems. The identification and characterisation of phosphorylated protein 

is paramount for better comprehension of protein function (351, 352). MS-based proteomics is 

a useful approach for identification of not only phosphoproteins but also all other types of 

protein modification. Identification of novel phosphorylated proteins, measurement of effector-

associated changes in the state of phosphorylation, determination of the site of protein 

phosphorylation, and all other phosphorylation changes can be studied simultaneously by using 

MS-based phosphoproteomics. Moreover, knowledge about enzymes (e.g. kinases and 

phosphatases) and enzymatic regulations can be achieved via determination of phosphorylation 

sites of protein (348).  

 

1.5.2.4 Proteome Mining 

Proteome mining is a kind of functional proteomics technology applied to obtain information 

about the protein from the sub-proteomes analysis. The core idea of this technique is the 
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selective competition between drug-like molecules and naturally occurring cellular ligand for a 

specific target site on the protein (348). In a study conducted on MDR Listeria monocytogenes 

strain, proteomics mining had been utilised to identify 168 drug-targeted proteins; one of these 

proteins was directly involved in peptidoglycan biosynthesis pathway and known as penicillin-

binding protein 4. In the same study, four of particular interest compounds have been 

investigated and found to be as promising multi-targeting agents (353). Similarly, Lohani et al. 

have used proteome mining to determine three multi-enzymatic proteins in Clostridium difficile, 

these proteins could be a good target for new antibiotics against this serious pathogen (354). In 

addition, several proteomics studies have been performed to investigate the importance of 

proteomics approaches in determining the expressed proteins that are responsible for 

antibacterial drug resistance (355, 356). In one of these studies, proteomic analysis of colistin-

resistant and -susceptible A. baumannii strains revealed that colistin treatment of colistin-

resistant A. baumannii strains expressed many proteins that enhanced their survival against 

colistin compared to susceptible strains (357). Collectively, proteomics techniques are of great 

importance in all biological systems. In this PhD study, protein expression proteomics has been 

utilised to identify the compositional differences of the OM and OMVs sub-proteome between 

polymyxin-susceptible and -resistant K. pneumoniae isolates, and to investigate the effect of 

polymyxin B treatment  on OMV sub-proteome that are selectively packaged from the parent 

bacteria into the OMVs. 
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Figure 1.15. Different types of proteomic and their biological applications. (Figure adapted and modified 

from Graves et al. (348) with permission). 

 

 Lipidomics: an overview 

Lipidomics is recently introduced by Han et al. in 2003 as a branch of metabolomics that covers 

the complete qualitative and quantitative characterisation of lipid molecules (lipidome) from 

different biological systems including serum, plasma, cell or the whole organism (358, 359). In 

another word, lipidomics is a large-scale-based structural and functional analysis of lipids and 

their association with other cellular components such as proteins and other metabolites that are 

connected with lipid metabolic pathways and functions (360). The lipidomics-based 

identification of changes in lipid metabolism is crucial in determining the underlying 

biochemical mechanism of lipid-associated diseases (347). With the development of lipidomics, 

lipid analytical studies are directed from single lipid molecule characterisation toward global 

characterisation of all lipid metabolites within the biological samples to gain a clear insight 

about the pathophysiological role of lipids (358). Recently, many organisations and online lipid 

databases have been initiated to encourage researchers in this field. These resources encompass 

a wealth of information on structures, functions and classes of lipids. For instance, “Lipidomics 
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Expertise Platform” which was launched in 2005 (http://www.lipidomics-expertise.de), 

European Federation for the Science and Technology of Lipids (http://www.eurofedlipid.org), 

Lipidomics Research Center Graz (http://omicscentergraz.at),  LIPID MAPS 

(http://www.lipidmaps.org), LIPID BANK (http://lipidbank.jp), Lipid Data Bank 

(http://www.caffreylabs.ul.ie), Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(http://www.genome.jp/kegg/), Cyberlipid Center (http://www.cyberlipid.org) and the Lipid 

Library (http://www.lipidlibrary.co.uk) (361).  

 

1.6.1 Analytical approaches for lipidomics and data processing  

Traditionally, high-performance liquid chromatography (HPLC) and gas chromatography (GC) 

were used for analysis of lipid samples (362-364). Usually, prior to the separation of lipid 

classes into single molecules by HPLC or GC, the lipid samples are fractionated into classes by 

thin-layer chromatography (TLC), normal-phase liquid chromatography (NPLC) or solid-phase 

extraction (SPE) (365-367). Although, different classes of lipids can be studies with such 

“classical” lipidomic approaches. However, they are associated with a number of limitations 

such as the dearth of sensitivity, limited resolution (only a particular number of individual 

molecular species can be analysed); and time consumption (especially with GC as many lipids 

are gas-immiscible and need to be converted to miscible compounds) (361). These limitations 

have been largely addressed by the emergence of advanced lipidomic technologies such as 

electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and 

atmospheric pressure chemical ionization (APCI). Therefore, the analysis of thousands of lipids 

becomes possible in one technique with high resolution and sensitivity (361). Recently, these 

technologies have been developed further and connected to MS. For example, direct-infusion 

ESI–MS and ESI–MS/MS, and MALDI combined with Fourier transform ion cyclotron 

resonance MS (MALDI–FTICR–MS) or time-of-flight–MS (MALDI–TOF–MS). More 

recently, nuclear magnetic resonance (NMR) spectroscopy has also been used in the lipidomic 

field (361, 368). Even with the advanced lipidomic technologies, identification of all lipids 

http://www.lipidomics-expertise.de/
http://www.eurofedlipid.org/
http://omicscentergraz.at/
http://www.lipidmaps.org/
http://lipidbank.jp/
http://www.caffreylabs.ul.ie/
http://www.genome.jp/kegg/
http://www.cyberlipid.org/
http://www.cyberlipid.org/
http://www.lipidlibrary.co.uk/
http://www.lipidlibrary.co.uk/
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within a sample by using single technique is a challenge due to the huge diversity of lipid 

properties including structures, concentrations and physicochemical natures. Hence, multiple 

techniques applied simultaneously in lipids identification studies (361).  

Interestingly, with the rapid development of lipidomic analytical approaches, an abundant 

amount of raw data can be collected within a short period particularly with untargeted 

lipidomics. Thus, suitable computerised bioinformatics methods are required to analyse these 

raw data (chromatographic and mass spectral data) and to identify and quantify lipids (369). 

The first step in processing MS-based lipidomics data is the identification of lipids via a 

software. Many software packages have been established during the last ten years such as Lipid 

Inspector, Lipid View, LipidXplorer, m/z Mine 2, and Lipid Data Analyzer (370). Additionally, 

identification and quantification of lipids can also be achieved by IDEOM (metabolomics data 

processing software) (371). Secondly, a set of internal standards is utilised to normalise the data, 

then quantification of identified lipid is accomplished by comparing these lipids with the 

internal standards (372). In the third step, sets of the data obtained from the second step are then 

analysed statistically. In lipidomic statistical data analysis, group comparisons are usually 

performed using Univariate statistical methods in particular Principal component analysis 

(PCA) (373). With the development of analytical and statistical software, more information 

about structural and functional characteristics of lipids will be available. Consequently, the 

mechanisms of lipidome-associated disease will become approachable (374). 

 

1.6.2 Types of lipidomics 

Based on MS spectra, lipidomic analysis can be divided into ‘‘untargeted’’, ‘‘focused’’ and 

‘‘targeted’’ lipidomics (Figure 1.16) (375). In untargeted lipidomics, all lipids in the extracted 

samples can be detected without prior information about their ions or fragmentations. This 

approach depends on grouping the molecular ions by subjecting the detected peaks to additional 

software analysis (376). The most applicable techniques for untargeted lipidomics that provide 

a high resolution and accuracy, are High-resolution Fourier-transform MS (FT-MS), quadrupole 
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ion trap (Q-IT) and quadrupole-time-offlight (Q-TOF) (377). On the other hand, in focused 

lipidomics, the analysis of lipid samples depends on focusing on molecules within a selected 

categories using specific fragments which are either product ion scanning (for detecting 

fragments of required ions), precursor ion scanning (applied for detection of lipids within same 

class or subclass) or neutral-loss scanning (for detecting lipids that losing same fragment). This 

method is highly sensitive due to the reduced basal noise. Thus, the significant minor molecules 

can be detected by focused lipidomics technique (368). The third strategy is the targeted 

lipidomics which is used to analyse specific molecules via utilising information about both the 

targeted fragments and their parent ions; also this method requires the application of MS2 

spectrometer. In this strategy, the mass spectrometer is operated in either selected reaction 

monitoring (SRM) or multiple reaction monitoring (MRM), and it is mostly applied to identify 

lipids that have known fragmentation patterns. Targeted lipidomics technology is commonly 

applied for studying drugs of abuse and signalling lipids (375). In all the three lipidomics 

technologies, the lipid analysis can be accomplished with or without chromatographic-mass 

spectrometer pairing. Although, the untargeted lipidomics is less sensitive than the other two 

techniques due to the high baseline noise. Nevertheless, it results in the identification of a 

considerable number of compounds in a single run and provides a high opportunity for 

identifying unanticipated lipid molecules. Whereas, the targeted lipidomics is associated with 

remarkable sensitivity (375).   

 

Figure 1.16 Different lipidomics technologies and their capability to detect the individual molecular 

species. (Figure adapted from Navas-Iglesias et al. (375) with permission). 
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 Summary  

The worldwide use of antibiotics results in the development of bacterial resistance, which poses 

a threat to the healthcare. With the dearth in the discovery and development of new antibiotics 

and rapid emergence of MDR pathogens (particularly MDR Gram-negative bacteria) in clinical 

situations, the optimisation of clinically available antibiotics is highly warranted. For this 

critical situation, polymyxins, an “old-antibiotic” have been re-birthed as the last-resort 

therapeutic option for the treatment of MDR Gram-negative bacterial infections. Unfortunately, 

many PK/PD studies of polymyxins demonstrate that the administration of polymyxins as a 

single therapy is unlikely to achieve optimal and safe plasma concentration particularly with 

highly resistant pathogens. To overcome these limitations with polymyxins therapy, a 

combination with other antibiotics is an option. Despite of different models have been suggested 

for the mechanism of polymyxin action, however the precise mechanism remains unclear.  

Better understanding the mode of actions of polymyxin combination therapy is crucially 

important to achieve maximum benefit. In this PhD study, combination therapy, proteomics and 

lipidomics strategies were applied to provide further details about the mechanisms of action and 

resistance of polymyxin against MDR pathogens. 

    

 Hypotheses and aims 

The central hypotheses to be tested in this research were that:    

1. That the superior polymyxin combination synergistically kills MDR Gram-negative 

pathogens, whereby the second antibiotic enhances bacterial killing of polymyxins and 

minimises the emergence of polymyxin resistance (objective 1). 

2. That polymyxin treatment significantly affects the protein profile of OMVs isolated 

from both polymyxin-susceptible and -resistant XDR K. pneumoniae isolates (objective 

2). 

3. That polymyxin treatment significantly affects the lipid cargo of OMVs derived from 

both polymyxin-susceptible and -resistant MDR K. pneumoniae isolates (objective 3). 
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4. That polymyxin treatment significantly affects the protein profile of OM isolated from 

both polymyxin-susceptible and -resistant XDR K. pneumoniae isolates (objective 4). 

 

The aims of this thesis were:  

 Identify a superior polymyxin combination against MDR Gram-negative pathogens that 

are the common cause of CF lung infections using broth microdilution checkerboard 

method and static time-kill studies (Chapters 2). The MICs of polymyxin B and silver 

NPs against MDR Gram-negative isolates were tested. polymyxin B combination with 

silver NPs was investigated via in vitro synergy testing methods including broth 

microdilution checkerboard method and static-time kill studies.  

 To perform a comparative analysis of the lipidome of OMVs isolated from both 

polymyxin-susceptible and -resistant K. pneumoniae isolates and to identify key lipid 

molecular species that are selectively packaged from the OM into the OMV sub-

lipidome of the resistant isolates.  

 To perform a comparative analysis of the proteome of both OM and OMVs isolated from 

both polymyxin-susceptible and -resistant K. pneumoniae isolates and to identify key 

proteins that are selectively incorporated into OM and OMV from the resistant isolates.  

 

 Significance statement 

 The combination of polymyxin B and silver NPs excretes significant synergistic activity 

against MDR Gram-negative isolates particularly polymyxin-resistant P. aeruginosa 

isolates that is commonly colonise CF lung.  

 Silver NPs compromise the integrity of the OM through disruption of disulfide bonds 

within inner membrane respiratory enzymes, therefore, the combining silver NPs with 

polymyxin B could potentially enhance the bactericidal effect of polymyxin B via 

disruption of MO permeability.    
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 Polymyxin B significantly affects the lipid profile of OMVs isolated from both 

polymyxin-susceptible and -resistant K. pneumoniae isolates with much more effect 

observed on lipid cargo of resistant isolates which might suggest that polymyxin B could 

potentially alter the virulence of resistant strains via alteration of OMVs lipid profile.    

 The protein contents of both OM and OMVs isolated from polymyxin-resistant K. 

pneumoniae isolates significantly altered by polymyxin B treatment.  

 

Overall, the findings from this PhD study significantly provide highlighted insights on the 

synergistic mechanism of polymyxin combination. In addition, the significant information 

provided in this study greatly facilitate the better understanding of the mechanism of drug-

pathogen interactions.  

 

 Structure of the thesis 

Chapter 1 is the background of this thesis. Chapter 2 of this thesis focus on the study of 

synergistic combination of polymyxin B and silver NPs, while chapter 3, 4 and 5 focus on the 

study of the effect of polymyxin B on sub-proteome and lipidome of OMVs and OM of K. 

pneumoniae. The works from chapter 2 and 4 comprise of manuscripts that have already been 

published. The works from chapter 3 and 5 comprise of manuscripts that have already submitted 

for publication. The text and figures in these chapters have been reproduced as published or 

submitted for publication with modifications for this thesis as a requirement for the research 

degree. The final chapter provides a conclusion and future directions.     
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Chapter 2: A fresh shine on cystic fibrosis inhalation 

therapy: antimicrobial synergy of polymyxin B in 

combination with silver nanoparticles 
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This in vitro study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with 2 nm    silver 

nanoparticles (NPs) against Gram-negative pathogens commonly isolated from the cystic fibrosis (CF) lung. The   in vitro 

synergistic activity of polymyxin B with silver NPs was assessed using the checkerboard assay against polymyxin- 

susceptible and polymyxin-resistant Pseudomonas aeruginosa isolates from the lungs of CF patients. The combination 

was also examined against the Gram-negative species Haemophilus influenzae, Burkholderia cepacia, Burkholderia pseu- 

domallei, Stenotrophomonas maltophilia, Klebsiella pneumoniae and Acinetobacter baumannii that are less common in 

the CF lung. The killing kinetics of the polymyxin B-silver NPs combinations was assessed against P. aeruginosa by static 

P.  aeruginosa. Whereas, the combination of a clinically-relevant concentration of polymyxin B (2 mg/L) with silver NPs    

(4 mg/L) successfully inhibited the growth of polymyxin-resistant P. aeruginosa isolates from CF patients as demonstrated 

time-kill assays over 24 h. Polymyxin B and silver NPs alone were not active against polymyxin-resistant (MIC ≥ 4 mg/L) 

induced cytosolic GFP release and an increase of cellular reactive oxygen species. In the nitrocefin assay, the combina- 

tion displayed a membrane permeabilizing activity superior to each of the drugs alone. The combination of polymyxin B 

and silver NPs displays excellent synergistic activity against highly polymyxin-resistant P. aeruginosa and is potentially of 

considerable clinical utility for the treatment of problematic CF lung infections. 

KEYWORDS:  Silver, Nanoparticles, Cystic Fibrosis, Antibiotic Combination, Polymyxin. 
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 Introduction 

Medicine is entering a critical period where bacteria have developed resistance to almost all 

clinically available antibiotics and at the same time the antibiotic pipeline continues to dry up 

(378). This series of unfortunate events has been dubbed ‘the perfect storm’(379). CF patients 

whom commonly suffer from with chronic polymicrobial lung infections are dependent on 

antibiotics on a daily basis; and are one of the groups at highest risk from MDR bacterial 

infections. CF is caused by dysfunction of the trans-membrane conductance regulator (CFTR) 

protein resulting in impaired chloride transport (380). The defective CFTR function leads to the 

accumulation of a thick mucus in the lungs which promotes bacterial infections, most commonly 

Pseudomonas aeruginosa, found in ∼80% of CF patients (381). Haemophilus influenzae, 

Stenotrophomonas maltophilia, Burkholderia cepacia, B. pseudomallei, Klebsiella spp. and 

Acinetobacter baumannii less commonly infect the lungs of CF patients (381). P. aeruginosa is 

intrinsically refractory to antibiotics and as such infections are often problematic to treat (22). 

Once P. aeruginosa has established a chronic infection, it becomes increasingly resistant to the 

administered antibiotics; and up to 80–95% of CF patients die from respiratory failure, which 

is the culmination of chronic bronchiectasis caused by chronic airway infection and 

inflammation (381).  

Silver and silver-containing compounds have well known antibacterial properties (382). Since 

the beginning of 19th century, silver has been used as an antimicrobial agent for the treatment 

of infectious diseases such as neonatal conjunctivitis (383). The antimicrobial application of 

silver gradually declined following the dawn of the antibiotics era (384, 385). However, due to 

the dramatic emergence of MDR bacterial ‘superbugs,’ the use of silver as an antimicrobial 

therapeutic has seen renewed interest (386). The use of ionic silver is limited as a result of its 

rapid inactivation and due to toxicity concerns (387). Silver NPs on the other hand hold great 

potential as antibacterial agents, due to their lower toxicity and good direct antibacterial activity 

against many problematic Gram-negative and Gram-positive pathogens (388, 389). Notably, 

silver NPs have been shown to display antimicrobial synergy when combined with β-lactam 
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antibiotics and membrane permeabilizing antimicrobial peptides such as gramicidin and 

magainin 2 (386, 390, 391) Recently, polymyxin B-capped silver NPs were shown to be of 

considerable utility as medical device coatings (392). 

polymyxin B and colistin (polymyxin E) are lipopeptide antibiotics often used as last-line agents 

to treat infections caused by MDR Gram-negative pathogens (15). Colistin has been clinically 

used as the prodrug CMS for decades (146). Coly-Mycin® is a CMS nebulizer solution 

approved in Europe since 2003 for treatment of respiratory infections caused by P. aeruginosa 

in CF patients (393). Ominously, reports of polymyxin-resistant P. aeruginosa isolates from CF 

patient lung samples are becoming more and more common (394). Accordingly, it is important 

that novel strategies to prolong the efficacy of polymyxins are rapidly developed. The potential 

synergistic use of antibiotic combinations has emerged as a valuable means for prolonging the 

clinical efficacy of currently available antibiotics (238). The focus of the present in vitro study 

was to evaluate the antibacterial synergy and mode of action of silver NPs combined with 

polymyxin B against MDR Gram-negative pathogens that commonly infect the lungs of CF 

patients. 

 

 Methods 

2.2.1 Materials 

Polymyxin B (Catalogue number 81334, ≥ 6,500 IU/mg) was purchased from Sigma-Aldrich 

(Australia). Silver NPs, aqueous dispersion (2 nm, 2000 mg/L) were purchased from US 

Research Nanomaterials (TX, USA). All other reagents were purchased from Sigma-Aldrich 

(Australia) and are of the highest commercial grade available. 

 

2.2.2 Bacterial isolates 

MICs were determined by the broth microdilution method in accordance to the 

recommendations of the Clinical and Laboratory Standards Institute (395). Twenty-eight 

mucoid and nonmucoid clinical isolates of P. aeruginosa from patients with acute exacerbations 
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of CF (Table 2.1) (396). Twelve of the isolates were polymyxin-resistant and 16 are polymyxin 

sensitive. Five of the 28 isolates were resistant to at least three of the following agents: 

aztreonam, ceftazidime, meropenem, piperacillin, ticarcillin, gentamicin, tobramycin, and 

ciprofloxacin as we have previously characterised (Table 2.2) (396). A polymyxin 

heteroresistant reference strain, P. aeruginosa ATCC 27853 (polymyxin B MIC = 1 mg/L; 

American Type Culture Collection, Rockville, MD) was included as the reference strain. 

Resistance to polymyxin B was defined as MICs of ≥8 mg/L (397). Six polymyxin-resistant 

(polymyxin B MIC > 128 mg/L) Burkholderia (B. cepacia and B. pseudomallei) isolates from 

CF patients were tested. A total of 11 A. baumannii isolates were examined in this study (6 

polymyxin-susceptible strains and 5 polymyxinresistant strains), including a polymyxin-

susceptible reference strain ATCC 19606 (polymyxin B MIC = 1 mg/L), polymyxin-resistant 

ATCC 19606R (polymyxin B MIC = 64 mg/L). Thirteen K. pneumoniae isolates were tested, 

including 11 polymyxin-resistant and 2 polymyxin-susceptible. The polymyxin-susceptible K. 

pneumoniae ATCC 13883 (polymyxin B MIC = 1 mg/L) was employed as the reference strain. 

For S. maltophilia 8 clinical isolates, including 7 polymyxin-susceptible and one polymyxin-

resistant isolate FADDI-SM001 (polymyxin B MIC = 4 mg/L), were examined. Two 

polymyxin-resistant (polymyxin B MICs = 32 and 64 mg/L) H. influenzae clinical isolates were 

examined. 

 

2.2.3 In vitro antibacterial synergy assessment 

MICs were determined by the broth microdilution method in accordance to the 

recommendations of the Clinical and Laboratory Standards Institute (395). The time-killing 

kinetics of polymyxin B and in combination with silver NPs were tested against non-mucoid P. 

aeruginosa FADDI-PA066 (polymyxin B MIC = 64 mg/L), non-mucoid P. aeruginosa FADDI-

PA067 (polymyxin B MIC = 16 mg/L), K. pneumoniae FADDI-KP027 (polymyxin B MIC = 

128 mg/L) and A. baumannii FADDI-AB143 (polymyxin B MIC = 16 mg/L). Aliquots (∼20 

µL) of early log-phase bacterial suspensions were inoculated into sterile 50 mL polypropylene 
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tubes (Greiner Bio-one, Frickenhausen Germany) containing 20 mL of Cation-Adjusted 

Mueller-Hinton Broth (CAMHB), and together with different compositions of polymyxin B 

and/or silver NPs. After the incubation for 24 h at 37 °C, bacterial colonies were counted using 

a ProtoCOL automated colony counter (Synbiosis, Cambridge, United Kingdom). The lower 

limit of detection was 20 CFU/mL. 

 

Table 2.1. The antimicrobial activity of polymyxin B and silver NPs alone and in combination 

Bacterial Isolate 

 
MIC (mg/L) 

MIC 

Polymyxin 

B 

MIC 

Silver NPs 
FIC 

Polymyxin 

B 

FIC 

Silver NPs 
FIC

a
 

Polymyxin-resistant isolates 

P. aeruginosa            FADDI-PA069 n/m 256 4 32 1 0.375 

 FADDI-PA063 m 256 4 32 0.5 0.25 

 FADDI-PA064 n/m >128 16 32 4 0.375 

 FADDI-PA065 m 128 2 16 0.5 0.375 

 FADDI-PA066 n/m 64 8 2 2 0.28 

 FADDI-PA067 (S) 

n/m 
16 16 2 4 0.375 

 FADDI-PA006 m 8 2 1 0.5 0.375 

 FADDI-PA068 n/ma 64 2 16 1 0.75 

 FADDI-PA072 n/m 64 2 4 1 0.56 

 FADDI-PA070 n/m 64 8 1 4 0.52 

 FADDI-PA014 n/m 4 8 1 1 0.375 

 FADDI-PA016 n/m >128 16 128 2 1 

                 Polymyxin-susceptible isolates 

 FADDI-PA018 n/m 2 8 0.5 4 0.75 

 FADDI-PA020 m 2 8 0.5 4 0.75 

 FADDI-PA011 n/m 2 8 0.25 4 0.625 

 FADDI-PA005 n/m 2 8 0.5 4 0.75 

 FADDI-PA012 m 1 8 0.25 4 0.625 

 FADDI-PA015 n/m 1 8 0.125 4 0.625 

 FADDI-PA010 n/m 1 8 0.25 4 0.75 

 FADDI-PA007 n/m 1 4 0.5 1 0.75 

 FADDI-PA017 n/m 1 8 0.25 4 0.75 

 FADDI-PA002 m 0.5 4 0.0625 2 0.625 

 FADDI-PA031 m 1 2 0.5 1 1 

 FADDI-PA019 m                                 1 4 0.5 2 1 

 FADDI-PA008 (L)b 

n/m 
1 8 1 8 >1 

 FADDI-PA009 (S)b 

n/m                       
1 8 0.5 4 1 

 ATCC 27853 1 4 0.5 2 1 

 FADDI-PA013 m 1 4 0.5 2 1 

 GFP PA 01 2 4 1 2 1 

 FADDI-PA021 ma 0.5 1 0.5 1 >1 
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H. influenzae FADDIHI003 64 4 16 1 0.5 

 FADDI-HI001 32 4 8 2 0.75 

B. cepacia FADDI-BC003 >128 4 256 4 >1 

 FADDI-BC001 >128 4 256 4 >1 

 FADDI-BC002 >128 4 256 4 >1 

B. pseudomallei       BP MSHR1814                             >128 8 128 4 1 

 BP MSHR3036                             >128 8 128 4 1 

 BP MSHR912 WGS                     >128 8 128 4 1 

          Polymyxin-resistant isolates 

A. baumannii FADDI-AB143                                  16 16 2 2 0.375 

 FADDI-AB148                                  8 16 4 2 0.375 

 ATCC 19606 R 64 4 16 2 0.75 

 FADDI-AB060 64 8 16 2 0.5 

 FADDI-AB144                                   8 2 2 0.5 0.5 

              Polymyxin-susceptible isolates 

 FADDI-AB150                                   2 16 0.5 8 0.75 

 FADDI-AB151                                  2 16 0.25 8 0.625 

 ATCC 19606 1 4 0.25 1 0.5 

 FADDI-AB156                                   2 8 1 4 1 

 FADDI-AB029                                  1 16 0.5 8 1 

 FADDI-AB136                                  0.5 16 0.5 16 >1 

          Polymyxin-resistant isolates 

K. pneumoniae FADDI-KP027 128 16 1 4 0.26 

 FADDI-KP055 64 16 8 4 0.375 

 FADDI-KP060 64 8 8 2 0.375 

 FADDI-KP058 64 16 2 4 0.28 

 FADDI-KP003 64 16 2 4 0.28 

 FADDI-KP057 128 16 4 8 0.53 

 FADDI-KP028 128 16 2 8 0.52 

 FADDI-KP012 32 8 1 4 0.53 

 FADDI-KP059 32 8 1 4 0.53 

 FADDI-KP062 16 2 2 1 0.625 

 FADDI-KP005 4 16 4 16 >1 

               Polymyxin-susceptible isolates 

 ATCC 13883 1 2 0.25 1 0.75 

 FADDI-KP001 1 16 1 16 >1 

           Polymyxin-resistant isolates 

S.maltophilia FADDI-SM001 4 4 1 0.5 0.375 

               Polymyxin-susceptible isolates 

 FADDI-SM002 2 4 1 0.5 0.625 

 FADDI-SM006 1 8 0.5 1 0.625 

 FADDI-SM004 2 8 1 4 1 

 FADDI-SM003 1 16 0.5 8 1 

 FADDI-SM007 1 8 1 8 >1 

 FADDI-SM008 1 8 0.5 4 1 

 FADDI-SM005 0.25 8 0.25 8 >1 
Notes: aFIC = MIC polymyxin B in combination/polymyxin B MIC alone + MIC silver NPs in combination/silver NPs 
MIC alone); Synergism FIC < 0.5; Addition FIC = 0.5–1.0; Indifference FIC = 1–4; Antagonism FIC ≥ 4 (43). 
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Table 2.2 Antimicrobial susceptibility of P. aeruginosa isolates from CF patients.
a
 

 
                                           Antimicrobial resistance

c, d
  Patient information 

P.  aeruginosa strain
b
 PMB Azt Cef Cip Tic Mer Pip Gen Tob  Sex Age Date collected 

FADDI-PA020 m S S S S S - S R S  M 17 19/04/1999 

FADDI-PA066 n/m R R R I R - S R R  M 17 19/04/1999 

FADDI-PA070 n/m R S R S R - S R R  M 11 19/04/1999 

FADDI-PA065 m R R R S R R S R R  M 10 12/04/1999 

FADDI-PA064 n/m R R R S R R R R I  M 10 12/04/1999 

FADDI-PA021 m S S S S S - S R R  F 16 13/04/1999 

FADDI-PA068 n/m R R R S R - R R R  F 16 13/04/1999 

Notes: aData were first reported, and reproduced with permission from [23], J. Li, et al., In vitro pharmacodynamic properties of colistin and colistin methanesulfonate 
against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 45, 781 (2001). © 2001, American Society for 
Microbiology. b n/m, non-mucoid; m, mucoid. c PMB, polymyxin B; Azt, aztreonam; Cef, ceftazidime; Cip, ciprofloxacin; Tic, ticarcillin; Mer, meropenem; Pip, 
piperacillin; Gen, gentamicin; Tob, tobramycin. d R, resistant; S, susceptible; I, intermediate susceptible. 

 

 

2.2.4 Nitrocefin assay 

The OM permeabilizing activity of the antibiotics was assessed by the β-lactamase nitrocefin 

assay (398). Briefly, the β-lactamase positive P. aeruginosa strain FADDI-PA066 (P. 

aeruginosa strains were tested for β-lactamase production using nitrocefin disc, Sigma-Aldrich, 

Australia) was sub-cultured on a nutrient agar at 35 °C overnight. The culture was grown to 

exponential phase and harvested by centrifugation (10,000× g; 10 min). The pellet was washed 

twice in PBS, pH 7.2 and resuspended in PBS to an OD = 0.50. Nitrocefin was prepared to a 

concentration of 2 mM in DMSO. The assay was performed in 96-well plates. The 200 µL 

reaction mixture consisted of 100 µL bacterial suspension, 96 µL drug (2 mg/L polymyxin B or 

4 mg/L silver NPs alone or in combination) and 4 µL of 2 mM nitrocefin solution. The 

absorbance (OD 495 nm) was kinetically measured at room temperature for every minute. The 

data points are reported as the mean of four independent measurements. 

 

2.2.5 Detection of cellular reactive oxygen species (ROS) production  

ROS production in exponential phase (OD 600 nm = 0.1) P. aeruginosa FADDI-PA066 cells 

following antibiotic treatment were measured using the oxidative stress sensitive dye CellROX 

Green (Lifetechnologies, Australia). CellROX Green fluorescence emission was measured at an 

excitation wavelength of 485 nm on a Cary Eclipse Fluorescence spectrophotometer (Varian, 
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Mulgrave, Victoria, Australia) set. The emission spectrum was collected between 490–600 nm 

and slit widths were set to 5 nm for both the excitation and emission monochromators. 

 

2.2.6 Confocal and electron microscopy imaging methods 

Scanning and TEM imaging of P. aeruginosa FADDI-PA066 cells treated with polymyxin B (2 

mg/L) or silver NPs (4 mg/L) alone or in combination, were performed as we have previously 

described in detail (399). Confocal imaging of the release of cytosolic green fluorescence 

protein (GFP) release was performed using the P. aeruginosa strain Pa AH298-GFP which 

expresses GFP under the control of the growth rate dependent rrnBp1 promoter, kindly provided 

by Professor Philip S. Stewart (400). Pa AH298-GFP cells were grown on chamber slides and 

treated with polymyxin (2 mg/L) or silver NPs (4 mg/L) alone or in combination for 1 h at 37 

°C. Cell morphology was assessed using an LSM780 confocal microscope (Zeiss) equipped 

with a 63× oil objective, excitation/emission filters used were Ex/Em 475/520–560 nm. 

 

2.2.7 Artificial sputum media (ASM) Biofilm Assay 

The ASM assays were performed with P. aeruginosa strain FADDI-PA065 in a 24-well plate 

format. ASM culture medium ideal mimics the components of CF patient sputum, and includes 

egg yolk, amino acids, mucin and DNA combined in ratios as described in detail by Kirchner et 

al., prepared fresh and filter sterilized (398, 401). P. aeruginosa strain FADDI-066 was sub-

cultured on a nutrient agar and incubated at 37 °C overnight and one colony was randomly 

selected and grown overnight in 10 mL CAMBH at 37 °C. The overnight culture was diluted in 

CAMBH to an OD of 0.05 ± 0.01 and then further diluted 1:100 in fresh ASM. A total volume 

of 1.8 mL was added to each well. Plates were secured with parafilm and incubated for 3 days 

under aerobic conditions at 37 °C in which the P. aeruginosa biofilms were developed. After 3 

days polymyxin B (2 mg/L) or silver NPs (4 mg/L), alone or in combination were added and 

further incubated for 24 hours. For each antibiotic concentration four replicates were conducted. 

After the 24 h incubation, biofilms were disrupted with 100 µL of 100 mg/mL, cellulase (diluted 
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in 9.6 g/L citrate; pH adjusted to 4.6 with NaOH) and incubated for 1 h at 37 °C. Biofilms were 

further manually disrupted by pipetting. To determine the cell viability 100 µL of 0.02% (v/v) 

resazurin was added to each well and further incubated for 2 h at 37 °C. Fluorescence (F) of 

each well was measured using an ENVISION plate reader (PerkinElmer, Australia) set at an 

excitation wavelength of 530 nm and an emission wavelength of 590 nm. Fluorescence was 

corrected by the subtraction of the background noise. The cell viability was calculated as (mean 

F of treated biofilms/mean F untreated control) ×100%. 

 Results and Discussion 

2.3.1 Antibacterial synergy testing of the polymyxin B-silver NP combination sgainst 

Gram-negative CF isolates 

We have employed polymyxin B for this in vitro study as the clinically used prodrug form of 

colistin, CMS, is an inactive prodrug and would result in conversion to colistin in the assay 

buffers (402). Moreover, in patients, polymyxin B has a better pharmacokinetic/ 

pharmacodynamic profile compared to CMS (146). The MICs for polymyxin B and silver NPs 

alone, and in combination are presented in Table 2.1. The broth microdilution checkerboard 

method results showed the combination displayed synergism against 7 out of the total 12 

polymyxin-resistant CF isolates of P. aeruginosa examined. The combination displayed 

additive activity (based on FICs) against the remaining 5 P. aeruginosa polymyxin-resistant CF 

isolates. Similarly, additivity was observed against all of the 16 polymyxin-susceptible P. 

aeruginosa CF isolates tested. The combination displayed synergism against 2 out of a total 5 

polymyxin-resistant A. baumannii isolates and additivity against the remaining 3 isolates. The 

combination displayed additive activity against 5 of the 6 A. baumannii polymyxin-susceptible 

isolates tested and indifference against one. Notably, the combination displayed better activity 

against the polymyxin-susceptible strain A. baumannii ATCC 19606 (FIC = 0.5) than it paired 

polymyxin-resistant A. baumannii ATCC19606R (FIC = 0.75). We have previously reported a 

unique polymyxin resistance mechanism employed by A. baumannii 19606R which involves 

the loss of LPS from the OM (94). Silver ions have been reported to increases membrane 
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permeability through disruption of disulfide bond formation and misfolded protein secretion 

(386). Considering that the silver NPs alone showed similar bactericidal activity against both 

the polymyxin-susceptible ATCC19606 and resistant A. baumannii ATCC19606R strains (MIC 

4 mg/L for both isolates); hence, it is very unlikely LPS plays a key role in the membrane 

disrupting activity of silver NPs (386). The combination was ineffective, showing additivity or 

indifference, against the 6 B. cepacia and B. pseudomallei strains tested as this species is 

intrinsically highly resistant to polymyxins (All MICs > 128 mg/L), due to the modification of 

the phosphate groups of the lipid A (403, 404). Nevertheless, the silver NPs alone exhibited 

moderate bactericidal activity against B. cepacia and B. pseudomallei with MICs of 4 and 8 

mg/L, respectively. The combination of polymyxin B and silver NPs was synergistic against 5 

out of the total 11 polymyxin-resistant K. pneumoniae isolates and additive against the 

remaining 6. The combination did not show synergy against the polymyxin-susceptible K. 

pneumoniae ATCC 13883 and FADDI-KP001 isolates. Similarly, the combination was not 

synergistic against polymyxin-susceptible S. maltipholia isolates, however, synergisim was 

observed against the polymyxin-resistant S. maltophilia FADDI-SM001 isolate. Collectively, 

the antibacterial testing data indicated the combination of polymyxin B with silver NPs at 

clinically relevant concentrations display synergy against polymyxin-resistant isolates P. 

aeruginosa, A. baumannii, K. pneumoniae and S. maltophilia. Notably, the combination 

achieved 42% synergy coverage across a total of 36 polymyxin-resistant isolates tested, which 

is most encouraging. The less than complete coverage is likely due to variability in susceptibility 

to the antibacterial mechanisms involved across the Gram-negative isolates. Bacteria are less 

likely to develop resistance against silver as due to the broad range of cellular targets silver ions 

attack (386). Notwithstanding, microbial resistance to silver ions has been reported for 

Cryptococcus neoformans and Salmonella, where resistance is associated with an 

overexpression of copper-related efflux pumps (405, 406). We would only go as far to speculate 

that these effects may be associated with the different levels of aminoarabinose modified lipid 

A (the primary mechanism that confers the level of polymyxin B resistance in P. aeruginosa 
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CF isolates) (394) in the OM of each isolate. To this end, further studies which are beyond the 

scope of the present report, are currently underway to elucidate the lipid A levels in relation to 

these complex killing effects. 

 

2.3.2 Anti-pseudomonal killing kinetics of the polymyxin B-silver NP combination 

The synergistic killing activity of the combination in static time-kill studies was assessed against 

two polymyxin-resistant P. aeruginosa CF isolates, FADDIPA066 (polymyxin B MIC = 64 

mg/L; silver NP MIC =8 mg/L) and FADDI-PA067 (polymyxin B MIC =16 mg/L; silver NP 

MIC = 16 mg/L) (Figure 2.1(A)); one polymyxin-resistant A. baumannii isolate, FADDI-

AB0143 (polymyxin B MIC= 16 mg/L; silver NP MIC= 16 mg/L) and one polymyxin-resistant 

K. pneumoniae isolate, FADDIKP027 (polymyxin B MIC = 128 mg/L; silver NP MIC =16 

mg/L) (Figure 2.1A). Monotherapy with polymyxin B exhibited no antibacterial activity against 

the two P. aeruginosa isolates up to 24 h and the bacterial killing curve was essentially 

indistinguishable from that of the controls (Figure 2.1A). In contrast, the polymyxin B -silver 

NPs combination (polymyxin B 2 mg/L and silver NPs 4 mg/L) demonstrated synergism in the 

static time-kill studies against the two P. aeruginosa isolates, as indicated by ≥2 log10 reduction 

in CFU/mL, compared to polymyxin B monotherapy. Notably, the combination showed time-

dependent bactericidal activity during 24 h against both P. aeruginosa CF isolates. 

Monotherapy with the silver NPs showed some killing during 24 h. Neither silver NPs nor 

polymyxin B alone demonstrated any killing activity against the A. baumannii FADDI-AB0143 

or K. pneumoniae FADDI-KP027 (Figure 2.1A). However, in combination produced 

significant killing (>2 log10 reduction) was evident from 2 to 8 h against both these isolates. 

However, unlike the P. aeruginosa isolates, re-growth at 24 h was evident for both A. baumannii 

FADDIAB0143 and K. pneumoniae FADDI-KP027. Overall, the data from the time-kill studies 

are consistent with the findings from the checkerboard experiments, with synergistic killing 

against a sub-set of polymyxin-resistant clinical isolates of P. aeruginosa, A. baumannii and K. 

pneumoniae. 
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2.3.3 Anti-pseudomonal activity of the polymyxin B-silver NP combination in sputum 

In order to test the antibacterial activity of the combination under more CF relevant conditions, 

an ASM antibacterial assay was employed (Figure 2.1B). The ASM findings showed that the 

combination was very effective (producing a ∼85% reduction in bacterial cell viability) in 

sputum-like conditions under planktonic growth conditions against the polymyxin-resistant P. 

aeruginosa CF isolate FADDI-PA066 (polymyxin B MIC = 64 mg/L; silver NP MIC = 8 mg/L). 

In comparison, polymyxin B alone at 2 mg/L was completely ineffective, whereas the silver NP 

alone at 4 mg/L managed to reduce the bacterial cell viability by ∼50%. However, in ASM 

under biofilm growth conditions, the combination and the individual treatments were inactive, 

possibly due to the inability of the agents to penetrate the robust biofilm matrix of extracellular 

polymeric substance (407). 



83 
 

 

Figure 2.1(A) Time-kill curves for the combination of polymyxin B and silver NPs against polymyxin-

resistant non-mucoid P. aeruginosa CF isolates FADDI-PA066 and FADDI-PA067, A. baumannii 

FADDI-AB143 and K. pneumoniae FADDI-KP027. (B) Antimicrobial activity of the combination 

against P. aeruginosa FADDI-PA066 in artificial sputum (ASM) media under planktonic and biofilm 

growth conditions. Data points are plotted as the mean±SD of four independent measurements. Both the 

combination and silver NPs alone induced significant reduction in cell viability under planktonic grwoth 

condition. The top right-hand corner insets graphics in each bar graph show the raw data from the 
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resazurin fluorescence plate assay; the numbering 1–4 corresponds to the numbering for each condition 

in the adjacent bar graph. The replicates for each condition are organized vertically in the 96-well plate. 

 

 

2.3.4 Imaging the Gram-negative outer membrane permeabilizing activity of the 

polymyxin B silver NP combination 

Scanning and transmission electron (SEM/TEM) microscopy imaging of P. aeruginosa FADDI-

PA066 cells treated with the combination showed the OM structure was extensively disrupted 

in a distinctive fashion (Figure 2.2). The morphological changes to the OM observed following 

treatment with the combination were very different from the changes seen with polymyxin B (2 

mg/L) treatment alone where a wide-spread blebbing effect was observed; and treatment with 

silver NPs (4 mg/L) alone where large OM protrusions were observed. Our SEM findings with 

polymyxin B treatment alone are consistent with the literature reports (408). Similarly, confocal 

imaging revealed that the combination is more effective at producing OM damage that leads to 

cytosolic GFP release from a GFP expression strain of P. aeruginosa than either silver NP or 

polymyxin B treatment per se (Figure 2.3). 
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Figure 2.2 Electron microscopy images of P. aeruginosa CF isolate FADDI-PA066 (polymyxin B MIC 

= 64 mg/L; silver NP MIC = 8 mg/L) treated with the polymyxin B-silver NP combination. SEM imaging 

of bacterial cells treated with both polymyxin B (2 mg/L) alone and silver NPs (4 mg/L) alone showed 

shortening of the cells, and enlargement of the cells possibly due to bleb-like projections on the cell wall. 
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Figure 2.3 Confocal microscopy images of cytosolic GFP release from P. aeruginosa AH298-GFP 

(polymyxin B MIC = 2 mg/L; silver NP MIC = 4 mg/L) treated with the polymyxin B-silver NP 

combination. The initial CFU was same for the four growth conditions. 

 

 

2.3.5 The polymyxin B-silver NP combination induces increased nitrocefin uptake 

across the outer membrane and production of reactive oxygen species 

Additional evidence that the combination causes superior damage to the OM than treatment 

with either compound alone, comes from the nitrocefin assay data with P. aeruginosa FADDI-

PA066 cells. The assay measures the periplasmic β-lactamase activity using nitrocefin, a 

chromogenic cephalosporin substrate analogue, which normally penetrates the OM very slowly. 

In the presence of OM permeabilizing agent nitrocefin can more easily permeate the OM barrier 

and enter the cell where it is converted to its coloured form by β-lactamase. The polymyxin B-

silver NP combination was more effective at permeabilizing the OM of the FADDI-PA066 cells 

than treatment with either compound per se, as seen from the increased β-lactamase mediated 

conversion of nitrocefin (Figure 2.4A). ROS production is purported to be a common bacterial 

killing mechanism for antibiotics (409). Figure 2.4B shows that the combination induced a 

greater increase of ROS production in P. aeruginosa FADDI-PA066 cells compared to 

treatment with each agent alone, which was seen as an increase in the fluorescence emission of 

the oxidative stress sensitive dye CellROX Green. 
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Figure 2.4 (A) OM permeabilizing activity of polymyxin B and silver NP alone and in combination 

against P. aeruginosa FADDI-PA066 measured by the nitrocefin assay. The β-lactamase activity was 

measured by the nitrocefin assay for 140 sec. The results are presented the mean of four independent 

measurements ± standard deviation. The combination of polymyxin B and silver NP significantly 

increased the permeability of P. aeruginosa OM. (B) ROS production in P. aeruginosa FADDI-PA066 

cells following treatment measured by the increased fluorescence emission of the oxidative stress 

sensitive dye CellROX Green. The combination of polymyxin B and silver NP significantly increased 

the release of ROS (4). Treatments: 1, Untreated cells; 2, polymyxin B 2 mg/L; 3, Silver NP 4 mg/L; 4, 

Combination of polymyxin B 2 mg/L+ silver NP 4 mg/L. 

 

 

 Conclusions  

The antibacterial synergistic activity of polymyxin B in combination with silver NPs is 

appreciable in the view that both agents cause damage to the Gram-negative OM via different 

mechanisms (386). Polymyxins act via direct interaction with the lipid A component of the LPS 

which leads to a disruption of the barrier function of the Gram-negative OM (15). Our group 

has also shown that polymyxin B may act via a secondary mechanism through the inhibition of 

the type II NADH-quinone oxidoreductase inner membrane respiratory enzyme (410). Although 

the precise mechanisms of action of silver NPs, is not fully understood it is known they 

compromise the integrity of the OM through disruption of disulfide bonds within inner 

membrane respiratory enzymes, which in turn leads to the production of damaging ROS (386). 

Therefore, the underlying mechanistic basis for the bactericidal synergy of the combination may 

involve their combined membrane permeabilising activity and the respiratory chain poisoning 
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activity of each agent. The findings from the present study suggest that the combination of 

polymyxins with silver NPs could potentially prove useful in a clinical setting for the treatment 

of MDR polymyxin-resistant P. aeruginosa lung infections in CF patients. Given that silver 

NPs and polymxyins have been shown to be relatively non-toxic in lung tissues (393, 411, 412), 

there is a great potential to combine silver NPs with polymyxins and develop a new nebulizer 

formulation for CF patients. 
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Chapter 3: Comparative analysis of the sub-proteome of 

outer membrane vesicles from a paired polymyxin-

susceptible and -resistant Klebsiella pneumoniae 
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Abstract 

Gram-negative bacteria constitutively secrete OMVs as a cargo for numerous bacterial heinous 

factors such as virulence factors and antibiotic resistance determinants. This study aimed to 

investigate the effect of polymyxin B treatment on the OMVs proteome from paired 

polymyxin-susceptible and -resistant K. pneumoniae ATCC 700721 isolates. 

Subcellular localisation prediction revealed that the OMVs protein composition of both 

polymyxin-susceptible and –resistant strains predominantly consisted of cytoplasmic and 

periplasmic proteins. However, the comparative analysis of these proteins showed that 

polymyxin B treatment of both strains significantly upregulate the cytoplasmic proteins and 

downregulate the inner membrane, periplasmic and OMPs. Comparative profiling of the OMVs 

proteome of each strain revealed that different bacterial metabolic pathways were 

overrepresented in the OMVs of sensitive strain, including lipopolysaccharide and 

peptidoglycan biosynthesis pathways. In comparison, in the resistant strain, OMVs proteins 

from QS, phosphotransferase system, RNA degradation and nucleotide excision repair 

pathways were significantly over-expressed in response to polymyxin B treatment. Moreover, 

translation, ribosomal structure and biogenesis, Aminoacyl-tRNA biosynthesis, amino acids 

biosynthesis, UDP-amino sugar and nucleotides pathways were upregulated in the OMVs of 

both treated strains. Whereas, ABC transporters, two-component system, cationic antimicrobial 

peptide resistance and beta-lactam resistance pathways were significantly underrepresented in 

OMVs of both strains following polymyxin B treatment. These findings shed new light on the 

selective sorting of OMVs proteome accompanying polymyxin B treatment. Putatively, these 

proteomic changes may serve to make the K. pneumoniae OM and OMVs invincible to 

polymyxin attack. 

 

Key words: Outer membrane vesicles, proteomics, Gram-negative, polymyxin-resistance, 

Klebsiella pneumoniae. 
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 Introduction   

Extremely-drug resistant (XDR) K. pneumoniae has emerged as one of the most deadly Gram-

negative ‘superbugs’ (413-415), and is responsible for numerous lethal nosocomial and 

community outbreaks (416). Worryingly, K. pneumoniae infections can have up to a 50% 

mortality rate if effective antibiotic treatment is not promptly administered (417). Resistance 

against the first-line carbapenems in K. pneumoniae was firstly reported in 1996 in the USA and 

has spread globally (417, 418). In 2008, blaNDM-1 which encodes the class B NDM-1 that 

inactivates carbapenems was first detected in a Swedish patient of that had contracted an 

infection in India (419). The polymyxin lipopeptide antibiotics (i.e. colistin and polymyxin B) 

are increasingly used as the last-line therapy against these problematic XDR K. pneumoniae 

strains (15). Indeed, considerable in vitro activity against K. pneumoniae has been demonstrated 

(136); 98.2 % of general clinical strains of K. pneumoniae are susceptible to polymyxin B and 

colistin (420-425). Notwithstanding, XDR strains which are resistant to polymyxins have 

recently emerged (426, 427), which underscores the need for a greater effort for further 

investigation of polymyxin resistance mechanism(s) in K. pneumoniae. 

The Gram-negative OM constitutes a permeability barrier to various noxious substances for the 

bacterial cell, such as antimicrobial drugs (156, 428). This complex asymmetrical structure 

comprises an inner phospholipid leaflet, as well as an outer leaflet that predominantly contains 

LPS, proteins and lipids. Additionally, K. pneumoniae commonly expresses a capsular 

polysaccharide that coats the OM, the expression levels of which have been related to decreased 

levels of polymyxin susceptibility (429-432). The antimicrobial killing action of the polymyxins 

is mediated through direct interaction with the lipid A component of the LPS which leads to a 

disruption of the selective permeability of the OM barrier (15). The cationic L-α,γ-Dab residues 

of the polymyxin molecule mediate an electrostatic attraction to the negatively charged lipid A 

phosphate groups, displacing the divalent cations (Mg2+ and Ca2+) (15). This displacement leads 

to the disorganisation of the LPS layer, which enable the insertion of polymyxin molecule into 

the fatty acyl layer of the OM (433). Polymyxin resistance in K. pneumoniae primarily involves 
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the overexpression of capsular polysaccharide expression and the modification of lipid A with 

4-amino-4-deoxy-L-arabinose or phosphoethanolamine (173, 429, 432, 434-440). In K. 

pneumoniae the expression of 4-amino-4-deoxy-L-arabinose modifications to the lipid A 

phosphates is under the control of the two-component regulatory systems [PhoPQ-PmrD]-

PmrAB that are activated in response to low pH, low magnesium and high iron (432). 

Specifically, the PhoP-PhoQ (collectively PhoPQ) system regulates the magnesium regulon, 

which may activate the resistance to polymyxin B under low magnesium conditions. PmrD, 

which is a small basic protein, is responsible for the connection of PhoP-PhoQ system. PhoP 

controls the activation of PmrD, which can then bind to PmrA and prolong its phosphorylation 

state, eventually activating the expression of the PmrA-PrmB (collectively PmrAB) system to 

promote resistance to polymyxin. The under-acylation of lipid A increases the polymyxin 

susceptibility of K. pneumoniae; which highlights that the decoration of lipid A with additional 

fatty acyl chains is important for polymyxin resistance (441, 442). OMPs have also been 

implicated in OM remodelling that is associated with increased polymyxin susceptibility in K. 

pneumoniae (430). 

Gram-negative bacteria can shed components of their OM via OMVs, which are spherical 

bilayer structures of approximately 20-200 nm in diameter (443). Structurally, these vesicles 

are built up of OM and periplasmic lipids and proteins (444).  Besides, OMVs act as cargo for 

other bacterial components such as cytoplasmic and inner membrane proteins, genetic materials, 

virulence factors, metabolites and signalling molecules (275-278). Therefore, these membrane 

vesicles play a crucial role in bacterial virulence, inflammation, and host immune stimulation, 

as well as, in the defence mechanisms against antibiotics (190). OMVs protect bacteria from the 

action of antibiotics either by their contents of antibiotic-degrading enzymes (e.g., β-lactamase 

and aminoglycosides-inactivating enzymes) or by capturing the membrane-active antibiotics 

such as polymyxins (190, 291, 313, 332). This highlights the need to understand the 

compositional differences of the OMV sub-proteome between polymyxin-susceptible and -

resistant K. pneumoniae isolates. In the present study, we primarily aimed to perform a 
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comparative analysis of the OMV proteome of paired polymyxin-susceptible and -resistant K. 

pneumoniae ATCC 700721 and to identify key proteins that are selectively packaged from the 

parent bacteria into the OMV sub-proteome. The garnered data sheds new light on the OMV 

sub-proteome associated with polymyxin resistance in the problematic Gram-negative human 

pathogen, K. pneumoniae. 

 

 

 Methods 

3.2.1 Materials 

Polymyxin B was supplied by Betapharma (Shanghai, China). All chemicals were purchased 

from Sigma-Aldrich at the highest research grade, ultrapure water was from Fluka (Castle Hill, 

NSW, Australia), Tris from ICN biochemicals (Castle Hill, NSW, Australia) and the precast-

SDS gels were from (NuSep Ltd, Lane Cove, NSW, Australia). Stock solutions of polymyxin 

B (10 mg/L) were prepared in Milli-Q™ water (Millipore, North Ryde, NSW, Australia) and 

filtered through 0.22 µm syringe filters (Sartorius, Melbourne, Vic, Australia).  

 

3.2.2 Bacterial isolates and growth conditions 

Two K. pneumoniae isolates were studied K. pneumoniae ATCC 700721 (polymyxin B MIC = 

0.5 mg/L) and its paired polymyxin-resistant strain (polymyxin B MIC = >32 mg/L). All 

bacteria were stored at -80ºC in tryptone soya broth (TSB, Oxoid Australia). Prior to 

experiments, parent strains were sub-cultured onto nutrient agar plates (Medium Preparation 

Unit, University of Melbourne, VIC, Australia). Overnight broth cultures were subsequently 

grown in 5 mL of cation-adjusted Mueller-Hinton broth (CaMHB, Oxoid, West Heidelberg, 

VIC, Australia), from which a 1 in 100 dilution was performed in fresh broth to prepare mid-

logarithmic cultures according to the optical density at 500 nm (OD500nm = 0.4 to 0.6). All broth 

cultures were incubated at 37°C in a shaking water bath (180 rpm).  
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3.2.3 Minimum Inhibitory Concentration (MIC) microbiological assay 

Resistance to polymyxin B was defined as MICs of ≥8 mg/L (445). MICs were performed 

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (446). MICs 

were determined for all isolates in three replicates on separate days using broth microdilution 

method in cation-adjusted Mueller-Hinton broth (CAMHB) in 96-well polypropylene microtitre 

plates. Wells were inoculated with 100 µL of bacterial suspension prepared in CaMHB 

(containing 106 colony forming units (CFU) per mL) and 100 µL of CaMHB containing 

increasing concentrations of polymyxins. The MICs were defined as the lowest concentration 

at which visible growth was inhibited following 18 h incubation at 37°C. Cell viability was 

determined by sampling wells at polymyxin concentrations greater than the MIC. These samples 

were diluted in normal salineand spread plated onto nutrient agar. After incubation at 37C for 

20 h, viable colonies were counted on these plates. The limit of detection was 10 CFU/mL. 

 

3.2.4 Isolation of outer membrane vesicles (OMVs) 

Mid-logarithmic cultures (4 L) of each isolate were grown, polymyxin B was added to the 

culture volume at a final concentration of 2 mg/L, and cell free supernatants were collected 

through centrifugation (15 min at 10,000 × g, 4°C). The OMV containing supernatants were 

filtered through 0.22-μm membrane to remove any remaining cell debris, concentrated through 

a tangential filtration concentrator unit (Pall Life Science, Ann Arbor, MI); and collected using 

100 kDa Pellicon filtration cassettes (Millipore, Melbourne, Australia). A portion of the 

supernatant was plated for growth on agar plates overnight at 37°C to make sure that the 

supernatant was free of bacterial cells. OMVs in the cell-free supernatants were then pelleted 

down by ultracentrifugation at 150,000 × g for 2 h at 4 ◦C in a Beckman Ultracentrifuge (SW28 

rotor). Purified OMVs were concentrated and re-suspended in 1 mL of sterile PBS. The protein 

concentration was determined using the Bio-Rad protein assay (Bio-Rad, Melbourne, 

Australia).  

 



97 
 

3.2.5 Ultra High Pressure Liquid Chromatography coupled with Mass Spectrometry 

 For all experiments, an Ultimate3000 ultra high-pressure liquid chromatography (UHPLC) 

system (Dionex, Castle Hill, Sydney) was used equipped with a ternary low pressure mixing 

gradient pump (LPG-3600), a membrane degasser unit (SRD-3600), a temperature controlled 

pulled-loop autosampler (WPS-3000T) and a temperature controlled column oven with flow 

manager (FLM-3100). The UHPLC experiments were performed using the “pre-concentration” 

set-up under the following conditions: Nano-column C18 PepMap100, 75 µm ID  150 mm, 3 

µm, 100 Ǻ; mobile phase A: 99.9% water + 0.1% FA (v/v, formic acid); mobile phase B: 20/80 

water/acetonitrile (ACN) (v/v) + 0.08 % formic acid; flow rate nano-column, 400 nL/min; 

gradient, 2-40% B over 45 min, 90% B for 5 min, 4% B for 30 min; loop size, 5 µL; injection 

volume, 4 µL (FullLoop) by User Defined Program. The oven temperature was set to 35C. For 

the identification of peptides, CID experiments were performed using an AmaZon ETD Ion 

Trap (Bruker Daltonik GmbH, Australia) equipped with an online-nano-sprayer spraying from 

a 0.090 mm i.d. and 0.02 mm i.d. fused silica capillary. Fine tuning was achieved using the 

smart parameter setting option (SPS) for 900 m/z, compound stability 60%, and trap drive level 

at 100% in normal mode resulted in the following mass spectrometric parameters: dry gas 

temperature, 180°C; dry gas, 4.0 L min-1; nebulizer gas, 0.4 bar; electrospray voltage, 4500 V; 

high-voltage end-plate offset, -200 V; capillary exit, 140 V; trap drive, 57.4; funnel 1 in 100 V, 

out 35 V and funnel 2 in 12 V, out 3.3 V; ICC target, 500000; maximum accumulation time, 50 

ms. The sample was measured with the Enhanced Scan Mode at 8100 m/z per second (which 

allows monoisotopic resolution up to four charge stages), polarity positive, scan range from m/z 

100-3000, 5 spectra averaged and rolling average of 2. Acquired tandom mass spectra were 

processed in Data Analysis 4.0; deconvoluted spectra were further analyzed with BioTools 3.2 

software and submitted to Mascot database search (Mascot 2.2.04, Swissprot database. The 

species subset was set at K. pneumoniae, parent peptide mass tolerance +/- 0.4 Da, fragment 

mass tolerance +/- 0.4 Da; enzyme specificity trypsin with 2 missed cleavages considered. The 
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following variable modifications have been used:  Deamidation (NQ) and Oxidation (M) and 

carrbomidiomethyaltion (C). 

 

3.2.6 Bioinformatics 

The derived MS datasets on the 3D-trap system were combined into protein compilations 

using the Protein Extractor functionality of Proteinscape 2.1.0 573 (Bruker Daltonics, Bremen, 

Germany), which conserved the individual peptides and their scores, while combining them to 

identify proteins with much higher significance than achievable using individual searches. To 

exclude false positive identifications, peptides with Mascot scores below 40 (chosen on the 

basis of manual evaluation of the MS/MS data of peptides with scores below this number) 

were rejected. The identified protein sequences were manually validated in BioTools (Bruker 

Daltonics, Bremen, Germany) on a residue-by residue basis using the raw data to ensure 

accuracy. In brief, the ion series were inspected to ensure: the peaks being selected were not 

simply base-line, the accuracy between the residues was less than 0.15 Da and that, 

preferentially, an overlapping ion series was found, as explained in greater detail in the results 

section. When run against a reversed database, and the spectra manually interpreted in a 

similar fashion, we found a false discovery rate of less than 0.1%. Since this strain (strain 

ATCC 700721 / MGH 78578) has complete genomic map in UniProt (447), the identified 

proteins were searched in UniProt and crossreferred using MGH 78578 KEGG (448) 

identifiers to identify the protein name and KEGG IDs. The subcellular localisation of each 

protein was predicted using PSORTb 3.0 and Cello V2.5 (449, 450). Comparative analysis of 

significantly changed proteins (fold-change >2 and p-value < 0.05) was performed using 

MaxQuant (version 1.2.2.5) (451).The protein associated metabolic pathways of deferentially 

over- and under-represented proteins were highlighted in KEGG mapper.  
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 Results and Discussion 

3.3.1 OMV sub-proteome characterization from polymyxin-susceptible and resistant K. 

pneumoniae isolates 

 Overall, OMVs proteomics identified 1296 and 1161 differentially represented proteins in at 

least two of three biological replicates of polymyxin-susceptible K. pneumoniae ATCC 700721 

and its paired polymyxin-resistant strains, respectively. Comparative analysis displayed that 123 

proteins were significantly overrepresented and 109 proteins underrepresented in OMVs of 

polymyxin B treated polymyxin-susceptible K. pneumoniae compared to the untreated control 

(Tables 3.1 and 3.2). While, in the OMVs of the paired polymyxin-resistant strain, 75 proteins 

were significantly overrepresented and 37 proteins underrepresented in response to polymyxin 

B treatment (Tables 3.3 and 3.4).  

3.3.2 Subcellular localisation of significantly changed proteins 

Subcellular localisation prediction revealed that protein contents of the OMVs from both K. 

pneumoniae strains consisted mostly of cytoplasmic (~48%), inner membrane (~25%) and 

periplasmic proteins (~18%). Similarly, across both strains the OMV minor protein components 

consisted of proteins originated from the OM (~7%), and extracellular proteins (~2%). 

Polymyxin B treatment of polymyxin-susceptible strain significantly increased the number of 

cytoplasmic proteins (124 out of 141) in its OMVs, whereas of the 57 inner membrane and 34 

periplasmic proteins, 56 and 41 were significantly downregulated respectively. Of four OM 

proteins, two were upregulated and two underrepresented (Figure 3. 1A). Similarly, of the 70 

cytoplasmic proteins, 65 were upregulated, and of the 26 periplasmic proteins, 24 were 

upregulated and two were downregulated in OMVs from the resistant strain in response to 

polymyxin B treatment, while of the 11 OM proteins, nine were underrepresented and only two 

proteins were significantly overrepresented (Figure 3.1B). Dutta et. al., showed that S. 

dysenteriae type 1 release OMVs which composed of only OM proteins (322). However, our K. 

pneumoniae-derived OMVs contain high numbers of cytoplasmic proteins including the 30S 

and 50S ribosomal proteins, and tRNA synthetases following polymyxin B treatment of both 
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susceptible and resistant strains. Moreover, periplasmic proteins thought to be a natural cargo 

sorted into the OMVs during vesiculation (452). Polymyxin B treatment of both strains 

remarkably reduced the periplasmic protein contents of the OMVs. Growing evidence suggests 

that bacterial OMVs is a novel protein secretory mechanism (320, 453). We previously reported 

that polymyxin B treated K. pneumoniae ATCC700721 release OMVs larger in particle size 

than untreated strains (454). These findings would suggest that polymyxin B treatment 

significantly alter the selective sorting of OMVs proteome. 

     

 

Figure 3.1 Subcellular localisation of quantified proteins according to enrichment or depletion in OMVs. 

(A) Significantly up- and down-regulated proteins in polymyxin B treated polymyxin-susceptible K. 

pneumoniae ATCC700721 OMVs. (B) Significantly up- and down-regulated proteins in polymyxin B 

treated polymyxin-resistant K. pneumoniae ATCC700721 OMVs. The proteins were sorted according 

to predicted subcellular localisation. C, cytoplasmic; MI, inner membrane; P, periplasm; and OM, outer 

membrane proteins. Fold-change ≥ 2 and p < 0.05 were defined as statistically significant. 

 

3.3.3 Metabolic pathway analysis 

Metabolic pathway analysis revealed that 23 pathways were significantly overrepresented in 

wild type in response to polymyxin B treatment, whereas 12 metabolic pathways were markedly 

underrepresented (Tables 3.1 and 3.2). On the other hand, in the polymyxin-resistant mutant, 

20 pathways were overrepresented; and six pathways were under-expressed (Tables 3.3 and 

3.4). Proteins of carbon metabolism and energy production, pyrimidine metabolism and 

bacterial secretion pathways were significantly overexpressed in OMVs of sensitive strain in 
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response to polymyxin B treatment (Table 3.1); whereas those of citric acid cycle, pyrimidine 

metabolism and  Oxidation phosphorylation/ inner membrane electron transport chain were 

overrepresented in the OMVs of treated resistant strain (Table 3.3). Moreover, polymyxin B 

treatment of susceptible strain resulted in the production of OMVs richer in lipopolysaccharide 

and peptidoglycan biosynthesis proteins; however, these proteins were undetected in OMVs of 

the resistant strain (Table 3.1, Figures 3.2 and 3.3). Interestingly, some Gram-negative strains 

develop polymyxins resistance either by complete loss of LPS or by its modification (94, 180, 

455), leading us to consider the hypothesis that OMVs derived from polymyxin-susceptible 

E.coli would protect the sensitive strain from the action of polymyxin B, while those derived 

from resistant strain would not confer protection due to the lack of the LPS (456). On the other 

hand, compared to untreated control, the resistant strain released OMVs rich in host factor-I 

protein (QS protein), phosphotransferase system enzyme (phosphoenolpyruvate-protein 

phosphotransferase), RNA degradation as well as nucleotide excision repair and homologous 

DNA recombination enzymes in response to polymyxin B (Tables 3.3). However, polymyxin 

B treatment of susceptible strain significantly reduced the amount of a number of QS proteins 

(Autoinducer 2-binding protein LsrB, high-affinity branched-chain amino acid transport 

protein, signal peptidase I, zinc metalloprotease and membrane protein insertase YidC) and 

several of phosphotransferase system enzymes (Table 3.2). Simultaneously, Aminoacyl-tRNAs 

were also overexpressed in both treated strains, Glycine and threonine-tRNA ligase were 

upregulated in resistant strain; while in the susceptible strain aspartyl, glycyl, seriyl, Lysyl, proyl 

and histdyl-tRNA ligase were overrepresented in response to polymyxin B treatment (Tables 

3.1 and 3.2, Figure 3.4). It has been found that Aminoacyl-tRNAs play an important role in the 

biosynthesis of bacterial cell envelope and multiple peptide resistance virulence factors, which 

control bacterial permeability to cationic antimicrobial compounds via aminoacylation of the 

inner membrane (457, 458). This finding might explain both the attempt of K. pneumoniae to 

increase the rigidity of its envelope upon exposure to polymyxin B; and the role of OMVs in 

bacterial resistant to cationic antimicrobial compounds. Similarly, Pyruvate metabolism 



102 
 

enzymes were detected in the OMVs of both treated strains (Tables 3.1 and 3.3), in the 

susceptible strain, only lactate dehydrogenase was overrepresented in OMVs compared to 

control untreated strain; whereas, in OMVs of the resistant strain, pyruvate-formate-lyase 

deactivase and pyruvate-flavodoxin oxidoreductase were overexpressed. Notably, pyruvate-

flavodoxin oxidoreductase overexpression has been shown to protect E.coli cells from oxidative 

stress (459), which might explain the over-expression of pyruvate metabolism enzymes in K. 

pneumoniae-derived OMVs following polymyxin B treatment. In addition, the 30S and 50S 

ribosomal proteins, amino acids biosynthesis enzymes, the sulfate relay system enzyme 

cysteine-desulferase, glycolysis/gluconeogenesis, UDP-amino sugar, Fatty acid biosynthesis, 

starch and sucrose metabolic enzymes were upregulated in OMVs of both treated strains 

compared to control untreated one (Tables 3.1 and 3.3). On contradictory, several proteins of 

ABC transporters, protein export, two-component system (e.g., sensor protein PhoQ), cationic 

antimicrobial peptide (CAMP) resistance (notably, 4-amino-4-deoxy-L-arabinose transferase) 

and beta-lactam resistance (e.g., beta-lactamase extended-spectrum beta-lactamase SHV-11) 

pathways, were significantly downregulated in OMVs of both strains in response to polymyxin 

B treatment (Tables 3.2 and 3.4, Figure 3.5). One of polymyxin resistance mechanisms in K. 

pneumoniae involves modification of lipid A with 4-amino-4-deoxy-L-arabinose (432, 434). 

The two-component regulatory systems [PhoPQ-PmrD]-PmrAB control the expression of 4-

amino-4-deoxy-L-arabinose modifications to the lipid A phosphates. These systems are induced 

by low pH, low magnesium and high iron (432). 
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Figure 3.2 Lipopolysaccharide biosynthesis pathway. Enzymes highlighted with (Blue) were  

significantly overexpressed in OMVs of polymyxin B treated polymyxin-susceptible K. pneumoniae 

compared to untreated control. However, no lipopolysaccharide biosynthesis enzymes were detected in 

OMVs of polymyxin-resistant K. pneumoniae in response to polymyxin B treatment. * Fold change of 

relative intensity of OMVs proteins from polymyxin B-treated polymyxin-susceptible K. pneumoniae 

ATCC 700721 compared to untreated conrol. Statistical significance was calculated with Student’s t test. 

P<0.05 was defined as statistically significant. 
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Figure 3.3 Peptidoglycan biosynthesis pathway. Enzymes highlighted with (Blue) were  significantly 

upregulated in OMVs of polymyxin B treated polymyxin-susceptible K. pneumoniae compared to 

untreated control. However, no peptidoglycan biosynthesis enzymes were detected in OMVs of 
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polymyxin-resistant K. pneumoniae in response to polymyxin B treatment. * Fold change of relative 

intensity of OMVs proteins from polymyxin B-treated polymyxin-susceptible K. pneumoniae ATCC 

700721 compared to untreated conrol. Statistical significance was calculated with Student’s t test. P<0.05 

was defined as statistically significant.  

 

 

Figure 3.4 Aminoacyl-tRNA biosynthesis pathway. Enzymes highlighted with (Blue) were  

significantly overexpressed in OMVs of polymyxin B treated polymyxin-susceptible K. pneumoniae 

compared to untreated control. While the enzyme highlighted with (green) was upregulated in OMVs 

of polymyxin-resistant K. pneumoniae in response to polymyxin B. The enzyme highlighted with (red) 
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was overrepresented in OMVs of both strains following polymyxin B treatment compared to control 

untreated strains. * Fold change of relative intensity of OMVs proteins from both polymyxin B-treated 

polymyxin-susceptible and -resistant K. pneumoniae ATCC 700721 compared to untreated conrol. 

Statistical significance was calculated with Student’s t test. P<0.05 was defined as statistically 

significant. 1 fold change of relative intensity of OMVs Glycyl-tRNA synthetase alpha subunit from 

polymyxin B-treated polymyxin-susceptible K. pneumoniae ATCC 700721 compared to untreated 

control. 2 fold change of relative intensity of OMVs Glycyl-tRNA synthetase alpha subunit from 

polymyxin B-treated polymyxin-resistant K. pneumoniae ATCC 700721 compared to untreated control. 

3 fold change of relative intensity of OMVs Threonyl-tRNA synthetase from polymyxin B-treated 

polymyxin-resistant K. pneumoniae ATCC 700721 compared to untreated control. 

 

 

Figure 3.5 Cationic antimicrobial peptide (CAMP) resistance pathway. The enzyme highlighted with 

(Purple) was significantly downregulated in OMVs of polymyxin B treated polymyxin-susceptible K. 

pneumoniae compared to untreated control. While, enzymes highlighted with (Green) were 

underrepresented in OMVs of both strains following polymyxin B treatment compared to control 

untreated strains. * Fold change of relative intensity of OMVs proteins from both polymyxin B-treated 

polymyxin-susceptible and -resistant K. pneumoniae ATCC 700721 compared to untreated conrol. 

Statistical significance was calculated with Student’s t test. P<0.05 was defined as statistically significant. 

1 fold change of relative intensity of OMVs proteins from polymyxin B-treated polymyxin-susceptible 

K. pneumoniae ATCC 700721 compared to untreated control. 2 fold change of relative intensity of OMVs 

proteins from polymyxin B-treated polymyxin-resistant K. pneumoniae ATCC 700721 compared to 

untreated control. 
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 Conclusions 

 In this study, we show that polymyxin B treatment of both susceptible and resistant K. 

pneumoniae strains significantly reduced the cytoplasmic, inner membrane and periplasmic 

protein content of their OMVs, compare to the untreated control. In addition, our proteomics 

analysis reveals that OMVs proteins from several bacterial biological processes, notably 

lipopolysaccharide and peptidoglycan biosynthesis pathways were overrepresented in the 

OMVs proteome of the polymyxin B treated susceptible stain; whereas; in the resistant strain, 

QS, phosphotransferase system, RNA degradation and nucleotide excision repair pathways 

were significantly overrepresented. It is important to highlight that the lipid A in the Gram-

negative OM is the primary target for polymyxins; therefore, these antibiotics exhibit a narrow 

spectrum of activity against Gram-negative bacteria that do not express LPS. These OMVs 

proteomic changes may be accompanied by the remodelling of the bacterial OM, in particular, 

the modification of lipid A, which together serve to make the K. pneumoniae OM and OMVs 

invincible to polymyxin attack. 
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Table 3.1 Metabolic pathway categorization of statistically significantly overrepresented proteins in OMVs from polymyxin B-treated polymyxin-susceptible K. pneumoniae 

ATCC 700721 compared to untreated control. 

Metabolic pathway 

 

Protein name Fold K.pS 

treated/K.pS 

control change* 

Ribosome 
  

 

30S ribosomal protein S10 4.71 
 

50S ribosomal protein L4 4.46 
 

50S ribosomal protein L23 3.85 
 

50S ribosomal protein L16 2.27 
 

30S ribosomal protein S8 3.5 
 

50S ribosomal protein L6 2.75 
 

50S ribosomal protein L18 2.43 
 

30S ribosomal protein S5 2.39 
 

30S ribosomal protein S4 3.58 
 

50S ribosomal protein L17 2.25 
 

50S ribosomal protein L13 2.19 
 

30S ribosomal protein S9 1.6 
 

30S ribosomal protein S7 2.12 
 

50S ribosomal protein L10 2.1 
 

50S ribosomal protein L1 1.73 
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50S ribosomal protein L9 1.59 
 

30S ribosomal protein S18 2.04 
 

50S ribosomal protein L21 2.41 
 

30S ribosomal protein S20 1.74 
 

30S ribosomal protein S21 2.08 
 

50S ribosomal protein L2 1.72 
 

30S ribosomal protein S19 1.66 
 

50S ribosomal protein L22 2.17 
 

30S ribosomal protein S3 1.54 
 

50S ribosomal protein L29 1.58 
 

30S ribosomal protein S17 2.22 
 

50S ribosomal protein L14 1.57 
 

50S ribosomal protein L24 1.55 
 

50S ribosomal protein L5 1.5 
 

50S ribosomal protein L30 1.44 
 

50S ribosomal protein L15 1.39 
 

30S ribosomal protein S13 1.35 
 

30S ribosomal protein S11 1.34 
 

50S ribosomal protein L7/L12 1.33 
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50S ribosomal protein L11 1.3 
 

30S ribosomal protein S2 1.27 
 

30S ribosomal protein S15 1.24 
 

30S ribosomal protein S6 1.13 
 

50S ribosomal protein L28 1.22 
 

50S ribosomal protein L27 1.6 
 

30S ribosomal protein S16 1.76 
 

50S ribosomal protein L19 2.92 
 

50S ribosomal protein L25 2.81 

Biosynthesis of amino acids 

(including Shikimate 

pathway) 

  

 

Ribose-phosphate pyrophosphokinase (RPPK) 5.7 
 

Imidazole glycerol phosphate synthase subunit HisF 3.11 
 

6-phosphofructokinase 4.13 
 

Phosphoglycerate kinase  2.45 
 

3-dehydroquinate dehydratase 2.09 
 

Probable phosphoglycerate mutase GpmB  1.97 
 

Phosphoserine aminotransferase 2.34 
 

Enolase 1.62 
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Pyruvate kinase 1.65 
 

Acetolactate synthase small subunit 1.75 
 

S-adenosylmethionine synthase (AdoMet synthase) 3.68 
 

Gamma-glutamyl phosphate reductase (GPR) 1.83 

Carbon metabolism   
 

Glucose-6-phosphate 1-dehydrogenase (G6PD)  1.41 
 

Glucose-6-phosphate isomerase (GPI) 1.23 
 

Fructose-1,6-bisphosphatase class 1 (FBPase class 1) 1.31 
 

Pyruvate dehydrogenase E1 component 2.32 
 

Phosphate acetyltransferase  2.68 
 

Acetate kinase 3.74 
 

Dihydrolipoyl dehydrogenase 1.04 
 

succinyl-CoA synthetase subunit beta 1.08 
 

Probable malate:quinone oxidoreductase 1.12 

Purine metabolism   
 

Phosphoglucomutase 5.07 
 

Phosphoribosylaminoimidazole-succinocarboxamide synthase 1.52 
 

Adenine phosphoribosyltransferase (APRT)  2.69 
 

Nucleoside diphosphate kinase (NDK) (NDP kinase) 1.51 
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Adenylosuccinate synthetase (AMPSase) 4.97 
 

DNA-directed RNA polymerase subunit alpha 3.92 
 

Guanylate kinase 2.8 
 

Ribonucleotide-diphosphate reductase beta subunit 3.94 
 

Hypoxanthine-guanine phosphoribosyltransferase 1.2 
 

Adenosine deaminase  2.67 

Glycolysis / 

Gluconeogenesis 
  

 

triosephosphate isomerase 4.38 
 

Glyceraldehyde-3-phosphate dehydrogenase  1.53 
 

Acetyltransferase component of pyruvate dehydrogenase complex 3.87 

Pyrimidine metabolism   
 

Aspartate carbamoyltransferase (EC 2.1.3.2) (Aspartate transcarbamylase) (ATCase) 1.56 
 

Orotate phosphoribosyltransferase  2.99 
 

Orotidine 5'-phosphate decarboxylase 3.28 
 

DNA-directed RNA polymerase subunit beta 1.69 
 

Uridylate kinase (UK) 3.12 
 

Uracil phosphoribosyltransferase  2.57 

Starch and sucrose 

metabolism 
  

 

Fructokinase 1.11 
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UTP--glucose-1-phosphate uridylyltransferase  1.03 
 

Glucose-1-phosphate adenylyltransferase 2.89 
 

4-alpha-glucanotransferase 2.56 
 

Pullulanase protein 3.43 
 

Putative PEP-dependent phosphotransferase enzyme III 1.14 

Amino sugar and nucleotide 

sugar metabolism 
  

 

UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1.29 
 

D-fructose-6-phosphate amidotransferase 4.26 
 

UDP-glucose dehydrogenase 1.19 
 

UDP-galactose 4-epimerase 2.54 

Pentose phosphate pathway   
 

Ribose-5-phosphate isomerase A  2.15 

Glycine, serine and 

threonine metabolism 
 1.15 

 

2-amino-3-ketobutyrate coenzyme A ligase (AKB ligase) 2.65 
 

L-threonine 3-dehydrogenase (TDH) 4.37 
 

8-amino-7-oxononanoate synthase 1.25 

Aminoacyl-tRNA 

biosynthesis 
  

 

Aspartyl-tRNA synthetase (AspRS) 3.97 



114 
 

 

Glycyl-tRNA synthetase alpha subunit (GlyRS) 4.01 
 

Seryl-tRNA synthetase (SerRS) 1.28 
 

Lysyl-tRNA synthetase (LysRS) 3.72 
 

Prolyl-tRNA synthetase (ProRS) 2.6 
 

Histidyl-tRNA synthetase (HisRS) 1.09 

Cysteine and methionine 

metabolism 
  

 

L-serine deaminase 2 1.02 
 

Aminotransferase  3.61 

Alanine, aspartate and 

glutamate metabolism 
  

 

Asparagine synthetase B 1.05 

Fatty acid biosynthesis   
 

3-oxoacyl-(Acyl carrier protein) synthase 1.45 
 

3-ketoacyl-(Acyl-carrier-protein) reductase 1.26 
 

3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ 2.23 
 

Enoyl-[acyl-carrier-protein] reductase [NADH]  3.46 

Lipopolysaccharide 

biosynthesis 
  

 

2-dehydro-3-deoxyphosphooctonate aldolase (KDO-8-phosphate synthase) 1.07 
 

Phosphoheptose isomerase 1.81 
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ADP-L-glycero-D-manno-heptose-6-epimerase 3.24 

Peptidoglycan  

biosynthesis 
  

 

UDP-N-acetylglucosamine--N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-

acetylglucosamine transferase 
2.46 

 
D-alanyl-D-alanine carboxypeptidase, fraction A penicillin-binding protein 5 1.36* 

 UDP-N-acetylmuramate--L-alanine ligase 3.16 

Phenylalanine metabolism   
 

Acetyl-CoA acetyltransferase 3 

Glutathione metabolism   
 

Aminoacyl-histidine dipeptidase (Peptidase D) 1.55 
 

Glutathione synthetase 1.21 

Bacterial secretion system   
 

Protein-export protein SecB 2.7 
 

Signal recognition particle receptor FtsY (SRP receptor) 3.2 

Base excision repair   
 

Exonuclease III 2.91 

Sulfur relay system   
 

Cysteine desulfurase IscS 1.79 
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One carbon pool by folate   
 

Bifunctional protein FolD [Includes: Methylenetetrahydrofolate dehydrogenase; 

Methenyltetrahydrofolate cyclohydrolase] 
2.55 

Lipoic acid metabolism   
 

Lipoyl synthase 1.32 

Pyruvate metabolism   
 

L-lactate dehydrogenase (EC 1.1.-.-) 1.71 

* Fold change of relative intensity of OMVs proteins from polymyxin B-treated polymyxin-susceptible K. pneumoniae ATCC 700721 compared to untreated conrol. Statistical significance was calculated with Student’s t test. P<0.05 

was defined as statistically significant.  

 

Table 3.2 Metabolic pathway categorization of statistically significantly underrepresented proteins in OMVs from polymyxin B-treated polymyxin-susceptible K. 

pneumoniae ATCC 700721 compared to untreated control. 

Metabolic pathway      Protein name Fold K.p S 

treated/K.p S 

control change* 

ABC transporters 

 
 

 Molybdate transport protein (ABC superfamily, peri_bind) 0.75 

 Putative ABC transporter periplasmic binding protein 0.34 

 Thiamin-binding periplasmic protein 0.29 

 Glycine/betaine/proline transport protein (ABC superfamily, peri_bind) 0.82 

 Putative glycine/betaine/choline transport protein, osmoprotection (ABC superfamily, peri_bind) 0.07 
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 Periplasmic maltose-binding protein 0.58 

 Maltose transport protein (ABC superfamily, membrane) 0.23 

 Maltose/maltodextrin import ATP-binding protein MalK 0.1 

 Putative transport protein (ABC superfamily, atp_bind and membrane) 0.09 

 Putative transport protein (ABC superfamily, peri_bind) 0.3 

 Uncharacterized protein 0.21 

 L-arabinose-binding periplasmic protein (ABP) 0.32 

 Galactose transport protein (ABC superfamily, peri_bind) 0.4 

 Putative periplasmic binding protein 0.97 

 sn-glycerol 3-phosphate transport protein (ABC superfamily, peri_bind) 0.01 

 High-affinity zinc uptake system periplasmic protein 0.46 

 Putative iron-regulated membrane protein 0.04 

 Glutathione transport system substrate-binding protein 0.15 

 Cationic peptide transport system substrate-binding protein 0.16 

 Cationic peptide transport system ATP-binding protein 0.02 

 Dipeptide transport protein 0.57 

 Putative bacterial extracellular solute-binding protein 0.12 

 Oligopeptide transporter ATP-binding component 0.2 

 D-methionine transport protein (ABC superfamily, peri_bind) 0.17 
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 Methionine import ATP-binding protein MetN 0.08 

 Cysteine transport protein (ABC superfamily, peri_bind) 0.23 

 Putative ATP-binding component of a transport system 0.06 

 Arginine 3rd transport system periplasmic binding protein 0.48 

 ATP-binding component of 3rd arginine transport system 0.41 

 Glutamine ABC transporter periplasmic-binding protein 0.55 

 Histidine transport protein (ABC superfamily, peri_bind) 0.31 

 Phosphate import ATP-binding protein PstB (EC 3.6.3.27) (ABC phosphate transporter) (Phosphate-transporting 

ATPase) 
0.43 

 O-antigen export-NBD component 0.54 

 Lipid A export ATP-binding/permease protein MsbA (EC 3.6.3.-) 0.66 

 Lipopolysaccharide export system permease protein 0.56 

 ATP-binding component of cytochrome-related transport 0.53 

 Cell division membrane protein 0.13 

 ATP-binding component of a membrane-associated complex involved in cell division 0.38 

Oxidative 

phosphorylation 
  

 Polyphosphate kinase (EC 2.7.4.1) (ATP-polyphosphate phosphotransferase) (Polyphosphoric acid kinase) 0.05 

 NADH-quinone oxidoreductase subunit A (EC 1.6.5.11) (NADH dehydrogenase I subunit A) (NDH-1 subunit 

A) (NUO1) 
0.18 

 NADH-quinone oxidoreductase subunit B (EC 1.6.5.11) (NADH dehydrogenase I subunit B) (NDH-1 subunit 

B) 
0.19 
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 NADH-quinone oxidoreductase subunit C/D (EC 1.6.5.11) (NADH dehydrogenase I subunit C/D) (NDH-1 

subunit C/D) 
0.61 

 ATP synthase subunit E 0.03 

 NADH dehydrogenase I chain F 0.52 

 NADH-quinone oxidoreductase (EC 1.6.5.11) 0.35 

 NADH-quinone oxidoreductase subunit I (EC 1.6.5.11) (NADH dehydrogenase I subunit I) (NDH-1 subunit I) 0.51 

 ATP synthase subunit alpha (EC 3.6.3.14) (ATP synthase F1 sector subunit alpha) (F-ATPase subunit alpha) 0.49 

 ATP synthase subunit beta (EC 3.6.3.14) (ATP synthase F1 sector subunit beta) (F-ATPase subunit beta) 0.25 

 ATP synthase subunit b (ATP synthase F(0) sector subunit b) (ATPase subunit I) (F-type ATPase subunit b) (F-

ATPase subunit b) 
0.44 

 ATP synthase subunit c (ATP synthase F(0) sector subunit c) (F-type ATPase subunit c) (F-ATPase subunit c) 

(Lipid-binding protein) 
0.5 

 Succinate dehydrogenase hydrophobic membrane anchor subunit 0.33 

 Succinate dehydrogenase flavoprotein subunit (EC 1.3.5.1) 0.37 

 Cytochrome o ubiquinol oxidase subunit I 0.92 

 Ubiquinol oxidase subunit 2 0.47 

Two-component 

system 
  

 Sensor protein PhoQ 0.04 

 Phosphate-binding protein PstS 0.36 

 Acid phosphatase (EC 3.1.3.2) 0.27 

 Two-component system, OmpR family, sensor histidine kinase CpxA 0.45 
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 Multidrug resistance protein MdtA (Multidrug transporter MdtA) 0.39 

 Aerobic respiration control sensor protein (EC 2.7.13.3) 0.28 

 Cryptic nitrate reductase 2 alpha subunit 0.14 

 Fumarate reductase flavoprotein subunit (EC 1.3.5.4) 0.87 

 Succinate dehydrogenase iron-sulfur subunit (EC 1.3.5.1) 0.76 

 Outer membrane lipoprotein RcsF 0.11 

 Cryptic nitrate reductase 2 beta subunit 0.94 

 Zn-binding periplasmic protein 0.74 

 ATP-binding protein of glutamate/aspartate transport system 0.72 

 Glutamate/aspartate transport protein (ABC superfamily, membrane) 0.78 

 Glutamate/aspartate periplasmic binding protein 0.67 

 Cytochrome oxidase bd-II, subunit I 0.18 

Quorum sensing   

 Autoinducer 2-binding protein LsrB (AI-2-binding protein LsrB) 0.62 

 High-affinity branched-chain amino acid transport protein (ABC superfamily, peri_bind) 0.45 

 Signal peptidase I (EC 3.4.21.89) 0.71 

 Zinc metalloprotease (EC 3.4.24.-) 0.62 

 Membrane protein insertase YidC (Foldase YidC) (Membrane integrase YidC) (Membrane protein YidC) 0.71 

 Protein translocase subunit SecA 0.52 
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 Cationic 

antimicrobial 

peptide (CAMP) 

resistance 

  

 4-amino-4-deoxy-L-arabinose lipid A transferase (lipid A modification) 0.43 

 N-acetylmuramoyl-L-alanine amidase 0.12 

 L,D-transpeptidase YcfS 0.33 

 Copper homeostasis protein 0.16 

 Acridine efflux pump 0.34 

 Thiol:disulfide interchange protein 0.27 

 Peptidyl-prolyl cis-trans isomerase (PPIase) (EC 5.2.1.8) 0.04 

 Beta-Lactam 

resistance 
  

 Bifunctional penicillin-binding protein 1a: transglycosylase/transpeptidase 0.13 

 Beta-lactamase (EC 3.5.2.6) 0.16 

Phosphotransferase 

system (PTS) 
  

 PTS family enzyme IIC/enzyme IIB 0.29 

 PTS family enzyme IIC/enzyme IIB/enzyme IIC 0.26 

 PTS family enzyme IICB/enzyme IIA 0.46 

 PTS enzyme IID, mannose-specific 0.25 

 PTS enzyme IIAB, mannose-specific 0.28 
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 PTS family enzyme IIA/FPr 0.46 

 PTS family enzyme IIB'BC, fructose-specific 0.49 

 Protein export   

 Protein translocase subunit SecD 0.49 

 Preprotein translocase subunit YajC 0.52 

 Sec-independent protein translocase protein TatA 0.27 

Glycerophospholipid 

metabolism 
  

 Glycerol-3-phosphate acyltransferase (GPAT) (EC 2.3.1.15) 0.26 

 Glycerophosphodiester phosphodiesterase, periplasmic 0.22 

 CDP-diacylglycerol pyrophosphatase (EC 3.6.1.26) (CDP-diacylglycerol phosphatidylhydrolase) (CDP-

diglyceride hydrolase) 
0.38 

 CDP-diacylglycerol--serine O-phosphatidyltransferase (EC 2.7.8.8) 0.14 

 Non-essential phosphatidylglycerophosphate phosphatase, membrane bound 0.29 

RNA degradation   

 Ribonuclease E (RNase E) (EC 3.1.26.12) 0.93 

 ATP-dependent RNA helicase RhlB (EC 3.6.4.13) 0.03 

 ATP-dependent RNA helicase DeaD (EC 3.6.4.13) (Cold-shock DEAD box protein A) 0.64 

 Poly(A) polymerase I (PAP I) (EC 2.7.7.19) 0.17 

 Tetraacyldisaccharide 4'-kinase (EC 2.7.1.130) (Lipid A 4'-kinase) 0.77 
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Nucleotide excision 

repair  
  

 UvrABC system protein A (UvrA protein) (Excinuclease ABC subunit A) 0.35 

* Fold change of relative intensity of OMVs proteins from polymyxin B-treated polymyxin-susceptible K. pneumoniae ATCC 700721 compared to untreated conrol. Statistical significance was calculated with Student’s t test. P<0.05 

was defined as statistically significant. 

 

Table 3.3 Metabolic pathway categorization of statistically significantly overrepresented proteins in OMVs from polymyxin B-treated polymyxin-resistant K. pneumoniae 

ATCC 700721 compared to untreated control. 

Metabolic pathway Protein name Fold K.pR 

treated/K.pR 

control change* 

Ribosome  

  

 30S ribosomal protein S10 1.72 

 50S ribosomal protein L3 2.05 

 50S ribosomal protein L4 1.97 

 50S ribosomal protein L23 2.91 

 50S ribosomal protein L16 2.54 

 30S ribosomal protein S8 1.94 

 50S ribosomal protein L6 2.39 

 50S ribosomal protein L18 2.78 

 30S ribosomal protein S5 2.07 

 30S ribosomal protein S4 2.18 
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 50S ribosomal protein L17 2.68 

 50S ribosomal protein L13 1.69 

 30S ribosomal protein S9 2.43 

 30S ribosomal protein S7 2.37 

 50S ribosomal protein L10 2.57 

 50S ribosomal protein L1 1.99 

 50S ribosomal protein L9 6.32 

 30S ribosomal protein S18 3.17 

 50S ribosomal protein L21 2.69 

 30S ribosomal protein S20 3.3 

 30S ribosomal protein S21 3.89 

Biosynthesis of amino acids 

(including Shikimate pathway) 
 2.6 

 Phosphofructokinase 5.26 

 3-dehydroquinate synthase  3.47 

 3-phosphoshikimate 1-carboxyvinyltransferase 7.07 

 Enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (2-phosphoglycerate dehydratase) 2.01 

 L-serine deaminase 2 7.36 

 Serine hydroxymethyltransferase 6.86 

 Argininosuccinate synthase 2.85 
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Glycolysis / Gluconeogenesis   

 6-phosphofructokinase II 5.3 

 triosephosphate isomerase 7.24 

 Glyceraldehyde-3-phosphate dehydrogenase 3.34 

 Pyruvate dehydrogenase E1 component 5.68 

 Aldehyde-alcohol dehydrogenase 5.92 

RNA degradation   

 Ribonuclease E (RNase E) 7.51 

 ATP-dependent RNA helicase RhlB 2.99 

 chaperonin GroEL 3.27 

 RNA-binding protein Hfq 6.31 

 Polyphosphate kinase  3.21 

Citrate cycle (TCA cycle)   

 Succinyl-CoA synthetase subunit beta 3.15 

 2-oxoglutarate decarboxylase 1.76 

Oxidative phosphorylation   

 NADH-quinone oxidoreductase subunit I  2.63 

 ATP synthase subunit delta  4.86 

 NADH dehydrogenase gamma subunit 3.12 
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Pyrimidine metabolism   

 Orotate phosphoribosyltransferase  3.37 

 Carbamoyl-phosphate synthase large chain  2.61 

 Uracil phosphoribosyltransferase  1.86 

 DNA polymerase III subunit beta 2.02 

Alanine, aspartate and glutamate 

metabolism 
  

 Adenylosuccinate synthetase  2.06 

 Carbamoyl-phosphate synthase small subunit 4.84 

Starch and sucrose metabolism   

 Trehalose-6-phosphate synthase (TPS)  2.4 

 UTP--glucose-1-phosphate uridylyltransferase  2.11 

 Alpha-1,4 glucan phosphorylase  1.64 

Amino sugar and nucleotide 

sugar metabolism 
  

 UDP-glucose dehydrogenase 1.79 

 UDP-glucose pyrophosphorylase 1.92 

 UDP-galactose 4-epimerase 2.08 

Glycine, serine and threonine 

metabolism 
  

 L-serine dehydratase 5.7 
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 Glycine hydroxymethyltransferase 2.47 

 Oxygen-dependent choline dehydrogenase 1.55 

Homologous recombination   

 DNA polymerase III sub-unit alpha 2.3 

 Holliday junction ATP-dependent DNA helicase RuvB  3.28 

Nucleotide excision repair   

 UvrABC system protein B (Protein UvrB) (Excinuclease ABC subunit B) 2.18 

 DNA helicase 2.48 

 dTDP-4-dehydrorhamnose reductase 3.16 

Aminoacyl-tRNA biosynthesis   

 Glycine--tRNA ligase beta subunit 1.95 

 Threonyl-tRNA synthetase 4.75 

Fatty acid biosynthesis   

 3-oxoacyl-(Acyl carrier protein) synthase 1.94 

 3-ketoacyl-(Acyl-carrier-protein) reductase 2.26 

Pentose phosphate pathway   

 Ribose-5-phosphate isomerase A  2.17 

Quorum sensing   

 host factor-I protein 1.96 
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 Signal recognition particle receptor FtsY (SRP receptor) 3.46 

Pyruvate metabolism   

 Pyruvate-formate-lyase deactivase 1.89 

 Pyruvate-flavodoxin oxidoreductase  2.27 

Phosphotransferase system 

(PTS) 
  

 Phosphoenolpyruvate-protein phosphotransferase  (Phosphotransferase system, enzyme I) 2.88 

Sulfur relay system   

 2-dehydro-3-deoxyphosphooctonate aldolase 3.82 

 Cysteine desulfurase IscS 4.09 
* Fold change of relative intensity of OMVs proteins from polymyxin B-treated polymyxin-resistant K. pneumoniae ATCC 700721 compared to untreated control. Statistical significance was calculated with Student’s t test. P<0.05 was 

defined as statistically significant. 

 

Table 3.4 Metabolic pathway categorization of statistically significantly underrepresented proteins in OMVs from polymyxin B-treated polymyxin-resistant K. pneumoniae 

ATCC 700721 compared to untreated control. 

Metabolic pathway Protein name Fold K.pR 

treated/K.pR 

control change* 

ABC transporters 

  

  Sulfate transport system substrate-binding protein 0.72 

 Iron(III) transport system substrate-binding protein 0.73 

 Putrescine-binding periplasmic protein 0.53 
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 Glycine/betaine/proline transport protein (ABC superfamily, peri_bind) 0.62 

 Osmoprotectant transport system substrate-binding protein 0.11 

 Periplasmic maltose-binding protein 0.92 

 Oligogalacturonide transport system substrate-binding protein 0.97 

 Phospholipid transport system substrate-binding protein 0.71 

 D-ribose periplasmic binding protein 0.65 

 Galactose transport protein (ABC superfamily, peri_bind) 0.19 

 D-xylose transport protein (ABC superfamily, peri_bind) 0.77 

 Inositol transport system substrate-binding protein 0.68 

 sn-glycerol 3-phosphate transport protein (ABC superfamily, peri_bind) 0.66 

 Phosphate-binding protein PstS 0.12 

 Lysine-, arginine-, ornithine-binding periplasmic protein 0.06 

 Histidine transport protein (ABC superfamily, peri_bind) 0.15 

 Glutamine ABC transporter periplasmic-binding protein 0.74 

 Arginine 3rd transport system periplasmic binding protein 0.58 
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 Glutamate/aspartate periplasmic binding protein 0.1 

 Cysteine transport protein (ABC superfamily, peri_bind) 0.45 

 High-affinity branched-chain amino acid transport protein (ABC superfamily, peri_bind) 0.43 

 D-methionine transport protein (ABC superfamily, peri_bind) 0.55 

 Putative bacterial extracellular solute-binding protein 0.42 

 Dipeptide transport protein 0.24 

 Putative dipeptide transport protein (ABC superfamily, peri_bind) 0.49 

 Iron complex transport system substrate-binding protein 0.16 

Beta-Lactam resistance   

 extended-spectrum beta-lactamase SHV-11 0.5 

Two-component system   

 Alkaline phosphatase 0.08 

 outer membrane protein, Cu(I)/Ag(I) efflux system 0.07 

Cationic antimicrobial 

peptide (CAMP) resistance 
  

 4-amino-4-deoxy-L-arabinose lipid A transferase (lipid A modification) 0.54 

 Copper homeostasis protein 0.75 
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 N-acetylmuramoyl-L-alanine amidase 0.33 

 Thiol:disulfide interchange protein DsbA 0.27 

 Peptidyl-prolyl cis-trans isomerase (PPIase) 0.64 

Purine metabolism   

 UDP-sugar hydrolase (5'-nucleotidase) 0.26 

 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase bifunctional periplasmic protein 0.34 

Protein export   

 Sec-independent protein translocase protein TatA 0.51 

* Fold change of relative intensity of OMVs proteins from polymyxin B-treated polymyxin-resistant K. pneumoniae ATCC 700721 compared to untreated conrol. Statistical significance was calculated with Student’s t test. P<0.05 was 

defined as statistically significant. 
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Chapter 4: Lipidomic composition of outer membrane 

vesicles from paired polymyxin-susceptible and -

resistant Klebsiella pneumoniae clinical isolates      
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Abstract: Gram-negative bacteria produce outer membrane vesicles (OMVs) as delivery vehicles for 

nefarious bacterial cargo such as virulence factors, which are antibiotic resistance determinants. This 

study aimed to investigate the impact of polymyxin B treatment on the OMV lipidome from paired 

polymyxin-susceptible and -resistant Klebsiella pneumoniae isolates. K. pneumoniae ATCC 700721 was 

employed as a reference strain in addition to two clinical strains, K. pneumoniae FADDI-KP069 and 

K. pneumoniae BM3. Polymyxin B treatment of the polymyxin-susceptible strains resulted in a 

marked reduction in the glycerophospholipid, fatty acid, lysoglycerophosphate and sphingolipid 

content of their OMVs. Conversely, the polymyxin-resistant strains expressed OMVs richer in all of 

these lipid species, both intrinsically and increasingly under polymyxin treatment. The average 

diameter of the OMVs derived from the K. pneumoniae ATCC 700721 polymyxin-susceptible isolate, 

measured by dynamic light scattering measurements, was ~90.6 nm, whereas the average diameter 

of the OMVs isolated from the paired polymyxin-resistant isolate was ~141 nm. Polymyxin B 

treatment (2 mg/L) of the K. pneumoniae ATCC 700721 cells resulted in the production of OMVs 

with a larger average particle size in both the susceptible (average diameter ~124 nm) and resistant 

(average diameter 

~154 nm) strains. In light of the above, we hypothesize that outer membrane remodelling associated 

with polymyxin resistance in K. pneumoniae may involve fortifying the membrane structure with 

increased glycerophospholipids, fatty acids, lysoglycerophosphates and sphingolipids. Putatively, 

these changes serve to make the outer membrane and OMVs more impervious to polymyxin attack. 
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 Introduction   

Over the last decade, extremely-drug resistant (XDR) K. pneumoniae has emerged as one of the 

most deadly Gram-negative ‘superbugs’ (413-415). K. pneumoniae is responsible for numerous 

lethal nosocomial outbreaks (416); more worryingly, the mortality of nosocomial K. 

pneumoniae infections can be up to 50% (417). Carbapenem resistance in K. pneumoniae 

mediated by carbapenemase was firstly reported in 1996 in the New York City and has spread 

to most global centres (417, 418). In 2008, blaNDM-1 which encodes the class B NDM-1 that 

inactivates carbapenems, was first detected in a Swedish patient of who had contracted an 

infection in India (419). Polymyxins (i.e., colistin and polymyxin B) are increasingly used as 

the last-line therapy against XDR K. pneumoniae (15). Indeed, considerable in vitro activity 

against K. pneumoniae strains has been demonstrated (136); 98.2 % of general clinical strains 

of K. pneumoniae are susceptible to polymyxin B and colistin (420-425). Ominously, XDR 

strains that are resistant to polymyxins have recently emerged (426, 427), which highlights the 

need for a greater appreciation of the mechanism(s) of polymyxin resistance in K. pneumoniae 

to assist targeted drug discovery strategies. 

The Gram-negative OM constitutes a formidable barrier limiting the permeability of various 

noxious substances such as antimicrobial drugs (156, 428). This complex asymmetrical 

structure comprises an inner phospholipid leaflet, as well as an outer leaflet that predominantly 

contains LPS, proteins and phospholipids. Additionally, K. pneumoniae commonly expresses a 

capsular polysaccharide that coats the OM, the expression levels of which have been related to 

polymyxin susceptibility (429-432). The antimicrobial action of polymyxins is mediated 

through a direct and very specific interaction with the lipid A component of the LPS which, 

leads to a disruption of the OM barrier (15). The cationic L-α,γ-Dab residues of the polymyxin 

molecule produce an electrostatic attraction to the negatively charged lipid A phosphate groups, 

displacing the divalent cations (Mg2+ and Ca2+) (15). The displacement leads to the 

disorganization of the LPS leaflet, enabling the insertion of the hydrophobic tail and the 

hydrophobic side chains of amino acids 6 and 7 of the polymyxin molecule into the OM (433). 
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Polymyxin resistance in K. pneumoniae primarily involves the multi-tier up-regulation of 

capsular polysaccharide expression, and the systems required for the modification of lipid A 

with 4-amino-4-deoxy-L-arabinose and palmitoyl addition (173, 429, 432, 434-440). In K. 

pneumoniae the expression of 4-amino-4-deoxy-L-arabinose modifications to the lipid A 

phosphates is under control of the two component regulatory systems [PhoPQ-PmrD]-PmrAB 

that are activated in response to low pH, low magnesium, high iron and in response to cationic 

antimicrobial peptides (432). More specifically, PhoP-PhoQ regulates the magnesium regulon, 

which activates polymyxin resistance under low magnesium conditions. This PhoP-PhoQ 

system is connected by the small basic protein PmrD. PhoP regulates the activation of PmrD, 

which can then bind to PmrA and prolong its phosphorylation state, eventually activating the 

expression of the PmrA-PrmB system to promote lipid A modifications that confer polymyxin 

resistance. The under-acylation of lipid A increases the polymyxin susceptibility of K. 

pneumoniae, which highlights that the decoration of lipid A with additional fatty acyl chains is 

important for polymyxin resistance (441, 442). 

Gram-negative bacteria naturally shed their OM via OMVs, which are spherical bilayer 

structures of approximately 20-200 nm in diameter (443). OMVs are believe to serve as delivery 

vehicles for nefarious bacterial cargo such as virulence factors, antibiotic resistance 

determinants, toxins and factors that modulate the host immune response to facilitate pathogen 

evasion (303, 443, 460-462). This underscores the need to understand the compositional 

differences between OMVs of MDR K. pneumoniae clinical isolates and how this relates to their 

pathogenicity. In the present study, we aimed to perform a comparative analysis of the lipidome 

of OMVs isolated from of polymyxin-susceptible and -resistant K. pneumoniae clinical isolates 

and to identify key lipid species that are selectively packaged from the OM into the OMV sub-

lipidome of the resistant isolates. The obtained data sheds new light on the OMV lipidomes 

associated with high-level polymyxin resistance in the problematic Gram-negative pathogen K. 

pneumoniae. 
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 Materials and Methods 

4.2.1 Materials 

Polymyxin B was supplied by Betapharma (Shanghai, China). All chemicals were purchased 

from Sigma-Aldrich at the highest research grade; ultrapure water was from Fluka (Castle Hill, 

NSW, Australia). Stock solutions of polymyxin B (10 mg/L) were freshly prepared in ultrapure 

water and filtered through 0.22 µm syringe filters (Sartorius, Melbourne, Vic, Australia).  

 

4.2.2 Bacterial isolates and growth conditions 

All bacterial strains used in this study are described in Table 4.1. Resistance to polymyxin B 

was defined as MICs of ≥8 mg/L (445). A total of six different K. pneumoniae isolates were 

studied: The clinical isolates K. pneumoniae FADDI-KP069 (polymyxin-susceptible strain 

polymyxin B MIC = 0.5 mg/L; polymyxin-resistant strain polymyxin B MIC >32 mg/L; Both 

positive for ESBL and KPC carbapenemase) and K. pneumoniae BM3 (polymyxin-susceptible 

strain polymyxin B MIC = 0.5 mg/L; polymyxin-resistant strain polymyxin B MIC ≥32 mg/L; 

Both positive for NDM, CTX-M, SHV, TEM, AAC-6'-1B); and a reference strain K. 

pneumoniae ATCC 700721 (polymyxin-susceptible strain polymyxin B MIC = 0.5 mg/L; 

polymyxin-resistant strain polymyxin B MIC >32 mg/L). The antibiograms of the two clinical 

isolates are documented in Table 4.1. All bacteria were stored at -80ºC in tryptone soya broth 

(TSB, Oxoid, Melbourne, Australia). Prior to experiments, parent strains were sub-cultured onto 

nutrient agar plates (Medium Preparation Unit, University of Melbourne, Victoria, Australia). 

Overnight broth cultures were subsequently grown in 5 mL of cation-adjusted Mueller-Hinton 

broth (CaMHB, Oxoid, West Heidelberg, Victoria, Australia), from which a 1 in 100 dilution 

was performed in fresh broth to prepare mid-logarithmic cultures according to the optical 

density at 500 nm (OD500nm = 0.4 to 0.6). All broth cultures were incubated at 37°C in a shaking 

water bath (180 rpm).  
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4.2.3 Minimum Inhibitory Concentration (MIC) microbiological assay 

MICs were performed according to the Clinical and Laboratory Standards Institute (CLSI) 

guidelines (446). MICs were determined for all isolates in three replicates on separate days using 

broth microdilution method in cation-adjusted Mueller-Hinton broth (CAMHB) in 96-well 

polypropylene microtitre plates. Wells were inoculated with 100 µL of bacterial suspension 

prepared in CaMHB (containing 106 colony forming units (cfu) per mL) and 100 µL of CaMHB 

containing increasing concentrations of polymyxin B (0.25–256 mg/L). The MICs were defined 

as the lowest concentration at which visible growth was inhibited following 18 h incubation at 

37°C. Cell viability was determined by sampling wells at polymyxin B concentrations greater 

than the MIC. These samples were diluted in normal saline and spread plated onto nutrient agar. 

After incubation at 37C for 20 h, viable colonies were counted on these plates. The limit of 

detection was 10 cfu/mL.  

Table 4.1 Antibiotic susceptibility and resistance gene profiles for two K. pneumoniae 

Isolate name 
 

K. 

pneumoniae 

FADDI-

KP069 

  
K. 

pneumoniae  

BM3 

Antibiotic 

susceptibility 

 
Susceptibility MIC 

Value 

 
Susceptibility 

 
Ampicillin R ≥32 

 
ND  

Amoxicillin/Clavulanic Acid R ≥32 
 

ND  
Ticarcillin/Clavulanic Acid R ≥128 

 
ND  

Piperacillin/Tazobactam R ≥128 
 

ND 
 

Cefazolin R ≥64 
 

ND  
Cefoxitin R ≥64 

 
ND  

Ceftazidime R ≥64 
 

ND  
Ceftriaxone R ≥64 

 
ND  

Cefepime R 8 
 

ND  
Meropenem R ≥16 

 
ND  

Amikacin R ≥64 
 

I  
Gentamicin R ≥16 

 
R  

Tobramycin R ≥16 
 

ND  
Ciprofloxacin R ≥4 

 
R  

Norfloxacin R ≥16 
 

ND  
Nitrofurantoin R 256 

 
S  

Trimethoprim R ≥16 
 

ND  
Trimethoprim/Sulfamethoxazole R ≥320 

 
ND 

 
Tetracyclin ND ND 

 
R  

Chloramphenicol ND ND 
 

S 
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Netilmicin ND ND 

 
I  

Tigecycline ND ND 
 

I  
Fosfomycin ND ND 

 
S  

Aztreonam ND ND 
 

R 

Resistance 

genes 

ESBL + 
  

ND 

 
Carbapenemase (metallo or 

KPC) 

+ 
  

ND 

 
NDM-1 ND 

  
+  

CTX-M ND 
  

+  
CMY-2 ND 

  
-  

SHV ND 
  

+  
TEM ND 

  
+  

AAC-6'-1B + 
  

+ 

R = Resistant 

I = Intermediate 

S = Susceptible 
 

4.2.4  Isolation of outer membrane vesicles (OMVs) 

Mid-logarithmic cultures (6 L) of each isolate were grown at 37°C with shaking (1800 rpm) and 

cell free supernatants were collected through centrifugation (15 min at 10,000 × g, 4°C). Where 

indicated, polymyxin B was added to the culture volume at a final concentration of 2 mg/L. The 

OMV containing supernatants were filtered through 0.22-μm membrane (Sigma-Aldrich) to 

remove any remaining cell debris., and then concentrated through a tangential filtration 

concentrator unit (Pall Life Science, Ann Arbor, MI, USA) and collected using 100 kDa Pellicon 

filtration cassettes (Millipore, Melbourne, Australia). Also, a portion of the supernatant was 

plated for growth on agar plates overnight at 37°C to make sure that the supernatant is free of 

bacterial cells. OMVs in the cell-free supernatants were then pelleted down by 

ultracentrifugation at 150,000 × g for 2 h at 4 °C in a Beckman Ultracentrifuge (SW28 rotor). 

Purified OMVs were concentrated re-suspended in 1 mL sterile PBS and the concentration was 

determined by Bio-Rad (Gladesville, NSW, Australia) protein assay.  

4.2.5  Lipidomics analysis 

OMV lipids were extracted with the single-phase Bligh-Dyer method (CHCl3/MeOH/H2O, 

1:3:1, v/v) (463). For further analysis, samples were reconstituted in 100 µL of CHCl3 and 200 

µL of MeOH, centrifuged at 14,000 × g for 10 min at 4 C to obtain particle-free supernatants. 
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LC-MS for lipidomic analysis was conducted on a Dionex U3000 high-performance liquid 

chromatography system (HPLC) in tandem with a Q-Exactive Orbitrap mass spectrometer 

(Thermo Fisher, Melbourne, Australia) in both positive and negative mode with a resolution at 

35,000. The mass scanning range was from 167 to 2000 m/z. The electrospray voltage was set 

as 3.50 kV and nitrogen was used as collision gas. The Ascentis Express C8 column (5 cm  2.1 

mm, 2.7 µm, Sigma-Aldrich, 53831-U) was maintained at 40C, and the samples were 

controlled at 4C. The flow rate was 0.2 mL/min at first 24 min, but increased to 0.5 mL/min 

from 25 min to 30 min. The multi-step gradient started from 100% to 80% mobile phase A over 

the first 1.5 min, then to 72% mobile phase A at 7 min, over the next 1 min, the gradient changed 

to 65% mobile phase A, from 8 min to 24 min, the gradient reached a final composition of 35% 

mobile phase A and 65% mobile phase B. This was followed by a washing step from 65% to 

100% mobile phase B over the next 1 min, and maintained for 2 min. A 2-min re-equilibration 

of the column with 100% A was performed between injections. Untargeted lipidomic analyses 

were performed through mzMatch (464); and IDEOM (465) 

(http://mzmatch.sourceforge.net/ideom.php). Raw LC-MS data files were converted to mzXML 

format through a proteowizard tool, Msconvert. Automated chromatography peaks were picked 

by XCMS (466), and then converted to peakML files, which were combined and filtered by 

mzMatch based on the intensity (1000), reproducibility (RSD for all replicates < 0.8), and peak 

shape (codadw > 0.8). The mzMatch program was used for retrieving intensities for missing 

peaks and the annotation of related peaks. Unmatched peaks and noises were rejected through 

IDEOM. The database used in IDEOM included KEGG, MetaCyc and Lipidmaps (467). 

Univariate statistics analysis was performed using a Welch’s T-test (p-value < 0.05), while 

multivariate analysis was conducted using the metabolomics R package.  

 

4.2.6 Transmission electron microscopy (TEM) 

Carbon coated Formvar copper grids were placed on a drop of OMV suspension (1 mg/mL 

protein) for 5 min then washed three times with PBS and fixed in 1% glutaraldehyde for 4 min. 
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Grids were then washed three times with PBS, two times with Milli-Q water and stained for 20 

s with 4% uranyl acetate. Grids were finally washed with Milli-Q water and incubated on ice 

for 10 min in methyl-cellulose with 4% uranyl acetate (9:1). Grids were then air dried and 

viewed with a Tecnai Spirit (T12) transmission electron microscope, and the images were 

acquired using the TIA software (FEI, Melbourne, Australia).  

 

4.2.7 Dynamic Light Scattering 

The particle size of the OMVs was measured by using dynamic light scattering (DLS). OMVs 

were diluted with PBS to a protein concentration of 0.05 mg/L and the scatter was recorded 

using a Zetasizer NanoS (Malvern, PA, USA) at 173° with a laser of wavelength 632 nm. Data 

were analysed with Zetasizer Software (V7.11, Malvern, UK) to obtain the average 

hydrodynamic radius 

 

 Results and Discussion 

4.3.1 Lipidomics analysis of OMVs from polymyxin-susceptible and resistant K. 

pneumoniae isolates 

The OMV lipidome from paired polymyxin-susceptible and -resistant strains from two clinical 

isolates (K. pneumoniae BM3 and FADDI-KP069) and a laboratory type strain (K. pneumoniae 

ATCC 700721) were characterised following lipid extraction using LC-MS analysis. 

Compositional analysis revealed that the OMV lipid composition of all the K. pneumoniae 

strains mostly consisted of glycerophospholipids (35%), fatty acids (33%) and sphingolipids 

(20%). Similarly, across all three strains the OMV minor lipid components consisted of lipids 

from the following classes, glyceroipids (4%), sterol lipids (3%) and prenol lipids (4%). 

Principle component analysis (PCA) score plots and the heat map revealed significant global 

lipidomic differences between the OMVs of the polymyxin-susceptible and -resistant K. 

pneumoniae strains (Figures 4.1 & 4.2). Notably, following treatment with a clinically relevant 

http://www.malvern.com/en/products/product-range/zetasizer-range/zetasizer-nano-range/zetasizer-nano-s/default.aspx
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concentration of polymyxin B (2 mg/L) we observed marked global lipidome perturbations in 

the OMVs of the polymyxin-susceptible K. pneumoniae strains; whereas the OMVs of the 

resistant strains showed moderate global lipidome perturbations in response to polymyxin B 

treatment of the cells. For univariate analyses, all of the putatively identified lipids were further 

analysed to reveal those showing at least 2-fold differences (p < 0.05, FDR < 0.05, one-way 

ANOVA test) in relative abundance (Figure 4.3). The cluster algorithm and fold-change 

analysis highlighted that, compared to the untreated controls, polymyxin B treatment (2 mg/L) 

of the polymyxin-susceptible K. pneumoniae ATCC 700721 significantly reduced the 

phosphatidylcholine, phosphatidylethanolamine and 1-acyl-glycerophosphocholine content of 

its OMVs. Additionally, the sphingolipids namely, sphingosine, N-acyl-sphingosine (ceramide), 

N-acyl-sphinganine(dihydro-ceramide), sphingomyelin, glucosyl-ceramide and lactosyl-

ceramide were significantly reduced following polymyxin B treatment (Figure 4.3A i.). 

Moreover, certain saturated fatty acids (e.g. hexadecanoic acid and octadecanoic acid), and 

polyunsaturated fatty acids (-linolenic acid and arachidonic acid) were also reduced in the 

OMVs of the polymyxin B treated susceptible isolate. Polymyxin B treatment of the its paired 

polymyxin-resistant K. pneumoniae ATCC 700721 laboratory isolate significantly increased the 

content of lysoglycerophosphates, phosphatidylcholines and phosphatidylethanolamines in its 

OMVs (Figure 4.3A ii.). Similarly, to the polymyxin-susceptible ATCC 700721 isolate, most 

of the glycerophospholipid and fatty acid content of the OMVs isolated from the polymyxin B 

treated polymyxin-susceptible clinical isolates (K. pneumoniae BM3 and FADDI-KP069) were 

significantly reduced compared to untreated controls (Figure 4.3B i. and C i.). In particular, 

glycerophospholipids (e.g., phosphatidylethanolamines, phosphatidylcholines, 

lysophosphatidylcholines, and lysoglycerophosphates) were remarkably reduced in response to 

polymyxin B treatment. In addition, fatty acids (e.g. docosanoic acid, octadecenoic acid and 

hexadecanoic acid); and sphingolipids (mainly dihydro-ceramides) were also significantly 

reduced in response to polymyxin B be treatment. In contrast, the majority of 

glycerophospholipids, fatty acids and sphingolipids content of OMVs isolated from their paired 
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polymyxin-resistant K. pneumoniae BM3 and FADDI-KP069 isolates were significantly 

increased in response to polymyxin B treatment (Figure 4.3B ii. and C ii.). Notably, all of the 

polymyxin B-resistant strains secreted OMVs significantly are richer in glycerophospholipids, 

fatty acids, lysoglycerophosphates and sphingolipids compared to polymyxin B-susceptible 

isolates even when grown in the absence of polymyxin B (Figure 4.4). Glycerophospholipids, 

fatty acids, glycerolipids and sphingolipids play a crucial role in maintain OM integrity, 

bacterial survival and pathogenesis (468). Phospholipids (including glycerophospholipids) are 

essential components of bacterial membranes and they are responsible for maintaining 

membrane integrity and the selective permeability of the OM (469); they contribute to cationic 

peptide resistance, protect bacteria from osmotic stress and regulate flagellum-mediated motility 

(470). In addition, sphingolipids are essentially involve in maintaining normal bacterial growth 

and membrane integrity; and trigger bacterial pathogenesis via induction of the host immune 

system (471).  

 

Figure 4.1 Principal component analysis (PCA) score plot for OMVs isolated from polymyxin-susceptible 

and -resistant K. pneumoniae isolates. (A) PCA score plot for the two clinical isolates. Polymyxin-resistant 

K. pneumoniae BM3 untreated (red); polymyxin-resistant K. pneumoniae BM3 treated with polymyxin 

B (2 mg/L) (green); polymyxin-susceptible K. pneumoniae BM3 untreated (blue); polymyxin-susceptible 

K. pneumoniae BM3 treated with polymyxin B (2 mg/L) (cyan); polymyxin-resistant K. pneumoniae 

FADDI-KP069 untreated (purple); polymyxin-resistant K. pneumoniae FADDI-KP069 treated with 

polymyxin B (2 mg/L) (yellow); polymyxin-susceptible K. pneumoniae FADDI-KP069 untreated (grey); 

polymyxin-susceptible K. pneumoniae FADDI-KP069 treated with polymyxin B (2 mg/L) (black). (B) 
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PCA score plot for the paired K. pneumoniae ATCC 700721 laboratory type isolates. Polymyxin-

resistant K. pneumoniae ATCC 700721 untreated (red); polymyxin-resistant K. pneumoniae ATCC 

700721 treated with polymyxin B (2 mg/L) (green); polymyxin-susceptible K. pneumoniae ATCC 700721 

untreated (blue); polymyxin-susceptible K. pneumoniae ATCC 700721 treated with polymyxin B (2 

mg/L) (cyan). Each data point represents three biological replicates. 

 

 

Figure 4.2 The heat map illustrates the relative peak intensity of lipids within each class in 

the OMVs of the paired polymyxin-susceptible and -resistant K. pneumoniae isolates. (R) 

= polymyxin-resistant; (S) = Polymyxin-susceptible. Colours indicate relative abundance 

of lipidomes based on the relative peak intensity (red = high, yellow = no change, blue = 

undetectable). 
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Figure 4.3 Lipidomic perturbations of OMVs isolated from polymyxin-susceptible and -resistant K. 

pneumoniae isolates.  Fold-change of lipids relative to the untreated control cells, in OMVs of    the 

polymyxin-susceptible (i) and -resistant (ii) strains of paired K. pneumoniae isolates in response to 

polymyxin B treatment (2 mg/L). (A) K. pneumoniae ATCC 700721. (B) K. pneumoniae BM3 and (C) 

K. pneumoniae FADDI-KP069. GPLs = glycerophospholipids; FA = fatty acids; GL = glycerolipids; SP 

= sphingolipids. 
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Figure 4.4 Major differences in the lipid abundance between the OMVs of paired polymyxin-

susceptible and -resistant K. pneumoniae isolates. The differences are expressed as the fold-

change in the OMV lipids of the paired susceptible vs. resistant K. pneumoniae isolates. All 

cultures were grown in the absence of polymyxins. (A) K. pneumoniae ATCC 700721. (B) 

K. pneumoniae BM3 and (C) K. pneumoniae FADDI-KP069. GPLs = glycerophospholipids; 

FA = fatty acids; GL = glycerolipids; SP = sphingolipids. 

 

 

4.3.2 Transmission electron microscopy imaging and dynamic light scattering size 

estimation of K. pneumoniae OMVs  

Dynamic light-scattering (DLS) analysis revealed that the average hydrodynamic radius of the 

OMVs derived from the K. pneumoniae ATCC 700721 polymyxin-susceptible isolate is ~90.6 nm; 

the profile was symmetrical and the OMV scatter ranged from ~30–500 nm (Figure 4.5A). 

The average hydrodynamic radius of the OMVs isolated from the paired K. pneumoniae ATCC 

700721 polymyxin-resistant isolate was ~141 nm and the OMV scatter ranged from ~30 to 

1000 nm (Figure 4.5C), which indicates that   the resistant isolae sheds larger OMVs than the 

susceptible one. Polymyxin B treatment (2 mg/L) of the K. pneumoniae cells resulted in the 

production of OMVs with slightly larger average particle size in both the susceptible (average 

diameter ~124 nm, OMV scatter ~30–900 nm; Figure 4.5B) and resistant (average 

hydrodynamic radius ~154 nm, OMV scatter ~30–1500 nm; Figure 4.5D) strains. Notably, the 
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OMV scatter profile in the resistant strain is asymmetrical, with and without polymyxin B 

treatment. In line with the DLS data (472, 473), TEM imaging of K. pneumoniae OMVs revealed 

a similar size distribution wherein the polymyxin-resistant K. pneumoniae ATCC 700721 strain 

produced larger OMVs than the susceptible strain (Figure 4.6).  Moreover,  the OMVs isolated 

from the polymyxin-resistant isolate stained darker with the TEM contrast reagent uranyl 

acetate, which enhances the contrast by interaction with lipids; in line with the lipidomics 

findings, this would suggest that the OMVs of the resistant strains contain more lipids.  

Similarly,   in Salmonella enterica, LPS remodelling in the OM in response to polymyxins or 

other environmental PhoP/Q–PmrA/B activating conditions, has been shown to stimulate the 

biogenesis of larger-diameter OMVs (303, 460-462). 

 

 

Figure 4.5 Size distribution measured by dynamic light scattering of OMVs isolated from paired 

polymyxin-susceptible and -resistant strains of K. pneumoniae ATCC 700721. OMVs isolated from the 

polymyxin-susceptible K. pneumoniae ATCC 700721 (A) without polymyxin B treatment and (B) with 

polymyxin B (2 mg/L) treatment. OMVs isolated from the polymyxin-resistant K. pneumoniae ATCC 

700721 (C) without polymyxin B treatment and (D) with polymyxin B (2 mg/L) treatment. The data are 

is presented as the mean SUV size±SD of four independent measurements. Polymyxin-resistant strain 

released larger OMVs than susceptiple strain. Moreover, both susceptible and resistatnt strains produced 
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OMVs larger in particle size compared to OMVs derived from untreated ones.  

 

 Conclusions 

In this study, we show that polymyxin B treatment of the susceptible K. pneumoniae strains 

significantly reduced the glycerophospholipid, fatty acid, lysoglycerophosphate and 

sphingolipid content of their OMVs, compare to the untreated control. On the other hand, in 

the OMVs of their paired polymyxin-resistant strains these lipids were increased both 

intrinsically and in response to polymyxin B treatment. In view of these findings, it is 

reasonable to hypothesize that the OM remodelling associated with polymyxin- resistance in 

K. pneumoniae entails fortifying the membrane with increased glycerophospholipids, fatty 

Figure 4.6 Transmission electron microscopy images of OMVs isolated from paired polymyxin-

susceptible and -resistant strains of K. pneumoniae ATCC 700721. (A) OMVs from untreated 

K. pneumoniae ATCC 700721 (susceptible). (B) OMVs from polymyxin B (2 mg/L) treated 

K. pneumoniae ATCC 700721 (susceptible). (C) OMVs from untreated K. pneumoniae ATCC 

700721 (resistant). (D) OMVs from polymyxin B (2 mg/L) treated K. pneumoniae ATCC 

700721 (resistant). 
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acids, lysoglycerophosphates and sphingolipids, which are lipids to which polymyxins cannot 

avidly bind. It is important to mention that polymyxins primarily target the lipid A in the 

Gram-negative OM—hence their narrow spectrum of activity against Gram-negative bacteria 

that do not express LPS. These OM changes may be accompanied by the modification of the 

lipid A with cationic moieties and/or a reduction in the lipid A content, which, together with 

the increased content of the aforementioned lipids, serve to make the K. pneumoniae OM and 

OMVs more impervious to polymyxin attack. 
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Chapter 5: A comparative study of outer membrane 

proteome between a paired colistin-susceptible and 

extremely colistin-resistant Klebsiella pneumoniae 

strains 
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 Introduction 

Over the last decade, extremely-drug resistant (XDR) K. pneumoniae has emerged as one of 

the deadliest Gram-negative ‘superbugs’ (413-415). K. pneumoniae is responsible for 

numerous lethal nosocomial outbreaks (e.g. pneumonia and bloodstream infections), 

particularly in immune-compromised patients (416). Carbapenem resistance in K. pneumoniae 

mediated by carbapenemase was initially reported in 1996 in the New York City and has spread 

to most global centres (417, 418). In their 2013 Threat Report on Antimicrobial Resistance, the 

US Centres for Disease Control and Prevention prioritized Carbapenem-Resistant 

Enterbacteriaceae as an urgent threat (i.e. the highest level) (474). Polymyxins (i.e. colistin 

and polymyxin B, Figure 5.1A) are increasingly used as the last-line therapy against XDR K. 

pneumoniae (15). Indeed, considerable in vitro activity against K. pneumoniae strains has been 

demonstrated (136); 98.2 % of general clinical strains of K. pneumoniae are susceptible to 

polymyxin B and colistin (420-425). Worryingly, XDR strains which are resistant to several 

antibiotics including the polymyxins have emerged (426, 427). The emergence of these XDR 

strains demands a greater appreciation of the mechanism(s) of polymyxin resistance employed 

by K. pneumoniae to assist targeted drug discovery strategies against these problematic XDR 

Gram-negative pathogens. 

The Gram-negative OM constitutes a permeability barrier to various noxious substances for 

the bacterial cell, such as antimicrobials (156, 428). This complex asymmetrical structure 

comprises an inner phospholipid leaflet, as well as an outer leaflet that predominantly contains 

proteins, phospholipids and LPS, (Figure 5.1B). Structurally, LPS is composed of three 

domains; (i) the variable O-antigen chain (encompassing repeated saccharide units); (ii) a core-

oligosaccharide region and (iii) the conserved lipid A moiety. Lipid A is embedded within the 

OM leaflet, functioning as a hydrophobic anchor for the LPS molecule (475). Additionally, K. 
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pneumoniae commonly expresses a capsular polysaccharide that coats the OM, the expression 

levels of which have been related to polymyxin susceptibility (429-432). 

The precise mechanism of action of polymyxins remains contentious, and based on biophysical 

studies a number of models have been put forward (476). The consensus view is that 

polymyxins are OM active antibiotics and that lipid A is the primary polymyxin target (476). 

A well accepted model termed the ‘self-promoted uptake’ pathway, purports that the 

amphipathic nature of polymyxins is crucial to enable uptake of the polymyxin molecule across 

the OM barrier (477-479). In the self-promoted uptake model, protonation of free γ-amines on 

the Dab residues of polymyxins at physiological pH, provides a means of electrostatic 

attraction to anionic 1′- and 4′-phosphates of lipid A (476). The resultant displacement of 

divalent cations that stabilize the LPS leaflet, allows the hydrophobic N-terminal fatty-acyl tail, 

and D-Phe-L-Leu or D-Leu-L-Leu motifs (of polymyxin B and colistin, respectively) to be 

inserted into the OM fatty acyl layer. Notably, polymyxin nonapeptide which has the N-

terminal fatty acyl-Dab1 removed is inactive, which highlights these hydrophobic interactions 

with lipid A acyl chains play an important role in the disruption of the OM (476, 477). 

Subsequent events are not completely understood, however, polymyxin-mediated fusion of the 

inner leaflets of the outer- and cytoplasmic-membranes surrounding the periplasmic space, is 

believed to induce phospholipid exchange, resulting in cell wall disruption which culminates 

in cell death (480-482). Albeit, the relationship between bacterial killing activity, polymyxin 

resistance and OM remodelling events that perturb the ability of polymyxins to interact with 

the OM components, remains poorly characterized in K. pneumoniae, and therefore warrants 

further investigation. Particularly, a proteomic approach has yet to be applied to the OM of 

polymyxin-resistant K. pneumoniae, where most studies have focused on the roles of LPS and 

the capsule (429, 431, 441). OMPs play a vital role in bacterial pathogenesis and are involved 
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in adhesion, penetration, complement activation, virulence proliferation and antibiotic 

resistance (428, 430, 483, 484). Compared to Escherichia coli, very little is known regarding 

the OM proteome of K. pneumoniae, let alone its relation to antibiotic resistance. 

In the present study, we performed a comparative bioinformatic and proteomic analysis for the 

OM proteome and lipid A profiles of a paired colistin-susceptible and extremely colistin-

resistant K. pneumoniae ATCC 13883 strains. The genome of both strains was sequenced, 

assembled and scanned to generate a comprehensive inventory of polymyxin resistance 

determinants in each strain. The obtained data sheds new light on the OM remodelling 

associated with extremely high levels of colistin resistance in K. pneumoniae. 
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Figure 5.1 (A) Chemical structure of colistin and polymyxin B. Leu: leucine; Phe: phenylalanine; Dab: 

,-diaminobutyric acid. (B) Architecture of the Gram-negative cell envelope. 

 

 

 Materials and Methods 

5.2.1 Materials 

Colistin sulphate (Batch 20120719) was supplied by Betapharma (Shanghai, China). All 

chemicals were purchased from Sigma-Aldrich at the highest research grade, ultrapure water 

was from Fluka (Castle Hill, NSW Australia), Tris from ICN biochemicals (Castle Hill, NSW, 
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Australia) and the precast-SDS gels were from (NuSep Ltd, Lane Cove, NSW, Australia). 

Stock solutions of colistin (10 mg/L) were prepared in Milli-Q™ water (Millipore, North Ryde, 

NSW, Australia) and filtered through 0.22 µm syringe filters (Sartorius, Melbourne, Vic, 

Australia).  

 

5.2.2 Bacterial strains and growth conditions 

K. pneumoniae ATCC 13883 was obtained from the American Type Culture Collection 

(Manassas, VA, USA) and used as a reference strain (colistin minimum inhibitory 

concentration (MIC) = 0.5 µg/mL). A paired colistin-resistant strain (colistin MIC > 256 

µg/mL) was selected from this reference strain in the presence of 100 µg/mL colistin. All 

bacteria were stored at -80ºC in tryptone soya broth (TSB, Oxoid Australia). Prior to 

experiments, parent strains were sub-cultured onto nutrient agar plates (Medium Preparation 

Unit, University of Melbourne, VIC, Australia). Overnight broth cultures were subsequently 

grown in 5 mL of cation-adjusted Mueller-Hinton broth (CaMHB, Oxoid, West Heidelberg, 

VIC, Australia), from which a 1 in 100 dilution was performed in fresh broth to prepare mid-

logarithmic cultures according to the optical density at 500 nm (OD500nm = 0.4 to 0.6). All broth 

cultures were incubated at 37°C in a shaking water bath (180 rpm).  

 

5.2.3 Minimum Inhibitory Concentration (MIC) microbiological assay 

MICs for each strain were determined by the broth microdilution method (485). Experiments 

were performed with CaMHB in 96-well polypropylene microtitre plates. Wells were 

inoculated with 100 µL of bacterial suspension prepared in CaMHB (containing 106 colony 

forming units (cfu) per mL) and 100 µL of CaMHB containing increasing concentrations of 

polymyxins. The MICs were defined as the lowest concentration at which visible growth was 
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inhibited following 18 h incubation at 37°C. Cell viability was determined by sampling wells 

at polymyxin concentrations greater than the MIC. These samples were diluted in normal saline 

and spread plated onto nutrient agar. After incubation at 37C for 20 h, viable colonies were 

counted on these plates. The limit of detection was 10 cfu/mL.  

 

5.2.4 Isolation of outer membrane proteins (OMPs) 

OMPs were extracted as described previously with minor modifications to the original protocol 

(486). Briefly, cells from a 600 mL culture of K. pneumoniae ATCC 13883 were pelleted by 

centrifugation (3200 × g for 10 min at 4°C) and resuspended in 30 mL 10 mM N-2 hydroxy 

ethyl piperazine-N'-2-ethane sulfonic acid (HEPES), pH 7.4. The cells were lysed by sonication 

for 10 minutes (pulse at 5 sec/5 s on ice) and then centrifuged at 3200 × g for 10 min at 4°C to 

remove the cell debris. The supernatant was combined with 7.5 mL of 2% (w/v) N-

lauroylsarcosine and incubated for 20 min at 37°C for 30 min with shaking. The detergent 

solubilized OMPs were recovered by high speed centrifugation at 75 000 x g for 1 h at 4°C 

(Beckman, RA 25.50 rotor) and the pellet was resuspended in 30 mL 10 mM HEPES, pH 7.4 

and combined with 7.5 mL of 2% (w/v) N-lauroylsarcosine and incubated for 20 min at 37°C 

for 30 min with shaking. The OMPs were recovered by high speed centrifugation at 75 000 x 

g for 1 h at 4°C. Following this final ultracentrifugation, the pellet was resuspended in 1500 

μL of 10 mM HEPES, pH 7.4 and stored at -20°C.  

 

5.2.5 SDS-PAGE  

Protein concentration was measured by the Bradford assay and equalized for gel loading. SDS-

PAGE was carried out on 4-20% polyacrylamide Tris-Glycine gels and OMPs were detected 

by Coomassie Blue staining. Fractionation of the OMPs was achieved by dissecting uniform 
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pieces of the gel (1 mm wide bands). Individual polyacrylamide gel plugs were washed 5  

with 25 mM ammonium bicarbonate in 50% methanol. The gel slices were shrunk by leaving 

them overnight in pure acetonitrile (ACN). ACN was then removed and the gel plug allowed 

to air dry at room temperature. The plugs were reconstituted with 50 mM ammonium 

bicarbonate containing 800 ng of trypsin (Promega, Annandale, NSW Australia), and left at 

37oC overnight. The resulting peptides were extracted by double application of 20 µL of 50% 

ACN /0.1 % trifluoracetic acid and the extracts combined. 

 

5.2.6 Ultra High Pressure Liquid Chromatography coupled with Mass Spectrometry 

For all experiments, an Ultimate3000 ultra high-pressure liquid chromatography system 

(Dionex, Castle Hill, Sydney) was used equipped with a ternary low pressure mixing gradient 

pump (LPG-3600), a membrane degasser unit (SRD-3600), a temperature controlled pulled-

loop autosampler (WPS-3000T) and a temperature controlled column oven with flow manager 

(FLM-3100). The LC experiments were performed using the “pre-concentration” set-up under 

the following conditions: Nano-column C18 PepMap100, 75 µm ID  150 mm, 3 µm, 100 Ǻ; 

mobile phase A: 99.9% water + 0.1% FA (v/v, formic acid); mobile phase B: 20/80 water/ACN 

(v/v) + 0.08 % FA; flow rate nano-column, 400 nL/min; gradient, 2-40% B over 45 min, 90% 

B for 5 min, 4% B for 30 min; loop size, 5 µL; injection volume, 4 µL (FullLoop) by User 

Defined Program. The oven was set to 35C. For the identification of peptides, CID 

experiments were performed using an AmaZon ETD Ion Trap (Bruker Daltonik GmbH, 

Australia) equipped with an online-nano-sprayer spraying from a 0.090 mm i.d. and 0.02 mm 

i.d. fused silica capillary.  Fine tuning was achieved using the smart parameter setting option 

(SPS) for 900 m/z, compound stability 60%, and trap drive level at 100% in normal mode 

resulted in the following mass spectrometric parameters: dry gas temperature, 180°C; dry gas, 
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4.0 L min-1; nebulizer gas, 0.4 bar; electrospray voltage, 4500 V; high-voltage end-plate offset, 

-200 V; capillary exit, 140 V; trap drive, 57.4; funnel 1 in 100 V, out 35 V and funnel 2 in 12 

V, out 3.3 V; ICC target, 500000; maximum accumulation time, 50 ms. The sample was 

measured with the Enhanced Scan Mode at 8100 m/z per second (which allows monoisotopic 

resolution up to four charge stages), polarity positive, scan range from m/z 100-3000, 5 spectra 

averaged and rolling average of 2. Acquired tandom mass spectra were processed in Data 

Analysis 4.0; deconvoluted spectra were further analyzed with BioTools 3.2 software and 

submitted to Mascot database search (Mascot 2.2.04, Swissprot database (546,439 sequences; 

194,445,396 residues, release date 23 Mar 2015). The species subset was set at K. pneumoniae 

ATCC 13883, parent peptide mass tolerance +/- 0.4 Da, fragment mass tolerance +/- 0.4 Da; 

enzyme specificity trypsin with 2 missed cleavages considered. The following variable 

modifications have been used:  Deamidation (NQ) and Oxidation (M) and 

carrbomidiomethyaltion (C). 

 

5.2.7 Proteomics analysis 

The derived MS datasets on the 3D-trap system were combined into protein compilations using 

the Protein Extractor functionality of Proteinscape 2.1.0 573 (Bruker Daltonics, Bremen, 

Germany), which conserved the individual peptides and their scores, while combining them to 

identify proteins with much higher significance than achievable using individual searches. To 

exclude false positive identifications, peptides with Mascot scores below 40 (chosen on the 

basis of manual evaluation of the MS/MS data of peptides with scores below this number) were 

rejected.  The identified protein sequences were manually validated in BioTools (Bruker 

Daltonics, Bremen, Germany) on a residue-by residue basis using the raw data to ensure 

accuracy. In brief, the ion series were inspected to ensure: the peaks being selected were not 



159 
 
 

 

simply base-line, the accuracy between the residues was less than 0.15 Da and that, 

preferentially, an overlapping ion series was found, as explained in greater detail in the Results 

section. When run against a reversed database, and the spectra manually interpreted in a similar 

fashion, we found a false discovery rate of less than 0.1%. 

 

5.2.8 GO term enrichment 

  Since each protein was annotated using the genome of type strain MGH 78578 as reference, 

the gene ontology (GO) terms were crossreferred using MGH 78578 PATRIC, (487) identifiers 

and the GO annotations provided by UniProt (447). The subcellular localisation of each protein 

was predicted using PSORTb 3.0 (488). GO term enrichment using Fisher’s exact test was 

implemented in R with FDR<0.05. 

 

5.2.9 Metabolic pathway analysis 

The corresponding BioCyc,(489) identifier of each protein was crossreferred using 

PATRIC,(487) identifiers and the annotation from UniProt (447). The protein associated 

metabolic reactions were highlighted in BioCyc Cellular Overview Diagram (490). Enrichment 

analysis of the metabolic pathway classifications was performed using BioCyc embedded 

functions with FDR<0.1. 

 

5.2.10 Lipid A isolation and structural elucidation 

The K. pneumoniae ATCC 13883 strains were subcultured onto nutrient agar plates. The 

colistin resistant strain was maintained on agar plates containing colistin at 50 µg/mL. 

Overnight (20 h) cultures were subsequently grown in 5 mL of CaMHB at 37C, from which 
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a 1:100 dilution was performed into fresh media to prepare a 100 mL culture which was then 

grown to an OD600nm = 0.8. Lipid A was isolated by mild acid hydrolysis (491). In brief, the 

bacterial cells (OD600nm= 0.8) from 100 mL of liquid culture were harvested via centrifugation 

at 3,220 g for 20 min, and then washed twice with 5 mL of PBS. The cells were re-suspended 

in 4 mL of PBS, then chloroform (5 mL) and methanol (10 mL) were then added to the 

suspension, producing a single-phase Bligh-Dyer mixture (chloroform/methanol/water, 

1:2:0.8, v/v) (492). The mixture was centrifuged at 3,220  g for 15 min to remove the 

supernatant. The LPS pellet was washed once with chloroform/methanol/water (1:2:0.8, v/v) 

and resuspended in 5.4 mL of hydrolysis buffer (50 mM sodium acetate pH 4.5, 1% SDS), and 

incubated in a boiling water bath for 45 min. To extract the lipids after hydrolysis, the SDS 

solution was converted into a double-phase Bligh-Dyer mixture by adding 6 mL of chloroform 

and 6 mL of methanol, forming a chloroform/methanol/water (1:1:0.9, v/v) mixture (492). The 

lower phase containing lipid A was finally extracted. Samples were dried and stored at -20C 

for further analysis. Structural analysis of lipid A was performed by electrospray ionization 

(ESI) tandem mass spectrometry in negative mode performed on a Q-Exactive Hybrid 

Quandrupole-Orbitrap Mass Spectrometer (Thermo Fisher). 

 

5.2.11 Genome sequencing 

Genomic DNA was purified using a Qiagen genomic DNA extraction kit. Deploying a whole 

genome shotgun strategy, the genomic DNA was sheared to fragments of approximately 500 

base pairs (bp); sequencing libraries were then prepared from the sheared DNA according to 

Illumina protocols for paired-end sequencing and run on an Illumina GAIIx. The 150 bp, 

paired-end read set was de novo assembled using Velvet (493). 
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 Results and Discussion 

5.3.1 OMP proteome differences between paired colistin-susceptible and extremely 

colistin-resistant K. pneumoniae ATCC 13883 strains 

There exists a dearth of knowledge regarding the OMP of polymyxin-resistant K. 

pneumoniae strains. Campos et. al., (431) showed that resistance to cationic antimicrobial 

peptides in K. pneumoniae was due to, in part by the thickness of capsular polysaccharide 

material coating the surface, albeit recent studies have also shown that polymyxin susceptibility 

was not altered in a non-encapsulated K. pneumoniae mutants (432, 441). This would suggest 

that besides the capsule, additional components that constitute the OM serve an important 

barrier function against cationic antibiotics such as the polymyxins (156, 428). The OMPs of 

antibiotic resistant (494) K. pneumoniae have not been comprehensively studied and there is 

no established nomenclature (495-497). However, it is known that resistance to polymyxin B 

and β-lactam antibiotics is associated with the loss of either of the 35 and 36 kDa doublet, 

respectively termed OmpK35 and OmpK36.(430, 483, 484, 498-500). The OMP profile of each 

strain was initially resolved 1D by SDS-PAGE, which revealed five prominent bands with 

molecular masses of approximately 46, 36 (OmpK36), 35 (OmpK35), 20 and 12 kDa (Figure 

5.2). There were no discernible differences between the OmpK35 and OmpK36 of the 

polymyxin-susceptible and resistant strain of K. pneumoniae ATCC 13883. This suggests 

OmpK35 and OmpK36 porin deficiency is not involved in the polymyxin resistance 

mechanism(s) employed by this strain. 

 



162 
 
 

 

 

Figure 5.2 OMP profile of the paired polymyxin-susceptible and extremely polymyxin-resistant 

K. pneumoniae ATCC 13883 strains resolved on 4-15% SDS-PAGE gels and visualized by 

Coomassie Blue staining. Lane 1. Molecular weight standards. Lane 2. OMPs from the 

polymyxin-susceptible K. pneumoniae ATCC 13883. Lane 3. OMPs from the extremely 

polymyxin-resistant K. pneumoniae ATCC 13883. The OMPs profiling of both the polymyxin-

susceptible and resistant strain of K. pneumoniae ATCC 13883 showed no difference in 

OmpK35 and OmpK36 bands. 

 

 

Proteomic analysis identified 132 and 110 differentially represented OMPs in colistin-

susceptible wild-type and the extremely colistin-resistant mutant, respectively, with the 

reference ATCC 13883 proteome (Tables 5.1, 5.2, Supplementary Tables 5.3 and 5.4). In 
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wild type and mutant, 122 (92.4%) and 103 (93.6%) OMPs have GO annotations based on the 

Uniprot database (Supplementary Table 5.5). Enrichment analysis revealed that 23 pathways 

were significantly overrepresented in wild type, including biological processes of carbohydrate 

metabolism, cell division, peptidoglycan biosynthesis and ATP hydrolysis coupled proton 

transport; whereas in the colistin-resistant mutant, 13 GO classes were overrepresented, 

including those associated with OMPs related to bacterial stress responses (Supplementary 

Tables 5.6 and 5.7).  

In summary, 47 out of 132 (35.6%) sensitive strain OMPs and 38 out of 110 (34.5%) resistant 

strain OMPs were mapped onto metabolic pathways of type strain MGH78578, respectively 

(Supplementary Tables 5.3-5.5). Enrichment analysis showed that (i) Five metabolic 

pathways from BioCyc were overrepresented in the sensitive strain, including gluconeogenesis 

and pyruvate metabolism (Figure 5.3A and Supplementary Table 5.8); (ii) 17 metabolic 

pathways from BioCyc were overrepresented in the resistant strain, including glutamine 

degradation, pyruvate, aspartate and asparagine metabolism (Figure 5.3B and Supplementary 

Table 5.9).  

 

 

 

 

 



Table 5.1 OMP proteome differences between paired colistin-susceptible and extremely colistin-resistant K. pneumoniae ATCC 13883 strains. OMPs are 

ranked in each column based on the number of peptides detected. The less abundant OMPs detected are listed in Table 5.2. 

Sensitive K. pneumoniae ATCC 13883   

 

Resistant K. pneumoniae ATCC 13883   

Protein name Number of 

peptides 

detected 

Protein name Number of 

peptides 

detected 

Outer membrane protein A precursor 37 Outer membrane protein A precursor 26 

18K peptidoglycan-associated outer membrane 

lipoprotein; Peptidoglycan-associated lipoprotein 

precursor; Outer membrane protein P6; 

OmpA/MotB precursor 

21 major outer membrane lipoprotein 18 

major outer membrane lipoprotein    20 Pyruvate formate-lyase (EC 2.3.1.54)    17 

Non-specific DNA-binding protein Dps / Iron-

binding ferritin-like antioxidant protein / 

Ferroxidase (EC 1.16.3.1)    

17 18K peptidoglycan-associated outer membrane lipoprotein; 

Peptidoglycan-associated lipoprotein precursor; Outer membrane 

protein P6; OmpA/MotB precursor    

17 

Glycerol kinase (EC 2.7.1.30) 16 Putative exported protein precursor    14 

Translation elongation factor Tu  14 Translation elongation factor Tu   14 

Outer membrane protein W 12 Outer membrane protein Imp, required for envelope biogenesis / 

Organic solvent tolerance protein precursor    

12 

Putative exported protein precursor   11 Non-specific DNA-binding protein Dps / Iron-binding ferritin-

like antioxidant protein / Ferroxidase (EC 1.16.3.1)   

12 

Outer membrane protein Imp, required for envelope 

biogenesis / Organic solvent tolerance protein 

precursor   

10 Glycerol kinase (EC 2.7.1.30)   12 

Outer membrane protein X precursor   8 Outer membrane protein W precursor   9 

Translation elongation factor G   8 Type I secretion outer membrane protein, TolC precursor   9 

Nucleoside-specific channel-forming protein Tsx 

precursor   

8 Transcriptional repressor of PutA and PutP / Proline 

dehydrogenase (EC 1.5.99.8) (Proline oxidase) / Delta-1-

pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12)   

8 

Pyruvate formate-lyase (EC 2.3.1.54)   7 Enolase (EC 4.2.1.11)   7 
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NAD-dependent glyceraldehyde-3-phosphate 

dehydrogenase (EC 1.2.1.12)   

7 Phosphoenolpyruvate synthase (EC 2.7.9.2)   7 

Enolase (EC 4.2.1.11)   6 Outer membrane lipoprotein pcp precursor   6 

NAD-specific glutamate dehydrogenase (EC 

1.4.1.2); NADP-specific glutamate dehydrogenase 

(EC 1.4.1.4)   

6 Translation elongation factor G   6 

probable lipoprotein   5 NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 

(EC 1.2.1.12)   

6 

SSU ribosomal protein S4p (S9e)   5 Nucleoside-specific channel-forming protein Tsx precursor   6 

Cytochrome d ubiquinol oxidase subunit I (EC 

1.10.3.-)   

5 Cytochrome d ubiquinol oxidase subunit I (EC 1.10.3.-)   6 

Outer membrane protein assembly factor YaeT 

precursor   

5 probable lipoprotein   5 

Acetate kinase (EC 2.7.2.1)   5 NAD-specific glutamate dehydrogenase (EC 1.4.1.2); NADP-

specific glutamate dehydrogenase (EC 1.4.1.4)   

5 

Heat shock protein 60 family chaperone GroEL   4 Lysine decarboxylase, inducible (EC 4.1.1.18)   5 

LSU ribosomal protein L2p (L8e)   4 Heat shock protein 60 family chaperone GroEL   5 

Asparagine synthetase [glutamine-hydrolyzing] (EC 

6.3.5.4)   

4 Outer membrane protein X precursor   5 

Transcription termination factor Rho   4 Phosphate acetyltransferase (EC 2.3.1.8)   4 

SSU ribosomal protein S2p (SAe)   4 Glucosamine--fructose-6-phosphate aminotransferase 

[isomerizing] (EC 2.6.1.16)   

4 

Transcriptional repressor of PutA and PutP / Proline 

dehydrogenase (EC 1.5.99.8) (Proline oxidase) / 

Delta-1-pyrroline-5-carboxylate dehydrogenase (EC 

1.5.1.12)   

3 LSU ribosomal protein L2p (L8e)   4 

Universal stress protein G   3 Outer membrane protein assembly factor YaeT precursor   4 

Glucosamine--fructose-6-phosphate 

aminotransferase [isomerizing] (EC 2.6.1.16)   

3 Fructose-bisphosphate aldolase class II (EC 4.1.2.13)   4 
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Uronate isomerase (EC 5.3.1.12)   3 Universal stress protein G   3 

Outer membrane lipoprotein pcp precursor   3 PTS system, glucose-specific IIB component (EC 2.7.1.69) / 

PTS system, glucose-specific IIC component (EC 2.7.1.69)   

3 

Alcohol dehydrogenase (EC 1.1.1.1); Acetaldehyde 

dehydrogenase (EC 1.2.1.10)   

3 Acetate kinase (EC 2.7.2.1)   3 

Uncharacterized membrane protein YqjD   3 Transcription termination factor Rho   3 

Phosphoenolpyruvate synthase (EC 2.7.9.2)   3 Thiamin-phosphate pyrophosphorylase (EC 2.5.1.3)   3 

Type I secretion outer membrane protein, TolC 

precursor   

3 SSU ribosomal protein S3p (S3e)   3 

Myo-inositol 2-dehydrogenase 1 (EC 1.1.1.18)   2 Aspartate ammonia-lyase (EC 4.3.1.1)   2 

Isocitrate dehydrogenase [NADP] (EC 1.1.1.42)   2 LPS-assembly lipoprotein RlpB precursor (Rare lipoprotein B)   2 

Nucleoside permease NupC   2 Alcohol dehydrogenase (EC 1.1.1.1); Acetaldehyde 

dehydrogenase (EC 1.2.1.10)   

2 

Hydroxymethylpyrimidine phosphate kinase ThiD 

(EC 2.7.4.7)   

2 PTS system, mannose-specific IIA component (EC 2.7.1.69) / 

PTS system, mannose-specific IIB component (EC 2.7.1.69)   

2 

Alpha-galactosidase (EC 3.2.1.22)   2 GMP synthase [glutamine-hydrolyzing] (EC 6.3.5.2)   2 

Universal stress protein E   2 Uncharacterized membrane protein YqjD   2 

ATP synthase beta chain (EC 3.6.3.14)   2 PTS system, N-acetylglucosamine-specific IIA component (EC 

2.7.1.69) / PTS system, N-acetylglucosamine-specific IIB 

component (EC 2.7.1.69) / PTS system, N-acetylglucosamine-

specific IIC component (EC 2.7.1.69)   

2 

SSU ribosomal protein S3p (S3e)   2 Alkyl hydroperoxide reductase protein C (EC 1.6.4.-)   2 

PTS system, glucose-specific IIB component (EC 

2.7.1.69) / PTS system, glucose-specific IIC 

component (EC 2.7.1.69)   

2 Hydroxymethylpyrimidine phosphate kinase ThiD (EC 2.7.4.7)   2 

Lipoprotein   2 Pyruvate formate-lyase (EC 2.3.1.54)   2 

2-oxoglutarate dehydrogenase E1 component (EC 

1.2.4.2)   

2 Osmotically inducible lipoprotein E precursor   2 

SSU ribosomal protein S1p   2 SSU ribosomal protein S7p (S5e)   2 
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Putative lipoprotein   2 SSU ribosomal protein S4p (S9e)   2 

Adenylosuccinate synthetase (EC 6.3.4.4)   2 ATP synthase alpha chain (EC 3.6.3.14)   2 

LSU ribosomal protein L10p (P0)   2 Alkyl hydroperoxide reductase subunit C-like protein   2 

Aspartate ammonia-lyase (EC 4.3.1.1)   2 Glutamine synthetase type I (EC 6.3.1.2)   2 

SSU ribosomal protein S7p (S5e)   2 Hexuronate transporter   2 

Fructose-bisphosphate aldolase class II (EC 

4.1.2.13)   

2 S-adenosylmethionine synthetase (EC 2.5.1.6)   2 

Cytochrome d ubiquinol oxidase subunit II (EC 

1.10.3.-)   

2 Phosphoenolpyruvate carboxykinase [ATP] (EC 4.1.1.49)   1 

Signal recognition particle, subunit Ffh SRP54 (TC 

3.A.5.1.1)   

2 Maltose/maltodextrin transport ATP-binding protein MalK (EC 

3.6.3.19)   

1 

 

 

 

Table 5.2 OMP proteome differences between paired colistin-susceptible and extremely colistin-resistant K. pneumoniae ATCC 13883 strains. 

Sensitive K. pneumoniae ATCC 13883     

Resistant K. pneumoniae ATCC 13883   

 

Protein name Number of 

peptides 

detected 

Protein name Number of 

peptides 

detected 

Cobyric acid synthase   1 4-aminobutyraldehyde dehydrogenase (EC 1.2.1.19)   1 

Phosphoheptose isomerase 1 (EC 5.3.1.-)   1 Galactose/methyl galactoside ABC transport system, permease 

protein MglC (TC 3.A.1.2.3)   

1 

Purine nucleoside phosphorylase (EC 2.4.2.1)   1 LSU ribosomal protein L3p (L3e)   1 

FIG004088: inner membrane protein YebE   1 Galactose/methyl galactoside ABC transport system, ATP-

binding protein MglA (EC 3.6.3.17)   

1 
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Selenocysteine-specific translation elongation factor   1 SSU ribosomal protein S2p (SAe)   1 

Sulfur carrier protein adenylyltransferase ThiF   1 Myo-inositol 2-dehydrogenase 1 (EC 1.1.1.18)   1 

Maltose/maltodextrin transport ATP-binding protein 

MalK (EC 3.6.3.19)   

1 Glutathione S-transferase (EC 2.5.1.18)   1 

ATP-dependent protease La (EC 3.4.21.53) Type I   1 LSU ribosomal protein L5p (L11e)   1 

Glycoprotein-polysaccharide metabolism   1 Threonyl-tRNA synthetase (EC 6.1.1.3)   1 

DNA-binding protein H-NS   1 Purine nucleoside phosphorylase (EC 2.4.2.1)   1 

PTS system, mannose-specific IIA component (EC 

2.7.1.69) / PTS system, mannose-specific IIB 

component (EC 2.7.1.69)   

1 Osmotically inducible lipoprotein B precursor   1 

Glycerol-3-phosphate acyltransferase (EC 2.3.1.15)   1 Nucleoside permease NupC   1 

LPS-assembly lipoprotein RlpB precursor (Rare 

lipoprotein B)   

1 NADH-ubiquinone oxidoreductase chain M (EC 1.6.5.3)   1 

Cell division protein FtsA   1 LSU ribosomal protein L13p (L13Ae)   1 

Adenylate cyclase (EC 4.6.1.1)   1 Serine hydroxymethyltransferase (EC 2.1.2.1)   1 

PTS system, N-acetylglucosamine-specific IIA 

component (EC 2.7.1.69) / PTS system, N-

acetylglucosamine-specific IIB component (EC 

2.7.1.69) / PTS system, N-acetylglucosamine-specific 

IIC component (EC 2.7.1.69)   

1 Phage shock protein A   1 

Hypothetical lipoprotein YajG precursor   1 FIG00638953: hypothetical protein   1 

Small heat shock protein   1 Alcohol dehydrogenase (EC 1.1.1.1)   1 

Lysyl-tRNA synthetase (class II) (EC 6.1.1.6)   1 Sulfur carrier protein adenylyltransferase ThiF   1 

Putative outer membrane protein   1 LSU ribosomal protein L22p (L17e)   1 

Putative phosphosugar isomerase   1 Putative lipoprotein   1 

Cysteine synthase (EC 2.5.1.47)   1 21 kDa hemolysin precursor   1 

Threonyl-tRNA synthetase (EC 6.1.1.3)   1 Glutamine ABC transporter, periplasmic glutamine-binding 

protein (TC 3.A.1.3.2)   

1 

Transcriptional activator of maltose regulon, MalT   1 Universal stress protein E   1 
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4-aminobutyraldehyde dehydrogenase (EC 1.2.1.19)   1 Tail-specific protease precursor (EC 3.4.21.102)   1 

Acetaldehyde dehydrogenase, ethanolamine utilization 

cluster   

1 FIG00732539: hypothetical protein   1 

Chromosome partition protein MukB   1 Maltoporin (maltose/maltodextrin high-affinity receptor, phage 

lambda receptor protein)   

1 

UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-

diaminopimelate ligase (EC 6.3.2.13)   

1 SSU ribosomal protein S1p   1 

Osmotically inducible lipoprotein B precursor   1 6-phosphofructokinase class II (EC 2.7.1.11)   1 

ATP synthase A chain (EC 3.6.3.14)   1 LSU ribosomal protein L15p (L27Ae)   1 

Alkyl hydroperoxide reductase protein C (EC 1.6.4.-)   1 Cobalt-precorrin-2 C20-methyltransferase (EC 2.1.1.130)   1 

Pyruvate formate-lyase (EC 2.3.1.54)   1 Lipoprotein   1 

Galactose/methyl galactoside ABC transport system, 

permease protein MglC (TC 3.A.1.2.3)   

1 LSU ribosomal protein L1p (L10Ae)   1 

Cell division protein FtsZ (EC 3.4.24.-)   1 SSU ribosomal protein S5p (S2e)   1 

LSU ribosomal protein L24p (L26e)   1 Pyruvate dehydrogenase E1 component (EC 1.2.4.1)   1 

S-adenosylmethionine synthetase (EC 2.5.1.6)   1 Entericidin B precursor   1 

Inosine-5'-monophosphate dehydrogenase (EC 

1.1.1.205)   

1 Maltose/maltodextrin ABC transporter, substrate binding 

periplasmic protein MalE   

1 

Phosphoglycerate kinase (EC 2.7.2.3)   1 Asparagine synthetase [glutamine-hydrolyzing] (EC 6.3.5.4)   1 

LSU ribosomal protein L22p (L17e)   1 Putative phosphosugar isomerase   1 

LSU ribosomal protein L3p (L3e)   1 Chaperone protein HtpG   1 

SgrR, sugar-phosphate stress, transcriptional activator 

of SgrS small RNA   

1 LSU ribosomal protein L20p   1 

LSU ribosomal protein L6p (L9e)   1 Cysteine synthase (EC 2.5.1.47)   1 

GTP-binding protein TypA/BipA   1 Cytochrome d ubiquinol oxidase subunit II (EC 1.10.3.-)   1 

LSU ribosomal protein L5p (L11e)   1 Small heat shock protein   1 

DNA-directed RNA polymerase beta' subunit (EC 

2.7.7.6)   

1 Aspartate--ammonia ligase (EC 6.3.1.1)   1 

Adenosine deaminase (EC 3.5.4.4)   1 Membrane fusion protein of RND family multidrug efflux pump   1 
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NADP-dependent malic enzyme (EC 1.1.1.40)   1 Septum site-determining protein MinD   1 

IncF plasmid conjugative transfer surface exclusion 

protein TraT   

1 Chaperone protein DnaK   1 

LSU ribosomal protein L28p   1 LSU ribosomal protein L10p (P0)   1 

Entericidin B precursor   1 Di/tripeptide permease DtpB   1 

UDP-N-acetylglucosamine 1-carboxyvinyltransferase 

(EC 2.5.1.7)   

1 Carbamoyl-phosphate synthase large chain (EC 6.3.5.5)   1 

LSU ribosomal protein L1p (L10Ae)   1 ABC transporter, ATP-binding protein   1 

Lysine decarboxylase, inducible (EC 4.1.1.18)   1 Uncharacterized protein YeaG   1 

Formate efflux transporter (TC 2.A.44 family)   1 Uridine phosphorylase (EC 2.4.2.3)   1 

Maltose-6'-phosphate glucosidase (EC 3.2.1.122)   1 5'-methylthioadenosine nucleosidase (EC 3.2.2.16) / S-

adenosylhomocysteine nucleosidase (EC 3.2.2.9)   

1 

Hexuronate transporter   1   

Preprotein translocase secY subunit (TC 3.A.5.1.1)   1   

Septum site-determining protein MinD   1   

Maltoporin (maltose/maltodextrin high-affinity 

receptor, phage lambda receptor protein)   

1   

SSU ribosomal protein S18p @ SSU ribosomal protein 

S18p, zinc-independent   

1   

Phosphate acetyltransferase (EC 2.3.1.8)   1   

Osmotically inducible lipoprotein E precursor   1   

LSU ribosomal protein L21p   1   

Sugar diacid utilization regulator SdaR   1   

PTS system, sucrose-specific IIB component (EC 

2.7.1.69) / PTS system, sucrose-specific IIC 

component (EC 2.7.1.69)   

1   

Uridine phosphorylase (EC 2.4.2.3)   1   

Alkyl hydroperoxide reductase subunit C-like protein   1   

Translation initiation factor 2   1   
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Rod shape-determining protein MreB   1   

UDP-N-acetylglucosamine--N-acetylmuramyl-

(pentapeptide) pyrophosphoryl-undecaprenol N-

acetylglucosamine transferase (EC 2.4.1.227)   

1   

SSU ribosomal protein S5p (S2e)   1   

LSU ribosomal protein L9p   1   

5-keto-2-deoxygluconokinase (EC 2.7.1.92) / 

uncharacterized domain   

1   

Aspartate aminotransferase (EC 2.6.1.1)   1   

Glucose-6-phosphate isomerase (EC 5.3.1.9)   1   

ATP synthase alpha chain (EC 3.6.3.14)   1   

FIG00732100: hypothetical protein   1   



 

 

 

Figure 5.3 Mapping of identified outer membrane proteins of the (A) colistin-susceptible K. 

pneumoniae ATCC 13883 and (B) the paired extremely colistin-resistant K. pneumoniae ATCC 13883 
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on to the metabolic pathways of MGH 78578 from BioCyc. Abbreviations: G6P, -D-glucose 6-

phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-biphosphate; DHAP, dihydroxyacetone 3-

phosphate; G3P, glyceraldehyde-3-phosphate; 1,3-DPG, 1 3-bisphosphoglycerate; 3PG, 3-

phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; MAL, (S)-

malate; OXA, oxaloacetate; Ac-CoA, acetyl-CoA; AcP, acetylphosphate; LAC, (R)-lactate; ETOH, 

ethanol; GLU, L-glutamate; GLN, L-glutamine; ASP, L-aspartate; ASN, L-asparagine; FUM, fumarate. 

(Figure was generated in BioCyc). 

 

 

5.3.2 Genetic mutations associated with high-level polymyxin resistance in K. 

pneumoniae ATCC 13883 

Polymyxin resistance in K. pneumoniae involves the multi-tier up-regulation of 

capsular polysaccharide expression, and the systems required for the modification of lipid A 

with 4-amino-4-deoxy-L-arabinose (173, 429, 432, 434-440). In K. pneumoniae the expression 

of 4-amino-4-deoxy-L-arabinose modifications to the lipid A phosphates is under the control 

of the two component regulatory systems [PhoPQ-PmrD]-PmrAB that are activated in response 

to low pH, low magnesium and high iron (424, 432). Specifically, the PhoP-PhoQ (collectively 

PhoPQ) system regulates the magnesium regulon which may activate polymyxin B resistance 

genes (pmrHFIJKLM) encoding biosynthesis and lipid A transfer of 4-amino-4-deoxy-L-

arabinose under low magnesium conditions (196). This PhoP-PhoQ system is also connected 

by the connector proteins PmrD and MgrB which act as feed-back modulators between the 

PhoPQ and PmrAb (196). PhoPQ regulates the activation of PmrD which can then bind to 

PmrA and prolong its phosphorylation state, eventually activating the expression of the PmrA-

PrmB (collectively PmrAB) system to promote resistance to polymyxin (196). MgrB is the 

negative regulator of PhoQ, its inactivation due to the insertion elements or frame-shift 

mutations that lead to premature inactivation (commonly seen in polymyxin-resistant clinical 
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isolates) results in the overexpression of PhoPQ and lipid A modification (196, 424, 501-505). 

Mutations in PmrAB and PhoPQ have also been reported in polymyxin-resistant clinical 

isolates of K. pneumoniae (196, 424, 501-505). In addition to the aforementioned mgrB 

inactivation and dysregulation of the two-component systems (TCS), we have previously 

reported that the under-acylation of lipid A increases the polymyxin susceptibility of K. 

pneumoniae; which highlights that the decoration of lipid A with additional fatty acyl chains 

is important for polymyxin resistance (441, 442, 506). Herein, we sequenced the genome of 

both the colistin-susceptible and -resistant K. pneumoniae ATCC 13883 strains and performed 

a comparative scan of their genomes. Comparative genomic analysis revealed that the mgrB 

gene of the colistin-resistant strain is inactivated by a single nucleotide insertion at position 40 

(39_40insT) resulting in a frame-shift and premature termination (A15SfsX25) (Figure 5.4). 

Furthermore, we detected four synonymous mutations phoP (363T>C and 664T>C) and phoQ 

(309A>C and 1185C>T) (Figures 5.5 & 5.6) (196, 507).  
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Figure 5.4 Alignment of the mgrB genes of the colistin-susceptible K. pneumoniae ATCC 

13883 (GenBank: JSZI01000008.1) and the paired extremely colistin-resistant K. pneumoniae 

ATCC 13883. 
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Figure 5.5 Alignment of the PhoP genes of the colistin-susceptible K. pneumoniae ATCC 

13883 (GenBank: JSZI01000008.1) and the paired extremely colistin-resistant K. pneumoniae 

ATCC 13883. 
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Figure 5.6 Alignment of the PhoQ genes of the colistin-susceptible K. pneumoniae ATCC 

13883 (GenBank: JSZI01000008.1) and the paired extremely colistin-resistant K. pneumoniae 

ATCC 13883. 
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5.3.3 Lipid A remodelling 

The consensus structure of lipid A is represented by a -1′-6-linked D-glucosamine 

disaccharide that is phosphorylated at the 1- and 4′-positions (436). For K. pneumoniae, this 

backbone is attached to six or seven acyl chains, (R)-3-hydroxymyristoyl chains are attached 

to positions 2, 2′, 3 and 3′ of the glucosamine disaccharide, while secondary myristoyl chains 

are attached to the (R)-3-hydroxymyristoyl groups at the 2′ and 3′ positions (2′-3-OH-C14 and 

3′-3-OH-C14) and a secondary palmitoyl group attached to the (R)-3-hydroxymyristoyl group 

at the 2 position (2-3-OH-C16) (Figure 5.7A) (441, 508, 509). Additionally, secondary 

palmitoylation has been observed at position 2 (2-3-OH-C16) in a minor population of wild-

type K. pneumoniae strains (441). In the mass spectrum of lipid A isolated from the polymyxin-

susceptible K. pneumoniae ATCC 13883 strain, we can see the two typical hexa-acylated lipid 

A species at m/z 1826 and 1843, and their dephosphorylated forms at m/z 1746 and 1763, 

respectively (Figure 5.7A). The two peaks at m/z 1985 and 2065 correspond to the hepta-

acylated lipid A with a palmitoyl C16 secondary fatty acyl chain. A tetra-acylated lipid A 

species at m/z 1377 is also detected, the peak at m/z 1393 is possibly due to one OH adduct 

(+16). The mass spectrum of lipid A isolated the from the K. pneumoniae ATCC 13883 

colistin-resistant strain also displayed major peaks at m/z 1377, 1746, 1763, 1826, 1843, and 

2065 corresponding to the aforementioned lipid A species observed in the susceptible strain. 

The major difference is a peak at m/z 1956.85 which is due to a hexa-acylated lipid A species 

m/z 1825.68 with the addition of one 4-amino-4-deoxy-L-arabinose moiety (+131) (Figure 

5.7B). 
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Figure 5.7 Lipid A profiles of (A) colistin-susceptible K. pneumoniae ATCC 13883 and (B) the paired 

extremely colistin-resistant K. pneumoniae ATCC 13883. 

 

 Conclusions 

The present study is the first to reveal that the rubic for when a colistin-susceptible K. 

pneumoniae strain evolves into an extremely colistin-resistant strain subsumes several key 
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OMP and lipid A perturbations. In addition to the essential 4-amino-4-deoxy-L-arabinose 

modifications of lipid A due to inactivation of the mgrB TCS negative regulator; our 

proteomics analysis reveals that OMPs from bacterial stress response, glutamine degradation, 

pyruvate, aspartate and asparagine metabolic pathways were over represented in the OM 

proteome of the extremely colistin-resistant K. pneumoniae ATCC 13883 strain. 
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Table 5.7 Enriched GO terms in KPR. 
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Chapter 6: Conclusions and Future Directions 

 

 Conclusions 

MDR Gram-negative bacteria, in particular P. aeruginosa, A. baumannii and K. pneumoniae 

represent a serious global health crisis due to their ability to develop resistance to all clinically 

available antibiotics. The CDC has classified these pathogens as a “serious threat” (12). In 

addition, in 2017 WHO has classified them as Critical at the top of the Priority Pathogens List 

(13). With the dry antibiotic development pipeline and dose-associated toxicities for many 

antibiotics such as polymyxins and daptomycin, antibiotic combination therapy has become 

the preferred option for combating MDR Gram-negative pathogens and minimising both the 

emergence of resistance and toxicity (510). This is of particular interest when the combination 

includes the last resort antimicrobial compounds such as polymyxins (208). The empirical use 

of antibiotic combinations does not necessarily provide complete eradication of these 

pathogens and improve the clinical outcome. Therefore, the real obstacle is how to optimise 

clinically useful antimicrobial combinations, and this necessitates a comprehensive 

understanding of mechanisms of action bacterial resistance. In general, antibiotics are classified 

as either bactericidal or bacteriostatic, and interfering with the cell wall, DNA, RNA or protein 

synthesis (511). However, the effect of antibiotics on bacterial metabolism at the cellular 

network level remains mostly ambiguous. Omics studies including proteomics and lipidomics 

provides a powerful tool for better understanding the antibiotic-pathogen interactions at the 

cellular level (512, 513). This PhD thesis aimed not only to identify optimal synergistic 

antimicrobial combinations but also to elucidate the antibiotic-pathogen interactions through 

integrating proteomics and lipidomics studies.  
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In Chapter 2 of this PhD project, the activity of the novel combination of polymyxin B with 

silver NPs was in vitro assessed using the checkerboard assay against a wide range of 

polymyxin-susceptible and –resistant Gram-negative isolates, in particular polymyxin-resistant 

P. aeruginosa CF, A. baumannii and K. pneumoniae isolates. The combination of polymyxin 

B and silver NPs was synergistic against most of the tested pathogens, in particular, against the 

problematic polymyxin-resistant P. aeruginosa CF isolates. The synergistic polymyxin B-

silver NPs combination was further assessed by statistic kill studies against polymyxin-

resistant non-mucoid P. aeruginosa (FADDI-PA066 and FADDI-PA067) CF isolates, one 

polymyxin B resistant A. baumannii FADDI-AB143 isolate and one polymyxin B resistant K. 

pneumoniae FADDI-KP027. Notably, the combination was synergistic against the four tested 

isolates. Mechanistic studies of the synergytic killing effect included, nitrocefin, ROS 

production and ASM assays against polymyxin-resistant non-mucoid P. aeruginosa (FADDI-

PA066) CF isolates revealed that the combination was more effective in producing OM damage 

than either compound per se. Moreover, confocal and electron microscopy imaging provided 

further evidence about the OM destructive effect of the combination.  Concentrations of both 

polymyxin B and silver NPs used in this study represented clinically achievable concentrations. 

Overall, this study lays the foundation for the development of novel polymyxin B-silver NPs 

combination to treat life-threatening MDR lung infections in CF patients. Realization of this 

objective will require lung infection models and PK/PD studies (cf. Future Directions). 

Even with the combination of polymyxins with other antibiotics including silver NPs, still, 

there are some MDR gram-negative bacteria resistant to the treatment. Therefore, to garner 

clearer insights into the polymyxins-pathogen interactions, comparative lipidomics and 

proteomics studies were performed chapters 3 and 4 to investigate the effect of polymyxins 

treatment on the selective sorting of proteins and lipids from both polymyxins-susceptible and 
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-resistant K. pneumoniae isolates into OMVs sub-proteome and -lipidome. In Chapter 3, the 

effect of polymyxin B (2 mg/L) treatment on sub-proteome of OMVs isolated from polymyxin-

susceptible and -resistant K. pneumoniae ATCC700721 isolates was comparatively studied. 

Treatment with polymyxin B significantly affected the protein cargo of OMVs isolated from 

pre-treated polymyxin-susceptible and –resistant K. pneumoniae ATCC700721 isolates. 

Moreover, pathway analysis revealed that the expression of key proteins involved in 

Aminoacyl-tRNA biosynthesis, Lipopolysaccharide biosynthesis and peptidoglycan 

biosynthesis pathways were significantly overrepresented in response to the polymyxin B 

treatment, particularly in the OMVs of the susceptible isolates. Whereas, polymyxin B 

treatment of both susceptible and resistant strains resulted in  significant downregulation of  

ABC transporters, protein export, two-component system, cationic antimicrobial peptide 

(CAMP) resistance and beta-lactam resistance proteins. The most significantly reduced CAMP 

resistance proteins were those involved in polymyxins resistance, namely the sensor histidine 

kinase PhoQ (involved in PhoQ-PhoP two-component regulatory system), 4-amino-4-deoxy-

L-arabinose transferase (mediates lipid A modification) and cationic peptide transport system 

substrate-binding protein. Although there is a complexity in selective packaging of OMVs sub-

proteome from both susceptible and resistant strains, however, the finding from this study 

paves the way toward better understanding of the role of OMVs in bacterial defence against 

membrane-targeting antibiotics. Chapter 4  evaluated the effect of polymyxin B treatment on 

the sub-lipidome of OMVs isolated from two clinical pairs of polymyxin-susceptible and -

resistant K. pneumoniae isolates (K. pneumoniae FADDI-KP069 and K. pneumonia BM3) and 

one laboratory pair of polymyxin-susceptible and -resistant K. pneumoniae (K. pneumoniae 

ATCC700721). Initially, DLS and TEM analysis showed that the particle size of the OMVs 

isolated from polymyxin B treated strains was larger than that of the untreated control samples. 
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Moreover, the treated resistant strain secreted OMVs with a larger particle size compared to 

the treated paired susceptible strain. In addition, the comparative lipidomics analysis 

demonstrated that polymyxin B treatment of polymyxin-susceptible isolates significantly 

reduced the production of glycerophospholipids, fatty acyls and sphingolipids in the OMVs; 

conversely, the lipid content of OMVs from resistant strains significantly increased in response 

to treatment with polymyxin B. The current study supports the notion that polymyxin-resistant 

K. pneumoniae attempts to increase the rigidity of its envelope upon exposure to polymyxin B; 

and the role of OMVs in bacterial resistant to cationic antimicrobial compounds. Overall, this 

finding further supports our pervious study (chapter 3). 

 Chapter 5 performed a comparative bioinformatic and proteomic analyses for the OM 

proteome and lipid A profiles of paired colistin-susceptible and extremely colistin-resistant K. 

pneumoniae ATCC 13883 strains. Lipid A profiling revealed that the OM of the colistin-

susceptible strain is decorated primarily by hexa- and hepta acylated lipid A species and a 

minor tetra-acylated species. While, In the lipid A profile of the extremely colistin-resistant 

strain, in addition to the aforementioned lipid A species, modification of the   hexa-acylated 

lipid  with the 4-amino-4-deoxy-L-arabinose A was detected. Our group previously reported 

that decoration of lipid A with additional fatty acyl chains increases the resistance of K. 

pneumoniae to polymyxins. Comparative profiling of the OM proteome of each strain revealed 

that OMPs from bacterial stress response, glutamine degradation, pyruvate, aspartate and 

asparagine metabolic pathways were  over  represented  in  the  extremely  colistin-resistant K. 

pneumoniae ATCC 13883 strain. However, in the sensitive strain, OMPs from carbohydrate 

metabolism, H+-ATPase, cell division and peptidoglycan biosynthesis were over represented. 

OM protein profiling showed no difference in OmpK35 and OmpK36 between polymyxin-
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susceptible and resistant strain of K. pneumoniae ATCC 13883. This finding suggests that the 

deficiency of these porin proteins might not involve in resistance of these strains to polymyxins.  

In conclusion, this thesis has identified a novel combination of polymyxin B-silver NPs, which 

could be a viable option for fighting MDR-Gram-negative pathogens, including MDR 

polymyxin-resistant P. aeruginosa associated with CF lung infection. The combination 

improved the antimicrobial activity of polymyxin B against polymyxin-resistant CF isolates. 

The enhanced antimicrobial activity of the combination might involve their combined 

membrane-damaging activity, which was confirmed by TEM and confocal imaging. 

Furthermore, the findings from omics studies revealed that there are several important 

pathways/genes in K. pneumoniae with relation to bacterial virulence and polymyxins 

resistance. Overall, the data reported in this thesis shed light on useful strategies to rescue the 

clinical effectiveness of the last-line therapy (polymyxins) against Gram-negative ‘superbugs’.  

 

 Future Directions 

The in vitro antibacterial synergistic activity of polymyxin B-silver NPs in chapter 1 was 

investigated against a wide range of Gram-negative bacteria, particularly against MDR 

polymyxin-resistant P. aeruginosa isolates from the CF lung. Further studies involve lung 

infection models with these isolates are warrented to evaluate there in vivo efficacy of the 

combination. Moreover, in vitro as well as in vivo PK/PD models are essential for further 

optimisation of the combination dosage regimens. In addition, omics studies including 

genomics and transcriptomics are warranted to elucidate the mechanism(s) of synergy. 

The untargeted lipidomics and proteomics studies in chapter 3 and 4 demonstrated the effect 

of polymyxin B on the proteome and lipidome of OMVs isolated from of polymyxin-

susceptible and -resistant K. pneumoniae isolates; and identified key protein and lipid species 
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that are selectively packaged from the parent bacteria into the OMV sub-lipidome and –

proteome. In addition, the OM proteome and lipid A profiling in chapter 5 highlights the OM 

remodelling associated with extremely high levels of polymyxins resistance in K. pneumoniae.   

However, these studies should be followed up by targeted lipidomics and proteomics studies 

to pinpoint the pathways/genes that are specifically involved in polymyxins mechanisms of 

action and resistance. Moreover, it is of a great importance to perform a proteomic and 

lipidomic analysis of the OM and OMVs derived from other problematic pathogens (P. 

aeruginosa A. baumannii) and compare the result with that obtained in chapters 3, 4 and 5 to 

demonstrate the difference in response to polymyxins between all the species. Furthermore, 

comparative analysis of the proteome and lipidome of the whole bacterial cell for P. aeruginosa 

A. baumannii and K. pneumoniae, in particular the clinical isolates, is warranted, which could 

provide a clear insight about the selective sorting of the proteins and lipids into the OMVs. 

In summary, as polymyxins are important last –line antibiotics against MDR Gram-negative 

‘superbugs’, research on optimising their use is of great importance. To the best of our 

knowledge, this thesis is the first to identify a synergistic polymyxin combination with silve-

NPs against MDR polymyxin-resistant P. aeruginosa isolated from CF lung infections. This 

thesis is also the first to demonstrate the effect of polymyxin B on lipidome and proteome of 

OMVs isolated from polymyxin-susceptible and -resistant K. pneumoniae isolates and perform 

a comparative bioinformatic and proteomic analyses for the OM proteome and lipid A profiles 

of paired colistin-susceptible and extremely colistin-resistant K. pneumoniae ATCC 13883 

strains. Taken together, this thesis has significantly contributed to better understanding the 

polymyxins-pathogens interactions to combat life-threatening infections caused by MDR 

Gram-negative bacteria in the era of ‘Bad Bugs, No Drugs’.  
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