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Abstract 
 

Biological data has been generated at an unprecedented rate during the last 20 

years due to the rapid development of different digital automatic sensors. While 

the increase in the amount of available data is exciting, it has become more 

challenging for biologists to analyse, annotate and interpret the generated 

biological data. Accordingly, computational methods that combine techniques 

from machine learning, data mining, mathematics and statistics are increasingly 

developed to facilitate the annotation of the biological data and provide biological 

interpretations and insights.  

This thesis focuses on the analysis of proteins, the most important functional 

product of gene expression. The large amount of protein sequences and the 

limited quantities of charactorised protein structures and functions leads to a 

compelling research topic, which is concerned with the computationally prediction 

of protein structures and functions directly from protein sequences. Existing 

computational methods for protein structural/functional prediction are mainly 

machine learning-based, implemented using shallow architectures that are 

inferior in expressive power when compared with more recent deep learning 

architectures. Despite the state-of-the-art performance achieved by deep 

learning in protein analysis in the last three years, existing research is conducted 

in an ad hoc manner, suffering from a lack of systematic design of deep learning 

frameworks for groups of prediction tasks. Critically, existing deep learning 

models for protein prediction analysis are designed without incorporating the 

biological background knowledge, an important source of heuristics. 

In this thesis, we conduct comprehensive benchmarking experiments and 

assessment to address research questions. Firstly, how to effectively represent 

protein sequences for different granularities of prediction tasks and, specifically, 

how do purely data-driven representations perform compared with biological 

heuristic-based representations? Secondly, how to design a deep learning 

framework that can be applied to predict different protein structural and functional 

properties? Thirdly, how to leverage limited quantities of labelled biological data 

for rigorous model training using biological background knowledge?  
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To answer the above three research questions, four deep learning 

frameworks are proposed.  The generation and application framework of the 

distributed representation of protein sequences are proposed for addressing 

sequence-level, residue-level and biological interaction-level prediction tasks. A 

deep learning framework, DeepS2P, is designed as a framework that can be 

applied to any protein sequence-based residue-level prediction tasks. Multitask 

frameworks, Multi-task and Cross-stitch, are proposed based on the observed 

qualitative correlation between protein structural properties, and in turn are used 

to predict two or more structural properties simultaneously with quantitative 

correlation discovery. Finally, the deep transfer learning framework, 

DeepTransfer, is specifically designed for predicting functionally important sites 

of enzymes organised in a hierarchy. The rationale of this framework is to 

incorporate the knowledge of hierarchical classification systems in biology to 

balance out the requirement for large quantities of training data.  

The proposed deep learning frameworks are evaluated in their applications to 

five specific prediction tasks, including protein sequence-level prediction of 

protein families; residue-level prediction of intrinsically disordered proteins and 

regions, protein secondary structure populations, and phosphorylation sites; and 

biological interaction-level prediction of drug-target interactions. For related 

prediction tasks, bioinformatics tools are developed for public access and 

quantitative analyses are conducted to critically investigate the factors that may 

affect the prediction performance. To summarise, a set of heuristics for designing 

deep learning frameworks in protein analysis is proposed based on the proposed 

frameworks, the application scenarios and the evaluation results.  
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1 Introduction 

1.1 Preamble 

In recent years, a large amount of biological data has been produced at an 

unprecedented rate due to the development of new biotechnology [1]. The massive 

amount of biological data and the high speed of the increase in the volume of such data 

make it a very challenging task for biologists to draw interpretations and insights 

efficiently. Therefore, various computational methods have been developed to interpret 

biological data in large scales, which inspired the interdisciplinary field called 

bioinformatics or computational biology [2]. Computational interpretation of biological 

data is categorised into two types, i.e. the statistical analysis which draws conclusions 

that explain biological phenomena, and the predictive analysis which makes novel 

predictions to be experimentally validated. In general, predictive analyses rely on the 

application of various machine learning-based methods. However, machine learning 

models with limited expressive power [3] are not necessarily suitable for modelling 

prediction tasks in biology, due to the complex nature of the biological events such as 

gene expression [4]. This existing challenge inspires the application of deep learning, a 

branch of machine learning that has achieved state-of-the-art performance in various 

application areas [5, 6], to the analysis of the increasing amount of biological data. 

The application of deep learning in biological data analysis has achieved state-of-

the-art performance in various prediction tasks including protein structure prediction [7-

9], alternative splicing [10] and single-cell DNA methylation states [11]. These 

applications are mostly conducted in an ad hoc manner, with a lack of systematic design 

that incorporates heuristics from the biological background and critical evaluations of the 

performance of deep learning in predicting biological data at different granularities. In 

this thesis, we seek to answer some of the more abstract questions, including 1) what 



 2 

makes it especially challenging to apply deep learning in the area of biology, compared 

to some of the most popular application areas such as image processing [5], natural 

language processing [12] and speech recognition [13]; 2) what transferrable knowledge 

can be drawn from these application areas to assist in designing deep learning models 

for biological data analysis; 3) what are the relationships between different prediction 

tasks in biological data analysis and 4) is it possible to design meta deep learning 

frameworks for groups of prediction tasks. To answer these questions, we propose deep 

learning frameworks, conduct extensive experiments for various prediction tasks, and 

produce useful insights for assisting the designing of future deep learning models for 

biological data analysis. 

From the perspective of biology, we focus our study on protein analysis. Protein 

represents one of the most important products of gene expression and plays crucial roles 

in various biological events such as enzyme catalysis [14, 15], molecule transportation 

[16] and DNA binding [17]. Protein functions rely on protein tertiary structures, which are 

further determined by the protein primary structure – amino acid sequences (protein 

sequences) [18]. Due to the large amount of identified protein amino acid sequences and 

the limited number of determined protein structures and functions, it is crucial to develop 

computational methods that can predict novel protein structures and functions directly 

from protein sequences.  

From the perspective of deep learning, we aim to explore the different designs of 

deep learning frameworks by incorporating the heuristics and domain knowledge from 

biology.  Deep learning represents one of the most popular machine learning methods 

in the last five years. Its successful applications in image processing, natural language 

process and speech recognition inspired a large amount of research works in various 

application areas [6, 11, 19-21]. However, it is crucial to notice the difference between 

biological data and data from other areas. On one hand, compared to the large amount 

of image data [22] and corpus data [23] that is publicly available on the Internet , the 

acquisition of biological data is relatively expensive and labour-intensive. On the other 
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hand, despite the lack of annotated data, biology represents one of the most developed 

field in science which, over the time, has a large amount of domain knowledge 

accumulated. Therefore, a focus of this thesis is to design deep learning frameworks by 

incorporating heuristics and domain knowledge from biology.  

The rest of this chapter is organised as follows. Section 1.2 and Section 1.3 provide 

the biological background and the computational background of the thesis, respectively. 

Section 1.4 outlines the challenges, research questions and objectives. Section 1.5 

depicts the main contributions and the research scope. Finally, Section 1.6 provides an 

overview over the structure of the whole thesis.  

1.2 An introduction to the biological background 

Bioinformatics is composed of two aspects, bio- and -informatics, which indicates that 

any research topic in bioinformatics must comply with both the biological background 

and the informatics background. For a better understanding of the application of deep 

learning in protein analysis, in this section, we provide an overall introduction of the 

biological background of protein sequences, structures and functions.   

1.2.1 Gene expression and protein expression  

Life is the product of evolution where changes in genetic materials such as DNAs and 

RNAs cause the changes in their biological products such as proteins [24]. However, it 

is a complicated process to synthesise the final biological products, given a specific 

segment of a gene. This process of synthesising genes into their functional gene 

products is called Gene Expression1
.  

For prokaryotes, gene expression has two main steps, i.e. transcription from DNA to 

message RNA (mRNA)  and translation from mRNA to peptides or proteins [25]. While 

                                            

1
 Gene expression: https://en.wikipedia.org/wiki/Gene_expression  
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for eukaryotes, the process of gene expression is composed of at least six steps, as is 

described below.  

Transcription. Transcription is the first process in the cascade of events that lead 

from the genetic code contained in DNA to synthesis of a specific protein [26]. it involves 

synthesising mRNAs from DNAs  [25]. DNAs are composed of two reversely 

complementary nucleotides strands that start from the 3’ end and the 5’ end respectively. 

mRNA sequences are copied from DNA strands by adding one RNA nucleotides at a 

time, resulting in sequences that are complementary to the 3’� 5’ DNA strands and 

identical to the 5’� 3’ DNA strands [27].  

Post-transcriptional modification. Post-transcriptional modification refer to 

changes that occur to a newly transcribed primary RNA transcript after transcription has 

occurred and prior to its translation into a protein product [28]. It includes RNA splicing 

[29], 5’ capping, 3’ cleavage and polyadenylation [30].  

Translation. Translation is the process by which a protein is synthesized from the 

information contained in a molecule of messenger RNA (mRNA) [31]. In mRNAs, the 

coding region, namely the codon, are composed of triplets, which corresponds to binding 

sites in transfer RNAs (tRNA) that are called the anticodon [32]. Protein, polypeptide, 

and peptide sequences are synthesised by amino acids carried by tRNAs according to 

the order of the codons in mRNA coding regions.  

Post-translational modification. Post-translational modification (PTM) refers to the 

covalent and enzymatic modifications after translation [33]. It is a crucial process for 

maturing the synthesised peptides and is closely related to multiple protein functions. It 

usually involves the modification of existing functional groups or addition of other 

functional groups such as phosphate (in phosphorylation) [34], carbohydrate (in 

glycosylation) and lipid (in lipidation) molecules. Phosphorylation is the most common 

post-translational modification [35]. 
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Protein folding. With amino acids contacting each other, the synthesised protein 

sequences fold into their functional three-dimensional structures. These three-

dimensional structures are essential for the function of the proteins. They can be well-

defined, as well as unstructured, completely or partially [36]. The latter situation is called 

the disordered states of proteins. According to the Anfinsen's dogma [37], protein three-

dimensional structures are determined by amino acid sequences. 

Protein transport. Protein transport refers to the process of transporting proteins to 

their destined locations [38]. It involves many signalling sequences, pathways and 

targeting processes so that the proteins are transported to the appropriate locations for 

the right purposes. 

Figure 1.1 demonstrates the process of gene expression including transcription, 

post-transcriptional modification, translation, post-translation modification, and protein 

folding. In this graph, the amino acid sequence [39] and the tertiary structure [40] of the 

protein p53_Human was used.  

 

Figure 1.1 Gene expression with transcription, post-transcriptional modification, translation, 

post-translational modification, and protein folding. 

 

As the primary product of gene expression, protein plays an essential role in the 

functioning of different organisms. It is 1) synthesised as amino acid sequences via 
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translation, possibly 2) coupled with post-translational modifications, and then 3) folded 

into its three-dimensional structure and 4) transported to its target locations. This four-

step procedure of protein expression counts for half of the aforementioned steps in gene 

expression, which demonstrated the importance of protein analysis for the better 

understanding of the functional mechanism of life.   

1.2.2 Protein sequences, structures and functions  

For proteins, three inter-correlated concepts are vital for understanding the mechanism 

of protein functioning. They are protein sequences, structures and functions. 

Protein sequences. Protein sequences define the primary structure of proteins [41]. 

They are linear sequences of amino acids that start from the N-terminal and end at the 

C-terminal. Each amino acid at a specific position in a protein sequence is referred to as 

an amino-acid residue (or residue). In most organisms, there are 20 naturally occurring 

amino acids, which are denoted using either the 1-letter notation system or the 3-letter 

notation system [42]. With the 1-letter denotation system, protein sequences are simply 

represented as strings of single alphabet letters, with sequence lengths ranging from 2 

to ~35,000 [39].   

Protein structures. It is more complicated to define protein structures.  During the 

process of protein folding [43], amino acid sequences first form intermediate local 

segments of specific structural conformations, which later fold into their tertiary 

structures. The intermediate local segments are called the protein secondary structures 

(SS), and the two most common secondary structures are α-helices and β-sheets [44]. 

The tertiary structure of proteins is the three-dimensional structure of the protein and is 

dependent on its primary and secondary structures [45]. It is defined according to the 

spatial arrangement of atoms in a protein. This spatial atom arrangement is referred to 

as structural conformation, which can change from one to another in the lifetime of a 

protein [46]. Among all the conformations, there is usually a dominant conformation that 

is the most stable, which determines the function of the protein and is called the native 
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state [47]. Protein tertiary structure often refers to this native state. An exceptional case 

is the disordered or partially disordered proteins [48], for which there is a lack of native 

states.  

Protein functions. Protein functions depend on the shape or conformation of the 

protein [49]. Enzymes, for example, are a specialized class of proteins responsible for 

catalysing chemical reactions within cells [50]. The structures of their active sites such 

as low barrier (unusually short) hydrogen bonds plays important roles in enzyme 

catalysis [51]. Another example is the biological target, which refers to proteins whose 

tertiary structure contain binding pockets for specific drug compounds [52].   

With the availability of existing biotechnological techniques, it is more efficient and 

cheaper to identify protein sequences than to determine protein structures and functions. 

Up to the time of writing, according to the Swiss-Prot/UniProt database [39] - one of the 

most comprehensive databases of protein sequences - there are more than 90 million 

protein sequences being curated manually or automatically. These sequences are either 

inferred via biosynthesis process [53] or directly sequenced using protein sequencing 

technologies [54, 55]. In contrast, protein structures are determined using experimental 

methods such as X-ray diffraction [56] and nuclear magnetic resonance (NMR)  [57] 

which are expensive and time-consuming to run. According to the RCSB PDB database 

[40], one of the most updated databases for protein structures, there are only ~125,000 

proteins have their tertiary structures determined. Figure 1.2 (a) and (b) respectively 

demonstrate the growth of the number of protein sequences and protein structures in the 

last few decades.   
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Figure 1.2 The increasing numbers of manually reviewed protein sequences in the Swiss-

Prot/UniProt database and solved protein structures in the RCSB PDB database. 

 

1.2.3 Protein structural and functional properties 

Protein structures and functions represent two abstract concepts that are described 

using different sub-concepts such as protein secondary structures, intrinsic disorder, 

torsion angles and functionally important sites. In this thesis, we refer to each of these 

sub-concepts as a protein structural/functional property. In the UniProt/Swiss-Prot 

database [39], they are also referred to as features. We introduce some of the protein 

structural and functional properties as follows.  

Protein secondary structures. Protein secondary structures (SS) refers to the 

intermediate state of local segments formed right after protein sequence biosynthesis 
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before further folding into three-dimensional structure
2
. According to the 3-class DSSP 

categorical system, each residue is assigned one of the three secondary structure 

elements, e.g. helix (H), strands (E) and coils (C) [58]. According to the 8-class DSSP 

categorical system, each residue is assigned one of the eight secondary structure 

elements including 3-turn helix (G), 4-turn helix (H), 5-turn helix (I), extended strand (E), 

isolated β -bridge (B), hydrogen bonded turn (T), bend (S) and coil (C) [58]. The 

secondary structure elements are annotated for each individual residue.  

Solvent accessibility. As a complementary structural property to protein secondary 

structures, solvent accessibility is used to identify to what degree a residue is buried or 

exposed [59]. Various measurements are defined to represent solvent accessibility, 

including the solvent accessible surface area
3
, relative solvent accessible surface area

4
, 

contact numbers, residue depth and half-sphere exposure [61], among which the first 

two are usually used to quantitatively represent solvent accessibilities. Solvent 

accessibility is annotated at the residue-level.  

Backbone torsion angles. Backbone torsion angles refer to the local structure in 

proteins [62]. Three types of torsion angles are defined, including ', ( and ω, among 

which the former two provide the flexibility required for the polypeptide backbone to adopt 

a certain fold, while the last one is essentially flat and fixed to 180 degrees [63].  

Residue contact map. Protein residue-residue contact maps refer to pairs of 

residues between which the spatial Euclidean distance is smaller than 8Ȧ [64]. Residue-

residue contacts are labelled as short-range, medium-range and long-range depending 

on the sequential distance between two residues [64]. With residue-residue contacts, 

residues that are sequentially distant may be spatially close to each other, which, to 

                                            

2
 Protein secondary structure: https://en.wikipedia.org/wiki/Protein_secondary_structure  

3
 The solvent accessible surface area (ASA) is defined as the locus of the centre of the solvent molecule 

as it rolls over the van der Waals surface of proteins.  (60. Gromiha, M.M., Chapter 3 - Protein 

Structure Analysis, in Protein Bioinformatics. 2010, Academic Press: Singapore. p. 63-105.) 

4
 The relative accessible surface area is defined to penalise amino acids that have larger maximum 

possible accessible surface area. 
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some extent, determines the tertiary structure of proteins. Different from protein 

secondary structure and solvent accessibility, residue contacts are annotated for pairs 

of residues.  

Protein intrinsic disorder. Proteins and regions that form stable tertiary structures 

are referred to as the native structure while proteins and regions that do not or partially 

form stable tertiary structures are called the intrinsically disordered proteins and regions 

or protein intrinsic disorder (IDP/IDR) [48]. The discovery of disordered proteins and 

regions challenged the traditional protein structure-function paradigm that protein 

functions are determined by fixed protein tertiary structures [36]. While, in fact, 

disordered proteins and regions are highly abundant and their functional repertoire 

complements the functions of ordered proteins [65]. In practice, each residue in a protein 

is labelled as ordered or disordered, resulting in the sequential labelling of disordered 

states for protein sequences.  

Protein secondary structure population. With disordered proteins and regions, 

protein sequences do not form stable tertiary structure, and correspondingly the 

secondary structure elements are dynamically assigned for each residue. Since it is not 

accurate to assign fixed secondary structure element to regions that do not form stable 

structures, protein secondary structure populations (SSP) were proposed to describe the 

quantitative probability distribution of secondary structure elements in disordered 

proteins and regions [66]. Similar to protein secondary structure, SSPs are labelled at 

the residue-level.  

Tertiary structures. Protein tertiary structures are represented as the three-

dimensional coordinates in ,, - and .-axis for each atom. They are currently determined 

by using the X-ray diffraction [56] and Nuclear magnetic resonance (NMR) [57] 

experimental methods. The Protein Data Bank (PDB) [40] defines the PDB file format
5
, 

which is widely used for representing the data that is derived from X-ray diffraction [56] 

                                            

5
 PDB file format: https://www.rcsb.org/pdb/static.do?p=file_formats/pdb/index.html  
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and NMR [57] studies . Besides the three-dimensional coordinates, the PDB file format 

also describes other important structure-related information including experimental 

details (including pH values and temperatures), residue-residue contacts, and 

transformation between coordinate systems.  

Protein family. Protein families refer to the groups of proteins that share the same 

evolutional origin [67]. Proteins belong to the same protein family usually but not 

necessarily demonstrate sequential and structural similarities or related functions. 

Various protein family classification systems have been constructed based on sequential 

motifs [68], homology profiles [69, 70], and structural and functional similarities [71].  

Functional domain. Protein functional domains, also known as protein domains or 

conserved domains, refer to parts of proteins that evolve, function and exist 

independently from the rest of the protein. Protein domains are considered the 

autonomous folding units [72], protein evolutional modules [73], and  functional units [74].  

Active site. The active site of an enzyme (sometimes referred to as the catalytic 

centre) is that portion of the molecule that interacts with substrate and converts it into 

product [75]. It usually contains both the binding sites that forms enzyme-substrate 

complex via the lock-and-key model or the induced fit model [76], and the catalytic sites 

that catalyses the chemical reaction.  

Phosphorylation site. Phosphorylation refers to a PTM that attaches phosphate-

groups to the substrate proteins catalysed by a group of kinase called protein kinases 

[34]. The sites in substrate protein sequences to which the phosphate-group is attached 

are referred to as phosphorylation sites. Phosphorylation represents the most common 

PTM that plays essential roles in gene expression [35, 77, 78]..  

The active sites, catalytic sites, binding sites, and phosphorylation sites are 

annotated at the residue-level and referred to as functionally important sites (FISs). In 

total, Chakrabarti, S. and Lanczycki, C.J. (2007) summarised 16 FISs over 6 functional 

categories [79]. Please refer to Appendix A for the summarisation table for FISs.   
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Drug-target interaction. Drug-target interaction (DTI) refers to the specific 

interaction between drug compounds and their biological targets. Here, biological targets 

refer to molecules that are intrinsically associated with a particular disease process and 

that could be addressed by a drug to produce a desired therapeutic effect [80]. They are 

usually in the form of proteins or polypeptides whose tertiary structures form the docking 

pocket for drug compounds [52]. The identification of DTI represents a crucial step in 

drug development and drug repositioning [81].  

Protein-protein interaction. Protein-protein interaction (PPI) refers to the physical 

contact with molecular docking between proteins that occur in a cell or in a living 

organism in vivo [82]. The identification of PPI is crucial for understanding biological 

functions because proteins rarely act alone. DTI and PPI are both annotated for pairs of 

molecules (e.g. a pair of a drug and a biological target, or a pair of proteins). They 

represent two of the most important interacting relationships in interatome, a complete 

map of the protein interactions that happen in living organisms [82].  

Table 1.1 summarises the structural and functional properties and their 

corresponding representations when modelled with computational methods.  

In order to validate the effectiveness of the deep learning frameworks that are 

proposed in this thesis, we performed application analysis to the following five protein 

structural and functional properties, including protein families, IDP/IDRs, SSPs, 

phosphorylation sites and DTIs. Among these five structural and functional properties, 

protein families, as one of the most generic classification system of proteins, are 

annotated at the sequence-level; IDP/IDR and SSPs are structural properties that are 

annotated at the residue-level; phosphorylation sites represent the functionally important 

sites that are annotated at the residue-level; and DTIs are crucial for the understand of 

protein functions regulated by drugs at the biological interaction-level.  
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Table 1.1 A summary of the protein structural and functional properties. 

Property Name Granularity Category Representations 

Structural properties  

Secondary structure Residue Secondary  Helix, Strands, Coils (3-class) 

Secondary structure population Residue Secondary Populations of Helix, Strands, Coils 

Solvent accessibility  Residue Secondary Accessible/non-accessible 

Backbone and torsion angles Residue Secondary Angles  

Residue contact map  Residue interaction Secondary Contact (!", !#) where !", !# are two residues 

Intrinsic disorder Residue Disorder Ordered/disordered 

Tertiary structure Atom Tertiary Coordinates in x, y, and z-axis 

Functional properties    

Functional domain Residue Domain ($%&'()*(, $%&,-.) 

Protein family Sequence Domain Proteins that share the same evolutional origin.  

Active site Residue Site Active/non-active 

Phosphorylation site Residue Site Phosphorylated/non-phosphorylated 

Drug-target interaction Biological interaction Interaction Interact ($", /#) where $", /# are proteins and drugs 

Protein-protein interaction Biological interaction Interaction Interact ($", $#) where $", $# are two proteins 
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1.2.4 Databases for protein analysis 

A number of databases are publicly available that provide annotations on and assist in 

the analysis of protein sequences, structures and functions. In this section, we introduce 

some of useful databases from which we collected data.  

The UniProt/Swiss-Prot database. The Swiss-Prot/UniProt database [39] is one of 

the most complete collections of protein sequences. By the time of writing, the number 

of proteins has increased by 450% since 2012. It currently collected 555,594 manually 

reviewed protein and 90,050,711 unreviewed proteins [39]. The Swiss-Prot/UniProt 

database provides the main source of protein sequences based on which we predicted 

structural and functional properties. It also contains the most up-to-date protein 

annotations such as phosphorylation sites.  

The Pfam and InterPro databases. Protein families are groups of proteins that 

share the same evolutionary origin [83]. However, there is not yet a consensus 

classification system for protein families. Existing protein family databases are 

constructed based on sequential or structural similarities or functional relations [70, 71, 

84, 85]. To validate the performance of our proposed models, we collected annotations 

from the Pfam database [70] and the InterPro database [86]. The Pfam database curates 

a collection of protein families and functional domains that are generated using the 

HMMER programme [87]. The current version Pfam 31.0 recordes a total of 16,712 

families and 604 clans that are cross-referenced to proteins or peptides in protein 

databases such as the Swiss-Prot/UniProt database. The InterPro database represents 

a meta database that integrates annotations from multiple protein family databases such 

as Pfam, PIRSF [84], and CATH-Gene3D [88].  

The DisProt and MobiDB databases. The DisProt database [89] is a bioinformatics 

data source that contains manually curated IDP/IDRs. The current version DisProt 7 v0.5 

contains 803 and 2,167 IDPs and IDRs respectively. A more recent database MobiDB 
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for protein intrinsic disorder was release in 2012 [90], 2014 [91] and 2018 [92], which 

contains annotations for both IDP/IDRs and SSPs that are generated by both manual 

curation and computational predictions.  

The BMRB database. The BMRB database [93] collects, annotates, archives, and 

disseminates the important spectral and quantitative data derived from NMR 

spectroscopic investigations of biological macromolecules and metabolites6. For protein 

SSP prediction, we extracted 12,018 BMR entries based on which we calculated the 

secondary structure populations for validating proposed predictive models.  

The Phospho.ELM database. The Phospho.ELM database [94] collects 

phosphorylation sites for different protein kinases in eukaryotes. It contains 

phosphorylation site annotations for 8,718 substrate proteins. However, this database 

stopped updating in 2011. Therefore, to enlarge our datasets, we also extracted and 

combined the up-to-date phosphorylation site annotations from the Swiss-Prot/UniProt 

database [39].  

The KEGG database. The KEGG database is a comprehensive data source that 

stores drugs, pathways, compounds, genes and proteins, genomes, enzymes, reactions, 

and diseases [95, 96]. In this thesis, we used training and testing datasets that were 

constructed from the KEGG database for DTI prediction.  

Besides the above eight databases, we also employed data from various other 

databases such as the RCSB PDB database [40], the DrugBank database [97], and the 

PhosPhAt database [98].   

1.2.5 Bioinformatics tools for protein analysis 

The analysis of protein sequence, structures and functions strongly rely on the existing 

bioinformatics tools. In this thesis, we employ the following tools for the purpose of data 

collection and feature calculation.  

                                            
6 The BMRB database: http://www.bmrb.wisc.edu/bmrb/  
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NCBI-BLAST. NCBI-BLAST [99] is a tool suite that performs biological sequence 

alignment. It operates by a heuristic method where short matches between biological 

sequences are seeded for exploring longer matches in multiple iterations. In various 

predictive scenarios, we used its specialised tool PSI-BLAST [100] to generate the 

position-specific scoring matrix (PSSM), which is widely used as a homology profile 

encoding the evolutionary information of biological sequences.  

DISOPRED3 and PSIPRED. DISOPRED3 [101, 102] and PSIPRED [103, 104] are 

computational tools for predicting protein intrinsic disorder and secondary structures 

from protein sequences. For predicting protein structural or functional properties that are 

related to these two protein structural properties, we used DISOPRED3 and PSIPRED 

to generate the corresponding structural information.  

The !2D method. The δ2D method [66] was proposed to calculate protein SSPs 

from NMR chemical shifts. Since protein SSP prediction represents a relatively new 

prediction task, there is a lack of manually curated databases and a limited number of 

tools for generating such information. Therefore, we generated the annotation data for 

protein SSPs using the δ2D method only.  

Apart from the above bioinformatics tools, we also implemented local source code 

packages for collecting and extracting data and generating protein sequence-based 

information.  

1.3 An introduction to the background of deep learning  

In this section, we introduce deep learning with respect to its history, categorization, and 

the advantages and disadvantages of different deep learning models. 

1.3.1 The history and development of deep learning 

Deep learning ̛refers to the multi-layer architectures for learning data representation with 

multiple layers of abstraction [105]. It was first applied in areas such as natural language 

processing [12], image processing [106], and speech recognition [13]. Despite the more 
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recent attention drawn to deep learning, the idea of using multiple layers of perceptrons 

to model complex problems started in early 1965 [107].  

For a long time, the development of multi-layer neural networks was relatively slow 

due to multiple issues including slow training processes and a lack of data. The slow 

process of training was considered to be related to many factors, such as the selection 

of activation functions, the initialisation of parameters, and the vanishing gradients [108, 

109].  The situation only got improved after 2006, when Prof. Geoffrey Hinton proposed 

to learn the data representation one layer after another, treating the training of each layer 

as an unsupervised learning process [110]. Since then, new deep learning techniques 

such as autoencoder [111] and dropout [112] have been proposed to address the training 

issues of deep learning models. At the same time, the fast development of deep learning 

was also boosted by the rapid development of computational power [113] and the 

massive amount of data available on the Internet. 

1.3.2 An introduction to different deep learning models 

The fundamental idea of deep learning is rather straightforward - if the data cannot be 

represented with shallow models [3], for example, single-layer neural networks - models 

with multiple hidden layers should be capable of modelling the complex data. The earliest 

deep neural networks were fully-connected where each neuron in one hidden layer is 

connected to every neuron in the previous layer [114]. They were later designed to 

involve less weights and function better for specific tasks. We introduce some of the 

deep learning models as follows. 

Convolutional neural networks. The convolutional neural network (CNN)  is the 

most widely used deep learning models that has been applied in different areas. Its 

design was inspired by the receptive field of the cat visual cortex [115]. Different from 

fully-connected neural networks, in CNN, each neuron in one hidden layer is connected 

only to a restricted number of neighbouring neurons in its adjacent layers [116]. It 

encourages the modelling of local correlations among data. Examples of such local 
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correlations can be found in images where pixels have higher correlations to their 

neighbouring pixels and in sentences where words have higher correlations to their 

nearby words. Further, such restrictions decreased the number of parameters, resulting 

in models requiring less training data and training time.  

Recurrent neural networks. The recurrent neural network (RNN)  was designed 

specifically for sequential data such as natural languages and speech signals [117]. It 

defines a temporal model where each step corresponds a single element in the input 

sequence. By introducing a state signal that is passed on from one step to another and 

an output signal which determines the label of individual elements, the history 

information encoded in the previous steps is retained and passed on to the later steps 

[118]. The advantage of the RNN model is that the history information from previous (or 

later) steps can be maintained and used for predicting information of the current step.  

Generative adversarial network. The generative adversarial network (GAN)  was 

recently proposed to estimate generative models via an adversarial process [119]. It is 

composed of a generative module and a discriminative module. The former is optimised 

to capture the true distribution of the data, while the latter is optimised to discriminate the 

samples generated from the former and those that are drawn from the true distribution 

of the data [119]. The learning process is designed as a sum-product game between 

these two modules. The GAN model has been applied to synthesise images from text 

descriptions [120].  

Other deep learning models include the Boltzmann machines [121], the Deep Belief 

Nets [122], and the Sum-Product networks [123]. However, the above three deep 

learning models (especially the first two) are the most widely used in biological sequence 

analysis. Many variations of the first two models have been applied to address the 

prediction tasks in protein analysis. Detailed discussions are provided in Section 2.1.2.   
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1.3.3 Advantages and disadvantages of deep learning 

Deep learning not only refers to a collection of machine learning models, but it also refers 

to new designing mindsets that can be used to address the challenges that most machine 

learning methods are facing. More specifically, it has the following several traits that may 

help improve the prediction performance of protein structural and functional properties.  

Firstly, deep learning enables an effective implementation of transfer learning and 

multitask learning. Transfer learning or inductive transfer was proposed in the early 

1990s to apply the knowledge learned from one domain to another domain [124]. It is 

closely related to multitask learning where multiple tasks are solved together so that the 

training signals of related tasks can be used to improve the performance of individual 

tasks [125]. Transfer learning and multitask learning explores the similarities and 

connections between the source task and the target task or related tasks, which has 

been used as a strategy to address the issue of a lack of training data. With deep learning, 

pre-trained hidden layers of the source task are regarded as representation extractors 

[126], which can be used subsequently by other related tasks as the knowledge 

transferred from the source task. Alternatively, the hidden layers of related tasks can be 

trained together to generate representations that are supportive for each other, thereby 

facilitate the purpose of multitask learning.  

Secondly, deep learning models have the prediction time complexity linear to the 

number of their weights. Despite the relatively long time required for training deep 

learning models, the prediction time of a pre-trained deep learning model is relatively 

short, depending on the number of weights in the model. Compared to models which 

require real-time calculation and approximation, such as probabilistic graphical models 

[127] and K-nearest neighbours [128], deep learning models provide fast execution in 

prediction time.  

Thirdly, deep learning learns multiple layers of representations [110]. Data 

representation is extracted in multiple abstractive layers in deep learning, with the 
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purpose of discovering more abstract features from higher levels of the representation 

[3].  In applications like facial recognition, based on the raw pixel inputs, Krizhevsky, A., 

Sutskever, I. and Hinton, G.E. (2012) learned the frequency- and orientation-kernels and 

coloured blobs using the first convolutional hidden layer [5], and Huang, G.B., Lee, H. 

and Learned-Miller, E. (2012) learned facial regions  using the second convolutional 

hidden layer. Here, the raw pixel inputs, the kernels and coloured blobs, and the facial 

regions represent three different levels of abstract features, from low to high. In most 

cases, higher abstract features are easier to discriminate.  

Since deep learning models are mostly implemented as multilayered neural networks, 

they derived some of the disadvantages that are shared by neural network models. 

Firstly, despite the continuous effort made by the community for explainable artificial 

intelligence, it is still a challenge to understand how deep learning models come to a 

decision [129]. Secondly, the training of deep learning models requires a significant 

amount of training data, which limited the application of deep learning in many areas 

where there is a lack of labelled data. Thirdly, the training of deep learning models is 

time-consuming [130], despite its low time complexity in prediction. Finally, existing 

training of large deep learning models relies on the usage of high performing computation 

GPUs that are designed specifically for deep learning training [5], such as GPU Tesla 

and TPU cloud. Such resources are less accessible for small industrial organisations or 

academic teams to train their own deep learning models. 

1.4 Existing challenges, research questions and objectives 

In this section, we propose the following three research questions based on existing 

challenges of applying deep learning techniques to protein analysis.  For each of the 

research questions, we also raised the corresponding objectives to be achieved in this 

thesis. 
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1.4.1 Research question #1 

How to effectively represent protein sequences for different granularities of prediction 

tasks and, specifically, how do purely data-driven representations perform compared 

with biological heuristic-based representations? 

To predict protein structural and functional properties directly from protein sequences, 

the first crucial step is to represent protein sequences as effective input features. On one 

hand, existing protein sequence representations, such as homology profiles, 

physicochemical properties and structural information, are generated based on biological 

heuristics, which ignore the abundant information that is encoded in large amounts of 

raw protein sequences. Therefore, it is interesting to explore the generation of 

representations that are purely driven by protein sequence data and compare their 

performance to biological heuristic-based representations as the input feature in protein 

sequence-based prediction tasks.  

On the other hand, since protein sequences are of different lengths, existing 

representations are either designed for sequence-level predictions or residue-level 

predictions. There is a lack of condensed vector representation that can be applied to 

different granularities of prediction tasks. According to Table 1.1, protein family and 

domain annotations are labelled at the sequence-level; structure annotations and 

functionally important site annotations are labelled at the residue-level; while drug-target 

interactions and protein-protein interactions are labelled at the biological interaction-level. 

Therefore, it is important to develop a protein sequence representation that can be 

applied to three different granularities of prediction tasks.  

The objective of this research question is to explore the different strategies to 

generate vector representations from the large amount of protein sequence data, and 

systematically evaluate its performance in three different granularities of prediction tasks.  
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1.4.2 Research question #2 

How to design a deep learning framework that can be applied to predict different protein 

structural and functional properties? 

According to Section 1.2, protein structures and functions are described as multiple 

specific properties that can be quantified in predictive modelling. Especially for protein 

structures, dozens of structural properties are used to provide detailed descriptions of 

the different aspects of a protein structure. However, from the perspective of deep 

learning, the prediction of all structural properties at the same granularity can be 

generalised as a single prediction task, and the predictive model of a specific structural 

property can be trained based on specific training data. For example, the prediction of 

sequence-level protein structural properties can be summarised as follows,  

1. It takes the representation of the whole protein sequence as the input; 

2. It produces an output for each input protein sequence; 

With the input and output generalised from a group of prediction tasks, deep learning 

frameworks can be designed at a more abstract level, which allows the flexibility of the 

selection of input features, the design of the structure of the deep learning models, and 

the modelling of the expected prediction outputs. 

The objective of this research question is to design a deep learning framework that 

can be applied to predict any individual protein structural or functional property. 

1.4.3 Research question #3 

How to leverage limited quantities of labelled biological data for rigorous model training 

by incorporating biological background knowledge? 

Compared to fields such as image processing, language processing and speech 

recognition, it is relatively more expensive and challenging to obtain labelled data from 

biological experiments. Especially when it comes to specific tasks such as protein 

structure prediction, the labelled data is derived from X-ray and NMR experiments which 
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are expensive and labour-intensive to conduct. In addition, there is a lack of developed 

data-sharing mechanisms in biology, due to the issues of intellectual property, funding 

restriction, and ethics.  

At the same time, there is a lack of a global view to bridge the biological and 

computational aspects during the process of model design. Most of the existing machine 

learning methods are applied to predict protein structures and functions in a task-specific 

manner, which makes the predictions mutually isolated from each other. Considering the 

abundant background knowledge of biology, it is crucial to explore the inter-correlation 

between different aspects of the same biological object (e.g. a specific protein or residue), 

which in turn can affect the design of the predictive deep learning frameworks. 

The objective for this research question is to design deep learning frameworks by 

incorporating biological background knowledge so that predictive models can be 

rigorously trained even with limited quantities of labelled biological data.  

1.5 Contributions and scope 

To address the three research questions raised in the previous section, we design 

different algorithms, models and frameworks; introduce different benchmark datasets 

and evaluation systems; and conduct extensive benchmarking experiments and case 

studies. We summarise the main contributions of this thesis as follows. 

We propose deep learning solutions for each of the three research questions. Firstly, 

we proposed new implementations of the distributed representation of protein sequences 

and their applications in three granularities of prediction tasks, including whole 

sequence-level predictions, residue-level predictions and biological interaction-level 

predictions. Secondly, we propose the general deep learning framework, 

DeepS(equence)2P(roperty), for predicting protein structural and functional properties 

based on protein sequences. Thirdly, based on the qualitative correlations between 

protein structural properties, we propose the multitask deep learning frameworks, Multi-

task and Cross-stitch, for predicting multiple protein structural properties simultaneously. 
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Fourthly, inspired by the hierarchical classification systems of protein, enzymes, and 

protein kinases, we propose the deep transfer learning framework, DeepTransfer, for 

predicting functionally important sites of enzymes that are pre-organised in hierarchical 

structures.  

In order to validate the effectiveness of the proposed frameworks, we apply them to 

five specific prediction tasks. More specifically, we apply the distributed representation 

prot2vec to sequence-level protein family prediction, residue-level phosphorylation site 

prediction, and biological interaction-level DTI prediction. Based on the DeepS2P 

frameworks, we perform systematic evaluation of the resulting predictive models for 

structural properties such as IDP/IDRs and SSPs and functional properties such as 

phosphorylation sites. As for the multitask frameworks, we take into consideration the 

observed correlations between IDP/IDRs and SSPs and evaluate the resulting multitask 

deep learning models for predicting IDP/IDRs and SSPs simultaneously. Finally, with the 

existing classification of protein kinases in the hierarchy of groups, families and 

subfamilies, we apply the DeepTransfer to phosphorylation site prediction with the 

purpose of improving prediction performance for kinases with limited labelled 

phosphosites.  

We perform critical analysis of the performance of the proposed frameworks and 

generate publicly available bioinformatics tools with user-friendly interface and promising 

performance.  For each of the prediction tasks, we perform systematically evaluate the 

prediction performance of the proposed deep learning frameworks. For those that 

competed less favourably with existing methods, we conduct quantitative investigations 

to analyse the factors that may have affected the prediction performance. For those with 

promising results, we develop bioinformatics tools that are publicly available to other 

researchers. We then summarise a set of heuristics for designing deep learning 

frameworks for biological data analysis.  

1.6 An overview of the thesis structure 
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This thesis is organised into nine chapters. Figure 1.3 illustrates the overall structure of 

this thesis, indicating the internal relationships among the following chapters and their 

enclosed sections.  

Chapter 2 gives an overview of the prerequisite backgrounds, fundamental 

algorithms, models and methods, and respective methods to which we compare the 

proposed models in different prediction tasks.   

Chapter 3 introduces the scientific design for applying machine learning methods to 

protein analysis. The scientific design demonstrates a general procedure of data 

collection, feature construction, model learning, and performance evaluation, which is 

conducted for each of the more specific tasks that are addressed in this thesis. 

Chapter 4 presents the deep learning techniques and frameworks that are proposed 

for addressing each of the research questions in protein analysis. Firstly, it introduces 

the distributed representation of protein sequences and its applications in whole 

sequence-level (prot2vec), residue-level (context2vec), and biological interaction-level 

(vec2kernel) predictions. Secondly, it proposes a protein sequence-based deep learning 

framework, DeepS2P, for predicting any individual residue-level protein structural 

/functional property. Thirdly, it proposes the simultaneous prediction of two or more 

protein structural properties using multitask deep learning frameworks. Finally, it 

introduces the application of the deep transfer learning framework, DeepTransfer, to the 

prediction of functionally important sites whose catalytic enzymes are classified in 

hierarchical structures.  

In order to demonstrate the effectiveness of the proposed deep learning frameworks, 

Chapter 5 – Chapter 8 introduces the applications of the proposed frameworks in five 

prediction tasks, including  

• the prediction of protein families;  

• the prediction of phosphorylation sites;  

• the prediction of protein intrinsic disorder (IDP/IDRs);  
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• the prediction of protein secondary structure populations (SSPs), and  

• the prediction of drug-target interactions (DTIs). 

Since the predictions of IDP/IDRs and protein SSPs are performed simultaneously 

using the multitask frameworks, these two prediction tasks are presented together in 

Chapter 6.  

 

Figure 1.3 The thesis structures with respect to chapters and sections. 

 

Chapter 5 introduces the prediction of protein families using the prot2vec 

representation. In this chapter, the prediction performance of prot2vec as an input 

feature vector is systematically evaluated in protein family prediction. In particular, as a 

purely data-driven representation, prot2vec’s prediction performance in protein family 

prediction is compared with that of the homology profile-based features and 

physicochemical property-based features that are generated with biological heuristics.  

Chapter 6 introduces the prediction of IDP/IDRs and SSPs using the DeepS2P 

framework respectively and using the multitask frameworks simultaneously. In this 
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chapter, DeepS2P-based deep learning models are compared with shallow architectures 

in protein structural property prediction. Further, the DeepS2P-based single-task 

predictive models are compared with multitask predictive models, demonstrating the 

effects of employing related prediction tasks as the supporting task in multitask deep 

learning frameworks.  

Chapter 7 introduces the prediction of phosphorylation sites using the context2vec 

representation, the DeepS2P framework, and the DeepTransfer framework, respectively. 

Firstly, the distributed representation, context2vec, is evaluated as a complementary 

input feature to biological heuristic-based features in phosphorylation site prediction. 

Secondly, DeepS2P-based predictive model is compared with the DeepTransfer-based 

predictive model, for predicting phosphorylation site of kinases with limited phosphosite 

annotations, illustrating the importance of designing deep learning frameworks by 

incorporating biological background knowledge, especially when there is a lack of 

annotated data.  

Chapter 8 introduces the prediction of drug-target interactions using the vec2kernel 

representation as the protein kernel. In this chapter, comprehensive comparison 

experiments are conducted to evaluate the performance of vec2kernel compared with 

that of the existing protein kernels, under different experimental settings.  

Chapter 9 summarises the work of this thesis by concluding major contributions and 

potential future work.  
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2 Literature Review 

The application of deep learning in protein analysis relies on the avalanche of related 

works from both the machine learning area and the bioinformatics area. On one hand, 

the development of deep learning techniques demonstrated the elegant applications of 

machine learning to various application areas, providing analogous examples for 

extending the application of deep learning to the analysis of protein sequence, structures 

and functions. On the other hand, existing methods for protein analysis provide mature 

methodologies based on which we conduct corresponding research works and baseline 

predictive models to which we compare the proposed deep learning frameworks.  

In this chapter, we perform the literature review in three steps. Section 2.1 provides 

a technical overview of deep learning techniques. Section 2.2 reviews the existing 

application of deep learning techniques in protein analysis. Finally, in Section 2.3, we 

present existing computational methods that are developed for predicting protein 

structural and functional properties.  

2.1 Deep learning models, strategies and techniques 

2.1.1 Basics of machine learning and neural networks 

Machine Learning is the field of scientific study that concentrates on induction algorithms 

and on other algorithms that learn from observations and make predictions [131]. It was 

first proposed by Arthur Samuel in 1959 [132], and has undergone substantial 

development together with some other fields including pattern recognition [133], artificial 

intelligent [134], data mining [135], and statistics [135]. Machine learning and pattern 

recognition can be regarded as the two facets of the same field, where the former was 

developed from computer science while the latter has its engineering origin [133]. 

Machine learning is often considered as an application or an approach of achieving 
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artificial intelligent [134].  It is also considered to be at the core of data mining since the 

key step of pattern discovery in data mining can be addressed by most machine learning 

algorithms. Yet, machine learning and data mining have different concentrations. The 

former focuses on the learning and induction step which aims to construct models 

reflecting the underlying structure behind the data, whereas the latter focuses on the 

discover of new knowledge [135]. Finally, according to Michael I. Jordan, machine 

learning has a long prehistory in statistics [136].  

Machine learning has been widely applied to address multiple types of tasks, including 

classification, regression, and clustering.  

Classification. A typical classification task seeks to classify unseen examples to two 

or more pre-defined classes. With machine learning, classification models are learned 

from a set of <example, class label> pairs, which are later used to assign class labels to 

unseen examples. Most of the predictive tasks in protein sequential, structural and 

functional analysis can be modelled as classification tasks. For example, the prediction 

of protein secondary structures classifies each target residue as one of the three protein 

secondary structure elements including helix, strands and coil [137-139].  

Regression. The regression task seeks to estimate the correlation between the 

dependent variable and a set of independent variables [140]. When addressed using 

machine learning, the solution is similar to that of the classification task, except that the 

output is continuous instead of discrete. In protein analysis, protein backbone torsion 

angle prediction has been modelled as a regression task [141].  

Clustering. Clustering seeks to divide a set of examples into groups according to a 

pre-defined distance measurement. However, there is no pre-defined classes. 

Therefore, the number of resulting groups varies depending on the distance 

measurement that is selected. Protein sequence clustering represents a typical example 

of the clustering task [142]. It divides a set of protein sequences into groups according 

to the distance among the protein sequences. The distance measurement can be 

selected as the edit distance or homologous distance.  
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Machine learning is generally categorised as either supervise learning or 

unsupervised learning. Supervised learning refers to techniques used to learn the 

relationship between independent variables and a designated dependent variable [131]. 

Take classification as an example, in supervised learning, data labelled with classes are 

used as the observation to guide the training of the model. In comparison, unsupervised 

learning refers to learning techniques that group instances without a pre-specified 

dependent variable [131]. As a result, there is no pre-defined labels and the task itself 

also involves the discovery of labels or classes. In practice, it is expensive and labour-

intensive to obtain the labelled data, which leads to the third type of machine learning 

named semi-supervised learning [143]. Typically, in semi-supervised learning, labelled 

data and unlabelled data are combined to guide the process of model training.   

In the broad field of machine learning, multiple approaches were proposed and 

developed in the last fifty years, including artificial neural networks [144], support vector 

machines  [145], probabilistic graphical models (including Bayesian networks)  [127], 

decision trees [146], inductive logic programing [147], genetic algorithm [148], 

reinforcement learning [149] and clustering algorithms [150]. Some of these approaches 

are more advantageous to address one or two of the three tasks mentioned above. 

Decision trees, as an example, are specifically designed to address classification tasks. 

While the clustering algorithms are specifically designed to address clustering tasks.  

Deep learning is often (but not necessarily) classified as a kind of neural network 

which is defined as follows [151], 

Definition 2.1 A neural network is a massively parallel distributed processor made up of 

simple processing units, which has a natural propensity for storing experiential 

knowledge and making it available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environmental through a 
learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used 
to store the acquired knowledge. 
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It was inspired by biological neural networks where neurons are connected as a 

complex network to process information. Each neuron in artificial neural networks have 

three basic components, including the synaptic weights, the adder and the activation 

function [152].  Figure 2.1 (a) demonstrates the basic architecture of a neuron.  

 

 

Figure 2.1 The architecture of a basic neuron in artificial neural networks. 

 

For each neuron, the adder linearly combines the weighted inputs to general the 

weighted sum of the input signals, while the activation function allows the non-linear 

modelling of the relationship between input signals and the output. In practice, multiple 

neurons are connected to process the input information. Figure 2.1 (b) demonstrates an 

example of the connectivity among multiple neurons. In this neural network, the nine 

neurons are organised in three layers, where the neurons in the same layer are not 

connected to each other but connected to every neuron in its adjacent layers. Neural 

networks with this particular organization of neurons and connectivity are referred to as 

the fully-connected neural networks [114].  

Neural networks have been applied to many different protein analysis tasks, including 

disordered protein prediction [153], phosphorylation site prediction  [35, 154], and protein 

secondary structure prediction [155]. In general, the input information for each target 

residue is first encoded to the input signals (or feature representations) #$, #&, … , #(, and 
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its corresponding labels (e.g. disordered/ordered, phosphorylated/non-phosphorylated, 

helix/strands/coil) are used as the output y . With sufficient observations of pairs of 

<#$, #&, … , #(, *>, the learning algorithm is expected to assign values to the synaptic 

weights  +$,+&, … ,+(, so that the resulting neural network is capable of generating the 

output y for unseen target residues.  

2.1.2 Deep learning models 

Deep learning is developed based on multi-layered neural networks. Depending on the 

restriction of connectivity and the different organization of neurons and connectivity, the 

most widely used deep learning models include convolutional neural networks [116], 

recurrent neural networks [118], and generative adversarial networks [119].  Here, we 

introduce convolutional neural networks, recurrent neural networks and the convolutional 

neural fields, which have been applied to the prediction of protein structures and 

functions.   

Convolutional neural network. As mentioned in Section 1.3.2, the convolutional 

neural network (CNN) was inspired by the animal visualization cortex where each neuron 

is only activated by a limited region in the visual field which is called the receptive field 

[115]. Instead of connecting to every neuron in the previous layer ,− 1, each neuron in 

the current layer m is connected to a limited number of adjacent neurons in layer ,− 1. 

With this restriction, the coverage of neurons in lower layers overlap with each other and 

therefore form a convolutional architecture. Figure 2.2 (a) demonstrates the artificial 

neural network simulation of the receptive field of size 3.  

In convolutional neural networks, the receptive field is implemented by using the 

convolutional filter. It defines how many neighbouring neurons in the previous layer are 

connected to the target neuron in the current layer [5]. In two-dimensional data, e.g. 

pixels in images, the convolutional filters are usually defined to have two dimensions. 

For example, a convolutional filter of size 5×5 defines that five neurons in each of	# and 
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*-axis from the previous layer convolve to one neuron in the current layer, as is shown 

in Figure 2.2 (b).  

When applying convolutional filters, padding strategy determines how to deal with 

elements (e.g. pixels, words, residues) at the border of the representation. If the SAME 

padding is applied in a 5x5 convolutional filter, two additional rows/columns of the same 

border values are added to compute the output for border elements. The ZERO padding 

sets the additional rows/columns with value 0, as shown in Figure 2.2 (c).  

 

Figure 2.2 Receptive field, convolutional field and ZERO padding in convolutional neural 

networks. 

 

The advantage of the CNN model is that it models local correlation within data in a 

hierarchical way. The restrictions in receptive fields enable the mapping between hidden 

layers and abstract layers in data. For example, in facial recognition, the input hidden 

layer is mapped to the input pixels, the first hidden layer is mapped to geometry patterns 

such as lines and angles, the second hidden layer is mapped to facial parts such as 

noses and eyes, the third hidden layer is mapped to super areas consisting of multiple 

facial parts, and the last layer is mapped to the whole face.  

When applied to protein sequential modelling, the convolutional neural networks are 

mainly used to model the local correlation among adjacent amino acids.  

Convolutional neural fields. The model of the deep convolutional neural fields 

(CNF)  was proposed to estimate the image depth where the depth values are continuous 

and locally correlated to each other [156]. Compared to the CNN model, the CNF model 
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not only models the local correlation within feature space, it also enforces the modelling 

of local correlation in predicted data.  

Deep convolutional neural fields consist of a CNN component and a conditional 

random fields (CRF)  component. Let x be the input feature, and * = 	 (*$, *&, … , *5) the 

continuous labels to be predicted for position 1 to 7 . The conditional probability 

distribution of the data in the CRF component can be modelled as,  

8(*|#) =
$

:(;)
<#=	(−>(*, #))    [Eq. 2.1] 

where > is the energy function and	? the partition function [127]. To model both the 

individual elementary data and the local correlation among continuous elements, the 

energy function >(*, #) was split into a unary function @(*A, #) and a pairwise function 

B(*A, *C, #). The output of the unary function comes from a separate CNN for each 

individual element; while the output of the pairwise function was calculated from each 

pair of neighbouring elements with multiple types of similarities. The combined functions 

are later fed into a CNF loss layer which generates the loss values and guides the 

training of the whole network. In image depth estimation, the three similarities used were 

the colour difference, colour histogram difference and pattern disparity in terms of local 

binary patterns (LBP) [156].  

The deep CNF model has its advantage in modelling sequential data with sequential 

annotations where the local correlation among the sequential annotations would make a 

difference in prediction performance. It has been applied to predict protein secondary 

structures [157] and intrinsic disorder [158], where there are local correlations among 

the predicted neighbouring secondary structures and the predicted neighbouring 

disordered states.  

Recurrent neural network. Recurrent neural network (RNN) was proposed to solve 

sequential problems. Different from the CNN model and the deep CNF model in which 

only the correlation among neighbouring elements is modelled, in the RNN model, there 
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is a component called the hidden state that ‘remembers’ the history information from 

previous positions.  

Suppose the sequential input data is formalised by a sequence of symbol D =

E$, E&, … , E5  where each element is represented by EF  and the output sequence is 

represented by G = H$, H&, … , H5. Due to the various lengths of sequences, the units in 

the recurrent network are defined in a recurrent way, where the output at position I, i.e. 

HF , is computed from EF  and EFJ$  which can be generalised to all possible positions. 

Figure 2.3 demonstrates the general definition of a unit in the recurrent network.   

 

Figure 2.3 Consecutive units in recurrent neural networks. 

 

Here, the output HF is computed as follows according to the Elman network [159],  

							ℎF = LM(NOMEF +NMMℎFJ$ + QM)	

HF = LR(NMRℎF + QR	 	 	 	 [Eq. 2.2] 

where ℎF is the hidden units at position I, LM and LR are activation functions, NOM, NMM 

and NMR  are weights and QM  and QR  are biases. The hidden states ℎF  works as the 

memory from previous positions. Commonly used variations of RNN include the long 

short term memory (LSTM) network [117], the bidirectional RNN [160], the gated RNN 

[161], and the hierarchical RNN [162].  

A bidirectional LSTM model has been applied to predict disordered proteins and 

regions [153]. In this model, residues around the target position I are modelled step-by-

step using two layers of LSTM units so that the long-distance dependencies can be used 

for the prediction of disordered states.  
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2.1.3 Distributed representation of words, sentences and documents 

Ganapathiraju, M., et al. (2005) proposed the mapping between biological sequences 

and natural languages, where gene/protein sequences were mapped to raw texts from 

documents; protein expression, structures and functions were mapped to sentence 

semantics; and biological interactions were mapped to the topics of the documents [163] 

(Figure 2.4). Therefore, the modelling of natural languages provides analogous ideas 

for the modelling of protein sequences.  

 

Figure 2.4 The mappings between natural language processing and biological sequence 

analysis. 

 

In natural language processing, the technique for mapping words and phrases to 

their vector representations is called word embedding [164]. It was originally 

implemented with counting-based techniques such as Term frequency (TF) [165] and 

term frequency-inverse document frequency (TF-IDF)  [165] and localist representation 

techniques such as the 1-of-K encoding (i.e. one-hot encoding)  [133]. A brief introduction 

of TF, TF-IDF and 1-of-K coding is as follows,  

Term frequency (TF). The TF technique represents each sentence or document as 

a vector of the counts of each word in the dictionary. For example, for document D the 

TF representation (T$, T&, … , T()U  for vocabulary words (+$, +&, … ,+()  indicates the 

number of word +$, +&, …, and +( in the document V.  
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Term frequency - inverse document frequency (TF-IDF). The TF-IDF technique 

was proposed to penalise words that are statistically more likely to appear in a language, 

such as ‘a’, ‘the’, and ‘is’.  

Both of the TF and TF-IDF techniques are based on the bag-of-words model [166] in 

which documents are represented as a bag of its words, disregarding the order of the 

words or any language grammars.  

1-of-K encoding. In the 1-of-K encoding, each position in sentences or documents 

is represented as a vector of the size of the vocabulary, in which each element 

corresponds to a vocabulary word and its corresponding value indicates whether it 

appears in the current position. Therefore, the sentence or document itself is represented 

as a vector of vectors, i.e. a matrix. Such 1-of-K encoding matrix is considered as an 

implementation of the localist representation, which is defined as follows,  

Definition 2.2 In the localist representation, each semantically discrete item, concept or 

idea is associated with the activity of a single node [167].  

 
In comparison to the localist representation, the distributed representation was first 

proposed by Hinton allow representing multiple items (, concepts, or ideas) with multiple 

nodes. The original definition is as follows,  

Definition 2.3 Each entity is represented by a pattern of activity distributed over many 

computing elements, and each computing element is involved in representing many 

different entities [168].  

 
Recently, the distributed representation of words, phrases and documents [169, 170] 

was proposed based on the semantic correlation between words. These distributed 

representations are automatically generated from hidden layers of the generative models 

that are trained to generate words in natural language sentences.  The distributed 

representation of words and phrases come in two flavours, i.e. the continuous bag-of-
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words (CBOW) [171] architecture and the skip-gram [170] architecture. Both of these 

two architectures are constructed based on the feedforward neural network language 

model (NNLM)  which explores the correlation between the current word wX  and its 

neighbouring words +FJ(, +FJ(Y$, … ,+FY(J$, +FY(  (where n  represents the maximum 

distance between the target word and its surrounding words). Figure 2.5 (a) and (b) 

demonstrate the two architectures, respectively.  

 

Figure 2.5 The distributed representation of words and phrases [170]. 

 

In the cbow architecture, the current word +F is predicted from its neighbouring words. 

Therefore all the neighbouring words are projected to the same position, which is similar 

to the BOW model in which the order of the words is ignored [171] (Figure 2.5 (a)).  In 

comparison, the skip-gram architecture predicts the surrounding words given the current 

word wX	(Figure 2.5 (b)). It tries to adjust the synaptic weights in the NNLM so that the 

probability of classifying +FJ(, … ,+FJ$ and +FY$, … ,+FY( as the observed neighbouring 

word given the current word wX is maximised [171].  

In the skip-gram architecture, as an example, for the word sequence +$,… ,+F	, … , +[, 

the training object is to maximise the log probability defined as follows [170],  

8 =	
$

[
∑ ∑ ]H^ =(+FY_|+`)J(a_a(,_bc
[
`d$ 	 	 	 [Eq. 2.3]	

where g denotes the number of upstream and downstream words that are predicted 

given the current word +F.	According to Mikolov, T., et al. (2013), more surrounding 
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words (larger values for g) results in a better representation of the current words, which 

also incurs higher training time complexity [171]. Therefore, the hierarchical softmax [172] 

and the negative constructive sampling (NCE) [173] were introduced to make the training 

process feasible.  

The distributed representation of words and phrases were later extended to 

sentences, paragraphs and documents [169]. By treating the document as a special 

word token and train it together with other words in the dictionary, the representation of 

the document is automatically learned from its composition words. This distributed 

representation of document also comes in two flavours, i.e. the distribute bag-of-words 

(dbow)  and the distributed memory (DM)  architecture. Figure 2.6 demonstrates these 

two architectures for distributed representation of document V in comparison.  

 

Figure 2.6 The distributed representation of sentences and documents [169]. 

 

The DM architecture is similar to the CBOW architecture except that the document 

is regarded as a special word token and combined together with the each of the 

surrounding words +FJ(, +FJ(Y$, … ,+FY(J$, +FY(  to predict the current words +F . 

Therefore, the document representation can be regarded as the contextual information 

for each of its composition words. In the DBOW architecture, random words sampled 

from the document are predicted from the document representation. It is similar to the 

skip-gram architecture in which neighbouring words are predicted from the current word.  
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Compared to the generic word embedding techniques (including TF, TF-IDF and 1-

of-K coding), the distributed representation has the following advantages. Firstly, it 

allows for condensed representation that are of fixed lengths. This is especially 

advantageous for the design of machine learning models which require fixed-lengths 

input features. Secondly, it is based on unsupervised learning and therefore does not 

require pre-labelled data, which greatly simplifies the step of data collection and dataset 

construction. Thirdly, the resulting representation is capable of encoding semantic 

meanings. According to the analogical reasoning task that was introduced by Mikolov, 

T., et al. (2013) [171], the question ‘Germany’: ‘Berlin’:: ‘France’:? got the answer ‘Paris’ 

given the distributed representations of the related words.  

Similar to natural languages, biological sequences are typical sequential data and 

various natural language processing techniques have been applied to deal with 

biological sequences. For example, the 1-of-K encoding was used as the representation 

of protein sequences in different prediction tasks [78, 174, 175]. Therefore, it is 

straightforward to apply the distributed representation to protein sequences. Please refer 

to Section 2.2.1 for existing distributed representations of biological sequences.  

2.1.4 Transfer learning, multitask learning and deep learning 

The lack of training data has been one of the mains issues in machine learning methods. 

With more parameters involved in more complex structures, the deep learning models 

are more desperate for training data. It has become one of the bottlenecks for applying 

deep learning in many different areas.  

The problem of lack of training data was partially leveraged by using two strategies 

which are related to each other. The first strategy is called the multitask learning where 

the parameters of the models for related tasks are shared with each other [176]. With 

different parameter sharing mechanisms, the task with less training data can be trained 

together with a related task that has sufficient training data and therefore compensates 

for the shortage of data. The other strategy is called the transfer learning, where the 
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knowledge gained in solving one problem is used to address another related problem 

[177]. These two strategies are similar in that they both employed the idea of parameter 

sharing.  

In general, multitask frameworks in deep learning are implemented in two styles, one 

is called hard parameter sharing where multiple tasks share the same input layer and 

hidden layers and have their own task-specific fully connected layers and output layers 

[178, 179]. While the other is called soft parameter sharing where each task has its own 

weights for all hidden layers, and fully-connected layers. The distance between the 

parameters of these models are regularized to enforce similarity [180, 181]. Due to the 

diversity of the tasks that the multitask frameworks are applied to, there has been an 

interest in investigating the structural design of the multitask frameworks. More 

specifically, for different application scenarios, the number of shared layers, the number 

of task-specific layers and the way of sharing the parameters should be designed 

differently. To address this problem, the deep relationship networks were designed to 

explore the dependencies between corresponding task-specific layers in the hard 

parameter sharing framework [20]. The cross-stitch multitask framework was proposed 

to model the linear correlation between corresponding layers in the soft parameter 

sharing framework [182]. A joint many-task model for natural language processing was 

proposed to decrease the supervision by design a hierarchical architecture where the 

low-level tasks such as part-of-speech labelling and chunking were used as auxiliary 

tasks [183]. By applying these new techniques, the structure of the multitask framework 

was learned automatically depending on the correlation between the different tasks 

instead of manually specified beforehand.  

Transfer learning was first introduced as the discriminability based transfer in 1933 

[124]. It has been implemented using various machine learning methods including 

Bayesian networks [184], support vector machines [185] and decision forest [186].   With 

deep learning models, transfer learning is implemented in the following two ways. Firstly, 

deep learning practitioners release pre-trained models [187-190] based on which other 
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researchers can construct their own task-specific fully-connected layers or initialize their 

new model with the pre-trained weights. Secondly, feature extractors are designed and 

pre-trained which transform raw input data into condensed fixed-length representations. 

These representations are usually generated from unsupervised learning and are taken 

from the output of the last hidden layer of the designed model. In image processing, the 

AlexNet [191] produced a 4096-dimensional vector for each input image; and in natural 

language processing, the word2vec [170] and doc2vec [169] generate fixed-length 

vector representations for each input word and input document, respectively. With this 

pre-trained vector, even linear models can achieve satisfying performance. The 

distributed representation of words and documents is introduced in Section 2.1.3. 

In this thesis, we applied the multitask framework and transfer learning for modelling 

and discovering the inter-correlation between different prediction tasks, which was in turn 

used for improving the prediction performance for individual tasks.  

2.1.5 Open source platforms for constructing deep learning models 

The current commonly used deep learning platforms include the TensorFlow7 by Google, 

Caffe8 by UC Berkeley, Caffe29 by Facebook, Torch10, Theano11, Keras12 and MXNet13. 

Most of the platforms are open sourced projects. To improve the training efficiency, these 

deep learning platforms usually support GPU and parallel computing. The most 

commonly used GPUs are provided by Nvidia which developed hardware (e.g. K40 and 

K80) and software (e.g. cudnn) specifically supporting high-performance deep learning 

computation. In this thesis, we developed all of the deep learning models using 

                                            
7 Tensorflow: https://www.tensorflow.org 
8 Caffe� http://caffe.berkeleyvision.org  
9 Caffe2: https://caffe2.ai/docs/applications-of-deep-learning.html 
10 Torch: http://torch.ch 
11 Theano: http://deeplearning.net/software/theano/ 
12 Keras: https://keras.io  
13 MXNet: https://mxnet.apache.org  
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Tensorflow, with the hardware support from the Monash eResearch centre14 which is 

configured with two GPUs in total.  

2.2 Protein analysis based on deep learning techniques 

In this thesis, we propose four deep learning frameworks for protein analysis, including 

a distributed representation of protein sequences, a deep learning framework for 

predicting protein structural and functional properties, two multitask deep learning 

frameworks for predicting two or more protein structural properties, and a deep transfer 

learning framework for predicting functional important sites. In this section, we introduce 

the existing representations of protein sequences and existing applications of deep 

learning techniques in protein analysis.  

2.2.1 Existing representations of protein sequences 

Protein sequences or amino acid sequences contain all the information for determining 

protein tertiary structures and functions. Therefore, protein sequences have been used 

directly and indirectly as the source of information for calculating various representation 

feature vectors. The direct way of using protein sequences is to generate amino acid-

based representations including the amino acid indicator vectors [158], the 1-of-K coding 

[78], the sparse representations [192] and the distributed representations  [193]. The 

indirect way of using protein sequences is to calculate or generate multiple categories of 

protein information including evolutionary homology profiles (such as position-specific 

scoring matrixes (PSSM) [8, 158, 194-196], HMMER profiles [158, 195, 196], HHM 

profiles), physicochemical properties (such as amino acid composition, polarity, 

hydrophobicity, surface tension, charge, normalized Van der Waals volume, and 

polarizability [69]), structural properties (protein secondary structures, solvent 

                                            
14 Monash eResearch centre: https://www.monash.edu/researchinfrastructure/eresearch   
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accessibilities, and torsion angles) and sequential patterns (such as curated sequential 

motifs [68]) from sequences of amino acids.  

Evolutionary homology profiles. Functional regions or domains in proteins are 

conserved over time among different species whereas non-functional regions are free to 

changes [197]. Therefore, proteins that are evolutionarily homologous to each other may 

share related functions; and the structures and functions of a protein can be inferred from 

proteins that have similar evolutionary histories. Protein homology can be detected 

among two or more proteins from their sequences or structures. Due to the limited protein 

tertiary structure, sequence-based homology detection techniques were developed and 

widely applied in different protein analysis tasks.  

Most of existing computational methods for detecting protein sequence homology 

are based on sequence alignment. With sequence alignment, biological sequences are 

compared so that similar regions are labelled out [99]. Sequence alignment can be 

categorised into local and global alignment and can be performed in a pairwise manner 

or among multiple sequences. Local sequence alignment seeks to label out all similar 

segments while global sequence alignments align two whole sequences. The previous 

is more applicable for dissimilar sequences that are suspect of similar segments, and 

the latter is often applied to generally similar sequences.  

Sequence alignment has been widely used in a wide range of protein analysis tasks 

such as conserved domain identification (see Section 1.2.3) [198], phylogenetic analysis 

[199], protein homology profiling, and protein structural and functional predictions. In 

conserved domain identification, similar sequence segments among multiple proteins 

are labelled out as the conserved domain for a group of related proteins. In phylogenetic 

analysis, phylogenetic trees are generated from multiple sequence alignment, indicating 

the evolutionary distance between proteins and their common ancestors. In protein 

homology profiling, a scoring vector is generated for each amino acid at its specific 

position which encodes the pattern of occurring frequencies of amino acids. The 
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generated protein homology profile is widely used as one of the main features of protein 

structure determination and protein function classifications.  

Physicochemical properties. Proteins are biological molecules with different 

chemical and physical properties, which, in combination, are referred to as 

physicochemical properties. The physicochemical properties of proteins are determined 

by the physicochemical properties of amino acids. The AAindex database recorded a set 

of 20 numerical values representing various physicochemical and biochemical properties 

of amino acids [200], while the PROFEAT tool provided online service for generating 10 

sets of physicochemical and structural features from amino acid sequences, covering 

1447 property values [201]. Note that the features here refer to protein descriptors that 

are calculated based on amino acid physicochemical property values, and van Westen, 

G.J. et al. (2013) [202] benchmarked 13 different protein descriptors that were calculated 

based on physicochemical properties, including z-scales, VHSE, and FASGAI.  

Physicochemical properties are not always used in the form of protein descriptors. 

For some of the prediction tasks, specific physicochemical properties are selected to 

form feature vectors, depending on the prediction task itself. For example, in 

phosphorylation site prediction, average accumulative hydrophobicity has been 

demonstrated to be an important attribute of functionally important sites [17, 203]. 

Therefore, it is calculated independently from other physicochemical properties and used 

as one of the sources of information for generating the input feature.  

Structural information. In protein structural and functional prediction, protein 

structural and functional properties are inter-correlated and mutually evidential. 

Therefore, it is not uncommon to use predicted protein structural information as the input 

feature for predicting related protein structures or functions. Some of the most commonly 

used protein structural information include protein secondary structures, protein surface 

accessibilities, and protein intrinsic disorder. Ideally, accurate structural information can 

be derived from determined tertiary structures. However, in most cases, structural 

information is predicted directly from protein sequences using existing state-of-the-art 
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bioinformatics tools. For example, homology profiles and physicochemical properties are 

widely used as input features for protein structure prediction [101, 194], while predicted 

protein secondary structures have been used as part of the input feature for protein 

intrinsic disorder prediction [158]. For detailed introduction of bioinformatics tools, please 

refer to Section 1.2.5.  

In the thesis, we refer to the above three sources of representations, including 

homology profiles, physicochemical properties, and the structural information, which are 

generated from protein sequences with biological heuristics, as the biological 

representation of protein sequences. They are widely researched and used in protein 

sequence-based predictions due to their strong biological backgrounds.   

Sequence motifs and protein sequence-based representations. A protein 

sequence motif, or pattern, can be broadly defined as a set of conserved amino acid 

residues that are important for protein function and are located within a certain distance 

from each other [204]. The PROSITE database [68] hosted the most extensive and most 

comprehensive collection of protein sequence motifs that can be used for various protein 

analysis purposes. As for protein sequential representations, 1-of-K coding [78] and the 

sparse representation [192, 205] have been proposed to indicate the amino acid type at 

each position in a protein sequence.  

The continuous distributed representation of biological sequences. Based on 

the distributed representation of words and phrases, Asgari, E. and Mofrad, M.R.K. 

(2015) proposed a continuous distributed representation of biological sequences [193], 

named as ProtVec. The vector representation of each protein (or biological) sequence 

was generated by summing up the distributed representation of biological words.  

Let D denote the protein sequence whose representation is queried. The distributed 

representation of D is generated in the following three steps. Firstly, the protein sequence 

D  is split into a list of n-grams, denoted as D = +$,+&, … ,+( . To demonstrate an 

analogous mapping between protein sequence and natural language sentences, in this 

thesis, we refer to each of the n-gram as a biological word. Secondly, the distributed 
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representation of each of the biological word was generated from a pre-trained 

generative model trained based on the word2vec algorithm (see Section 2.1.3). Thirdly, 

the distributed representations of the words +$,+&, … ,+( are summed up to form the 

distributed representation of the protein sequence D.  

The idea of this generation strategy is similar to that of the Bag-of-Word model (see 

Section 2.1.3) where the representations of protein sequences are generated ignoring 

of the order of its biological words. In Chapter 4 – Chapter 8, we performed both 

qualitative and quantitative comparisons between ProtVec and the distributed 

representation implementations proposed in this thesis, demonstrating the advantages 

and disadvantages of these two implementations in different application scenarios.  

2.2.2 Limitations of the application of existing protein representations  

Existing biological representations of protein sequences have been applied to various 

protein sequence-based predictions15. They are conducted in three different granularities, 

including the whole sequence-level predictions, the residue-level predictions and the 

biological interaction-level predictions. Here, whole protein sequences represent more 

abstractive level than individual residues, while biological interactions usually involve two 

or more protein sequences, which represent a higher level of abstraction. Due to the 

construction principles of existing biological representations, they are designed to 

represent protein sequences in only one of the three granularities. The following cases 

demonstrate the potential issues in applying biological representations to protein 

sequence-based predictions. 

• The homology profile position-specific scoring matrix (PSSM), for example, is 

constructed at the residue-level where each residue is represented as a vector 

                                            
15. In this thesis, protein sequence-based predictions refer to the computational estimation, identification, 

or determination of protein structural and functional properties that are expensive to determine with 

experimental methods. 
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of size 21. However, to represent whole protein sequences, the vectors of all 

residues have to be either 1) summed up to form a one-dimensional vector of 

size 21 or 2) concatenated to form a 2-dimensional matrix representation where 

the size of the first dimension corresponds to the length of the protein sequences. 

With solution 1), the resulting representation ignored the order of amino acids of 

the protein sequence, and it is biologically meaningless to sum up the evolutional 

scores of all residues. With solution 2), however, the lengths of protein sequences 

may vary from 3 to 35,000, which results in protein sequence representations 

with dramatically different sizes. 

• The physicochemical property protein solubility, as an example, is defined at the 

whole-sequence level. The surface of protein has a net charge that depends on 

the number of identical charged amino acids on the protein surface, and the pH 

[206]. This net charge is considered to be closely related to the solubility of the 

protein. Therefore, the estimation of protein solubility is conducted at a level more 

abstractive than individual residues. Its calculation has to be at the level of whole-

sequence for both proteins and peptides. Physicochemical properties like protein 

solubility are not applicable for residue level predictions and biological interaction 

level predictions. 

• Finally, the existing distributed representation of protein sequences, ProtVec, 

was proposed to map each protein sequence to a vector representation.  

Therefore, it can only be applied to whole sequence-level prediction tasks such 

as protein family prediction [193].  

2.2.3 Existing applications of deep learning to protein analysis 

Existing application of deep learning has achieved state-of-the-art performance for 

various prediction tasks in protein sequence-based prediction tasks, such as protein 

secondary structure, solvent accessible area and torsion angle prediction, protein 
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intrinsic disorder prediction, phosphorylation site prediction, residue contact map 

prediction, protein function prediction, and protein-protein interaction prediction.  

Deep convolutional neural fields (DeepCNF) represents one of the most widely 

applied deep learning techniques in protein sequence-based predictions. For protein 

secondary structure prediction, Wang, S. et al. (2016) proposed the DeepCNF-SS model 

to capture local correlation between input features and output labels [156]. The input 

features were constructed as the concatenation of the 1-of-K encoding for 21 amino 

acids and the 21-dimensional homology profile (PSSM) generated using PSI-BLAST 

[99]. The resulting DeepCNF-SS model achieved the state-of-the-art performance for 

protein secondary structure prediction with an accuracy score of ~84% for the 3-class 

DSSP categorical system and ~72% for the 8-class DSSP categorical system (see 

Section 1.2.3). In Figure 2.7, the DeepCNF-SS model is composed of an input layer for 

5 residues centred at the target residue, two convolutional layers with filter size 3, and 

an output layer modelled as the conditional random fields for the output labels of the 5 

input residues.  

 

Figure 2.7 The DeepCNF-SS model for protein secondary structure prediction [156].  

 

Based on the same DeepCNF model, Wang, S. et al. proposed the DeepCNF-D 

model [158] and the AUCPreD model [207] for predicting protein intrinsic disorder. The 

former assigned a reciprocal weighted ratio between ordered and disordered examples 

to address the issue of imbalanced dataset  [158], while the latter used a refined objective 
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function to maximise the AUC score [207]. Please refer to Table 2.1 for detailed 

description of their feature groups.   

Different from deep CNF, deep CNN only models the local correlation within the input 

feature. Yet, it has achieved the state-of-the-art performance in several prediction tasks 

such as phosphorylation site prediction. For phosphorylation site prediction, the 

MusiteDeep employed a combination of convolutional network and the attention-

mechanism to automatically search for important positions in the input sequence [78]. 

The input feature was constructed as the 1-of-K encoding of the raw input sequences, 

which ignores the abundant information that are encoded in homology profiles, 

physicochemical properties and structural information, but has the advantage of 

significantly shorter time for sequence pre-processing. Interestingly, the idea of transfer 

learning was mentioned in MusiteDeep to reuse the pre-trained models of S, T, Y sites 

as the feature extractor of predictive models for specific kinases. It was inspired by the 

fact that there are more sufficient training data in general phosphorylation site prediction 

than in kinase-specific phosphorylation site prediction. However, there is not 

incorporation of the hierarchical classification system of protein kinases.  

Another deep learning technique that has been applied to biological data is the RNN 

[118], especially with the LSTM implementation [117]. For IDP/IDR prediction, Hanson, 

J. et al. (2017) proposed to use a three hidden-layer bidirectional recurrent neural 

network to predict the disordered states of the target residue, based on the feature 

extracted from its neighbouring residues [153]. In this architecture, the first hidden layer 

was implemented as a fully-connected layer, while the latter two were implemented as 

bidirectional LSTM units. The input features were constructed from evolutionary profiles, 

physicochemical properties and predicted structural information.  

Other deep learning architectures including fully-connected deep neural networks, 

deep restricted Boltzmann machines (RBM), and deep belief nets (DBN) are used in 

protein analysis as well. For protein torsion angle prediction, Li, H. et al. (2017) 

systematically evaluated the prediction performance of four different deep learning 
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models, including deep CNN, deep RNN, deep DBN and deep RBM [208].  For contact 

map prediction, Di Lena, P., Nagata, K. and Baldi, P. (2012) proposed a three-step 

procedure to predict coarse contact and orientation, element alignment, and residue-

residue contact in a sequential order [64]. The first step briefly classifies pairs of 

secondary structures as parallel contact, anti-parallel contact, and no-contact using 2-

dimentional RNN. The second step assigns contact probabilities to pairs of residues in 

contacting secondary structures. And the third step predict accurate residue-residue 

contacts based on the previous two steps using a 2-dimentional feed-forward neural 

network.  

2.2.4 Limitations of existing applications of deep learning to protein analysis 

These applications of deep learning in protein analysis are mostly conducted in an ad 

hoc manner. With improving the prediction performance as the ultimate goal, there is a 

lack of systematic analysis of the performance of deep learning in protein analysis, 

investigating why deep learning models performed superior or inferior to other methods, 

the heuristics from the biology that can be used for the designing of deep learning models, 

and the relation between different prediction tasks from the perspective of predictive 

model design.  

2.3 Existing methods for protein prediction tasks 

To demonstrate the usefulness of our proposed deep learning frameworks, we applied 

the proposed deep learning models to five prediction tasks, including protein family 

prediction, DTI prediction, phosphorylation site prediction, protein SSP prediction and 

IDP/IDR prediction. In this section, we introduce the existing methods for each of the 

above five prediction tasks and summarise the advantage and disadvantage of these 

existing methods, providing comprehensive research backgrounds and baselines to 

which we compare the frameworks proposed in the following chapters. 
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2.3.1 Protein family prediction 

According to the convention, protein families refer to groups of proteins with the common 

origin of evolution, reflected by their related functions or similar sequences and 

structures. For proteins with little experimental evidence, the identification of their protein 

family can provide additional information of protein structures and functions. This 

identification relies on the construction of the protein family database. Currently, these 

protein family databases are constructed via the combination of the expert curation and 

computational prediction. These protein family databases include the Pfam database 

[70], the PROSITE database [68], the InterPro database [86], and the PIRSF database 

[84]. Among these four databases, the InterPro database and the PIRSF database are 

meta-databases that combine annotation from multiple databases for more complete 

collections of protein family annotations, while Pfam and PROSITE proposed specialised 

methods to identify family members of different protein families.  

HMMER. The Pfam database is constructed using the HMMER tool [87], which 

generates a Hidden Markov Model (HMM) profile, for each protein family, from the 

multiple sequence alignment of existing protein family members. In 1998, Eddy, S. R. 

(1998) proposed the profiling biological sequence using HMMs. A typical HMM is 

composed of a sequence of hidden states each of which has an emission probability for 

generating the next element in sequence and a transition probability determining whether 

transit to the next state. The training process of such a model is to learn the emission 

and transition probabilities of each state given the observed sequences of elements that 

are generated from the model. Once the emission and transition probabilities are learned, 

the model can be used a) to generate new sequences; and b) to check whether a new 

sequence would be generated from the model.  

Protein family prediction is benefitted from the second application scenario where a 

new protein sequence is checked against a pre-trained protein family HMM profile to 

determine whether it is a member of this protein family. In practical, the emission and 
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transition probabilities of a protein family HMM profile can be learned from the protein 

sequences of existing protein family members by using supervised learning algorithms 

such as gradient descent, Gibbs sampling, simulated annealing and genetic algorithms. 

They can also be calculated directly from the statistics in multiple sequence alignment 

of the protein family members.  

HMMER represents the early attempts to model protein sequences using sequential 

models. Once the model is trained, HMMER can recognise a member sequence of a 

specific protein family within linear time. It has been used to generate homology-based 

features for protein sequences in multiple prediction tasks.  

PROSITE. The PROSITE database was constructed based on motif descriptors that 

were either represented as patterns or profiles. In PROSITE, the patterns of a protein 

family refer to the regular expression indicating the residue pattern for evolutionarily 

conserved domains. These conserved domains are usually very important signatures for 

recognising the members of a protein family, including enzyme catalytic sites, prosthetic 

group attachment sites, cysteines involved in disulphide bonds, and regions involved in 

binding activities [68]. All patterns were manually constructed and curated.  

The other motif descriptor, the profiles, was constructed based on the sequence 

profile introduced by Gribskov, M., et al. (1987) [209]. This sequential profile is proved 

to be equivalent to the HMM-based profile [210], and it functions in the same way that 

the HMM profile does. By combining the pattern-based descriptor and the profile-based 

descriptor, PROSITE was able to recognise both the single short domains that are 

conserved with certain amino acid patterns and the general domains in proteins 

sequences that are lack of amino acid patterns but demonstrate similar profiles in their 

contextual sequences or structures. 

In this thesis, we analysed a new protein representation generated based on the 

distributed representation of protein sequences. We constructed protein family classifiers 

based on this new protein representation and analysed the advantages and 
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disadvantages compared to the existing protein patterns and profiles introduced in this 

section.  

2.3.2 Intrinsically disordered protein prediction  

During the process of protein expression, not all proteins (and regions) form stable three-

dimensional structure during its lifetime. Proteins and protein regions that do not form 

stable structures are referred to as intrinsically disordered proteins (IDPs) and regions 

(IDRs). IDP/IDRs have been proven to be related to the mechanism of multiple diseases. 

Therefore, it is crucial to identify IDP/IDRs. Multiple computational methods have been 

identified to predict IDP/IDRs automatically from protein sequences.  

In this thesis, we propose to use a multitask deep learning framework to predict 

IDP/IDRs together with protein SSPs, and conducted comprehensive experiments to 

compare the prediction performance of the proposed deep learning framework to existing 

methods including PrDos2 [211], DisoPred3C [102], MultiCom, SPINED-D [212], PrDos-

CNF, DisoPred3 [101], BioMine and DeepCNF-D [158].  

PrDos2. The ProDos2 method combines the disordered protein/region prediction 

results of two predictors, the sequence-based predictor and the template-based predictor. 

The sequence-based predictor takes the calculated sequence profile PSSM as the input 

features, based on which SVM models are trained to predict whether a target residue is 

disordered or not. The template-based predictor assigns disorder tendency to each 

target residue according to the intrinsic disorder of aligned proteins whose structures 

have been determined. The alignment of the target protein 8 against the RCSB PDB 

database is calculated using PSI-BLAST, and the disorder tendency for target residue iF 

in P is calculated as follows [211],  

8F =
∑ klml
n
lop

(
	 	 	 	 	 [Eq. 2.4]	
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where g represents the number of aligned proteins, q_ indicates whether the r-th protein 

is aligned with the current protein 8, and s_ is set to 1 if the aligned residue in the r-th 

protein is disordered.  

DisoPred3C. The DisoPred3C method [102] predicts protein intrinsic disordered 

based on the sequence profiles that is calculated from the PSI-BLAST tool. It is similar 

to the sequence-based predictor in PrDos2, except that PrDos2 used a sliding window 

of size 27 centred at the target residue, while DisoPred3C used a sliding window of size 

7.  

SPINE-D. The SPINE-D method [212] employed a multilayer neural network with two 

hidden layers of 51 neurons units and a filter layer of 11 neurons units. It produces three 

outputs for ordered residues, disordered residues in short regions and disordered 

residues in long regions. The latter two were summed up as the output for disordered 

residues. As for input features, SPINE-D combined features from sequence profiles, 

predicted structural information, physical parameters, and N- and C- terminus indications.   

DisoPred3. The third version of DisoPred combined the outputs of three prediction 

components, an SVM classifier, a neural network classifier, a nearest neighbour 

classifier, to specifically improve the prediction performance for long disordered regions. 

Different from other methods, the DisoPred3 method also provided the prediction of 

protein-binding sites for disordered regions.  

DeepCNF-D. The DeepCNF-D methods employed the aforementioned deep 

convolutional neural fields which extract high abstract representation using convolutional 

hidden layers and models the local correlation among predicted neighbouring disordered 

states. The input features for the DeepCNF-D method is constructed from sequence 

profiles, predicted structural information, and physicochemical properties. 

AUCpreD. The AUCpreD methods also employed the deep convolutional neural 

fields that are used in DeepCNF-D but with a different objective function that is used to 
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train a model for maximising the AUC score. A polynomial approximation of the AUC 

score was used, whose gradient is calculated and used as the objective function.   

SPOT-disorder. The SPOT-disorder disorder represents the more recent state-of-

the-art method for disordered protein/region prediction. It employed the long-short 

memory network to predict long disordered regions. It also used input features computed 

from sequence profiles, predicted structural information and physicochemical properties. 

Similar to SPINE-D, the SPOT-disorder method also separated the prediction of short 

disordered regions from long disordered regions.   
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Table 2.1 A summary of machine learning methods for IDP/IDR prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predictors Algorithms Data sources Feature groups 

PrDos2 SVM - Sequence profile, and templates-based alignment 

DisoPred3C SVM PDB [40] Sequence profile 

DisoPred3 SVM, neural 
network, KNN 

DisProt v5.0 [89],  
RCSB PDB [40] 

Outputs from the SVM, the neural network, the KNN classifier, N- and C- 
terminus indications 

SPINE-D Two-layer neural 
network DM4229 [212] Sequence profiles, structural information, physical parameters, N- and C- 

terminus indications 

DeepCNF-D DeepCNF Disoder723 [213] Sequence profiles, predicted structural information, and physicochemical 
properties 

AUCpred DeepCNF UniProt90 [92] Sequence profiles, predicted structural information, and physicochemical 
properties 

SPOT-disorder LSTM [117] DM4229 [212] Sequence profiles, the Shannon entropy, predicted structural information, 
and physicochemical properties 
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2.3.3 Phosphorylation site prediction 

Phosphorylation is one of the most important protein post-translational modification. 

Multiple computational methods have been proposed to predict phosphorylation sites in 

order to save in vivo or in vitro experimental resources. In this thesis, we propose the 

context-based prediction of phosphorylation site using the distributed representation of 

protein sequences. To demonstrate and validate the performance of the proposed 

method, we conducted extensive comparison experiments among different 

phosphorylation site predictors. In this section, we introduce some of the state-of-the-art 

predictors for phosphorylation sites, including the group-based prediction system (GPS), 

Musite, KinasePhos, NetPhos, PhosphoPick and PhosphoSVM.  

GPS. The GPS method [77, 214, 215] proposed to classify potential sites into a 

hierarchy of kinase tree structure. It clusters these sites according to the homology 

similarity among their neighbouring residues, which was defined as the phosphorylation 

site peptide !"!	(%, ') where m and ' refer to the number of the upstream residues and 

downstream residues respectively [215]. The homology similarity was assumed to 

represent the 3D structural similarity and therefore functional similarity between two !"!. 

The amino acid substitution matrix BLOSSUM62 was used to calculate this homology 

similarity.  

MusiteDeep. The MusiteDeep method [78] is the only existing method that is 

constructed based on deep learning architecture. It employed a three-layer convolutional 

neural network, based on which a two-dimensional attention mechanism and a fully-

connected layer were used to map the output of the last hidden layer to the final outputs. 

This method takes the raw protein sequence as the direct input, which is encoded using 

the 1-of-K coding. Therefore, no feature calculation was needed. This method represents 

the state-of-the-art performance for phosphorylation site prediction at the moment.  

Musite. The Musite method [216] proposed to predict phosphorylation sites based 

on three sets of features including the k-nearest score, protein disordered states and 
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amino acid frequencies among which K-nearest scores describe the local sequential 

patterns, protein disordered states were considered to improve the discrimination 

between phosphorylation and non-phosphorylation sites [217], and the amino acid 

frequencies encodes the residue-level information. The support vector machine (SVM) 

was used as the model for prediction. It addressed both general and kinase-specific 

phosphorylation site prediction, providing prediction models for more than 13 kinases.  

KinasePhos. The KinasePhos method [218, 219] proposed to predict kinase-

specific phosphorylation sites using the HMM profile and the coupling pattern of the 

surrounding sequence segment, based on the SVM classifier. The HMM profile encoded 

the homology similarity between local sequence segments while the coupling pattern 

was a new feature proposed to describe the amino acid pattern around the potential 

phosphorylation sites.  

NetPhos. The NetPhos method [35, 154] was one of the earliest proctors proposed 

to computationally predict post-translational modifications. It used a neural network to 

combine sequential and structural motifs in a unified prediction model.  

PhosphoPick. The PhosphoPick method [220] was the only one predictor that 

incorporate the protein interaction networks for computing the similarity between different 

local sequence segments of potential phosphorylation sites. It can be combined with 

other methods to further improve the prediction performance.  

PhosphoSVM. The PhosphoSVM methods [221] was recently proposed to combine 

multiple features in a unified framework to better predict general phosphorylation sites. 

The features can be categorised into five categories, i.e. homology-based features such 

as the Shannon entropy, the relative entropy and the K-nearest scores, physicochemical 

property-based features such as the Taylor's overlapping properties and accumulative 

hydrophobicity scores, protein secondary structures, surface accessibility area and 

protein disordered states. All the seven features were concatenated for training 

corresponding SVM models for S, T and Y sites respectively. PhosphoSVM only predicts 

general phosphorylation sites.  
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Table 2.2 A summary of machine learning methods for phosphorylation site prediction. 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

                     * G/K denote general and kinase-specific phosphorylation site prediction respectively.  
 

Predictors Algorithms Data sources Feature groups G/K* 

GPS 3.0 Hierarchical 
clustering  [214] 

Phospho.ELM [94], 
PhosphoBase [222] 

Phosphorylation site peptide (PSP) sequence 
similarities [215] 

G/K 

MusiteDeep Deep CNN UniProt/Swiss-Prot,  
RegPhos [223] 

Raw amino acid sequences G/K 

Musite 1.0 Ensemble learning 
[224] 

Phospho.ELM, 
UniProt, PhosphoPep 
[225], PhosphAt [98] 

K-nearest neighbour (KNN) scores [216], 
disorder states and amino acid frequencies 
[217] 

G/K 

NetPhos 3.1 Neural networks PhosphoBase Convolutional sparse coding [155] of local 
sequence contexts 

G/K 

KinasePhos 2.0 SVM [145] PhosphoBase,  Swiss-
Prot/UniProt [39] 

Local sequence patterns and local coupling 
patterns [219] 

K 

PhosphoPredict RandomForest Phospho.ELM Sequence, structural and functional features K 

PhosphoPick Bayesian networks 
[226] 

Phospho.ELM, HPRD 
[227] 

Protein-protein interactions [228] and protein 
cell-cycle types [229] 

K 
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2.3.4 Drug-target interaction prediction 

Discovering drug-target interactions has important implications for drug development, 

drug repositioning [81] and side effect detection [230]. Despite their accurate results, 

experimental investigations using in vitro and in vivo techniques for predicting DTI are 

usually time-consuming and labour intensive. As an alternative, in silico methods have 

been applied to identify potential interactions in a high-throughput and cost-effective 

manner [231]. According to the methodology applied, existing in silico DTI prediction 

methods can be categorised into 3 types: docking simulation-based [232], machine 

learning-based [233-235] and network analysis-based [81] methods. Docking simulation 

is a technique where drugs dock into specific positions of protein 3D structure. This 

method requires the calculation of docking energy based on of the tertiary structures of 

the protein targets. Therefore it is only applicable for proteins whose tertiary structures 

have been identified [231]. Network analysis is a technique that investigates relations 

between nodes based on graph theories and network analysis, which is only applicable 

to drugs and proteins that have known interactions. It is more difficult to predict novel 

DTIs by using network analysis-based methods. In this section, we mainly focus on 

machine learning-based methods, which provide novel predictions and insights of 

potential DTIs. 

Due to the network structure of drug-target interactions, the similarity assumption 

was widely adopted among computation methods for DTI prediction. It assumes that 

similar proteins are more likely to interact with the same drug and vice versa. Therefore, 

features for DTI predictions are usually constructed as similarity adjacent matrixes 

indicating the similarity between two proteins or two drugs in terms of some pre-defined 

distance metrics. We categorise these protein features and drug features into four types 

with respect to the source of information for constructing them.  
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Sequence or chemical structure-based features. Sequence or chemical structure-

based features are the most widely used features [233, 235-240], which encode the 

information from basic properties of proteins or drugs, e.g. amino acid sequences for 

proteins and chemical structures for drugs. For protein sequences, the Smith-Waterman 

score [241] was used to calculate the similar regions between two amino acid 

sequences. While for drug chemical structures, the SIMCOMP tool [242] was used to 

calculate the maximum common sub-graph, where a drug’s graph is constructed with 

atoms as nodes and covalent bonds as edges. Information required for constructing 

sequence or chemical-based features is usually easy to obtain directly from 

aforementioned data sources like DrugBank [97], KEGG [96], Swiss-Prot/UniProt [39], 

RCSB PDB [40], etc. For drug chemical structure information, drug descriptors can be 

generated as a canonical representation of the structure, which is later used for feature 

calculating. Different molecule fingerprints include Daylight [243], ECPF [244], 

Spectrophores [245], etc. 

Protein inter-domain -based features. Protein inter-domain -based features refer 

to information extracted from relevant databases for proteins or drugs. Instead of using 

basic information like amino acid sequence or chemical structure, proteins' or drugs' 

interactions with other domains are used as information for calculating features. For 

example, drugs sharing similar correlated information from other domains, such as side 

effect, receptor families, gene expression responses are more likely to target similar 

proteins; while proteins that are closer in a protein-protein-interaction (PPI) network are 

more likely to be targeted by similar drugs [246]. Here information such as side effect, 

receptor families, gene expression and PPI are from other domains that are related to 

drugs or proteins.  Multiple data resources, such as Sider [247] for side effect and BioGrid 

[228] for PPI, should be integrated and cross-referenced to compute the features.  

Annotation-based features. Annotation-based features refer to features calculated 

based on different classification systems. For drugs, Anatomical Therapeutic Chemical 

(ATC)  [248] annotations and the KEGG BRITE ontology [96] are widely used as 
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classification schemes; while for proteins, Gene Ontology (GO)  [249] and Enzyme 

Commission number (E.C. number) [250]. These classification systems are usually 

organised as hierarchical structures where drugs or proteins are attached to one or more 

tree nodes. According to Resnik’s semantic similarity algorithm [251, 252], it is assumed 

that two drugs or two proteins that share more common ancestors are more similar to 

each other. The algorithm assigns weights to classification tree nodes according to their 

population in data sources, such as KEGG and UniProt, and calculates the drug or 

protein similarity accordingly.  

Interaction-based feature. The interaction-based features are constructed from 

partially known drug-target interactions, which is referred to as interaction profile by van 

Laarhoven, T., et al. (2011) [236].  It is suitable for situations where some of the 

interactions are known, and more interactions can be predicted for existing proteins and 

drugs. The partially available DTIs are represented as binary feature vectors for each 

drug and protein, e.g. 10101… and the basic idea is that drugs (proteins) sharing similar 

interaction profiles are more likely to target similar proteins (drugs) [236, 253]. This 

information can also be combined with other features of drugs or proteins to predict DTIs 

between new drugs and proteins [237].  

Table 2.3 summarises the four groups of features that are used in existing methods 

for DTI prediction.  
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Table 2.3 Four categories of features for drug-target interaction prediction. 

Name Description Domain 

Sequence or chemical structure-based 

Sequence Similarities between protein sequences are calculated with Smith-Waterman scores. Protein 

Mismatch Similarities between protein sequences are calculated as the common short 
sequence of amino acids up to some mismatches. 

Protein 

Chemical Size of common substructures between two compounds calculated with SIMCOMP. Drug 

Protein inter-domain -based 

PPI Calculated based on proteins’ distance within a PPI network. Protein-Protein 

Ligand Similarities between drugs' receptor families are calculated using the Jaccard score. Drug-Ligand 

Gene 
Expression 

Similarities between the genes that respond to drugs calculated using Spearman's 
rho, Jaccard score and Gene Set Enrichment Analysis (GSEA). 

Drug-Gene 

Side effect Similarities between drugs' side effect set are calculated using the Jaccard score. Drug-Side effect 

Annotation-based 

Hierarchical Number of common ancestors in EC tree and classification tree. Protein 

GO Similarities between proteins' annotation in Gene Ontology hierarchical tree are 
calculated with the semantic similarity score. 

Protein 

ATC Similarities between drugs' ATC code in ATC hierarchical tree are calculated with 
the semantic similarity score. 

Drug 

Interaction-based 

Interaction 
profile 

No similarity matrix is generated. The known interactions between protein and drugs 
are encoded as binary vectors. 

Protein-Drug 
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Various machine learning approaches have been applied to DTI prediction, including 

kernel-based methods [240] [236] [254] [236], the local model [236], the K-nearest 

neighbor [237], Bayesian networks [233], statistical relational models [234], the 

clustering method [255] and neural networks [253]. In this section, we introduce 7 

representative prediction methods which respectively employed the above machine 

learning approaches for the overall analysis of existing DTI prediction. They are the 

pairwise kernel models (PKM) [254], bipartite local models (BLM) [236],  Weighted 

Nearest Neighbor profile (WNN) [236], Bayesian matrix factorization (KBMF2K) [236], 

Probabilistic soft logic (PSL) [234], Semantic Edge Partitioning (SemEP) [234] and 

Restricted Boltzmann machine (RBM) [253].  

Pairwise kernel model. The pairwise kernel model (PKM) [254] is a machine 

learning model that incorporates information from both drug and protein space as 

pairwise kernels for DTI prediction. It formalised a pairwise kernel which encodes the 

combined information of a pair of a drug and a protein using tensor calculation. In most 

cases, the drug kernel !"#$%(', '′) or protein kernel !+,#%-+(., .′) was calculated as the 

similarity between two drugs or two proteins [233, 239, 240].  

Bipartite local model. The bipartite local model (BLM) [235] is an extension of the 

bipartite graph representation by using local models. It predicts targeting drugs for a 

given protein and target proteins for a given drug, by training a binary classification local 

model for each protein and drug respectively. Therefore, BLM is relatively time-

consuming. In addition, it is not applicable to predict the interaction between a drug and 

a protein if the interaction profiles of neither the protein or the drug is available 

Bayesian matrix factorisation. Bayesian matrix factorisation (KBMF2K) [233] is a 

Bayesian network-based method. The constructed Bayesian network in Figure 2.8 

performs three processing steps including the dimensionality reduction, the matrix 

factorization and the binary classification. The step of dimensionality reduction step 

projects the drug representation /"  and the protein representation /+  to their 
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corresponding representations 0"  and 0+  in the same feature space, using the drug 

kernel function !"  and protein kernel function !+  respectively. The step of matrix 

factorization produces the inner product 1 of the mapped representations. And, finally, 

the binary classification step outputs the predicted label 2 indicating whether there is 

interaction between the input drug and protein.  

 

 

 

 

Figure 2.8 Bayesian matrix factorization for drug-target interaction prediction [233]. 

 

Gaussian Interaction Profile. Gaussian Interaction Profile (GIP) refers to the 

feature vector calculated from the interaction profiles of an existing drug-target 

interaction network. GIP-based predictor [236] explores new interactions between drugs 

and proteins in this existing interaction network. Therefore, it only predicts DTIs for drugs 

(or proteins) with known DTIs.  

Gaussian Interaction Profile-weighted nearest neighbour. The limitation of GIP 

had been overcome by the weighted nearest neighbour (WNN) [237], which can predict 

DTIs for drugs (or proteins) with no interaction information. The rationale is that a new 

drug's or a new protein's interaction profile can be calculated as the weighted sum of its 

similar drugs or proteins' interaction profiles.  

Let 34 …367 be the interaction scores between target . and drug '’s top 8" chemically 

similar drugs, in the decreasing order of their similarity with '. The interaction score of 

the drug ' is defined as follows,  

39::" = ∑ =>3>
67
>?4 	 	 	 	 [Eq. 2.1]	

Λ" 

/" /+ 0+ 0" 

!"  !+ 

1 

2 

Λ+ 
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where => = D(>E4), D ≤ 1 denotes a decay value used to modulate the weight of each 

similar drugs.  

GIP-WNN is a highly effective and efficient method for predicting novel DTIs between 

drug d and protein t as long as the interactions of their similar peers are available.  

Probabilistic soft logic. Probabilistic soft logic (PSL) [234] is a statistical relation 

model that combines logic and probabilistic graphical model. Let J> and DK represents 

the L-th drug and M-th protein, respectively, and NLOLPQRDQRST., NLOLPQRJRUS, V8.TRQW.X 

represents protein similarity, drug similarity and drug-target interaction, respectively. 

With  similarity measurements Y and Z specified, the PSL models drug-target interaction 

domain knowledge [256] which can be described using following weighted first-order 

logic formulae, where weights =4, =[ and =\ describe the correctness of each of the 

rules. 

  

Semantic-based edge partitioning. Semantic-based edge partitioning (SemEP) 

[255] is a clustering process that is solved as an optimization problem with two targets, 

i.e. maximizing the similarity density within each cluster and minimizing the number of. 

When applied to DTI prediction, the similarity density consists of 3 parts: a) the average 

score of interaction edges; b) the average drug-drug similarity scores; and c) the average 

protein-protein similarity scores.  

 

=4    SimilarTargetβ (T1, T2) � Interacts(D, T2) → V8.TRQW.X(D, T1) 

=[    SimilarDrugα (D1, D2) � Interacts(D2, T) → Interacts(D1, T) 

=\	    SimilarDrugα (D1, D2) � SimilarTargetβ (T1, T2) � Interacts (D2, T2) → Interacts (D1, T1) 
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Figure 2.9 An example of applying semantic-based edge partitioning to drug-target interaction 

prediction. 

 

Figure 2.9 demonstrates an example of drug-target interaction prediction using SemEP, 

where drug '4 - ']  and protein .4 - .]  have partially known interactions V4 - V̂ . The 

corresponding similarity densities are calculated as follows, 

 

By maximizing XJT8XL.34 + XJT8XL.3[ and minimising the number of clusters (which is 2) 

a grouping of drugs and proteins, i.e. ('4, '[, '\, .4, .[, .\) and ('`, .[, .]), are formed. New 

predictions are formed between each pair of drug and target within each cluster. 

Restricted Boltzmann Machine. Restricted Boltzmann Machine (RBM) [253] was 

the first approach proposed to predict drug-target interaction with different modes of 

action, i.e. binding, activation and inhibition. The predictive model is a two-layer (one 

visible layer and one hidden layer) undirected graphical model, where each visible unit 

is connected with each hidden unit while there is no intra-layer connection. The hidden 

layer is used to model the latent features supporting interaction prediction, and the visible 

layer represents observations of known interactions. Figure 2.10 provides a simple 

example of how the model is working. 

XJT8XL.34 = 1 + QaSbX('4, '[) + X('[, '\) + X('4, '\)c + QaS(X(.4, .[) + X(.[, .\) + X(.4, .\)) 

XJT8XL.3[ = 1 + QaS(X(.[, .`) + X(.[, .]) + X(.`, .])) 

 



 69 

 

Figure 2.10 RBM template for predicting interactions of individual protein . [253]. 

 

The advantage of these graphical models is that joint inference [127] is performed to 

collect evidence from different features. However, it is non-trivial to decide how many 

hidden units are appropriate and to interpret these hidden units.  

Table 2.4 lists a summary of machine learning-based methods for drug target 

interaction prediction. Most previous works only choose one pair of drug/protein features 

(usually the best pair of similarity matrixes at the time) as an example to demonstrate 

the experiment performance. However, from the perspective of machine learning 

models, KRM, BLM, KBMF2K, PKM, GIP, GIP+WNN, SemEP and RBM can take any 

pair of drug/protein feature while PSL can take multiple pairs of features simultaneously 

as the input feature.  
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Table 2.4 A summary of machine learning based methods for DTI prediction. 

Methods Features Models Pros and cons 

PKM Mismatch, local alignment, 

hierarchical 

Support vector 

machine 

It is designed to take any kernels for drug and proteins. It is a useful 

framework for comparing different features. 

BLM Substructure; sequence 

 

Local model It transforms edge prediction problem to simple classification problem, but it 

cannot deal with drugs or proteins without available interaction information.  

KBMF2K Substructure; sequence 

 

Bayesian theory Priors are set as the hyper-parameters to control the projection from kernel 

matrix to inner product instance. 

SemEP Substructure; sequence 

 

Clustering It is the only unsupervised learning method and time-efficient. However, it 

can only predict DTIs for drugs or proteins with existing interactions. 

GIP Interaction profile Regularized least 

square 

No need to calculate any similarity features for drugs or proteins.  

GIP+WNN Substructure; sequence; 

interaction profile 

K nearest 

neighbour 

Extension of GIP with the ability to predict for drug or protein without any 

interaction information.  

PSL Substructure, ligand, gene 

expression, side effect, ATC; 

sequence, PPI, GO; 

Probabilistic 

graphical model 

A framework where multiple features can be combined to achieve better 

performance, but with high time and space complexity.  

RBM Interaction profile; modes of 

action 

Neural network Take direct/indirect interaction and modes of actions into consideration.  
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2.4 Chapter summary 

In this chapter, we introduced the related works in deep learning and protein analysis, 

respectively.  

From the perspective of deep learning, we specifically introduced the three deep 

learning models, CNN, CNF and RNN, which have been applied to protein analysis. We 

also introduced the distributed representation in natural language processing, providing 

preliminary knowledge for different implementations of the distributed representation of 

protein sequences. Finally, we introduced in the deep learning implementation of transfer 

learning and multitask learning, demonstrating their capability in leveraging limited 

quantities of training data for rigorous model training. The different deep learning models 

and their applications to other areas such as natural language and image processing 

demonstrated the great potential of improved performance when they are applied to 

protein analysis.  

From the perspective of protein analysis, we introduced the existing applications of 

deep learning and their limitations.  

In terms of protein sequence representation, we categorised the existing 

representations of protein sequences into four categories and discussed the limitation of 

existing representations in their application to different granularities of prediction tasks. 

We also introduced an existing implementation of the distributed representation of 

protein sequences, ProtVec, which has the disadvantage of ignoring the order of amino 

acids in protein sequences. In this thesis, we introduce another three implementations 

in Section 4.1.2 to take into consideration the order of amino acids in protein sequences. 

We also propose an application framework of the distributed representations of protein 

sequences in Section 4.1.4, demonstrating their flexibility in different granularities of 

prediction tasks.  
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In terms of deep learning model application, we introduced existing applications of 

CNN, CNF and RNN in protein analysis.  We notice that the related researches were 

conducted in an ad hoc manner, with a lack of the systematic design for correlating 

multiple prediction tasks and the incorporation of biological background knowledge in the 

design of the deep learning models. In this thesis, we propose two multitask frameworks 

and a deep transfer learning framework in Section 4.3 and Section 4.4, respectively, 

with the purpose of leveraging limited quantities of training data for rigorous model 

training by incorporating biological background knowledge and correlations between 

prediction tasks.  

Finally, we introduced existing state-of-the-art machine learning methods for 

prediction tasks that are addressed in this thesis. We specifically demonstrated their 

rationales, input features and machine learning algorithms. The methods introduced in 

this chapter are later used as the compared methods in quantitative performance 

evaluations in Chapter 5 –  Chapter 8.  
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3 Scientific method 

In this thesis, we propose deep learning frameworks for protein sequential, structural and 

functional analysis, for which comprehensive experiments are carefully designed to 

evaluate each of the proposed deep learning frameworks for specific prediction tasks. In 

this chapter, we introduce the general scientific methods that are used in rest of this 

thesis.  

3.1 Scientific method in general 

According to Garland, T. (2016), scientific method refers to an iterative and ongoing 

process of seven steps including making observations, forming research questions, 

formulating hypothesises, developing testable predictions, testing predictions, 

refining/altering/expanding/rejecting hypothesises and developing theories [257]. In this 

thesis, based on the existing challenges (observations) in applying deep learning to 

protein analysis, we raised three research questions, and for each research question, 

we proposed one or two deep learning frameworks for addressing corresponding 

challenges (hypotheses). We tested the effectiveness of these frameworks by applying 

them to different predictive tasks, whereby each of these applications employ a similar 

design of experiments that is widely adopted in machine learning applications [258].  

According to Bradley, A.P. (1997), machine learning generates systems that learn by 

shown labelled examples [259]. It provides case studies in evaluating machine learning 

systems with five key components including the data, the learning algorithms, the training 

methodology, the performance measures and the comparative techniques [259]. 

Accordingly, in this thesis, the experimental design for machine learning application is 

composed of four aspects, including data collection (data), model training and model 

application (training strategy), performance evaluation (performance measurements), 

and result interpretation. The learning algorithms introduced in the Bradley, A.P. (1997)’s 
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methodology are introduced in respective chapters, and we added result interpretation 

to allow computational and biological insights and conclusions. Figure 3.1 depicts an 

overview of the scientific method and the experimental design in this thesis.  

 

Figure 3.1 An overview of the scientific method that is used in this thesis. 

 

3.2 Data Collection 

Data collection refers to the process of gathering or measuring observed information of 

the target object. It is an important step for all sorts of research and the collected data 

can be qualitative or quantitative depending on the research method that is used. 

In machine learning, there are different requirements of data collection for supervised 

and unsupervised learning. Supervised learning infers a function from a set of labelled 

training examples. Therefore, each training example is composed of the input 

information, which may be relevant to the target output, and the output value (categorical 

or numerical), which indicates the true state of the target output. In many cases, the 

collection of the true output values is the most difficult step. Contrary to supervised 

learning, unsupervised learning seeks to infer the hidden function from unlabelled data. 
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The collection of unlabelled data is similar to the collection of labelled data except that it 

only requires the input information.  

3.2.1 The construction of training dataset and testing dataset 

In this thesis, we used supervised learning techniques for most of the applications of the 

proposed deep learning/machine learning frameworks. For each prediction task, to which 

the proposed deep learning/machine learning frameworks are applied, we collected data 

to construct a training dataset and a testing dataset.  

Let !  denotes the input information, and "  the output, the training dataset is 

composed of pairs <	!, "> based on which the supervised learning process automatically 

learns the parameters of the predictive model. In order to evaluate the prediction 

performance of the learned predictive model, testing datasets are constructed. The 

testing dataset is also composed of pairs of input information and corresponding output 

values <	!′, "′> that are unseen in the training dataset. Based on input information !′, 

the learned predictive model produces the predicted output value "′% , which is compared 

to the true output value "′. Figure 3.2 demonstrates the roles of the training dataset and 

the testing dataset in the application of machine learning predictive models.  

 

Figure 3.2 The roles of training and testing datasets in the application of machine learning 

predictive models. 
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3.2.2 The collection of labelled data and the construction of input features 

In Chapter 5 –  Chapter 8, we propose the application of deep learning frameworks to 

five different prediction tasks, including protein family prediction, phosphorylation site 

prediction, drug-target interaction prediction, protein SSP prediction and IDP/IDR 

prediction. We collected the labelling data (output values) for each of these five prediction 

tasks from publicly available databases including the Pfam database [70], the Swiss-

Prot/UniProt database [39] and the Phospho.ELM database [94], the KEGG database 

[96], the BMRB database [93], and the ModiDB database [92], respectively.  

Since the five prediction tasks are all based on protein sequences, the input 

information for constructing training and testing datasets are collected mainly from the 

Swiss-Prot/UniProt database [39] (see Section 1.2.4), which represents one of the most 

complete protein sequence database. For each of the input protein sequences, we 

construct input features that are directly fed to the proposed deep learning/machine 

learning models. These input features so constructed from protein sequences are used 

to describe different aspects of a protein including protein homology profiles, 

physicochemical properties, structural information, sequential patterns and motifs, and 

distributed representations of protein sequences. We calculated the former four types of 

input features using existing bioinformatics tools such as PSI-BLAST [99], Pse-in-One 

[260], PSIPRED [103], DISOPRED3 [101], and local implementations of existing feature 

extraction algorithms. For detailed introduction of the data sources and bioinformatics 

tools, please refer to Section 1.2.4 and Section 1.2.5. In Section 4.1, we also propose 

a distributed representation of protein sequences and its application in three different 

application scenarios.  

3.3 Model training and model application 

The step of model training refers to a defined automatic process that determines the 

parameters of predictive models from labelled training examples. The key component of 
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this step is the training algorithm, which usually consists of an objective function and a 

gradient descent process. The objective function of a mathematical program is what an 

optimization procedure uses to select better solutions over poorer solutions [261]. In 

machine learning, a typical objective function is defined as the difference between the 

target values that are predicted from the input feature vectors and the true target values 

that are originally collected. The supervised learning process accordingly adjusts the 

predictive model so that the difference between the predicted values and the true values 

is minimised.  

The gradient descent is a first-order optimisation algorithm used to find the local 

minimum of the objective function [262].  It guides the adjustment of the parameters in 

machine learning models over multiple iterations, so that the output of the objective 

function gradually decreases over the time of training. The training of the model is 

completed when the output of the objective function or the number of iterations satisfies 

a certain condition.  

Once the process of model training is completed, the pre-trained model is expected 

to be applied to new data for the purpose of prediction, classification, regression and 

clustering. This step represents the purpose of the machine learning study and is usually 

discussed in real-world application scenarios. However, before the model is applied to 

real-world scenarios, the pre-trained machine learning models are required to be 

evaluated in multiple rounds of tests, such as the cross-validation test and the 

independent test.  

In this thesis, for the purpose of model training and model application, we use a 

variety of experimental techniques including cross-validation tests, independent tests, 

vector space analysis, correlation analysis, and case studies, to demonstrate the 

effectiveness and prediction performance of the proposed deep learning/machine 

learning frameworks. For detailed introduction of performance evaluation, please refer 

to the next section. In this section, we provide a brief introduction to each of the 

experimental techniques that are used in the following three chapters.  
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3.3.1 The cross-validation test 

According to Gandhi, V. (2015), cross-validation is both an empirical and a heuristic 

approach typically carried out to assess how the results of a statistical analysis 

generalize to a set of independent data [263]. Therefore, the purpose of cross-validation 

is to, during the process of model training, define a validation dataset based on which 

the model is evaluated. In order to make the evaluation more robust to data variability, 

multiple iterations of training and validation are performed. In this thesis, we mainly used 

the & -fold cross-validation [264]. In & -fold cross-validation, the training dataset is 

randomly divided into n equally sized disjoint partitions. In each iteration, &-1 partitions 

are combined for training the predictive model, and the remaining partition is used for 

evaluating the prediction performance of the trained model. This process is repeated & 

times and in each iteration a different partition is used for validation. The &-fold cross-

validation makes sure that each example in the training dataset is used at least once for 

the purpose of validation. Since the prediction performance is evaluated & times based 

on n different subsets of the training dataset, the insights made from the cross-validation 

test about the generalisation of the model to independent data are more reliable. In 

practice, the cross-validation test is also widely used to tune the values of hyper-

parameters16.  

3.3.2 The independent test 

The independent test is performed to evaluate the performance of a pre-trained machine 

learning models on a set of independent data. It is an imitation of the real-world 

application where the distribution of the data is unknown. Ideally, the training datasets 

and the independent datasets are constructed from different data sources. However, due 

                                            
16 Hyper-parameter is the parameter whose value is pre-defined before the process of model training. It is 

usually used to define the structure of the machine learning model, the distribution of a variable, or the 

specifications that are related to the training process.  
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to the lack of labelled data, it is not uncommon to divide a whole dataset into a training 

dataset and an independent dataset based on which the cross-validation test and the 

independent test are respectively conducted.  

3.3.3 Vector space analysis 

According to the previous section, the input information of a prediction task is usually 

represented as input feature vectors which are directly fed to machine learning models. 

These feature vectors form a feature vector space in which each possible input example 

can be mapped to a point. In this thesis, we conducted vector space analysis to evaluate 

the performance of the proposed feature extraction modules, by plotting the extracted 

vector representations of the input examples with respect to the labels of the examples. 

Assuming the module of feature extraction increases the quality of the input 

representation, the mapped distances between the examples annotated with the same 

label are expected to be smaller than those between the examples that are annotated 

with different labels. In Section 5.4 and Section 7.6.9, we use the principal component 

analysis (PCA)  [265] and the t-distributed stochastic neighbour embedding (t-SNE)  

technique [266] to map the multi-dimensional representations of protein sequences to 2-

dimensional representations, so that the input examples with respect to their annotated 

labels can be manually visualised and validated.   

3.3.4 Correlation analysis 

Correlation analysis is performed to identify the strength of relationships between a pair 

of variables [267]. In this thesis, we conducted correlation analysis to investigate the 

factors that are closely related to the prediction performance of the pre-trained deep 

learning/machine learning models. Especially for models that achieve inferior 

performance than existing methods, we manually selected the factors that are likely to 

affect the prediction performance and analysed the prediction performance of the models 

in different sub datasets that have different levels of the investigated factors. For example, 
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in Section 5.6.3, we investigated the correlation between the performance of the pre-

trained models and eight potential factors in protein family prediction, and in Section 

7.6.8, we investigated the prediction performance of the pre-trained models in terms of 

the number of annotated phosphosites for different kinases.  

3.3.5 Case study 

The case study is a research strategy that focuses on a single case of a particular 

phenomenon [268]. In this thesis, in order to demonstrate the use case of proposed 

predictive models in real world applications, we applied the pre-trained predictive model 

to individual examples in specific prediction tasks. We mainly focus on the quantitative 

and qualitative analysis of multiple aspects including the overall performance of the 

predictive models, the potential reasons of making false positive predictions, existing 

experimental evidence of the true positive predictions, and the validation of the proposed 

hypothesis. In Section 6.4.5, we applied the pre-trained multitask model to protein p53 

and SOSS1, from which we validated prediction performance of the pre-trained models 

for IDP/IDR prediction, demonstrated the positive effect of incorporating protein SSP 

prediction as the supporting task, and illustrated the real-world use case and the 

advantage of the proposed multitask model compared to existing single-task models.  

3.4 Performance Evaluation 

To evaluate the performance of a particular machine learning method, pre-trained 

machine learning models are applied to a set of independent data. By comparing the 

generated output values to true labelled values, different performance measurement 

scores are calculated and used as indexes to evaluate the performance of the pre-trained 

models.  

In this thesis, we use different sets of evaluation measurements in different prediction 

tasks, including precision, sensitivity (recall), specificity, accuracy (ACC), the Matthews 

coefficient of correlation (MCC), the Pearson’s coefficient of correlation (PCC or R), the 
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area under the ROC curve (AUC), and the area under the precision-recall curves (AUPR) 

[269]. Please refer to Appendix A for detailed information of these evaluation 

measurements.  Since the output values of the proposed predictive models are 

probabilistic values ranging from 0 to 1, the calculation of the previous five measurement 

scores relies on the selection of the cut-off thresholds to determine the positive 

predictions from the negative ones. In Section 5.5.3 and Section 7.4.8, considering the 

different ranges of output values that are produced by the compared machine learning 

methods, we used the false-positive rate (FPR) as the measurement for selecting cut-off 

thresholds. For example, a threshold of 0.0001 for the FPR score indicates that, in every 

10,000 predictions, at most 1 false positive prediction is allowed. When the cut-off values 

for FPR scores are set, corresponding cut-off values of the output probabilities are 

automatically adjusted according to the output range of each predictive models, 

respectively. In Section 6.2 and Section 6.4, a fixed threshold value of 0.5 for the output 

probability was used in IDP/IDR predictions, according to the evaluation methodology 

introduced in the CASP assessments [270, 271].  

A second challenge of evaluating predictive models in protein analysis is to conduct 

evaluations based on imbalanced data. Imbalanced data is ubiquitous in protein analysis. 

For example, among thousands of protein families and hundreds of thousands of 

proteins, there are only tens of thousands of protein family annotations. Also, the 

negative examples in phosphorylation datasets is usually hundreds of times more than 

the positive examples. Therefore, the calculated evaluation scores in terms of sensitivity, 

specificity and accuracy do not reflect the true prediction performance of the evaluated 

models. Therefore, in this thesis, we introduce the use of the balanced accuracy (BACC), 

which is defined as follows  [272],  

()** =
,

-
(

/0

/0123
+

/3

/3120
)	 	 	 [Eq. 3.1]	

where TP, TN, FP, FN represents the number of true positive predictions, true negative 

predictions, false positive predictions and false negative predictions, respectively. In this 
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way, the balanced accuracy is calculated as the average of the true positive rate and the 

true negative rate. Therefore, the overall performance is not over-estimated due to the 

high true negative rate. The AUC score is less robust to imbalanced dataset compared 

to AUPR. However, since the AUC score and the ROC curves are widely used in existing 

prediction methods, we used the latter two in most of the application tasks. MCC is 

another evaluation measurement that is designed to evaluate binary classifiers based 

on imbalanced datasets, but it relies on the selection of an appropriate cut-off thresholds.  

3.5 Result interpretation 

Result are interpreted qualitatively or quantitatively in this thesis. The quantitative 

interpretation of results is usually straightforward. From the perspective of qualitative 

result interpretation, we focus our discussion in following aspects. Firstly, in comparison 

experiments, we are seeking to find out which methods perform better under which 

conditions. In practice, it is difficult for a single method to beat all other compared 

methods in terms of every evaluation measurements. Therefore, it crucial to discuss the 

top-ranked methods in terms of different evaluation measurements with different 

experimental conditions. Secondly, in failed experiments, we are seeking to analysis the 

potential factors that may affect the prediction performance of the proposed predictive 

models, based on which useful suggestions can be made about the application of the 

model in real-world scenarios. Thirdly, by combining the results of different sections and 

different chapters, we are seeking to conclude a set of heuristics for the future design of 

deep learning frameworks in protein analysis.  

3.6 Chapter summary 

In this chapter, we introduced the five-step methodology of applying the proposed deep 

learning/machine learning frameworks to prediction tasks in protein analysis. In data 

collection, we demonstrated the construction of training and testing datasets from 

existing protein related data sources using various bioinformatics tools. In model training 
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and model testing, we introduced five experimental methods that are used in the rest of 

this thesis, including cross-validation tests, independent tests, vector space analysis, 

correlation analysis and case study. In performance evaluation, we demonstrated two of 

the unique challenges in evaluating predictive models in protein analysis, i.e. the cut-off 

threshold selection and the evaluation of imbalanced datasets. Finally, we introduced 

the step of results interpretation which produces sectional insights based on the 

experimental results. In this thesis, scientific methods introduced above are applied to 

various aspects of the practical experimental design, constituting the main contents of 

the application of proposed deep learning/machine learning frameworks to respective 

prediction tasks. 
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4 Deep learning frameworks for 
protein analysis 

Proteins represent one of the main functional gene product of gene expression. They 

play important functions in various biological processes including enzyme catalysis, DNA 

binding and molecular transport. Protein functions are determined by protein three-

dimensional structures which are folded from amino acid sequences. Due to the different 

rates of increase in protein sequence data and protein structural and functional data, 

computational methods for predicting protein structures and functions from protein 

sequences are needed.  

In this chapter, we introduce four deep learning frameworks that are designed to 

address the three research questions raised in Section 1.4. From the perspective of 

input representation, we propose the distributed representation of protein sequences as 

a source of potential complementary input features.  From the perspective of machine 

learning algorithms, we propose the general deep learning framework, the multitask 

deep learning framework, and the deep transfer learning framework for predicting protein 

structural and functional properties based on protein sequences.  

4.1 The distributed representation of protein sequences 

To predict protein structures and functions from protein sequences, the first and most 

fundamental step is to represent protein sequences into machine understandable data. 

In this section, we introduce the distributed representation of protein sequences, namely 

prot2vec, and its application to three granularities of prediction tasks including whole 

sequence-level, residue-level and biological interaction-level predictions.  
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4.1.1 Notation system for protein sequences 

Most protein sequences are composed of the 20 naturally occurring amino acids [273]. 

They were first notated as sequences of 3-letter symbols, which caused application 

difficulties due to the spacing in long protein sequences [42]. In 1958, Gamov and Ycas  

for the first time introduced the use of 1-letter symbols for denoting amino acid 

sequences [274], which was later formalised by IUPAC-IUB Commission on Biochemical 

Nomenclature in 1971 [42]. This 1-letter denotation system greatly simplified the protein 

sequence alignment. The 1-letter notations and 3-letter notations for protein sequences 

are shown in Table 4.1.  

 

Table 4.1 The 1-letter and 2-letter denotations for amino acids (AA). 

AA 3-letter 1-letter  AA 3-letter 1-letter 

Alanine Ala A  Leucine Leu L 

Arginine Arg R  Lysine Lys K 

Asparagine Asn N  Methionine Met M 

Aspartic acid Asp D  Phenylalanine Phe F 

Cysteine Cys C  Proline Pro P 

Glutamic acid Glu E  Serine Ser S 

Glutamine Gln Q  Threonine Thr T 

Glycine Gly G  Tryptophan Trp W 

Histidine His H  Tyrosine Tyr Y 

Isoleucine Ile I  Valine Val V 

* Any amino acids other than the above 20 amino acids are usually denoted as the 1-letter symbol X. 

 

Based on the 1-letter notations, the FASTA format was released with the FASTA 

suite [275], a protein sequence alignment tool that was developed in 1985. This format 

allows the storage, transform and analysis of multiple protein sequences at the same 

time. For each protein, the FASTA format consists of a description line starting with the 
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‘>' symbol, and one or more lines of one-letter notation of the protein sequence17. The 

description line contains the identification of the protein and optionally other information 

of the protein. An example [39] of the FASTA format is shown as follows,  

 
In this thesis, we analyse protein sequences based on its 1-letter notations and 

develop protein sequence-based prediction web services using the FASTA format.  

4.1.2 Prot2vec: the distributed representation of protein sequences 

Amino acid sequences, from the moment they were notated as sequences of one-letter 

alphabets, form a biological language that is capable of encoding the information of 

proteins. Ganapathiraju, M., et al. (2005) has proposed the analogy between biology and 

natural languages, where genome sequences were mapped to raw texts from 

documents; protein expression, structures and functions were mapped to meaning; and 

biological interactions were mapped to the topics of the documents [163] (see Figure 

2.4). The natural language processing technique,	&-gram analysis, was comparatively 

performed for biological sequences [276].  

In recent years, the development of word embedding [164] has greatly forwarded the 

research of natural language processing, especially for some of the most challenging 

tasks such as document summarization [277], syntactic parsing [278] and sentiment 

                                            
17 FASTA format: 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp  

>sp|Q196Z8|062L_IIV3 Uncharacterized protein 062L OS=Invertebrate iridescent virus 3 GN=IIV3-062L 
PE=4 SV=1 

MNPEGENELQVYLRDGDLRVMALGLRHGLRRGLRRGLRRGLRRTGDLRDGDLRLDGDLRD 

GDLDLLDGDLRDGDLRLDGDLDLLEGDLRDGDLDLLDGDLHRDGDVDRLEGDLRDGDLRL 

DGDFLVLPHTTAWVFLPNSFNFLEVQTLFAPFSYWLHINGIVFINSKILFIKSPQLPSYF 
AMALRQCKSSWLGHTSPANRFCIVVQINDQLGLKNSINSRRSALWSGGTASC 

 

>sp|O55706|062L_IIV6 Uncharacterized protein 062L OS=Invertebrate iridescent virus 6 GN=IIV6-062L 
PE=3 SV=1 

MKKNMILFFGILKKLLICILKMEIKCWLTSDIVYFDSELALTVKQFFMKKNNTILDKIAA 

HCYGLIMQKISQPVTFKNYIYIWRAVLFADCTIKTNKTPDTQNIINLSQNATEEVKIIID 
ELIDCFKNKNNFKEEEYKPNLDLLNSYIKNIKKFITENKTSKFIFDKDWEILINNIWMN 
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analysis [279]. The basic idea of distributed representation in word embedding (see 

Section 2.1.3) is that condensed vector representations of words (, sentences and 

documents) can be extracted from the hidden layers of the neural network trained for 

specific natural language processing tasks [280, 281]. Such representation is extracted 

based purely on the raw texts using unsupervised learning techniques and has the merits 

of being semantic-relevant (see Section 2.1.3), condensed and fixed-length when 

compared to existing amino acid-based representations. 

More recently, Asgari, E. and Mofrad, M.R.K. (2015) [193] proposed the distributed 

representation of biological sequences, namely ProtVec, based on the word2vec model 

(see Section 2.1.3). The basic idea of ProtVec is that the distributed representation of a 

protein sequence can be obtained by summing up the distributed representations of its 

biological words. In this thesis, we rename the ProtVec to prot2vecadd, considering its 

generation strategy based on vector summation. The disadvantage of this 

implementation strategy is that it ignores the order of biological words (or amino acids) 

in protein sequences.  

In this section, in order to overcome the disadvantage of the summation strategy of 

prot2vecadd, we introduce the distributed representation of protein sequence, prot2vec, 

with the inspiration of two of the most successfully applied word embedding 

representations, word2vec [170] and doc2vec [169]. In addition to the summation 

implementation prot2vecadd introduced by Asgari, E. and Mofrad, M.R.K. (2015), we 

propose three new implementations of the prot2vec, namely prot2vecnon-overlap, 

prot2vecfetch, and prot2vecinference, and provide an overall qualitative comparison among 

the four implementations.  

6 -grams of protein sequences. The & -gram model was proposed to analyse 

sequential data in natural language processing tasks [282-284].  

Definition 4.1 In an 6-gram language models, two histories end in the same 6-1 words 

are considered equivalent [282].  
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Let 7,3  represents the word sequence 7,,7-, … ,73 , :;(7,3)  represents the 

probability of this string of words, and < > & , the above definition is represented as 

follows [282],  

:;(7>?7,
>@,) = :;A7>?7>@B1,

>@,
C		 	 	 	 [Eq. 4.1]	

Therefore, in n-gram language model, for a word sequence of n words, the unigram 

(& = 1) model allows : ;(7,>) = :;(7,) × :;(7-)…× :;(7>),	bigram (& = 2) model allows 

: ;(7,
>) = :;(7,|7J) × :;(7-|7,)…× :;(7>|7>@,) , and trigram ( & = 3 ) model allows 

: ;(7,
>) = :;(7,|7@,

J ) × :;(7-|7J
,) × :;(7L|7,

-)…× :;A7>|7>@L1,
>@,

C, etc.  

Protein sequences are continuous chains of amino acids that are similar to natural 

language sentences which do not have word splitters such as spaces and punctuations. 

Typical languages that do not contain word splitters include Chinese, Japanese, Thai 

and Korean [285]. Due to the lack of punctuations and spaces, sentences in these 

languages are usually split into &-grams at the character level, which are later recognised 

as tokens (words) or non-tokens. This additional step of tokenisation makes it more 

challenging to perform prediction tasks for such languages. With protein sequences, 

similar techniques were used to split sequences of amino acids into short segments of 

specific lengths [193]. These segments are analogous to words in natural languages and 

we refer to them as the biological words in this thesis.   

To split protein sequences into &-gram biological words, the most intuitive way is to 

regard each residue as one ‘word’, which is equivalent to the case of unigram. However, 

a more general way of dealing with biological sequences is to split them into overlapping 

or non-overlapping &-grams [16]. Figure 4.1 demonstrates the three ways of splitting 

protein sequences, including unigram (& = 1), overlapping &-gram (& = 3) and non-

overlapping &-gram (& = 3).  

• Overlapping splitting. A sliding window of size n is used to cut a protein sequence 

M = ;,;- … ;|N|  of length |M| into A|M| − (& − 1)C	sequence segments, where the 
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sliding window of the P-th segment starts from the P-th residue of the sequence. 

Here, each sequence segment corresponds to an &-gram biological word. Note 

that, in this case, one protein sequence is split into only one list of &-grams, 

denoted as QR = 	 [7,, 7-, … ,7|N|@(B@,)].  

• Non-overlapping splitting. A protein sequence M = ;,;- … ;|N| of length |M| is split 

into & lists of &-gram biological words. For the T-th list, a sliding window of size & 

is used to cut the sequence ;U;U1, … ;|N| of length V = |M| − T + 1	(T = 1…&) into 

V	WXY	&, where the modulo calculus mod is used to calculate the remainder of a 

division calculation, sequence segments, where the sliding window of the P-th 

segment starts from the T × &-th residue of the sequence.  Therefore, the T-th list 

of biological words is denoted as QR = 	 [7,, 7-, … ,7(|N|@U1,)	]^_	B] 

 

Figure 4.1 Unigram and 3-gram splitting with overlapping and non-overlapping strategies for the 

amino acid sequence of protein HUNIN_HUMAN. 
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Generating the distributed representation of protein sequences. Different from 

natural languages, protein sequences are composed of chains of amino acids with no 

observable rules or grammars. However, sequential motifs have been studied and 

proposed for proteins with specific functions [68, 286, 287]. The database PROSITE  [68] 

has listed the curated sequential motifs that are shared by proteins within the same 

protein families. For example, the active binding site (D) of the Serine/Threonine kinases 

have a local sequential motif of [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-

[LIVMFYCT](3) [288], when represented as the regular expression18. It indicates that 

there exists local dependency among neighbouring residues within protein sequences.  

In natural language processing, the local dependency among neighbouring words 

and phrases is one of the main sources of information that are used for sequential 

modelling [280]. For example, an	&-gram model is used to predict the P-th word based 

on its previous & words, assuming that the determination of the P-th word only depends 

on the n neighbouring words that are in the upstream of the word sequences [282]. 

Based on this idea, Mikolov, T., et al. (2013) proposed the skip-gram model, which 

generates word representations (word2vec) that are useful for predicting neighbouring 

words in sentences or documents [289]. Please refer to Section 2.1.3 for the detailed 

introduction of the word2vec and doc2vec models.   

Considering the local dependency among neighbouring residues in protein 

sequences, it is straightforward to apply the skip-gram model to generate vector 

representation for biological words. With the inspiration of word2vec, Asgari, E. and M. 

R. K. Mofrad (2015) proposed the continuous distributed representation of biological 

sequences, generating the distributed representation of a protein sequence as the sum 

of the word2vec of all its biological words [193]. However, the summation strategy 

ignores the order of biological words which implicitly represents the order of amino acids 

in protein sequences.  

                                            
18 Regular expression refers to a sequence of characters defined as the pattern for searching purposes.  
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Inspired by the distributed representation of sentences and documents, doc2vec, we 

propose the following steps to obtain the distributed representation of protein sequences.  

1. We constructed the training dataset from a large protein sequence database for 

training the model to generate distributed representation of protein sequences. 

In total, 551,704 reviewed protein sequences from the Swiss-Prot/UniProt 

database [39] were downloaded in Aug 2016 and extracted;  

2. For each protein sequence in the dataset, we performed an overlapping n-gram 

split which produces a list of &-gram biological words [193]. Asgari and Mofrad 

showed that 3-gram split led to the best performance [193]; we thus produced all 

the 3-gram biological words for all the extracted 551,704 protein sequences 

based on 3-gram split; 

3. We fed 3-gram biological words to the doc2vec algorithm for training a vector 

generation model, resulting in a trained distributed memory network ` for future 

inference, a database a(b that mapped the biological words to their pre-trained 

vectors, and a database a(c that mapped the protein sequences to their pre-

trained vectors. The doc2vec algorithm [170] in the Gensim19 package was used 

for this training process; 

4. In the inference step, for any target protein sequence or sequence segment, the 

distributed representation of the target protein sequence or sequence segment 

was then generated in four ways:  

a. prot2vecadd. The protein sequence M  was split into overlapping & -gram 

biological words. The representations of all biological words were then 

directly fetched from the database a(b  and summed up to form the 

representation of protein sequence M. This representation was proposed by 

Asgari, E. and Mofrad, M.R.K. (2015) [193] and named as ProtVec. 

                                            
19 The Gensim package: https://radimrehurek.com/gensim/  
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b. prot2vecnon-overlap. The protein sequence M  was split into 	&  lists of non-

overlapping &-gram biological words. The biological word lists were then fed 

to the pre-trained model `, which generated a vector representation for each 

of the &  lists of biological words. The final representation of the protein 

sequence M was constructed by stacking the & generated prot2vecs. 

c. prot2vecfetch. The protein sequence M  was searched against the training 

databased, such as UniProt. If it existed in the database, its vector 

representation was fetched directly from the database a(c . If not, 

prot2vecinference was generated. Different from natural language processing 

where a corpus can hardly include all possible sentences, the recognition 

speed of new protein sequences is relatively slow and the protein sequence 

database Swiss-Prot/UniProt is considered to contain most of the functional 

proteins that may appear in a protein sequence-based analysis. Therefore, 

prot2vecfetch is listed as a practical implementation of the prot2vec.  

d. prot2vecinference. The protein sequence M was split into a list of overlapping &-

gram biological words. The list of biological words was later fed into the pre-

trained generative model `, which generates the vector representation of M 

via inference. In this step the doc2vec  

In this thesis, the general technique of the distributed representation of protein 

sequences is referred to as prot2vec, which can be implemented using the four strategies 

in step 4, i.e. prot2vecadd, prot2vecnon-overlap, prot2vecfetch and prot2vecinference. Figure 4.2 

demonstrates the generation of prot2vec in terms of the training step and the inference 

step.
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Figure 4.2 Difference implementations of prot2vec in the training and inference step. 
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Qualitative comparison among the four implementations of prot2vec. 

Combining the two strategies of splitting protein sequences and the two ways of 

generating distributed representations of protein sequences, Table 4.2 summarises the 

different implementations of prot2vecs with their advantages and disadvantages. Among 

the four different implementations, prot2vecfetch, prot2vecnon-overlap and prot2vecinference are 

doc2vec-based. Therefore, the generated representations take into consideration the 

order of amino acids. On the other hand, prot2vecfetch and prot2vecadd are constructed by 

fetching representations directly from database !"#  and !"$, respectively. Therefore, 

the respective time complexity for these two implementations are within %(1) and %())20. 

Note that, prot2vecadd, prot2vecnon-overlap and prot2vecinference can be applied to any protein 

sequence segments that are longer than 3 residues, while prot2vecfetch is only available 

for whole protein sequences.  

 

Table 4.2 Different distributed representation of protein sequences. 

 Overlapping *-gram Non-overlapping *-gram 

 Fetch Inference Addition Inference 

Name prot2vecfetch prot2vecinference prot2vecadd prot2vecnon-overlap 

Pros Considers the 
order of biological 
words; with time 
complexity %	(1). 

Considers the order of 
biological words. 

The calculation is of 
time complexity %()).  

Considers the order of 
biological words. 

Cons Only works for 
protein sequences 
in the training set.  

Slow inference.  Ignores the order or 
biological words.  

Requires extra 
calculation to combine 
representations of	n 
lists of biological words. 

                                            
20 The time complexity for prot2vecadd is %()) because, for a sequence of ) words, it requires ) times 

representation fetch from the pre-trained mapping database !"$ .  
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4.1.3 The training of the prot2vec generative models 

Hyper-parameter tuning. The generative model of the distributed representation is 

constructed based on feed-forward neural networks, whose hidden layers are trained to 

generate the vector representation. The training of the neural network - was based on 

the tuning of multiple hyper-parameters. Detailed specifications of the hyper-parameters 

can be found in the latest release of the Gensim package. In this study, we specifically 

tuned the following hyper-parameters,  

• Vector size (H). This parameter specifies the size of the hidden layer and 

therefore the size of the generated vector representation.  

• Window size (.). This parameter determines the number of neighbouring words 

that are predicted from the target biological word. Larger size indicates a broader 

context from which the target word is modelled, whereas a smaller window size 

enforces a stronger focus on the local context. 

• Learning rate (/ ). This parameter determines the initial learning rate of the 

training process. A learning rate set too small may cause over-fitting.  

• Training epochs (0). This parameter specifies the number of training iterations 

that were performed on the training sequences. Usually, better performance can 

be achieved with more training epochs. However, overly sized training epochs 

may cause over-fitting.  

• Inference epochs ()). This parameter specifies the number of steps of inference 

that is performed to generate the vector representation of unseen sequences. It 

is only available for the inference step. 

The model was trained on a machine with 8-core Intel(R) Core(TM) i7-4770 CPU and 

16G of RAM.  
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Performance evaluation. In this thesis, the quality and effectiveness of prot2vec 

was validated respectively in two experimental settings. Firstly, we validated the 

legitimacy of the training step (Figure 4.2 (a)) by evaluating the accuracy of the inference 

step (Figure 4.2 (b)). Assuming the pre-trained prot2vecs in !"# are accurate distributed 

representations of protein sequences in the training set, denoted as 1#, we performed 

an inference step to a subset (valid set) of the training sequences using the trained 

generative model -, which generates the inferred prot2vecs of protein sequences in the 

valid set, denoted as 12#. Therefore, the accuracy of the inference step can be evaluated 

by the similarity or distance between 1# and 12#, which is defined as follows,  

34051#, 12#7 =
9
:
∑ <=>(1#?, 12#?)
:
@AB 	 	 	 [Eq. 4.2]	

where 0 represents the size of the valid set, and <=> refers to the cosine similarity21 [290] 

between two vector representations. Here, larger 34051#, 12#7  is regarded as an 

indication of a superior generative model for prot2vecs. This evaluation is only applicable 

for inference-based distributions, such as prot2vecinference and prot2vecnon-overlap. Secondly, 

we validated the effectiveness of the distributed representation of protein sequences by 

applying them to different protein sequence-based prediction tasks. Please refer to 

Chapter 5, Section 7.4 and Chapter 8 for detailed results and analysis of the three 

prediction-task based validations. In this section, we focus on the validation of the 

legitimacy of the training step.  

Results and analysis. We tuned the aforementioned hyper-parameters and 

selected the best performing generative models for prot2vecinference and prot2vecnon-overlap, 

respectively, in terms of 34051#, 12#7  on the valid set. Note that prot2vecadd and 

prot2vecfetch are constructed directed from the mapped distributed representations saved 

                                            
21 Cosine similarity is used to measure the similarity between two non-zero vector in terms of the cosine of 

the angle between them.  



 97 

in !"# and !"$. Therefore, they do not involve actual approximate inference. As a result, 

we did not include them in the performance evaluation. 

Among the 551,704 reviewed protein sequences that were used for training, we 

randomly selected 2,000 sequences as the valid set. Table 4.3 listed the resulting score 

of 34051#, 12#7 with respect to corresponding vector size H, training epochs	0, learning 

rate /, inference epochs	), and the window size .. We started the parameter setting 

from H=100, 0=300, ∂=0.025, )=20000, and .=25, and then manually performed grid 

search by changing one or two parameters at a time, to improve the cosine similarity 

between the pre-trained vector 1# and the inferred vector 12#.	 

 

Table 4.3 The hyper-parameter tuning for the generative models of prot2vecinference and 
prot2vecnon-overlap. 

* Underlines indicate that this particular hyper-parameter is set to the same value as that of the first set of 
hyper-parameters that were highlighted with underlines for prot2vecnon-overlap and prot2vecinference, 

respectively.  

 

 H E F * G Avg. Sim 

prot2vecnon-overlap 

#1 100 300 0.025 20000 25 0.810 

#2 - - - 500 - 0.330 

#3 - - - 25000 - 0.805 

#4 - - - 30000 - 0.800 

#5 - - 0.01 - - 0.813 

#6 300 - - - 30 0.744 

#7 - 400 0.005 30000 - 0.967 

prot2vecinference 

#1’ 100 100 0.025 10000 25 0.863 

#2’ - 300 0.01 20000 - 0.950 

#3’ - 400 0.005 30000 - 0.974 
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Results #1~#4 demonstrate that 34051#, 12#7 was improved from 0.330 to 0.810 when 

the inference epochs were improved from 500 to 20,000 and decreased slightly to 0.805 

and 0.800 when the inference step was further increased to 25,000 and 30,000. It 

indicates that the number of inference steps is positively correlated with the performance 

of the generative models, but there exists a limit after which more inference step may 

cause the decrease of the performance. Combining the results of #1, #4 and #7, we 

found that the limit of the number of inference steps is related to the number of training 

epochs. More specifically, despite the decrease of 34051#, 12#7 from 0.810 to 0.800 when 

the inference steps were increased from 20,000 to 30,000, the 34051#, 12#7 was improved 

to 0.967 when the number of inference steps was increased to 30,000, and the training 

epochs were increased to 400. Therefore, the increase of training epochs and inference 

steps should be performed together.   

We also observed slight improvement in 34051#, 12#7 from 0.810 to 0.813 when the 

initial learning rate was decreased from 0.01 and 0.025. Note that larger training epochs 

meant that the model was repeatedly trained on the same training data more times, for 

which a smaller learning rate enables more sustainable training, despite the application 

of learning rate decay. Therefore, we decreased the initial learning rate with the 

increased of the training epochs. Finally, we changed the vector size from 100 to 300 

and the window size from 25 to 30 in result #6, where the 34051#, 12#7 was decreased to 

0.744 compared with 0.810 in result #1.  

Here, larger vector sizes specify less condensed representations of the input 

sequence, whereas a larger window size involves more words in the contexts from which 

the distributed representation was generated. Based on the hyper-parameter tuning of 

prot2vecnon-overlap, we simplified the hyper-parameter tuning of the prot2vecinference. Results 

#1’~#3’ demonstrated that the best hyper-parameter settings for prot2vecinference are 

H=100, 0=400, /=0.005, )=30000, and .=25, where 34051#, 12#7=0.974. In comparison, 
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with the same hyper-parameter setting, the model of prot2vecnon-overlap achieved a 

34051#, 12#7 of 0.967.    

4.1.4 The application framework of prot2vecs 

Compared to biological representations including homology profiles, physicochemical 

properties, and structural properties, prot2vecs represent protein sequences in terms of 

their sequential patterns that are distributed in large protein sequence databases. Its 

generation model is trained based on unsupervised learning, and the generation of 

prot2vecs itself is fully automatic with no manual intervention. Therefore, the distributed 

representation of protein sequences can be regarded as a pure data-driven interpretation 

of amino acid sequences that is complementary to existing biological representations 

that are generated with biological heuristics.   

In this section, we propose the application of prot2vec in the three granularities of 

prediction tasks at the whole-sequence level, residue-level and biological interaction-

level, respectively. For each of the three application scenarios, we introduce the 

application context, quantitative input, expected output, symbolic definition, and 

applicable prediction tasks.  

Whole-sequence level predictions. For protein structural and functional properties 

that are assigned per sequence, such as the protein family, the distributed representation 

of protein sequences, prot2vec, can be used directly as the feature vector for 

corresponding prediction models. The purpose of these whole-sequence level 

predictions is to computationally assign a categorical or numeric value for each protein, 

given its amino acid sequence as the raw input. Let H  denote the model that is 

constructed to perform the prediction task, <I ∈ K the i-th category that a protein can be 

assigned to, and 1M the generated prot2vec of the input protein sequence 3 according to 

Section 4.1.3.  
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Whole sequence-level predictions based on the distributed representation of protein 

sequences can be formalised as follows, 

HNO: Q(1M) → S1… 4Q	3 ∈ <I0⋯ 4Q	3 ∉ <I
	 	 	 	 [Eq. 4.3] 

In this thesis, the prediction task  HNO is modelled using machine learning models that 

are automatically learnt from constructed training datasets. The most widely used 

machine learning models include the support vector machines, neural networks, random 

forests, K-nearest neighbours and probabilistic graphical models.  

Whole sequence-level predictions represent the most straightforward application of 

prot2vec. Technically, they require no extra pre-processing or post-processing of the 

vector representation and can be directly used as the input feature vector for most of the 

aforementioned machine learning models. Biologically, prot2vec is generated as a high 

abstractive representation of the sequential pattern of protein. It can be complementarily 

used in combination with the existing biological representations, simply via vector 

concatenation.  

Residue-level predictions. For protein structural and functional properties that are 

assigned per residue, for example, protein secondary structures and intrinsic disorder, 

we propose the distributed representation of protein segments, termed context2vec, as 

the contextual feature vector for encoding local sequential pattern of the target residue. 

Here, the context2vec of any target residue X@  is generated for its local sequence 

segment Y@ = X@Z:, X@Z:[9, … , X@, … , X@[:Z9, X@[: , where m  denotes the number of 

neighbouring residues that are extracted from its upstream and downstream contexts. A 

sliding window of size ] = 2 ×0 + 1 is used to extract the local sequence segment for 

each target residue. The context2vecadd and context2vecinference of XI  are respectively 

generated for sequence segment Y@ the same way prot2vecadd and prot2vecinference are 

generated for the whole protein sequence 3.  
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The purpose of residue level predictions is to assign a categorical or numeric value 

to each residue in a protein sequence, given the protein sequence	3 as the raw input 

data. Let M denotes the model that is constructed to perform the prediction task, <I ∈ K 

where K  is the set of allowable classes, and 1b?  the concatenation of the generated 

context2vec and various residue level biological representations, for the c-th residue X@ 

in the input protein sequence 3 . Residue-level predictions based on the distributed 

representation of local sequential contexts can generally be formalised as follows, 

HNO: Q(1b?) → S
1… 4Q	X@ ∈ <I
0⋯ 4Q	X@ ∉ <I

	 	 	 	 [Eq. 4.4] 

Similar to whole-sequence level prediction, the task HNO is modelled with machine 

learning models.  

Residue-level predictions are ubiquitous among protein sequence-based predictions, 

especially for protein structural properties. For each residue in the primary structure, 

corresponding structural and functional properties are computationally assigned to 

structurally characterise proteins. The structural properties that are predicted from 

protein sequences include protein secondary structures, secondary structure 

populations, solvent accessibility, and intrinsic order, while functional properties include 

phosphorylation sites, cleavage sites, and protein domains. An example of the input ‘seq’ 

and the output ‘SS’ of the protein secondary structure prediction tool PSSpred [291] for 

protein p53_human [39] is shown as follows,  
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For these residue level predictions, one of the underlying assumptions is that the 

assignment of structural and functional properties of the target residue X@ is correlated to 

its local sequential and structural contexts. In the example above, the secondary 

structure assignment of the 7-th residue D is dependent on its local sequence context, 

and a sequence context window of size 7 is labelled in green. The local sequential 

contexts are represented in multiple ways, including sequential motifs that are manually 

curated, sequential similarities that are calculated based on homological profiles, and 

vector representations of neighbouring residues that are concatenated. The context2vec 

provides a vector representation for sequential patterns of local contexts. It is technically 

convenient to be combined with existing residue level representations that are generated 

from homological profiles, physicochemical properties and structural properties.  

Biological interaction-level predictions. For predicting novel interactions in 

biological networks, for example, drug-target interactions, we proposed the prot2vec-

based kernels as the input feature in kernel-based machine learning methods. This is 

based on the assumptions that if two proteins are similar to each other, they are likely to 

have interactions with the same third party. Let de  and df  denote the protein g and 

seq:   1  MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP   60 

SS:       CCCCCCCCCCCCCCCCHHHHHHHHHCCCCCCCCCCCCCCHHHHHCCCCCCHHHHCCCCCC 

conf:     986666666789988146999998689988766777887567522687420221346775 

 

seq:  61  DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK   120 

SS:       CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCEEEEEECCCCCC 

conf:     322367766777777777677788888888888888876788888641499982488766 

 

seq: 121  SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE  180 

SS:       CCCEEECCCCCEEEEECCCEEEEEEEECCCCCCCCEEEEEEEECCCHHHCCHHHCCCCCC 

conf:     532032231286997258054499998169999928999998638111002132251545 

 

seq: 181  RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNS   240 

SS:       CCCCCCCCCCCCEEEEECCCCCEEEEECCCCCEEEEEEECCCCCCCCCCEEEEEEEEECC 

conf:     578888777652499982899538863489854899974588887864068989985136 

 

seq: 241  SCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELP   300 

SS:       CCCCCCCCCCEEEEEEEECCCCCEEEEEEEEEEEECCCCCCHHHHHHHHHCCCCCCCCCC 

conf:     777888765358999983799967858899999937842210467886320145666789 

 

seq: 301  PGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPG   360 

SS:       CCCCCCCCCCCCCCCCCCCCCCCCCCEEEEEEEECHHHHHHHHHHHHHHHHHHHHCCCCC 

conf:     887633367887777765567778846999997140799999999999986432101320 

 

seq: 361  GSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD      393 

SS:       HHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCC 

conf:     357888766531467787777665456788789 
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protein ", respectively, and K  the third party that has interaction with protein g. The 

similarity assumption can be represented as >404hiX(de, df) ∧ 4)klXi<k	(de, K) 	→

4)klXi<k	(df, K) . The third part K  may refers to another protein dm  in protein-protein 

interaction prediction, and an interacting drug nm in drug-target interaction prediction.  

In kernel-based machine learning methods, protein similarity is calculated using 

different kernels, including the cosine kernel ( oNpq ), the linear kernel ( orsb ), the 

polynomial kernel (o#pr), the RBF kernel (obtu), the Laplacian kernels (orv#), and the 

sigmoid kernels (oqIw).  In this section, we introduce the prot2vec-based protein kernels, 

termed vec2kernel, by applying the aforementioned kernel functions to the generated 

prot2vecs of pairs of proteins.  

Let 1#O  and 1#?  denote the prot2vecs generated for the 4 -th and c -th protein, 

respectively, the protein kernel xI@ can be formalised as follows,  

xI@ = oy z1#O, 1#?{		 	 	 	 [Eq. 4.5]	

where | = <=>, h)X, d=h, X}Q, hid, >4~, …. 

The purpose of biological interaction prediction is to determine whether there is a 

potential interaction between a protein and a third-party object, given the protein 

sequences of all proteins and the existing interactions status for part of the proteins.  Let 

H denote the model that is constructed to predict biological interactions, dI and d@	an 

arbitrary pair of proteins, and K the third-party object who has interaction with protein d@. 

The prediction of biological interactions can be formalised as follows, 

H:Q(oy z1#O, 1#?{ |4)klXi<k5d@, K7	) → Ä
1… 4Q		4)klXi<k(d@, K)
0⋯ 4Q	! 4)klXi<k(d@, K)

	 	 [Eq. 4.6] 

where 4)klXi<k	(i, })  and 	! 4)klXi<k(i, })  indicates that there is and there is not 

interaction between i and }, respectively. Similar to whole-sequence level predictions 

and residue level prediction, the key component here is to construct the model H that 
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maps the protein kernel between protein dI  and d@  to categorical values that indicate 

interaction status.   

In this application scenario, the distributed representation of protein sequences, 

prot2vec, is used as the vector representation based on which multiple protein kernels 

can be conveniently calculated. Since prot2vec itself is generated to encode protein 

sequential patterns, it can be regarded as a machine interpretation of the protein 

sequence similarity-based kernel, which is directly generated from the sequential 

similarity between pairs of protein sequences. However, sequential similarities 

calculated with distance measurement scores are numeric values that cannot be 

transformed to other higher dimensional or lower dimensional spaces, whereas 

prot2vecs are vector representations that can be transformed to different kernel spaces 

using different kernel functions.  

4.1.5 Conclusion 

In this section, we proposed three distributed representation of protein sequences, 

prot2vecfetch, prot2vecnon-overlap and prot2vecinference, together with the previously proposed 

prot2vecadd [193], and introduced the construction methodology of each of them. We then 

summarised the advantages and disadvantages of the four vector representations. In 

order to validate the legitimacy of the training process and to tune the hyper-parameters 

of the two inference-based vector representations, prot2vecnon-overlap and prot2vecinference, 

we further conducted comparison experiment to select the best performing generative 

models for respective representations. These two models will be used to generate 

prot2vecnon-overlap and prot2vecinference in the rest of the thesis, for further application in 

protein sequence-based prediction tasks.  

Based on the generated prot2vecs, we further proposed the application framework 

of the distributed representation of protein sequence in three different scenarios, i.e. 

whole sequence-level predictions, residue-level predictions, and biological interaction-

level predictions, as is shown in Figure 4.3.  
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Figure 4.3 The application framework of prot2vecs in three different scenarios. 

 

For each of the application scenarios, we slightly modified the prot2vec by performing 

pre-processing and post-processing of its vector representation. More specifically, we 

directly used prot2vec as the feature vector for whole-sequence level prediction, 

proposed the context2vec as the contextual feature vector for residue level prediction, 

and applied multiple kernel functions based on prot2vec for kernel-based machine 

learning methods. The effectiveness of prot2vecs and its application framework is 

validated in real-world application tasks that are introduced in Chapter 5, Section 7.4 

and Chapter 8. For whole-sequence level predictions, we apply the prot2vec directly to 

protein family prediction. For residue level predictions, we apply the context2vec to the 

prediction of phosphorylation sites. For biological interaction prediction, we apply the 

kernels of prot2vecs to drug-target interaction prediction.  

4.2 Deep learning framework for protein sequence-based 

predictions 

In this section, we propose a deep convolutional neural network framework, namely 

DeepS(equence)2P(roperty), for predicting protein structural and functional properties 

directly from protein sequences. This deep learning framework represents a template 
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framework that can be adjusted and applied to predict any residue-level protein structural 

and functional property. 

4.2.1 Protein structural and functional properties 

Computational identification of protein structures represents a general research topic in 

bioinformatics. The first large-scale assessment of protein structure prediction methods 

was held in 1994 during the first meeting of the Critical Assessment of techniques for 

protein Structure Prediction (CASP1) [292]. Before 2016, twelve CASP assessments 

have been organised to collect protein targets, prediction methods and assessment 

methodologies for computational modelling of protein structures.  The evaluated 

methods were used to model the prediction of protein structures including protein tertiary 

structures, protein secondary structures, fold recognition, structural domain boundaries, 

residue-residue contacts, disordered regions, protein functions. During the same time, 

other aspects of the protein structure were modelled beyond the CASP assessment, 

including protein torsion angels, backbone angles, dihedral angles, surface 

accessibilities, and side-chain conformations. In this thesis, we refer to the different 

aspects of protein structures as protein structural properties. Existing methods for 

predicting protein structural properties mainly rely on identified protein sequences, 

calculated protein homology profiles, derived protein physicochemical properties, and 

predicted related protein structural properties.  

In the Swiss-Prot/UniProt database [39], protein sequences are annotated with seven 

categories of information, where four categories are directly related to protein functions. 

They are molecule processing, regions, sites, and amino acid modifications. These 

sequential annotations are position-specific, which means that each residue in protein 

sequences acquires an annotation label depending on the annotation type. For example, 

active sites in enzymes refer to the residues that are involved in the activity of protein 

enzymes, post-translational modification sites in amino acid modifications refer to the 

residues in protein substrates that are catalysed by protein kinases, while DNA binding 
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sites refer to the types and positions of the DNA binding domain. In this thesis, we refer 

to the above protein functional annotations as protein functional properties. Similar to the 

prediction of protein structural properties, the prediction of protein functional properties 

relies on protein sequences, calculated protein homology profiles, derived 

physicochemical prosperities, and predicted or determined protein structural properties.  

Protein structural and functional properties are commonly predicted from protein 

sequences for three reasons. Firstly, the acquisition of protein sequences is easy and 

cheap. Secondly, protein sequences theoretically encode every information for 

determining the tertiary structures of proteins, even though the mechanism of protein 

folding is still unknown. Finally, many bioinformatics tools have been developed to derive 

a variety of protein information, such as homology profiles, physicochemical properties, 

and relevant protein structures, which provide sufficient sources of protein features to 

select from. The most widely used machine learning models include support vector 

machines, random forests, and different variations of neural networks. Figure 4.4 

demonstrates a subset of protein structural and functional properties.  

 

Figure 4.4 Protein sequence, protein structural properties and protein functional properties. 

 

4.2.2 Protein sequence-based residue-level predictions 

In protein sequence-based residue-level predictions, each residue in protein sequences 

is assigned a specific structural or functional label annotation depending on the 
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prediction task. For example, in intrinsically disordered region prediction, each residue 

is assigned a binary class label indicating whether or not the residue is within a 

disordered region or not, while in 3-class protein secondary structure prediction, each 

residue is assigned one of the three class labels (Helix(H), Strands(E) and Coil(C)) 

indicating the secondary structure element that is assigned to the residue.  

Therefore, the prediction task HÇ  for structural or functional property É  can be 

modelled as follows,  

HÇ: Q(ÑÖ) → Ü		 	 	 	 	 [Eq. 4.7]	

where 4 ∈ 	 [1, … , |3|] indicates the position in the protein sequence of length |3|, and Ü 

represents the predicted structural or functional property for the target residue ÑÖ, which 

can be categorical output in classification tasks or numeric output in regression tasks.  

The above modelling process is only applicable for sequential annotation tasks which 

produce prediction for each position in the input of amino acid sequences. It is not 

applicable to residue-residue contact prediction, for example, which produces 

interaction/contact predictions between pairs of residues in protein sequences. 

4.2.3 Feature selection, construction and extraction 

In Section 4.1, we introduced the distributed representation, i.e. prot2vec, as a potential 

complementary feature representation for protein sequence-based predictions. 

Considering other protein sequence representations that are introduced in Section 2.2.1, 

there is a pool of information from which the most relevant and effective protein sequence 

representation can be selected, constructed and extracted.  

Firstly, with feature selection, sources of information that are most relevant to the 

prediction task are selected, mainly rely on the understanding of biological background. 

The identification of phosphorylation sites, as an example, is considered to be related to 

the following factors [221], 

1) Phosphorylation sites are enriched in specific secondary structures [293].  
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2) The identification of intrinsically disordered regions is helpful in improving the 

distinguish between phosphosites and non-phosphosites [217].  

3) Phosphorylation sites are located at the surface of substrate protein sequences. 

Therefore, they may share similar patterns in surface accessible areas [222].  

4) Phosphorylation sites need to be exposed to solvents [294], which is closely 

related to the average cumulative hydrophobicity.  

Besides the sources of information that are experimentally proved to be correlated 

to the prediction task, features are also constructed from the sources of information that 

is used by state-of-the-art methods. For phosphorylation site prediction, there are dozens 

of existing machine learning-based methods among which the sequence similarities, 

homology profiles and physicochemical properties were also selected as the sources of 

information for calculating the input features. In general, the sources of protein 

information can be categorised into four types, including sequence similarity -based 

features, homology profile –based features, physicochemical property –based features, 

and structural features. Table 4.4 summarises the most common features that are used 

in each of the four feature types.   
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Table 4.4 A summary of the input features for the prediction of protein structural and functional properties. 

Type name Features 

Sequence-based 1- 1-of-K coding 
2- K-nearest neighbour (KNN) score 
3- sequence alignment (similarity) search 
4- sparse representation of protein sequences 
5- distributed representations, etc. 

Homology-based 1- Position-specific scoring matrix (PSSM) 
2- HMM profile, etc. 

Physicochemical 
property based 

1- Overlapping properties 
2- amino acid composition 
3- polarity, hydrophobicity 
4- surface tension 
5- charge 
6- normalised Van der Waals volume 
7- polarizability 
8- molecular weight 
9- solubility 
10- number of hydrogen bond donor in the side chain 
11- number of hydrogen bond acceptor in the side chain, etc. 

Structural based 1- Protein secondary structures 
2- disordered proteins/regions 
3- surface accessible area 
4- solvent accessibility, etc.  
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Depending on the target structural and functional property of the prediction tasks, a 

subset of the features listed in Table 4.4 should be used for the construction and 

extraction of input feature vector.  

Secondly, feature construction refers to the process of constructing feature vectors 

from the selected sources of information. According to our empirical experience, for 

protein structural and functional prediction, this step represents the most time-consuming 

and complex procedure in the whole process of prediction task modelling. It involves 

data collection from a variety of relevant databases, familiarisation of publicly available 

source code packages and web servers, and the actual construction of feature vectors 

for respective selected features. For example, the calculation of homology profiles 

requires the acquisition of protein sequences from databases such as Swiss-

Prot/UniProt [39] and RCSB PDB [40], the running of PSI-BLAST tool [99] for the 

calculation of position-specific scoring matrixes (PSSMs), and potential post-processing 

to generate more informative numeric vectors such as Shannon entropy [221] and 

relative entropy [221]. Moreover, the calculation of some of the other features may rely 

on the results of PSSMs, such as protein secondary structures and intrinsically 

disordered states. The physicochemical property -based features, as another example, 

are usually encoded in various descriptors, such as the composition (C), transition (T), 

and distribution (D) descriptors, using different calculation formulae [295]. van Westen, 

G.J. et al. (2013) evaluated 13 different descriptors that were generated from a set of 

physicochemical properties [202]. In general, the calculated feature vectors from various 

selected sources of information are concatenated as one-dimensional feature vectors, 

which are later fed as the input for machine learning models.  

Finally, feature extraction refers to the step of dimension reduction that is performed 

to generate more abstract vector representations with higher quality. The distributed 

representation of protein sequences introduced in Section 4.1 was optimised for the task 
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of protein sequential modelling and can be regarded as the feature extraction from amino 

acid sequence -based sparse representations.  

In this section, we propose the general convolutional neural network (CNN) for 

predicting protein structural and functional properties. For specific tasks, the vector 

representations constructed in accordance with the feature selection and feature 

construction are used as the direct input feature vector for the deep learning frameworks. 

During the process of training of the task-specific models that are derived from this 

general deep learning framework, the trained hidden layers perform the third step of 

feature extraction. For each protein sequence S, the three steps of feature selection, 

feature construction and feature extraction can be represented as follows,   

 

"#$% = '()(*+_"-./	("2$34$56$, "89:9%9;<, "=8<2>6968$:>6?%, "2@A46@4A?%)	 	 [Eq. 4.8]	

"C952@ = *.D*E+(DE+(("F, "G, … , "5))…"> ∈ "#$%	 	 	 	 [Eq. 4.9] 

		"JK@A = ℎMℎMNF, … , ℎF("6952@A46@)	 	 	 	 	 	 [Eq. 4.10]	

 

where "#$% , "C952@ , "JK@A  represent the selected, constructed and extracted features 

vectors respectively, and ℎF, ℎG, …, ℎM represents the first, secondary and O-th hidden 

layers that are trained to optimally extract high abstract representations.  

Technically, the hidden layers in the proposed CNN can be regarded as a feature 

extractor that can automatically extract high-level abstractive features from the raw data. 

Compared to human-engineered features, the extraction of these high-level abstractive 

features does not require human domain knowledge nor any human labour. The 

prediction performance of these abstractive features is validated and compared to 

human-engineered features in Section 6.2.4, Section 6.3.5, Section 6.3.7, and Section 

6.4.3 for predicting protein intrinsic disorder (IDP), protein secondary structure 

population (SSP) and IDP/SSP simultaneously. 
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4.2.4 DeepS2P: a deep learning framework for protein sequence-based 

predictions 

The general deep learning framework for protein sequence-based residue-level 

prediction is implemented as a convolutional neural network (CNN) [111] where each 

unit in the current hidden layer is connected to a restricted number of neighbouring units 

in the previous layer. The proposed deep learning framework for protein sequence-

based predictions is designed for predicting structural or functional properties for each 

target residue -> in each protein sequence P. It consists of multiple layers of computation 

units, including  

The input layer Q. A sliding window of size R is used to extract the neighbouring 

residues of the target residue ->. Therefore, the feature vectors of the sequence segment 

'AS′ = ->NU …-> … ->VU   of size R = 2 ∗ Y + 1  are combined together to form an input 

feature vector \] of size R × |"C952@|, where "C952@ refers to the constructed feature vector 

of each residue in 'AS′ according to the steps of feature selection and feature construction 

introduced in Section 4.2.3. With the input feature vector of size R × |"C952@|, the input 

layer ` is designed with R neurons, where each neuron has |"C952@| channels.  

The hidden layers a.  The hidden layers are used to extract high abstract vector 

representations that are optimised for the prediction of the target structural or functional 

property.  

• Convolutional filter. In this design, we employ the architecture of convolutional 

neural networks, where each hidden layer is also called a convolutional filter. 

More specifically, each neuron in hidden layer ℎ> is only connected to a restricted 

number of neighbouring neurons in its previous hidden layer ℎ>NF. Let E
>

b denote 

the	c-th neuron in hidden layer ℎ>. When the convolutional filter size "'> is set to 

5, the input of the neuron a
e

f is computed from the output of the neurons E
>NF

bNG, 

E
>NF

bNF, E
>NF

b , E
>NF

bVF, and E
>NF

bVG.  
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• Activation function. For each hidden layer, an activation function is added to add 

non-linearity to the modelling framework. Let .
>

b denote the linear weighted sum 

of the output of neuron E
>NF

bNG , E
>NF

bNF , E
>NF

b , E
>NF

bVF , and E
>NF

bVG , and σ the activation 

function for the hidden layer he, the output of the neuron E
>

b is as follows,  

 

.
>

bi

= jk.
>

b
l = j(Y

>NF

bNG
× E

>NF

bNG
+	Y

>NF

bNF
× E

>NF

bNF
	 	 	 	 	

																																										+	Y
>NF

b
× E

>NF

b
+	Y

>NF

bVF
× E

>NF

bVF
	 	 	 	 	

													+	Y
>NF

bVG
× E

>NF

bVG
+ m

>NF

b
)		 	 	 	 [Eq. 4.11] 

 

• Zero padding. The application of convolutional filter results in the decreased of 

the number of neurons in the next hidden layer. However, in protein sequence 

segments, each residue is equally important, and the information of the first and 

last several residues should be maintained in the convolved next hidden layer. 

Therefore, we applied the zero padding, where ("'> − 1)/2 ZERO neurons in 

layer ℎ>NF are added to ensure the calculated inputs for neuron E>p, E>F,…, E>qNF, 

E>
q in hidden layer ℎ> (assuming the "'>=5).  

• Max-pooling. Due to the lack of training data in most protein structural and 

functional property prediction tasks, over-fitting is more likely to be problematic 

for the training of the proposed deep learning framework. For the designing of the 

architecture of convolutional networks, the max-pooling technique is used to 

down-sample the outputs of each hidden layer. Let r'> denote the filter size of 

the max-pooling layer that is added on the hidden layer ℎ> and R the number of 

neurons in ℎ> , the resulting number of neurons after the max-pooling layer is 

R/r'> + 1.  
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The task-specific architecture for the hidden layer	s relies on the experimental tuning 

of the following hyper-parameters, including the number of hidden layers, the 

convolutional filter size "'>, and the max-pooling filter size r'>.  

The fully-connected layers tu . The fully-connected layer transforms the high-

dimensional output of from the last hidden layer to a one-dimensional flat vector 

representation that produces the input for the output layers. Let v denote the number of 

neurons in the fully-connected layer, the resulting vector representation from the fully-

connected layer is of the size v × 1. The originally constructed input feature vector of the 

size R × |"C952@|  is transformed to a high abstract and more condensed vector 

representation of size v × 1, which can be regarded as the third step of feature extraction 

introduced in Section 4.2.3.  

• Drop-out. In the architecture of DeepS2P, another technique, drop-out, was used 

to overcome the issue of over-fitting during the process of training. The drop-out 

layer is added on top of the last fully-connected layer and therefore is applied on 

the activations that are generated from the FC layer. Let w denote the percentage 

of activations from the last FC layer that is to be dropped during the process of 

training, only 1-	w percentage of the activations will be considered as the input for 

the output layer.  

The task-specific architecture for the fully-connected layer and drop-out layer relies 

on the experimental tuning of the following hyper-parameters, including the number of 

fully connected layers, and the number of neurons v in each FC layer, and the drop-out 

percentage w.  

The output layer x. Depending on specific prediction tasks, this layer uses y real-

valued neurons representing y	number of classes to be predicted. For classification 

tasks, the sigmoid function [Eq. 4.12] was used as the activation function and the mean 

squared error (MSE)   [Eq. 4.14] as the loss function. For regression tasks, the cross 
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entropy (CE)   [Eq. 4.15] was used as the loss function and the softmax function  [Eq. 

4.13] as the activation function. 

'z{/.zO(|) = 	
F

FV$}|
=

$|

$|VF
     [Eq. 4.12] 

'."+/E~(|)b =
$
|�

∑ $
|ÅÇ

ÅÉÑ

	".-	c = 1…Ö	   [Eq. 4.13] 

ÜPá(àâ, à) =
F

5
∑ (àâ> − à>)

G5
>äF      [Eq. 4.14] 

ãá(àâ, à) = −∑ à> ∗ ).{(àâ>)
5
>äF 	     [Eq. 4.15] 

 

In equation [Eq. 4.12] and [Eq. 4.13], | is the weighted sum of the outputs from the drop-

out layer. In equation [Eq. 4.14] and [Eq. 4.15], àâ is the predicted results of the true label 

à. 

4.2.5 Hyper-parameters for DeepS2P 

When applying the DeepS2P framework to predict different protein structural and 

functional properties, hyper-parameters determine the final structure of the task-specific 

models and the specification of training procedures, while parameters are automatically 

learned during the process of model training.   

As partially introduced in Section 4.2.4, the hyper-parameters for determining the 

task-specific model structure include the number of neurons in the input layer R, the 

number of hidden layers |s|, the convolutional filter size "'> for each hidden layer, the 

filter size r'> for each max-pooling layer, the number of fully-connected layers |vã|, and 

the number of neurons in each fully-connected layer vb.  

At the same time, the process of model training is based on the specification of 

several training-related hyper-parameters including the number of training epochs /, the 

size of mini-batches D, the learning rate alpha, the learning rate decay å, and the drop-
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out rate w . Table 4.5 demonstrates the hyper-parameters in DeepS2P and their 

corresponding functions in nailing the final structure of each task-specific model.  



 

11
8 

 

 

Table 4.5 A summary of the hyper-parameters for the DeepS2P framework. 

Name Symbol Description 

A. Structure determinant hyper-parameters 

Size of the input layer ! The size of the sliding window for extracting neighbouring residues of the target 
residue.  

Number of hidden layers |#| The number of hidden layers 

Convolutional filter size $%& The convolutional filter size for hidden layer '. 

Max-pooling filter size (%& The max-pooling filter size for hidden layer '.  

Number of FC layers |)*| The number of fully-connected layers.  

Size of FC layers )+ The number of neurons in each fully-connected layer ,.  

B. Training process determinant hyper-parameters 

Number of epochs - The number of times that the training data set is traversed through during the 
training process.  

Size of mini-batches . The number of training examples in each mini-batch. Model parameters are 
updated for each mini-batch instead of each training example.  

Learning rate ∂ The scale of parameter updating for each mini-batch 

Learning rate decay δ The rate of decreasing the learning rate during the process of training.  

Drop-out rate / The rate of drop-out activations during the process of training.  
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4.2.6 Conclusion 

In this section, we introduced a deep learning framework, DeepS2P, for protein structural 

and functional prediction based on protein sequences. We formalised protein sequence-

based residue-level predictions, illustrated the process of feature selection, construction 

and extraction, and introduced the full architecture of the CNN-based framework. 

Different from existing applications of deep learning in protein analysis, which are 

conducted in an ad hoc manner, the architecture of DeepS2P is constructed as template 

framework so that it can be applied to a group of protein sequence-based prediction 

tasks. It allows the flexibility of the selection of input features, the design of the structure 

of the hidden layers (such as the number of hidden layers, the number of hidden units, 

and the use of max-pooling and dropout techniques), and the modelling of the expected 

prediction outputs.  We also introduced the hyper-parameters that are used to determine 

the final structure of task-specific models and the hyper-parameters that are used to 

guide the actual training process of the constructed deep learning models. The DeepS2P 

framework provides the basic architecture of the multitask deep learning framework and 

the deep transfer deep learning framework that are introduced in Section 4.3 and 

Section 4.4.  

4.3 Multitask deep learning for protein structural prediction 

In this section, we propose the application of two multitask deep learning framework, i.e. 

the Multi-task framework and the Cross-stitch framework, to predict two or more protein 

structural properties simultaneously. These two deep learning frameworks represent 

templates that can be adjusted and applied to predict any two or more related structural 

properties.  
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4.3.1 Qualitative correlation between protein structural properties 

Protein structural properties are not independent from each other. In existing machine 

learning-based methods that are introduced in Section 2.3, the prediction of one protein 

structural property relies on the output of the predicted outputs of another protein 

structural property. For example, SPINE-D [212], DeepCNF-D [158], AUCpreD [207], 

and SPOT-disorder [153] all used the predicted secondary structure and accessible 

surface area as part of the input feature for predicting protein intrinsic disorder. The 

rationale behind these methods is that the residues annotated with the secondary 

structure element coil is more likely to be disordered [296]. Also, the prediction protein 

secondary structures and accessible surface areas are usually presented together (but 

are not necessarily predicted simultaneously) [8, 138]. According to Lins, L., Thomas, A. 

and Brasseur, R. (2003), the most accessible residues belong to the random coil/turn 

(C-T) class, whereas the Ba and Bp structures result in the most solvent-inaccessible 

residues [297].  According to these observations, there exist qualitative correlations 

among different protein structural properties.  

In principle, better prediction performance of the prediction of induvial protein 

structural properties can be obtained by predicting two or more related protein structural 

properties simultaneously within a multitask framework. More specifically, because of 

the qualitative correlation between protein structural properties, the representation 

learned for one task is expected to be partially useful for the prediction of its related 

prediction tasks, and vice versa. Therefore, in this section, we propose the application 

of multitask deep learning frameworks to the prediction of two or more protein structural 

properties simultaneously. In particular, we are seeking to explore the quantitative 

correlations between the simultaneously prediction protein structural properties by 

automatically learn the supportive weights between each two related prediction tasks.  



 121 

4.3.2 Multitask deep learning with hard parameter sharing 

As introduced in the Section 2.1.4, the deep learning implementation of multitask 

learning can be categorised into two types, i.e. the hard parameter sharing and the soft 

parameter sharing. With hard parameter sharing, it is straightforward to extend the 

DeepS2P framework for multitask learning. Figure 4.5 demonstrates the architecture for 

the Multi-task framework based on hard parameter sharing. 

 

Figure 4.5 The difference between the architecture of DeepS2P and multitask framework with 
hard-parameter sharing. 

 

Figure 4.5 (a) demonstrates the simplified illustration of the deep learning framework 

DeepS2P, where the input layer, hidden layers, the fully-connected layer and output 

layer are denoted as white, grey, coloured and black squares respectively. In contrast, 

Figure 4.5 (b) demonstrates the simplified illustration of the multitask framework via hard 

parameter sharing. With the hard parameter sharing, in terms of the framework 

architecture, the input layer and hidden layers are kept unchanged and shared among 

two or more prediction tasks. However, each prediction task has its task-specific fully-

connected layer and output layer, for which the respective weights are not shared among 

tasks. The basic idea of this particular design is to allow the sharing of weights in hidden 

layers which are updated according to the training examples of all related tasks, but also 

allow a certain level of variations for individual tasks by themselves. In this thesis, we 

refer to this architecture of multitask framework as the Multi-task framework.  
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In the Multi-task framework, the set of shared hidden layers is actually the feature 

extractor that is optimized to perform all tasks. It has the advantage of decreasing the 

risk of over-fitting because 1) it regularizes the effect of each task on the process of 

weight updating and 2) it allows the training of the hidden layers for tasks that has limited 

training data. The disadvantage of this architecture is that it pre-defines the parameter 

sharing schema by specifying that weights in hidden layers have to be shared and 

weights in fully-connected layers have to be task-specific. In real-world application, we 

usually do not know the quantitative correlation between multiple protein structural 

properties in advance. Therefore, it is interesting to relax this parameter-sharing schema 

so that the dependence between multiple prediction tasks are explored automatically.  

4.3.3 Cross-stitch multitask learning for quantitative correlation analysis 

To automatically learn the quantitative correlation between related prediction tasks, we 

also designed a Cross-stitch multitask framework [182]. It is based on soft parameter 

sharing where both tasks have their own neural network models with multiple hidden 

layers. For each pair of corresponding hidden layers from the two tasks, a cross-stitch 

unit is added to linearly combine the outputs of the two hidden layers, producing inputs 

for their next hidden layers respectively. Figure 4.6 (a) illustrates the architecture of the 

cross-stitch multitask deep learning framework for prediction two or more protein 

structural properties. It is based on the idea of soft parameter sharing, where each 

individual task has its own input layers, hidden layers, fully-connected layers and output 

layers.  

Between each two individual tasks, a cross-stitch unit was added on top of each 

hidden layer and each fully-connected layer. They linearly connect the output from the 

previous layers and accordingly generate the input for the next layers respectively for 

the two tasks. The parameters of each of the cross-stitch units are automatically learned 

during the process of model training. Therefore, the parameter sharing between two 

tasks are not enforced. Instead, the dependencies between the models of the two tasks 
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are dynamically adjusted according to the correlation between these two tasks. With the 

cross-stitch multitask framework, it is possible, for the first time, to automatically learn 

the quantitative correlation between two tasks. This feature is especially interesting for 

the quantitative analysis of the correlation between two or more protein structural 

properties. In Section 6.4.4, we use a heat map to demonstrate the quantitative 

correlation between the predictions of IDP/IDR and SSP.  

 

Figure 4.6 The framework for a cross-stitch multitask deep convolutional neural network. 

 

The cross-stitch unit between task A and task B for layer ℎ"  in Figure 4.6 (b) is 

composed of a matrix: 

M= $
%&& %'&
%&' %''(     [Eq. 4.16] 

which indicates the linear relation between the contribution of the outputs from the 

previous layers ℎ")*&  and ℎ")*' . Let +,- = .
/,-
&

/,-
' 0 denote the inputs of layer ℎ", where /,-

&  and 

/,-
'  denote the input of layer ℎ" for task A and task B, respectively; and 1,-23 = .

4,-23
&

4,-)*
' 0 

Split from fc1 Split from conv3 Split from conv2 Split from conv1

Shared layer
Task A -specific
Task B -specific

Layer i-1 Layer i

(a) Shared and spl i t layer s in deep convolutional neural networks

(b) Cross-sti tch uni t connecting neighbor ing layers in deep convolutional neural 
networks. 

Output layer



 124 

denote the outputs of layer ℎ")*, where 4,-23
&  and 4,-23

'  denote the output of layer ℎ")* for 

task A and task B, respectively, the +,- in cross-stitch framework can be represented as 

follow,  

+,- = 51,-23	 	 	 	 	 [Eq. 4.17]	

 As a result, the inputs for layer ℎ" for task A and task B can be respectively represented 

as: 

/,-
& = %&& ∗ 4,-23

& + %'& ∗ 4,-23
'       [Eq. 4.18] 

/,-
' = %&' ∗ 4,-23

& + %'' ∗ 4,-23
'       [Eq. 4.19] 

We added a cross-stitch unit after each hidden layer and the fully-connected layer, 

yielding four cross-stitch units altogether.  

4.3.4 Alternate training  

Despite the large amount of protein sequences that became available in the last 20 years, 

there is a lack of labelled data for protein structural and functional properties. Therefore, 

it is even more difficult to obtain a training dataset with annotations of multiple protein 

structural properties. In this thesis, we use the strategy of alternate training to address 

this issue. More specifically, we trained the model with mini-batches acquired from 

individual dataset for each protein structural property in an alternate manner. For each 

mini-batch, only one loss function from [Eq. 4.14] or [Eq. 4.15] was used to optimize the 

model. As a result, the shared parameters in hidden layers were updated in each mini-

batch, while the task-specific weights were only updated in alternate mini-batches from 

respective tasks. Because there are effectively multiple loss functions in alternate 

training, the Multi-task framework can be optimized to favour one particular task with the 

supporting of the other task. Let A and B denote the two protein structural properties that 

are predicted simultaneously, to train a model favouring the prediction of A (Multi-task-

A), we alternately train the model with data of A and B respectively, but only save the 
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model when the performance of the prediction of A was improved on the validation set 

of A.  

4.3.5 Conclusion 

In this section, we introduced the multitask frameworks, Multi-task and Cross-stitch, for 

predicting two or more protein structural properties simultaneously. We demonstrated 

the rationale behind this particular design and introduced two implementations of the 

multitask learning based on the DeepS2P framework. We also discussed the challenge 

of training the models of these two frameworks when there is a lack of training data. The 

application of multitask deep learning framework to simultaneous prediction of protein 

structural properties demonstrates the importance of incorporating experimental and 

computational observations in the design of deep learning frameworks for protein 

analysis.  

4.4 Deep transfer learning for functionally important site 
prediction 

In this section, we propose the deep transfer learning framework, DeepTransfer, for 

predicting functionally important sites (FISs) (see Section 1.2.3 for detailed introduction 

of FISs). According to Appendix A, functionally important sites can be categorised into 

six functional categories, and we particularly focus on the prediction of post-translational 

modification (PTM) sites whose catalytic enzymes are organised in hierarchical 

structures.  

4.4.1 Post-translational modification site prediction 

As introduced in Section 1.2.1, post-translational modification (PTM) refers to the 

covalent and enzymatic modifications after translation  [33]. It is unusually catalysed by 

a group of protein enzymes and causes modifications to specific residues in substrate 

proteins. These residues in substrate proteins that are catalysed during PTM are referred 
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to as Post-translational modification sites (PTM sites)  and are considered functionally 

important. PTM sites are referred to as different sites depending on the type of the 

modification event. For example, the PTM phosphorylation is catalysed by protein 

kinases and the residues in substrate proteins that are modified are referred to as 

phosphorylation sites, while cleavage is catalysed by different proteases and the 

modified residues are referred as cleavage sites. Please refer to Appendix A for detailed 

information of PTM sites and their catalytic enzymes.  

To better characterise the PTM events, various computational methods have been 

developed to predict PTM sites directly from protein sequences. Since enzymes function 

with high specificity, enzyme-specific predictive models which predicts PTM sites for 

specific enzymes are considered to have superior prediction performance. For example, 

in GPS 3.0 kinase-specific predictive models were constructed for 464 protein kinases22 

[77, 214, 215], while in PROSPER protease-specific predictive models were constructed 

for 24 protease families23 [298]. 

Despite the progress made in these particular tasks, it remains a challenge to build 

enzyme-specific predictive models due to the lack of annotated sites for each enzyme. 

In phosphorylation site prediction, as an example, the protein kinase PKC had the most 

sufficient annotations of 962 phosphorylation sites while most protein kinases have 

hundreds or dozens of annotated phosphorylation sites, which is far less than the amount 

of training data that is required to train a deep learning model.   

4.4.2 Hierarchical data structures of proteins and enzymes 

Hierarchical classification systems are ubiquitous in biology. For example, the Gene 

Ontology [249] is defined as a loosely organized hierarchical structure where the child 

node represents a more specialized term than its parent node. In terms of proteins, a 

                                            
22 GPS 3.0: http://gps.biocuckoo.org  
23 PROSPER: https://prosper.erc.monash.edu.au/home.html  
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broadly applied classification system is used to organize proteins into superfamilies, 

families and subfamilies [70, 299], where proteins are assigned as leave nodes in the 

hierarchical classification tree. For protein enzymes, the Enzyme Commission number 

(E.C. number) [250]  are used to organise enzymes into a five-level (at most) hierarchical 

structure. And for protein kinase, a group of enzymes that catalyses phosphorylation, a 

four-level hierarchical classification tree is constructed according to the homology 

distance [300]. In these hierarchical classification trees, proteins with shorter tree path 

are considered to be more evolutionarily close to each other and therefore more likely to 

catalyse sites in substrates with similar local patterns.  

4.4.3 Hidden layers as feature extractors  

The task of PTM site prediction can be modelled as the protein sequence-based residue-

level binary classification problem which produces PTM site or non-PTM site for each 

target residue. Therefore, it is straightforward to apply the DeepS2P framework to predict 

PTM sites of specific enzymes. For a potential site 9, the deep learning framework seeks 

to learn a model 5:  of the specific enzyme ;  that can best predict the true label 4 

indicating whether 9 is catalysed by ; or not.  

The DeepS2P framework can be regarded as the combination of a representation 

extractor (the hidden layers) that extracts highly abstract feature vectors from the local 

sequence segment of target residue <" and a binary classifier (the fully connected layer 

and the output layer) that performs classification based on the extracted feature vectors. 

The advantage of the convolutional feature extractor is that multiple features of 

neighbouring residues of <" are combined and represented as one highly abstract feature 

vector. This feature vector is automatically learned to specifically and optimally represent 

the local patterns for phosphorylation site prediction.  

The disadvantage of the deep CNN is that it incorporates more parameters and 

therefore requires more training data for each enzyme. For enzymes with limited 

annotated sites, there is a tendency of overfitting during the process of training the deep 
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CNN. This is because there are not enough positive and negative examples for model 

generalization.   

4.4.4 Deep transfer learning for hierarchical enzymes 

For enzyme-specific PTM site prediction, we mapped the hidden layer	/ in the generic 

deep CNN to level = in the hierarchical enzyme classification system (HECT). Let > be 

the input of the deep CNN, ℎ" the convolutional filter at the /-th hidden layer, and ?@ the 

binary output of functional site prediction. For enzyme nodes at the =-th level of the HECT,  

?A = B(DEFℎE
GH IℎE)*J…ℎ*(>)MN + OEF);	QE    [Eq. 4.20] 

where ℎ*  … ℎE)*  are convolutional filters that are pre-trained by annotated sites of 

enzyme nodes at level 1… = − 1, respectively, ℎE
GH is the convolutional filter for enzyme 

nodes at level = whose parameters QE are to be learned, B is the activation function at 

the output layer, and DEF  and OEF  are the weight and bias parameter for the fully 

connected layer, respectively. The parameter QE is only trainable for convolutional filter 

ℎE, whose input feature is generated by applying a sequence of pre-trained convolutional 

filters ℎ* … ℎE)*.  

 

Figure 4.7 Deep transfer learning for kinase-specific phosphorylation site prediction. 
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Figure 4.7 illustrateds the deep transfer learning framework for PTM site prediction 

in accordance with the hierarchy of the catalytic enzymes.  

4.4.5 Overfitting and underfitting 

Overfitting and underfitting are two opposite issues during the process of model training. 

The former is usually caused by the lack of training examples, the absence of 

regularisation, or a learning rate that is set too large, while the latter happens when the 

model cannot capture the underlying structure of the data.  

For PTM site prediction in Figure 4.7, models of subfamilies and enzymes at the 

Level 3 and Level 4 are more likely to be trained with overfitting due to the lack of training 

examples. This issue is expected to be partially addressed by the level-by-level 

representation extraction using the deep transfer learning framework. However, in order 

to optimize the prediction performance for each enzyme node, we also employed the 

strategy of selecting the best performing model from the models of their ancestor nodes 

and themselves at Level 1, 2, 3 and 4 as the final model. 

This post-processing step of model selection can be regarded as the searching for 

the balance between overfitting and underfitting. For enzyme ;, the model trained for its 

subfamily 9  is theoretically under fitted (since the training examples of subfamily 	9 

contain annotated sites for other enzymes who belong to the same subfamily). Yet, it 

may have a better prediction performance compared to an overfitting model ; , 

considering the structural similarities between sibling enzyme nodes that share the same 

parent in the hierarchical tree.  

4.4.6 Conclusion 

In this section, we introduced the deep transfer learning framework for predicting 

functionally important sites of enzymes that are organized in hierarchical structure. 

Based on the observation of the ubiquitous hierarchical classification system in protein 
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data, we designed the transfer learning framework whereby each hidden layer 

corresponds to one level in the hierarchical classification system. This particular design 

is advantageous to prediction tasks where there is a lack of training data for leave nodes. 

It demonstrates the importance of incorporating biological domain knowledge to the 

design of the deep learning frameworks for protein analysis.  

4.5 Chapter summary  

In this chapter, we proposed four deep learning frameworks for the modelling of protein 

sequence, protein structures and protein functions.  

The distributed representation of prot2vec is presented as a complementary 

representation of protein sequences. Compared to existing protein sequence 

representations that are generated with biological heuristics, the generation of the 

distributed representation of protein sequences is purely driven by large quantities of 

protein sequence data. We also introduced three application scenarios in which the 

distributed representations are used for whole sequence-level, residue-level and 

biological interaction-level prediction tasks.  

We then introduced the deep learning framework, DeepS2P, that can be applied to 

predict any residue-level protein structural and functional properties. This framework 

represents the basic architecture that is later extended for specific applications. The 

application of DeepS2P in practice requires the selection and construction of input 

features, the determination of hyper-parameters and the process of model training.  

Based on the DeepS2P framework, we proposed the multitask deep learning 

framework Multi-task and Cross-stitch based on the qualitative correlations among 

protein structural properties and the deep transfer learning framework DeepTransfer 

based on the observation of the ubiquitous hierarchical classification systems. The 

multitask learning frameworks allow for the simultaneous prediction of two or more 

protein structural properties and automatically explores the quantitative correlation 

between two or more protein structural properties. The deep transfer learning framework 
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provides a transferrable way of sharing pre-trained models for enzymes that are 

organized in hierarchical structures. Table 4.6 summarises the deep learning 

frameworks that were proposed in this chapter and their application scenarios.  

 

Table 4.6 A summary of deep learning frameworks and their application scenarios. 

Frameworks Application scenarios 

prot2vec Whole sequence-level predictions; Residue-level predictions; Biological interaction-
level predictions. 

DeepS2P Protein sequence-based residue-level predictions. 

Multi-task Simultaneous predictions of two or more protein structural properties. 

Cross-stitch Simultaneous predictions of two or more protein structural properties, and automatic 
discovery of the quantitative relation between two or more protein structural 
properties. 

DeepTransfer Functionally important site prediction for enzymes in hierarchical classification 
systems. 

 

 

In Chapter 5 – Chapter 8, we introduce the applications of the proposed deep 

learning frameworks to specific prediction tasks. In protein family prediction, we 

demonstrate the performance of prot2vecs as the direct input feature for whole-

sequence level prediction tasks. In phosphorylation site prediction, we validate the 

performance of context2vec as a complementary input feature for residue-level 

prediction tasks. We also applied the DeepS2P and DeepTransfer framework to predict 

kinase-specific phosphorylation site prediction with limited training data. In the prediction 

of protein intrinsic disorder and secondary structure populations, we applied the 

DeepS2P framework and the multitask deep learning frameworks to demonstrate the 

positive effect of predicting multiple protein structural properties simultaneously. Finally, 

in drug-target interaction prediction, we evaluate the performance of the vec2kernel 

representation for biological interaction-level prediction tasks. 
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5 Protein family prediction 

5.1 Introduction 

In Section 4.1.4, we proposed the application framework of the distributed 

representation of protein sequences, i.e. prot2vec, in three different scenarios. In this 

chapter, we introduce the application of prot2vec in protein family prediction to validate 

the effectiveness of prot2vec as the direct input feature in whole sequence-level 

prediction tasks. The method for predicting protein family based on prot2vec is referred 

to as PfamProt2vec.  

The constructed benchmark for the independent test and the web service for 

prot2vec-based protein family classification system PfamProt2vec are publicly available 

at http://118.138.240.130. 

5.2 An overview of protein family prediction 

Protein families refer to groups of proteins that share a common evolutionary origin, 

reflected by their related functions and similarities in their sequences and structures [301]. 

In early years, during which time only small and single-functional proteins such as 

lipocalin were structurally understood [302], protein family referred to the cluster of 

proteins that are evolutionally related and thus have similar functions. However, more 

proteins were found to be multiple-functional [303], where multiple functional domains 

(see Section 1.2.3) are evolved independently over time within the same protein 

sequence, i.e. domain shuffling [304]. Since then, family-based and domain-based 

classification of proteins is usually addressed simultaneously. Figure 5.1 demonstrates 

the multiple functional domains in protein EGFR_HUMAN and the single functional 

protein NGAL_HUMAN. These results were returned from searches performed against 

the database Pfam 30.0 [70]  with the expected value threshold set to 0.01. 
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Figure 5.1 The searched protein domain for protein EGFR_HUMAN and NGAL_HUMAN 

returned by CDD.  

 

In Figure 5.1, four Pfam domain hits (protein family hits) were returned for protein 

EGFR_HUMAN, including the Protein tyrosine kinase (PF07714), the Growth factor 

receptor domain IV (PF14843), the Furin-like cysteine-rich region (PF00757), and the 

Receptor L domain (PF01030). Even though each of the four returned Pfam domains in 

EGFR_HUMAN only occupies a short segment of the protein sequence, the protein 

EGFR_HUMAN can be classified as a family member of the protein family PF07714, 

PF14843, PF00757 and PF01030, simultaneously. However, for protein NGAL_HUMAN, 

only one Pfam family was returned, i.e. the Lipocalin family (PF00061) which occupies 

75% of the sequence. Proteins like NGAL_HUMAN have only one domain, therefore, 

can only be classified to one protein family.  

To functionally annotate proteins at a large scale, several computational 

classification systems are constructed by clustering proteins into protein families [70, 

301]. In this thesis, this particular task of classifying proteins to construct protein 

classification system from scratch is referred to as protein family classification. According 

to the information based on which proteins are classified, these classification systems 

can be categorised into four types including a) sequence-based systems such as 

PROSITE [68], b) homology-based systems such as Pfam [70], c) structure-based 
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systems such as CATH [88], and d) meta-classification systems24 such as InterPro [85, 

86]. However, there is not such a standard classification system that is perfectly accurate 

and different classification systems provide different interpretations of protein families 

based on protein sequential similarities, structural similarities and functional relations.  

In this thesis, we refer to the task of training models to classify proteins into an 

existing protein family classification system as protein family prediction. To quantitatively 

evaluate prot2vec as an effective feature vector for protein family prediction, we train 

predictive models based on one of the existing constructed protein family classification 

systems. It is different from protein family classification in that it assumes an existing 

classification system to be the standard classification system, based on which the 

performance of prot2vec can be evaluated.  

For prot2vec-based protein family prediction, we use prot2vec as the vector 

representation of protein sequences, the SVM [86, 145] as the classification algorithm, 

and the Pfam database [70] and the InterPro database [85] as the standard classification 

systems based on which we validate the effectiveness of prot2vec. 

5.3 Dataset construction 

In this chapter, we conduct a series of quantitative investigations to systematically 

analyse the effectiveness of prot2vec as an input feature vector for protein family 

prediction. For these investigations we constructed two overall datasets from the Pfam 

database [70] and the InterPro database [85, 86], resulting in the UniProt-Pfam dataset 

and the UniProt-InterPro dataset, respectively.  

                                            
24 Meta classification systems combines the database of multiple classification systems and provide a 

consistent interface to database users.  
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5.3.1 The UniProt-Pfam dataset 

The UniProt-Pfam dataset is constructed using the following procedure. Firstly, we 

downloaded the raw data from the Swiss-Prot/UniProt database (Sep 2016), containing 

554,171 reviewed proteins. Secondly, we extracted data lines starting with ‘AC' and ‘DR   

Pfam'25, resulting in pairs of proteins and families (T, U) indicating that protein T is a 

member of the protein family U. Thirdly, we transformed the pairs of protein and their 

families into sets of proteins, where each set contains protein members that belong to 

the same protein family. Finally, we filtered out proteins whose protein sequences are 

not identified yet. This procedure left us with 9,337 protein families with their respective 

protein members, covering a total of 366,776 proteins.  

Due to the imbalanced sizes of proteins that belong and do not belong to a specific 

protein family, we conducted negative sampling for each protein family to balance out 

the number of positive and negative examples. More specifically, we randomly selected 

an equal number of negative examples and positive examples, resulting in a training 

dataset whose positive to negative example ratio is 1:1, for each extracted protein family.   

5.3.2 The UniProt-InterPro dataset 

The UniProt-InterPro dataset is constructed using the following procedure. We extracted 

from the InterPro database [85] (downloaded in July 2017) 551,047 proteins in 26,239 

InterPro protein families/domains, containing 4,408,698 protein family annotations. We 

then filtered out protein families that have less than 100 protein members, resulting in 

426,414 reviewed proteins in 1,461 protein families. Similar to the UniProt-Pfam dataset, 

the negative sampling was performed to ensure a ratio of 1:1 between positive and 

negative examples.  

 

                                            
25 In the Swiss-Prot/UniProt database, the protein family annotations are recorded in the ‘AC’ segment with 

the ‘DR Pfam’ label.  
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5.4 Vector space analysis for human protein families 

To validate the effectiveness of prot2vec as a feature vector for protein family prediction, 

we performed the prot2vec-based vector space analysis with respect to different protein 

families. We found that protein families that were closer to each other in the prot2vec-

based vector space possessed a higher functional correlation. In contrast, protein 

families that belong to different functional categories were more separated in the vector 

space. In this investigation, the implementation prot2vecinference (see Figure 4.2) was 

used to generate the distributed representation of protein sequences. 

5.4.1 Experimental design 

From the constructed UniProt-Pfam dataset with 366,776 proteins, we selected 17,508 

Human proteins across 5,736 protein families. We then removed protein families that 

had less than 100 proteins and ended up with 25 protein families for follow-up analysis. 

We first ranked each pair of protein families (PFs) according to their prot2vec-based 

cosine distance described below and then examined the relationship between the two 

protein families in top-ranked PF pairs, in terms of the largest-to-smallest ranking and 

the smallest-to-largest ranking, respectively. To calculate the prot2vec-based distance 

between the protein family A and the protein family B, we propose the average 

normalised cosine distance which is defined as follows,  

 

V/9=WXYZ([, ]) = ^"_E`ab(&c ,'c )
^"_E`ab(&c ,&c )d^"_E`ab('c ,'c )

	 	 	 	 [Eq. 5.1] 
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t&cu × t'c 	

 

The distance V/9=WXYZ([, ]) between protein family A and B is calculated as the 

average cosine distance between two sets of protein members [c and ]c . Here, t&c  and 
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t'c  denote the number of protein members in A and B, respectively, while n&c- and n'c o 

denote the prot2vec of the / -th and w -th member in A and B, respectively. The 

normalisation term V/9=&fgJ[c, [cM + V/9=&fgJ]c , ]c M is employed as a penalisation because 

some PFs are more broadly defined and thus have a larger average distance among 

their own protein members. Based on the calculation, we ranked the 125 (=25×25) pairs 

of PFs in terms of their normalised prot2vec-based cosine distances.  

5.4.2 Results analysis 

Table 5.1 listed the top six PF pairs whose members were closest to each other, as well 

as the top six PF pairs whose members were most distant from each other, according to 

the calculated normalised prot2vec-based cosine distances. For each of the listed PF 

pairs, we visualised their member proteins in the 2-dimensional vector space, by 

mapping the 100-dimensional prot2vecs to 2-dimensional vectors using the technique of 

PCA [305]. The results are shown in Figure 5.2 and Figure 5.3, respectively. Note that 

Figure 5.3 d-f) were replaced with PF pairs whose protein members were better 

separated from each other in the mapped vector space. 
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Table 5.1 Top rankings of the normalized average cosine distance between protein family pairs. 

 Top six PF pairs with min. cos distance  Top six PF pairs with max. cos distance 

PF_A PF_B Distance (Avg.)  PF_A PF_B Distance (Avg.) 

1 PF00096 PF13912 0.501  PF00028 PF01352 0.547 

2 PF13912 PF01352 0.501  PF00028 PF13912 0.546 

3 PF00096 PF01352 0.501  PF07654 PF13912 0.546 

4 PF00041 PF07679 0.502  PF07654 PF01352 0.545 

5 PF00169 PF00168 0.504  PF00001 PF01352 0.542 

6 PF00595 PF00169 0.505  PF00096 PF00028 0.542 

 

 
 

  

PF00096 Zinc finger  PF00169 PH domain 
PF13912 C2H2-type zinc finger  PF00168 C2 domain 
PF01352 Kruppel associated box  PF00595 PDZ domain 
PF00041 Fibronectin type III domain  PF00028 Cadherin domain 
PF07679 Immunoglobulin I-set domain  PF07654 Immunoglobulin C1-set domain 
PF00001 Rhodopsin-like receptors  PF00069 Protein kinase domain 
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Figure 5.2 Feature vector analysis for the top six PF pairs with minimum cosine distances.  
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Figure 5.3 Feature vector space analysis of PF pairs with maximum cosine distances.  
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According to the results in Figure 5.2, the top three PF pairs with minimum cosine 

distances formed a closed similarity loop, in which Zinc finger (PF00096) is similar to 

C2H2-type zinc finger (PF13912), C2H2-type zinc finger (PF13912) is similar to Kruppel 

associated box (PF01352), and Kruppel associated box (PF01352) is similarity to Zinc 

finger (PF00096). The PF pair Zinc finger and C2H2-type zinc finger had the minimum 

cosine distance according to Table 5.1 and their protein members were shown to have 

overlapping distributions in the vector space according to Figure 5.2 (a). Considering 

C2H2-type zinc finger is by far the best-characterised class of zinc fingers, the 

overlapped distributions of proteins in PF00096 and PF01352 implicitly indicated that 

functionally related protein families are geometrically closer in prot2vec-based vector 

space. In Figure 5.2 (c), protein members in Kruppel associated box had an overlap with 

but less wide distribution than those in Zinc finger, which validated the results in [306] 

that Kruppel associated box represents in approximately a third of zinc finger proteins.  

The other three PF pairs whose members are closely distributed are Fibronectin type 

III domain (PF00041) and Immunoglobulin I-set domain (PF07679), C2 domain 

(PF00168) and Pleckstrin homology domain (PH domain) (PF00169), and PDZ domain 

(PF00595) and PH domain. Here, the protein family C2 domain, PH domain and PDZ 

domain are all closely associated with membrane targeting and signalling activities. This 

therefore confirms the previous observation that functionally related protein families are 

geometrically close to each other in prot2vec-based vector space. Interestingly, the 

protein members of Fibronectin type III domain and Immunoglobulin I-set domain in to 

Figure 5.2 (d) do not demonstrate similar functions. They are both protein families that 

can be commonly found in various organisms, which might explain their close cosine 

distance in the mapped feature vector space.  
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Figure 5.3 shows the six PF pairs whose members were most distant by normalised 

cosine distance. According to Figure 5.3 (a), the most distant protein families are 

Cadherin and Kruppel associated box, who have different biological functions. Here, 

Cadherin domain (PF00028) is a class of type-1 transmembrane proteins while the 

Kruppel associated box represents a category of transcriptional repression domains. 

According to Table 5.1, Cadherin was shown to be distant from another zinc finger-

related protein family C2H2-type zinc finger, which is extremely common in mammalian 

transcriptional factors. In correspondence, the distributions of Cadherin and C2H2-type 

zinc finger protein members demonstrated concave and convex character respectively 

in Figure 5.3 (b). Figure 5.3 (c) shows another protein family that is distant from C2H2-

type zinc finger, i.e. Immunoglobulin C1-set domain which represents domains 

resembling the antibody constant domain.  

The three PF pairs shown in Figure 5.3 (d)-(f) were manually selected to 

demonstrate functionally divergent protein families which were clustered into different 

areas in the prot2vec-based vector space. For example, in Figure 5.3 (f), proteins in 

C2H2-type zinc finger and Protein kinase domain (PF00069) were clearly separated in 

the mapped feature vector space. Regarding biological functionality, protein members in 

Protein kinase domain are involved in post-translational modifications during which 

phosphate groups can be attached to other amino acids, while those in C2H2-type zinc 

finger function as interaction modules that bind to DNA, RNA, proteins, or other small 

molecules [70]. 

In summary, the normalised cosine distances calculated based on prot2vec indicated 

the functional relationship between protein families. The visualisation in prot2vec-based 

vector space analysis in Figure 5.2 and Figure 5.3 demonstrated the effectiveness of 

using prot2vec as a input feature vector for protein family prediction. 

5.5 Comparison with existing protein representations 



 143 

In this section, the prediction performance of prot2vec
inference

 as the input feature in 

protein family prediction is compared to that of the existing distributed representation 

prot2vec
add

 (ProtVec [193]), the physicochemical property-based input feature and the 

homology profile-based input feature.  

5.5.1 Comparison with existing distributed representations 

As introduced in Section 4.1.2, the existing machine-generated protein feature vector 

prot2vec
add

 (termed ProtVec in its original paper [193]) was developed based on the 

word2vec model [307]. The vector presentation of protein sequences was constructed 

by adding up the pre-trained vectors of its biological words [308]. The key improvement 

of prot2vec
inference

 - when compared to prot2vec
add

 - is that it took into consideration the 

order of protein biological words or amino acid compositions when training the model for 

generating the distributed representations. In this investigation, we compare the 

prediction performance of models that respectively employed prot2vec
inference

 and 

prot2vec
add

 as the input feature in protein family prediction.  

Experimental design. The prediction performance of prot2vec
add

-based and 

prot2vec
inference

-based PfamProt2vec was evaluated in 10-fold cross-validation tests, 

using precision, specificity, recall and the F1-score as the evaluation scores (see 

Appendix A). To ensure a profound statistical analysis of the prediction results, a subset 

of the UniProt-Pfam dataset was extracted by filtering out protein families with less than 

100 protein members, resulting in 1,033 protein families for the cross-validation. For 

each of the 1,033 protein families, 10-fold cross-validation was performed, in which nine 

folds were used to train the SVM model while the remaining fold was used to validate 

the pre-trained SVM model. Since the negative sampling was performed for each protein 

family (see Section 5.3), both the training and validation were conducted based on 

balanced datasets. However, the issue of evaluation based on balanced datasets is that 

the performance of the predicative model tends to be overestimated. However, since 

both the prot2vec
inference

-based PfamProt2vec and the prot2vec
add

-based PfamProt2vec 
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were evaluated under the same experimental setting, it does not affect the comparison 

results.  

Result analysis. The compared prediction performance of prot2vec
add

 and 

prot2vec
inference

 -based PfamProt2vec is shown in Figure 5.4. In order to provide an 

overview of the compared prediction performance of the two implementations of 

prot2vecs, we selectively demonstrate the results for 10 families in which the 

prot2vec
inference

-based PfamProt2vec achieved the best F1-scores, 10 families in which 

the prot2vec
inference

-based PfamProt2vec achieved the worst F1-scores, and 10 randomly 

selected families.  

 

Figure 5.4 Prediction performance of all protein families between prot2vecinference and 

prot2vecadd.  
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According to Figure 5.4, among the 10 protein families in which the prot2vec
inference

-

based PfamProt2vec achieved the best F1-scores, there were six N-terminal or C-

terminal domains, one RNA binding domain in PNPase26
, one Dehydroquinase class I 

and II27
, one K-box region that is associated with SRF-type transcription factors, and one 

L-arabinose isomerase 28
. In summary, the prot2vec

inference
-based PfamProt2vec 

performed the best for predicting protein families that are involved in translation, 

transcription and corresponding enzyme catalytic chemical reactions.  

Among the 10 protein families in which the prot2vec
inference

-based PfamProt2vec 

achieved the worst F1-scores, four of them performed better than the prot2vec
add

-based 

PfamProt2vec. For the 10 randomly selected protein families, the prot2vec
add

-based 

PfamProt2vec performed better for only one protein family Aminotransferase class I and 

II, which is a kind of pyridoxal-phosphate dependent enzyme. In addition, for the majority 

of the 10 randomly selected protein families, the prot2vec
inference

-based PfamProt2vec 

achieved higher precision, recall and F1 scores than those achieved by the prot2vec
add

-

based PfamProt2vec. 

Table 5.2 demonstrates the compared average prediction performance between the 

prot2vec
inference

-based PfamProt2vec and the prot2vec
add

-based PfamProt2vec for 

protein families with more than 700 family members, with more than 200 family members, 

and with more than 100 family members, respectively, in terms of sensitivity (SE), 

specificity (SP) and precision (PR). 

 

 

 

 

                                            

26 PNPase is an enzyme that dismantles the RNA from the 3' end to the 5' end. 

27 Dehydroquinase class I and II is an enzyme that catalyses the 3-dehydroquinate chemical reaction 

28 L-arabinose isomerase is an enzyme that catalyses the L-arabinose chemical reaction 
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Table 5.2 The average predictive performance of the prot2vecinference-based PfamProt2vec and 

the prot2vecadd-based PfamProt2vec in different subsets of protein families.  

 prot2vecinference prot2vecadd 

 SE SP PR SE SP PR 

PFs have ≥ 700 members (Avg.) 0.978 0.981 0.978 0.881 1.000 0.911 

PFs have ≥ 200 members (Avg.) 0.968 0.967 0.969 0.825 0.995 0.878 

PFs have ≥ 100 members (Avg.) 0.969 0.969 0.970 0.832 0.995 0.881 

 

From the results in Table 5.2, we made the following observations. Firstly, models 

which use more training examples are more likely to generate superior results. This is 

demonstrated by the superior performance achieved by protein families with more than 

700 members in comparison to that of protein families with between 200 and 700 

members. For example, with the prot2vec
inference

-based PfamProt2vec, the average 

sensitivity score increased from 0.968 to 0.978 when the number of training examples 

increased from ≥ 100 to ≥ 700. The average sensitivity of all protein families was 0.969, 

a score in between the previous two. Since there are more protein families with more 

than 100 members than protein families with more than 700 members. Secondly, the 

prot2vec
inference

-based PfamProt2vec
 
achieved superior average performance over 

different subsets of protein families, compared to the performance achieved by the 

prot2vec
add

-based PfamProt2vec. This advantage in prediction performance was 

demonstrated in terms of sensitivity and precision. It indicates that models with 

prot2vec
add

 as the input feature vector were more likely to make false positive predictions, 

resulting in high specificity scores and relatively low sensitivity and precision scores.   

In summary, the above results demonstrate that, for protein family prediction, where 

prot2vecs are used directly as the input feature vector, the prot2vec
inference

-based 

PfamProt2vec outperformed the existing distributed representation of protein sequences 

the prot2vec
add

-based PfamProt2vec.  
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5.5.2 Comparison with physiochemical properties-based features 

To further validate the performance of prot2vec as the input feature for protein family 

prediction, we conducted a comparison between the performance of the PfamProt2vec 

based on prot2vec
inference

 and the SVM-Prot 2016 method based on feature vectors 

generated from protein physicochemical properties. Note that the SVM-Prot 2016 was 

proposed to predict protein functional families, where each functional family was 

considered a collection of multiple protein families.  

The compared input feature vectors include three protein descriptors, including 

composition (C), transition (T) and distribution (D), each of which was calculated from 

multiple protein physicochemical properties. The 13 manually selected protein 

physicochemical properties include amino acid composition, polarity, hydrophobicity, 

surface tension, charge, normalized Van der Waals volume, polarizability, secondary 

structure, solvent accessibility, molecular weight, solubility, number of hydrogen bond 

donors in side chain, and number of hydrogen bond acceptor in side chain [295].  

Experimental design. In order to obtain the exactly identical dataset based on which 

the SVM-Prot 2016 was trained and tested, we constructed the training, testing and 

independent test dataset strictly according to the procedures described in SVM-Prot 

2016 [295].  

• Firstly, we searched the 10 representative functional families (denoted with GO 

[249] identifications) in the Swiss-Prot/UniProt database [39], resulting in protein 

members for each of the functional family.  

• Secondly, we obtained for each functional family ""# a Pfam [70] identification list 

$# = 	 (("1*, (",, … , (".), where each protein family ("0	 had at least one protein 

member in ""#.  

• Thirdly, we iteratively put the protein members of each functional family  ""# to 

its training, testing and independent test dataset, as positive examples.  
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• Fourthly, for each functional family ""#, we iteratively put 3 protein members from 

protein families that do not belong to $# to its training, testing and independent 

test dataset, as negative examples.  

Table 5.3 provides the detailed statistics of the constructed datasets for 10 

representative protein functional families.  
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Table 5.3 Statistics of the constructed training, test and independent test datasets for 10 representative protein functional families. 

 

 

 

 

 

 

 

 

 

 

Go Name Training Set Test Set Independent Test Set 

 # pos # neg # pos # neg # pos # neg 

GO:0051693 115 12,245 57 10,806 58 9,649 

GO:0006310 3,947 11,776 1,973 10,349 1,974 9,239 

GO:0006281 7,469 11,577 3,734 10,133 3,735 9,036 

GO:0016645 1,021 12,234 510 10,756 512 9,656 

GO:0016785 120 12,295 60 10,849 61 9,703 

GO:0016846 322 12,267 161 10,843 161 9,688 

GO:0016854 1,141 12,244 570 10,800 571 9,651 

GO:0003746 1,957 12,264 978 10,802 979 9,675 

GO:0004930 1,618 12,189 809 10,741 810 9,601 

GO:0008289 2,168 11,672 1,084 10,220 1,085 9,072 
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Table 5.4 Performance comparison between PfamProt2vec and SVM-Prot 2016 for 10 representative families. 

Family ID Functional family name PfamProt2vec SVM-Prot 2016 

  SE SP PR SE SP PR 

GO:0051693 Actin capping 0.298 1.000 1.000 0.951 0.999 0.933 

GO:0006310 DNA recombination 0.587 0.973 0.868 0.857 0.974 0.921 
GO:0006281 DNA repair 0.719 0.886 0.779 0.887 0.968 0.859 
GO:0016645 EC1.5 Oxidoreductases (CH-NH donors) 0.575 1.000 0.994 0.586 0.996 0.661 

GO:0016785 EC2.9 Transferases (selenium-containing) 0.721 1.000 1.000 0.960 0.999 0.993 

GO:0016846 EC2.9 Transferases (selenium-containing) 0.615 1.000 1.000 0.603 0.999 0.833 

GO:0016854 EC5.1 Racemases and Epimerases 0.669 0.993 0.886 0.530 0.994 0.539 

GO:0003746 Elongation factor activity 0.921 0.996 0.972 0.975 0.999 0.988 

GO:0004930 GPCR 0.877 0.990 0.905 0.956 0.981 0.945 

GO:0008289 Lipid-binding 0.143 1.000 0.987 0.844 0.999 0.934 

                                * The better performance in terms of SE, SP and PR were highlighted as bold.   
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Results and analysis. In Table 5.4, the performance of PfamProt2vec and SVM-

Prot 2016 was evaluated and compared in terms of sensitivity (SE), specificity (SP) and 

precision (PR). Please refer to Appendix A for detailed description of evaluation 

measurements.  

PfamProt2vec achieved better performance for 6 out of 10 families in terms of the 

specificity and precision, but worse performance in 8 out of 10 families in terms of 

sensitivity. This suggests that SVM tends to make more cautious predictions by using 

prot2vec as the feature vector. According to our observation, the only family for which 

PfamProt2vec achieved overall better performance is EC2.9 Transferases (selenium-

containing), with a combined score of 0.669 (SE), 1.0 (SP) and 1.0 (PR), while SVM-Prot 

2016 achieved better performance for DNA recombination, DNA repair and Elongation 

factor activity. We conclude that PfamProt2vec achieved comparable performance with 

SVM-Prot 2016 in terms of overall performance, but with better performance for 

application scenarios where prediction accuracy is more pertinent. 

5.5.3 Comparison with homology profile-based features 

The generation of homology profiles, such as the PSSMs [99] and the HMM profiles [87], 

relies on protein sequence alignment algorithms that are designed based on biological 

heuristics. In contrast, the distributed representation prot2vec is generated directly from 

protein sequences using unsupervised machine learning algorithms [169, 289] that are 

purely data-driven. Therefore, the former represents the most relevant feature for protein 

family prediction according to biological heuristics while the latter represents the data-

driven representation that involves no domain knowledge.  

In this investigation, we compare the performance of the data-driven representation 

prot2vecinference to that of the biologically driven representation HMM profiles, as the input 

feature for protein family prediction.  

 Experimental design. Since the UniProt-Pfam dataset was extracted from the Pfam 

database, a protein family classification system that was constructed based on the 
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HMMER algorithm, we used the UniProt-InterPro dataset (see Section 5.3.2) as the 

benchmark dataset to evaluate the performance of PfamProt2vec and HMMER 3.1.  

We conducted performance evaluation for proteins in Escherichia coli29 (E. coli)  at 

the proteomic level. Here, E. coli represents one of the most researched and well-

annotated proteomes [309-311]. According to the Swiss-Prot/UniProt database [39], the 

E. coli proteome has 4,309 proteins all of which are manually reviewed. We compared 

the prot2vecinference-based PfamProt2vec with the HMM profile-based HMMER 3.1, by 

predicting the 1,461 protein families in the constructed UniProt-InterPro dataset for 4,309 

E. coli proteins. 

In this investigation, we also considered using different thresholds for distinguishing 

positive predictions from negative predictions. In most cases, the cut-off threshold 

selected for the output scores are not applicable across multiple methods, because 

different methods produce scores within different ranges. One solution is to select cut-

off thresholds for one of the evaluation measurement scores, so that different methods 

have the same level of one particular measurement. For example, a cut-off theshold of 

0.1 for false positive rate (FPR) indicates that in every 10 negative examples one will be 

predicted as false positive. The cut-off threshold 0.99 for the true positive rate (TPR or 

sensitivity) means that in every 100 positive examples 99 will be recognised. With these 

cut-off thresholds selected, different prediction methods are evaluated in the same level 

in terms of one particular measurement, even if they produce different ranges of output 

scores.   

Result analysis. For each of the 1,461 protein families in the UniProt-InterProt 

dataset, we calculated the precision (PR), sensitivity (SE), and balanced accuracy 

(BACC) (see Appendix A) scores respectively for PfamProt2vec and HMMER 3.1. 

                                            
29 Escherichia coli is a coliform bacterium of the genus Escherichia that is commonly found in the lower 

intestine of warm-blooded organisms (https://en.wikipedia.org/wiki/Escherichia_coli).  
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Table 5.5 reports the average PR, SE and BACC scores over 1,461 protein families with 

the false positive rate (FPR) thresholds set to 0.1, 0.01, 0.001 and 0.0001, respectively.  

 

 

Table 5.5 Performance comparison between PfamProt2vec and HMMER 3.1 for protein family 

prediction in corresponding families.  

FPR threshold 

PfamProt2vec  HMMER 3.1 

PR SE BACC  PR SE BACC 

0.0001 1.000 0.786 0.893  1.000 0.950 0.975 

0.001 0.574 0.851 0.926  0.564 0.989 0.994 

0.01 0.488 0.916 0.957  0.047 0.997 0.995 

0.1 0.262 0.977 0.979  0.014 0.998 0.982 

 

According to Table 5.5, the performance of PfamProt2vec achieved superior 

precision scores, while HMMER 3.1 achieved superior sensitivity scores for the four FPR 

thresholds. For performance with FPR threshold set to 0.01 and 0.1, the precision of 

PfamProt2vec was kept at a score of 0.488 and 0.262 while, at the same time, 

reasonably satisfying sensitivities were achieved at a score of 0.916 and 0.977, 

respectively. In comparison, HMMER 3.1 achieved precision scores of 0.047 and 0.014 

for FPR threshold 0.01 and 0.1.  

The results in Table 5.5 demonstrated the following conclusions. Firstly, in terms of 

the balanced accuracies, HMMER 3.1 performed better than PfamProt2vec for all FPR 

thresholds. This indicates that HMMER 3.1 is better at dealing with imbalanced data in 

protein family prediction. Secondly, in terms of precision, HMMER 3.1 achieved scores 

below 0.1 for FPR threshold 0.1 and 0.01, while PfamProt2vec managed to achieve 

scores above 0.2 even with high false positive rate thresholds. In contrast, the 

performance of PfamProt2vec and HMMER 3.1 for FPR threshold 0.001 and 0.0001 is 

very close. This suggests that HMMER 3.1 was optimised to perform well under 

situations with low FPR thresholds, which represents the requirement of most application 
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scenarios.  Finally, in terms of the sensitivity score, HMMER 3.1 consistently 

outperformed PfamProt2vec in all FPR thresholds. This demonstrates that HMMER 3.1 

performed better than PfamProt2vec in covering more positive samples in each protein 

family, even with low FPR thresholds.  

5.6 Investigation of potential factors that affect the prediction 
performance of PfamProt2vec 

When prot2vec is used as the feature vector for protein family prediction, multiple factors 

exist that may affect the prediction performance of predictive models for respective 

protein families. In this section, we perform comprehensive experiments to investigate 

the factors that may affect the prediction performance of PfamProt2vec.  

5.6.1 The effect of the organism of training examples 

In this investigation, we analyse the prediction performance of PfamProt2vec models 

that are trained with protein members from different organisms. We applied the prot2vec 

to predict members of protein families that were shared across three most populated 

organisms including Human, Mouse and A. thaliana30 . For proteins in these three 

organisms, we identified five common protein families from the 9,337 protein families in 

the UniProt-Pfam dataset, each of which had at least 100 protein members in each of 

the three organisms. They are Leucine-rich repeats (PF13855), Protein kinase domain 

(PF00069), Tyrosine kinase (PF07714), RNA recognition motif (PF00076) and WD40 

repeat (PF00400). By training organism-specific PfamProt2vec models, we demonstrate 

the correlation between the prediction performance of PfamProt2vec and the source 

organism of the training examples.  

                                            
30 Arabidopsis thaliana (A. thaliana): https://en.wikipedia.org/wiki/Arabidopsis_thaliana. It is a small 

flowering plant native to Eurasia and Africa. It is a popular model organism for plant biology research.  
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 Experimental design. For each family, we extracted their members in organism 

Human, organism Mouse, organism A. thaliana and all organisms, as positive examples, 

respectively. We subsequently constructed corresponding datasets by performing 

negative sampling to ensure a positive to negative ratio of 1:1, resulting in four datasets 

termed as HUMAN, MOUSE, ATHALIANA and ALL, respectively. On each of the four 

datasets, 10-fold cross-validation test was performed, based on which each of the 

corresponding organism-specific PfamProt2vec models was evaluated in terms of the 

ROC curve and the AUC score (see Appendix A).  

Results analysis. In Figure 5.5, based on the cross-validation results, we plotted 

the ROC curves with AUC scores of four organism-specific PfamProt2vec models 

(trained based on the dataset ATHALIANA, MOUSE, HUMAN and ALL, respectively) for 

each of the five protein families. 
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6 

 

 

Figure 5.5 Prediction performance of Prot2vecDM for five common protein families shared across human, mouse, A. thaliana and all organisms. 
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As reflected by the largest AUC scores in Figure 5.5, for all five protein families, 

PfamProt2vec consistently performed better with models trained using examples from 

all organisms than those trained using examples from any of the individual organisms. 

For example, for protein family RNA recognition motif, the AUC score was increased 

from 0.83 (for HUMAN) to 0.91 (for ALL) when protein samples from all organisms were 

used for training the model. To understand the effect of protein members from other 

organisms on the prediction performance in HUMAN, we compared the numbers of false 

positives and false negatives predicted by models trained on HUMAN with those trained 

on ALL. We found that the numbers of false positives and false negatives were 

respectively reduced by 28 and 34 out of 407 predictions. These results suggest that the 

knowledge learned from one organism can be transferred to other organisms and, as a 

potentially useful strategy, protein members from different organisms should be 

combined to achieve better predictive performance for protein family prediction. 

5.6.2 The effect of functional categories of protein families 

In this section, the effect of functional categories and the number of training examples 

on the prediction performance of PfamProt2vec was investigated.  

Experimental design. To investigate the effect of functional categories and the 

number of training examples, we performed protein family prediction for 25 human 

protein families extracted from the UniProt-Pfam dataset. In this investigation, only 

human protein members were extracted as positive examples for each protein family; 

correspondingly, an equal number of negative examples were sampled from the 

remaining human proteins that do not belong to the protein family. Based on 10-fold 

cross-validation tests, the prediction performance of PfamProt2vec for each protein 

family was evaluated in terms of sensitivity (SE), specificity (SP) and precision (PR) (see 

Appendix A). 

The tested 25 protein families were grouped into 8 functional categories, i.e. zinc 

finger-related families (e.g. PF00096, PF13912 and PF01352), transmembrane protein 
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families (e.g. PF00028 and PF00520), intracellular signalling and targeting-related 

families (e.g. PF00001, PF00071, PF00168, PF00169 and PF00595), enzymes (e.g. 

PF00089, PF00069 and PF07714), extracellular protein family (e.g. PF00041), 

immunoglobulins domains (e.g. PF07654, PF07679 and PF07686), DNA binding-related 

families (e.g. PF00046 and PF00010) and structural motifs (e.g. PF00400, PF13855, 

PF00271, PF12796, PF00076 and PF00651).  

Result analysis. The number of positive examples and the corresponding prediction 

performance of PfamProt2vec for 25 human protein families are reported in the following 

table. The results were ordered according to the largest-to-smallest ranking in terms of 

precision scores. The results of protein families belonging to the same functional 

categories are highlighted with the same colour. For example, results of all zinc finger 

related protein families are highlighted with the green colour.  
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Table 5.6 Prediction performance of PfamProt2vec for predicting 25 human protein families 

according to eight functional categories 

PF ID PF Name # proteins SE SP PR 

PF00096 Zinc finger 533 0.994 0.992 0.995 

PF00028 Cadherin 114 0.987 0.992 0.988 

PF13912 C2H2-type zinc finger 332 0.983 0.985 0.984 

PF01352 Kruppel associated box 361 0.972 0.995 0.974 

PF00089 Trypsin 119 0.970 0.977 0.974 

PF00001 Rhodopsin-like receptors  285 0.965 0.947 0.965 

PF00046 Homeodomain fold 222 0.943 0.958 0.945 

PF07654 Immunoglobulin C1-set domain  144 0.937 1.000 0.948 

PF00400 WD40 repeat 217 0.931 0.914 0.929 

PF13855 Leucine-rich repeat 171 0.929 0.974 0.934 

PF00520 Ion channel family 106 0.921 0.842 0.937 

PF00069 Protein kinase domain  350 0.887 0.852 0.888 

PF00071 Ras subfamily 137 0.882 0.941 0.882 

PF07686 Immunoglobulin V-set domain 281 0.881 0.904 0.883 

PF00041 Fibronectin type III domain 135 0.881 0.838 0.881 

PF07714 Tyrosine kinase 127 0.877 0.790 0.885 

PF07679 Immunoglobulin V-set domain  136 0.869 0.819 0.884 

PF00169 Pleckstrin homology domain 178 0.859 0.779 0.867 

PF12796 Ankyrin repeat 227 0.853 0.844 0.851 

PF00076 RNA recognition motif. 204 0.835 0.863 0.837 

PF00010 Basic helix-loop-helix 107 0.833 0.877 0.835 

PF00271 Helicase conserved C-terminal 
domain 106 0.771 0.580 0.832 

PF00168 C2 domain 124 0.769 0.634 0.788 

PF00651 BTB/POZ domain  129 0.766 0.676 0.778 

PF00595 PDZ domain 129 0.759 0.669 0.763 

Zinc finger-related families 

Transmembrane protein families 

Intercellular signaling and targeting related families 

Enzymes 

Immunoglobulins families DNA-binding related families 

Structural motifs Extracellular proteins families 
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According to Table 5.6, all zinc finger-related families had more than 300 protein 

members. They were predicted with the best prediction performance among all 8 

functional groups.  It confirmed the vector space analysis in Figure 5.3 where zinc finger-

related protein families were clearly separated from other protein families in the prot2vec-

based vector space. The second-best performance was achieved for the Cadherin family 

with a sensitivity of 0.987 and a precision of 0.988, even though it had only 114 protein 

members. Similarly, a reasonably satisfying performance was achieved for the Ion 

channel family, which is a transmembrane-related protein family with only 106 positive 

examples. In contrast, for family Protein kinase domain which have 350 protein members, 

PfamProt2vec only achieved a sensitivity of 0.887. This is the only protein family with 

more than 300 members for which PfamProt2vec achieved a sensitivity less than 0.9. 

These results indicate that for specific functional groups, for example, the 

transmembrane-related families, a satisfying prediction performance could be achieved 

even with a limited number of training examples; while for other protein families, such as 

the Protein kinase family, more training examples do not guarantee better prediction 

performance. 

The positive effect of incorporating larger numbers of training examples was 

demonstrated in intracellular signalling and targeting-related families. For protein families 

related to intracellular signalling and targeting activities, four out of five were predicted 

with a sensitivity of less than 0.9. These families had fewer positive examples, from 

between 124 and 285. Among these, the only protein family for which PfamProt2vec 

achieved a sensitivity of 0.965 had a relatively larger number of 285 positive examples.  

Regarding protein families that contain structural motifs, PfamProt2vec achieved a 

sensitivity above 0.9 for only two protein families, i.e. WD40 repeat and Leucine-rich 

repeat. For this functional group, there was no clear association between the 

performance and the number of training examples. This might be explained by the 

presence of diverse structural motifs with different physicochemical properties, 

structures and biological functions.  
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Regarding the number of training examples, when using more than 200 examples 6 

out of 10 families achieved a sensitivity of above 0.9, whereas a sensitivity of below 0.9 

was achieved in 10 out of 14 samples when fewer than 200 training examples were used. 

In terms of functional categories, PfamProt2vec achieved better performance for specific 

functional groups, including zinc finger-related protein families and transmembrane-

related protein families, but tended to perform worse for intracellular signalling and 

targeting-related families and structural motifs. 

5.6.3 The effect of eight manually selected factors 

In Section 5.5.3, we compared the prediction performance of PfamProt2vec and 

HMMER 3.1, from which we observed the superior performance of the latter. For the 

purpose of better understanding the performance difference, we summarised the 

difference between PfamProt2vec and HMMER 3.1 in terms of methodology in Table 

5.7, based on which we extracted 8 factors that may affect the performance of 

PfamProt2vec in protein family prediction. 

 

Table 5.7 Differences between HMMER 3.1 and PfamProt2vec in terms of methodology.  

 PfamProt2vec HMMER 3.1 

Models Support vector machines where each 
protein family corresponds to a pre-trained 
SVM model for binary classification.  

Hidden Markov models where each protein 
family corresponds to a pre-trained HMM 
model for sequence matching.  

Features Prot2vecs generated based on sequential 
contexts within proteins 

Homology profiles generated based on 
multiple sequence alignment 

Granularity  Sequence-level where the prediction is 
conducted based on the feature extracted 
for whole protein sequences. 

Domain level prediction where the prediction 
is conducted based on the matching status of 
sequence segments in protein sequences. 

 

Since the performance of models for different protein families achieved by 

PfamProt2vec are dramatically different, herein we modelled the correlation between the 

performance achieved by PfamProt2vc and the 8 manually selected factors, including  

1. The sequential diversity within each family. The sequential similarity is one of the 

features of proteins that belong to the same protein family. Since models in 



 162 

PfamProt2vec were trained based on feature vectors (prot2vecs) generated from 

sequential patterns, therefore PfamProt2vec is hypothetically more likely to 

achieve inferior performance in protein families with dissimilar protein sequences. 

2. The homologous relation within each family. Protein families refer to groups of 

proteins that share the same evolutionary origin. Therefore, close homology 

relation is another feature of proteins that belong to the same protein family. 

Since PfamProt2vec did not involve any evolutionary-based features while 

models in HMMER 3.1 were trained purely based on homologous information, it 

would be interesting to compare the effect of homologous relation on the 

performance of both of these prediction methods. 

3. The average length of annotated sequence segments in each family. For each 

protein family, its annotated sequence segments in any protein do not necessarily 

occupy the whole protein, where shorter annotated sequences may be more 

likely to co-exists with other family/domains within the same protein sequence. 

Since models in PfamProt2vec take as input the vector representation (prot2vec) 

generated for whole protein sequences, it is hypothetically more difficult for 

PfamProt2vec to predict members for families with shorter annotated sequence 

segments. However, for HMMER 3.1, the sequence matching was performance 

residue-by-residue, its prediction performance may suffer less from this factor.  

4. The variation of lengths of annotated sequences in each family. For any protein 

family, the lengths of its annotated sequence segments in different proteins may 

vary slightly or dramatically, depending on the evolutionary history. However, 

annotated sequences of dramatically various lengths may reflect less similarity 

among the annotated sequences of a protein family, for which it is hypothetically 

more difficult for PfamProt2vec to achieve satisfying prediction performance. 

5. The number of member proteins in each family. This statistic determines the 

number of training example for each protein family, where the involving of more 

training examples reduces the risk of over-fitting during model training. However, 
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more protein members in a protein family may also mean a higher likelihood of 

sequentially divergent proteins, which makes it difficult for PfamProt2vec to 

achieve satisfying performance. 

6. The number of families sharing members with each family. Since models in 

PfamProt2vec take as input the vector representation generated from whole 

protein sequences, it is hypothetically more likely for PfamProt2vec to make a 

false positive prediction for protein families overlapping with more other protein 

families. The other families that share members with a protein family A are 

referred to as the related families of the protein family A.  

7. The average number of protein families for protein members in each family. This 

statistic represents the number of other protein families for each protein member 

in the protein family. Higher values indicate that proteins in this family are more 

likely to have more annotated families/domains within the same protein sequence. 

Therefore, PfamProt2vec is hypothetically more likely to achieve less satisfying 

performance. 

8. The average sequential similarity with families that share members with each 

family. If the protein members of two protein families are sequentially similar to 

each other, it is more likely for PfamProt2vec to predict the member in one protein 

family as a false positive prediction in the other family. Therefore, PfamProt2vec 

is hypothetically more likely to achieve less satisfying performance in protein 

families with less similarity with their related families. 

For each of the 8 above factors, we analysed its correlation with the prediction 

performance achieved by PfamProt2vec and HMMER 3.1, for each protein family. 

Figure 5.6 demonstrates the calculated correlation for the 8 factors in all of the 1,461 

protein families in the UniProt-InterPro database, with the FPR threshold set to 0.001. 

Here, blue cross and red cross demonstrated the results of HMMER 3.1 and 

PfamProt2vec, respectively. While the yellow line and the black line represents the fitted 
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regression line plot, with a regression order of 3, for HMMER 3.1 and PfamProt2vec, 

respectively. 
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Figure 5.6 The correlation between the eight potential factors and the prediction accuracy of 

PfamProt2vec (red) and HMMER 3.1 (blue).  
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The effect of sequential diversity within each family. In order to investigate the 

correlation between the prediction performance of PfamProt2vec and the sequential 

diversity within each protein family, we defined the following similarity measurement for 

any protein family A,  

!"#(%) = 	 )
*+
∑ ∑ -./"01_/"#"345"67(89, 8;)*

;<)
*
9<) 	 	 	 [Eq. 5.2] 

where = denotes the number of protein member in family A, and 89 and 8; denote the 

prot2vecs of the "-th and >-th protein member of family A. A smaller score of !"#(%) 

indicates that the sequences of protein in family A have a higher sequential diversity. 

This score measures the sequential similarity between protein members within the same 

protein family, by calculating cosine similarities between prot2vecs of any pair of two 

proteins. The basic assumption of this measurement is that proteins that are closer in 

the prot2vec-based vector space are more likely to be sequentially similar to each other.  

Results in Figure 5.6 (a) demonstrated that PfamProt2vec performed worse for 

protein families in which protein members are less sequentially similar to each other, 

while the prediction performance of HMMER 3.1 is less affected by this factor. Worse 

performance of both PfamProt2vec and HMMER 3.1 was achieved in protein families 

with lower sequential similarities. However, PfamProt2vec achieved accuracy scores 

less than 0.998 in more protein families than HMMER 3.1 did. Since HMMER 3.1 is 

based on homology profiles, it is less sensitive to the sequential similarity within each 

protein families. More specifically, even the proteins in a protein family demonstrated 

divergent sequential patterns, as long as their homologous profiles are similar, its 

prediction performance will not be negatively affected. Results in Figure 5.6 (a) explains 

the superior performance of HMMER 3.1 compared with that of the PfamProt2vec.  

The homologous relation within each family. The homologous relation between 

proteins has been represented in multiple ways including the PSSMs and the 

phylogenetic trees. Since the generation of PSSMs is more time-consuming, here we 
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use the tree distance between proteins in a phylogenetic tree as the measurement for 

homologous relation. 

We calculated the phylogenetic-tree distance in the following steps. Firstly, we 

performed multiple sequence alignment for protein members in each protein family, 

using Clustal-Omega 1.2.431. Secondly, we generated the phylogenetic tree for each 

protein family based on the generated multiple sequence alignment from the first step, 

using the online web service T-REX [312]. Thirdly, we calculated the average 

homologous similarity for each protein family as follows,  

?ℎ73._/"#(%) = )
*+
∑ ∑ )

ABCDE_F9GHI(AJ,AK)
*
;<)

*
9<) 	 	 	 [Eq. 5.3]	

where = denotes the number of protein members in family A, and Lℎ73._M"/6	(L9, L;) 

denotes the tree distance between the "-th and the >-th protein member of family A. The 

tree distance between protein L9  and L;  was calculated using the python package 

BioPy32. Larger ?ℎ73._/"#(%) indicates that proteins in family A are evolutionarily related 

to each other.  

Results in Figure 5.6 (b) demonstrated that PfamProt2vec achieved better 

performance for protein families with lower homologous similarities than for protein 

families with lower sequence similarities. Despite the slightly better performance 

achieved by HMMER 3.1 in protein families with low homologous similarities, the 

performance of PfamProt2vec does not seem to be affected by the homologous similarity 

within each protein family. The fitted regression lines of HMMER 3.1 (yellow) and 

PfamProt2vec (red) are similar across all values in terms of the order of derivatives. 

However, in terms of the scattered plot, PfamProt2vec (red cross) achieved inferior 

performance in more protein families with low homologous similarity than HMMER 3.1 

did.  

                                            
31 Clustal-Omega: http://www.clustal.org/omega/  
32 BioPy: https://figshare.com/articles/biopy_a_Library_for_Phylogenetic_Exploration/761224  
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We further visualized the phylogenetic trees of protein families for which 

PfamProt2vec achieved the best the worst prediction accuracies, including the Glycoside 

hydrolase, family 34 (IPR001860), Malate synthase (IPR001465), Photosystem antenna 

protein-like (IPR000932), Glycosyltransferase 2-like (IPR001173), Phosphatidic acid 

phosphatase type 2/haloperoxidase (IPR000326), CDP-alcohol and 

phosphatidyltransferase (IPR000462). Table 5.8 and Figure 5.7 demonstrate the protein 

family information and their corresponding phylogenetic trees, respectively. 

 

Table 5.8 Protein families with the best and the worse prediction accuracies achieved by 

PfamProt2vec. 

 

 

InterPro ID PR SE SP ACC F1 #pos #pred_pos 

IPR000462 0.007 1.000 0.895 0.894 0.013 3 456 

IPR000326 0.009 1.000 0.899 0.899 0.018 4 436 

IPR001173 0.021 0.9 0.901 0.901 0.04 10 433 

IPR000932 1.000 1.000 1.000 1.000 1.000 0 0 

IPR001465 1.000 1.000 1.000 1.000 1.000 2 2 

IPR001860 1.000 1.000 1.000 1.000 1.000 0 0 
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Figure 5.7 Phylogenetic trees of the protein families with the worse prediction accuracies (left) and the protein families with the best 

prediction accuracies (right). 
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Results in Table 5.8 and Figure 5.7 showed that phylogenetic trees of protein 

families with the best and the worst performance achieved by PfamProt2vec 

demonstrated different tree structures. In phylogenetic trees, any two tree nodes are 

considered to be evolutionarily distant from each other if their split point is closer to the 

root of the tree33. Therefore, according to the left three subgraphs in Figure 5.7, protein 

members are more evolutionarily distant from each other in protein families with the 

worse performance. However, in the right three subgraphs, for which PfamProt2vec 

achieved accuracies of 1.0, protein members are more evolutionarily close to each other 

in corresponding phylogenetic trees.   

The above results in Figure 5.6, Table 5.8 and Figure 5.7 demonstrated that 

PfamProt2vec performed worse in protein families with lower homologous similarities, 

and similar correlation was observed in the results of HHMER 3.1 as well.  

The number of families sharing members with each family. According to the 

results shown in Figure 5.6 (f), the prediction performance of PfamProt2vec was most 

significantly affected by the number of related families of each protein family. For a 

specific protein family PF, a higher value of related families indicates that protein 

sequences in PF are also annotated as family members of a higher variety of other 

protein families. For example, the protein EGFR_HUMAN in Figure 5.1 was annotated 

as the family members of four different protein families. This factor is also related to the 

factor, the average length of annotated sequences, that was demonstrated in Figure 5.6 

(c) because functional domains within the same protein sequence are more likely to be 

short.  

By combining Figure 5.6 (c) and (f), PfamProt2vec achieved less satisfying 

prediction performance in protein families with more related families and with shorter 

annotated sequences. This indicated the potential issues of predicting protein families at 

                                            
33 Please refer to http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny for more information about how 

to read a phylogenetic tree.  
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the whole sequence-level. It is only applicable to single-functional proteins, such as the 

lipocalin mentioned in Section 5.2.  

 

5.7 Case study: Tyrosine kinases and Protein kinase domain 

Among the 25 human protein families, we performed independent tests for Tyrosine 

kinase (PF07714) and Protein kinase domain (PF00069). Tyrosine kinase is an enzyme 

that can transfer a phosphate group from ATP to the amino acid tyrosine on the protein 

[70]. Protein kinase domain is a structurally conserved domain containing the catalytic 

function of protein kinases [70]. Although there exists an overlap between the two 

families, Protein kinase domain (PF00069) has a broader range including serine and 

threonine kinases.  

Experimental design. We prepared datasets based on the UniProt-Pfam dataset for 

cross-validation and independent test, respectively. Firstly, we extracted all human 

protein members and proteins members from all organisms for Tyrosine kinases 

(PF07714), denoted as PF07714_HUMAN and PF07714_ALL, respectively. We also 

extracted all human protein members and protein members from all organisms for 

Protein kinase domains (PF00069), denoted as PF00069_HUMAN and PF00069_ALL, 

respectively. We then divided each of the four sub datasets, i.e. PF07714_HUMAN, 

PF07714_ALL, PF00069_HUMAN and PF00069_ALL, into a training dataset and a 

validation dataset respectively from annotations created before and after Aug 23, 2008. 

Finally, negative sampling was performed for each dataset to ensure a ratio of 1:1 

between the positive examples and the negative examples.  

Table 5.9 provides the statistics for the datasets used in the case study of Tyrosine 

kinase (PF07714) and Protein kinase domain (PF00069), respectively. For each of these 

two protein families, 10-fold cross-validation was performed on training datasets, and the 

model with the best prediction performance was used to apply to the independent test 

datasets.  
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Table 5.9 Statistics of the constructed cross-validation and independent test datasets for protein 

family Tyrosine kinase (PF07714) and Protein kinase family (PF00069). 

Dataset Name Family Name Organism Cross-validation Independent test 
PF07714_HUMAN Protein tyrosine 

kinase 
Human 206 48 

PF07714_ALL Protein tyrosine 
kinase 

All 805 48 

PF00069_HUMAN Protein kinase 
domain 

Human  698 154 

PF00069_ALL Protein kinase 
domain 

All 5130 154 

 

 Result analysis. Figure 5.8 shows the prediction performance of the family 

Tyrosine kinase (PF07714) in the independent test. In both cases, true positive (TP), 

true negative (TN), false positive (FP) and false negative (FN) predictions were reported 

in a pie graph, where the protein names of FP and FN predictions were listed. Using 

models trained only with human proteins, we successfully predicted 22 out of 24 positive 

examples and 22 out of 24 negative examples. The two proteins that were incorrectly 

predicted were KSR1 (UniProt ID: Q8IVT5) and DSTYK (UniProt ID: Q6XUX3). As a 

comparison, these two proteins were correctly predicted as members of Tyrosine kinase 

(PF07714) by the models trained with proteins members of all organisms.  

 

Figure 5.8 Independent test in protein family Tyrosine kinase (PF07714), trained with human 
proteins and all proteins respectively.  
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To further investigate the prediction results, we calculated the prot2vec-based cosine 

similarities (see [Eq. 5.1]) between KSR1 and each positive example in 

PF07714_HUMAN and PF07714_ALL, respectively. We found that KSR1 was most 

similar to Ksr1 (UniProt ID: Q61097), a mouse protein, with a cosine similarity of 0.874, 

while the largest cosine similarity between KSR1 and a human protein KSR2 (UniProt 

ID: Q6VAB6) was 0.475. The difference in the cosine similarity explained the better 

performance of the models trained with PF07714_ALL compared to that trained with 

PF07714_HUMAN. It also validated our conclusion that protein members of all 

organisms should be combined to achieve a better prediction performance. 

In terms of false positive predictions, we searched their conserved domain using 

HMMER [69] and CD-search [313], and none of them contained apparent protein kinase 

domains. However, some proteins do possess functional properties that are commonly 

shared by tyrosine kinases: 1) Tyrosine kinases are closely associated with cancer 

development [314], while C5orf34 is over-expressed in liver cancer tissues according to 

The Human Protein Atlas [315]. It was also one of the 10 most differentially expressed 

proteins when comparing borderline and malignant phyllodes tumours [316]; 2) Many 

receptor tyrosine kinases auto-phosphorylate [317, 318], while C5orf34 is also 

phosphorylated on Y528 in human [319]; 3) Tyrosine kinases regulate cell activities 

[320], while USP17L15 regulates different cellular processes that may include cell 

proliferation, progression through the cell cycle, apoptosis, cell migration, and the cellular 

response to viral infection [39]; IKZF3 plays an essential role in regulation of B-cell 

differentiation, proliferation and maturation to an effector state [39]; and PPP1R3A is 

essential for cell division [39]. Altogether, all these clues indicate that it is worthwhile to 

experimentally investigate the pathological roles of these false positive predictions and 

their potential involvement in kinase-regulated signalling pathways. 

For Protein kinase domain (PF00069), we correctly predicted 63 out of 77 protein 

members and 74 out of 77 negative examples with the model trained on the dataset 
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PF00069_HUMAN. The three false positive predictions were EPHA2 (UniProt ID: 

P29317), L3MBTL1 (UniProt ID: Q9Y468) and PIP4K2C (UniProt ID: Q8TBX8). 

According to the Swiss-Prot/UniProt databases, EPHA2 is currently annotated as a 

member of Tyrosine kinase (PF07714), whose members should be annotated as 

members of Protein kinase domain (PF00069) as well. However, according to Pfam, 

EPHA2 is not annotated as a member of Protein kinase domain. It indicates that the 

Pfam classification system is not perfectly complete. We also found that the protein 

PIP4K2C belongs to the family PIP5K (PF01504) and it is a special kinase that 

phosphorylates the D-5 position of the inositol ring of Phosphatidylinositol 4-phosphate 

[321].  

  

5.8 The implementation of the online webserver 

The different implementations of the generation of the distributed representation of 

protein sequence, prot2vec, and their application to protein family prediction is publicly 

available at http://118.138.240.130 as an online service at for academic use.  

The service of prot2vec generation returns three different types of prot2vecs, 

including prot2vecinference, prot2vecadd and prot2vecnon-overlap, which correspond to 

Fetch/Infer, Add and Stack in Table 4.2. It takes a single protein sequence or a list of 

protein sequences as input, either in the format of FASTA or raw amino acid sequences. 

After submission, protein sequences are split into overlapping or non-overlapping 3-gram 

biological words which can then be queried against a pre-trained distributed memory 

network. Generated prot2vecs are in the format of .txt (ASCII), downloadable as 

plain/text file.  

The service of protein family prediction returns the protein families of submitted 

protein sequences or the protein members of selected protein families. In addition, 

benchmark service is provided, in which the predicted results are evaluated against the 

benchmark dataset UniProt-InterPro. The graph-based visualisation includes a bar chart 
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demonstrating true positive, true negative, false positive and the false negative 

predictions, a table with precision, sensitivity and specificity scores and a pie graph 

illustrating the overall performance summary. 

5.9 Chapter summary 

To validate the effectiveness of prot2vec in whole sequence-level predictions, in this 

chapter, we systematically analysed the performance of prot2vec in protein family 

prediction.  

Firstly, we calculated the cosine distance between protein families in prot2vec-based 

vector space and visualised the prot2vecs of proteins in different protein families using 

PCA [265]. According to the vector space analysis, protein families with similar biological 

functions have smaller cosine distances in prot2vec-based vector space compared with 

those with dissimilar biological functions. The visualisation of prot2vecs with respect to 

different protein families demonstrated that the distributed representation of protein 

sequences captured the ‘semantics’, i.e. their biological functions. These observations 

provided the confidence of using prot2vec as the input feature for protein family 

prediction.  

Based on the promising results of the vector space analysis, we applied prot2vec to 

SVM-based protein family prediction (PfamProt2vec). We first compared the prediction 

performance of PfamProt2vec with two different implementation strategies, i.e. the 

prot2vecinference that was proposed in this thesis and the prot2vecadd (ProtVec) that was 

proposed in [193]. The results demonstrated that prot2vec performed better than 

prot2vecadd for 888 out of 1,033 proteins and improved the average prediction 

performance by 13.7% and 8.9% in terms of sensitivity and precision, respectively. 

Considering the difference between prot2vecinference and prot2vecadd, the superior 

performance of prot2vecinference indicates that the order of amino acids plays an important 

role in the generation of prot2vecs for protein sequence-level prediction tasks.  
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We further compared the prediction performance of PfamProt2vec to that of SVM-

Prot 2016 and HMMER 3.1, among which the first employed the purely data-driven 

representation prot2vecinference as the input feature while the latter two respectively 

incorporated physicochemical properties-based features and homology profile-based 

features. Both SVM-Prot 2016 and HMMER 3.1 outperformed PfamProt2vec in terms of 

sensitivity but performed less satisfactorily than PfamProt2vec in terms of precision. 

Combining all performance evaluation scores, PfamProt2vec achieved comparable 

performance with SVM-Prot 2016 but less preferable performance than that of HMMER 

3.1.  

To investigate the factors that may affect the performance of PfamProt2vec, we 

performed correlation analysis to investigate the potential factors that may affect the 

prediction performance of PfamProt2vec. We found that protein members from multiple 

organisms should be combined together to achieve better performance and protein 

families with more members are more likely to be better predicted. We also found that 

the performance of PfamProt2vec was affected by the sequential and homological 

similarity within each protein family and strongly affected by the number of related protein 

families in each protein family. These results revealed the disadvantage of the 

methodology of predicting protein families at the whole sequence-level.  

In this chapter, we obtained the following important conclusions. Firstly, purely data-

driven representation does not work perfectly in protein analysis, even though it achieved 

improved performance in other areas such as natural language processing. Secondly, 

protein sequence data alone is not sufficient enough to represent evolutionary relations 

between proteins. Thirdly, the distributed representation of protein sequences should 

therefore be used in combination with existing biological heuristic-based representations 

for protein sequence-based predictions. With this conclusion, in Section 7.4, we 

combined the purely data-driven representation context2vec with existing residue-level 

representations that are generated from homology profiles, physicochemical properties 

and structural information for phosphorylation site prediction.    
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6 Protein IDP/IDR and SSP 
prediction 

6.1 Introduction 

In Section 4.2 and Section 4.3, we proposed the DeepS2P framework for predicting 

protein structural and functional properties and the multitask deep learning frameworks 

for predicting two or more protein structural properties simultaneously. In this chapter, 

we evaluate the performance of the DeepS2P framework and multitask frameworks in 

protein structural prediction tasks. We first applied the DeepS2P framework to the 

prediction of IDP/IDRs and SSPs. Moreover, to demonstrate the positive effect of 

predicting multiple protein structural properties simultaneously, we applied the Multi-task 

framework and the Cross-stitch framework to the simultaneously predict IDP/IDRs and 

SSPs, with SSP prediction as the supporting task for IDP/IDR prediction.  

6.2 Protein intrinsic disorder prediction based on the 
DeepS2P framework 

Historically, protein function has been closely associated with a unique, well-defined 

three-dimensional structure. This paradigm has often been referred to as the sequence-

structure-function relationship [36]. However, intrinsically disordered proteins (IDPs) and 

proteins with intrinsically disordered regions (IDRs) elude this understanding. Their 

conformational states are highly heterogeneous and experimentally difficult to 

characterize since they do not show stable electron densities in crystal structure analysis 

[322]. Spectroscopic methods such as NMR have proven useful for experimentally 

studying the structural propensities and dynamics of IDPs [323]. However, due to the 

expensive nature of these experiments, computational methods have been proposed to 

predict IDPs and IDRs directly from amino acid sequences [101, 153, 207, 211-213, 324].  
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In this section, we apply the proposed DeepS2P framework to IDP/IDR prediction. 

The resulting predictive model is referred to as DeepS2P-D. We performed hyper-

parameter tuning to determine the structure of DeepS2P-D and independent tests to 

compare the performance of DeepS2P-D to those of the existing shallow and deep 

architectures.  

6.2.1 An overview of IDP/IDR prediction 

The task of IDP/IDR prediction seeks to assign the ordered and disordered states to 

each target residue  !" in each protein sequence #. Therefore, the IDP/IDR prediction is 

usually modelled as a binary classification task, where each example is classified into to 

two classes, ordered and disordered, which can be formalised as follows,  

$:& '()*(+,-./0123(!"56), ./0123(!"), ./0123(!"96):; → +, =	 	 	 [Eq. 6.1]	

where +, = ∈ 0, 1 and + + 	= = 1. Instead of using one output neuron producing a value 

of 0 or 1, here 1-of-K coding is used in the output layer, where the two classes ordered 

and disordered are modelled with two output neurons, each of which produces the value 

of 0 or 1, with the restriction that only one of them produces 1 while the other produces 

0.  

According to the DeepS2P framework (see Section 4.2), the input feature 

()*(+,-./0123(!"56), ./0123(!"), ./0123(!"96): is obtained by concatenating the constructed 

feature vectors of the residues within the sliding window of size D = 2 ∗ G + 1, where G 

indicates the number of upstream and downstream residues that are included in the 

sliding window. For feature construction, we calculated the position-specific scoring 

matrix (PSSM) [99] for each residue within the sliding window as the only source of 

information for prediction. Combined with the position and residue type, the constructed 

feature vector ./0123 of each residue is composed of 23 real-values, where the first value 

represents the position of the residue in the protein sequence, the second value indicates 
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the residue type ranging from -10.0 to 10.0, and the remaining 21 values collected from 

the generated PSSM. 

6.2.2 Experimental design 

Datasets. The training dataset for IDP/IDR prediction was downloaded from the web 

server of SPINE-D [212]. It contains 4,229 protein sequences with 1,037,572 residues 

labelled as ‘+', ‘-' and ‘x' indicating disordered, ordered and unclear states respectively. 

Altogether, there are 103,190 disordered residues and 933,382 ordered residues, 

resulting in a ratio of 1:9 between positive and negative examples. For performance 

evaluation, we randomly divided the 4,229 proteins into ten subsets for 10-fold cross-

validation. For independent tests, we applied our IDP/IDR prediction models to targets 

reported in CASP experiments [292, 325]. Specifically, we applied the model with the 

best performance on the validation set to the 117 targets in CASP9 [270] and the 94 

targets in CASP10 [271, 292]. Due to experimental noise affecting the recognition of 

short disordered regions, short sequence segments consisting of less than four 

consecutive residues of the same ordered/disordered types were eliminated from the 

test [270, 271]. This left us with 2,417 disordered residues and 23,658 ordered residues 

in the CASP9 dataset and 1,502 disordered residues and 22,688 ordered residues in the 

CASP10 dataset. In this study, we compared our results with those of the top-ranked 

models listed in CASP9 and CASP10 assessments for predicting IDP/IDRs. 

Performance evaluation. The prediction performance of IDP/IDR prediction was 

evaluated using three measures: the balanced accuracy HIJJ, Matthew’s coefficient of 

correlation $JJ and the area under the ROC curve (AUC) (Please refer to Appendix A 

for a detailed description of the evaluation measurement equations). Additionally, to 

obtain a more detailed performance evaluation, we also recorded the number of true 

positives KL, false positives ML, true negatives KN and false negatives MN. Among the 

three measures, HIJJ  and $JJ  depend on the predefined cut-off threshold of the 

prediction score for methods that generate probabilities instead of binary predictions. 
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According to previous results from CASP9 and CASP10 [270, 271], we used 0.5 as the 

cut-off threshold. For both measures a higher score indicates better performance. The 

third score, AUC, is a widely-used probability-based measure for which a score of 1 

represents the perfect prediction and a score of 0.5 indicates a random prediction. 

6.2.3 Determination of hyper-parameters 

When applying the DeepS2P framework to IDP/IDR prediction, one of the crucial steps 

is to determine the hyper-parameters of the final models. According to Table 4.5, hyper-

parameters are used to determine the model structure and guide the process of model 

training. In this section, we perform comparative experiments to select the best values 

for hyper-parameters including the number of epochs O, the mini batch size *, the drop-

out rate P, the learning rate Q, the number of hidden layers |S|, and the size of the 

contextual window sizes D in the input layer.  

We set the basic parameter values as follows, O=1, *=64, P=0.75, Q=1e-5, |S|=1, 

and D=9. For each of the hyper-parameters, we trained models with different parameter 

values while keeping the basic values of other hyper-parameters unchanged. Table 6.1 

demonstrates the results for hyper-parameter tuning for IDP/IDR prediction using the 

DeepS2P framework. The prediction performance of each model was evaluated in terms 

of the cross entropy, the accuracy (ACC) and their standard errors. Note that the cross 

entropy was used as the objective function in classification tasks, for which a smaller 

value indicates a better prediction performance.  
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Table 6.1 Hyper-parameter tuning for DeepS2P-D in IDP/IDR prediction. 

Epochs Cross entropy std. Entropy ACC std. ACC 

1 0.245 0.022 0.915 0.010 

3 0.221 0.017 0.926 0.007 

5 0.216 0.017 0.927 0.007 

     

Batch size Cross entropy std. Entropy ACC std. ACC 

32 0.234 0.018 0.918 0.009 

64 0.245 0.022 0.915 0.010 

128 0.257 0.022 0.912 0.010 

256 0.271 0.023 0.905 0.011 

     

Win sizes Cross entropy std. Entropy ACC std. ACC 

5 0.253 0.020 0.912 0.010 

9 0.245 0.022 0.915 0.010 

15 0.241 0.019 0.915 0.010 

19 0.243 0.019 0.915 0.010 

     

Drop-out rate Cross entropy std. Entropy ACC std. ACC 

0.2 0.261 0.022 0.910 0.010 

0.5 0.248 0.021 0.914 0.010 

0.75 0.245 0.022 0.915 0.010 

0.9 0.242 0.019 0.915 0.010 

     

Hidden layers Cross entropy std. Entropy ACC std. ACC 

1 0.245 0.022 0.915 0.010 

2 0.232 0.018 0.920 0.009 

3 0.228 0.017 0.923 0.008 

     

Learning rate Cross entropy std. Entropy ACC std. ACC 

0.001 0.207 0.017 0.931 0.007 

0.0001 0.213 0.016 0.929 0.007 

0.00001 0.245 0.022 0.915 0.010 

        * The best performance in terms of different evaluation measurements was highlighted as bold.
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According to the results in Table 6.1, some hyper-parameters have more impact on 

the prediction performance, such as the number of epochs, the size of mini-batches, the 

number of hidden layers and the learning rate. In terms of the size of mini-batches, the 

best performance was achieved with the batch size 32. The average accuracy was 

improved to 0.918 from 0.905 that was achieved with batch size 256. In terms of the 

number of hidden layers, the average accuracy was improved from 0.915 to 0.923 when 

the hidden layers were improved from 1 to 3. It indicates that the addition of more hidden 

layers played a positive effect on the performance in IDP/IDR prediction. In terms of 

different learning rates, the best accuracy score 0.931 was achieved with a learning rate 

of 0.001. Among all the three tested learning rates, better performance was achieved with 

large learning rate.   

As for the number of epochs, the best accuracy score 0.927 was achieved with 5 

epochs of training. In practice, we employ an auto-stop policy to dynamically determine 

the stop of the training process. The stop condition was set so that the training process 

for each fold would terminate only when the cross entropy on the valid dataset had not 

improved for 200 epochs since the last improvement. According to the results in Table 

6.1, we selected the values for respective hyper-parameter as follows, O=N/A, n=32, 

P=0.9, ∂=1e-3, |S|=3, and D=15.  

6.2.4 Comparison between deep architectures and shallow architectures  

The performances of DeepS2P-D in terms of TP, FP, TN, FN, BACC, MCC and AUC were 

evaluated on CASP9 and CASP10 targets [270, 271]. The performance of DeepS2P-D 

was compared to that of the top four methods listed in the IDP/IDR prediction assessment 

in CASP9 and CASP10 [270, 271], respectively. We also compared the prediction of 

DeepS2P-D to that of the more recent DeepCNF-D model, which used the deep CNF (see 

Section 2.1.2) to capture local correlations among the input neighbouring residues and 

independencies of the predicted ordered/disordered labels among adjacent residues [158].  
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The four models with the best performance in CASP9 assessment are PrDOS2 [211], 

DisoPred3C [102], MultiCom [326]  and SPINE-D [212]; the four models in CASP10 

assessment are PrDos-CNF [213], DISOPRED3 [101], Biomine-dr-mixed and Biomine-

dr-pdb-c [327]. The PrDOS2 model combines sequential and template information using 

an SVM-based model. The PrDos-CNF model employs deep convolutional neural fields 

to capture correlations between the predicted labels of neighbouring residues. 

DisoPred3C and DISOPRED3 [101] are also SVM-based and trained on high-resolution 

X-ray structures. The MultiCom model and the SPINE-D model combine multiple sources 

of information including amino acid-based features, PSSMs, predicted secondary 

structures, and solvent accessibilities [212]. The MultiCom model is based on one-

dimensional recurrent neural networks, and the SPINE-D model is based on two-layer 

neural networks. Finally, the Biomine-dr-mixed and Biomine-dr-pdb-c models are both 

SVM-based and combine multiple sources of predicted information.  

The deep learning model DeepS2P-D introduced in this section is derived from the 

singletask deep learning framework DeepS2P, using PSSMs as the input feature. Among 

all nine compared models, three were based on deep neural networks including PrDos-

CNF, DeepCNF-D and SPINE-D, five were SVM-based models, and one used recurrent 

neural networks.  
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Table 6.2 Performance comparison for IDP/IDR prediction applied to CASP9 proteins. 

Predictors Targets TP FP TN FN BACC MCC AUC 

    Shallow models 

PrDOS2 117 1,468 2,340 21,318 949 0.754 0.418 0.855 

DisoPred3C 117 839 180 23,478 1,578 0.670 0.508 0.854 

MultiCom 110 953 934 21,695 1,310 0.690 0.413 0.853 

    Deep models 

SPINE-D 117 1,399 2,774 20,884 1,018 0.731 0.365 0.832 

DeepCNF-D 117 - - - - 0.752 0.486 0.855 

DeepS2P-D 117 903 256 23,402 1,514 0.681 0.510 0.856 

                                          * The best performance in term of TP, FP, TN, FN, BACC, MCC and AUC was highlighted as bold.  
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Table 6.3 Performance comparison for IDP/IDR prediction applied to CASP10 proteins. 

Predictors Targets TP FP TN FN BACC MCC AUC 

    Shallow models 

DISOPRED3 94 607 201 22,487 895 0.698 0.531 0.897 

Biomine-dr-mixed 94 628 368 22,320 874 0.701 0.488 0.890 

Biomine-dr-pdb-c 94 579 290 22,398 923 0.686 0.483 0.886 

    Deep models 

PrDos-CNF 94 657 287 22,401 845 0.712 0.529 0.907 

DeepCNF-D 94 - - - - 0.764 0.474 0.898 

DeepS2P-D 94 629  176  22,512  873 0.706 0.533 0.895 

                                      * The best performance in term of TP, FP, TN, FN, BACC, MCC and AUC was highlighted as bold.  
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According to the evaluation on CASP9 in Table 6.2, DeepS2P-D achieved the best 

prediction performance among all compared IDP/IDR prediction models. In terms of 

BACC, PrDOS2 still performed best among all methods with a score of 0.754. In 

comparison, the DeepS2P-D model introduced in this section achieved BACC scores of 

0.660. As for MCC, DeepS2P-D achieved the best performance, improving the MCC 

scores by 2.4% and 14.5%, respectively, when compared with the MCC scores of the 

DeepCNF-D and SPINE-D model. According to the prediction statistics based on TP, 

FP, TN and FN, PrDOS2 achieved the best sensitivity by correctly predicting 1,468 of 

2,417 positive examples, while DisoPred3C achieved the best precision by correctly 

predicting 839 positive examples in 1,019 positive predictions. The different results of 

the two models indicate that PrDOS2 makes "riskier" predictions to improve sensitivity, 

while DisoPred3C tends to make more "cautious" predictions to ensure high precision. 

In comparison, the performance of DeepS2P-D model represents a trade-off of the 

prediction performance of the above two models, with a tendency to make more positive 

but cautious predictions. Specifically, it correctly predicted more positive examples than 

DisoPred3 and, at the same time, obtained an FP to TP ratio below 1:3. 

When applied to CASP10 proteins, we observed superior prediction performance 

achieved by deep learning models compared with that achieved by shallow models. With 

the most true-positive predictions, PrDos-CNF achieved the best AUC score of 0.907. 

Between the other two deep learning models, DeepCNF-D achieved the best BACC 

score of 0.764 and DeeSP2-D achieved the best MCC score of 0.533. In terms of the 

statistics of TP, FP, TN, and FN, PrDos-CNF achieved the best sensitivity by making 657 

true positive predictions and 845 false negative predictions. In comparison, DeepS2P-D 

had the best precision by making 629 true positive predictions and 176 false positive 

prediction. This indicates that PrDos-CNF is more like to make positive predictions, but 

with a lower precision; while DeepS2P-D tends to make positive predictions that are 

more likely to be correct.  
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6.2.5 Conclusion 

In this section, we applied the DeepS2P framework to the prediction of intrinsically 

disordered proteins and regions. The results in Table 6.1 demonstrated that the addition 

of hidden layers played a positive effect in improving the prediction performance. It 

indicated the advantage of using deep learning model for IDP/IDR prediction over show 

non-linear models. This observation is further emphasized by the results in the 

independent tests conducted on the CASP9 and CASP10 targets. The DeepS2P-D 

model achieved comparable or superior performance compared to existing deep 

learning-based methods such as DeespCNF-D and PrDoc-CNF, and achieved superior 

performance than other methods including PrDOS2 and SPINE-D. The DeepS2P-D 

model represents a successful application of the proposed DeepS2P framework in 

predicting protein structural properties.  

6.3 Protein SSP prediction based on the DeepS2P framework 

6.3.1 An overview of SSP prediction 

The task of protein SSP prediction seeks to assign the populations of the helix, strand 

and coil structures to each target residue !" in each protein sequence #. The populations 

of each of the three secondary structure elements are represented as three real-valued 

numbers ranging from 0 to 1. When modelled using machine learning approaches, the 

task of protein SSP prediction can be treated as a regression task and represented as 

follows,  

$:&(()*(+,(-./012(!"34), -./012(!"), -./012(!"74))) → +, 9, (			 	 [Eq. 6.2]	

where +, 9, ( ∈ (0, 1) and + + 9 + ( = 1. The three real-valued outputs of the prediction 

task, +, 9 and (, respectively represent the predicted population of helix, strands and coil. 

As for feature construction, we used the same feature vector that is introduced in the 
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prediction of IDP/IDR. More specifically, for each residue within the sliding window of 

size @ = 2 ∗ C + 1, a feature vector -./012 of size 23 was constructed. 

We refer to the deep learning model that is derived from the DeepS2P framework for 

the prediction of SSP as the DeepS2P-P model. In the rest of this section, we determine 

the structure of DeepS2P-P via hyper-parameter tuning, evaluate the performance of 

DeepS2P-P by comparing its prediction performance to existing methods for SSP 

prediction on constructed benchmark dataset, and applied the DeepS2P-P model for 

predicting SSPs for intrinsically disordered proteins and regions.  

6.3.2 The difference between protein SSP prediction and SS prediction  

The prediction of protein SSP should be distinguished from the prediction of protein SS. 

As introduced in Section 1.2.3, protein secondary structure refers to the intermediate 

form of protein local segments before they fold into the tertiary structure. It is described 

using the 3-class system where each residue is mapped to one of the three secondary 

structure elements or using the 8-class system where each residue is mapped to one of 

the 8 secondary structure elements. A number of computational methods and 

bioinformatics tools have been developed to assign secondary structures to residues in 

protein sequences using neural networks, support vector machines, hidden Markov 

models and deep learning models.  

The prediction of SSP is different from the prediction of SS theoretically and 

practically. In SSP prediction, each residue in protein sequences is assigned to three 

real-valued populations indicating the electron densities of the 3 secondary structure 

elements, helix, strand and coil, for each residue. Theoretically, the dynamic SSP 

assignments are consistent with the discovery of IDP/IDRs, which represents a group of 

proteins that lack stable tertiary structures. However, the fixed SS assignments are 

consistent with the traditional protein structure paradigm, where protein functions are 

determined by fixed protein structures. Practically, the training of the models for SSP 

prediction is based on training examples that are labelled with three numeric real-values 
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+, 9, and ( where +, 9, ( ∈ 	 (0, 1), while the training of models for SS prediction is based 

on training examples that are labeled with binary categorical value 0 or 1.  

Since the prediction of SSP and SS are theoretically and practically different from 

each other, it is unfair to compare the prediction methods of SSP prediction to those of 

the SS prediction, to evaluate the prediction of SSP prediction on existing benchmark 

datasets for SS prediction, or to evaluate the prediction of SSP using the same 

evaluation measurements with those of the SS prediction.  

6.3.3 Experimental design 

Datasets. The training dataset of protein SSPs was obtained from the original study of 

the D2D method, a software that calculates SSPs from a protein's NMR chemical shifts. 

For detailed information, please refer to the s2D method [194]. There are 2,671 proteins 

with 362,702 residues in the D2D dataset, among which 2,223 proteins were obtained 

from the BMRB database [93], with the remaining 448 proteins obtained from the RCSB 

PDB database in form of X-ray structures. Following the s2D method, proteins in the 

dataset were clustered into ten subsets with a 25% sequence identity cutoff. These 

subsets were then used for 10-fold cross-validation, in which, for each iteration, nine 

subsets were used for the purpose of model training and the remaining subset was used 

as the validation set. Again, following the s2D method, the prediction model was trained 

on proteins from both the BMRB database and the RCSB PDB database but validated 

only on proteins from the BMRB database. 

A novel benchmark dataset for SSP prediction. In order to properly evaluate the 

performance of methods for SSP prediction in independent test, we constructed a novel 

benchmark dataset from the latest release of the BMRB database.  

We downloaded the chemical shift annotations for 12,018 entries from the BMRB 

database (March 2018) [93] and created a candidate list of 2,293 BMR entries using the 

following filtering procedure. Firstly, we kept entries that have the same experimental 

conditions described in the s2D method [194]. More specifically, any entry that is not 
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sampled with pH between 5.5 and 8 or with temperature between 10 and 42 °C was 

removed from the candidate list. Secondly, we only kept the entries that have the sample 

type labelled as ‘solution’ and removed any entry with amino acid ‘X’. Thirdly, we 

extracted the annotated values for the six backbone chemical shifts, e.g. CA, CB, CO(C), 

N, HA, and HN, and removed entries that are lack of at least one of the six backbone 

chemical shifts. Finally, we removed entries that appear in the s2D training datasets.  

To obtain the SSP annotations for each candidate entry, we used the d2D method to 

generate the populations for helix, strands and coils according to their chemical shifts. 

To obtain the feature values for each candidate entry, we ran PSI-BLAST to generate 

the PSSMs according to their amino acid sequences. For 1,009 of the 2,293 entries, PSI-

BLAST failed to find a matching hit. Therefore, we end up with a dataset of 1,284 BMR 

entries.  

The resulting benchmark dataset BMR_2018 is publicly available in the GitHub 

repository: https://github.com/yxu132/multitask-ssp-diso.   

Performance evaluation. For the purpose of performance evaluation, we conducted 

both cross-validation and independent tests. In cross-validation tests, we split the 

training dataset into 10 folds, from which 9 folds were used for training and the remaining 

one folds was used for validation. This process of training-and-validation was repeated 

10 times so that each example in the training dataset is used for both training and 

validation at least once. With cross-validation, we determined the hyper-parameters of 

the model DeepS2P-P and compared the performance of DeepS2P-P to that of the s2D 

method. In independent tests, we applied the best performing model among the 10 

models trained during the process of cross-validation and applied it to the constructed 

benchmark dataset BMR_2018. With the independent test, we compared the prediction 

performance of DeepS2P-P to that of the s2D method.  

Following the methodology introduced in the s2D method, the prediction performance 

of the DeepS2P-P model in cross-validation tests was evaluated using three 

measurement scores including the MSE [Eq. 4.14] and the mean absolute error (MAE) 
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[Eq. 6.3] used to measure the difference between true values and predicted values during 

the process of training, and the Pearson’s coefficient of correlation (PCC or R) (see 

Appendix A) that is used to evaluate the linear correlation between true populations and 

prediction populations.  

$EF(GH, G) =
I

0
∑ |GH" − G"|
0
"MI      [Eq. 6.3] 

where GH is the predicted results of the true label G. 

The three measurements MSE, MAE and R are calculated for the three secondary 

structure elements helix (H), strands (E) and coils (C), which are denoted as 

($#FN,$EFN, ON), ($#FP,$EFP, OP) and ($#F.,$EF., O.), respectively.  

To analyse the correlation between the predicted SSPs and protein IDP/IDRs, we 

applied the trained DeepS2P-P model to intrinsically disordered proteins and regions.  

6.3.4 Determination of hyper-parameters 

When the DeepS2P framework is applied to SSP prediction, the output layer O is 

composed of three real-valued neurons, for which the sigmoid function [Eq. 4.12] is used 

as the activation function, and the MSE score [Eq. 4.14] is used as the objective function. 

At the same time, in order to finalise the deep model structure specifically for the task of 

SSP prediction, we conducted comprehensive comparison experiments to tune the 

hyper-parameters that are mentioned in Section 4.2.5.   

For each set of hyper-parameter settings, 10-fold cross-validation was conducted, 

where the deep models were trained on the 9 folds of the data, and the ON, OP, and O. 

scores were calculated on the remaining fold. Table 6.4 demonstrates the prediction 

performance of corresponding models under different settings of hyper-parameters. 

Here, we reported the results for three hyper-parameters that demonstrated the most 

significant improvements, including the number of hidden layer |H|, the number of 

neurons in the input layer @, and the number of training epochs Q. 
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Table 6.4 The selection of the hyper-parameters for the single-task deep learning framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    * A significance level of 95% was used.  

                                                    * The best performance in terms of !", !#, and !$ was highlighted as bold. 

Hyper-parameters Prediction performance 

|H| % & !" !# !' 

2 11 1 0.729±0.012 0.631±0.012 0.653±0.012 

2 15 1 0.736±0.015 0.632±0.012 0.661±0.012 

2 19 1 0.741±0.018 0.638±0.023 0.662±0.023 

2 23 1 0.740±0.011 0.629±0.020 0.659±0.020 

1 19 1 0.646±0.026 0.499±0.037 0.620±0.037 

2 19 1 0.741±0.018 0.638±0.023 0.662±0.023 

3 19 1 0.763±0.011 0.672±0.018 0.677±0.018 

3 19 3 0.827±0.006 0.783±0.009 0.724±0.009 

3 19 6 0.839±0.005 0.794±0.009 0.732±0.009 

3 19 9 0.845±0.005 0.801±0.008 0.738±0.008 

3 19 20 0.852±0.003 0.806±0.008 0.742±0.015 
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6.3.5 Comparing linear models, non-linear shallow models and deep models 

Characterizing IDP/IDRs using predicted protein SSPs provided a new avenue for 

quantitatively analysing IDPs/IDRs [194]. The s2D method achieved the state-of-the-art 

performance by modelling local sequential correlations and incorporating the predicted 

mean SSP of the entire protein sequence.  

The DeepS2P-P model is based on the aforementioned single-task deep learning 

framework DeepS2P. Compared with the s2D method that uses three single-layered 

neural networks, DeepS2P-P employs neural networks with three convolutional hidden 

layers. Therefore, it represents a more expressive model which is capable of modelling 

more complex relations between the input features and output populations. At the same 

time, due to the design of the convolutional layers, the local sequential correlations 

among neighbouring residues are modelled layer-by-layer in a more consistent manner.  

For comparison purposes, we introduce the linear regression model as the 

benchmark for predicting protein SSPs. Linear regression (LR)  is a generic linear 

approach for modelling the relationship between a scalar-dependent variable and one or 

more relevant variables. In contrast, the s2D method represents non-linear shallow 

models, and the DeepS2P-P method represents non-linear deep learning models. A 

comparison of the three approaches illustrates how increasing model complexity benefits 

the prediction performance. 

Table 6.5 shows the performance of s2D, LR and DeepS2P-P for predicting protein 

SSPs Helix (H), Strand (E) and Coil (C) on the δ2D validation set, with a significance 

level of 95%. According to these results, DeepS2P-P improved the Pearson correlation 

coefficient for helix, strands and coils by 0.035, 0.036 and 0.032, respectively, compared 

to s2D predictions. The LR model performed significantly worse than the other two 

methods, indicating that SSP prediction cannot be modelled by a linear approach. 
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Table 6.5 Prediction performance comparison between s2D, LR, and DeepS2P-P for protein 

SSP prediction on the δ2D validation set.  

* The best performance in terms of ", MSE, and MAE was highlighted as bold. 

Here, LR, s2D and DeepS2P-D represent linear models, non-linear shallow models 

and deep models, respectively.  They are train on exactly the same input data and the 

same set of selected features (including the indexes of the amino acids, amino acid 

types, and homology profiles generated using PSI-BLAST). In this way, the size of the 

training dataset becomes a controlled variable and the training procedure will not unfairly 

favour the deep learning model. Therefore, the significantly superior performance of 

DeepS2P-D was purely due to the deep learning architecture itself.  

6.3.6 Validation of DeepS2P-P on disordered proteins and regions 

For the 694 proteins reported in the old DisProt database [89] and the 1,304 chains 

reported to have missing electron density [328], we applied DeepS2P-P and observed 

the same structural characterizations for residues that are ordered and disordered and 

residues that have assigned coordinates and missing electron density, respectively. 

According to the left histogram in Figure 6.1, disordered regions are more likely to have 

higher coil populations (80.7% distributed between 0.5 and 1.0), while structured regions 

have lower coil populations. Similar to Figure 6.1 (b) reported in the s2D method [194], 

 s2D LR DeepS2P-P 

R(H) 0.817±0.014 0.337±0.052 0.852±0.008 

R(E) 0.770±0.039 0.379±0.047 0.806±0.014 

R(C) 0.710±0.039 0.431±0.047 0.742±0.027 

MSE(H) 0.038±0.004 0.107±0.006 0.032±0.004 

MSE(E) 0.024±0.002 0.051±0.004 0.022±0.002 

MSE(C) 0.041±0.002 0.067±0.004 0.036±0.002 

MAE(H) 0.140±0.008 0.278±0.008 0.119±0.008 

MAE(E) 0.113±0.006 0.190±0.008 0.101±0.008 

MAE(C) 0.158±0.006 0.218±0.009 0.143±0.006 
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the number of structured residues with coil populations reached a peak value at 0.6, 

which indicates that some structured regions may be found in loops.  

 

Figure 6.1 Protein secondary structure populations of structured and unstructured proteins and 

regions. 

 

According to our results, another peak value is around the coil population of 0.0. This 

is consistent with our expectation that structured regions are more likely to be found in 

helixes and strands, which was not demonstrated in Figure 6.2 (b) of the s2D method. 

Similarly, in the right histogram in Figure 6.1, the coil populations of 81.3% of the regions 

with missing electron density are distributed between 0.5 and 1.0, while those of regions 

with assigned coordinates are mainly distributed between 0 and 0.7. Compared to the 

s2D methods, DeepS2P-P predicted more residues with assigned coordinates to have 

low coil populations below 0 and 1. This indicates the superior performance of DeepS2P-

P compared to that of the s2D method. 

6.3.7 Validation of DeepS2P-P on benchmark datasets 

To validate the performance of DeepS2P-P and the s2D method, we further applied 

these two predictive models to our constructed benchmark dataset BMR_2018. Please 

refer to Section 6.3.3 for detailed description of the construction procedure for this 
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benchmark dataset. Table 6.6 demonstrates the prediction performance for DeepS2P-

P and the s2D method for protein SSP prediction on BMR_2018.  

 

Table 6.6 Performance comparison between DeepS2P-P and the s2D method on the 

independent benchmark BMR_2018. 

 DeepS2P-P The s2D method 

 Helix Strands Coils Helix Strands Coils 

R 0.832 0.796 0.652 0.798 0.761 0.630 

MSE 0.040 0.029 0.048 0.047 0.033 0.049 

MAE 0.129 0.119 0.171 0.153 0.132 0.175 

         * The best performance in terms of ", MSE, and MAE was highlighted as bold. 

 

According to the results shown above, the Deep2DP-P method has improved the 

respective Pearson’s coefficient of correlations by 4.1%, 4.4% and 4.9% for helix, strand 

and coil populations compared to those achieved by the s2D method. Correspondingly, 

DeepS2P-P decreased the MSE and MAE for helix, strand and coil populations as well. 

Its performance represents the state-of-the-art performance for this particular prediction 

task at the moment.  

6.3.8 Conclusion 

In this section, we applied the DeepS2P framework to protein SSP prediction and 

achieved superior performance in comparison with the existing s2D method in both 

cross-validation tests and independent tests. We also applied the trained DeepS2P-P 

model to disordered proteins in the DisProt database and to the regions from the RCSB 

PDB database that are observed with missing electron density, from which we observed 

the qualitative correlation between protein secondary structure populations and protein 

intrinsic disorder. More specifically, protein regions with higher coil populations are more 

likely to be in a disordered state. This observation inspired the application of multitask 
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deep learning frameworks for predicting two or more protein structural properties that is 

introduced in Section 6.4.  

In this application, we also constructed a novel benchmark dataset for protein SSP 

prediction. To the best of our knowledge, it represents the first benchmark dataset for 

this particular prediction task. We envisage that it will be useful for independent test and 

benchmarking for SSP prediction in the future. 

6.4 Simultaneous prediction of IDP/IDR and SSP using 
multitask frameworks 

Recently, the δ2D method was developed for calculating the probability distribution of 

SSPs of IDPs/IDRs from their NMR chemical shifts [66], based on which the s2D method 

was developed to predict SSPs of IDPs/IDRs directly from their amino acid sequences 

[194]. This allowed quantitative characterizing of IDP/IDRs in terms of their structural 

properties for the first time. According to reported validation results, the s2D method 

suggests that disordered states populate random coils preferably and have lower helix 

and strand populations. 

In principle, better prediction performance of protein SSPs and IDPs/IDRs can be 

obtained by predicting SSPs and IDPs/IDRs simultaneously within a multitask 

framework. More specifically, because of the correlation between the population of coil 

structures and their ordered/disordered states, the representation learned for predicting 

SSPs is expected to be partially useful for the prediction of the unstructured proteins, 

and vice versa. The most recent deep learning-based methods including DeepCNF-D 

[158], AUCpreD [207] and SPOT-disorder [153] which use protein secondary structure 

annotation as part of the features for predicting unstructured proteins. However, it is not 

accurate to assign fixed secondary structure elements for predicting regions that do not 

form stable states. Given both SSPs and IDPs/IDRs are unknown, we propose using a 

multitask deep learning framework to simultaneously predict both. 
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In this section, we applied the Multi-task framework and the Cross-stitch framework 

introduced in Section 4.3, for predicting SSPs and IDPs/IDRs simultaneously, with both 

hard parameter sharing and cross-stitch-based soft parameter sharing; namely, Multi-

task-D and Cross-stitch-D. We compared the prediction performance of DeepS2P-D, 

Multi-task-D, Cross-stitch-D and several state-of-the-art IDP/IDR prediction methods, 

including PrDOS2 [211], DisoPred3C [102], MultiCom [326], SPINE-D [212], Biomine 

[327], Prdos-CNF [211], DISOPRED3 [101] and DeepCNF-D [158], and observed  

improved performance when protein SSP prediction was accounted for as the second 

task in a multitask framework. For Cross-stitch-D, we generated cross-stitch units 

between SSP and IDP/IDR prediction, providing a quantitative view of the correlation 

between these two tasks. Furthermore, we investigated the different predictions obtained 

from DeepS2P-D and Multi-task-D to demonstrate the positive effect of the multitask 

design. 

6.4.1 Experimental design 

The datasets for IDP/IDR prediction and SSP prediction are the same as those 

introduced in Section 6.2.2 and Section 6.3.3. Similarly, the same evaluation 

measurements were used for IDP/IDR and SSP prediction respectively (see Section 

6.2.2 and Section 6.3.3). It is noteworthy that both the Multi-task-D and the Cross-stitch-

D models are pre-trained using the alternate training strategy that was introduced in 

Section 4.3.4. Here, the SSP prediction was used as the supporting task for IDP/IDR 

prediction. Therefore, during the process of alternate training, corresponding models 

were only updated and saved when the performance of IDP/IDR prediction was improved 

on the SPINE-D validation dataset.  

6.4.2 Comparison between single-task models and multitask models 

To optimise the parameters for IDP/IDR prediction, we updated models only when their 

performance improved on the SPINE-D validation set during training. We applied this 
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strategy to both the hard parameter sharing Multi-task framework and the cross-stitch 

multitask framework, resulting in the Multi-task-D model and the Cross-stitch-D model. 

We compared the prediction performance of DeepS2P-D, Multi-task-D and Cross-stitch-

D by performing 10-fold cross-validation on the 4,299 protein targets in the SPINE-D 

dataset. Figure 6.2 provides an overview of the performance comparison in terms of 

AUC, CE, BACC and MCC. In each sub-figure, the average scores are labelled with 

coloured lines and a box plot extended to the lower to the upper quartile values is 

demonstrated for each of the three compared models.  
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Figure 6.2 Prediction performance of deep learning models for IDP/IDR prediction using 10-fold 

cross-validation. 
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While all hyper-parameters remained the same, the Multi-task-D model improved the 

average AUC score by 0.002 and decreased the cross-entropy loss by 0.002 when 

compared with DeepS2P-D, while the Cross-stitch-D model improved the average AUC 

score by 0.003 and decreased the cross-entropy loss by 0.002 when compared with 

DeepS2P-D. These improvements demonstrated the positive effect of combining the 

task of SSP prediction (as a supporting task) with that of IDP/IDR prediction. Compared 

to the single-task DeepS2P-D model, the Multi-task-D and Cross-stitch-D model have 

the advantage of simultaneously predicting SSPs and IDPs/IDRs, thereby allowing the 

incorporation of representations learned for the other task as the additional supportive 

evidence and the global optimisation of all parameters of both tasks. 

6.4.3 Independent test on CASP 9 and CASP 10 targets 

Similar to Section 6.2.4, the performance of DeepS2P-D, Multi-task-D and Cross-stitch-

D in terms of TP, FP, TN, FN, BACC, MCC and AUC were evaluated on the CASP9 

targets. The performance was compared with the top four models listed in the IDP/IDR 

prediction assessment in CASP9 and CASP10, respectively, as well the more recent 

DeepCNF-D model [158]. Feature groups and algorithms of compared models are listed 

in Table 2.1. All three models DeepS2P-D, Multi-task-D and Cross-stitch-D introduced 

in this study are based only on the homology profile PSSM, derived from the single-task 

framework DeepS2P or from the multitask deep learning frameworks.  
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Table 6.7 Performance comparison for IDP/IDR prediction (CASP9). 

 Targets TP FP TN FN BACC MCC AUC 

PrDOS2 117 1,468 2,340 21,318 949 0.754 0.418 0.855 

DisoPred3C 117 839 180 23,478 1,578 0.670 0.508 0.854 

MultiCom 110 953 934 21,695 1,310 0.690 0.413 0.853 

SPINE-D 117 1,399 2,774 20,884 1,018 0.731 0.365 0.832 

DeepCNF-D 117 - - - - 0.752 0.486 0.855 

DeepS2P-D 117 903 256 23,402 1,514 0.681 0.510 0.856 

Cross-stitch-D 117 883 248 23,410 1,534 0.677 0.505 0.860 

Multi-task-D 117 905 244 23,414 1,512 0.682 0.514 0.867 

                                       * The best performance in terms of TP, FP, TN, FN, BACC, MACC, and AUC was highlighted as bold. 
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According to the evaluation on CASP9 in Table 6.7, compared with the other 

methods, Cross-stitch-D and Multi-task-D improved the AUC score to 0.860 and 0.867, 

respectively. In terms of BACC, PrDOS2 still performed best among all models with a 

score of 0.754. In comparison, the DeepS2P-D, Cross-stitich-D and Multi-task-D 

achieved BACC scores of 0.660, 0.677 and 0.682, respectively. As for MCC, Multi-task-

D achieved the best, improving the MCC score by 2.8%, as compared to the MCC score 

of the DeepCNF-D model. According to the prediction statistics based on TP, FP, TN 

and FN, Multi-task-D achieved superior performance to that of DeepS2P-D by making 

more true-positive and true-negative prediction and less false-positive and false-negative 

predictions.  

6.4.4 Quantitative correlation between IDP/IDR and SSP predictions 

Besides simultaneously predicting IDPs/IDRs and SSPs, the Cross-stitch-D model also 

automatically learned the linear correlation between each of the corresponding layers for 

these two tasks. The cross-stitch unit ! in the Cross-Stitch framework is defined as 

follows (see Section 4.3.3),  

! = #
$%% $&%
$%& $&&

' 

It was populated with real-valued correlations for convolutional layers conv1, conv2 and 

conv3 and the fully-connected layer fc1. This is illustrated as a heat map in Figure 6.3, 

where darker orange indicates strong dependence.  
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Figure 6.3 Cross-stitch units indicating a linear correlation between IDP/IDR prediction (task A) 

and SSP prediction (task B). 

 

The heat map in Figure 6.3 is divided into four areas: cross_stitch_unit(AA), 

cross_stitch_unit(BA), cross_stitch_unit(AB) and cross_stitch_unit(BB), corresponding 

respectively to $%% , $&% , 	$%&  and 	$&&  in the cross-stitch units ! , where task A 

represents IDP/IDR prediction and task B represents SSP prediction. Here, $%% and $&& 

connect the outputs from previous layers of the same task, while $&% and $%& connect 

the outputs from previous layers of the other task. According to the correlation heat map, 

$%% and $&& are darker than $&% and $%&, indicating that both tasks rely mainly on the 

outputs of its own previous layer. With the hidden layers going deeper, the dependency 

on the other task increases and the dependency on the same task decreases. It indicates 

that layers closer to the input layer tend to be more task-specific, while layers closer to 

the output layer are more likely to be affected by the other task. 

6.4.5 Case study on T520, p53 and SOSSB1 

To better understand the mutual support between SSP and IDP/IDR prediction, we 

plotted the predicted results of DeepS2P-D, Multi-task-D, s2D [194], PSIPRED [104], 

PrDOS2 [211] and DISOPRED3 [101] for target T0520 from CASP9 in Figure 6.4. In this 

figure, both (a) and (b) show the results for the protein T520 from the CASP9 benchmark 
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dataset.  Figure 6.4 (a) demonstrates the IDP/IDRs (the black line) predicted by the 

single-task framework DeepS2P-D, the IDP/IDRs (the red line) and the SSPs (green, 

blue and grey bars for helix, strands and coils) predicted by Multi-task-D, the IDP/IDRs 

(the ‘D’ symbol in the top axis) annotated in the CASP9 benchmark dataset. In order to 

compare the predicted results of DeepS2P-D and Multi-task-D to that of existing methods, 

in Figure 6.4 (b), we demonstrated the IDP/IDRs (the black line) predicted by PrDOS2, 

the IDP/IDRs (the red line) predicted by DISOPRED3, the SSPs (green, blue and grey 

bars for helix, strands and coils) predicted by the s2D method, and the secondary 

structures (the ‘H(elix)’, ‘E(strands)’, and ‘C(oils)’ labels in the top axis) predicted by 

PSIPRED.  

 

Figure 6.4 Prediction results for target T0520 in CASP9 by DeepS2P-D, Multi-task-D, 

PSIPRED, DISOPRED, PrDOS2 and s2D. 

 

According to Figure 6.4 (a), both DeepS2P-D and Multi-task-D predicted the first 

short IDR (residues 1-2) with one false positive prediction at residue 3 and failed to 

predict the second short IDR (residues 23-26). The third long IDR (residues 174-189) 
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was predicted by Multi-task-D with full accuracy, while DeepS2P-D predicted only 12 of 

the 16 disordered residues. This difference can be explained by the additional support 

obtained from the simultaneously predicted higher coil populations for residues 172-189 

(indicated by ‘grey’ bars), which is only available in the Multi-task-D model. This, 

altogether, shows the benefits of using a multitask framework over a single-task 

framework. 

In Figure 6.4 (b), the SSP prediction results of the s2D method, Multi-task-D and the 

SS prediction results of PSIPRED generally agree with each other. In IDP/IDR prediction, 

DISOPRED3 missed the first short IDR and the first two residues in the third long IDR 

while PrDOS2 missed the first three residues in the third long IDR. 

We further applied DeepS2P-D and Multi-task-D to protein p53 and SOSSB1 

selected from the DisProt 7.0 database [89]. The prediction results are plotted in Figure 

6.5. We discuss the respective results for these two proteins below.  

p53. The p53 protein is composed of three functional regions, including the N-

terminal region, the core DNA-binding region and the C-terminal region [329]. The N-

terminal region is further divided into a transaction-activation domain (TAD, residues 1-

63) and a proline-rich area (residues 64-93) [329]. The C-terminal region is further 

divided into a tetramerisation domain (residues 320–356) and a regulatory domain 

(residues 363–393) [330]. Multi-task-D predicted four disordered regions, where region 

1 (residues 1-15) and region 2 (residues 56-92) are located in the N-terminal region, and 

region 3 (residues 287-322) and region 4 (residues 359-393) in the C-terminal region. 

 



 207 

 

Figure 6.5 Prediction results for p53 and SOSSB1 by DeepS2P-D and Multi-task-D. 

 

According to [329], a) the whole N-terminal region p53(1-93) is disordered and b) 

residues 21-25 form a residual ∂-helical segment, which is consistent with the known 

propensity of residues 18-25 to form an ∂-helix when binding to MDM2 [331]. The first 

two predicted IDRs by Multi-task-D do not cover the whole N-terminal region, but the 

predicted SSPs in the gap region 18-23 reveals a larger helix population, which is 

consistent with b). According to the correlation between IDPs/IDRs and SSPs, a higher 

helix population may explain the predicted structure states in this region. 

Another observation in the N-terminal region is that the second IDR (residues 56-92) 

predicted by Multi-task-D corresponds to the proline-rich domain (residue 64-93). 

According to [332], no significant chemical shifts were observed in this proline-rich 

domain, but resonances undergoing significant chemical shift changes were observed in 

the segment (residues 18-57), which corresponds to the structured region (residues 16-

55) that was predicted by Multi-task-D. These corresponding regions suggest that 
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segments with significant chemical shift changes are less likely to be predicted as an 

IDR, which in turn explains the predicted structure states in residues 16-55. 

The third predicted IDR (residue 287-322) was validated by the crystal structure of 

the core domain of p53 introduced in [333]. According to this crystal structure of p53, 

residues 278-289 form a ∂-helix segment H2 for which the Multi-task-D model predicted 

an increase of helix population from 0.137 to 0.668 followed by a decrease to 0.471. With 

the decrease of helix population and the increase of the coil population, the H2 segment 

ends and, according to [333], residues up to Thr-312 are disordered. This disordered 

region, ranging from the end of H2 at residue 289 to residue Thr-312, overlaps with the 

third predicted IDR (residues 287-322). 

Finally, the whole C-terminal region of p53 was annotated as a disordered region in 

DisProt 7.0. However, the Multi-task-D model predicted the regulatory domain (residues 

363–393) to be disordered and the tetramerisation domain (residues 320-356) to be 

populated with strands and helixes. This observation is consistent with the results in 

[329], showing that the tetramerisation domain of p53 adopts a well-defined conformation 

and is a folded domain. Our predictions validated these results. 

SOSSB1. According to [334], residues 5-109 in SOSSB1 are composed of 6 β-

strands where β1, β3, β4, β5 and β6 form a typical OB fold and β2 is a small extra	β 

strand that is antiparallel to β3. This observation is validated by the 6 peaks of predicted 

strand populations in SOSSB1 (15-100) by the Multi-task-D model. The longest IDR 

(residues 110-211) is also predicted by DeepS2P-D and Multi-task-D. Other IDRs of 

SOSSB1 are relatively shorter, including residues 11-18, residues 28-37 and residues 

71-81. For these shorter regions, despite that higher coil populations were predicted in 

residues 11-16 and residues 26-37, the IDR prediction scores did not surpass the cut-

off threshold of 0.5. This indicates that if the predicted coil population is in a short region, 

this region is less likely to be predicted as an IDR. In another word, it indicates that the 

predicted IDRs are more likely to co-occur in long regions with predicted high coil 

populations. 
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6.4.6 Conclusion 

In this section, we simultaneously predicted IDPs/IDRs and SSPs by exploring the 

mutual correlation between these two tasks, using multitask deep learning neural 

networks. The cross-validation and independent test results demonstrate that the deep 

learning model DeepS2P-P outperforms the s2D method for predicting protein SSPs and 

that the representations learned for SSP and IDP/IDR prediction are mutually supportive. 

However, despite the improved performance in both IDP/IDR and SSP prediction 

using multitask deep learning frameworks, the frameworks presented here can be 

extended in several ways. Firstly, additional protein features can be incorporated to 

improve the prediction performance. Other features that have proved useful for IDP/IDR 

prediction include physicochemical properties, structural features, and evolution-based 

features. Secondly, the Multi-task framework can be modified to automatically learn non-

linear correlations among multiple tasks. The current cross-stitch framework only 

explores the linear relations between multiple tasks, which is a relatively simple 

assumption of the correlation among different protein sequence-based predictions. 

Third, other related tasks can be added to the multitask frameworks. 

6.5 Chapter summary 

In the chapter, we applied the DeepS2P framework to two protein structure properties, 

i.e. the protein intrinsic disorder (using the DeepS2P-D model) and protein secondary 

structure populations (using the DeepS2P-P model). We conducted comprehensive 

comparison experiments to determine the consolidated model structure of DeepS2P-D 

and DeepS2P-P. In IDP/IDR prediction, the positive effect of using deep learning 

architecture was demonstrated in two set of results. Firstly, during the process of hyper-

parameter tuning, average accuracy was improved from 0.915 to 0.923 when the hidden 

layers were improved from 1 to 3 (Table 6.1). Secondly, when comparing existing 

machine learning methods for IDP/IDR prediction on CASP9 and CASP10 targets, the 
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prediction performance of deep architectures in general were superior compared to 

those achieved by shallow architectures (Table 6.2 and Table 6.3).  

In SSP prediction, we compared the performance of linear models (the linear 

regression model), non-linear shallow models (the s2D method) and deep learning 

models (the DeepS2P-D model). We found that the DeepS2P-D model significantly 

improved the prediction performance compared to the previous two, which demonstrated 

the effectiveness of the DeepS2P framework in protein structure prediction tasks.  

Based on the validation results of DeepS2P-P on disordered proteins and regions, 

we found that there exists close correlation between protein intrinsic disorder and 

secondary structure populations. It also validated existing experimental observations 

between these two protein structural properties (see Section 4.3). Therefore, we applied 

the proposed multitask frameworks to simultaneously predict IDP/IDR and SSP. By using 

SSP prediction as the supporting task for IDP/IDR prediction, we constructed the Multi-

task-D model and the Cross-stitch-D model. Results in cross-validation test and 

independent tests demonstrated that Multi-task-D and Cross-stitch-D achieved superior 

performance compared to DeepS2P-D. Moreover, we provided case studies by applying 

the multitask prediction models to protein p53 and SOSSB1, based on which we 

observed supporting evidence of IDP/IDR prediction from the simultaneously predicted 

SSPs.  Finally, using the Cross-stitch-D model, for the first time, we generated the 

quantitative correlation between the predictions of IDP/IDRs and SSPs. 
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7 Phosphorylation site prediction 

7.1 Introduction  

In Section 4.1.4, Section 4.2 and Section 4.4, we introduced the application framework 

of context2vec for residue-level predictions, the CNN-based deep learning framework for 

predicting residue-level functional properties, and the deep transfer learning framework 

for predicting functionally important sites of enzymes that are organized in hierarchical 

structure. In this chapter, we introduce the application of these three deep learning 

techniques and frameworks to phosphorylation site prediction.  

7.2 Protein kinase and its phosphorylation sites  

Phosphorylation is the most common type of post-translation modification (PTM), which 

plays an essential role in the many cellular processes in eukaryotes [335, 336]. It is 

estimated that there are 13 000, 11 000, and 3000 phosphoproteins and 230 000, 

156 000, and 40 000 phosphorylation sites exist in human, mouse, and yeast, 

respectively [337]. Phosphorylation refers to the post-translational modification where 

the phosphoryl group is covalently bound to amino acid residues such as serine (S), 

threonine (T) and tyrosine (Y), histidine (H) and lysine (amide bond), cysteine (thioester 

bond) or glutamic and aspartic acid (mixed anhydride bond) [34]. It involves the transfer 

of the phosphoryl group (e.g. γ-PO32-) from the universal phosphoryl donor adenosine 

triphosphate (ATP)  to the side chain of corresponding amino acids such as S, T, Y and 

H [338], resulting the adenosine diphosphate (ADP)  which losses the phosphoryl group 

and the phosphoserine which gains the phosphoryl group. Residues of amino acid type 

S, T, Y or H, the sites on which phosphorylation happens, are referred to as 

phosphorylation sites or phosphosites.  
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Phosphorylation is chemically catalysed by protein kinases, a group of enzymes that 

facilitates the transfer of the phosphate group to substrates34 [338]. Here, the substrates 

of phosphorylation refer to proteins that protein kinases catalyse. According to KinBase, 

more than 500 protein kinases have been identified in the human genome, which was 

organised into a classification tree of kinase subfamilies, families, and groups [300].  

Different protein kinases specifically catalyse a group of substrates that matches its 

specificity criteria. The specificity of protein kinases relies on the combination of a 

number of independent and imperfect specificity mechanisms, including the structure of 

the catalytic site, local and distal interactions between the kinase and substrate, the 

formation of complexes with scaffolding and adaptor proteins that spatially regulate the 

kinase, systems-level competition between substrates, and error-correction mechanisms 

[335]. Therefore, phosphorylation is, to some extent, kinase-specific.  

The experimental techniques for the identification of phosphosites include Two-

dimensional gel electrophoresis (2D gel) [339] and large-scale mass spectrometry [55]. 

However, due to the expensive nature of these experimental methods, computational 

methods for predicting phosphorylation sites at a large scale are needed.  

In this chapter, we introduce phosphorylation site prediction based on deep learning 

techniques. Firstly, we evaluate the proposed distributed representation of residue-level 

sequence contexts, context2vec, as a complementary input feature for biological 

representations in phosphorylation site prediction. Secondly, we demonstrate the 

limitations of applying the DeepS2P framework to phosphorylation sites of kinases with 

limited training data. Finally, we apply the DeepTransfer framework to predict 

phosphorylation sites of protein kinases that are organized in a four-level hierarchical 

classification system.  

7.3 An overview of phosphorylation site prediction 

                                            
34  A substrate refers to the objects upon which the catalyse reaction happens.  
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The accurate prediction of kinase-mediated phosphorylation sites is important for 

functional annotations of target substrates and the elucidation of cellular signalling 

pathways underlying such phosphorylation events. 

According to previous studies, the prediction of phosphorylation sites is addressed 

in two ways, i.e. general phosphorylation site prediction and kinase-specific 

phosphorylation site prediction. The former only considers the difference between 

different phosphorylation site types, for example, serine, threonine and tyrosine 

phosphorylation sites [216, 221], while the latter distinguishes different kinase-regulated 

phosphorylation sites in a kinase-specific manner [77, 214, 216, 218, 219, 340].  

In general phosphorylation site prediction, the three most commonly phosphorylated 

sites were considered, including the serine (S), threonine (T) and tyrosine (Y) sites. 

Considering the different local sequence patterns demonstrated in these three kinases 

phosphorylation sites, three independent binary classifiers are built to predict whether a 

S, T or Y site is phosphorylated, respectively. Therefore, the general phosphorylation 

site prediction for target residue 01 can be formalised as follows,   

!2: 4(678) → ;

1… =4	01	=>	?ℎA>?ℎA0BCDEFG.						

	

0… =4	01	=>	JAE	?ℎA>?ℎA0BCDEFG

	 	 	 [Eq. 7.1] 

where > ∈ L, N, O.  

In kinase-specific phosphorylation site prediction, a common assumption is that 

phosphorylation sites of the same protein kinase share similar sequential or structural 

patterns. Accordingly, independent binary classifiers are constructed for each kinase. 

Therefore, the kinase-specific phosphorylation site prediction is formalized as follows, 

!P: 4(678) → ;

1… =4	01	=>	?ℎA>?ℎA0BCDEFG							

				

0… =4	01	=>	JAE	?ℎA>?ℎA0BCDEFG

	 	 	 [Eq. 7.2]	

Where S ∈ PKA, PKC, CDK, CK2, SRC, …. Here, PKA, PKC, CDK, CK2 and SRC are 

some of the most widely researched protein kinases.  
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7.4 Phosphorylation site prediction based on context2vecs 

In Section 4.1.4, we introduced the application of the distributed representation of 

protein sequences in three different scenarios. In this section, to validate the 

effectiveness of context2vec in residue-level predictions, we systematically evaluate and 

analyse the performance of context2vec in the task of phosphorylation site prediction, 

termed PhosContext2vec. More specifically, to take into consideration the dependence 

between phosphorylation sites and their sequential contextual patterns, we generated 

the distributed representation of the local sequence context for each potential 

phosphorylation site and then used it as a contextual feature vector to predict both 

general and kinase-specific phosphorylation sites. In particular, PhosContext2vec 

enables the representation of more specific contextual information than sequence-level 

features (such as ProtVec) [193] and provides contextual information complementary to 

other commonly used residue-level features, such as position-specific scoring matrixes 

and secondary structures [8, 99, 101]. 

Specifically, we propose two different implementation strategies to generate 

distributed contextual feature vectors for phosphorylation site prediction and compared 

their predictive performance. Firstly, we apply the word2vec-based summation 

implementation, i.e. ProtVet [193], to residue-level sequence contexts, referred to as 

context2vecadd in this paper. Secondly, we apply the doc2vec model [169] to infer the 

distributed representation of residue-level sequence contexts directly from a pre-trained 

distributed memory network, referred to as context2vecinference. The major difference 

between context2vecadd and context2vecinference is that the latter considers the order of 

amino acid sequences in the context of each residue, while the strategy of representation 

summation used by the former implementation does not consider this important aspect. 

Nevertheless, a disadvantage of context2vecinference is that the quality of the inferenced 

representations may decrease slightly during the process of approximate inference.  
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In this section, we applied both context2vecadd and context2vecinference to generate the 

prediction models of phosphorylation sites, benchmarked the performance of 

PhosContext2vec for both general and kinase-specific phosphorylation site predictions, 

and constructed the corresponding best-performing models for each type of 

phosphorylation sites and kinase families.  

7.4.1 Selected residue-level features for phosphorylation site prediction 

We constructed models for general and kinase-specific phosphorylation site prediction 

using the Support Vector Machine (SVM) algorithm [145]. For each of the three 

phosphorylation site types S, T, and Y, and each of the five kinase families AGC/PKC, 

AGC/PKA, Other/CK2, CGMC/CDK and TK/SRC, an independent SVM model was 

constructed based on the proposed contextual feature vector in conjunction with six other 

residue-level feature groups. The contextual feature vector was generated from the 

aforementioned distributed representation of protein sequences and segments. The six 

residue-level features are the Shannon entropy, the relative entropy, protein disordered 

property, secondary structures, Taylor’s overlapping properties and average cumulative 

hydrophobicity, which are briefly described below.  

1. The Shannon entropy. It is a feature used for quantifying the conservation of 

potential phosphorylation sites [341]. It is calculated based on the weighted 

observed percentage (WOP), which can be generated by PSI-BLAST [99]; 

2. The relative entropy. It measures the conservation of amino acids compared to 

the background distributions, for example, BLOSUM62 [342]. It is also calculated 

based on the WOP; 

3. Protein disorder information (DISO). Certain regions of the protein do not form 

stable structures and are called disordered regions. Several previous studies 

indicate that incorporating protein disorder information is useful for improving the 

prediction performance [298, 340, 343-346]. In this study, the protein disorder 

information was predicted using the DISOPRED3 program [101]; 
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4. Protein secondary structure (PSS). It includes helix, strands and coil assignments 

in proteins. We used the tool package PSIPRED [104] to predict the secondary 

structure information for each protein sequence; 

5. The Taylor’s overlapping property (OP) .. It describes amino acid groups with 

respect to physiochemical properties. Each amino acid is encoded into 10 bits, 

each representing one of 10 physiochemical properties [347]; 

6. The average cumulative hydrophobicity (ACH). A varying sliding window of sizes 

3, 5, 7, …, 21 is used to extract the local sequence environment surrounding a 

potential phosphorylation site. The average hydrophobicity of all amino acids in 

the local window is calculated [203]. In this study, the Sweet and Eisenberg 

hydrophobicity index [348] was used to encode this feature group. 

 

7.4.2 Generation of context2vecs for phosphorylation site prediction 

The generation of contextual feature vector was based on the distributed representation 

of protein sequences introduced in Section 4.1. More specifically, we generated the 

distributed representation of residue-level sequence contexts within specific contextual 

window sizes. This residue-level sequence context was referred to as TLT	(U, J) in 

previous studies, namely the Phosphorylation Site Peptide, which was composed of	m 

upstream residues and J downstream residues of the target sites [215]. In this study, we 

only considered the situation where an equal number of residues from the upstream and 

downstream of the target site was used, i.e. U = J. Thus, the contextual feature vector 

for a potential phosphorylation site 01 can be computed as follows,  

1. We extracted the contextual window of size W1 = 2U + 1 for a residue 01, which 

consists of m upstream residues and J = U downstream residues. The resulting 

contextual window was denoted as Y1 = 01Z[, 01Z[\], … , 01, … , 01\[Z], 01\[; 
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2. We performed J-gram split of the contextual window W1 , resulting in a list of 

biological words; 

3. We generated the distributed representation of W1 in two different ways: (i) by 

summing up the distributed representation of all its biological words, named 

context2vecadd, and (ii) by feeding the list of biological words to the pre-trained 

distributed memory network ^, named context2vecinference. 

The final feature vector of the potential phosphorylation site 01  is constructed by 

stacking the above seven groups of feature vectors together, resulting in a 126-

dimensional feature vector. 

Figure 7.1 (a) illustrates the six groups of residue-level input features generated 

from homology profiles, physicochemical properties and structural information, and 

Figure 7.1 (b) provides a flowchart of how to generate the purely data-driven 

representation, context2vec, for local sequence contexts.  

 

Figure 7.1 Extraction of residue-level feature groups and the generation of the distributed 

contextual feature vector for phosphorylation site prediction. 
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7.4.3 Experimental design 

Datasets. To assess the performance of PhosContext2vec in comparison with other 

existing methods, we conducted cross-validation and independent tests in both general 

and kinase-specific phosphorylation site predictions. 

For general phosphorylation site prediction, we used the same training and 

independent test datasets of annotated Serine (S), Threonine (T) and Tyrosine (Y) 

phosphorylation sites that were introduced in PhosphoSVM [221]. The training dataset, 

termed PELM, was constructed from the database Phospho.ELM (Version 9.0) [94] 

which includes experimentally verified phosphorylation sites in animals such as Homo 

sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans. It has 

6632, 3226 and 1,392 proteins containing 20,960, 5,684 and 2,163 phosphorylation sites 

for S, T, and Y sites respectively. The independent test set, named PPA, was extracted 

from the database PhosphAt (Version 3.0) [349] which only contains plant 

phosphorylation sites from A. thaliana. The PPA dataset contains 3,037, 1,359 and 617 

substrate proteins with 5,449, 1,686 and 676 annotated phosphorylation sites, for S, T, 

and Y sites respectively. 

For kinase-specific phosphorylation site prediction, we combined phosphorylation 

site data obtained from Phospho.ELM [94] and Swiss-Prot/UniProt [39] and constructed 

training and independent test datasets in following steps. Firstly, we downloaded 

555,594 reviewed proteins from Swiss-Prot/UniProt and extracted all the proteins that 

had at least one phosphorylation site annotation, resulting in 14,458 proteins in total. We 

then collected triplet-record annotations (protein, phosphorylation site position, and 

kinase) from Swiss-Prot/UniProt for the 14,458 proteins and removed 2,155 triplet-record 

annotations that were labelled as ‘by similarity' in UniProt. The resulting 56,772 triple-

record annotations contained 43,785 phosphorylated S sites, 10,397 phosphorylated T 

sites, and 4,711 phosphorylated Y sites, among which 7,021, 2,515 and 2,066 were 

respectively annotated with kinase types. Similarly, we extracted the triple-record 
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annotations from the Phospho.ELM (version 9.0) database, resulting in 43,027 

phosphorylated S sites, 9,556 phosphorylated T sites, and 4,723 phosphorylated Y sites, 

among which 2,961, 943, and 1,031 sites were respectively annotated with 

corresponding kinase types. 

In order to combine triple-record annotations from Swiss-Prot/UniProt and 

Phospho.ELM, we employed the following procedures.  

(a) We cross-checked and renamed proteins extracted from the Swiss-Prot/UniProt 

database whose sequences have been updated compared to those in the 

Phospho.ELM database;  

(b) We manually corrected the kinase names according to the hierarchical structure 

of the kinase groups, families, subfamilies, and types (Please refer to Table S1 

in the GPS 2.0 paper [214]);  

(c) We removed redundant entries that were included in both two databases; and  

(d) We excluded kinases that had less than 20 triple-record annotations. In total, we 

obtained consolidated phosphorylation sites for 138 kinase groups, families, 

subfamilies and protein kinases.  

In this study, we only performed cross-validation and independent tests on five 

kinase families that had more than 500 triple-record annotations. These included 

AGC/PKC, AGC/PKA, Other/CK2, CGMC/CDK, and TK/SRC with 962, 897, 668, 628, 

and 631 triple-record annotations, respectively. To obtain the training and testing 

datasets, we divided the triple-record annotations into five subsets, among which four 

were used as the positive samples in training data and the remaining one was used as 

the positive samples in testing data. At the same time, S, T, and Y sites that were not 

annotated as phosphosites were treated as negative samples. A statistical summary of 

the finally curated datasets is shown in the Appendix A.  
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Table 7.1 Statistical summary of the curated datasets for the five kinases with the most number 

of annotations. 

    Training Testing 

AGC/PKA #pos 716 181 
 #neg 58,967 15,288 

AGC/PKC #pos 766 196 
 #neg 41,473 10,672 

CMGC/CDK #pos 486 142 
 #neg 34,192 7,443 

Other/CK2 #pos 532 136 
 #neg 20,564 6,167 

TK/Src #pos 496 135 
 #neg 29,591 8,246 

 

The curated phosphorylation site datasets are highly imbalanced, whereby the 

negative examples are hundreds of times more than the positive examples. In previous 

studies, the issue of imbalanced datasets was addressed by down-sampling the negative 

examples [215, 216, 218, 221] or augmenting the positive examples [35]. For down-

sampling, the negative examples can be randomly sampled from all [S, T and Y] sites 

that were not annotated as phosphorylation sites [215, 218, 221]. They can also be 

sampled from non-phosphorylated S, T or Y sites depending on the type of site or kinase 

the model was trained for [216]. In this paper, we included all [S, T, and Y] sites, which 

were not annotated as phosphosites, as negative examples for the down-sampling 

performed in the training set, reducing the number of negative examples to be equal to 

the number of positive examples. In the independent test set, we included S, T or Y sites 

depending on the type of sites or the kinase the model was trained for, without down-

sampling. For example, for the model that was trained to predict phosphorylated Y sites, 

we only included all Y sites, which were not annotated as phosphosites, as negative 

examples. While for the model that was trained to predict sites that are specifically 

phosphorylated by the AGC/PKA kinase, we included non-phosphorylated S and T sites 

as negative examples. 
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Cross-validation and independent tests. We performed 10-fold cross-validation 

tests using each of the aforementioned benchmark datasets where, in each iteration, 

nine folds were used for training the model while the remaining fold was used to validate 

the prediction performance of the trained model. This process was repeated 10 times so 

that each fold was used for both model training and validation. Based on 10-fold cross-

validation results, we selected the model that achieved the best performance on the 

validation set and further tested its performance on the independent test datasets. 

Different from the cross-validation for which down-sampling was used to ensure 

selection of equal numbers of positive and negative examples, independent tests were 

performed against imbalanced datasets which contained more negative examples than 

positive examples. Therefore, although the performance in independent tests appeared 

to be worse than that in cross-validation tests, it resembled a real-world scenario more 

closely. 

Performance evaluation. We evaluated the prediction performance of constructed 

models using four measurements, including sensitivity, specificity, the Matthews 

coefficients of correlation (MCC) and the area under the ROC curve (AUC) (Please refer 

to Appendix A for detailed equations). Except for AUC, all the other three measures 

rely on the selection of the prediction cut-off thresholds for models to generate the final 

classification outcome. Because different predictors produced different ranges of 

predicted probability scores, we used the False Positive Rate (PFR) to determine 

positive predictions. According to GPS 3.0 [77], the low, medium and high cut-off FPRs 

for S and T sites were respectively set as 2%, 6% and 10%, while the low, medium and 

high cut-off FPRs for Y sites were respectively set as 4%, 9% and 15%. 

7.4.4 The effect of incorporating the distributed contextual feature vectors 

To characterize the effect of distributed representation of sequence contexts on both 

general and kinase-specific phosphorylation site prediction, we performed 10-fold cross-

validation tests and evaluated the performance of models trained using residue-level 
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features only (Residue-level), the context2vec generated with the inference strategy 

(Context2vecinference), the context2vec generated with the addition strategy 

(Context2vecadd), the combination of residue-level features and context2vecinference 

(Residue-level+Context2vecinference), the combination of residue-level features and 

context2vecadd (Residue-level+Context2vecadd), and the combination of residue-level 

features and ProtVec [193] (Residue-level+prot2vecadd (ProtVec)). For the combined 

feature vectors, they were constructed by concatenating two feature vector 

representations for each target residue. 

Table 7.2 shows the performance results of different models trained using different 

groups of input features for general and kinase-specific phosphorylation site prediction, 

respectively. For Context2vecinference, Context2vecadd, Residue-level+Context2vecinference, 

and Residue-level+Context2vecadd feature vectors, four different contextual window 

sizes (ws) 7, 11, 15, and 19 were used to extract the local sequence contexts based on 

which the context2vec features were generated. It should be noted that the Residue-

level features were representative of the special case of contextual window size 0, while 

the Residue-level+prot2vecadd(ProtVec) represents the special case of infinite contextual 

window size (including the whole sequence).
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Table 7.2 Performance comparison between models trained with and without distributed contextual feature vectors for general and kinase-specific 

phosphorylation site prediction. 

(a) Results for general phosphorylation site prediction 

 ws S T Y 
Residue-level 0 0.842+/-0.008 0.896+/-0.007 0.933+/-0.007 

Context2vecinference 7 0.512+/-0.005 0.557+/-0.016 0.854+/-0.036 

11 0.845+/-0.005 0.861+/-0.011 0.871+/-0.016 

15 0.841+/-0.006 0.848+/-0.010 0.849+/-0.017 

19 0.835+/-0.006 0.836+/-0.014 0.833+/-0.017 

Context2vecadd 7 0.852+/-0.008 0.884+/-0.009 0.909+/-0.011 

11 0.850+/-0.011 0.867+/-0.009 0.875+/-0.017 

15 0.843+/-0.013 0.853+/-0.011 0.856+/-0.018 

19 0.841+/-0.006 0.840+/-0.014 0.840+/-0.018 

Residue-level + Context2vecinference 7 0.887+/-0.008 0.921+/-0.007 0.938+/-0.008 

11 0.889+/-0.008 0.926+/-0.008 0.938+/-0.008 

15 0.889+/-0.008 0.927+/-0.009 0.939+/-0.008 

19 0.887+/-0.008 0.926+/-0.008 0.939+/-0.008 
Residue-level + Context2vecadd 7 0.887+/-0.008 0.920+/-0.008 0.937+/-0.008 

11 0.892+/-0.008 0.927+/-0.007 0.938+/-0.008 

15 0.892+/-0.008 0.929+/-0.006 0.939+/-0.008 

19 0.891+/-0.008 0.929+/-0.005 0.939+/-0.008 
Residue-level + prot2vecadd(ProtVec) inf 0.842+/-0.010 0.901+/-0.006 0.938+/-0.007 

*  For each of the three sites, the best performance of models with combined input features (including Residue-level+ Context2vecadd and Residue-level+ Context2vecinference) was 

respectively highlighted as bold, while the best performance of models with Context2vec-only input feature (including Context2vecadd and Context2vecinference) was highlighted with 

underlines.  
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(b) Results for kinase-specific phosphorylation site prediction 

 

 

 

 

 

 

 

 

 

 

*  For each of the five kinases, the best performance of models with combined input features (including Residue-level+ Context2vecadd and Residue-level+ Context2vecinference) 

was respectively highlighted as bold, while the best performance of models with Context2vec-only input feature (including Context2vecadd and Context2vecinference) was highlighted 

with underlines.

 ws AGC/PKA AGC/PKC CMGC/CDK Other/CK2 TK/Src 
Residue-level 0 0.915+/-0.013 0.898+/-0.022 0.799+/-0.040 0.839+/-0.040 0.956+/-0.011 

Context2vecinference 7 0.609+/-0.043 0.653+/-0.056 0.570+/-0.042 0.736+/-0.056 0.828+/-0.051 

11 0.918+/-0.013 0.862+/-0.031 0.890+/-0.029 0.885+/-0.048 0.913+/-0.014 

15 0.895+/-0.020 0.862+/-0.028 0.885+/-0.030 0.893+/-0.043 0.895+/-0.016 

19 0.880+/-0.018 0.865+/-0.026 0.872+/-0.031 0.889+/-0.044 0.875+/-0.022 

Context2vecadd 7 0.885+/-0.025 0.809+/-0.022 0.903+/-0.030 0.814+/-0.055 0.931+/-0.010 

11 0.925+/-0.013 0.872+/-0.026 0.883+/-0.026 0.882+/-0.037 0.912+/-0.014 

15 0.906+/-0.015 0.882+/-0.023 0.872+/-0.034 0.898+/-0.032 0.893+/-0.017 

19 0.892+/-0.016 0.885+/-0.021 0.869+/-0.034 0.901+/-0.032 0.877+/-0.017 

Residue-level + Context2vecinference 7 0.928+/-0.011 0.897+/-0.028 0.925+/-0.018 0.866+/-0.041 0.960+/-0.009 

11 0.938+/-0.009 0.909+/-0.027 0.908+/-0.018 0.907+/-0.037 0.964+/-0.008 

15 0.937+/-0.010 0.907+/-0.028 0.902+/-0.024 0.919+/-0.034 0.966+/-0.007 
19 0.937+/-0.011 0.909+/-0.024 0.899+/-0.025 0.917+/-0.033 0.965+/-0.008 

Residue-level + Context2vecadd 7 0.927+/-0.012 0.895+/-0.028 0.907+/-0.020 0.864+/-0.040 0.957+/-0.009 

11 0.939+/-0.010 0.911+/-0.023 0.896+/-0.020 0.911+/-0.034 0.962+/-0.009 

15 0.939+/-0.010 0.913+/-0.023 0.890+/-0.022 0.927+/-0.026 0.964+/-0.008 

19 0.940+/-0.010 0.915+/-0.020 0.894+/-0.024 0.929+/-0.024 0.964+/-0.008 
Residue-level + prot2vecadd(ProtVec) inf 0.908+/-0.013 0.874+/-0.022 0.738+/-0.042 0.827+/-0.036 0.954+/-0.010 
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In Table 7.2, the best predictive performance for each phosphorylation site type or kinase 

family achieved by Context2vec-only feature vectors (including Context2vecinference and 

Context2vecadd) and Residue-level+Context2vec feature vectors (including Residue-

level+Context2vecinference and Residue-level+Context2vecadd) with respect to different 

contextual window sizes was highlighted by underline and bold, respectively. 

As clearly shown in Table 7.2 (a) and (b), the models trained using Residue-

level+Context2vec features outperformed the models trained with Residue-level features 

across all three types of phosphorylation sites and five kinase families. For example, the 

models employing the combination of residue-level features and the context2vecinference 

(ws=7) improved the average AUC scores by 0.045, 0.025 and 0.005 for phosphorylation 

site prediction on S, T, and Y sites, and by 0.013, -0.002, 0.126, 0.027, and 0.004 for 

kinase AGC/PKA, AGC/PKC, CGMC/CDK Other/CK2, and TK/SRC, respectively, 

compared with the models trained with residue-level features only. The only exception 

was the AGC/PKC kinase, for which the model trained with context2vecinference of window 

size 7 performed slightly worse than the baseline model. However, the average AUC 

achieved with Residue-level+Context2vecinference feature vectors was increased from 

0.897 to 0.909 when increasing the contextual window size from 7 to 19, resulting in 

better performance than that was achieved by models trained with residue-level features 

only. These improved results demonstrate that, for both general and kinase-specific 

phosphorylation site prediction, the prediction performance achieved with the Residue-

level+Context2vec features could be further improved when the contextual window sizes 

of Context2vec features were appropriately selected. This was more pronounced for 

phosphorylation site types S and T, and the CMGC/CDK kinase, with the average AUC 

scores significantly increased by 0.047, 0.031 and 0.126 (significant level: 95%), 

respectively. 
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Comparing the predictive performance achieved by the models trained with 

Context2vec-only and Residue-level+Context2vec features, it can be observed that the 

models trained with the latter outperformed those trained with the former (Table 7.2). 

Taking kinase-specific prediction as an example, the best performance in terms of AUC 

scores was improved from 0.918, 0.865, 0.890, 0.893, and 0.913 to 0.938, 0.909, 0.925, 

0.919, and 0.966 for AGC/PKA, AGC/PKC, CMGC/CDK, Other/CK2, and TK/Src, 

respectively, when Context2vecinference was used in combination with Residue-level 

features. Similar improvements can be observed by comparing the results achieved by 

Context2vecadd and Residue-level+Context2vecadd. For example, the best AUC scores 

for the five kinase families were improved from 0.925, 0.885, 0.903, 0.901, and 0.931 to 

0.940, 0.915, 0.907, 0.929, and 0.964, respectively, when Context2vecadd was used in 

combination with Residue-level features. The results suggest that the Context2vec, as a 

useful contextual feature vector, can achieve better predictive performance when used 

in combination with residue-level features.  

In terms of the effect of contextual window size, the performance (evaluated in terms 

of AUC scores) depended on the phosphorylation site type and kinase family. In general, 

with the increase of the contextual window size, the AUC score tended to increase until 

reaching the peak and then started to decrease. For example, the average AUC score 

of the models trained using Residue-level+Context2vec features was improved from 

0.887 to 0.892 and decreased to 0.891 when the contextual window size was increased 

from 7 to 15 and decreased from 15 to 19, respectively, for S phosphorylation site 

prediction. For CGMC/CDK, the best AUC score of 0.926 was achieved using the 

contextual window size of 7, and then decreased to 0.899 when the window size was 

increased to 19. As aforementioned, Residue-level features can be seen as the special 

case where the contextual window size is set as 0, whereas the sequence-level 

representation prot2vecadd (i.e. ProtVec) is equivalent to the special case where the 

contextual window size is set as infinite.  
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According to the results in Table 7.2, models that were trained with these two types 

of feature vectors achieved worse performance compared to that of the models trained 

with Context2vec features. These results highlight the need and importance of 

developing specialized distributed representation of local sequence contexts that are 

more informative to address the residue-level prediction tasks, such as phosphorylation 

site prediction in this study.   

7.4.5 The comparison between two implementations of prot2vecs 

We further compared the performance of the two models trained using two types of 

contextual feature vectors generated by context2vecadd and context2vecinference based on 

the same group of results. Figure 7.2 (a) and (b) plot the average AUC scores achieved 

by context2vecadd and context2vecinference models for both general and kinase-specific 

phosphorylation site prediction. Models trained using different contextual window sizes 

7, 11, 15, and 19 (denoted as 3, 5, 7, and 9, respectively) are indicated by different 

colours. For each short line, the left side indicates the average AUC score achieved by 

the context2vecadd model, while the right side indicates the average AUC score 

achieved by context2vecinference model. The tilt angle of each short line thus indicates 

the performance difference between the two contextual representation-based models. 
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(a) General phosphorylation site prediction 

 

(b) Kinase-specific phosphorylation site prediction 

Figure 7.2 Performance comparison between models trained based on context2vecadd and 

context2vecinference feature vectors for (a) general and (b) kinase-specific phosphorylation site 

prediction, evaluated in terms of AUC score. 
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According to Figure 7.2, two important observations can be made. The first 

observation is that, regardless of the selection of the contextual window size, one of the 

two implementations performed better than the other depending on the type of 

phosphorylation sites and kinase families. Specifically, in the case of S/T 

phosphorylation sites and most the of five kinases that phosphorylate S/T 

phosphorylation sites, models trained with context2vecadd performed better than those 

trained with context2vecinference, while in the case of Y phosphorylation sites, the TK/SRC 

kinase that phosphorylates Y sites, and the CGMC/CDK kinase that phosphorylates S/T 

sites, models trained with context2vecinference performed better than those trained with 

context2vecadd. 

The second observation is that the performance of context2vecadd improved faster 

than that of the context2vecinference with the increase of the contextual window size. This 

is manifested by the relative change of the tilt angle with respect to different contextual 

window size in Figure 7.2. For example, for Other/CK2 (represented by the skyblue lines 

in Figure 7.2 (b), the tilt angle had a transition from slightly favoring context2vecinference 

to gradually rising up on the side of context2vecadd with the increase of the contextual 

window size. For CGMC/CDK, the performance of both context2vecadd and 

context2vecinference decreased with the increase of the contextual window size, but the 

performance of context2vecinference decreased faster than that of context2vecadd, resulting 

in shrinking of the tilt angle with the increase of the contextual window size. The 

performance difference between the two implementations of context2vecs validated their 

respective advantages and the disadvantages. On one hand, the context2vecinference took 

into consideration the order of amino acids in protein sequences while context2vecadd 

ignores this important information. On the other hand, the quality of context2vecinference 

may decrease in the approximation-based inference step, while the context2vecadd was 

generated by summing up the pre-trained representations of biological words that are 

directed fetched from the training step. 
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According to the AUC scores and their standard deviations shown in  Table 7.2 and 

Figure 7.2, we finally selected context2vecadd with the window size of 15, context2vecadd 

with the window size of 15, and context2vecinference with the window size of 19 for 

predicting S, T, and Y phosphorylation sites, respectively, and context2vecadd with the 

window size of 19, context2vecadd with the window size of 19, context2vecinference with the 

window size of 7, context2vecadd with the window size of 19, and context2vecinference with 

the window size of 15 for predicting phosphorylation sites of AGC/PKA, AGC/PKC, 

CGMC/CDK, Other/CK2 and TK/SRC kinases, respectively. The results suggest that this 

new distributed representation of contextual features improved the prediction of both 

general and kinase-specific phosphorylation sites. According to the 10-fold cross-

validation results, the overall predictive performance was improved by 0.051, 0.033, and 

0.006 for the prediction of S, T, and Y phosphorylation sites, and improved by 0.025, 

0.017, 0.127, 0.090, and 0.001 for the prediction of AGC/PKA, AGC/PKC, CMGC/CDK, 

Other/CK2, and TK/SRC phosphorylation sites, respectively, compared with those of the 

models that were trained with residue-level feature only.  

7.4.6 Determination of hyper-parameters 

We trained independent SVM models for each of the three types of phosphorylation sites 

and five kinase families, for which two hyper-parameters would influence the prediction 

performance and thus needed to be determined. These two hyper-parameters were the 

kernel type, which determined the kernel that was used for training the model, and the 

penalty parameter C of the error term, which affected the trade-off between the 

complexity and proportion of non-separable examples [350].  

We tested the performance of the models trained with two most commonly used 

kernel types including the linear kernel and the RBF kernel [351], as well as five different 

values (including 1.0, 3.0, 5.0, 7.0 and 9.0) of the penalty parameter C [351]. Note that 

a larger penalty C indicates a stronger penalty on non-separable examples, which will 
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result in more complex models that fit the data more strictly. However, it may also cause 

overfitting at the same time.  

Based on the optimal contextual window sizes and context2vec representation 

implementation selected from above experiments, we performed 10-fold cross-validation 

tests to compare the prediction performance between models trained with the different 

kernels types and five values of penalty parameter C. The corresponding results are 

shown in Figure 7.3, in which “add” and “inference” indicate the context2vecadd and 

context2vecinference representations, respectively. “w” indicates the contextual window 

size. Note that the results of models that did not converge during training were not 

included in this figure.   
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(a) Hyper-parameter tuning in general phosphorylation site prediction 

 

(b) Hyper-parameter tuning in kinase-specific phosphorylation site prediction 

Figure 7.3 Hyper-parameter tuning for SVM models trained with distributed contextual feature 

vectors for (a) general and (b) kinase-specific phosphorylation site prediction.  
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For general phosphorylation site prediction, the RBF kernel performed better for S 

phosphorylation sites, while the linear kernel performed better for T/Y phosphorylation 

sites. At the same time, the best performance for S, T and Y phosphorylation site 

prediction was achieved when the value of the penalty parameter C was set to 3.0, 7.0 

and 7.0, respectively. For kinase-specific phosphorylation site prediction, the RBF kernel 

performed better than the linear kernel across all five kinase families. Accordingly, the 

best performance was achieved when the value of C was set to 5.0, 9.0, 9.0, 3.0 and 3.0 

for the AGC/PKA, AGC/PKC, CMGC/CDK, Other/CK2 and TK/SRC kinase families, 

respectively. 

7.4.7 Independent test for general phosphorylation site prediction 

In order to validate the performance of PhosContext2vec for general phosphorylation 

site prediction, we further performed comprehensive independent tests. Using optimised 

contextual window size, context2vec representation implementations and hyper-

parameters selected on the cross-validation, we trained the models for S, T, and Y sites 

using the PELM training datasets and then evaluated the performance using the curated 

PPA datasets. We submitted the same datasets to other existing predictors including 

GPS 3.0, Musite 1.0 and NetPhos 3.1 and collected the prediction results.  Figure 7.4 

shows the ROC curves and corresponding AUC scores of all the five compared methods 

for general phosphorylation site prediction, for PPA/S, PPA/T and PPA/Y, respectively.  
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Figure 7.4 ROC curves of PhosContext2Vec and four existing methods on the independent test for general phosphorylation site prediction. 
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According to the results shown in Figure 7.4, MusiteDeep achieved the best 

prediction performance in terms of AUC scores, and Musite 1.0 and PhosContext2vec 

outperformed the other two methods, GPS 3.0 and NetPhos 3.1. MusiteDeep achieved 

an overall best performance for S, T and Y phosphorylation site prediction with an AUC 

score of 0.809, 0.701 and 0.647, respectively, while Musite 1.0 achieved the second-

best AUC scores of 0.754 and 0.647 for S and T phosphorylation site prediction and 

PhosContext2vec achieved the second-best AUC score of 0.600 for Y phosphorylation 

site prediction. PhosContext2vec achieved the third-best performance for S and T 

phosphorylation site prediction with an average AUC score of 0.737 and 0.639, 

respectively.  

Among the five compared methods, MusiteDeep is the only method that employed 

the deep learning architecture. It takes raw amino acid sequences as the direct input, 

extracts high abstract representations from the 16 upstream and downstream residues 

using convolutional layers and the attention mechanism, and performs phosphorylation 

prediction based on the extracted representation [78]. In comparison, PhosContext2vec 

employed a more traditional way of decoupling the process of feature extraction and 

predictive model training and the algorithm of SVM which has less expressive power [3], 

which may explain the inferior performance of PhosContext2vec compared to that of the 

MusiteDeep. Nevertheless, the representation extracted in MusiteDeep purely rely on 

the neighbouring residues of the target residue, while the contextual feature vectors in 

PhosContext2vec also involve information that is distributed over large protein sequence 

databases, which represents its advantage as a contextual representation. 

Compared with GPS 3.0 and NetPhos 3.1, both Musite 1.0 and PhosContext2vec 

considered protein disorder information as the input feature for training the models. 

Besides, Musite 1.0 also considered amino acid frequencies and used an ensemble 

learning strategy to make the final prediction, which might be superior to individual SVM 

model or neural network models. GPS 3.0 was designed to predict phosphorylation sites 
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in a way that kinases were clustered in a hierarchical structure, where the training 

examples of related kinases can be reused for training better models. In the case of 

general phosphorylation site prediction, where models were respectively trained for S, T 

and Y sites (not in a hierarchical manner), the hierarchical clustering of kinases did not 

appear to help improve the performance. NetPhos 3.1 predicted phosphorylation sites 

by exploiting local sequential patterns in combination with neural network learning. 

However, different from NetPhos 3.1, PhosContext2vec incorporated both residue-level 

and contextual-level feature vectors in an integrated manner. In addition, the contextual 

feature vectors were generated from a number of different contextual patterns present 

in large protein sequence databases, which could explain why PhosContext2vec 

achieved a superior performance compared to NetPhos 3.1. 

Among the three types of phosphorylation sites, we found that the performance of 

the S site was better than that of the T site, while the performance of Y site was the worst. 

According to a previous study [35], PROSITE motifs could only recognize only 10% of 

annotated Y phosphorylation sites [68], while being able to recognize 48% and 38% of 

respective S and T phosphorylation sites. This indicates that the local patterns of 

phosphorylated tyrosine sites are much more difficult to capture, making them more 

difficult predictions. Table 7.3 provides the sensitivity, specificity and MCC of the 

compared predictor for general phosphorylation prediction.   

7.4.8 Independent test for kinase-specific phosphorylation site prediction 

In this section, in order to validate the performance of PhosContext2vec for kinase-

specific phosphorylation site prediction, we further performed an independent test using 

the datasets extracted from Swiss-Prot/UniProt and Phospho.ELM. As with general 

phosphorylation site prediction, 10-fold cross-validation was performed on the SVM 

models with selected hyper-parameters, from which the model with the best performance 

on valid set was applied to the independent test set. The compared models include GPS 

3.0, MusiteDeep, Musite 1.0, NetPhos 3.1, KinasePhos 2.0, PhosphoPredict and 
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PhosphoPick. Figure 7.5 shows the ROC curves and the corresponding AUC scores of 

these methods. The ROC curves of different methods are indicated by different colors. 

Five panels correspond to the prediction results of AGC/PKA, AGC/PKC, CMGC/CDK, 

Other/CK2 and TK/SRC kinase families, respectively. The performance of a method was 

denoted as “N/A” if such method could not be used to predict phosphorylation sites of a 

corresponding kinase family. 
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Figure 7.5 ROC curves of PhosContext2vec and seven existing methods for kinase-specific phosphorylation site prediction on the independent test. 



 239 

 

As shown in Figure 7.5, different predictors achieved different performance for the 

five tested kinases. For all tested kinases, the most recent MusiteDeep method achieved 

the best performance among all compared methods. For AGC/PKA, Musite 1.0 

performed the second-best with an average AUC of 0.956, surpassing the third-best 

predictor PhosContext2vec by 0.006. Another predictor that achieved an average AUC 

over 0.9 was GPS 3.0. Compared to the four other predictors that achieved the top AUC 

scores, KinasePhos 2.0 and PhosphoPick achieved the worst AUC scores between 0.6 

and 0.7. For AGC/PKC and CGMC/CDK, PhosContext2vec achieved the second-best 

AUC scores of 0.939 and 0.960, respectively. Compared to the predictors with the third-

best performance, PhosContext2vec increased the AUC value by 0.067 and 0.037, 

compared to Musite 1.0 and GPS 3.0, respectively. For Other/CK2, PhosphoPick could 

not predict the potential phosphorylation sites for this kinase family, while all the other 

predictor achieved the most similar performance with the best AUC score of 0.950 by 

MusiteDeep and the worst AUC score of 0.840 by PhosphoPredict. Finally, for TK/SRC, 

GPS 3.0 achieved the best performance with an average AUC score of 0.830, while 

PhosContext2vec achieved the second-best average AUC score of 0.794. Overall, 

MusteDeep, Musite 1.0, GPS 3.0 and PhosContext2vec were evaluated as the top 

performing predictors among all compared methods, while PhosphoPick and 

KinasePhos 2.0 performed the worst. 

The MusiteDeep is the only method that employed the deep learning architecture, 

and its superior performance is consistent despite its of use of raw protein sequence as 

the direct input. As an effective contextual feature vector, the PhosContext2vec can be 

combined as a side channel [352] for further improving the performance of MusiteDeep. 

The inferior performance of KinasePhos 2.0 may be explained partly by the incomplete 

results obtained from its web server. The current web server of KinasePhos 2.0 only 

predicted phosphorylation sites with scores above the given specificity thresholds (four 

options are available: default, 80%, 90% and 100%). NetPhos 3.1 performed well for 
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Other/CK2 and TK/SRC and relatively well for other kinase families, for example, 

AGC/PKA. PhosphoPick achieved an inferior performance for most tested kinases. It is 

the only predictor developed based on integrating protein functional features such as 

protein-protein interactions. However, on the other hand, it did not consider any features 

from amino acid sequences [220]. We would recommend that it should be used in 

combination with other sequence-based predictors to achieve better performance. 

To quantify the performance of different predictors in terms of other measurements, 

we also calculated sensitivity, specificity, and MCC values. As mentioned in Section 

7.4.3, the low, medium and high cut-off FPRs for S/T sites were set to 2%, 6% and 10%, 

while the low, medium and high cut-off FPRs for T sites were set to 4%, 9% and 15%, 

respectively. In Table 7.3 and Table 7.4, we used the same cut-off FPRs for comparing 

the different predictors. 
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Table 7.3 Performance comparison between different predictors of general phosphorylation sites, evaluated in terms of Sensitivity (SE), Specificity (SP) 

and Matthews correlation coefficient (MCC). 

 Predictor GPS 3.0 MusiteDeep Musite 1.0 NetPhos 3.1 PhosContext2vec 

Datasets Cutoff 
threshold SE SP MCC SE SP MCC SE SP MCC SE SP MCC SE SP MCC 

PPA.S Low 0.090 0.980 0.082 0.288 0.980 0.280 0.208 0.980 0.206 0.030 0.989 0.029 0.112 0.980 0.106 
 Medium 0.255 0.940 0.136 0.452 0.940 0.262 0.385 0.941 0.222 0.120 0.953 0.059 0.271 0.940 0.147 
 High 0.366 0.900 0.148 0.532 0.899 0.235 0.468 0.901 0.203 0.221 0.901 0.070 0.375 0.900 0.153 
PPA.T Low 0.055 0.980 0.047 0.124 0.980 0.131 0.097 0.980 0.102 0.026 0.981 0.009 0.077 0.980 0.075 
 Medium 0.138 0.940 0.063 0.235 0.940 0.137 0.194 0.941 0.107 0.096 0.941 0.030 0.164 0.940 0.083 
 High 0.211 0.901 0.073 0.308 0.900 0.131 0.253 0.901 0.099 0.154 0.901 0.035 0.229 0.898 0.081 
PPA.Y Low 0.043 0.966 0.012 0.095 0.959 0.062 0.089 0.953 0.045 0.074 0.950 0.026 0.077 0.950 0.029 
 Medium 0.107 0.913 0.017 0.179 0.909 0.071 0.151 0.909 0.049 0.120 0.911 0.025 0.148 0.908 0.046 
 High 0.179 0.850 0.020 0.284 0.850 0.088 0.234 0.850 0.056 0.200 0.850 0.033 0.238 0.850 0.058 

* The best performance is highlighted in bold, while the second-best performance is highlighted with underlines. 
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Table 7.4 Performance comparison between different predictors of kinase-specific phosphorylation sites, evaluated in terms of Sensitivity (SE), 

Specificity (SP) and the Matthews correlation coefficient (MCC). 

 
 

 
 

  GPS 3.0 MusiteDeep Musite 1.0 NetPhos 3.1 

Datasets Cutoff 
threshold SE SP MCC SE SP MCC SE SP MCC SE SP MCC 

AGC/PKA Low 0.464 0.981 0.338 0.867 0.980 0.570 0.641 0.980 0.442 0.503 0.980 0.356 
 Medium 0.718 0.940 0.308 0.955 0.939 0.404 0.862 0.941 0.372 0.702 0.940 0.301 
 High 0.829 0.900 0.276 0.961 0.900 0.323 0.878 0.900 0.294 0.779 0.900 0.258 
AGC/PKC Low 0.184 0.979 0.154 0.821 0.980 0.618 0.321 0.980 0.274 0.158 0.980 0.135 
 Medium 0.372 0.940 0.183 0.893 0.940 0.454 0.536 0.940 0.273 0.316 0.940 0.152 
 High 0.577 0.900 0.223 0.929 0.899 0.374 0.673 0.901 0.267 0.429 0.900 0.156 
CMGC/CDK Low 0.423 0.979 0.345 0.901 0.980 0.661 0.493 0.981 0.407 0.338 0.980 0.287 
 Medium 0.746 0.938 0.376 1.000 0.939 0.502 0.739 0.941 0.379 0.655 0.940 0.335 
 High 0.803 0.900 0.322 1.000 0.899 0.404 0.768 0.901 0.308 0.768 0.900 0.307 
Other/CK2 Low 0.493 0.980 0.424 0.735 0.977 0.566 0.493 0.979 0.420 0.390 0.980 0.348 
 Medium 0.728 0.940 0.399 0.838 0.940 0.456 0.750 0.941 0.412 0.640 0.940 0.351 
 High 0.794 0.900 0.342 0.904 0.894 0.382 0.831 0.901 0.361 0.750 0.901 0.323 
TK/SRC Low 0.289 0.960 0.291 - - - 0.274 0.960 0.277 0.200 0.961 0.202 
 Medium 0.519 0.912 0.365 - - - 0.385 0.912 0.263 0.385 0.911 0.262 
 High 0.593 0.854 0.323 - - - 0.519 0.851 0.270 0.519 0.851 0.270 
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(Continue) Performance comparison between different predictors of kinase-specific phosphorylation sites, evaluated in terms of Sensitivity (SE), 

Specificity (SP) and the Matthews correlation coefficient (MCC).  

* The best performance is highlighted in bold, while the second-best performance was highlighted with underlines. 

 

 

  KinasePhos 2.0 PhosphoPredict PhosphoPick PhosContext2vec 

Datasets Cutoff 
threshold SE SP MCC SE SP MCC SE SP MCC SE SP MCC 

AGC/PKA Low 0.193 0.980 0.139 0.569 0.982 0.412 0.398 0.980 0.286 0.444 0.980 0.318 
 Medium 0.320 0.940 0.126 0.608 0.940 0.259 0.459 0.940 0.191 0.783 0.936 0.327 
 High 0.403 0.900 0.117 0.724 0.902 0.240 0.475 0.900 0.145 0.850 0.900 0.285 
AGC/PKC Low 0.163 0.979 0.136 0.194 0.980 0.166 0.235 0.980 0.203 0.354 0.980 0.301 
 Medium 0.224 0.940 0.099 0.214 0.973 0.157 0.357 0.940 0.175 0.733 0.940 0.374 
 High 0.270 0.900 0.081 0.296 0.900 0.094 0.474 0.900 0.176 0.821 0.893 0.319 
CMGC/CDK Low 0.049 0.980 0.030 0.394 0.981 0.334 0.359 0.980 0.302 0.331 0.980 0.282 
 Medium 0.092 0.940 0.019 0.542 0.960 0.335 0.472 0.939 0.236 0.824 0.940 0.420 
 High 0.148 0.900 0.023 0.542 0.960 0.335 0.507 0.900 0.191 0.915 0.898 0.366 
Other/CK2 Low 0.544 0.979 0.454 0.213 0.980 0.198 - - - 0.368 0.980 0.329 
 Medium 0.721 0.937 0.387 0.397 0.941 0.215 - - - 0.654 0.938 0.354 
 High 0.868 0.898 0.374 0.449 0.901 0.179 - - - 0.765 0.899 0.327 
TK/SRC Low 0.185 0.957 0.174 0.148 0.959 0.137 0.096 0.951 0.059 0.207 0.959 0.204 
 Medium 0.252 0.911 0.150 0.237 0.910 0.136 0.148 0.909 0.055 0.304 0.910 0.193 
 High 0.326 0.846 0.128 0.274 0.853 0.097 0.237 0.844 0.062 0.637 0.848 0.345 
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7.4.9 Comparison of different method in terms of time efficiency 

To better understand the processing efficiency of different methods, we measured the 

elapsed time for processing the same 200 protein sequences using each predictor. For 

example, for general phosphorylation site prediction, we predicted only Y 

phosphorylation sites. For kinase-specific phosphorylation site prediction, we only 

predicted phosphorylation sites for the SRC kinase. The five compared predictors 

included GPS 3.0, MusiteDeep, Musite 1.0, NetPhos 3.1, KinasePhos 2.0 and 

PhosphoPick. For these predictors, we tested the standalone Java programs of the 

former two and the online web servers of the latter three. For PhosContext2vec, we 

tested both the standalone CPU time and the response time of the web server. Most of 

the existing prediction methods provided either standalone programs or online web 

servers. Therefore, we calculated the CPU time (denoted by light blue) for those 

predictors with available standalone programs; and estimated the response time 

(denoted by dark blue) for those predictors with only web servers available. For 

PhosContext2vec, both the CPU time and the web server response time were provided. 

 

 

Figure 7.6 Elapsed time comparison between different phosphorylation site predictors for 

predicting 200 protein sequences. 
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As shown in Figure 7.6, among the four tools PhosContext2vec, GPS 3.0 

MusiteDeep and Musite 1.0 that were evaluated in terms of the CPU time, MusiteDeep 

executed fastest within 16 seconds. In particular, the CPU time of Musite 1.0 was 

calculated given that protein disorder information has been cached. Similarly, the CPU 

time of PhosContext2vec was calculated on the assumption that the BLAST results were 

cached. It took Musite 1.0 ~45 seconds to process 200 protein sequences, while it took 

PhosContext2vec about 25 seconds to complete the same prediction task. In terms of 

the web server response time, NetPhos 3.1 benefited from the use of multiple threads 

and achieved the fastest speed within 25 seconds. As a comparison, it took KinasePhos 

2.0 and PhosphoPick ~35 seconds and more than 40 seconds, respectively, for 

processing the same 200 sequences. It took the PhosContext2vec web server about 28 

seconds to complete the prediction of 200 protein sequences. 

7.4.10 Implementation of the PhosContext2vec web server 

The PhosContext2vec web server is currently configured and hosted on a virtual server 

machine deployed in the Monash e-Research Centre at Monash University, equipped 

with four cores, 12 GB memory and a 110 GB hard disk. It was implemented using the 

Python-Django framework [353] and consists of three major components, i.e. the client 

interface, the backend server and the asynchronous task scheduler. The user interface 

interacts with the clients, collects protein sequence inputs, parameter settings, and email 

addresses and forwards the submitted requests to the backend server. The backend 

server interacts with the client interface and determines the logic of each request. 

Following the submission of each request, the backend server starts a running job and 

forwards the generated results to the client interface once the job is completed. For long-

running jobs, we employed a third component, which is an asynchronous task scheduler, 

for optimising the allocation of computational resources. With this architecture, the 

backend server can return a real-time task status before the task is completed, which 
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sets the server threads free to deal with more requests. Figure 7.7 shows the 

architecture of the PhosContext2vec web server. 

 

Figure 7.7 The architecture of the PhosContext2vec web server. 

 

The PhosContext2vec web server provides three different but complementary 

functions for users, including contextual feature vector generation, general 

phosphorylation site prediction and kinase-specific phosphorylation site prediction. 

Users can submit their protein sequences of interest through either entering the 

sequence information in the text area provided at the web page, or uploading the 

sequence file in the FASTA format, or supplying a concise list of Swiss-Prot/UniProt IDs 

of query proteins. In terms of contextual vector generation, four contextual window sizes 

(i.e. 7, 11, 15, and 19) are available as options. For general and phosphorylation site 

prediction, the contextual window sizes for different types of phosphorylation sites 

(including S, T and Y) and kinase families (including AGC/PKA, AGC/PKC, CMGC/CDK, 

Other/CK2, and TK/SRC) were set to the optimal values based on the empirical results. 

Users can adjust the prediction cut-off and the output thresholds for generating 

customised prediction results in order to meet their specific requirements. Potential 

phosphorylation sites predicted with scores larger than the output threshold will be 
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included in the prediction output; however, only those with scores larger than the 

prediction cut-off threshold will be considered as a positive prediction. On task 

completion, users can download the text-based results, browse the webpage-based 

result summaries and visualize the graphical statistics. Alternatively, for users who 

provide their email address, an email with the output links and file attachments will be 

sent.   

7.4.11 Conclusion 

Based on the distributed contextual representation, we applied the contextual feature 

vector to solve the prediction problems of both general and kinase-specific 

phosphorylation sites. We conducted cross-validation tests for optimizing the selection 

of contextual window sizes, contextual representations, and hyper-parameters. 

Performance improvements were achieved for all the three types of phosphorylation 

sites and five kinase families when the contextual feature vector was incorporated. When 

evaluated on the independent test and compared with several state-of-the-art predictors, 

our method PhosContext2vec achieved superior performance for predicting Y 

phosphorylation sites, and also for the AGC/PKC and CMGC/CDK kinase families. It also 

achieved the second-best performance for S and T phosphorylation sites, and for 

AGC/PKA and TK/SRC kinase families. 

As for kinase-specific phosphorylation site prediction, the PhosContext2vec online 

web server is designed to predict the potential phosphorylation sites of the 138 kinases 

arranged at different hierarchical levels of kinases, subfamilies and families; however we 

only performed benchmarking tests for five kinases that had more than 500 

experimentally validated phosphorylation sites. In future work, more kinases will be 

included in the online web server of PhosContext2vec when more experimentally 

validated phosphorylation data become available for such kinases. 
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7.5 Phosphorylation site prediction based on the DeepS2P 
framework 

7.5.1 Introduction 

In the previous section, we introduced the application of context2vec to phosphorylation 

site prediction. The generation of context2vec can be regarded as the process of feature 

exaction that is decoupled from the SVM-based classification of phosphosites and non-

phosphosites. In this section, we introduce the application of the DeepS2P framework to 

phosphorylation site prediction. The hidden layers in the resulting predictive model, 

termed DeepS2P-Ph, can be regarded as a feature extractor that is jointly trained with 

the phosphorylation site classifier.  

In this section, to evaluate the prediction performance of DeepS2P-Ph, we perform 

cross-validation tests to determine the values for hyper-parameters. The prediction 

performance of the resulting predictive models is compared with existing methods for 

phosphorylation site prediction in independent test.  

7.5.2 Experimental design 

We used the same training and testing datasets for AGC/PKA, AGC/PKC, CMGC/CDK, 

Other/CK2 and TK/Src that were extracted from the Phospho.ELM database and the 

Swiss-Prot/UniProt database, as described in Section 7.4.3. Please refer to Table 7.1 

for detailed statistics of the training and testing datasets. Here, AGC/PKA, AGC/PKC, 

CMGC/CDK, Other/CK2 and TK/Src are all protein kinase families. In order to evaluate 

the prediction performance of DeepS2P-Ph for protein kinases at different levels of 

abstraction, we further conducted experiments for kinase group CAMK, kinase family 

AGC/PKC, kinase subfamily CMGC/CDK/CDK5s and protein kinase Other/PLK/PLK-

/PLK1. Table 7.5 demonstrates the statistics of the datasets for CAMK, AGC/PKC, 

CMGC/CDK/CDK5s, and Other/PLK/PLK-/PLK1. 
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Table 7.5 Statistics of the training and testing datasets for the four kinase nodes representing 

different levels of abstraction.  

    Training Testing 

CAMK #pos 651 298 
 #neg 48,730 15,744 

AGC/PKC #pos 763 194 
 #neg 39,607 12,518 

CMGC/CDK/CDK5s #pos 131 70 
 #neg 12,081 4,522 

Other/PLK/PLK-/PLK1 #pos 108 30 
 #neg 8,932 1,980 

 

We performed 10-fold cross-validation tests on the training datasets and independent 

tests on the testing datasets. Here, instead of using the negative sampling strategy to 

ensure a ratio of 1:1 between positive and negative samples we used the full set of non-

phosphorylated sites as the negative examples. More specifically, in each epoch of the 

training process, we extracted a different set of non-phosphorylation sites as the 

negative examples, keeping a positive to negative ratio of 1:1. In this way, all non-

phosphorylated sites were used at least once for training the model, while at the same 

time keeping the balance between positive and negative examples. Here, non-

phosphorylated sites refer to S/T/Y sites that are not annotated as phosphorylation sites. 

The prediction performance of DeepS2P-Ph was evaluated with the AUC score (see 

Appendix A).  

7.5.3 Determination of hyper-parameters 

According to Section 4.2.5, to determine the final structure of the DeepS2P-Ph model, 

the values of multiple hyper-parameters need to be determined. In this section, we 

performed cross-validation tests to determine the hyper-parameters of DeepS2P-Ph for 

each of the five protein kinase families AGC/PKA, AGC/PKC, CMGC/CDK, Other/CK2, 

and TK/Src. The four hyper-parameters that were tuned for DeepS2P-Ph include the 

number of hidden layers |"| (|"| ∈ 1, 2, 3) the batch sizes $ ($ ∈	8, 16, 32, 64), the 
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learning rate ∂  (∂ 	∈  1e-4, 1e-5, 1e-6) and the drop-out rate '  (' ∈  0.6, 0.75, 0.9).  

Therefore, all together, we performed 3x4x3x3 cross-validation tests for each of the five 

protein kinase families. Figure 7.8 demonstrates the results of hyper-parameter tuning 

for four protein families. The results for AGC/PKA, AGC/PKC, CMGC/CDK, Other/CK2, 

and TK/Src were labeled in color blue, orange, red, turquoise, and green, respectively. 

The tuning results for the number of hidden layers |"|, the batch sizes $, the learning 

rate ∂ and the drop-out rate ϑ were demonstrated in subgraph (a), (b), (c) and (d), 

respectively.  

 

Figure 7.8 Hyper-parameter tuning for DeepS2P-Ph models in predicting phosphosites of 

AGC/PKA, AGC/PKC, CMGC/CDK, Other/CK2, and TK/Src. 

 

According to Figure 7.8, the prediction performance of DeepS2P-Ph models was 

optimized with the number of hidden layers set to 3, the batch size set to 4, the learning 
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rate set to 0.0001 and the (keep probability of the) drop-out rate set to 0.9 for all five 

tested protein kinase families.  

To further determine the hyper-parameters of DeepS2P-Ph for the four kinase nodes, 

i.e. CAMK, AGC/PKC, CMGC/CDK/CDK5s, and Other/PLK/PLK-/PLK1, representing 

four different levels of abstraction, we performed 10-fold cross-validation tests and 

plotted the full results as a heat map in Figure 7.9, in which the deep blue colour 

indicates a higher AUC score.  

 

Figure 7.9 Hyper-parameter tuning for DeepS2P-Ph models in predicting phosphosites of 

CAMK, AGC/PKC, CMGC/CDK/CDK5s, and Other/PLK/PLK-/PLK1. 

 

According to the results shown in Figure 7.9, for CAMK, AGC/PKC, 

CMGC/CDK/CDK5s, better prediction performance was also achieved with higher 

learning rates, smaller batch sizes and more hidden layers. For Other/PLK/PLK-/PLK1, 

the best prediction performance was achieved with the learning rate set to 1e-6, the 

batch size set to 8, the number of hidden layers set to 3, and the drop-out rate set to 
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0.75. However, with Other/PLK/PLK-/PLK1, no clear pattern was observed in terms of 

the preference of hyper-parameters.  

Combining the dataset statistics shown in Table 7.5, we also observed the 

correlation between the prediction performance of DeepS2P-Ph and the number of 

training examples in Figure 7.9. In general, DeepS2P-Ph performed better for kinase 

nodes with more training data. With hyper-parameters optimized, it achieved with an 

AUC score of 0.8095 for Other/PLK/PLK-/PLK1, which had the least number of training 

examples (including positive and negative examples). Exceptionally, despite the 

relatively small training datasets (with 131 positive examples and 12,081 negative 

examples) for CMGC/CDK/CDK5s, DeepS2P-Ph achieved an AUC score of 0.9286 

when all hyper-parameters being optimized.  

7.5.4 Independent test in kinase-specific phosphorylation site prediction 

For kinase family AGC/PKA, AGC/PKC, CMGC/CDK, Other/CK2, and TK/Src, we 

performed independent tests to compare the prediction performance of DeepS2P-Ph 

with existing phosphorylation site prediction methods on the testing datasets. We also 

involved the PhosContext2vec method that was introduced in Section 7.4. Please refer 

to Section 2.3.3 for detailed introduction of the compared prediction methods.  
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Table 7.6 Prediction performance comparison between DeepS2P-Ph and existing phosphorylation site prediction methods in terms of AUC scores.  

          

 

 

 

 

 

 

 

 

                                                               * The best performance in terms of AUC score for each kinase was highlighted as bold.  

 

 AGC/PKA AGC/PKC CMGC/CDK Other/CK2 TK/Src 

GPS 0.934 0.845 0.923 0.935 0.830 

Musite 0.956 0.872 0.898 0.922 0.749 

MusiteDeep 0.976 0.954 0.973 0.950 n/a 

NetPhos 0.897 0.754 0.861 0.892 0.775 

KinasePhos 0.673 0.621 0.511 0.915 0.570 

PhosphoPredict 0.911 0.733 0.849 0.840 0.658 

PhosphoPick 0.619 0.679 0.657 N/A 0.540 

PhosContext2vec 0.950 0.939 0.960 0.912 0.794 

DeepS2P-Ph 0.899 0.886 0.838 0.822 0.732 
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According the results in Table 7.6, we observed that the DeepS2P-Ph method 

outperformed the KinasePhos method for all tested kinase families except for Other/CK2, 

outperformed PhosphoPick for kinase family AGC/PKA, AGC/PKC, CGMC/CDK, and 

TK/Src, and also outperformed PhosphoPredict for kinase family AGC/PKC and TK/Src. 

However, it achieved less favourable performance compared to the state-of-the-art 

methods such as GPS, MusiteDeep, Musite and PhosContext2vec. It also achieved the 

worst AUC scores for kinase family Other/CK2. 

Considering the number of the training examples of the five protein kinase families, 

we performed additional independent tests to investigate whether the unsatisfying 

prediction performance was caused by overfitting. Since overfitting is directly related to 

the number of training examples, we applied the DeepS2P-Ph model to kinase group 

CAMK, kinase family AGC/PKC, kinase subfamily CGMC/CDK/CDK5s and protein 

kinase Other/PLK/PLKs/PLK1, with a data set of 49,831, 40,370, 12,212 and 9,040 

training examples, respectively. By investigating the relation between the number of 

training examples and the difference between the training performance and testing 

performance, we investigated whether the overfitting is caused by a lack of training data 

and whether the unsatisfying prediction performance is caused by overfitting. Note that 

overfitting is often indicated by strong performance during the training process and weak 

performance in independent tests.  
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Figure 7.10 Prediction performance comparison of DeepS2P-Ph in cross-validation (training) 

and independent (testing) tests. 

 

According to the results shown in Figure 7.10, for AGC/PKC, the prediction 

performance of DeepS2P-Ph demonstrated the least difference between that achieved 

in the training process and that achieved in the testing process. In contrast, for 

Other/PLK/PLK-/PLK1, the performance of DeepS2P-Ph achieved in the testing process 

was the most different from that achieved in the training process. More specifically, the 

AUC scores dropped by 0.215, 0.130, 0.190 in independent tests compared to those 

achieved in cross-validation tests. It is noteworthy that, among the four kinase nodes, 

AGC/PKC and Other/PLK/PLK-/PLK1 respectively had the most and least number of 

training examples, which represents one of the direct factors related to overfitting. 

Therefore, we can conclude that the DeepS2P-Ph model has a tendency towards 

overfitting when there is a lack of training data.  
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From the results of CAMK and CMGC/CDK/CDK5s, we also observed the increase 

of the difference between the AUC scores in training and testing process, when the 

number of hidden layers was increased. For CAMK, as an example the AUC scores were 

decreased by 0.066, 0.076 and 0.099 in independent test compared to those achieved 

in the training process, when the number of hidden layers increased from 1 to 3. This 

pattern of performance change demonstrated that overfitting is more likely to happen 

when more hidden layers were involved, which indicated the disadvantage of the deep 

architecture when there is insufficient training data.  

7.5.5 Conclusion 

In this section, we applied the deep learning framework DeepS2P to kinase-specific 

phosphorylation site prediction, resulting in the DeepS2P-Ph predictive model. We 

performed cross-validation tests to determine the values of hyper-parameters and 

independent tests to evaluate the prediction performance of DeepS2P-Ph. The 

unsatisfying results achieved by DeepS2P-Ph demonstrated the disadvantage of using 

DeepS2P framework for prediction tasks with insufficient training data. In order to 

address this issue, in the next section, we introduce the application of DeepTransfer to 

predicting phosphosites of kinases with limited number of training examples.  

7.6 Phosphorylation site prediction using DeepTransfer 

7.6.1 Introduction  

It is rather challenging to structurally characterize kinases for the purpose of kinase-

specific phosphorylation site prediction. Yet, kinases have been readily classified 

according to their catalytic domain sequences into groups, families and subfamilies 

[300]. It was in GPS 2.0 that, for the first time, the hierarchical kinase classification tree 

(HKCT) was used as heuristic knowledge for designing phosphorylation site prediction 

models [214]. This also provided a new hierarchical perspective for investigating kinase-
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specific phosphorylation. However, due to the lack of phosphosites annotated for specific 

kinases, few methods approached kinase-specific phosphorylation site prediction in such 

a hierarchical manner. The more recent MusiteDeep [78] implemented the idea of 

transfer learning to reuse models trained in general phosphorylation site prediction as 

the feature extractor for models in kinase-specific phosphorylation site prediction. 

However, it did not explore the effect of deep learning in the hierarchy of the HKCT, 

where the hierarchical relations between kinase groups, families, subfamilies and protein 

kinases can be used as the heuristic for constructing the deep learning framework. 

In this section, we introduce the application of the framework DeepTransfer for 

kinase-specific phosphorylation site prediction, termed PhosTransfer. By using deep 

transfer learning, our prediction models for kinases with limited annotated phosphosites 

achieved improved performance by reusing the hidden layers of models learned for 

kinase groups/families/subfamilies with more extensive phosphosite annotations. We 

further analysed the factors that affect the prediction performance of PhosTransfer, 

visualized the vector representations generated by hidden layers pre-trained at different 

tree level, and compared its performance to that of state-of-the-art phosphorylation site 

prediction methods.  

7.6.2 The application of DeepTransfer to phosphorylation site prediction 

According to the HKCT [300], there are 8 major kinase groups, each of which has 

multiple kinase families and subfamilies. Individual kinases were clustered in accordance 

with this multi-level classification system, forming an HKCT of four levels including kinase 

groups, families, subfamilies and protein kinases (PKs). For simplicity, in what follows, 

we refer to any tree node including kinase groups, families, subfamilies and PKs in the 

HKCT as a kinase node. Based on this hierarchical tree structure, Xue, Y. et al. (2008) 

proposed using the annotated phosphosites of kinase nodes at lower levels for training 

the models of kinase nodes at higher levels. In PhosTransfer, the hierarchical 

relationships among kinase groups, families, subfamilies and PKs are used to improve 
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the prediction performance of individual kinase nodes. In this case, the training data is 

reused in a bottom-up manner.  

In general, PhosTransfer refers to a set of predictive models for kinase nodes in HKCT 

that are organised in a hierarchical structure. The kinase node -specific predictive 

models in PhosTransfer are constructed with different number of hidden layers 

depending on the level of the kinase node in HKCT. The predictive models for kinase 

groups, families, subfamilies, and protein kinases are described as follows.  

 Level 1 (Kinase group). For each of the eight kinase groups introduced by [300], 

we trained a CNN with their respective training data sets. Each of this CNN had a single 

hidden layer ℎ"# where $ ∈ (AGC, Atypical, CAMK, CK1, CMGC, Other, STE, and TK).  

Level 2 (Kinase family). For any kinase family & in group $, we reused the hidden 

layer ℎ"#  to extract the abstract representation of the input feature vector, based on 

which the second hidden layer ℎ'( was added and trained to predict phosphorylation 

sites that were catalysed by kinase family &. For example, when $ =	AGC kinase family 

&	 ∈	(DMPK, GRK, NDK, PKA, PKB, PKC, PKG,…).  

Level 3 (Kinase subfamily). For any subfamily + in kinase family &, we reused the 

hidden layer ℎ"#  and ℎ'(  to extract the abstract representation of input ,, based on 

which the third hidden layer ℎ-. was added and trained to predict phosphorylation sites 

that were catalyzed by kinase subfamily +. For example, when $ = AGC and & =	PKC 

subfamily + ∈	(Alpha, …) 

Level 4 (Protein kinase). For PK / in kinase subfamily +, we reused the hidden layer 

ℎ"
#, ℎ'( and ℎ-. to extract the abstract representation of input ,, based on which the 

fourth hidden layer ℎ01 was added and trained to predict phosphorylation sites that were 

catalysed by protein kinase / . For instance, when $ = AGC, & = PKC and + = Alpha, 

protein kinase / ∈	(PKCα, PKCβ).  

In order to explore the large amount of S/T/Y phosphorylation sites that are not 

specifically annotated for any kinase, we added an extra level on top of the level group 
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in the hierarchical tree of kinases, namely, the Level 0 (Amino-acid type), for which the 

single hidden layer ℎ=>> is inserted and trained as the feature extractor for subsequent 

hidden layers (convolutional filters) ℎ"# , ℎ'
( , ℎ-

.  and ℎ01 . Here, the amino acid type 

?? ∈ 	 (S/T, Y). Among the 8 kinase groups, only the model of TK is trained based on ℎ=G 

while the models of other groups are trained based on ℎ=H/I. 

7.6.3 Predictive models for kinase nodes in hierarchy 

 

Figure 7.11 Derived models for kinase nodes in hierarchies of the HKCT. 

 

Figure 7.11 demonstrates a partial tree surrounding the tree path A-B-C-D-E, where 

A, B, C, D and E represent the site type (S/T, or Y), the kinase group, the kinase family, 

the kinase subfamily and the protein kinase, respectively. For each of the models m3, 

m5 ~ m6, m8 ~ m10, and m12 ~ m15, there is more than one hidden layer, and the 

aforementioned deep transfer learning was applied. For example, for model m13, the 

first hidden layer ℎ'( was trained using annotated phosphosites of family C (effectively 

model m4), based on which the second hidden layer ℎ-. was trained using annotated 

phosphosites of subfamily D (effectively model m8). Based on these two pre-trained 

hidden layers, the third hidden layer ℎ01 was trained using the annotated phosphosites 

of protein kinase E.  Therefore, the objective function [Eq. 4.20] is represented as J0 =
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K	(L0Mℎ0
1 Nℎ-

. Oℎ'
((,)PQ + S0M);	U0. Compared to model m15, which starts from Level 0 

and has five hidden layers, model m13 starts from Level 2. Therefore, it only has three 

hidden layers. 

Among the 15 compared models, the last hidden layers of models m11 ~ m15 were 

trained using the phosphosites of protein kinase E, which we refer to as the direct models 

of E. Similarly, model m1, m2 ~ m3, m4 ~ m6 and m7 ~ m10 are the direct models of aa 

type A, group B, family C and subfamily D, respectively. According to Section 4.4.5, the 

models of ancestors can also be applied to predict phosphorylation sites of protein kinase 

E. Therefore, model m1 ~ m10 are referred to as indirect models of protein kinase E.  

7.6.4 Experimental design 

Datasets. We extracted the same set of triple-record annotations for (protein, 

position, kinase type) from the Swiss-Prot/UniProt database and the Phospho.ELM 

database, according to the procedures of dataset construction that was described in 

Section 7.4.3. The only difference is that we removed kinases that had less than 15 

triple-record annotations instead of less than 20 triple-record annotations. As a result, 

we obtained consolidated phosphorylation sites for 8 kinase groups, 50 kinase families, 

52 kinase subfamilies and 69 kinase types. Please refer to Appendix A for the HKCT of 

kinases for which we constructed training and independent datasets. Finally, we 

constructed the training and independent test sets for each of the 179 

groups/families/subfamilies/PKs by randomly partitioning the datasets using a size ratio 

of 4:1. 

With the above procedure, we constructed the training and testing datasets for 

kinases classified in four hierarchically organized levels (from top to bottom: groups, 

families, subfamilies, PKs), with higher levels representing more abstract concepts. To 

fully explore the annotated phosphorylation sites, we added an extra amino-acid (AA) 

level on top of the group level, indicating whether the phosphorylation happens on target 



 261 

residue(s) S/T or Y. When constructing the training and testing datasets, layer-by-layer, 

we ensured a consistent separation between the training sets and the independent test 

sets for kinase nodes in the same tree path. More specifically, we excluded the proteins 

in the test set of protein E from the training set of AA type A, group B, family C, and 

subfamily D. Therefore, the models trained based on A, B, C, and D do not unfairly favour 

the test set of E during independent test. 

Performance evaluation. Similar to the methodology that was introduced in Section 

7.4.3, we evaluated the prediction performance of PhosTransfer using three 

measurement scores including the area under the ROC curve (AUC), the Matthew’s 

coefficients of correlation (MCC) and the balanced accuracy (BACC) (see Appendix A). 

BACC measures the balanced accuracy by leveraging the score using the number of 

positive and negative examples, MCC provides a balanced evaluation of the quality of 

binary classification, and AUC generates an overview of the ratio between sensitivity and 

specificity. The former two rely on the selection of the cut-off threshold to distinguish 

positive predictions from negative ones.  

7.6.5 Hyper-parameter tuning 

Hyper-parameters for the deep transfer learning framework includes batch size V, epoch 

size W, dropout rate X, learning rate Y, weight parameter Z, and bias parameter [. We 

tuned the hyper-parameters for each kinase group, family, subfamily and protein kinase 

with the different range of values, depending on the level of the kinase node. For Level 

0, we tuned the model with V ∈	(128, 64, 32) and Y ∈	(1e-3, 1e-4). For Level 1 and 2, we 

tuned the models with V ∈	(32, 16, 8) and Y ∈	(1e-3, 1e-4). And for Level 3 and 4, we 

tuned the models with V ∈	(16, 8, 4) and Y ∈	(1e-4, 1e-5). For all levels, we tuned the 

models with W =800 and X ∈	(0.6, 0.75, 0.9). For initialization of W and b, we drew the 

initial weight values from a normal distribution and set the initial bias vectors with all 

elementary values set to 0.1. 
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7.6.6 Results for protein kinases in different groups 

We first compared the prediction performance of direct models m11 ~ m15 for the 69 

PKs in different groups, in terms of AUC scores. Heat maps in Figure 7.12 correspond 

to the 8 tested kinase groups, where models with better performance are highlighted with 

lighter colour. The results of the 5 models for each PK were normalised considering the 

difference between the prediction performance for different kinases. Since the five direct 

models m11, m12, m13, m14, and m15 were constructed with 1, 2, 3, 4, and 5 hidden 

layers respectively, this investigation helped to visualise the changes in the patterns of 

relative performances with respect to different number of hidden layers.   

 

Figure 7.12 Prediction performance of direct models m11 ~ m15 with 1~5 hidden layers for 

PKs, evaluated using AUC scores. 
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The results in Figure 7.12 showed that for most tested PKs in kinase groups AGC, 

CMGC and Atypical, prediction performance was improved with the increase of hidden 

layers. For models of these PKs, hidden layers pre-trained with the annotated 

phosphosites of their subfamilies, families, groups and S/T sites were reused as 

convolutional feature extractors and played a positive role in improving the prediction 

performance. For most PKs in the group Other, the best performance was achieved by 

model m14, where the first 3 hidden layers were pre-trained with annotated phosphosites 

of their groups, families, and subfamilies, respectively. For these PKs, the performance 

of model m15, which included ℎ=>>  (aa=S/T) as the first hidden layer, was inferior 

compared to the performance of model m14. This indicates that the phosphosites of S/T 

sites negatively affected the prediction performance. Considering that the PKs in group 

Other are structurally different from PKs in other groups, it makes sense that the 

annotated S/T sites among which most were from other groups did not help in improving 

the performance.  

In group CAMK, better performance was achieved by one of model m12 ~ m15 for 

most PKs, which demonstrated the positive effect of deep transfer learning.  However, 

for kinases LKB1, CHK1 and DAPK3, the best performance was achieved by model m11 

that was trained solely on the annotated phosphosites of PKs themselves. Especially for 

kinase LKB1, the prediction performance decreased with the increase of the number of 

hidden layers. It indicates that phosphorylation sites of LKB1 are well distinguished from 

phosphosites of others, for which further experimental validation are required. Finally, in 

groups STE and CK1, better performance was generally achieved by one of model m12 

~ m15, but a clear pattern was not observable. Kinase MAP2K3, PAK2 and MAP2K7, as 

an example, had their best performance achieved with 2, 5, and 4 hidden layers 

respectively. Only for kinase PAK3 did the prediction performance increase with the 

number of hidden layers.  
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For most PKs in kinase group TK, the best prediction performance in terms of AUC 

scores was achieved by models m14. According to the normalized results, the pre-

trained layer ℎ-. in model m12 and the pre-trained layer ℎ'( in model m13 based on 

phosphosites of subfamilies and families, respectively, played little positive effect in the 

improvement of the performance. The prediction performance was only improved when 

an extra layer ℎ"# trained on phosphosites of the group TK was added in model m14 as 

the first convolutional feature extractor. At the same time, the first layer trained on Y 

phosphosites, i.e. ℎ=>> (aa=Y), in model m15 played a negative effect in improving the 

performance, which can be explained by the diverse local sequential patterns of Y 

phosphosites [35].  

7.6.7 Results for groups, families and subfamilies 

We further evaluated direct models of kinase groups, families, subfamilies and PKs that 

are on the same paths in the HKCT. Figure 7.13 demonstrates prediction performances 

of direct models of all kinase nodes in the paths AGC-DMPK-ROCK-ROCK2 and CAMK-

CAMKL-LBK- LBK1, representing two situations where the best performance was 

achieved with more hidden layers and with less hidden layers, respectively.  

  

Figure 7.13 Prediction performance of models for groups, families, subfamilies and PKs in two 

paths. 
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For kinase ROCK2, improved model performance can be anticipated from the 

improved performance of their ancestors in the HKCT. The prediction performance of 

the ROCK2 associated model improved from 0.868 to 0.952, 0.957, 0.959 and 0.976, 

respectively, when the hidden layers trained on phosphosites of subfamily ROCK, family 

DMPK, group AGC and amino acid type S/T were added incrementally as the first 

convolutional feature extractors. The same pattern of incrementally improved 

performance was also observed for subfamily ROCK (from 0.806 to 0.942), for family 

DMPK (from 0.884 to 0.910), and for group AGC (from 0.902 to 0.908). The performance 

of models trained on S/T phosphosite data (0.748 for both paths) was achieved with one 

hidden layer ℎ=>> (aa=S/T). The relatively less satifying performance of models trained 

on phosphorylation data for S/T sites is likely due to the greater diversity of substrates 

for kinases from different groups, families and subfamilies. Similar patterns of positively 

correlated performance among kinase nodes were observed in most tree paths, with the 

best performance achieved by deep transfer learning models that used more than one 

hidden layer.  

For path ST-CAMK-CAMKL-LKB-LKB1, the prediction performance of models for 

different tree nodes demonstrated an opposite pattern of dependency compared to that 

of the path ST-AGC-DMPK-ROCK-ROCK2. More specifically, the best prediction 

performance for LBK1 (0.982) was achieved by the model with only one hidden layer, 

which decreased to 0.970, 0.943, and 0.904 when the layers pre-trained (with 

phosphosite data for family CAMKL, group CAMK, and type S/T, respectively) were 

reused for feature extraction. In subfamily LBK, no annotated phosphosites for other PK 

members were extracted. Therefore, the performance of models for LBK was similar to 

those for LBK1. However, the performance of models for family CAMKL and group 

CAMK improved when the number of hidden layers was increased. It indicates that this 

is a pattern specific to LBK1, not necessarily affecting other PKs in group CAMK. In fact, 
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according to the plot of group CAMK Figure 7.12, prediction performance was improved 

in 12 out of 15 PKs by applying deep transfer learning.  

7.6.8 Performance improvement for kinases with insufficient annotations 

Transfer learning was designed in part to improve the performance for prediction tasks 

with insufficient training data. Among all the tested 180 kinase groups, families, 

subfamilies and PKs, ~84% had no more than 200 annotated phosphosites, ~45% had 

no more than 50 annotated phosphosites, and ~10% had no more than 20 annotated 

phosphosites. Therefore, we investigated the performance improvements due to deep 

transfer learning with respect to the number of annotated phosphosites for each kinase 

node. Given the prediction performance of various kinase, nodes were different even 

without deep transfer learning, we defined the performance improvement rate (\]^): Let 

M and M’ denote the model with and without deep transfer learning respectively, the 

measurement \]^ is defined as  

\]^(_,_`) =
.ab.ac

.ac
	 	 	 	 [Eq. 7.3]	

where +d and +d` represent the prediction performance of model M and M’, respectively. 

Here, the AUC was used as the performance evaluation score +.  

According to Figure 7.11 , models m1, m4, m7 and m11 are based on the single-layer 

feedforward neural network (SLFN), to which no deep transfer learning was applied. All 

other models are deep transfer learning models with different numbers of pre-trained 

hidden layers. Therefore, models m1, m4, m7 and m11 correspond to model M’ while all 

others correspond to model M.  For each tested kinase node n, we then calculated the 

\]^  between the best performing deep transfer learning model and the associated 

SLFN-based model and plot the calculated PIR score with respect to the number of 

extracted annotated phosphosites of V. Figure 7.14 depicts the scatter plot, with each 

point representing a node's relationship between performance improvement rate and the 

number of annotated phosphosites.   



 267 

 

Figure 7.14 The correlation between the \]^ and the number of annotated phosphosites. 

 

According to the results, the prediction performance for kinases with insufficient 

annotated sites is more likely to improve when deep transfer learning was applied. While 

for kinases with more than 400 annotated sites, the prediction performance was 

improved by no more than 10% compared to the performance of the SLFN-based 

models. However, there is no guarantee for kinases with less annotated sites to have 

their prediction model's performance improved when deep transfer learning is applied. 

Other factors, such as the local sequential patterns, may also affect the \]^ of deep 

transfer learning models. Nevertheless, the results confirmed the positive effect of deep 

transfer learning in predicting phosphorylation sites for kinases with insufficient 

annotations.  

7.6.9 Vector space analysis for features generated by hidden layers 

In PhosTransfer, hidden layers pre-trained based on phosphosites of kinase nodes in 

higher levels of the HKCT are used as the feature extractors for models of kinase nodes 

in lower levels. Therefore, in model m15 the first hidden layer ℎ=>> was pre-trained in 

model m1, the second hidden layer ℎ"# was pre-trained in model m3, the third hidden 
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layer ℎ'( was pre-trained in model m6, and fourth hidden layer ℎ-.  was pre-trained in 

model m10. In order to evaluate these hidden layers as the feature extractor, we 

generated the vector representations from ℎ=>>, ℎ"
#, ℎ'

(, ℎ-
.  and ℎ01 in model m1, m3, 

m6, m10 and m15, respectively, for phosphosites of five PKs including CDK2, CDK5, 

GRK2, PLK1 and SRC. Figure 7.15 demonstrates the scattered plot of the generated 

vector representations generated by different hidden layers (feature extractors), where 

each vector representation was mapped to a 2-dimensional feature vector by using t-

SNE.  
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Figure 7.15 The t-SNE plot of vector representations generated from hidden layers. 
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In  Figure 7.15 (a), no hidden layer was used as the feature vector, and the 

distribution of phosphosites of all five kinases overlap with each other. In  Figure 7.15 

(b), hidden layers pre-trained at site level was applied, and the phosphosites of SRC was 

clustered to the left side of the vector space, while the distributions of phosphosites of 

other four kinases still overlap. Here, SRC is the only PK that catalyses the Y sites. It 

indicates that the hidden layer ℎ"#$  trained with S/T sites and the hidden layer ℎ"% 

trained with Y sites are capable of distinguishing phosphosites of kinases catalyse S/T 

sites and Y sites respectively. In Figure 7.15 (c), the hidden layers were trained at the 

group level, and the phosphosites of GRK2, PLK1, and CDK2/CDK5 were separated 

from each other. Here, GRK2, PLK1 and CDK2/CDK5 belong to group AGC, Other and 

CMGC, respectively. It indicates that the hidden layers pre-trained at the group level are 

capable of distinguishing phosphosites of kinases from different groups. In Figure 7.15 

(d), the distribution of phosphosites of CDK2 and CDK5 still overlap with each other, 

which is consistent with the HKCT where both CDK2 and CDK5 belong to the same 

kinase family CDK. In Figure 7.15 (e), the distribution of phosphosites of CDK2 and 

CDK5 were separated from each other, which validated the classification system where 

CDK2 and CDK5 were classified to have different subfamily CDK2s and CDK5s, 

respectively. Finally, in  Figure 7.15 (f), phosphosites of all five kinases were clustered 

into five groups, which corresponds to the five kinases, respectively.  

7.6.10 Comparison with state-of-the-art methods 

We first compared the performance of PhosTransfer models to that of the method GPS 

3.0. Both PhosTransfer and GPS 3.0 predicted kinase-specific phosphorylation sites 

according to the hierarchy of kinases, while we used the same HKCT as in the GPS 

methods. Therefore, most kinases that are available in PhosTransfer are also available 

in GPS 3.0. To provide an overview of the comparison results, we counted the number 

of kinase groups, families, subfamilies and PKs for which PhosTransfer and GPS 3.0 

performed better, respectively (Table 7.7).  
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Table 7.7 Prediction performance comparison between PhosTransfer and GPS 3.0. 

 # groups # families # subfamilies # PKs 

Group names M M’ M M’ M M’ M M’ 

AGC 1 0 4 4 3 4 7 5 

Atypical 0 1 0 1 0 3 -- -- 

CAMK 1 0 4 4 3 5 4 8 

CK1 0 1 1 1 -- -- 2 1 

CMGC 0 1 2 2 5 5 3 4 

STE 0 1 0 3 0 2 2 3 

Other 1 0 3 2 -- -- 7 1 

TK 0 1 1 12 0 0 2 11 

                                                * Model M and M’ represent PhosTransfer and GPS 3.0 respectively.  

                                                * Kinase nodes for which M and M’ achieved equal performance were omitted from the counting.  

 



 272 

 

Results in Table 7.7 demonstrate that PhosTransfer achieved better performances 

for more kinase nodes in groups AGC and Other, for a comparable number of kinase 

nodes in groups CK1 and CMGC, and for fewer kinase nodes in groups Atypical, CAMK, 

STE and TK, as compared to GPS 3.0. Here, groups AGC and Other had 2631 and 1131 

annotated phosphosites, respectively, while among the four groups in which 

PhosTransfer achieved inferior performance for more kinase nodes, group Atypical and 

STE had 224 and 241 annotated phosphosites, respectively. This result validated the 

intuition that a less satisfying performance by PhosTransfer can be expected if there are 

insufficient phosphosites for the kinase groups themselves. In theory, when deep 

transfer learning is applied, the first or second hidden layers are trained based on 

phosphosites of groups and reused later as the first or second feature extractors for 

models of families, subfamilies and PKs. Therefore, if the first or second convolutional 

feature extractor is trained with overfitting, the performance of models for families, 

subfamilies and PKs in this group will be negatively affected. This theoretically explains 

the relatively unsatisfying performance of PhosTransfer for groups Atypical and STE.   

We further compared the prediction performance of PhosTransfer and GPS 3.0 to 

other phosphorylation site prediction methods including MusiteDeep [78], KinasePhos 

2.0 [219], NetPhos 3.0 [35, 154], PhosphoPick [220], PPSP [354], and phos_pred [355]. 

Feature groups and algorithms of compared methods are listed in Table 2.2. Considering 

the inconsistent sets of kinases that are available in the different prediction methods, we 

selected the group CAMK, family AGC/PKC, subfamily CGMC/CDK/CDK5, and PK 

Other/PLK/-/PLK1 as the representative kinase nodes from each level of the HKCT. 

Figure 7.16 demonstrates the ROC plots and corresponding AUC scores of different 

prediction methods for each of the kinase nodes. The results show that PhosTransfer 

achieved superior performance than most compared methods except for MusiteDeep, 

which, compared to PhosTransfer, also incorporated structural information and 

physicochemical properties as additional input features.  
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Figure 7.16 Prediction performance comparison between PhosTransfer and several existing 

kinase-specific phosphorylation site prediction methods.  
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7.6.11 Validation of proposed methods for small datasets 

In this thesis, we proposed three methods for kinase-specific phosphorylation site 

prediction, i.e. PhosContext2vec, DeepS2P-Ph and PhosTransfer. PhosContext2vec 

takes generated evolutionary information, predicted structural information and calculated 

physicochemical properties as input features and uses a generic shallow model, Support 

Vector Machine, to address the prediction task. In comparison, DeepS2P-Ph takes 

generated evolutionary information as input feature and uses a deep convolutional 

neural network to model the prediction task. In theory, this method involves more 

parameters than PhosContext2vec, which may result in decreased performance when 

only small training datasets are available. As a result, PhosTransfer was introduced in 

this section to address this issue by incorporating the hierarchical relationship between 

kinases and using transfer learning. It takes generated evolutionary information as input 

feature and uses the deep convolutional network with transfer learning to model the 

prediction task. Compared with the previous two methods, PhosTransfer not only takes 

advantage of deep architecture but also addresses the issue of overfitting. Therefore, it 

is suitable for small training datasets.  

    To validate the performance of these three methods on small training datasets, we 

conducted a group of comparison experiments on ST/Other/PLK/-/PLK1, which contains 

108 and 30 phosphosites in the training and independent test datasets, respectively. 

Negative sampling was performance on the training dataset but not on the test dataset 

and the prediction performance was evaluated on the independent test dataset in terms 

of AUC scores. Note that the performance of each of these methods was selected based 

on hyper-parameter tuning. Please refer to Section 7.4.6, Section 7.5.3 and Section 

7.6.5 for more details about hyper-parameters of these three methods, respectively. 

Table 7.8 demonstrated the prediction performance for PhosContext2vec, DeepS2P-Ph 

and PhosTransfer on ST/Other/PLK/-/PLK1.  

Table 7.8 Prediction performance of PhosContext2vec, DeepS2P-Ph and PhosTransfer on 

ST/Other/PLK/-/PLK1 in terms of AUC score. 

 AUC scores 

PhosContext2vec 0.760 

DeepS2P-Ph 0.632 

PhosTransfer 0.838 

 

    The results in Table 7.8 demonstrates that, due to the issue of overfitting, deep 

learning models do not always perform better than shallow models, especially on small 

training datasets. However, for certain tasks where there is additional domain 
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knowledge, e.g. the hierarchical relationship between protein kinases, transfer learning 

can be used to lower the requirement for excessive training data.   

7.6.12 Conclusion 

In this section, we introduced the deep transfer learning framework DeepTransfer for 

kinase-specific phosphorylation site prediction. This framework was inspired by the 

hierarchical classification system of kinases and transfer learning. The basic idea is that 

phosphorylation sites of protein kinases within the same subfamily, family and group are 

likely to share similar local sequential and structural patterns. Therefore, models trained 

for higher level kinase nodes, which have more sufficient training data, can be transferred 

(reused) as feature extractors for lower level kinase nodes. When combined with deep 

learning, this idea is implemented in form of convolutional neural networks with multiple 

hidden layers, where each layer was trained individually based on the annotated 

phosphosites of kinase groups, families, subfamilies and PKs that are on the same tree 

path.  

Results demonstrated that the prediction performance for most kinase nodes was 

improved when deep transfer learning was applied. In groups AGC, Atypical and Other, 

the positive correlation between the prediction performance and the number of pre-

trained hidden layers was well demonstrated. When compared to the state-of-the-art 

phosphorylation site prediction methods, PhosTransfer achieved superior performance 

for various kinase groups, families, subfamilies and PKs, especially for kinase nodes in 

groups AGC and Other.  

According to our investigation, the improved performance achieved by PhosTransfer 

is affected by the following factors. Firstly, PhosTransfer achieved more significant 

performance improvement for kinase nodes with limited quantities of training data. This 

is evidenced by the negative correlation between the performance improvement rate 

(PIR) and the number of annotated phosphosites in Figure 7.14. This result suggests 

that the application of PhosTransfer did help with the issue of overfitting during the 
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process of model training for kinase nodes with insufficient training data. Secondly, the 

number of phosphosites of the group itself can affect the prediction performance for its 

descendant families, subfamilies and PKs. The basic idea of PhosTransfer is that the 

models trained for kinase nodes (especially, kinase groups) with more sufficient training 

data can be reused as feature extractors for kinase nodes with insufficient training data. 

However, if the kinase group itself does not have enough annotated phosphosites, this 

idea would not work properly. Thirdly, it remains a challenge to predict phosphorylation 

sites for kinases whose annotated phosphorylation sites demonstrate diverse local 

patterns.  According to [35], PROSITE motifs could recognize only 10% of annotated Y 

phosphorylation sites [68], which may explain the unsatisfactory performance of different 

prediction methods, including PhosTransfer, for kinases in group TK. 

7.7 Chapter Summary 

In this chapter, we demonstrated the positive effect of incorporating context2vec as a 

complementary feature vector in general and kinase-specific phosphorylation site 

prediction, the limitation of the DeepS2P framework in kinase-specific phosphorylation 

site prediction when there is a lack of training data, and the application of DeepTransfer 

to address the issue by using a level-by-level feature extraction strategy.  

Firstly, we used context2vec as a complementary feature vector to existing residue-

level biological representations of protein sequences in both general and kinase-specific 

phosphorylation site prediction. The distributed representation of sequence contexts at 

the residue-level represents a more general and contextual information than existing 

residue-level biological representations, such as homology-profiles, physicochemical 

properties, and structural information, that are generated for each individual residue 

without any consideration of local contexts. It also represents a more specific 

representation than sequence-level representations, such as ProtVec, that are 

generated for the whole sequence. The residue-level biological representations of 

individual residues, the residue-level distributed representation of local contexts, and the 
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representation of whole protein sequences or segments respectively represents the 

cases with contextual window size 0, m and infinite, where " defines the length of the 

local contexts based on which the context2vecs were generated. This application also 

validated the conclusion from the Chapter 5 that the distributed representation of protein 

sequences should be used in combination with existing biological representations in 

order to achieve improved performance.  

Secondly, we applied the DeepS2P framework for predicting kinase-specific 

phosphorylation sites. Despite the successful application of the DeepS2P framework to 

IDP/IDR and SSP prediction in Chapter 6, it achieved less favourable performance in 

phosphorylation site prediction, especially for kinases that have limited number of 

annotated phosphosites.  

Finally, the less satisfying results achieved in Section 7.5 inspired the application of 

the DeepTransfer framework to kinase-specific phosphorylation site prediction. We used 

the 4-level hierarchical classification system of protein kinases that was introduced in 

GPS 2.0 (which classifies protein kinases into groups, families and subfamilies), and 

trained a model for each of the tree node. Considering the basic assumption that protein 

kinases that belong to the same subfamilies, subfamilies belong to the same families 

and families belong to the same groups are more likely to catalyze phosphorylation sites 

with similar patterns. Therefore, reused the hidden layers of models of the parent node 

in the hierarchical classification system as the feature extractor for models of its children 

nodes. Results demonstrated that the feature vectors of protein kinases within different 

groups, families and subfamilies are separated better and better with the increase of the 

number of hidden layers (feature extractors) (see Figure 7.15).  

The application of machine learning is always about the balance of between the 

involvement of domain knowledge and annotated data. In context2vec-based 

phosphorylation site prediction, the residue-level biological representations are 

generated with biological heuristics, which, to some extent, represents the involvement 

of domain knowledge. In contrast, the distributed representation of local sequence 
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contexts is generate purely based on large amount of protein sequence data without any 

biological heuristics. The successful combination of the two further validated the 

importance of the combination of domain knowledge and annotated data. In the 

application of the DeepS2P framework and the DeepTransfer framework, the former 

represents a framework design purely relying on annotated data. However, when there 

is a lack of annotated data, it failed to deliver satisfying prediction performance. The 

DeepTransfer framework was constructed base on the DeepS2P framework but involved 

domain knowledge such as the hierarchical classification system which is validated by 

domain expert. Therefore, in the application of deep learning techniques in biological 

data analysis, it crucial to incorporating biological background or domain knowledge to 

compensate the lack of annotated data. 
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8 Drug-target interaction prediction 

8.1 Introduction 

In Section 4.1.4, we introduced the application of distributed representation of protein 

sequences in three different scenarios. To validate the effectiveness of prot2vec in 

biological interaction level predictions, in this section, we systematically analyse the 

performance of prot2vec in the task of drug-target interaction (DTI) prediction.  

Firstly, we provide an overview of DTI prediction in terms of the basic assumption, 

the most widely used data sources, and the methodology of performance evaluation, that 

are widely adopted by most machine learning based DTI prediction.  

Secondly, we conduct comprehensive comparisons among the state-of-the-art 

machine learning models and the state-of-the-art protein/drug kernels for DTI prediction, 

from which we select the best performing model and the best performing drug kernels 

for further investigation of protein kernels.  

Thirdly, we introduce in detail the methodology of prot2vec-based DTI prediction.  We 

select the best performing prot2vec-based protein kernels for DTI prediction, by 

comparing the three implementations of prot2vecs and the six kernel functions that are 

applied to different implementations of prot2vecs.  

Finally, we analyse the performance of prot2vec-based protein kernels and the state-

of-the-art protein kernels in DTI prediction, demonstrating the superior performance of 

prot2vec as the kernel feature vector for DTI prediction.  

8.2 An overview of drug-target interaction prediction 

The assumption behind most machine learning-based methods for DTI prediction is that 

similar drugs tend to target similar proteins and vice versa [231, 234, 237, 238]. 

Therefore, the selection of the similarity scores for drugs (drug kernel) and proteins 
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(protein kernel) and the selection of machine learning models are the two key factors 

that affect the prediction performance of DTI prediction.  

On one hand, each similarity score represents a potential factor that may be related 

to the process of drug docking, and the selection of the right similarity score is effectively 

the process of feature selection. The most widely used similarity scores are the chemical 

substructure similarity for drugs and the amino acid sequence similarity for proteins [233-

240, 246]. Other similarities include 2D/3D fingerprints [246, 254], gene expression 

responses [246], side effects [246], and ATC annotations [246]  similarities for drugs and 

protein-protein interaction (PPI) [246], GO annotation [246] and protein 

classification/hierarchy [254] similarities (See Table 2.3).  

On the other hand, protein similarities and drug similarities are incorporated in 

various ways depending on the selection of the machine learning models. For kernel-

based methods, similarities are represented as kernel matrices [254, 356]. For 

probabilistic graphical models, similarities are represented as nodes [234] or structure of 

the graphical model. While for neural networks, similarities are represented as vectors 

[253]. These similarities are used as input features to train the machine learning-based 

models, which are used later to predict novel DTI given the required similarities.  

In Section 2.3.4, we introduced seven representative machine learning-based 

methods for DTI prediction. In this chapter, we perform comprehensive experiments to 

select the best performing drug kernel and the best performing machine learning method, 

based on which we further evaluated the prediction of prot2vec-based proteins in 

comparison with existing state-of-the-art protein kernels for DTI prediction.  

8.3 Experimental design 

8.3.1 Data sources and datasets 

According to the previous works, data sources harbouring drug-target interactions 

include the KEGG BRITE [95] database, the DrugBank [97] database, the BRENDA [357] 
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database, the SuperTarget [358] database, the Drug combination database (DCDB) [359] 

database, and the Matador [358] database. The KEGG BRITE database attaches DTI 

information in the KEGG BRITE hierarchical tree for protein families. It means that 

models can be trained for a specific protein family based on its specific DTI annotations. 

The DrugBank database contains detailed drug information such as chemical properties, 

pharmacological information and different types of interactions (e.g. drug-food interaction, 

drug-drug interaction and target information). The SuperTarget database is a text mining-

based database that has been manually curated afterwards. It also combines DTIs from 

the Drugbank database, the BindingDB database and the SuperCyp database. The 

DCDB database combines DTIs from Drugbank and therapeutic target database [246]. 

It also curated the drug-drug interaction information, which is a potential feature for 

detecting drug-target interactions [246]. The Madator database annotates DTI as direct 

or indirect by combining text mining techniques and manual curation.  Figure 8.1 gives 

an overview of the DTIs between different data sources.  

 

 

Figure 8.1 Relationships between different drug-target interaction data sources. 

 

Existing gold standard datasets for DTI detection include the Yamanishi dataset [240] 

and the Perlman dataset [246]. The Yamanishi dataset was integrated from multiple data 
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sources including the KEGG BRITE database, the Drugbank database, the BRENDA 

database, and the SuperTarget database. The Yamanishi dataset is categorised into 

four subsets in terms of the protein family of the target proteins, including enzymes (e), 

ion channels (ic), G protein-coupled receptors (gpcr) and nuclear receptors (nr). While 

the Perlman dataset was extracted from the KEGG BRITE database, the Drugbank 

database and the DCDB database. Compared to the Yamanishi dataset, the Perlman 

dataset incorporates more types of drug and protein similarities but does not distinguish 

among different target protein families. In order to perform independent tests, we 

constructed independent test benchmark KEGG-DTI by extracting drug-target 

interaction annotations from the KEGG BRITE database (downloaded in April 2015). 

 

Table 8.1 Statistical summary of proteins, drugs and DTIs in the KEGG, Yamanishi, and 

Perlman datasets 

 * Each cell in this table represents the number of proteins/the number of drugs/the number of interactions.  

 

8.3.2 Cross-validation under four experimental settings 

According to DTI prediction in real-world scenarios, there are four experimental settings 

for DTI prediction. 

1) To predict DTIs between known drugs and known proteins; 

2) To predict DTIs between known drugs and new proteins; 

3) To predict DTIs between new drugs and known proteins; and 

4) To predict DTIs between new drugs and new proteins.  

Note that ‘known’ refers to the drugs or proteins that have at least one known DTI 

interaction, while ‘new’ refers to the drugs or proteins that have no known DTI predictions. 

 No. proteins/No. of drugs/No. of interactions KEGG-DTI  Yamanishi Perlman 

P
ro

te
in

 f
a
m

il
y
 Enzymes (e) 242/720/1809 664/445/2926 250/315/78 

Ion channels (ic) 113/371/2825 204/210/1476 

G protein-coupled receptors (gpcr) 119/1290/3071 97/223/635 

Nuclear receptors (nr) 19/358/461 26/54/90 
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For methods using interaction profiles, such as BLM, SemEP and RBM, setting 4) does 

not apply, since these methods rely on known DTIs to predict new DTIs of a protein (or 

a drug). For SemEP, setting 2) and 3) does not apply, since drugs or proteins without 

known interactions cannot be considered in the clustering process. For RBM, the 

predictive model is constructed for each protein, which requires that the queried protein’s 

interaction information should be at least partially known. As a result, setting 2) is not 

applicable. Figure 8.2 illustrates the four settings used for our cross-validation, where 

black ‘1’s represents the know interactions and the red ‘1’s represent the predicted 

interactions. 

 

Figure 8.2 Drug-target interaction prediction under four experimental settings 

 

We performed five-fold cross-validation (5-fold-CV) and leave-one-out cross-

validation (LOOCV) for the four settings, respectively. For 5-fold-CV, we divide the 

dataset into 5 folders by protein (cv-by-proteins), by drug (cv-by-drugs) and by 
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interactions entries (cv-by-interactions), which correspond to the setting 2), 3)  and 1) 

respectively. For LOOCV only one interaction entry was left out each time, leaving partial 

interaction for both drug and protein, which makes LOOCV an experimental solution for 

setting 1). 

8.3.3 Performance evaluation 

To compare the prediction performance of different machine learning models, we chose 

the area under the ROC curve (AUC) and the area under the precision-recall curve 

(AUPR) as the major evaluation measures. AUPR can better interpret the prediction 

performance of different methods on unbalanced datasets [360], while AUC is one of the 

most widely used measures for evaluating DTI prediction tasks [231, 253]. In addition, 

to measure the time complexity of these models, we also recorded the training time over 

different folds from which the average training time was calculated. In terms of 

independent tests, the predicted novel drug-target interactions were manually validated 

against the latest KEGG database, the ChEMBL database and the DrugBank database 

[233, 235, 237].  

8.4 DTI prediction based on existing machine learning 

methods 

8.4.1 Comparison among machine learning based methods 

In Section 2.3.4, we introduced seven representative machine learning-based methods 

for DTI prediction. They are PWK [254], BLM [235], KBMF2K [233], GIP+WNN, PSL, 

SemEP [255] and RBM [253], representing kernel-based methods [240] [236] [254] [236], 

the local model [236], the K-nearest neighbour method [237], Bayesian networks [233], 

statistical relational models [234], the clustering method [255] and neural networks [253], 

respectively. In this section, the prediction performance of the seven machine learning -

based methods was evaluated on the subset nr, ic, e, and gpcr in the Yamanishi dataset 
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using 5-fold cross-validation. Table 8.2 illustrates the average AUC scores with a 

significant level of 95% for different machine learning-based methods was reported.  
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Table 8.2 Performance comparison among different machine learning methods for drug-target 

interaction prediction on the Yamanish dataset.  

 Method nr (26x54) ic (204x210) e (664x445) gpcr (97x223) 

A
U

C
 

cv
-b

y -
in

te
ra

ct
io

ns
 

PWK 0.555±0.047 0.567±0.007 N/A 0.594±0.014 

BLM 0.510±0.000 0.554±0.000 0.519±0.000 0.548±0.000 

KBMF2K 0.921±0.007 0.978±0.003 0.983±0.002 0.953±0.006 

GIP-WNN 0.908±0.020 0.978±0.004 0.974±0.003 0.950±0.005 

PSL 0.566±0.025 0.791±0.002 0.759±0.007 0.768±0.013 

SemEP 0.780±0.029 0.855±0.002 0.826±0.005 0.816±0.004 

RBM 0.541±0.023 0.931±0.005 0.917±0.003 0.814±0.012 

cv
-b

y-
pr

ot
ei

ns
 

PWK 0.458±0.054 0.606±0.013 N/A 0.512±0.025 

BLM 0.521±0.078 0.927±0.010 0.929±0.009 0.842±0.030 

KBMF2K 0.731±0.022 0.944±0.007 0.943±0.003 0.848±0.043 

GIP-WNN 0.656±0.090 0.936±0.004 0.934±0.012 0.872±0.036 

PSL 0.596±0.001 0.817±0.010 0.744±0.013 0.605±0.015 

SemEP 0.510±0.000 0.554±0.000 0.519±0.000 0.548±0.000 

RBM 0.354±0.019 0.684±0.007 0.517±0.008 0.495±0.015 

cv
-b

y-
dr

ug
s 

PWK 0.504±0.015 0.565±0.021 N/A 0.575±0.011 

BLM 0.801±0.036 0.720±0.030 0.778±0.008 0.768±0.024 

KBMF2K 0.817±0.023 0.794±0.006 0.819±0.026 0.839±0.018 

GIP-WNN 0.826±0.071 0.764±0.028 0.850±0.034 0.856±0.016 

PSL 0.721±0.017 0.729±0.011 0.688±0.021 0.781±0.013 

SemEP 0.510±0.000 0.554±0.000 0.519±0.000 0.548±0.000 

RBM 0.497±0.017 0.517±0.010 0.524±0.021 0.561±0.013 

T
im

e
 (

s
) 

cv
-b

y -
in

te
ra

ct
io

ns
 

PWK 1.281 600.058 N/A 127.46 

BLM 7.888 61.905 203.044 28.966 

KBMF2K 13.853 164.590 1600.600 103.760 

GIP-WNN 0.183 1.547 20.597 1.175 

PSL 2.351 30.355 291.949 13.628 

SemEP 0.242 6.203 26.040 1.990 

RBM 2.676 25.215 183.328 13.611 

* The best performance in terms of AUC scores and time consumption for each dataset was highlighted as 

bold.  
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According to the results in Table 8.2, KBMF2K and GIP-WNN achieved the highest 

AUC values with no significant differences between each other. However, KBMF2K had 

smaller standard errors over all four datasets and all three settings, suggesting that 

KBMF2K performs more robustly, in regardless of the data size and data distribution. 

Theoretically, the performance of GIP-WNN relies on the distribution similarity between 

training data and test data, which may explain the relatively larger standard errors. The 

BLM method performed worse than KBMF2K and GIP-WNN, significantly. It is equivalent 

to KBMF2K with subspace dimension R = 2, while in KBMF2K, R=25 has been chosen 

as the optimised parameter value from the model selection [233], which gives KBMF2K 

the winning edge. On the other hand, BLM only relies on drug or protein's known 

interactions for prediction, while GIP-WNN also considers similarities among drugs and 

similarities among proteins for prediction. These differences may explain the better 

prediction performance achieved by GIP-WNN. However, as a nearest-neighbour 

method, GIP-WNN loses to BLM in terms of robustness as suggested by BLM's smaller 

standard error.  

According to the reported results in Table 8.2, we can obtain the following 

observations. Firstly, methods with higher AUC scores require more time for training, 

except for GIP-KNN which achieved higher performance within a shorter period of 

processing time. Secondly, the prediction performance also depends on the size of the 

dataset used for training the model. For example, most of the compared methods 

achieved less satisfying prediction performance on the nr dataset, which has the least 

number of training examples. On datasets with more sufficient training data, such as ic, 

e and gpcr datasets, the prediction performance of most of the models were improved.  

Thirdly, it is more likely to achieve better prediction performance under setting cv-by-

interactions than under the other two experimental settings. In setting cv-by-proteins and 

cv-by-drugs, certain numbers of proteins and drugs do not have any interaction 

information. In contrast, all proteins and drugs have at least one known drug-target 
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interaction under the setting cv-by-interactions. This difference may explain the better 

prediction performance achieved under setting cv-by-interactions.  

8.4.2 Comparison among existing drug/protein kernels 

Kernel refers to the similarity function applied on pairs of objects, such as data points, 

examples, individuals, etc. Therefore, the similarities among two drugs and the similarity 

among two proteins are also referred to as drug kernel and protein kernels, respectively. 

In this section, different protein kernels and drug kernels were experimentally compared 

to each other, from which the best protein kernel and the best drug kernel were selected 

and used in further investigations.  

The comparison among different drug/protein kernels was conducted on the Perlman 

dataset. The Perlman dataset contains 5 similarity features for drugs, which are 

Chemical, Ligand, Gene Expression, Side Effect and ATC, and 3 similarity features for 

proteins, which are Sequence, PPI and GO (see Section 2.3.4). For most of the existing 

machine learning methods for DTI prediction, it only requires one pair of similarity 

features from the drug and protein spaces respectively. Therefore, we combine each 

protein kernel with all drug kernels to form 15 drug/protein kernel pairs. Note that PSL is 

the only method that can combine multiple pairs of features. In order to demonstrate the 

difference between different drug/protein kernel pairs and the difference between using 

single drug/protein kernel pair and using multiple drug/protein kernel pairs, we only show 

the results achieved by PSL.  

We collected the AUC scores and their 95% significant standard errors of PSL under 

5-fold cross-validation by interactions, then order them in descending order, which leads 

to the results demonstrated in Figure 8.3. 
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Figure 8.3 Comparison among different DTI drug/protein kernel pairs. 

 

According to the results shown in Figure 8.3, the best prediction performance was 

achieved using the annotation-based drug kernel ATC and the annotation-based protein 

kernel GO, with an AUC score of 0.798. Among all drug kernels, the ATC kernel 

represents one of the best performing kernels as evidenced by its strong performance 

when combined with all three protein kernels GO, SEQ and PPI. The Chemical kernel 

and the SiderEffect kernel also achieved satisfactory prediction performance when 

combined with two protein kernels GO and SEQ. Among all protein kernels, the GO 

outperformed the other two, appearing four times in the eight highly ranked drug/protein 

kernel pairs. In comparison, the SEQ kernel appeared three times while the PPI kernel 

only appeared once.  

Overall speaking, three drug kernels and two protein kernels appeared at least twice 

in the eight highly ranked drug/protein kernel pairs. They are ATC, Chemical and 

SiderEffect for drugs, and GO and Sequence for proteins. Note that only one of them are 
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protein inter-domain -based features, i.e. the drug kernel SiderEffect. In contrast, 

annotation-based features and sequence or structure-based kernels achieved superior 

performance for DTI prediction. Furthermore, a significantly better AUC score of 0.832 

was achieved by combining multiple pairs of drug/protein features, which is denoted as 

ALL in Figure 8.3. 

8.4.3 New interaction prediction with existing methods and kernels 

To further evaluate the robustness and scalability of the reviewed methods, in this 

section we conducted an independent test under the four settings using a carefully 

curated test dataset without overlap with the datasets for training the methods.  

Previous studies only conduct the independent test under setting 1), where new DTI 

new drug-target interactions are predicted from a given interaction network with LOOCV, 

i.e. within known proteins and known drugs contained in the Yamanishi dataset. In this 

section, we construct a new test dataset KEGG-DTI from the latest version of KEGG 

(downloaded on 2015-12-16). Since new interactions were predicted based on similar 

drugs’ or proteins’ interaction with existing methods, known DTIs have to be given as 

evidence when the prediction is performed. Therefore, we built our new dataset based 

on the Yamanishi dataset, where new proteins and new drugs (that do not exist in the 

Yamanishi dataset) are added from the latest KEGG. 

Given only the DTIs that were contained in the Yamanishi dataset, we predicted new 

interactions between known proteins and known drugs, new proteins and known drugs, 

new drugs and known proteins and new proteins and new drugs, which correspond to 

the setting 1) 2) 3) and 4) respectively. Finally, the top 30 predicted novel interactions 

were compared to the latest version of the KEGG database to manually evaluate the 

correctness of the novel predictions. 
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Table 8.3 Performance of different machine learning methods for DTI prediction under four 

experimental settings, evaluated using TP/P and precision (PR).  

 * The best performance in terms of precision was highlighted as bold.  

 
According to the results in Table 8.3, GIP-WNN, PSL and BLM achieved the highest 

accuracy under setting 1), 2) and 3), respectively. Under setting 4), where interactions 

were predicted between new proteins and new drugs, KBMF2K achieved the best 

precision of 1.0 but with only one prediction, while PSL correctly predicted 25 out of 30 

DTIs. One feature of KBMF2K is that it tends to give fewer predictions but with higher 

precision, as is shown in setting  2) and 3), where only 13 and 1 predictions are made in 

total, while other methods make more predictions but with more false positives. It 

explains KBMF2K's overall better AUC results in the previous cross-validation. PSL 

performed surprisingly well compared to its performance in cross-validation. It achieved 

25 correct predictions and a precision of 0.833 under setting 4), which shows its ability 

to generalize to new proteins and new drugs. 

In this independent test, we adopted the open world assumption [361], in which the 

interactions that are not annotated as positive are considered to be unknown instead of 

negative. Accordingly, we did not calculate the sensitivity score because, in the real world, 

no data source guarantees complete drug-target interaction.  

8.5 DTI prediction with prot2vec-based protein kernels  

 Setting 1) Setting 2) Setting 3) Setting 4) 

 TP/30 PR TP/30 PR TP/30 PR TP/30 PR 

BLM 8/30 0.267 12/30 0.400 30/30 1.000 n/a n/a 

KBMF2K 7/30 0.233 6/13 0.412 26/30 0.867 1/1 1.000 

GIP-WNN 9/30 0.300 12/30 0.400 28/30 0.933 9/30 0.300 

PSL 2/30 0.067 14/30 0.467 28/30 0.933 25/30 0.833 

SemEP 5/30 0.167 n/a n/a n/a n/a n/a n/a 

RBM 5/30 0.167 0/30 0.000 0/30 0.000 2/30 0.067 
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To validate the effectiveness of the prot2vec as the kernel feature vector for biological 

interaction-level prediction tasks, we applied different kernel functions to generate the 

similarity between pairs of proteins, resulting in different prot2vec-based protein kernels.  

In order to demonstrate fairness among various protein kernels that are evaluated 

and compared in the following experiments, another two key components for DTI 

prediction was specified according to the overall evaluation performed in Section 8.4.1 

and 8.4.2. We used the structure-based drug similarity Chemical as the drug kernel and 

the KBMF2K method as the predictive model for DTI prediction. With the drug kernel and 

predictive model specified, each of the evaluated protein kernels is combined with the 

selected drug kernel to form a drug/protein kernel pair, which is later used as the input 

feature for the selected predictive model. 

8.5.1 Comparison among different kernels generated from prot2vec 

In this comparison, the prediction performance of different kernel functions, including 

Linear, RBF, Polynomial, Cosine, Laplacian, and Sigmoid, was evaluated and compared. 

Each of the six kernel functions were applied to three different implementations of 

prot2vecs, including prot2vecinference, prot2vecnon-overlap and prot2vecadd. Therefore, 18 

protein kernels were generated and evaluated for DTI prediction. For all the six compared 

kernels, all the three implementations of prot2vecs, and all the three experimental 

settings, 5-fold cross-validation was performed on the Perlman dataset (see Section 

8.3.1), respectively. Figure 8.4 demonstrates the average AUC and AUPR scores of the 

18 different prot2vec-based protein kernels for DTI prediction.  
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Figure 8.4 Performance comparison among different kernels that were generated from prot2vecs. 
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According to the AUC scores demonstrated in Figure 8.4, the Laplacian kernel 

performed the best for all three implementations of prot2vecs under the experimental 

setting 1); the Cosine kernel performed the best for prot2vecinference and prot2vecnon-overlap 

while the Laplacian and RBF kernel performed the best for prot2vecadd under setting 3); 

and the Laplacian kernel performed the best for prot2vecinference and prot2vecadd, and the 

Sigmoid kernel performed the best for prot2vecnon-overlap under setting 2). Among all 6 

compared kernel functions, the linear kernels generated from all three implementations 

of prot2vecs performed the worst in all three experimental settings. The AUPR scores of 

different kernels demonstrated similar patterns in terms of the performance difference 

among different kernels.  

In general, kernels generated from prot2vecinference and prot2vecnon-overlap 

demonstrated similar prediction performance, for which the Cosine kernel and the 

Laplacian kernel outperformed other kernels in all three experimental settings. Also, the 

prediction performance of the various protein kernels generated from these two 

implementations is more consistent compared to that of the protein kernels generated 

from prot2vecadd. For example, the prediction performance of the Cosine, Linear, RBF, 

Polynomial, Sigmoid and Laplacian kernels generated from prot2vecinference was 0.871, 

0.850, 0.867, 0.868, 0.875 and 0.887, respectively, with a standard deviation of 0.012 

under the setting 1). In contrast, the prediction performance of the above six kernels 

generated from prot2vecadd was 0.686, N/A, 0.839, 0.507, 0.610, and 0.874, respectively, 

with a standard deviation of 0.154 under the same experimental setting.  

In terms of the three experimental settings, the setting 1) where the cross-validation 

was conducted over all drug-target interactions had better performance than setting 2) 

and 3),  under which the cross-validation was conducted over proteins and drugs, 

respectively. The only exception is for the AUPR scores calculated for protein kernels 

generated from prot2vecadd, where the prediction performance under the setting 2) is 

superior to that achieved under setting 1) and 3).  
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The following observations can be obtained from the results in Figure 8.4. Firstly, 

better prediction performance was achieved by different protein kernels for different 

implementations of prot2vecs under different experimental settings. However, the 

Laplacian kernel and the Cosine kernel achieved superior performance than other 

kernels that were evaluated and compared. Secondly, the prediction performance of the 

6 tested kernels generated from the prot2vecadd demonstrated significant differences 

from each other than those generated from the prot2vecinference and prot2vecnon-overlap. 

Thirdly, the prediction performance under setting 1) was superior to those under setting 

2) and 3); and the prediction performance under setting 2) was superior to the setting 3). 

This result is consistent with the observation that the number of interactions is larger 

than the number of drugs and the number of drugs is larger than the number of proteins. 

It indicates that the number of training examples is positively related to the prediction 

performance, over the three experimental settings. 

8.5.2 Comparison among three implementations of prot2vecs 

In Section 4.1.2, we introduced four implementations of the distributed representation of 

protein sequences. To evaluate the prediction performance of the different 

implementations of prot2vecs in DTI prediction, in this section, we conduct cross-

validation tests to compare the prediction performance of the prot2vecadd-based protein 

kernel, the prot2vecnon-overlap-based protein kernel and the prot2vecinference-based protein 

kernel. Figure 8.5 illustrates the ROC curves and corresponding AUC scores for the 

above three protein kernels under three experimental settings. 
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Figure 8.5 Performance comparison among the three implementations of prot2vecs as the kernel feature vectors for DTI prediction. 
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In all three experimental settings, protein kernels generated from prot2vecinference and 

prot2vecnon-overlap consistently outperformed those generated from prot2vecadd. Since the 

experimental setting cv-by-proteins relies solely on the selection of protein kernels, we 

specifically discuss the results for cv-by-proteins. According to the results shown in 

Figure 8.5, the best prediction performance was achieved by prot2vecinference-based 

kernels, with an AUC score of 0.736, which improved the AUC score by 0.049 and 0.062 

when compared with those achieved by prot2vecnon-overlap-based kernel and the 

prot2vecadd-based kernel.  It suggests that the order of amino acids in protein sequences 

plays an important role in generating vector representations for DTI prediction. At the 

same time, the superior performance of the prot2vecinference-based kernel over the 

prot2vecnon-overlap-based kernel showed that the overlapping splitting is better than the 

non-overlapping splitting for generating prot2vecs.  

8.5.3 Comparison with the state-of-the-art protein kernels 

In Section 8.4.2, three state-of-the-art protein kernels were evaluated and compared for 

DTI prediction. They are the sequence-based kernel SEQ, the inter-domain -based 

kernel PPI, and the annotation-based kernel GO. In this section, we validate the 

effectiveness of the prot2vec-based protein kernels by comparing their performance to 

those of the three state-of-the-art protein kernels in DTI prediction. Here, the protein 

kernel generated from the prot2vecinference representations using the Laplacian kernel 

function was selected, since it achieved the best performance according to Section 8.5.1. 

Figure 8.6 demonstrates the ROC curves with corresponding AUC scores for the 

compared protein kernels.  



 

29
8 

 

 

 

 

Figure 8.6 Performance comparison among state-of-the-art protein kernels for drug-target interaction prediction. 
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According to the results in Figure 8.6, the prot2vec-based protein kernel and 

sequence-based kernel SEQ achieved superior performance than annotation-based 

kernel GO and inter-domain -based kernel PPI. For cv-by-proteins and cv-by-drugs 

experimental settings, prot2vec-based kernel improved the AUC score by 0.002 and 

0.002, respectively, when compared with the state-of-the-art protein kernel SEQ. It 

achieved the second-best performance in setting cv-by-interactions. However, it is 

noteworthy that the prediction performance in setting cv-by-interactions was also 

affected by the selection of drug kernels.  In contrast, the prediction performance in 

setting cv-by-proteins relies solely on the quality of protein kernels. Therefore, the 

performance in cv-by-proteins is of the most interest for investing the performance of 

different protein kernels. 

8.6 Chapter summary 

In this chapter, we evaluated the effectiveness of prot2vec-based protein kernels for DTI 

prediction. We first conducted comprehensive benchmarking experiments to evaluate 

the prediction performance of seven existing machine learning-based methods, three 

protein kernels and five drug kernels. We found that among all machine learning-based 

methods, the KBMF2K method achieved the best prediction performance and the GIP-

WNN method achieved comparable performance using the least execution time. While 

for protein and drug kernels, the better prediction performance was achieved by using 

sequence-based protein kernel SEQ, annotation-based protein kernel GO, structure-

based drug kernel Chemical, annotation-based drug kernel ATC, and inter-domain -

based drug kernel SiderEffect. According to these results, we selected the best 

performing machine learning-based method and the best performing drug kernel, with 

which we further evaluated the prediction performance of prot2vec-based protein kernels.  

The distributed representation of protein sequences provides a kernel-function 

friendly representation for generating protein sequence-based kernels. With protein 
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sequences represented using three different implementations, prot2vecinference, 

prot2vecnon-overlap and prot2vecadd (e.g. ProtVec [193]), we respectively applied six 

different kernel functions to generate 21 protein sequence -based kernels and evaluated 

their prediction performance for DTI prediction. With the best performing kernel function 

that was selected from the six compared kernels functions, we further evaluated the 

prediction of prot2vec-based protein kernels in comparison with the existing state-of-the-

art protein kernels that have been applied to DTI prediction.  

According to the performance comparison for DTI prediction in Figure 8.4, Figure 

8.5, and Figure 8.6, we obtained the following conclusions. Firstly, the order of amino 

acids in protein sequences plays an important role in the generation of prot2vec-based 

protein kernels. This is evidenced by the superior performance achieved by our 

prot2vecinference and prot2vecnon-overlap -based protein kernels when compared with that 

achieved by prot2vecadd-based protein kernels. Secondly, the representation prot2vec 

provides a flexible solution for generating protein kernels using multiple kernel functions, 

from which a best performing kernel can be selected for real-world applications. In this 

chapter, we found that, among the six compared kernel functions, the LAP kernel and 

COS kernel performed better for DTI prediction when applied to prot2vec 

representations. Thirdly, compared to existing state-of-the-art protein kernels, prot2vec-

based protein kernels achieved superior performance in DTI prediction. According to the 

evaluation results, when protein kernel plays a key role in the prediction, prot2vec-based 

kernels improved the AUC score by 0.166 and 0.231, respectively, compared to that of 

the annotation-based protein kernel GO and inter-domain -based protein kernel PPI. It 

also outperformed the state-of-the-art protein kernel SEQ for DTI prediction.  
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9 Conclusions and future work 

Deep learning, as an emerging technique, has achieved breakthrough performance 

improvements in various application areas including image processing, natural language 

processing and speech recognition. In this thesis, we applied a variety of deep learning 

techniques to the analysis of protein sequences, structures and functions, focusing on 

the specialised issues and challenges that are specific to biological data analysis. We 

contributed to both the deep learning field by extending its application in designing 

domain-specific predictive frameworks and to the computational biology field by 

demonstrating the strong performance of deep learning techniques for biological data 

analysis. We also developed publically available bioinformatics tools for future research.   

In previous chapters, we proposed, evaluated and analysed deep learning 

frameworks for predicting protein structures and functions directly from protein 

sequences. In this chapter, we conclude the thesis with a summary of heuristics for 

designing deep learning frameworks. Based on these conclusions, we discuss possible 

directions for future work.  

 

9.1 Heuristics for designing deep learning frameworks 

In this thesis, we explored the systematic design of deep learning framework for groups 

of prediction tasks and critically analysed the prediction performance of deep learning 

techniques in protein analysis. According to the designing process of the proposed deep 

learning frameworks and the evaluation process of their prediction performance, we 

developed a set of heuristics for designing deep learning frameworks in protein analysis.  
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9.1.1 Heuristic 1: Purely data-driven representation should be used in 

combination with biological heuristic-based representations 

In natural language processing (NLP), the generation of distributed representations is 

unsupervised, purely data-driven and conveys high semantic relevance. It greatly 

simplifies the NLP pipelines by replacing the incorporation of NLP background 

knowledge with automatic unsupervised learning processes. As one of the more recently 

proposed distributed representations in NLP, word2vec [289] and doc2vec [169] have 

achieved superior performance compared wtih the traditional word embedding 

techniques and the generic heuristic-based NLP pipelines [277]. In this thesis, we 

demonstrated the performance of the purely data-driven representation, prot2vec, in 

protein analysis. We introduced three novel implementations of prot2vec and proposed 

their application to three different granularities of prediction tasks.  

In Chapter 5, we introduced the application of prot2vec to protein family prediction. 

We found that the prot2vec-based prediction method PfamProt2vec achieved superior 

performance than the method employing the existing implementation of the distributed 

representations of protein sequences, i.e. ProtVec [193]. However, when compared with 

the HMMER 3.1 method which employs the homology profile-based representation, 

PfamProt2vec achieved superior precision scores but performed less favourably in terms 

of sensitivities and balanced accuracies.   

We conducted correlation studies to investigate eight potential factors that may affect 

the prediction performance of PfamProt2vec. According to the results, we found that the 

prediction performance of PfamProt2vec was negatively affected by three factors, e.g. 

low sequential similarities within each protein family; low homological similarities within 

each protein family; and the large number of related families of each protein family. In 

contrast, the prediction performance of HMMER 3.1 was negatively affected only by the 

second factor among the three. This result indicates that the sequence-based 

PfamProt2vec is less accurate for protein families with less sequential similarities, while 
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the homology-based HMMER 3.1 is less accurate for protein families with less homology 

similarities. Therefore, the sequence-based distributed representation, prot2vec, should 

be used in combination with existing biological heuristic-based representations such as 

homology profiles, physicochemical properties and structural information.  

Based on this conclusion, in Section 7.4, we predicted phosphorylation sites by 

combining the purely data-driven representation, context2vec, with biological heuristic-

based representations. Results suggest that models using the combination of the two as 

the input feature achieved improved performance compared to those using either 

context2vec or the biological heuristic-based representations independently as the input 

feature. Specifically, the prediction performance in terms of AUC was significantly 

improved by 0.051, 0.033, 0.025, 0.108, 0.090 for site S, site T, kinase AGC/PKA, kinase 

CMGC/CDK, and kinase Other/CK2, respectively, when context2vec was used in 

addition to biological heuristic-based representations.  

The prediction performance for protein family prediction and phosphorylation site 

prediction demonstrated the importance of combining purely data-driven representations 

and biological heuristic-based representations.  

9.1.2 Heuristic 2: Biological background knowledge should be incorporated in 

the designing of deep learning frameworks for protein and biological 

predictive analysis 

The purpose of developing automated predictive models is to make novel and testable 

predictions with any resource that is available. Deep learning techniques are especially 

suitable for application areas with sufficient training data, based on which the structure 

and parameters of the predictive model are automatically learned during the process of 

model training. However, when there is a lack of data, domain knowledge represents 

another source of information that can be used to partially determine the structure of the 

predictive models. Typical machine learning approaches that allows for the incorporation 
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of domain knowledge include probabilistic soft logic [362], dynamic Bayesian networks 

[363] and Markov logic networks [127].  

Protein predictive modelling suffers from a lack of structural/functional annotations, 

which causes the issue of a lack of training data for many protein sequence-based 

prediction tasks. However, it can benefit from biological background knowledge that is 

manually curated by biologists (e.g. the Gene Ontology [249]) and a large amount of 

experimental observations drawn from experimental analysis (e.g. the qualitative 

correlation between protein intrinsic disorder and secondary structure populations [66]). 

With these heuristics in mind, in Section 4.3 and Section 4.4, we proposed the multitask 

framework, Multi-task and Cross-stitch, by incorporating correlations among protein 

structural properties, and the deep transfer learning framework, DeepTransfer, by 

incorporating the hierarchical classification systems of enzymes.  

The rationale for designing the multitask frameworks is that protein structural 

properties are correlated, and the model learned for one structural property may provide 

evidential information for the prediction of the other structural property. This was 

validated by the results generated from the application of the Multi-task and Cross-stitch 

framework to the simultaneous prediction of protein IDP/IDRs and SSPs, in Section 6.4. 

The results of cross-validation tests indicated that the multitask predictive model Multi-

task-D and Cross-stitch-D outperformed the singletask predictive model DeepS2P-D in 

terms of all four evaluation measurements including the cross entropy, the area under 

the ROC curve, Matthew’s coefficients of correlation, and the balanced accuracy. The 

results of the case study for CASP9 target T520 demonstrated how the predictions of 

SSPs have positively affected the sensitivity in IDP/IDR prediction. Further, the results 

of the case studies performed for protein p53 and SOSSB1 provided the real-world 

application scenarios of multitask predictive models, from which biological interpretations 

of the prediction results can be made. In addition, the Cross-stitch-D model generated a 

quantitative correlation heat map between IDP/IDR prediction and SSP prediction, which 
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demonstrated the capability of the Cross-stitch framework in transforming qualitative 

correlations to quantitative correlations between protein structural properties.  

The rationale for designing the DeepTransfer framework is that there exists 

hierarchical classification systems (trees) of enzymes and the models learned for tree 

nodes at a higher level can be transferred as the feature extractors for models of their 

descendant tree nodes. In Section 7.6, we specifically applied this framework to kinase-

specific phosphorylation site prediction where there is a lack of training data for individual 

protein kinases. According to the results generated from correlation studies, we found 

that the prediction performance was more significantly improved for kinases with less 

training data, which indicated the effectiveness of the DeepTransfer framework in 

leveraging limited training data for rigorous model training.  

Combining the improved performance achieved in the simultaneous prediction of 

IDP/IDRs and SSPs and the prediction of phosphorylation sites for kinases with limited 

training examples, we conclude that it is crucial to incorporate biological background 

knowledge in the design of deep learning frameworks for protein analysis, especially 

when there is a lack of training data.  

9.1.3 Heuristic 3: Deep learning frameworks for protein analysis should be 

designed at a conceptual level 

As demonstrated in Chapter 1 and Chapter 2, existing applications of deep learning to 

protein analysis were performed in an ad hoc manner. However, according to the 

research conducted in this thesis, the prediction tasks in protein analysis can be 

generalised to a more abstract level, based on which deep learning frameworks can be 

designed for groups of prediction tasks. This idea greatly improved the efficiency in 

constructing predictive models for different tasks.  

In Section 4.2, we proposed the DeepS2P framework for predicting residue-level 

structural/functional properties based on protein sequences. It allows flexibility in the 

selection of input features, the determination of the final model structure (via hyper-
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parameter tuning), and the format of the prediction outputs (such as the number of output 

values, numerical or categorical outputs, etc.), depending on the prediction task it is 

applied to. In subsequent chapters, this framework was applied to IDP/IDR prediction, 

SSP prediction and phosphorylation site prediction in Section 6.2, Section 6.3 and 

Section 7.5, respectively. Since these three applications were derived from the same 

deep learning framework, the steps required for constructing corresponding predictive 

models were reduced to data collection, feature selection and hyper-parameter tuning. 

In practice, the DeepS2P framework can be further applied and deployed for predicting 

any protein sequence-base residue-level property.  

In this thesis, we also proposed the multitask framework, Multi-task and Cross-stitch, 

that can be applied to predict any pair of correlated protein structural properties, the deep 

transfer framework, DeepTransfer, that can be applied to predict functionally important 

sites of any enzymes in post-translational modification, and the application framework of 

prot2vec that applies the distributed representation to any sequence-level, residue-level 

and biological interaction-level prediction tasks.  

These deep learning frameworks represent the significant effort of developing 

conceptual level modelling for groups of prediction tasks and, hopefully, will facilitate 

more effective and efficient model design in future work.  

9.2 Future works 

The research work conducted in this thesis can be extended into multiple research areas. 

In this section, we highlight three of the potential directions.  

Distributed representation of proteins based on molecule structures. 

Compared to protein sequences, protein structures are more directly related to protein 

functions. In particular, protein structures are partially determined by long-disorder 

contacts which indicates the spatial local correlation among amino acid residues [64]. 

Therefore, it is critical to develop the distributed representation of proteins based on 

molecule structures to capture the spatial local correlation. When there is sufficient data 
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for protein structures, the distributed representation can be extended to better represent 

the function of proteins.  

Quantitative correlation exploration for multiple protein structural and 

functional properties. In this thesis, we applied the cross-stitch deep learning 

framework for predicting protein intrinsic disorder and secondary structure populations, 

which also generated the quantitative correlation heat map between these two structural 

properties. In future works, more protein structural and functional properties can be 

involved to produce a full correlation heat map for protein structures and functions. This 

heat map will be indicative for future directions of investigation in biological research. It 

will also provide a useful heuristic for determining which structural and functional 

properties should be predicted simultaneously to achieved improved performance.  

Deep learning framework design for genomic data analysis. Proteins represent 

one of the most important gene products of gene expression. Their functions are 

primarily determined by amino acid sequences. Also, they are further translated from 

gene sequences. Since protein sequences and gene sequences are both biological 

sequences, the deep learning techniques, such as the distributed representation, the 

multitask deep learning frameworks and the DeepTransfer framework, which have been 

applied to protein analysis, can be extended and applied to genomic data analysis. It is 

noteworthy that the analysis of genomic data is more challenging due to the larger 

amount of data involved, more complex data structures and higher levels of uncertainty. 
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Appendix A 

Table A.1 A summary of the nomenclature of functionally important sites.  

Functional categories Functionally important sites 

Active site All active site, catalytic site residues 

Ligand binding site 1. Nucleotide binding sites: DNA and RNA binding sites 
2. Lipid binding sites: cholesterol, glycerol, ganglioside, etc.  

3. Carbohydrate binding sites: glucose, fructose, lactose, maltose, 
disaccharides, trisaccharides, etc. 

4. Small organic ligand binding sites: ATP, ascorbate, benzamidine, 
butyramide, citrate, cyclosporine, FAD, FMN, hapten, heme, NAD, NADP, 
NADPH, oxalate, pterin, pyruvate, tetracycline, etc.  

5. Inorganic ligand binding sits: CO, phosphate, and sulfur binding sites  

Protein binding site 1. Protein-protein interaction sites extracted from heterocomplexes 
2. Peptide binding sites 

3. Specific protein binding sites: actin, tubulin, heparin, etc. 

Metal binding site All metal binding residues 

Post-translational 
modification site 

1. Acetylation sites, catalysed by α-tubulin acetyl- transferase (αTAT1).  
2. Cleavage sites, catalysed by proteases.  
3. Glycosylation sites, catalysed by oligosaccharyltransferase (OTase) and 

others.  

4. Lipoylation sites, catalysed by lipoate protein ligase (LplA), or by a lipoyl 
transferase (LipB) plus a lipoic acid synthetase (LipA).  

5. Phosphorylation sites, catalysed by protein kinases.  

Miscellaneous site Sites involved in structural changes, disulphide bonding residues, hinge regions, 
etc.  
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Table A.2 A summary of performance evaluation measures. 

Name Abbreviation Equation 

True positive TP N/A 

True negative TN N/A 

False positive FP N/A 

False negative FN N/A 

Precision PR !" = $!
$! + &! 

Sensitivity (Recall) SE (RE) '( = $!
$! + &) 

Specificity SP '! = $)
$) + &! 

Accuracy ACC *++ = $! + $)
$! + &! + $) + &) 

Balanced accuracy BACC ,*++ = 1
2 (

$!
$! + &) +

$)
$) + &!) 

F1-score F1 &1 = 2 × !" × "(!" + "( 

Matthews coefficient of 
correlation MCC 2++ = $! × $) + &! × &)

3($! + &))($! + &))(&! + $))(&! + &))
 

Pearson coefficient of 
correlation PCC 

!++ = ∑ (56 − 5̅)(96 − 9:);
6<=

3∑ (56 − 5̅)>;
6<= 3∑ (96 − 9:)>;

6<=
 

where 56 and 96 are single samples in the true dataset 5 
and predicted dataset y, respectively 

True positive rate 
(Sensitivity, Recall) TPR $!" = $!

$! + &) 

False positive rate FPR $!" = &!
&! + $) = 1 − '! 

Receiver operating 
characteristic curve ROC curve The ROC curve plots the changes of TPR with respect to 

the changes of TPR. 

Area under the ROC 
curve AUC The AUC score measures the areas under the ROC 

curve. 

* In this thesis, the above evaluation measurement scores were calculated using the scikit-learn machine learning 

package35 in Python.  

  

                                            
35 Scikit-learn: http://scikit-learn.org/stable/ 



 331 

Table A.3 The number of annotated phosphosites in training and independent test sets for each kinase 

node in hierarchical phosphorylation site prediction. 

 

Kinase node # Training # Test # Total 

ST 65631 18138 83769 

ST/AGC 2022 586 2608 

ST/AGC/DMPK 89 36 125 

ST/AGC/DMPK/ROCK 85 33 118 

ST/AGC/DMPK/ROCK/ROCK1 36 18 54 

ST/AGC/DMPK/ROCK/ROCK2 43 11 54 

ST/AGC/GRK 244 64 308 

ST/AGC/GRK/BARK 140 45 185 

ST/AGC/GRK/BARK/GRK2 131 42 173 

ST/AGC/GRK/GRKs 114 19 133 

ST/AGC/GRK/GRKs/GRK6 58 11 69 

ST/AGC/NDR 6 17 23 

ST/AGC/NDR/NDR- 6 17 23 

ST/AGC/NDR/NDR-/LATS1 13 6 19 

ST/AGC/NDR/NDR-/LATS2 8 13 21 

ST/AGC/PKA 700 197 897 

ST/AGC/PKB 251 65 316 

ST/AGC/PKB/PKB- 51 12 63 

ST/AGC/PKB/PKB-/PDK1 52 11 63 

ST/AGC/PKC 768 194 962 

ST/AGC/PKC/Alpha 165 47 212 

ST/AGC/PKC/Alpha/PKCA 157 39 196 

ST/AGC/PKC/Alpha/PKCB 25 6 31 

ST/AGC/PKC/Delta 46 17 63 

ST/AGC/PKC/Delta/PKCD 51 12 63 

ST/AGC/PKC/Eta 31 19 50 

ST/AGC/PKC/Eta/PKCE 41 9 50 

ST/AGC/PKC/Iota 34 13 47 

ST/AGC/PKC/Iota/PKCZ 33 9 42 

ST/AGC/PKG 65 24 89 

ST/AGC/RSK 53 13 66 
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ST/AGC/SGK 77 28 105 

ST/AGC/SGK/SGK- 62 23 85 

ST/AGC/SGK/SGK-/SGK1 61 18 79 

ST/Atypical 151 73 224 

ST/Atypical/PIKK 147 73 220 

ST/Atypical/PIKK/ATM 130 59 189 

ST/Atypical/PIKK/ATR 23 33 56 

ST/Atypical/PIKK/DNAPK 11 10 21 

ST/CAMK 651 298 949 

ST/CAMK/CAMK1 63 22 85 

ST/CAMK/CAMK1/CAMK1- 25 12 37 

ST/CAMK/CAMK1/CAMK1-/CAMK4 17 11 28 

ST/CAMK/CAMK2 121 41 162 

ST/CAMK/CAMK2/CAMK2- 44 17 61 

ST/CAMK/CAMK2/CAMK2-/CAMK2A 27 13 40 

ST/CAMK/CAMKL 278 120 398 

ST/CAMK/CAMKL/AMPK 167 50 217 

ST/CAMK/CAMKL/BRSK 12 21 33 

ST/CAMK/CAMKL/BRSK/BRSK1 18 12 30 

ST/CAMK/CAMKL/BRSK/BRSK2 21 5 26 

ST/CAMK/CAMKL/CHK1s 7 9 16 

ST/CAMK/CAMKL/CHK1s/CHK1 8 8 16 

ST/CAMK/CAMKL/CHK2s 5 12 17 

ST/CAMK/CAMKL/CHK2s/CHK2 9 8 17 

ST/CAMK/CAMKL/LKB 36 12 48 

ST/CAMK/CAMKL/LKB/LKB1 36 12 48 

ST/CAMK/CAMKL/MARK 31 16 47 

ST/CAMK/CAMKL/MARK/MARK1 18 9 27 

ST/CAMK/CAMKL/NuaK 21 13 34 

ST/CAMK/CAMKL/NuaK/NUAK1 24 10 34 

ST/CAMK/CAMKL/PASKs 13 10 23 

ST/CAMK/CAMKL/PASKs/PASK 14 9 23 

ST/CAMK/DAPK 33 20 53 

ST/CAMK/DAPK/DAPK- 32 20 52 

ST/CAMK/DAPK/DAPK-/DAPK1 28 9 37 
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ST/CAMK/DAPK/DAPK-/DAPK3 10 6 16 

ST/CAMK/MAPKAPK 70 49 119 

ST/CAMK/MAPKAPK/MAPKAPKs 68 48 116 

ST/CAMK/MAPKAPK/MAPKAPKs/MAPKAPK2 72 18 90 

ST/CAMK/MAPKAPK/MAPKAPKs/MAPKAPK3 15 11 26 

ST/CAMK/MAPKAPK/MAPKAPKs/MAPKAPK5 23 14 37 

ST/CAMK/MLCK 14 4 18 

ST/CAMK/PHK 51 50 101 

ST/CAMK/PKD 50 11 61 

ST/CAMK/RAD53 5 12 17 

ST/CK1 225 74 299 

ST/CK1/CK1f 208 64 272 

ST/CK1/CK1f/CK1f- 23 17 40 

ST/CK1/CK1f/CK1f-/CK1A 13 4 17 

ST/CK1/TTBK 13 3 16 

ST/CK1/TTBK/TTBK- 13 3 16 

ST/CK1/TTBK/TTBK-/TTBK1 13 3 16 

ST/CK1/VRK 23 20 43 

ST/CK1/VRK/VRK- 23 20 43 

ST/CK1/VRK/VRK-/VRK1 29 14 43 

ST/CK1/VRK/VRK-/VRK2 24 8 32 

ST/CMGC 880 319 1199 

ST/CMGC/CDK 473 155 628 

ST/CMGC/CDK/CDC2s 186 76 262 

ST/CMGC/CDK/CDC2s/CDC2 18 5 23 

ST/CMGC/CDK/CDC2s/CDK2 182 51 233 

ST/CMGC/CDK/CDK4s 14 11 25 

ST/CMGC/CDK/CDK4s/CDK4 12 10 22 

ST/CMGC/CDK/CDK5s 131 70 201 

ST/CMGC/CDK/CDK5s/CDK5 159 42 201 

ST/CMGC/CDK/CDK7s 30 14 44 

ST/CMGC/CDK/CDK7s/CDK7 37 7 44 

ST/CMGC/CDK/CDK9s 39 5 44 

ST/CMGC/CDK/CDK9s/CDK9 39 5 44 

ST/CMGC/DYRK 108 73 181 
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ST/CMGC/DYRK/Dyrk1 17 4 21 

ST/CMGC/DYRK/Dyrk2 58 42 100 

ST/CMGC/DYRK/Dyrk2/DYRK2 70 26 96 

ST/CMGC/DYRK/HIPK 39 38 77 

ST/CMGC/DYRK/HIPK/HIPK2 49 13 62 

ST/CMGC/GSK 185 86 271 

ST/CMGC/GSK/GSK3A 25 9 34 

ST/CMGC/GSK/GSK3B 212 59 271 

ST/CMGC/MAPK 161 39 200 

ST/Other 873 258 1131 

ST/Other/CK2 523 145 668 

ST/Other/CK2/CK2- 92 30 122 

ST/Other/CK2/CK2-/CK2A 100 22 122 

ST/Other/IKK 95 37 132 

ST/Other/IKK/IKK- 68 37 105 

ST/Other/IKK/IKK-/IKKA 17 7 24 

ST/Other/IKK/IKK-/IKKB 38 14 52 

ST/Other/IKK/IKK-/IKKE 18 7 25 

ST/Other/IKK/IKK-/TBK1 25 10 35 

ST/Other/NEK 34 10 44 

ST/Other/PEK 16 5 21 

ST/Other/PLK 199 62 261 

ST/Other/PLK/PLK- 200 61 261 

ST/Other/PLK/PLK-/PLK1 108 30 138 

ST/Other/PLK/PLK-/PLK2 38 15 53 

ST/Other/PLK/PLK-/PLK3 51 17 68 

ST/STE 168 73 241 

ST/STE/STE11 20 8 28 

ST/STE/STE20 113 35 148 

ST/STE/STE20/PAKA 88 35 123 

ST/STE/STE20/PAKA/PAK1 45 14 59 

ST/STE/STE20/PAKA/PAK2 52 14 66 

ST/STE/STE20/PAKA/PAK3 23 8 31 

ST/STE/STE20/PAKB 12 5 17 

ST/STE/STE7 35 31 66 
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ST/STE/STE7/STE7- 37 29 66 

ST/STE/STE7/STE7-/MAP2K3 21 5 26 

ST/STE/STE7/STE7-/MAP2K4 18 11 29 

ST/STE/STE7/STE7-/MAP2K6 20 7 27 

ST/STE/STE7/STE7-/MAP2K7 16 7 23 

Y 5524 1724 7248 

Y/TK 966 398 1364 

Y/TK/Abl 58 18 76 

Y/TK/Csk 112 45 157 

Y/TK/EGFR 40 48 88 

Y/TK/Eph 18 4 22 

Y/TK/Fer 11 12 23 

Y/TK/FGFR 31 14 45 

Y/TK/FGFR/FGFR- 30 14 44 

Y/TK/FGFR/FGFR-/FGFR1 28 7 35 

Y/TK/InsR 58 42 100 

Y/TK/InsR/InsR- 58 42 100 

Y/TK/InsR/InsR-/IGF1R 19 7 26 

Y/TK/InsR/InsR-/INSR 65 16 81 

Y/TK/JakA 72 24 96 

Y/TK/JakA/JakA- 72 24 96 

Y/TK/JakA/JakA-/JAK2 58 13 71 

Y/TK/JakA/JakA-/TYK2 12 7 19 

Y/TK/Met 4 26 30 

Y/TK/PDGFR 32 26 58 

Y/TK/PDGFR/PDGFR- 13 19 32 

Y/TK/PDGFR/PDGFR-/PDGFRB 4 13 17 

Y/TK/Ret 14 4 18 

Y/TK/Src 445 186 631 

Y/TK/Src/Src- 448 177 625 

Y/TK/Src/Src-/FYN 79 32 111 

Y/TK/Src/Src-/HCK 19 7 26 

Y/TK/Src/Src-/LCK 53 21 74 

Y/TK/Src/Src-/LYN 70 11 81 

Y/TK/Src/Src-/SRC 298 83 381 
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Y/TK/Syk 66 28 94 

Y/TK/Syk/Syk- 66 28 94 

Y/TK/Syk/Syk-/SYK 62 17 79 

Y/TK/Syk/Syk-/ZAP70 10 11 21 

Y/TK/Tec 32 19 51 

Y/TK/Tec/Tec- 32 19 51 

Y/TK/Tec/Tec-/BTK 21 16 37 

Y/TK/VEGFR 15 3 18 
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  Figure A.1 The hierarchical kinase classification tree of the constructed benchmark datasets for 

Serine/Threonine sites. 
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  Figure A.2 The hierarchical kinase classification tree of the constructed benchmark datasets for 

Tyrosine sites.  
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