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Abstract	11	
ENSO	 variability	 has	 a	 seasonal	 phase-locking,	with	 SST	 anomalies	 on	 average	12	
decreasing	during	the	beginning	of	the	year	and	SST	anomalies	increasing	during	13	
the	second	half	of	the	year.	As	a	result	of	this,	the	ENSO	SST	variability	is	smallest	14	
in	April	and	the	so	call	‘spring	barrier’	exists	in	the	predictability	of	ENSO.		In	this	15	
study	 we	 analysis	 how	 the	 seasonal	 phase-locking	 of	 surface	 short	 wave	16	
radiation	associated	with	cloud	cover	feedbacks	contribute	to	this	phenomenon.	17	
We	base	our	analysis	on	observations	and	simplified	climate	model	simulations.	18	
At	 the	 beginning	 of	 the	 year,	 the	 warmer	mean	 SST	 in	 the	 eastern	 equatorial	19	
Pacific	 leads	 to	 deeper	 clouds	 whose	 anomalous	 variability	 are	 positively	20	
correlated	 with	 the	 underlying	 SST	 anomalies.	 These	 observations	 highlight	 a	21	
strong	 negative	 surface	 short	wave	 radiation	 feedback	 at	 the	 beginning	 of	 the	22	
year	in	the	eastern	Pacific	(NINO3	region).	This	supports	the	observed	seasonal	23	
phase-locking	 of	 ENSO	 SST	 variability.	 This	 relation	 also	 exists	 in	 model	24	
simulations	of	the	linear	recharge	oscillator	and	in	the	slab	ocean	model	coupled	25	
to	 a	 fully	 complex	 atmospheric	 GCM.	 The	 Slab	 ocean	 simulation	 has	 seasonal	26	
phase-locking	 similar	 to	 observed	mostly	 caused	 by	 similar	 seasonal	 changing	27	
cloud	 feedbacks	 as	 observed.	 In	 the	 linear	 recharge	 oscillator	 simulations	28	
seasonal	 phase-locking	 is	 also	 similar	 to	 observed,	 but	 is	 not	 just	 related	 to	29	
seasonal	 changing	 cloud	 feedbacks,	 but	 is	 also	 related	 to	 changes	 in	 the	30	
sensitivity	of	 the	 zonal	wind	 stress	 and	 to	a	 lesser	 extent	 to	 seasonally	 change	31	
sensitivities	to	the	thermocline	depth.	In	summary	this	study	has	shown	that	the	32	
seasonal	 phase-locking,	 as	 observed	 and	 simulated,	 is	 linked	 to	 seasonally	33	
changing	cloud	feedbacks.		34	
	35	
	36	
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1. Introduction	38	
The	 El	 Nino	 Southern	 Oscillation	 (ENSO)	 variability	 is	 the	 leading	 mode	 of	39	
interannual	 climate	 variability.	 It	 is	 marked	 by	 a	 pattern	 of	 sea	 surface	40	
temperature	 (SST)	 anomalies	 in	 the	 tropical	 Pacific	with	 largest	 amplitudes	 in	41	
the	central	to	eastern	equatorial	Pacific.	The	SST	variability	tends	to	be	strongest	42	
in	boreal	winter	and	weakest	in	boreal	spring.	This	seasonal	phase-locking	is	an	43	
important	 characteristic	 of	 ENSO,	 as	 it	 indicates	 that	 the	 underlying	 dynamics	44	
controlling	 the	evolution	of	 this	mode	are	state	dependent.	 It	 is	also	 important	45	
for	 predicting	 the	 evolution	 of	 ENSO,	 as	 only	 models	 that	 can	 simulate	 the	46	
seasonal	phase-locking	and	 the	associated	 ‘spring	barrier’	 correctly	 are	able	 to	47	
simulate	the	growth	and	decay	of	SST	anomalies	adequately.	The	correct	phase	48	
locking	is	also	important	for	the	correct	simulation	of	the	ENSO	teleconnections,	49	
as	many	teleconnections	display	strong	seasonal	phase-locking	too.		50	
A	realistic	seasonal	phase-locking	of	ENSO	is	still	a	significant	challenge	for	most	51	
state-of-the-art	 Coupled	 General	 Circulation	Models	 (CGCMs)	 [e.g.	 Bellenger	 et	52	
al.,	 2014	 and	 Rashid	 and	 Hirst,	 2015].	 Models	 from	 the	 Coupled	 Model	 Inter-53	
comparison	 Project	 (CMIP)	 version	 3	 and	 5	 have	 significant	 problems	 in	54	
simulating	 the	 right	 seasonality	 of	ENSO	 in	both,	 the	 seasonal	phase	 and	 in	 its	55	
amplitude.	Rashid	and	Hirst	[2015]	found	that	the	biases	in	the	cloud	simulations	56	
are	 key	 in	 controlling	 the	 ENSO	 phase-locking	 biases	 in	 the	 ACCESS	 model	57	
simulations.	58	
The	dynamics	that	cause	the	seasonal	phase-locking	are	yet	not	fully	understood,	59	
although	 it	 has	 been	 studied	 in	 a	 number	 publications	 [e.g.	 Chang	 et	 al.,	 1995,	60	
Tziperman	et	al.,	1995,	 Jin	et	al.,	1996,	Harrison	and	Vecchi,	1999,	Neelin	et	al.,	61	
2000,	Stein	et	al.	2010,	Stuecker	et	al.,	2013,	McGregor	et	al.,	2013,	Ham	et	al.,	62	
2013,	 Levine	 and	 McPhaden,	 2015	 or	 Zhu	 et	 al.,	 2015].	 Most	 of	 these	 studies	63	
discuss	the	ENSO	phase-locking	in	the	context	of	stochastic	chaos	theory,	but	do	64	
not	 address,	 which	 physical	 process	 of	 the	 seasonal	 cycle	 do	 cause	 the	 ENSO	65	
phase	locking.	Harrison	and	Vecchi	[1999],	Stuecker	et	al.	[2013]	and	McGregor	66	
et	al.	[2012,	2013]	argue	that	the	southward	wind	shift	or	second	mode	of	zonal	67	
wind	stresses	is	causing	the	termination	of	ENSO	in	the	spring	season.	Thus	they	68	
argue	 that	 seasonally	 changing	 sensitivities	 in	 the	 zonal	wind	 is	 leading	 to	 the	69	
ENSO	phase-locking.	Zhu	et	al.	[2015]	found	that	the	thermocline-SST	feedbacks	70	
may	be	one	of	the	causes	for	ENSO	spring	persistence	barrier.	Stein	et	al.	[2010]	71	
and	 Levine	 and	McPhaden	 [2015]	 both	 analysed	 the	 seasonality	 in	 the	 growth	72	
rate	 of	 the	 recharge	 oscillator	model	 and	 found	 that	 this	 is	 able	 to	 explain	 the	73	
spring	barrier.		74	
In	 general	 ENSO	 dynamics	 are	 a	 result	 of	 different	 processes	 interacting	 [e.g.	75	
BJERKNES,	 1969,	 Jin,	 1997,	 Neelin	 et	 al.,	 1998	 or	 Dommenget,	 2010].	 These	76	
include	 oceanic,	 atmospheric	 and	 coupled	 processes.	 The	 main	 interactions	77	
between	 the	 zonal	 wind	 stress,	 SST	 and	 the	 thermocline	 depth	 which	 create	78	
anomaly	 growth	 are	 often	 summarized	 as	 the	 Bjerknes	 feedbacks	 [BJERKNES,	79	
1969].	 The	 simple	 Recharge	 Oscillator	 (ReOsc)	 model	 of	 Jin	 (1997)	 combines	80	
these	growth	mechanisms	with	mechanisms	for	the	anomaly	decay.	This	model	81	
has	been	further	simplified	by	Burgers	et	al.	[2005],	which	describes	ENSO	as	a	82	
recharge	and	discharge	of	heat	content	along	the	whole	equatorial	Pacific	forced	83	
by	zonal	wind	stress	in	the	central	equatorial	Pacific	and	atmospheric	heat	fluxes	84	
over	the	NINO3	region	(5oS	to	5oN	/	150oW	to	90oW).		85	



The	ReOsc	model	coupled	to	a	fully	complex	atmosphere	model	has	been	used	to	86	
study	ENSO	dynamics	by	Frauen	and	Dommenget	[2010]	and	by	Yu	et	al.	[2015].	87	
Both	studies	found	that	realistic	seasonal	ENSO	phase-locking	exists	in	the	ReOsc	88	
model	simulations.	In	both	model	simulations	the	ocean	dynamics	are	linearized	89	
with	constant	(seasonally	not	changing)	model	parameters.	Thus,	indicating	that	90	
the	 seasonality	 of	 ENSO	 in	 these	 simulations	 results	 entirely	 from	 the	91	
atmospheric	 zonal	wind	 stress	and	heat	 fluxes.	Yu	et	 al.	 [2015]	also	 found	SST	92	
variability	 with	 the	 same	 seasonal	 phase-locking	 as	 the	 observed	 ENSO	 in	 a	93	
configuration	of	the	model	which	included	only	a	Slab	Ocean	with	constant	50m	94	
depth	 (i.e.,	 no	 upper	 ocean	 dynamics).	 In	 this	 simulation	 seasonality	 of	 SST	95	
variability	 results	 entirely	 from	 atmospheric	 heat	 fluxes	 only.	 Thus	 these	96	
simplified	models	of	tropical	SST	variability	suggest	that	realistic	ENSO	seasonal	97	
phase-locking	can	result	from	atmospheric	processes	only.	98	
The	ENSO	dynamics	have	also	been	analysed	 in	 the	context	of	 cloud	 feedbacks	99	
[e.g.	 Barnett	 et	 al.,	 1991,	 Waliser	 et	 al.,	 1994,	 Wang	 and	 McPhaden,	 2000	 or	100	
Guilyardi	 et	 al.,	 2009].	 It	 is	 in	 general	 argued	 that	 surface	 short	 wave	 cloud	101	
feedbacks	 tend	 to	 dampen	 the	 ENSO	 variability.	 	 However,	 in	 some	 situations	102	
they	can	be	positive	feedbacks	too	[e.g.	Dommenget	et	al.,	2014].	Dommenget	et	103	
al.	[2014]	argue	that	the	cloud	feedbacks	are	SST	state	dependent,	with	warmer	104	
SSTs	 favouring	 negative	 cloud	 surface	 short	 wave	 feedbacks	 and	 colder	 SSTs	105	
favour	more	positive	cloud	feedbacks.		The	role	that	cloud	feedbacks	play	in	the	106	
context	of	the	seasonal	phase-locking	have	so	far	not	been	addressed.	107	
The	aim	of	this	study	here	is	to	analyse	the	relationship	between	ENSO	seasonal	108	
phase-locking	and	the	seasonally	changing	cloud	cover	feedbacks	in	observations	109	
and	in	simplified	model	simulations.	We	will	illustrate	that	cloud	cover	feedbacks	110	
change	seasonally	in	a	way	that	supports	the	observed	seasonal	phase-locking	of	111	
ENSO.	We	will	also	illustrate	that	in	some	simplified	coupled	model	simulations	112	
the	seasonally	changing	cloud	cover	 feedbacks	are	 the	main	cause	of	 the	ENSO	113	
seasonal	phase-locking.	114	
The	paper	is	organized	as	follows:	The	following	section	describes	datasets	and	115	
the	model	simulations	used	 in	 this	study.	 In	section	3	we	analyse	 the	observed	116	
seasonal	phase-locking	and	its	relation	to	cloud	cover	feedbacks.	In	section	4	and	117	
5	we	illustrate	the	seasonal	phase-locking	in	the	slab	ocean	and	the	ReOsc	model	118	
simulations.	The	study	is	concluded	with	a	summary	and	discussion.	119	

2. Observations,	Models	and	Methods	120	
Observed	SSTs	are	based	on	the	HADISST	dataset	from	1870	to	2011	[Rayner	et	121	
al.,	2003].	Cloud	cover	observations	from	1984	to	2002	are	taken	from	the	ISCCP	122	
dataset	 [Rossow	and	Schiffer,	1999].	The	NCEP	reanalysis	 [Kalnay	et	 al.,	 1996]	123	
cloud	 cover	 or	 short	 wave	 surface	 radiation	 are	 not	 used	 in	 this	 study.	 Cloud	124	
cover	 observations	 are	not	 assimilated	 into	 the	NCEP	 reanalysis	 and	 the	 cloud	125	
cover	 variability	 in	 the	 ISCCP	 and	 NCEP	 dataset	 appear	 to	 be	 significantly	126	
different	from	each	other.		The	ISCCP	observations	are	therefore	preferred.	127	
In	this	study	three	different	hybrid	coupled	GCM	model	simulations	are	studied	128	
that	all	use	the	same	atmospheric	GCM	model,	but	differ	only	in	the	formulation	129	
of	the	simplified	ocean	models.	These	are	the	same	model	simulations	studied	in	130	
Yu	 et	 al.	 [2015].	 The	 main	 elements	 of	 the	 model	 simulations	 are	 presented	131	
below,	 but	 for	 details	 on	 the	 model	 development	 see	 Yu	 et	 al.	 [2015].	 The	132	



atmospheric	 GCM	 in	 all	 three	 simulations	 is	 a	 low-resolution	 version	 (3.75°	 x	133	
2.5°)	of	the	Australian	Community	Climate	and	Earth	System	Simulator	(ACCESS)	134	
model	 of	 the	 UK	 Meteorological	 Office	 Unified	 Model	 AGCM	 with	 HadGEM2	135	
physics	[Davies	et	al.,	2005,	Martin	et	al.,	2010,	Martin	et	al.,	2011	and	Bi	et	al.,	136	
2013].	In	all	three	simulations	the	ocean	is	simulated	with	simplified	models	and	137	
SST	climatologies	are	forced	to	be	similar	to	the	observed	by	either	prescribing	138	
the	mean	SST	or	by	flux	corrections.	139	
The	first	ocean	model	is	a	Slab	Ocean	model	with	constant	mixed	layer	depth	of	140	
50m:	141	
	142	

𝛾 "##$ %,'
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= 𝐹*'+,- 𝑥, 𝑡 + 𝐹1 𝑥, 𝑡2 	 	 	 	 	 	 	 	 [1]	143	
	144	
Where	𝛾	is	the	heat	capacity	of	the	50m	mixed	layer	and	Fatmos	is	the	net	heat	flux	145	
into	the	ocean.	The	flux	correction,	FQ,	is	a	state-independent	flux	correction	that	146	
forces	the	model	to	have	the	same	mean	SST	climatology	as	observed.	Both	SST	147	
and	Fatmos	are	functions	of	location,	𝑥,	and	time,	t,	and	FQ	is	a	function	of	location	148	
and	calendar	day	of	the	year,	tj.	Thus	this	SST	tendency	eq.	[3]	models	the	SST	at	149	
every	grid	point	for	each	time	step.	We	refer	to	this	model	as	the	Slab	simulation.	150	
	151	
The	 second	 ocean	 model	 utilises	 the	 slab	 ocean	 component	 outside	 of	 the	152	
tropical	 Pacific	 (20°S–20°N,	 130°E–70°W),	 while	 within	 the	 tropical	 Pacific	153	
region	SSTAs	are	calculated	with	the	low	order	2-dimensional	recharge	oscillator	154	
toy	model	similar	to	Frauen	and	Dommenget	[2010]	(the	model	is	referred	to	as	155	
ReOsc).		The	ReOsc	toy	model	from	Burgers	et	al.	[2005]	is	given	by	two	coupled	156	
differential	 equations	 of	 SST	 anomalies	 in	 the	 NINO3	 region,	 T,	 and	 the	157	
thermocline	depth	anomalies	over	the	whole	equatorial	Pacific,	h:		158	
	159	
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= 𝑎64𝑇 𝑡 + 𝑎66ℎ 𝑡 + 𝜁6		 	 	 	 	 	 	 	 [3]	162	
	163	
The	 two	 equations	 are	 forced	 by	 stochastic	 noise	 terms	𝜁4	and	𝜁6.	 The	 model	164	
parameters	a11	and	a22	 represent	the	damping	(or	growth	rate)	of	T	and	h,	and	165	
the	parameters	a12	and	a21	the	coupling	between	T	and	h.	In	the	ReOsc	simulation	166	
eqs.	[1]	and	[2]	are	coupled	to	the	atmosphere	model	leading	to	the	equations:	167	
	168	
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	172	
where	 f	 is	 the	averaged	Fatmos	anomaly	in	NINO3	region	and	𝜏	is	averaged	zonal	173	
wind	stress	anomaly	 in	 the	 central	Pacific	 (6°S–6°N,	160°E–140°W).	 λ	 is	 a	 free	174	
coupling	 parameter	 that	 is	 tuned	 in	 sever	 iterations	 as	 done	 in	 Frauen	 and	175	
Dommenget	 [2010].	𝑎44:	and	𝑎64:	are	 the	 residuals	 of	 the	 original	 parameters	176	
𝑎44	and	𝑎64	that	 exclude	 the	 linear	 relation	 to	𝜏	and	 f	with	T	 from	 atmospheric	177	
feedbacks	 with	 regression	 coefficients	𝐶C$ 	and	𝐶=$ ,	 respectively.	 Thus	𝑎44:	and	178	



𝑎64:	represent	the	oceanic	feedbacks	to	the	tendencies	to	T	as	function	of	T	and	179	
h.	 The	 atmospheric	 feedbacks	 are	 included	 in	 f	 and	𝜏,	 which	 also	 include	 the	180	
atmospheric	stochastic	forcings.	181	
As	 the	 ReOsc	 model	 only	 represents	 temperatures	 in	 the	 NINO3	 region,	182	
anomalies	 of	 tropical	 Pacific	 temperature	 were	 generated	 by	 multiplying	 the	183	
modelled	 NINO3	 anomalies	 with	 the	 pattern	 of	 the	 recharge	 oscillator	184	
component,	𝑃EF:-G(𝑥)	(see	 Yu	 et	 al.	 [2015])	 .	 The	 SST	 climatology	 of	 the	 Slab	185	
model,	𝑆𝑆𝑇GIJ+ 𝑥, 𝑡2 ,	was	added	before	coupling	with	the	atmosphere:	186	
	187	

𝑆𝑆𝑇 𝑥, 𝑡 = 𝑆𝑆𝑇GIJ+ 𝑥, 𝑡2 + 𝑇 𝑡 ∙ 𝑃EF:-G 𝑥 			 	 	 	 [6]	188	
	189	
The	third	ocean	model	(referred	to	as	ReOsc-Slab)	considers	both	Slab	Ocean	eq.	190	
[3]	 and	 the	 ReOsc	model	 eqs.	 [4-6]	 in	 the	 tropical	 Pacific	 (20°S–20°N,	 130°E–191	
70°W)	leading	to	the	SST	equations:	192	
		193	
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	196	
Each	 of	 the	 three	 model	 simulations	 is	 500yrs	 long.	 The	 model	 parameters	197	
(𝛾, 𝜆, 𝑎44:, 𝑎64:, 𝑎46, 𝑎66, 𝐶C$ 	and	𝐶=$ )	 of	 all	 three	 simulations	 are	 constants	198	
without	 any	 seasonal	 cycle,	 see	 Table	 1.	 Thus	 all	 seasonal	 changing	199	
characteristics	 in	 these	 three	simulations	must	result	 from	seasonal	changes	 in	200	
the	 characteristics	 of	 Fatmos	 (in	 the	 Slab	 Ocean	 and	 ReOsc-Slab	 simulation)	 or	201	
from	f	and	𝜏	(in	the	ReOsc	and	ReOsc-Slab	simulation).	202	
The	 ReOsc	 model	 eqs.	 [2]	 and	 [3]	 can	 also	 be	 used	 to	 estimate	 the	 model	203	
parameters	from	observed	or	simulated	T	and	h	statistics	[Burgers	et	al.,	2005:	204	
Jansen	 et	 al.,	 2009].	 The	 effective	 ReOsc	 parameters	𝑎44,	𝑎46	,	𝑎64	and	𝑎66	are	205	
estimated	for	the	model	simulations	statistics	by	multivariate	linear	regression.	206	
The	model	parameters	of	eqs.	 [4-7]	and	the	statistical	sets	of	 the	parameter	do	207	
not	need	to	be	the	same	and	in	general	will	not	be	the	same	due	the	interaction	of	208	
different	processes	and	due	to	the	atmospheric	forcings	not	simply	being	a	linear	209	
function	 of	 the	 NINO3	 SST.	 The	 parameters	 of	 eqs.	 [4-7]	 are	 by	 construction	210	
constants	without	 any	 seasonal	 cycle.	 The	 effective	 estimates	 of	 the	ReOsc	 toy	211	
model	 parameters	 (eqs.	 [2]	 and	 [3])	 based	 on	 the	 regression	 on	 the	 T	 and	 h	212	
statistics	 from	 the	 ReOsc	 simulation	 can	 be	 seasonally	 changing.	 The	 effective	213	
statistical	ReOsc	parameters	𝑎44,	𝑎46,	𝑎64	and	𝑎66	are	estimated	for	each	calendar	214	
month.	215	
All	analyses	presented	here	are	based	on	monthly	mean	data,	with	the	anomalies	216	
defined	for	each	data	set	or	model	simulation	individually	relative	to	the	data	or	217	
models	mean	seasonal	climatology.	Seasonal	 lag-lead	correlations	are	based	on	218	
monthly	data,	with	 comparing	a	particular	 calendar	month	of	 the	 first	variable		219	
(presented	on	 the	y-axis	 in	 the	 figures)	with	 the	 lag/lead	month	of	 the	 second	220	
variable.	The	calendar	month	of	the	other	variable	is	relative	to	the	first	variable	221	
(e.g.	 for	 calendar	 month	 7	 in	 the	 first	 variable	 a	 lag	 of	 +3	 refers	 to	 calendar	222	
month	4	in	the	second	variable).		223	



3. Observed	seasonal	phase-locking	224	
The	observed	SST	standard	deviation	in	the	NINO3	region	(150oW	to	90oW/5oS	225	
to	5oN)	 is	 strongest	 in	boreal	winter	 (November	 to	 Jan)	and	weakest	 in	boreal	226	
spring	 (March	 to	 April),	 see	 Fig.	 1.	 Thus	 SST	 anomalies	 tend	 to	 decrease	 in	227	
amplitude,	in	average,	from	December	to	April	and	in	turn	SST	anomalies	tend	to	228	
grow	in	amplitude,	in	average,	from	April	to	December.	These	different	average	229	
tendencies	at	different	parts	of	 the	 calendar	year	 can	be	 illustrated	by	 the	 lag-230	
lead	correlation	between	the	SST	and	its	tendencies	(derivative)	as	a	function	of	231	
calendar	 month,	 see	 Fig.	 2.	 The	 average,	 over	 all	 months,	 lag-lead	 correlation	232	
between	the	SST	and	SST	tendencies	(black	line	in	Fig.	2a)	is	asymmetric	around	233	
zero	 lag,	 with	 positive	 SST	 tendencies	 leading	 the	 SST	 evolution,	 zero	 cross	234	
correlation	 at	 zero	 lag	 and	 negative	 SST	 tendencies	 lagging	 the	 SST.	 This	 is	235	
illustrating	 that	 in	 average	 the	 SST	 tendencies	 build	 up	 the	 SST	 anomalies	 as	236	
much	as	they	decrease	them	after	the	SST	peak.	However,	focusing	on	individual	237	
calendar	months,	this	lag-lead	relation	is	not	equally	balanced	around	zero	lag.	In	238	
October	 (red	 line	 in	 Fig.	 2a),	 for	 instance,	 the	 SST	 tendencies	 have	 a	 positive	239	
correlation	 at	 lag	 zero	 and	 for	 SST	 leading	 the	 SST	 tendencies.	 This	 illustrates	240	
that	SST	anomalies	are	in	average	still	increasing	in	October.	In	turn,	in	February	241	
the	SST	 tendencies	are	negative	at	 lag	 zero	and	even	when	 the	SST	 tendencies	242	
are	leading,	indicating	that	SST	anomalies	are	in	average	decreasing	in	February.	243	
The	complete	picture	is	shown	in	Fig.	2b.	We	can	see	that	at	the	beginning	of	the	244	
year	 the	SST	 tendencies	are	more	negative	and	 in	 the	 later	half	of	 the	year	 the	245	
SST	tendencies	are	mostly	positive.		246	
The	different	tendencies	at	different	seasons	of	the	year	indicate	state	dependent	247	
feedbacks	and	forcings.	As	discussed	in	the	introduction,	ENSO	has	a	number	of	248	
processes	influencing	the	feedbacks	and	forcings	and	thus	the	SST	tendencies.	It	249	
is	beyond	the	scope	of	this	study	to	analyse	all	elements	of	the	ENSO	dynamics,	250	
but	 we	 shall	 focus	 here	 on	 the	 role	 of	 the	 cloud	 feedback.	 A	 starting	 point	 to	251	
understand	 the	 seasonal	 changes	 in	 the	 cloud	 feedbacks	 is	 the	 mean	 SST	252	
climatology	 along	 the	 equatorial	 Pacific	 (Fig.	 3a).	 The	 beginning	 of	 the	 year	253	
marks	the	warmest	season	in	the	central	to	eastern	equatorial	Pacific	SSTs.	It	is	254	
during	this	season	that	the	SSTs	are	warm	enough	to	allow	deep	convection	and	255	
the	 associated	 deeper	 and	 higher	 clouds.	 This	 is	 reflected	 in	 the	 mean	 cloud	256	
cover,	which	 increases	during	 the	warm	season	(Fig.	3b).	Most	 importantly	 the	257	
cloud	 feedback	 is	 increasing	 substantially,	which	 is	 illustrated	 in	Fig.	3c	by	 the	258	
linear	regression	of	the	total	cloud	cover	with	the	underlying	SST.	 In	particular	259	
over	 the	 NINO3	 region	 we	 see	 a	 very	 clear	 change	 in	 the	 linear	 regression	260	
between	cloud	cover	and	SST,	see	Fig.	4a.	At	the	beginning	of	the	year	we	have	261	
strong	regression	with	more	than	10%	total	cloud	cover	change	per	degree	SST	262	
anomaly	 along	 the	 equator.	 In	 the	 later	 half	 of	 the	 year,	 however,	 total	 cloud	263	
cover	 is	 almost	 independent	 of	 the	 SST	 anomalies	 for	 most	 of	 the	 eastern	264	
equatorial	 Pacific.	 This	 is	 consistent	with	 the	 state	 dependent	 cloud	 feedbacks	265	
discussed	in	Dommenget	et	al.	[2014].	266	
This	seasonality	suggests	a	stronger	negative	surface	short	wave	cloud	feedback	267	
in	the	beginning	of	the	year:	positive	SST	anomalies	are	counteracted	by	stronger	268	
negative	 surface	 short	 wave	 flux	 anomalies.	 We	 can	 roughly	 estimate	 the	269	
strength	of	a	linear	cloud	feedback	in	the	NINO3	region	SSTAs	with	the	strength	270	
of	 the	 linear	 regression	 coefficient	 between	 cloud	 cover	 and	 SST	 in	 the	NINO3	271	



region,	rsst,	(Fig.	4a)	and	by	assuming	a	short	wave	cloud	albedo	of	about	𝛼GI,Q" =272	
0.5.	The	linear	damping	by	SST	can	then	be	written	as:	273	
	274	

𝐹GI,Q" = −𝑟--'(𝑡2) ∙ 𝛼GI,Q" ∙ 𝑆,W(𝑡2) ∙ 𝑇		 	 	 	 	 	 	 	 	 	 [8]	275	
	276	
with	𝑆,W 𝑡2 as	the	incoming	solar	radiation	(constant	420W/m2).	𝐹GI,Q" 	is	shown	277	
in	Fig.	4b.	The	strength	of	 the	surface	short	wave	cloud	 feedback	 in	 the	NINO3	278	
region	 is	 changing	 from	 about	−30 Y

+Z[
	in	March	 to	 about	−2 Y

+Z[
	in	 November	279	

(Fig.	4b).	The	values	are	on	average	similar	to	the	short	wave	surface	radiation	280	
feedbacks	values	 found	 in	Bellenger	et	al.	 [2014].	We	can	 illustrate	 that	 such	a	281	
seasonally	 changing	 cloud	 surface	 short	 wave	 feedback	 can	 lead	 to	 seasonally	282	
phase-locking	of	SST	with	similar	timing	to	that	observed.	For	this	we	consider	283	
the	simple	toy	model:	284	
	285	

𝛾 "$
"'
= −𝑐 ∙ 𝑇 + 𝐹GI,Q" + 𝐹 ,J-F 		 	 	 	 	 	 	 [9]	286	

	287	
Here	the	heat	capacity,	𝛾,	is	assumed	be	that	of	a	20m	mixed	layer,	which	is	about	288	
the	average	mixed	layer	depth	in	the	NINO3	region	Lorbacher	et	al.	[2006].	The	289	
linear	damping	independent	of	the	cloud	cover,	c	=	-7.4W/m2,	which	results	into	290	
a	 net	 average	 linear	 damping	 of	 about	 -17W/m2.	 This	 value	 is	 similar	 to	 that	291	
estimate	for	observations	in	Bellenger	et	al.	[2014].	The	SST	standard	deviation	292	
of	the	model	in	eq.	[9]	integrated	with	a	time	step	on	one	day	over	104	years	and	293	
noise	forcing	of	100W/m2	is	shown	in	Fig.	4c.	Qualitatively	the	seasonal	phase-294	
locking	 of	 the	 SST	 in	 the	 simple	 toy	 model	 is	 similar	 to	 that	 observed,	 with	295	
minimum	SST	variability	 in	April	 and	 increasing	 SST	variability	 to	 later	half	 of	296	
the	year	by	about	50%.	297	

4. Slab	Ocean	seasonal	phase	locking	298	
We	 now	 take	 a	 look	 at	 the	 seasonal	 phase-looking	 in	 the	 Slab	 Ocean	 coupled	299	
simulation.	In	Fig.	1	we	can	see	that	the	seasonal	phase-looking	of	SST	variability	300	
is	qualitatively	similar	to	that	observed,	but	the	overall	variability	is	weaker	than	301	
observed.	 The	 cross-correlation	 between	 SST	 and	 the	 SST	 tendencies	 over	 the	302	
different	 calendar	 months	 is	 also	 very	 similar	 to	 the	 observed,	 with	 negative	303	
tendencies	 dominating	 at	 the	 beginning	 of	 the	 year	 and	 positive	 tendencies	304	
dominating	in	the	middle	and	the	later	half	of	the	year	(Fig.	5a).	In	the	Slab	Ocean	305	
model	the	SST	tendencies	are	directly	proportional	to	the	net	atmospheric	heat	306	
fluxes,	Fatmos.	 Thus	 the	 same	 cross-correlation	 is	 found	between	Fatmos	 and	 SST,	307	
see	Fig.	5d.	This	is	different	in	the	other	two	simulations	(ReOsc	and	ReOsc-Slab),	308	
in	 which	 SST	 tendencies	 are	 not	 solely	 forced	 by	 Fatmos	 and	 subsequently	 the	309	
cross-correlation	between	Fatmos	and	SST	is	not	the	same	as	the	cross-correlation	310	
between	SST	tendencies	and	SST.		311	
In	the	coupled	Slab	Ocean	simulation	the	SST	tendencies	are	the	sum	of	the	four	312	
components	of	Fatmos:	short	wave	(FSW),	long	wave	(FLW),	sensible	(Fsense)	and	latent	313	
(Flatent).	The	cross-correlation	of	these	four	components	with	the	SST	is	shown	in	314	
Fig.	6.	This	illustrates	that	the	FSW	is	the	primary	cause	of	the	simulated	seasonal	315	
phase-locking,	 as	 it	 closely	 matches	 the	 cross-correlation	 between	 SST-316	
tendencies	and	SST	(Fig.	5a).		FLW,	is	mostly	counter	acting	FSW,	as	expected	since	317	



both	are	related	to	cloud	cover	changes,	but	with	mostly	opposite	heating	effects.	318	
Flatent	 is	 dominated	 by	 negative	 cross-correlation	with	 SST,	 indicating	 that	 it	 is	319	
mostly	damping	the	SST	variability	through	out	the	whole	year	with	an	exception	320	
around	March	 to	 June,	where	 positive	Flatent	 anomalies	 lead	 the	 SST	 anomalies	321	
indicating	it	causes	growth	of	SST	variability	in	this	part	of	the	year.	Fsense	is	also	322	
similar	 FSW	 and	 to	 the	 observed	 seasonal	 phase-locking,	 indicating	 it	 also	323	
supports	 the	 observed	 seasonal	 phase-locking	 of	 SST	 anomalies.	 However,	 the	324	
amplitudes	 of	 Fsense	 anomalies	 are	 fairly	 small	 (not	 shown)	 and	 it	 is	 thus	 not	325	
important	for	the	SST	tendencies	overall.	In	summary,	we	find	that	the	seasonal	326	
phase-locking	 in	 the	 Slab	Ocean	 is	 essentially	 caused	by	 the	 seasonal	 changing	327	
FSW	 forcings	 and	 thus	 it	 is	 caused	 by	 seasonal	 changes	 in	 the	 cloud	 cover	328	
feedbacks.	329	
The	seasonally	changing	short	wave	feedback	along	the	equatorial	Pacific	in	the	330	
Slab	Ocean	simulation	is	illustrated	in	Fig.	7a.	In	the	first	half	of	the	year	negative	331	
correlation	of	total	cloud	covers	with	SST	dominates	in	the	eastern	Pacific,	which	332	
represents	 a	 negative	 cloud	 surface	 short	wave	 radiation	 feedback	 for	 the	 SST	333	
and	 is	consistent	with	 the	picture	discussed	above	(Fig.	6a).	 In	 the	 later	half	of	334	
the	year	 the	sign	of	 the	cross-correlation	changes	 towards	positive	correlation,	335	
which	indicates	a	more	positive	cloud	short	wave	radiation	feedback	for	the	SST.	336	
This	 picture	 is	 roughly	 consistent	 with	 the	 observed	 seasonal	 changes	 in	 the	337	
cloud	 cover	 feedbacks	 (Fig.	 3c).	However,	 in	 the	model	 simulation	 the	positive	338	
correlation	between	short	wave	and	SST	in	the	eastern	equatorial	Pacific	would	339	
correspond	to	a	negative	cloud	cover	vs.	SST	regression,	which	in	observations	is	340	
not	as	strong	(in	the	far	east;	Fig.	3)	or	is	actually	still	weakly	positive	(in	parts	of	341	
the	 eastern	 Pacific;	 Fig.	 3).	 It	 is	 also	 consistent	 with	 the	 picture	 that	 during	342	
warmer	SSTs	(see	Fig.	3a)	the	cloud	cover	is	in	a	deep	convection	regime	and	in	343	
that	 it	 leads	 to	 negative	 cloud	 surface	 short	 wave	 radiation	 feedbacks,	 thus	344	
representing	a	state-dependent	cloud	feedback	[Dommenget	et	al.,	2014].	345	

5. Recharge	Oscillator	seasonal	phase	locking	346	
The	 seasonal	 phase-locking	 of	 the	 SST	 in	 the	 ReOsc	 model	 is	 also	 similar	 to	347	
observed	and	similar	to	that	 in	the	Slab	Ocean	model	(Fig.	1	and	5b).	However,	348	
the	dynamics	causing	this	similarity	to	the	observed	phase-locking	are	different	349	
from	 that	 in	 the	 Slab	 Ocean	 simulation,	 despite	 both	 utilising	 the	 same	350	
atmospheric	 model.	 The	 difference	 results	 from	 the	 different	 underlying	 SST	351	
equations	of	the	ReOsc	simulation	compared	to	the	Slab	Ocean	model	(see	model	352	
section	 2).	 In	 the	ReOsc	model	 the	 SST	 tendencies	 (eq.	 [4])	 are	 forced	 by	 four	353	
different	 terms	related	 to	 temperature,	wind	stress,	 thermocline	depth	and	net	354	
heat	flux.	The	relative	seasonal	damping	(or	growth	rate)	effect	of	the	different	355	
terms	 in	eq.	 [4]	 can	be	 illustrated	by	 the	 linear	 regression	of	 the	net	heat	 flux,	356	
wind	 stress	 and	 thermocline	 depth	 onto	 the	 NINO3	 SST	 anomalies,	 see	 Fig.	 8.	357	
Here	 each	 regression	 is	 scaled	 by	 its	 contribution	 to	 eq.	 [4]	 for	 better	 relative	358	
comparison.	359	
The	 net	 heat	 flux	 is	 damping	 through	 out	 the	whole	 year,	 but	 the	 damping	 is	360	
strongest	in	boreal	spring	and	weakest	in	the	later	half	of	the	year.	This	is	similar	361	
to	the	Slab	model	simulation	and	is	consistent	with	the	lag	zero	cross-correlation	362	
between	net	heat	and	SST	shown	in	Fig.	5e.	Again	we	find	that	the	short	wave	is	363	
damping	at	the	beginning	of	the	year	and	amplifying	in	the	later	half	of	the	year	364	



(Fig.	 6e).	 The	 correlation	 between	 short	 wave	 radiation	 and	 SST	 along	 the	365	
equator	is	also	similar	to	that	in	the	Slab	Ocean	simulation	(Fig.	7b).	366	
The	wind	stress	has	a	net	growing	tendency	for	the	SST	throughout	the	year,	but	367	
it	is	weakest	at	the	beginning	of	the	year	and	strongest	in	the	middle	of	the	year.	368	
This	 also	 supports	 the	 seasonal	 phase-locking	 of	 the	 SST	 evolution.	 The	369	
thermocline	depth	has	damping	tendencies	for	the	SST	at	the	beginning	and	end	370	
of	the	year	and	growing	tendencies	in	the	middle	of	the	year.	This	also	supports	371	
the	 right	 seasonal	phase-locking	of	 the	SST	evolution,	 although	 shift	 to	 slightly	372	
earlier	 in	 the	 year	 and	 even	 starting	 at	 the	 end	 of	 the	 calendar	 year.	 In	 the	373	
classical	picture	of	ENSO	it	is	the	thermocline	depth	that	drives	the	SST	evolution	374	
and	the	atmospheric	heat	flux	is	damping.	This	picture	is	also	valid	in	the	ReOsc	375	
simulation,	 where	 the	 net	 heat	 flux	 is	mostly	 damping	 the	 SST	 evolution.	 The	376	
thermocline	depth	has	the	out	of	phase	seasonal	cross-correlation	with	SST	that	377	
is	 consistent	 with	 a	 driving	 force	 (Fig.	 9).	 Thus	 in	 the	 ReOsc	 simulation	 the	378	
thermocline	depth	 is	mostly	 the	driving	 force	of	 the	SST	evolution	and	 the	net	379	
heat	flux	is	mostly	a	damping.		380	
The	 relative	 importance	 of	 the	 three	 different	 forcing	 terms	 in	 causing	 the	381	
seasonal	 phase-locking	 can	 be	 evaluated	 by	 the	 amplitude	 of	 the	 seasonal	382	
changes	 in	 Fig.	 8	 as	 each	 of	 the	 terms	 shown	 in	 Fig.	 8	 was	 scaled	 by	 the	383	
parameters	 in	the	equivalent	terms	of	eq.	[4].	The	wind	stress	and	the	net	heat	384	
flux	 have	 similarly	 large	 contributions	 to	 the	 seasonality,	 whereas	 the	385	
thermocline	 depth	 contributes	 slightly	 less.	 Thus	 the	 seasonality	 in	 the	 ReOsc	386	
model	 is	 a	 combination	 of	 the	 seasonally	 changing	 sensitivities	 to	wind	 stress,	387	
net	heat	flux	(mostly	due	to	the	short	wave)	and	the	thermocline	depth.	388	
The	 seasonality	 in	 the	 dynamics	 of	 the	 ReOsc	 simulation	 can	 also	 be	 well	389	
captured	 in	 the	 seasonality	 of	 the	 effective	ReOsc	model	 parameters	 (Fig.	 10a;	390	
see	methods	section	for	details)	following	the	approach	of	Burgers	et	al.	[2005]	391	
and	Frauen	and	Dommenget	 [2010].	The	seasonality	of	all	 four	effective	ReOsc	392	
parameters	and	of	the	two	forcing	terms	estimated	over	the	500yrs	of	the		ReOsc	393	
simulations	 are	 shown	 in	 Fig.	 10a.	 We	 can	 note	 that	 the	 only	 significant	394	
seasonality	exist	 in	the	damping	of	 the	SST.	All	other	parameters,	 including	the	395	
noise	forcing	terms,	have	very	little	seasonality.	The	effective	seasonality	in	a11	is	396	
consistent	with	 the	 combined	 effect	 of	 the	 three	 forcing	 terms	 shown	 in	Fig.	 8	397	
and	the	remaining	SST	damping	term	with	a11O	in	eq.	[4].		398	
We	can	integrate	the	ReOsc	toy	model	eqs.	[2]	and	[3]	with	the	effective	seasonal	399	
parameters	as	shown	in	Fig	10a	and	with	random	white	noise	 forcing	terms	to	400	
illustrate	 how	 the	 seasonality	 of	 the	 SST	 would	 be	 according	 to	 the	 effective	401	
seasonal	 parameters.	 The	 seasonal	 phase	 locking	 of	 the	 seasonal	 ReOsc	 toy	402	
model	is	essentially	the	same	as	the	ReOsc	simulation	(Fig	10b).	If	we	integrate	403	
the	toy	model	again	with	all	effective	seasonal	parameters,	but	with	the	annual	404	
mean	value	of	 the	effective	a11	parameter	 (blue	 line	 in	Fig.	 	10b),	 then	 the	SST	405	
seasonal	phase	locking	is	essentially	not	present.	In	turn	if	we	integrate	the	toy	406	
model	again	with	the	annual	mean	values	of	all	the	effective	parameters	and	only	407	
the	effective	seasonal	a11	parameter	(red	line	in	Fig.		10b),	then	the	SST	seasonal	408	
phase	locking	is	essentially	the	same	as	in	the	complete	seasonal	toy	model.	Thus	409	
the	 damping	 or	 growth	 rate	 of	 the	 ReOsc	 model	 (a11)	 is	 the	 main	 parameter	410	
causing	the	seasonality	in	the	ReOsc	simulation.	Similar	results	were	also	found	411	
by	Stein	et	al.	[2010]	and	Levine	and	McPhaden	[2015]	by	analysing	the	recharge	412	
oscillator	fitted	to	observed	data.	413	



The	ReOsc-Slab	 simulation	 combines	 the	ReOsc	and	Slab	model	 equations,	 and	414	
the	resulting	SST	variability	 is	a	non-linear	 interaction	between	 the	 two	model	415	
equations	as	discussed	in	Yu	et	al.	[2015].	The	SST	variability	is	larger	than	in	the	416	
Slab	 and	 ReOsc	 simulation	 indicating	 that	 the	 interaction	 between	 the	 two	 is	417	
enhancing	 the	 SST	 variability	 (Fig.	 1).	 It	 is	 also	 large	 than	would	 be	 expected	418	
from	 a	 linear	 superposition	 of	 two	 independent	 sources	 of	 SST	 variability	 as	419	
discussed	in	Yu	et	al.	[2015].	420	
It	 is	 very	 similar	 to	 the	 ReOsc	 simulation	 in	 all	 seasonal	 phase-locking	421	
characteristics	 discussed	 above.	 A	 noticeable	 difference	 is	 that	 the	 seasonal	422	
phase-locking	 is	shifted	by	about	a	month	or	 two.	This	 is	related	to	 the	shift	 in	423	
the	 seasonal	 growth	 rate	 and	 damping	 in	 the	 wind	 stress	 and	 thermocline	424	
forcing	(Fig.	8b	and	c).	The	surface	short	wave	cloud	feedbacks	are	qualitatively	425	
the	 same	 as	 in	 the	 ReOsc	 and	 Slab	 ocean	 only	 simulations.	 In	 summary,	 the	426	
ReOsc-Slab	 simulations	 suggest	 that	 the	 combine	 SST	 variability	 of	 ReOsc	 and	427	
Slab	ocean	dynamics	are	essentially	similar	to	the	ReOsc	simulation,	but	the	non-428	
linear	interactions	complicate	the	dynamics	slightly.	429	

6. Summary	and	Discussion	430	
In	this	study	we	examined	the	role	of	surface	short	wave	cloud	feedbacks	in	the	431	
seasonal	 phase-locking	 of	 ENSO.	 We	 analysed	 observed	 total	 cloud	 cover	 and	432	
three	 different	 hybrid	 coupled	 GCM	 model	 simulations	 with	 simplified	 ocean	433	
models.	 The	 simplified	 ocean	models	 included	 a	 slab	 ocean	model,	 a	 recharge	434	
oscillator	 model	 and	 a	 model	 that	 combines	 the	 slab	 and	 recharge	 oscillator	435	
equations.	 The	 simplified	 models	 have	 the	 advantage	 that	 the	 interactions	436	
causing	 the	ENSO	SST	variability	 are	 strongly	 simplified	 and	 in	 the	 case	of	 the	437	
slab	ocean	model	simulation	are	just	a	result	of	surface	heat	flux	forcings.	438	
The	 observed	 relationship	 between	 total	 cloud	 cover	 and	 SST	 along	 the	439	
equatorial	 Pacific	 has	 a	 pronounce	 seasonal	 cycle,	 with	 a	 strong	 positive	440	
correlation	 between	 SST	 and	 total	 cloud	 cover	 in	 the	 eastern	 part	 of	 the	441	
equatorial	 Pacific	 at	 the	 first	 half	 of	 the	 year	 and	 nearly	 no	 or	 a	 negative	442	
correlation	in	the	later	half	of	the	year.	The	strong	positive	correlation	between	443	
SST	 and	 total	 cloud	 cover	 falls	 into	 the	warm	 season	 of	 the	 eastern	 equatorial	444	
Pacific,	which	is	also	marked	by	more	total	cloud	cover	and	by	a	deep	cloud	cover	445	
regime	in	contrast	to	the	cold	seasons	in	which	shallower	clouds	are	dominant.	446	
This	 is	 consistent	 with	 the	 SST	 state-dependent	 cloud	 feedbacks	 described	 in	447	
Dommenget	et	al.	[2014].		448	
A	 simple	 estimate	 of	 the	 surface	 short	 wave	 effect	 of	 the	 seasonal	 correlation	449	
between	 total	 cloud	 cover	and	SST	 suggests	 that	 the	damping	by	 surface	 short	450	
wave	will	be	strongest	 in	March	and	weakest	 in	the	second	half	of	the	year.	An	451	
integration	 of	 a	 simple	mixed	 layer	 heat	 budget	 equation	 suggests	 that	 such	 a	452	
seasonal	changing	short	wave	feedback	could	lead	to	seasonal	phase-locking	that	453	
is	qualitatively	 similar	 to	 that	observed.	However,	 it	 should	be	noted	 that	here	454	
we	only	considered	the	effect	of	cloud	surface	short	wave	feedbacks,	neglecting	455	
the	 effect	 of	 total	 cloud	 cover	on	 surface	 long	wave	 feedbacks	 and	how	clouds	456	
may	affect	the	radiation	budget	within	the	higher	levels	of	the	atmosphere.	The	457	
surface	 long	 wave	 radiation	 will	 in	 general	 have	 compensating	 effects.	 It	 is	458	
beyond	the	scope	of	 this	study	to	discuss	all	elements	of	seasonal	 feedbacks	or	459	
other	cloud	related	feedbacks.	This	needs	to	be	addressed	in	future	studies.	460	



The	 Slab	 ocean	 simulations	 showed	 a	 seasonal	 phase-locking	 in	 NINO3	 SST	461	
variability	 that	 is	 qualitatively	 similar	 to	 observed,	 albeit	 with	 a	 reduced	462	
amplitude.	 This	 as	 such	 is	 interesting	 as	 this	 model	 is	 entirely	 driven	 by	463	
atmospheric	 heat	 fluxes	 only.	 The	 analysis	 of	 the	 heat	 flux	 components	 in	 the	464	
Slab	 simulation	 revealed	 that	 the	 surface	 short	 wave	 heat	 fluxes	 are	 the	465	
dominant	 contributor	 of	 this	 modelled	 seasonal	 phase-locking.	 This	 in	 turn	466	
indicates	that	the	total	cloud	cover	short	wave	feedbacks	in	the	Slab	simulation	467	
are	 the	main	driver	of	 the	 seasonal	phase-locking.	The	Slab,	ReOsc	 and	ReOsc-468	
Slab	 simulations	 all	 have	 seasonally	 changing	 correlation	 between	 SST	 and	469	
surface	short	wave	along	 the	equatorial	eastern	Pacific	 that	are	supporting	 the	470	
observed	seasonal	phase-locking	of	ENSO.	471	
In	the	ReOsc	and	the	ReOsc-Slab	simulations	the	seasonal	phase-locking	is	more	472	
complicated	 than	 in	 the	 Slab	 simulations	 and	 is	 not	 only	 caused	 by	 seasonally	473	
changing	 surface	 short	 wave	 cloud	 feedbacks.	 In	 the	 ReOsc	 simulation	 the	474	
essential	 seasonality	 is	 in	 the	 damping	 or	 growth	 rate	 (a11	 parameter)	 of	 the	475	
recharge	oscillator	model	(eq.	[2]),	as	it	was	also	found	by	Stein	et	al.	[2010]		and	476	
Levine	and	McPhaden	[2015].	This	seasonally	changing	damping	or	growth	rate	477	
results	 from	 three	 factors,	 i)	 the	 seasonally	 changing	 net	 heat	 flux	 damping	478	
(mostly	the	short	wave),	ii)	the	zonal	wind	stress	sensitivity,	and	iii)	slightly	less	479	
from	the	thermocline	depth	forcing.		480	
In	the	real	observed	ENSO	the	interactions	leading	to	the	seasonal	phase-locking	481	
are	likely	to	be	more	complicated	than	found	in	the	simplified	models	used	here,	482	
as	more	processes	 are	 involved	 in	 the	ENSO	dynamics	 that	 are	not	 considered	483	
here.	 A	 good	 example	 for	 this	 is	 the	 mechanism	 described	 by	 Harrison	 and	484	
Vecchi	 [1999]	 and	McGregor	 et	 al.	 [2013].	 They	 found	 that	 the	 discharging	 of	485	
equatorial	 warm	 water	 volume	 (changes	 in	 zonal	 mean	 thermocline	 depth)	486	
related	 to	 meridional	 shift	 of	 zonal	 wind	 is	 causing	 the	 spring	 termination	 of	487	
ENSO	 events.	 This	 mechanism	 is	 not	 explicitly	 simulated	 in	 the	 simplified	488	
simulations	 discussed	 here.	 Thus	 it	 seems	 that	 a	 number	 of	 processes	 in	 the	489	
ocean	and	atmosphere	are	contributing	 to	 the	seasonal	phase-locking	of	ENSO,	490	
but	 this	 study	 emphasizes	 the	 potentially	 prominent	 role	 of	 cloud	 feedbacks	491	
which	had	not	been	considered	previously.	492	
The	importance	of	seasonally	changing	cloud	feedbacks	in	controlling	the	ENSO	493	
seasonal	 phase-locking	 may	 have	 some	 important	 implication	 for	 CGCM	494	
simulations.	 	 Current	 state	 of	 the	 art	 CGCM	 in	 the	 CMIP5	 database	 have	495	
substantial	problems	in	simulating	the	observed	cloud	feedbacks	[e.g.	Bellenger	496	
et	al.,	2014	or	Dommenget	et	al.,	2014].	They	also	have	still	significant	problems	497	
in	 simulating	 the	 right	 seasonal	 phase-locking	 of	 ENSO,	 which	 at	 least	 in	 the	498	
ACCESS	model	appear	to	be	related	to	the	simulations	of	the	clouds	[Rashid	and	499	
Hirst,	2015].	Much	of	these	cloud	and	seasonal	phase-locking	problems	are	likely	500	
be	 related	 to	 biases	 in	 the	 SST	 cold	 tongue.	 Improving	 the	 representation	 of	501	
cloud	 feedbacks	 in	 the	 tropical	 Pacific	 will	 most	 likely	 lead	 to	 a	 substantial	502	
improvement	in	the	seasonal	phase-locking	of	ENSO.	503	
	504	
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Table	1:	Parameters	of	the	ACCES	model	simulations	Slab,	ReOsc	and	ReOsc-Slab.		638	
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Figures	640	
	641	
Figure	1.: 	NINO3	 SST	 standard	 deviation	 versus	 calendar	 month	 for	642	

observations	and	different	model	simulations.	643	
	644	

Figure	2.: Left:	auto-correlation	of	NINO3	SST	(dotted)	and	cross-correlations	of	645	
NINO3	 SST	 with	 the	 SST	 tendencies	 for	 all	 calendar	 month	 (black	 solid),	646	
February	 (blue)	 and	 October	 (red).	 Right:	 cross-correlations	 of	 NINO3	 SST	647	
with	the	SST	tendencies	vs	calendar	month	of	SST.	Positive	lags	indicate	the	648	
SST	 is	 leading	 the	SST	 tendencies	and	 the	calendar	month	 is	 relative	 to	 the	649	
SST.	650	

	651	
Figure	3.: (a)	mean	SST	along	the	equator.	(b)	mean	cloud	cover.	(c)	regression	652	

of	cloud	cover	on	SST.	Averaging	is	done	from	5oS	to	5oN.	653	
	654	
Figure	4.: Simple	 cloud	 feedback	 model:	 (a)	 linear	 regression	 of	 total	 cloud	655	

cover	to	SST	in	the	NNINO3	region	(mean	of	the	values	shown	in	Fig.	3).	(b)	656	
Linear	 atmospheric	 damping	 parameter.	 (c)	 SST	 standard	 deviation	 in	 the	657	
simple	cloud	feedback	toy	model.	See	text	for	details.	658	

	659	
Figure	5.: Seasonal	 cross-correlations:	 upper	 row:	 between	 SST	 and	 SST	660	

tendencies.	Lower	row:	between	SST	and	net	heat	 flux.	First	column	for	the	661	
Slab,	 second	 ReOsc	 and	 third	 for	 the	 ReOsc-Slab	 simulation.	 Positive	 lags	662	
indicate	the	SST	is	leading	and	the	calendar	month	is	relative	to	the	SST.	663	

	664	
Figure	6.: Seasonal	 cross-correlation	 between	 SST	 and	 the	 heat	 flux	665	

components,	 SW	 (first	 column),	 LW	 (second	 column),	 sensible	 heat	 (third	666	
column)	and	 latent	heat	 (last	 column)	 for	 the	Slab	Ocean	(first	 row),	ReOsc	667	
(second	row)	and	the	ReOsc-Slab	simulation	(last	row).	Positive	lags	indicate	668	
the	SST	leading	the	heat	flux	evolution.	669	

	670	
Figure	7.: Seasonal	 cross-correlation	 between	 SST	 and	 short	 wave	 along	 the	671	

equator	 (5oS	 −	 5oN)	 for	 the	 Slab	 Ocean	 (a),	 ReOsc	 (b)	 and	 the	 ReOsc-Slab	672	
simulation	(c).	673	

	674	
Figure	8.: Seasonal	regressions	in	the	ReOsc	(blue	lines)	and	ReOsc-Slab	(green	675	

lines)	simulations:	NINO3	SST	vs.	net	heat	(a),	zonal	wind	stress	in	the	central	676	
Pacific	 vs.	 NINO3	 SST	 (b)	 and	 thermocline	 depth	 vs.	 NINO3	 SST	 (c).	 All	677	
regression	 values	 are	 scaled	 by	 the	 corresponding	 parameters	 in	 eq.	 [4]	 to	678	
have	the	same	scale	in	terms	of	monthly	SST	tendencies	per	SST.	679	

	680	
Figure	9.: Seasonal	cross-correlation	between	thermocline	depth	and	SST	in	the	681	

ReOsc	 (a)	 and	 ReOsc-Slab	 simulation	 (b).	 Positive	 lags	 indicate	 the	 SST	682	
leading	the	thermocline	depth	evolution	and	the	calendar	month	is	relative	to	683	
the	SST.	684	

	685	
Figure	10.: (a)	The	 effective	 seasonal	 recharge	 oscillator	 parameters	 (eqs.[1]	686	

and	[2])	estimate	from	the	ReOsc	simulation.	(b)	Seasonally	resolved	NINO3	687	
SST	standard	deviation	of	a	Monte	Carlo	integration	of	the	recharge	oscillator	688	



model	(eqs.[1]	and	[2])	with	different	combinations	of	the	effective	seasonal	689	
parameters	in	(a).	See	text	for	details.		690	

	691	
	692	
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Figure 1: NINO3 SST standard deviation versus calendar month for observations and dif-
ferent model simulations.
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Figure 2: Left: auto-correlation of NINO3 SST (dotted) and cross-correlations of NINO3
SST with the SST tendencies for all calendar month (black solid), February (blue) and
October (red). Right: cross-correlations of NINO3 SST with the SST tendencies vs calendar
month of SST. Positive lags indicate the SST is leading the SST tendencies and the calendar
month is relative to the SST.
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Figure 3: (a) mean SST along the equator. (b) mean cloud cover. (c) regression of cloud
cover on SST. Averaging is done from 5oS to 5oN .
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parameter. (c) SST standard deviation in the simple cloud feedback toy model. See text for
details.
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Figure 5: Seasonal cross-correlations: upper row: between SST and SST tendencies. Lower
row: between SST and net heat flux. First column for the Slab, second ReOsc and third
for the ReOsc-Slab simulation. Positive lags indicate the SST is leading and the calendar
month is relative to the SST.
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Figure 6: Seasonal cross-correlation between SST and the heat flux components, SW (first
column), LW (second column), sensible heat (third column) and latent heat (last column) for
the Slab Ocean (first row), ReOsc (second row) and the ReOsc-Slab simulation (last row).
Positive lags indicate the SST leading the heat flux evolution.
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Figure 7: Seasonal cross-correlation between SST and short wave along the equator (5oS −

5oN) for the Slab Ocean (a), ReOsc (b) and the ReOsc-Slab simulation (c).
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Figure 8: Seasonal regressions in the ReOsc (blue lines) and ReOsc-Slab (green lines) sim-
ulations: NINO3 SST vs. net heat (a), zonal wind stress in the central Pacific vs. NINO3
SST (b) and thermocline depth vs. NINO3 SST (c). All regression values are scaled by
the corresponding parameters in eq. [4] to have the same scale in terms of monthly SST
tendencies per SST.
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Figure 9: Seasonal cross-correlation between thermocline depth and SST in the ReOsc (a)
and ReOsc-Slab simulation (b). Positive lags indicate the SST leading the thermocline depth
evolution and the calendar month is relative to the SST.
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Figure 10: (a) The effective seasonal recharge oscillator parameters (eqs.[1] and [2]) estimate
from the ReOsc simulation. (b) Seasonally resolved NINO3 SST standard deviation of
a monte carlo integration of the recharge oscillator model (eqs.[1] and [2]) with different
combinations of the effective seasonal parameters in (a). See text for details.


