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Abstract

In recent years, lattice-based cryptography has become one of the most active research

topics in cryptography. Existing security mechanisms are currently evolving so as to provide

extra usability and security features. This research focuses on user authentication issues,

especially privacy-preserving biometrics authentication. Several known techniques use the

homomorphic operations of some lattice-based cryptosystems to provide privacy-preserving

features to the authentication protocol. However, most of them still need to rely on a trusted

third party to decrypt the authentication result. Many protocols assume the so-called "Honest-

But-Curious" security model for the communicating parties, while the client should rather be

assumed to be "malicious" in authentication scenarios. It is therefore desirable to engineer a

solution providing all necessary security features while still keeping the protocol working

under practical performance conditions.

In this thesis, we propose a series of protocols with strong security guarantees and

reasonable computation time and communication size, suitable for any Hamming Distance-

based biometric authentication system. Our constructions rely on different state of the art

cryptographic techniques designed to work with lattice-based cryptosystems.
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Chapter 1

Introduction

1.1 User Authentication and Biometrics

User authentication is the process of verifying the claimed identity of a user, and is therefore

a crucial component within the big picture of information and network security. Generally

speaking, there are three types of identifying modes ("factors"): Something You Know

(SYK), such as password; Something You Have (SYH), such as smartcard, and Something

You Are (SYA), such as an iris or a fingerprint idiosyncracies. The last factor, also known

as biometrics, can be considered to be the most convenient one, as it exempts system-users

from carrying or remembering something for authentication purposes. Stimulated by the

reduced cost of the hardware it consumes and by its unsurpassed usability level, biometric

authentication has lately been deployed profusely on numerous platform types.

Various body features have been proposed and used for recognition and verification of

a person’s identity, the three most popular ones being fingerprints, face and iris modalities.

Some commercial applications enforce other recognition techniques, based on palm-prints,

hand geometry and voice. There are many other idiosyncracies proposed by researchers (such

as gait, ear, keystroke dynamics, etc.), yet to attain a sufficient level of technological maturity

for deployment. Regardless of the traits used, in biometrics verification systems, there are
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generally two stages: enrollment and authentication. In the enrollment stage, a user registers

his biometric template on a server. In the authentication stage, he produces a template afresh

and submits it to the server to prove his identity. Unlike password authentication, where a

user always enters the same string he chose when registering, in biometric systems, the query

template of a genuine user is not exactly equal, but only very similar to the registered one,

because, in the case of fingerprints, for instance, when authenticating, the user might not

touch the sensor on exactly the same corner he pressed while registering . The server has

thus to compute some kind of distance between the registered and the query templates, and

compare the result to some threshold values, in order to decide on the authentication results.

Unlike SYK and SYH, the SYA factor has two parameters, namely, False Acceptance Rate

(FAR) and False Rejection Rate (FRR): FAR is the rate at which the system wrongly accepts

an impersonating user as genuine, FRR is the rate at which the system rejects a genuine user.

Different biometrics authentication systems use different extraction methods and distance

measures to reduce FAR and FRR (this is also an active research area). In this thesis, we do

not focus on template extraction techniques or on improving FAR and FRR; instead, we are

interested in means providing extra privacy and security features to any methods based on

Hamming Distance of biometrics represented by bitstrings.

1.2 Privacy-preserving Biometric Authentication

Many biometrics authentication systems lack protection for the data stored on a server. A

server breach incident can thus result in catastrophic consequences: in 2015, nearly 6 millions

plaintext fingerprint data tokens of US government employees were leaked due to a security

attack [OPM]. When biometric data is revealed or stolen, the victims become vulnerable to

impersonation attacks for the rest of their lives, as, unlike password or smartcards, one’s fin-

gerprints or iris are nearly impossible to change. Biometric privacy poorly protected against

server exposure can therefore be considered as the main drawback of SYA authentication.
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SYA proving nonetheless the most convenient authentication method from the usability point

of view, a strong motivation arose to enhance it with an adequate privacy protection of bio-

metric data. There are four main approaches to privacy-preserving biometrics authentication

at present (details available in surveys of [72] and [71])

• Transforming biometric data using a key-less many-to-one transformation, also known

as ‘Non-Invertible’ transforms (e.g. [110]): Since the function is key-less, biometric

impersonation security under server exposure is vulnerable to off-line brute-force

attacks, also known as FAR attacks [127, 114], which are the biometric analogue of off-

line dictionary attacks on weak password hashing. Moreover, the many-to-one mapping

trades off the accuracy (FRR) performance of the biometric scheme. A solution to

overcome such an issue is to introduce a cryptographic secret-key authentication factor,

i.e., to transform the registered biometric template stored on the server by encrypting

it with a secret key stored at the client’s side. With this second authentication factor,

verification will require the secret key, which prevents brute-force attacks on the

biometric data. Generally speaking, two-factor security can still protect the system

when either the secret key is exposed (e.g., the client’s device is stolen), or the encrypted

biometric data stored on the server is leaked (e.g., server breach). All other approaches

we consider below are based on this two-factor method.

• Transforming biometric data using a keyed ‘distance-preserving’ encryption scheme:

Here, the distance between the biometric query template and the biometric registered

one is measured by the server using encrypted versions of them. Typical techniques

in this category include cancelable biometrics and biohashing ([126], [74], 2P-MCC

([33]). However, the security of such encryption schemes is unclear, as they are

based on heuristic and non-standard cryptographic assumptions, several of them being

reputedly insecure ( [83, 81]).
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• Biometric cryptosystems / Fuzzy hashing: This approach is based on techniques using

error-correcting codes ([128, 96]) to extract a noiseless cryptographic key from noisy

biometric data. However, depending on parameter settings, these techniques may

leak significant information, and the trade-off between biometric accuracy (False

Acceptance Rate and False Rejection Rate) and security remains controversial or not

well understood. In practice, the implemented techniques require strong restrictions

on accuracy: in particular, the underlying error-correcting codes are only capable

of handling a specific range of the threshold, depending on the defined usability

parameters.

• Secure Computation / Homomorphic encryption techniques ([133], [120], [64]): In

this approach, the biometric data is encrypted on the server using a homomorphic

encryption scheme. The operations on encrypted data are meant to measure the simi-

larity between the query and the stored templates. This approach has the potential to

overcome the heuristic security issues of the above approaches (by using an encryp-

tion scheme based on standard cryptographic assumptions), as well as the biometric

accuracy issues (by implementing homomorphically the same verification check as the

underlying biometric scheme). However, existing protocols following this approach

suffer from other significant drawbacks. In particular, earlier approaches [120] were

based on the Paillier additive homomorphic scheme and are granted with limited effi-

ciency due to both the inefficiency of homomorphic operations of the Pailler scheme,

and the extra protocol overhead required to handle the ‘addition-only’ homomorphism

limitation of the this scheme. Besides, the Paillier system does not provide long term

security (it is not quantum resistant). Its efficiency has been significantly improved

by a recent protocol due to Yasuda et al. [133], based on lattice-based SomeWhat

Homomorphic encryption (SWHE), which supports both homomorphic additions and

multiplications. The cryptosystem used is believed to be quantum-resistant as well.



1.2 Privacy-preserving Biometric Authentication 5

However, this protocol requires the use of a trusted-third party server to verify the final

authentication result: The main server stores encrypted biometric data and computes

HD homomorphically, while another other server stores the decryption key and de-

crypts/verifies the HD. The method is thus not secure against server exposure attacks,

as keys hold by the trusted server are able to decrypt data stored on the main one.

We focus our work on the fourth approach, adding various improvements to it, the goal

being to design an authentication protocol able to satisfy more complex security and usability

requirements according to the current trends. These requirements include:

Privacy against server exposure. The biometric data should be securely encrypted prior

to uploading it to the server, using a key known only by the biometric data owner.

Ideally, the server storing the encrypted biometric information should not be able to

comprehend the data. In other words, it should not possess the encryption key.

Quantum resistant privacy. Considering that quantum computing is developing fast and

that biometric data will persist over the lifetime of a user, encrypted biometric data

should be granted long term security against quantum computing attacks.

No reliance on trusted third parties. With the wide exposure of cloud computing to po-

tential attacks, the protocol should not rely on any cloud-based trusted third parties to

carry out the authentication process.

Security against malicious clients. An attacker attempting to impersonate the real client

before the server should not be able to authenticate without genuine biometric features,

even being malicious and not following the authentication protocol. Consequently, an

impersonation attacker should never be assumed to be ‘honest but curious’(HBC).

Two factor security. If the client is responsible for decrypting biometric-related data, the

protocol should be multi-factor secure: an attacker with a compromised key should not

be able to authenticate without genuine biometric features.
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Practical performance. The computation time and communication size of the whole proto-

col should remain within a practical time frame.

Previous protocols in the literature do not meet one or more of our requirements. In particu-

lar, many previous protocols ([29], [42], [101]) assume honest-but-curious clients and are

insecure in an authentication context involving malicious clients. Some protocols involving

malicious clients ([120], [119]) are not quantum-resistant. Previous practical quantum-

resistant protocols ([133], [90]) are not secure against malicious clients and involve a trusted

third-party verification server, thus compromising the client’s privacy.

1.3 Contributions of the thesis

As has been outlined, research gaps result from the combination of non-satisfied security

constraints stated in Section 1.2. Either existing protocols are not safe against authentication

involving malicious clients, or, when they are, they do not prove quantum-resistant. Previous

quantum-resistant protocols not only involve a third party, but lack robustness with respect to

malicious clients security model. The aim of our work is to overcome these security issues

while providing satisfactory practical performance, in terms of computation time and commu-

nication size. We propose different protocols to support the above stated requirements. Our

technique combines state-of-the-art cryptographic tools, such as Homomorphic Encryption

(HE) and Zero-Knowledge-Proof (ZKP), aimed at balancing the security and the usability of

the system. The techniques we put forward are all lattice-based, which appears to be one of

the best framework for preserving long term security against quantum attacks. Our protocol

also achieves privacy protection against server exposure, by avoiding to rely on a trusted

third party. Our contributions include:

• Four different Quantum-resistant and provable-secure biometric authentication pro-

tocols that do not rely on trusted third-parties. The server stores the encrypted data
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and performs homomorphic operations to compute the distance (Hamming Distance)

allowing to decide on the authentication result. It does not need a third party to decrypt

the encrypted HD but, instead, sends it to the client for decryption. The client uses

ZKP to convince the server that the ciphertext was correctly decrypted.

• The protocols provide security under the malicious client model.This is achieved by

new ZKP techniques we designed specifically for different ciphertext packing methods.

It is also applicable to the proving of plaintext knowledge for the BGV Homomorphic

Encryption scheme ([27]) we adapted. We apply different ZKP variants based on [125]

and [116], the two main approaches for Zero Knowledge Proof.

• Due to the noise inherent to lattice-based homomorphic encryption and its correlation

with the evaluated ciphertext, we observe that there can be information leakage af-

fecting the original plaintexts used in the homomorphic computations of a two-factor

attacker having exposed the client’s secret key. We propose an approach to cover such

leakages without significantly reducing the efficiency of the protocol: the approach is

a new application of Renyi Divergence (RD)-based analysis to uncover the security of

the protocol with a small ’imperfect’ one-time pad. The correlation of Homomorphic

Encryption noise with the original plaintext before homomorphic evaluation, has been

considered to be a problem of "circuit privacy" in theoretical HE literature ([115], [69]),

but the proposed solutions ([49], [102], [51]) involve ’smudging’ (imperfect masking)

or bootstrapping techniques. Such techniques produce an exponentially large noise

(in the security parameter), which reduces efficiency. By contrast, our Renyi-based

method can manage with much smaller imperfect masks, which leads to an increased

efficiency of the process. To our knowledge, this is the first application of Renyi

divergence techniques to circuit privacy of HE.
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• We propose a new Oblivious Transfer (OT) approach to obtain inputs to Garbled

Circuits under the malicious client model (the inputs’ correctness need to be proved

that they match the Homomorphic Encryption plaintext format). Unlike traditional OT

approaches, where the receiver obtains keys as inputs to a garbled circuit, our one is

compatible with the underlying homomorphic cryptosystem and smoothly integrates

the encryptions of the keys to the circuit. The approach proves effective with just

one level of homomorphic multiplication operations and can be deployed on various

application scenarios requiring secure multi-party computations.

1.4 Organization of the thesis and related publication

The thesis is organized as follows:

In Chapter 2, we describe the general notation and recall the basics of Lattice-based

cryptography, Authentication, Zero Knowledge Proof and Secure Multi-party Protocols

used throughout the thesis.

In Chapter 4, we present our first variant of the protocol removing the role of trusted third

parties in a privacy preserving authentication system.

In Chapter 5, we present the new technique to cover circuit privacy while still keeping the

parameters of the homomorphic cryptosystems within practical thresholds.

In Chapter 6, we construct the third variant of the protocol for both computing and comparing

the Hamming Distance homomorphically (Improving the privacy of the previous

protocols which only compute HD on ciphertexts).

In Chapter 7, we present the last variant of the protocol, which removes the computation

and communication overheads (and the extra cost they imply) during the initialization

stage at the cost of an extra one-time precomputation and storage.
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In the last Chapter, we conclude the thesis and state the open problems for future research.

The results of Chapter 4 and 5 are contained in the following publication.

Dinh, T., Steinfeld, R., & Bhattacharjee, N. (2017, December). A Lattice-Based Approach

to Privacy-Preserving Biometric Authentication Without Relying on Trusted Third Parties.

In Information Security Practice and Experience - 13th International Conference, ISPEC

2017, Melbourne, VIC, Australia, December 13-15, 2017, Proceedings. Lecture Notes in

Computer Science 10701, Springer 2017.





Chapter 2

Definitions and Preliminaries

2.1 Notation

We use the following notation throughout the thesis:

Vectors, Matrices We denote column vectors by standard vector notation (e.g., x⃗, y⃗) and

matrices by bold upper-case letters (e.g., A,B). We write b⃗T to convert a vector b⃗

into a row vector. The length of a vector b⃗ = [b0,b1, . . . ,bn−1] (norms) is denoted by∥∥∥⃗b
∥∥∥ =√b2

0 +b2
1 + · · ·+b2

n−1 for Euclidean norm and ∥⃗b∥∞ = max(|bi|) for infinity

norm. The i component of a vector is denoted interchangeably as bi or b[i].

Groups and Rings Sets of numbers are denoted as standard (e.g., R for the field of real

numbers, Z for integers), we denote Zq to be the ring of integers modulo q (in the range

(−q/2,q/2]).Z[n] denotes polynomials of order n with elements in Z, Rq denotes the

ring of polynomial modulo xn +1: Rq =
Zq[x]
xn+1 . We use bold lower-case to denote an

element of the ring Rq (e.g., a ∈ Rq).

Others We use notation x
r←↩ D when x is sampled from the distribution D. If x is the

output of an algorithm D, we write x← D. Algorithms are e f f icient if they run in
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probabilistic polynomial time (PPT). A function is said negligible in n if it vanishes

faster than the inverse of any polynomial.

2.2 Lattices

2.2.1 Motivation

We choose lattice-based cryptography as the main technique used in the thesis for several

reasons:

Provable Security. Lattice-based cryptosystems’ security can be related to known worst-

case computationally hard problems such as the Shortest Vector Problem (SVP) or

the Closest Vector Problem (CVP) and therefore allow to demonstrate the security

property in terms of mathematical proofs. For classical systems such as RSA, there is

no proof showing that breaking RSA is as hard as factoring an integer, even though in

many cases the best attack we are aware of is to carry out an operation of this type.

Quantum Resistance. In 1994, Shor [121] showed that we can write a program for quantum

computers to factor a large integer into prime factors. The latest D-Wave systems [80]

initial deployments suggest that the idea may be feasible in near future. If this happens,

it will have significant implications for the currently used public key cryptosystems

such as RSA, which will be broken. Lattice based cryptography is currently one of the

best candidates to resist even quantum attacks.

Homomorphic Operations. Finally, lattice-based cryptography allows us to perform oper-

ations infeasible before, namely, flexible computing on encrypted data. This special

type of processing is able to protect privacy in online communication.

Research Progress. Research on Lattice-based systems has been pursued actively in the

last decade and has reached a stage allowing for implementation in a near future.
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Performance. Lattice-based cryptography has the potential to achieve very fast operations

and is therefore a good option for high-performance requiring cryptographic applica-

tions.

We will recall some of the mathematics behind lattices (lattices are actually mathematical

objects). We will look into the definitions and introduce some of the core problems underpin-

ning security into consideration, focusing on how to use lattices to build our cryptographic

schemes.

2.2.2 Lattice Preliminaries

Euclidean Lattice is an area of mathematics combining both matrices, vector algebra and

integer variables. The definitions of lattices follow:

Definition 1 (Lattice). An n-dimensional (full-rank) lattice L(B) is the set of all integer linear

combinations of some basis set of linearly independent vectors b⃗1, . . . , b⃗n ∈ Rn:

L(B) =
{

c1b⃗1 + c2b⃗2 + · · ·+ cnb⃗n : ci ∈ Z, i = 1, . . . ,n
}

The n×n matrix B = (b⃗1, . . . , b⃗n) is called a basis for L(B). There are infinitely many

different bases for a lattice.

Example. Consider a 2-dimensional lattice generated by the basis (b⃗1, b⃗2)=


1

2


0

3




To generate a lattice from a basis, we compute all the integer multiples of each vector of the

basis, then we add them together to generate new vectors. The result is an infinite grid of

vectors, this grid is a lattice. We can illustrate graphically two or three dimensional lattices

easily. For higher dimensions, it is not possible to draw them, but the intuition stands and all

algebraic operations can be performed easily on the coordinates of the vectors. Lattice-based

cryptography works with high dimensional lattices (n > 100) for security reasons. A lattice
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Fig. 2.1 Example of a 2-dimensional lattice

is also an infinite group under vector addition (a group is a mathematical structure, a set with

a single operation on it).

Definition 2 (Fundamental Parallelepiped). For an n-dimensional lattice basis B=
(

b⃗1, . . . , b⃗n

)
∈

Rn×n, the fundamental parallelepiped (FP), denoted P(B), is the set of all real valued [0,1)-

linear combinations of some basis set of linearly independent vectors b⃗1, . . . , b⃗n ∈ Rn.

Fig. 2.2 A parallelogram of 2-dimentional lattice

In order to determine if a set of vectors is a basis of a lattice, there are geometric and

algebraic approaches [93].

Lemma 1. There is exactly one L point contained in P(B’) (the 0⃗ vector) if and only if B’ is

a basis of L.

We let det(U) denotes the determinant of the matrix U . Geometrically, the determinant

computes the area (or volume) of the parallelogram of a lattice. We can associate each point
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of a lattice with a parallelogram; consequently, for a large n-dimensional ball S, the number

of lattice points in S is ≈ vol(S)/det(L).

Definition 3 (Determinant). For an n-dimensional lattice L(B), the determinant of L(B),

denoted det(L(B)) is the n-dimensional volume of the FP P(B).

Lemma 2. B’ is a basis of L(B) if and only if B′ = B ·U, for some n×n integer matrix U

with det(U) =±1, such U is called unimodular matrix.

Lemma 3. For an n-dimensional lattice L(B), det(L(B)) = |det(B)|.

Cryptography involves handling of computationally complex problems. Some are related

to the geometry of lattices, such as the Shortest Vector Problem (SVP) and the Closest Vector

Problem (CVP).

Definition 4. For an n-dimensional lattice L, its minimum λ (L) is the length of the shortest

non-zero vector of L:

λ (L) = min(
∥∥∥⃗b
∥∥∥ : b⃗ ∈ L)

Theorem 1 (Minkowski’s First Theorem). For any n-dimensional lattice L, λ (L)≤
√
(n).det(L)1/n.

As mentioned, the SVP problem of finding the shortest vector of a lattice becomes harder

as the dimensions grows: in theoretical computer science, this problem has been shown to be

NP-hard under randomized reductions [4]. In cryptography, SVP is not used as it is; instead,

a variant of the problem, the definition of approximate SVP problem γ−SV P, defined below

is brought into play.

Definition 5 (γ-SVP problem). Given a basis B for an n-dimensional lattice L, find b⃗ ∈ L

with 0≤
∥∥∥⃗b
∥∥∥≤ λ (L).
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As γ increases, the problem becomes easier. We have good algorithms to find γ-SVP as

follows:

• For γ ≥ 2O(n): LLL algorithm solves in Poly(n) time.

• For γ ≤ O(1): NP-hard, it is not likely that a Poly(n) algorithm to solve the problem

exists.

In cryptography, many systems depend on this γ-SVP problem, where γ is in between the

two extremes γ ≈ O(nc). Even with this factor, the best algorithm (including quantum ones)

still takes 2O(n) time to solve γ-SVP. ( In classical cryptosystems for example RSA, the best

algorithm to solve the integer factorization problem takes ≈ O
(

2n1/3
)

time).

2.2.3 q-ary lattices and SIS problem

There are many useful subclasses of special lattices. In cryptography, one of these, termed

q-ary lattices, which relates to the so-called Short Integer Solution - SIS, is in common

use (SIS is a hard problem appearing in many cryptographic design solutions, the ZKP

technique referred to below is based on a variant of this problem). The use of lattice-based

cryptosystems is enforced by the hardness of the γ − SV P problem given a basis B. It is

critical to initially chose the basis B in order to make sure that solutions to the challenges it

gives rise to are hard to find, as there are easy instances of γ−SV P, even for γ = 1. A way to

generate random lattices’ bases for which γ−SV P is hard to solve ’on-average’ is therefore

needed. One possible answer comes from [3]: random q-ary lattices, for which the hardness

of finding short vectors within them can be proved.

Definition 6 (Ajtai’s perp lattices). Given an integer q and a uniformly random matrix

A ∈ Zn×m
q , the q-ary perp lattice L⊥q (A) is defined by:

L⊥q (A) =
{⃗

v ∈ Zm : A.⃗v = 0⃗ mod q
}
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Although it might not be clear from the aforementioned definition of lattices, the set of

all vectors v⃗ actually forms a lattice, and there is a fast algorithm to compute a basis. The

parameters for these lattices are A and q and we can choose a lattice to work on by selecting

random values for these parameters. This particular set of q-ary lattices is convenient because

Ajtai mathematically proved that if there is an algorithm to solve the γ−SV P problem for

these lattices, the same algorithm can be used to break γ−SV P for any lattice. This is the

worst-case to average-case security reduction and allows for confidence in concluding that

the problem is hard on average.

We recall one fundamental tool in lattice-based cryptography: Gaussian distributions

over lattices, parameterized by σ > 0, is defined by the density function

∀x ∈ R,Dσ (x) = 1/σ · exp(−π(x/σ)2)

The m-dimensional Gaussian distribution is defined by the density function Dσ (x) = 1/σm ·

exp(−π(∥x∥/σ)2). Denote Dσ ,c to be the m-dimensional Gaussian distribution with center

c∈Rm. Let L⊆Zm be a lattice, the discrete Gaussian distribution DL,σ ,c is the m-dimensional

Gaussian centered at c, with support restricted to the lattice L. Namely, the density function

of the discrete Gaussian distribution is

∀x ∈ L : DL,σ ,c(x) =
Dσ ,c(x)

∑x∈L Dσ ,c

Lemma 4 ([52]). Given a basis B of an m-dimensional lattice L, a Gaussian parameter

σ ≥ ∥B∥ ·ω(
√

logm), and an arbitrary center c ∈ Zm, there is a probabilistic polynomial

time algorithm that outputs a sample from a distribution statistically close to DL,σ ,c

In the thesis, we denote Dσ for simplicity, we are interested in discrete Gaussian distribu-

tion over integers (L = Zm). Next, we discuss SIS, which will be extensively used throughout

the thesis.
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Definition 7 (Small Integer Solution (SIS) problem). SISq,m,n,γ Given n and matrix A sam-

pled uniformly in Zn×m
q , find z⃗ ∈ Zm×n such that A⃗v = 0⃗ and ∥⃗v∥∞ ≤ β .

Informally, SIS is just the name given to the γ−SV P problem for particular q-ary lattices.

β is the approximation parameter, it defines how short the lattice vector should be. Some

relations between SIS and γ−SV P follow:

• det(L⊥q (A)) = qn

• By the Minkowski’s Theorem, λ (L⊥q (A)) ≤
√

m, for m ≥ n logq. It implies that, to

solve SIS, vectors not much longer than
√

m need to be found.

• γ of SVP can be related to β of SIS: γ ≈ β/
√

mqn/m.

The SIS problem can also be interpreted as the problem of finding a small non-trivial

solution of a random homogeneous system of modular linear equations. This is formalized

in [52] as inhomogeneous variant of SIS, also known as ISIS

Definition 8 (ISISp(n,m,q,β )). The Inhomogeneous Small Integer Solution problem (ISIS)

in the lp norm with parameters n,m,q,β denoted by ISISp(n,m,q,β ) is as follows: Given a

uniformly random matrix A ∈ Zn×m
q , and a uniformly random vector y ∈ Zn

q, find a vector

x ∈ Zm
q such that ∥x∥p ≤ β and A ·x = y mod q

2.2.4 A cryptographic example

Cryptographic hash functions have many applications to provide authenticity and integrity

in different security contexts. One of the main properties of cryptographic hash functions

is collision resistance: it is hard to find 2 message inputs producing the same hash value

output. The current constructions being used in practice are not lattice-based but built on

non-linear boolean functions. We discuss how to construct a variant from lattices and show

the relevant techniques to be used during security proofs and parameter choices throughout
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this thesis. The security level of this function is directly related to the hardness of the SIS

problem pointed out before

Definition 9 (Ajtai’s Hash Function.). Pick A = (ai, j)
r←↩ Zq (A is the function ’public key’).

Given x⃗ ∈ Zmn having ’small’ coordinates (∥⃗x∥∞ ≤ d), the hash function out put is defined as

gq,m,n,d,A(⃗x) = A.⃗x mod q

It entails that from a long input vector, a short output vector -the hash value-, is obtained.

The parameter values should be chosen so as to make sure that the collision resistance

constraint is satisfied. The important question is how to determine the security of this

function, or how to ensure that this function is collision resistant. To this end, we introduce

the concept of security reduction, used frequently in lattice-based cryptography’s security

proofs. We show that if there was an algorithm to find a collision in this hash function, this

algorithm could be used to solve a hard lattice problem. In our case, SIS, as analyzed by

Ajtai, has shown, on solid foundations, to be hard. What we intend to show here is that, if

a collision can efficiently be found in this hash function, a way to solve the SIS problem,

contradicting the hardness of SIS, can equally be found. Elaborating on this contradiction,

we can conclude that there must not exist any efficient algorithm to find a collision for the

hash function.

Theorem 2. Collision-Resistance of g is at least as hard as SISq,m,n,β with β = 2d.

Proof. Suppose there was an efficient collision-finder attack algorithm CF for function g:

Given a random instance (A,q), CF outputs x⃗1 ̸= x⃗2 such that Ax⃗1 = Ax⃗2.

CF can be used to build another algorithm S that solves the SIS problem for any instance

(A,q):

• Runs CF on (A,q) to get x⃗1, x⃗2.
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• S outputs solution for SIS problem: v⃗ = x⃗1− x⃗2.

The algorithm works because A⃗v = Ax⃗1−Ax⃗2 = 0⃗, i.e., v⃗ is in the lattice L⊥q (A) and

∥⃗v∥∞ ≤ β , where β = 2d (When vectors are added/subtracted, the result vector’s length is

upper bounded by the sum of the lengths of the vectors used in the operation). Moreover, S

is efficient as CF is efficient (run-time TS ≈ TCF).

This has been the first application of lattices in cryptography and it actually triggered

other modern techniques. The next important questions are:

• How to choose the parameter values to obtain a given security level?

• How does a SIS problem relate to a γ−SV P problem?

2.2.5 Security of lattice-based cryptography

Lenstra–Lenstra–Lovász (LLL) and its various improvements are the main ways to access

the security of lattice-based systems (by assessing the security of underlying problems, such

as SVP or γ−SV P). They enable an appropriate choice of the size of the parameters for the

problem at hand (such as dimensions), in order to guarantee security against the best known

attack. We refer the reader to [99] for a detailed discussion of the algorithm.

We are generally interested in what kind of approximate SVP LLL is able to solve: If

LLL is run on some basis, a reduced basis is produced as its output. The shortest vector in

that reduced basis is then taken into consideration, in order to evaluate the difference between

its length and the length of the shortest vector of the lattice.

Theorem 3 (Short vector from LLL). . The LLL algorithm solves in polynomial time γ−SV P

for n−dim lattices, with γ < 2(n−1)/2.

In summary, the first vector of LLL output is bounded by

∥∥∥b⃗∗1
∥∥∥≤ (1/(δ −1/4))(n−1)/2.λ (L)
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It follows that the approximation factor is exponential in the dimension n of the lattice.

Another way to measure the length of the output vector of LLL is the Hermite Factor (HF),

which is the ratio of the algorithm’s output to the nth root of the determinant of the lattice.

Sometimes it proves convenient to use this measure because the determinant of the lattice is

easy to compute, whereas the length of the shortest vector of the lattice is usually not. In

practice, HF is often used as a main measure. Again, LLL produces an HF that is exponential

in the dimension n. The conclusion is that, although LLL runs in polynomial time, the

approximation factor increases exponentially with respect to the dimension of the lattice.

When this dimension is large, the approximation factor will grow in such a proportion that

LLL will fail to break the security of underlying cryptosystems.

Theorem 4. The LLL algorithm solves in polynomial time γ−SV P for n−dim lattices, with

γ ≤ 2(n−1)/2. It can also be shown also be shown that Hermite Factor γHF =
∥b⃗1∥

det(L)1/n ≤

2(n−1)/4

When running LLL experimentally ([98]) on a random lattice, it was shown that the

algorithm performs much better than the bound showed in Theorem 4. Specifically, HF

is close to 1.02n−1. Although this factor is still exponential in dimension n, slow growth

allows LLL to be used on large dimension lattices. In order to reduce HF further, LLL can

be modified. There are several ways to do that. The basic idea is to combine LLL with an

exhaustive search (enumeration algorithm). The best lattice exhaustive search algorithm

(Fincke-Phost/Kannan) does it in time 2O(n log(n)); actually, it performs even worse than

exponential time growth.

There are variants of such a method, but they all take at least exponential time with respect

of the dimension n (with the expense of using 2O(n) memory). In general, all enumeration

algorithms are very inefficient. Therefore, combining LLL with brute-forcing is a more

practical approach: BKZ is the typical algorithm in this category. BKZ allows trades-off

between run-time and approximation factor γ , LLL is modified by changing the block size
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k of vectors in the swapping step. As k is increased, the lattice of dimension k is searched

for by using brute force search first and then running LLL with a smaller k dimension. The

’interpolation’ between the two extremes of LLL (corresponding to k = 2,γ = 2O(n),T = nc)

and the enumeration (corresponding to k = n,γ = 1,T = 2O(n log(n))) are computed. In

between, BKZ can achieve γ(k)≤ k(n−1)/(k−1) with running time nc.kO(k). [63]. From this

trade-off setting, an attacker can then choose the optimal value of k for some particular

context: A lattice-based cryptographic scheme can only be broken if the adversary can find

short enough vectors. This also defines how small γ needs to be in order to resist such an

attack.

In summary, given a security level λ for a system (i.e., taking time 2λ for the best attack

to work even with the best value choices for the BKZ parameter k), the best approximation

factor γ that the algorithm can reach will be related to λ as:

log(γHF) = Ω(
n log2

λ

λ
)

where Ω represent the asymptotic “lower than” condition when the parameters are large.

Overall, we can conclude the lattice ’rule of thumb’ for γ−SV P using BKZ is:

n = Ω(
λ

log2
λ
. logγHF)≈ λ . logγHF

Remark 1. The dimension n of a lattice-based cryptosystem needs to be proportional to the

product of the bit-security level λ and the log (base 2) of the approximation factor γHF . This

factor is a reason behind the long keys of such cryptosystems.

For concrete values of parameters, Chen and Nguyen [35] gave numerical estimates

for the Hermite Factor and time for random lattices versus block size for optimized BKZ

variants:
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Fig. 2.3 BKZ parameters

From table 2, for a given HF that BKZ is set to achieve, it gives the block size parameter

k needed for use in the attack. It should be noticed that the HF is much smaller than the

value defined for LLL (whose HF ≈ 1.02n−1 in practice). Once the block size is known, the

running time of the algorithm can be estimated after the contents of table 3.

2.2.6 An example of parameter values choice

We discuss Ajtai’s hash function as an example of how to choose parameter values for a given

security level. We showed that if there is an algorithm that can break the collision-resistance

property of the hash function, it can be use it to find a short vector of the SIS problem with

length β = 2d
√

m. The question is how to choose the values of the parameters q,n,m,d for

the hash function to reach a given security level λ based on the hardness of SIS. According

to the BKZ state-of-the-art attack, to attain a running time of 2λ , the block size and the

corresponding Hermite Factor γHF can be derived from the information contained in table 3.

This information allows to understand that the best attacker can compute a non-zero vector v⃗

in a SIS lattice Lq(A) of norm ≤ l = min(q,γHF .det(Lq(A))1/m). The result of comparing l

with β (or 2d
√

m), if l < β , predicts the success or the failure of a possible attack.
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There are often ways to optimize such attacks, as the attacker can choose parameter

values allowing him to minimize effort. For example in the attack of the SIS problem

mentioned in [92], the attacker can look at a subset m′ ≤ m of columns of A, finding a

short vector v⃗′ such that A′⃗v′ = 0⃗ mod q. He can choose v⃗′′ = 0⃗ and set v⃗ = v⃗′+ v⃗′′. It

turns out that there are optimal values an attacker can choose for m′, which minimize the

length l(m′) for v⃗′. Specifically, l(m′) = min(q,γ ′HF .det(Lq(A))1/m′) is a function of m′ (the

graph of this function is illustrated in Figure 2.4). It appears that at some point m′ there is

Fig. 2.4 Choosing best m’ for SIS attack for parameters δ = 1.01,q = 4416857,n = 100

some minimum value for the length of the vector obtained with BKZ, which is the value

an attacker would want to choose. Denoting m∗ to be this optimal selection, results in

l(m∗) = min(q,22.sqrtn logq logδ ). The condition for the failure of the attack being l(m∗)> β ,

so

q≥ β = 2d
√

m and n≥ log2(β )

logq log(δ )

We have looked at the best practical algorithms to attack lattice problems (LLL and its

variants). In theory, there is also Ajtai’s proof, where the hardness of solving the SIS

problem for random matrices is addressed. The connection between average case and worst-

case complexity of lattice problems in general is the theoretical foundation of lattice-based

cryptography. We present Ajtai’s average-case to worst-case connection Theorem (1996,

improved by [52]).
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Theorem 5 (Ajtai’s hardness proof for SIS.). If there is an algorithm A that solves SISm,n,q,β

in poly-time, for some non-negligible fraction of input matrices G ∈ Z⋗×⋉
q , then there is an

algorithm B that solves γ−SV P in polynomial time for all input lattices L of dimension n

with:

γ = O(β
√

n),q = ω(γ
√

logn)

Although the theorem does not directly yield concrete information to choose parameter

values securing a cryptosystem of the type discussed previously, it does provide qualitative

confidence in the security level of the problem.

2.3 Learning With Errors

In the last section, we discussed how to use lattice-based cryptography to construct a hash

functions. This section looks into another main tool in cryptography , that is, encryption,

or how to ensure confidentiality. We need here to use a type of lattice problem slightly

different from the SIS problem, much more suitable for building the encryptions based on

it: the Learning With Error (LWE) problem. We will discuss how to use LWE to build

a symmetric key encryption as well as how to modify it to achieve public key encryption

(Regev cryptosystem). This cryptosystem is foundational, as it grounds further developments

in the area and techniques used in this thesis.

In the SIS problem, given a matrix A, a short vector has to be found: v⃗ such that A⃗v = 0⃗.

The cryptographic hash function based on SIS is constructed so as to allow arbitrary inputs

and produce collision-resistance outputs. Such an operation always implies a many-to-one

function type in the construction: given an output, the original input must not be derivable

from it. This many-to-one property is not useful in encryption contexts: ciphertexts cannot

be decrypted in order to obtain the original plaintexts using such a method. In encryption
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contexts, the reverse situation is usually the case : the set of possible inputs might be a lot

smaller than the set of possible outputs. The function serving encryption should be at least

a one-to-one function mapping a plaintext to a unique ciphertext. Or there may even be

one-to-many functions mapping a plaintext to many possible ciphertexts: as long as there

is no intersection between the ciphertext output sets, it is still possible to achieve a correct

decryption. Such situations appear in non-deterministic cryptosystems, where the encryption

function takes the message as well as a randomness factor as its inputs. Actually, almost

all encryptions being used in practice are somehow randomized, the main reason being

to stop the leakage of information given many ciphertexts. A deterministic cryptographic

scheme can be exploited if the plaintext space is small: suppose that Alice sends deterministic

encrypted messages to her agent Bob everyday instructing him to sell or keep some of her

companies’ shares. An attacker capturing the ciphertexts sent throughout several days can

easily distinguish such decisions without having to decrypt the messages at all. This is one

of the important properties that we want to include in cryptosystems: indistinguishability,

also known as IND-CPA. This type of security prevents the adversary from distinguishing

the ciphertexts, even if all the possible plaintexts are known.

We introduce the LWE problem [111] allowing to construct one-to-one or one-to-many

functions. The main idea behind LWE is that, given a secret vector and a random lattice

point with some ’small noises’ added to the point, it is infeasible for an attacker to conclude

anything from the output, but it is easy for the data owner possessing the secret to revert back

to the original source. The description of LWE follows.

2.3.1 Definitions

Let us assume a matrix Am×n, initialised by defining integers q,m,n. This matrix is different

from SIS regarding its dimension, just to comply with a convenient representation purpose. q

is still the modulus of ai, j, where ai, j
r←↩Zq. Let s⃗T = [s1,s2, . . . ,sn] be a vector of independent
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uniformly random elements of Zq, this is the secret element that corresponds to the secret

key of the cryptosystem. Let e⃗T = [e1, . . . ,en, . . . ,em] be a vector of independent ’small’

integers, each one of them sampled from a probability distribution χαq. By ’small’, we

mean ∥ei∥∞ ≤ α.q for some parameter 0 < α < 1. Typically, χαq is chosen from a Normal

(Gaussian) distribution with standard deviation ≈ α.q. (From the implementation point of

view, one way to achieve such sampling efficiently is to take the real samples from a normal

continuous distribution and round them to the nearest integers, the mean of the distribution is

set to 0 to make sure the samples are small).

We discuss two variants of the LWE problems to be used in cryptosystems: Search-LWE

and Decision-LWE problems.

Definition 10 (Search-LWE Problem.). Given q,m,n,α and a matrix A
r←↩ Zm×n

q and y⃗ =

A.⃗s+ e⃗ mod q (with e⃗
r←↩ χm

αq and s⃗
r←↩ Zn

q), find s⃗.

Definition 11 (Decision-LWE Problem.). Given q,m,n,α and A
r←↩ Zm×n

q , y⃗, distinguish

between the following two scenarios

• Real Scenario: y⃗ = A.⃗s+ e⃗ mod q (with e⃗
r←↩ χm

αq and s⃗
r←↩ Zn

q)

• Random Scenario: y⃗
r←↩ Zm

q .

2.3.2 Security of LWE

An average-case to worst-case connection similar to Theorem (5) for the SIS problem can

also be established for LWE ([111])

Theorem 6. If there is an algorithm A that solves DLWEq,m,n,α in poly-time, with non-

negligible distinguishing advantage, for α.q > 2
√

n, then there is a quantum algorithm B

that solves γ−GapSV P in polynomial time for all input lattices L of dimension n with:

γ = O(n/α)
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Theoretically there are strong reasons to believe that LWE is hard. The theorem even

says that it links the security of LWE to the quantum security of the shortest vector problem.

Using LWE as the basis for quantum resistant cryptographic techniques therefore deserves

high confidence. In practice, one of the best known attack against LWE amounts to reducing

the problem to the SIS problem [93]: Given a LWE instance (A ∈ Zm×n
q , y⃗ ∈ Zm

q ):

• Find a short non-zero vector v⃗ in the SIS lattice L⊥q (A
T ) with ∥v∥≤ β . That is, AT .⃗v= 0⃗

mod q.

• Compute e′ = v⃗T .⃗y mod q and check:

– In a ’Real DLWE Scenario’, e′ is small

– In a ’Random Scenario’, e′ is not small

In other words, solving DLWEq,m,n,α reduces to solving SISq,m,n,β=1/α . Because of this,

to secure the system based on DLWE, parameter values should be chosen in such a way that

SISq,m,n,β is hard. (The smaller the noise we choose for DLWE, the larger the β becomes,

or γ−SV P is easier, which is expected). The condition of αq > 2
√

n is also important, as

when the noise becomes small enough, it turns out that there are efficient algebraic attacks

against LWE [6].

2.3.3 Cryptosystems from LWE

Although we mostly use public key systems in our work, we first present a typical basic

symmetric cryptosystem to demonstrate the frequent used techniques of the operations,

correctness and security analysis. A randomize cryptosystem based on LWE:

Key Generation - KeyGen. Fix integers q,n. Pick a secret key s⃗
r←↩ Zn

q.

Encryption - Enc. Fix integers t, l. Given a message m⃗ ∈ Zl
t :

• Pick A
r←↩ Zl×n

q and ’small’ noise e⃗
r←↩ χ l

αq.
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• Compute c⃗ = A.⃗s+ e⃗+ ⌈q/t⌋.m⃗ mod q.

• Return ciphertext (A, c⃗.

Decryption - Dec. Given a ciphertext (A, c⃗) and a secret key s⃗:

• Compute c⃗′ = c⃗−A.⃗s mod q.

• Compute c⃗′′ by rounding coordinates of c⃗′ to the neareast multiple of ⌈q/t⌋

mod q. This step exploits the fact that e⃗ is a ’small’ vector rather than a random

one.

• Return plaintext m⃗ = c⃗′′
⌈q/t⌋

Correctness. Decryption is correct if the rounding step succeeds, or if all the noise coordi-

nates ei of e⃗ are sufficiently small:

ei <
1
2
.⌈q/t⌋ ≈ q

2t

If the noise distribution χαq is a normal distribution with standard deviation αq, the

probability of the noise exceeding 1
2tα in magnitude is pe ≈ 2.

(
1−Φ

( 1
2tα

))
, where Φ

is the cumulative distribution function of the standard normal distribution (mean 0 and

standard deviation 1). Therefore, to ensure correctness, this probability should be kept

sufficiently small, in order for the following correctness condition to hold:

t <<
1

2α

We can see that the larger the noise, the smaller our message space becomes. However,

when the noise is large, LWE is harder as well: security goes up when noise increases.

Generally, in lattice-based cryptosystems, there is this trade-off between security and

the size of the messages to encrypt.
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Security. The security of LWE cryptosystems are based on the hardness of LWE related

problems. The idea is to prove that, if an adversary can break the encryption scheme’s

security, then he can also solve the DLWE problem.

The standard security model we use in our analysis would be indistinguishability

security against Chosen Plaintext Attacks (IND-CPA). The formal ’security game’ is

defined between a challenger Ch and the attacker B targeting the encryption scheme.

CPA Security Game. The game is defined as follows.

• The challenger Ch runs Keygen algorithm and obtains a secret key s⃗.

• The attacker B is given access to an ’encryption oracle’: B can submit a

plaintext m⃗ and get a ciphertext (A,C) = Enc(⃗, m⃗) back from Ch. B can

query the oracle as many times as he wants. When B finishes the query

phase, he submits a pair of ’challenge messages’ m⃗∗0, m⃗
∗
1.

• Challenger picks a random bit b
r←↩U(0,1), computes a ’challenge ciphertext’

(A∗,C∗) = Enc(⃗s, m⃗∗b) for the challenge message selected by b, and sends

(A∗,C∗) to B.

• B can continue querying the ’encryption oracle’. Finally, he outputs a guess

b′ for the bit b chosen by the challenger. The attacker wins the game if

b′ = b.

Definition 12 (IND-CPA security.). A cryptosystem is IND-CPA secure with a

security level λ if any attack algorithm B with run-time T (B) ≤ 2λ can only

win the security game with probability ≤ 1
2 +

1
2λ

. (Note that the run-time of the

attacker has to be restricted as, for any cryptosystem, an attacker with unlimited

time can always win the game with probability 1 using brute force search.)

We discuss a technique to modify Symmetric-Key to Public-key Encryption (Regev’s

cryptosystem, 2005). This cryptosystem is the basis for a lot of other lattice-based crypto-
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graphic techniques, including the ones used later in our project. Supposing a symmetric key

system is used to encrypt a message m⃗ = 0⃗, it is the case that Enc(⃗s,m) = Enc(⃗s,0)+ [⃗0,m]

mod q ( recall that [⃗a, a⃗⃗s+ e⃗+m] = [⃗a, a⃗⃗s+ e⃗]+ [⃗0,m]). This implies that a message can

be encrypted by adding itself to the encryption of zero Enc(0), and can therefore use that

Enc(0) as the public key! However, the ciphertext encrypted this way can be simply broken

by just one subtraction. A further attempt can be publishing several p⃗i = Enc(⃗s,0), which are

all different as the implemented scheme is non-deterministic. During encryption, a random

linear combination of such encryptions can be generated so as to have a ’fresh’ Enc(0) and

use it for encryption.

Keygen. Fix integers q,m,n. Select a secret key s⃗
r←↩ Zn

q and publish the public key (A, p⃗),

where A
r←↩ Zm×n

q and p⃗ = A.⃗s+ e⃗ mod q with e⃗
r←↩ χm

αq.

Encryption - Enc. Fix integers t,Br. Given a message m ∈ Zt and the public key (A, p⃗),

select coefficients vector r⃗
r←↩ {−Br, . . . ,Br}m, compute and return:

(⃗aT ,c) = (⃗rT .A,⃗rT .p⃗+ ⌈q/t⌋.m mod q)

Decryption - Dec. Given a ciphertext (⃗aT ,c) and the secret key s⃗:

• Compute c′ = c− a⃗T .⃗s mod q

• Compute c′′ ∈ Zq by rounding c′ to the closest multiple of ⌈q/t⌋ mod q.

• Return plaintext m = c′′
⌈q/t⌋ .

Observation. For small ri: r1.Enc(⃗s,0)+ r2.Enc(⃗s,0)+ · · ·+ ri.Enc(⃗s,0) = Enc(⃗s,0).

Correctness. The condition for correct decryption is similar to the symmetric setting where

the new noise e < 1
2 .

q
t . The noise used in the public key randomizing process grows

at rate (|e| > |e1|, |e2|, . . . , |ei|), but it is still small as long as ri are small. Generally,



32 Definitions and Preliminaries

if the original noise distribution is normal with a standard deviation αq, then the

distribution of the new noise e = r⃗⃗e is also normally distributed with standard deviation

αq ∥⃗r∥. Also, the expected value of ∥⃗r∥ ≈
√

Br(Br +1)m/3. At the end, to ensure the

correctness of the system, the parameters should be set up to lower the probability of

the noise growing big. The error probability per coordinates pe is the probability of

a standard normal random variable (mean 0, standard deviation 1) to exceed 1
2tα in

magnitude:

pe ≈ 2.

(
1−Φ

(
1

2tα
.

√
3

Br(Br +1)m

))
,

where Φ is the cumulative distribution function of the standard normal distribution.

We can rewrite the following correctness condition in terms of t:

t <<
1

2α
.

√
3

Br(Br +1)m

Again, we observe that if a larger noise is used, a better level of security is attained,

but the message space becomes smaller. In the Public-key scheme, as compared with

the symmetric-key system, another factor of O(
√

m in t is lost when carrying out

randomization.

Security. Similarly to the symmetric key system, the IND-CPA attack model for an attacker

B and a challenger Ch needs to be defined:

• Ch runs KeyGen algorithm to obtain a secret key s⃗ and a public key (A, p⃗). The

public key is given to the attacker B.

• B does not need to access an encryption oracle, it can simulate the operation

itself, this is the main difference compared to the symmetric security model. B

just sends a pair of ’challenge messages’ m⃗∗0, m⃗
∗
1 to Ch .
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• Ch selects a random bit b
r←↩ 0,1 and computes the ’challenge ciphertext’ (a⃗∗,c∗)=

Enc((A, p⃗), m⃗∗b) for the challenge message selected by b, and hands the result

over to B.

• Attacker B outputs a guess b′ for the bit b chosen by the challenger. B wins the

game if b′ = b.

Definition 13 (Regev IND-CPA security.). The public key cryptosystem is secure at

2λ level if any attacker B with run-time T (B) ≤ 2λ wins the game with probability

≤ 1/2+1/2λ .

We introduce another technique to analyze the security of a cryptosystem. Unlike the

symmetric key scenario, where a distinguisher is built using an assumed attacker and

proving the security by contradiction, in this scenario, the closeness of probability

distribution of the ciphertexts from the real attack and the ciphertexts from the reduction

are measured. The idea is that, if the obtained distance is small enough, the attack

algorithm will not be able to distinguish the ciphertexts. In cryptography, statistical

distance is usually used to measure such distances.

Definition 14 (Statistical Distance.). For two probability distributions D1 and D2 on a

discrete set S, the statistical distance ∆(D1,D2) is defined as

∆(D1,D2) =
1
2
.∑

s∈S
|D1(x)−D2(x)|

Lemma 5. Let D1,D2 be any two distributions, and A be any algorithm, then:

|Pr
x

r←↩D1
[A(x) = 1]−Pr

x
r←↩D2

[A(x) = 1]| ≤ ∆(D1,D2)
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This lemma is very useful because it states that if we make the distance small enough

(negligible), then no matter what algorithm an attacker uses, he will not succeed in

distinguishing the distributions by a non-negligible advantage. We will bring out

that the distribution generated in the security reduction (shown to the attacker by the

distinguisher) is within a negligible statistical distance to what the attacker witnesses

during a real attack.

2.3.4 Efficiency of Lattice-based cryptosystems

The following properties of any cryptosystem are used to evaluate its efficiency:

• Public key size : The length of the public key is important, as this key may be stored in

the local memory or sent over the network.

• Ciphertext size: It should be reduced as much as possible to save up communication

size. The expansion ratio of the ciphertext should be kept small.

• Processing time: The computation time for performing encryption and decryption

should be minimized to improve general efficiency.

For the Regev’s Public-key encryption scheme, the public key is pk = (A
r←↩ Zm×n

q , p⃗ =

A.⃗s+ e⃗), hence, length(pk) = m.(n+ 1) logq ≥ n2 logq. According to the ’lattice rule of

thumb’, the key length is at least quadratic in the security parameter λ : O(λ 2), this is a very

large factor compared to the ones occurring in classical public key systems. Similarly, the

ciphertext expansion ratio will at least be O(λ ), which is also large (in practice, a value

close to 1 is ideal). In terms of encryption time, the main cost is in the matrix multiplication

operation, and generally it is also at least quadratic in λ : O(λ 2). We will discuss approaches

to improve all of these aspects below.

Reducing Ciphertext Expansion. The first attempt to improve Regev’s public key scheme

by squeezing more messages into a ciphertext was proposed by [105] . It has been
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observed that the a⃗T = r⃗T .A mod q part of the ciphertext is independent of the length

of message m and takes lots of space. Instead of using a new random nonce for each

message m, the one already used can be re-instantiated with new secret keys s⃗i to

encrypt several integer messages, by encoding them in an integer vector. The modified

scheme is presented as follows, with l being the number of secret key vectors.

• Secret-key S = (s⃗1, . . . , s⃗l) ∈ Zn×l
q logq.

• Public-key pk = (A
r←↩Zm×n

q ,P = (p⃗1, . . . , p⃗l)) where p⃗i = A.⃗si+ e⃗i mod q, with

e⃗i
r←↩ χm

αq.

• Encryption - Enc (m⃗ ∈ Zl
t): Return the ciphertext C = (⃗aT = r⃗T .A mod q, c⃗T =

r⃗.P+⌈q/t⌋.m⃗ mod q). It appears that the ciphertext’s size increases from n logq

to (n+ l) logq, the message length also increases from one integer to l integers.

The expansion ratio (n+l) logq
l log t can therefore be reduced. However, the IND-CPA

security still holds as the scheme does not reuse p⃗i during encryptions. Although

p⃗i increases the size of the public key, A’s size still dominates.

• Decryption - Dec(C = (⃗aT , c⃗T )): Compute c⃗′
T
= c⃗T − a⃗T .S mod q and round to

the closest multiple of ⌈q/t⌋ mod q to get c⃗′′. Return plaintext m⃗ = c⃗′′
⌈q/t⌋

Reducing Storage and Computation. The approach toward this problem has an interesting

history, it evolved even before the introduction of LWE. The idea is to put some

structure into the matrix A: So far, all the elements of A are chosen uniformly at

random: as A is a random m×n matrix with m≥ n, the total number of elements in
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the matrix is m.n≥ n2:

A =



a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
... . . . ...

an,1 an,2 . . . an,n

...
... . . . ...

am,1 am,2 . . . am,n


If, instead of choosing the elements independently from each-other, they are selected

on the basis of correlations between rows or columns, n2 elements won’t need to be

further specified when describing A. In other words, they can be derived from existing

ones. The question is: how to do that securely? The most common approach was

introduced by [66, 91], it is a special structured type of matrix called "negacyclic

matrix", denoted by rot (⃗a), where a⃗ is an n-dimensional vector. Once a⃗, which is

the first column of the rot() matrix, is specified, all the other columns can be derived

from it: the rule is quite simple, the next column is generated by rotating the previous

column by one position and changing the sign of the first element:



a0 −an−1 −an−2 . . . −a1

a1 a0 −an−1 . . . −a2

a2 a1 a0 . . . −a3

...
...

... . . . ...

an−1 an−2 an−3 . . . a0


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The output of rot (⃗a) is a square n×n matrix. The matrix A, can thus be constructed as

A =



rot(a⃗1)

rot(a⃗2)

...

rot (⃗am/n)


Therefore, the storage space for the matrix A reduces from m× n logq to m logq as

only the first column of the matrix needs to be stored. Another distinguished property

of this rotational structure is its correspondence with the ring multiplication operation

of the ring Rq = Zq[x]/(xn+1). In other words, the expensive operation of multiplying

a matrix by a vector can be achieved by a single polynomial multiplication: For two

n-dimensional vectors a⃗, x⃗ represented by two polynomials a(x),s(x) ∈ Zq[x] of degree

less than n−1, let c(x) = a(x).s(x) mod xn +1, or c(x) = ∑i<n sixia(x) mod xn +1.

Incidentally, x(a0+a1x+a2x2+ · · ·+an−1xn−1) mod xn+1 =−an−1+a0x+a1x2+

· · ·+an−2xn−1.

Hence, rot (⃗a).⃗s mod q = a(x).s(x) mod xn +1 can be presented as:



c0

c1

...

cn−1


=



a0 −an−1 −an−2 . . . −a1

a1 a0 −an−1 . . . −a2

...
...

... . . . ...

an−1 an−2 an−3 . . . a0


.



s0

s1
...

sn−1


After reinterpreting the operation this way, a fast algorithm can be put at work for

polynomial multiplication, in order to speed up the computation time. Specifically,

the cost of matrix-vector multiplication can go down from O(n3) to O(n logn) (Fast

Fourier Transform - FFT polynomial multiplication).
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Reducing Computation with FFT. There are several variants of Fourier Transform

(FT). One of the classical usages of FT in engineering is to convert a time function

of periodic signal into the frequency domain of that function. The version of FT we

will use here is similar, but it works on discrete structures: the input to the FT is a n-

dimensional vector (which can also be represented in terms of a polynomial), the output

is another polynomial whose coefficients are the evaluations of the input polynomial

at the n roots of unity. If the FFT is performed on Zq, it is called Number Theoretic

Transform, short, NTT (the original FT usually works with complex numbers). It

should be kept in mind that the NTT’s roots of unity are ζi such that ζ n
i =−1 mod q,

and that in order for ζi to exist, the condition on q is, for q−1, to be divisible by 2n.

Speeding up the polynomial multiplication of c(x) = a(x).s(x) mod xn + 1, where

a(x),s(x) ∈ Zq[x], can be obtained as follows:

• Choose q such that 2n divides q−1, then xn +1 has n zeros in Zq of the form

ζ 2i+1 for i = 0, . . . ,n−1, where ζ ∈ Zq is a primitive 2nth root of 1 in Zq.

• Evaluate a(x) and s(x) at the n points ζ 2i+1 in Zq to compute the evaluation

vectors (a(ζ ), . . . ,a(ζ 2n−1)) and (s(ζ ), . . . ,s(ζ 2n−1)). This operation corre-

sponds to multiplication by an FFT-like matrix and takes O(n logn) multipli-

cation/addition over the ring Zq.

• Multiply the evaluations at each point c(ζ 2i+1) = a(ζ 2i+1)s(ζ 2i+1) for i= 0, . . . ,n−

1.

• Interpolate (inverse NTT) (c(ζ ), . . . ,c(ζ 2n−1)) to reconstruct c(x). This opera-

tion again takes O(n logn) multiplications/additions over Zq.

The details of NTT algorithms are not discussed in this project. To all appearances, the

time to compute polynomial multiplication with NTT is O(n logn) instead of O(n2) if

a classical arithmetic method is enforced.
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In summary, by using this structured rot matrix, not only storage space of the key from

O(n2) to O(n) can be saved, but also the time of the most expensive operation from

O(n2) to O(n logn) can be lowered.

2.3.5 The Ring Variant Systems - RLWE

We summarize the two optimizations and derive the following Ring variant of Regev’s

encryption scheme over the ring Rq = Zq[x]/(xn +1), with m′ = m/n and l = n:

KeyGen. Secret key sk = s
r←↩ Rq, public key pk = (A

r←↩ Rm′×1
q , p⃗ = As+ e⃗ mod q), with

e⃗ = [e1, . . . ,em′]
r←↩ χn

αq. The length of the public key is now O(n log2 q) = O(λ log2
λ )

bits, or ’quasi-linear’ in security λ .

Encryption. For a plaintext m∈Rt , return ciphertext C =(a = rA,c = rp+ ⌈q/t⌋.m mod q).

Note that the ciphertext expansion ratio is now O(logλ ) and the encryption time (with

NTT method) also reduces to ’quasi-linear’: O(λ log2
λ ).

Decryption. Given a ciphertext C = (a,c), compute c′ = c−a.s and round the result to the

neareast multiple of ⌈q/t⌋ mod q to get c′′ ∈ Rq. Return the plaintext m = c′′
⌈q/t⌋ ∈ Rt .

The improvements discussed above (based on the polynomial ring Rq) can also be applied

to improve the efficiency of other cryptographic schemes such as the Ajtai’s hash function

detailed in Definition 9. The idea is again to replace the matrix A by the structured matrix

rot (⃗a).

Definition 15 (Ring variant of Ajtai’s Hash Function.). Given an input x∈Rm′ having ’small’

coordinates (∥x∥ ≤ d), select a matrix over Rq A = (a1, . . . ,am′) uniformly random to be the

hash function’s public key. The output of the function is defined as

gq,m,n,d,A(x) = A.⃗x = a1.x1 + · · ·+am′.xm′ ∈ Rq
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This function is meant to improve the efficiency of O(n logn) for the key A, the computa-

tion is O(n log2 n). A practical implementation has been put forward [88] with some further

optimizations for a specific set of parameters: n = 64,m = 16,q = 257. The hash compresses

1024-bit input to 512-bit output with the key length being 8 kilobits. The performance is

competitive with respect to other hash functions, which are about 60 CPU cycles/byte.

Security Impact

We now shift to discussing how security is impacted when switching from the use of a

completely random matrix A to structured polynomials, with the aim of improving the

efficiency of lattice-based cryptographic schemes. To this end, the hardness of Ring-SIS or

Ring-LWE should be compared to the original problems. Much work has been done on this

topic. As for us, we will try to show that when choosing the parameters properly, the same

level of security can be reached . The definition of the problems follows.

Definition 16 (Decision Ring Learning with Errors (Decision-RLWE)). Given q,m,n,α,A
r←↩

Rm′×n
q and y⃗, distinguish between the following two scenarios:

• ’Real’ Scenario: y⃗ = A.⃗s+ e⃗ mod q (with e⃗
r←↩ χm′

αq and s⃗
r←↩ Zn

q)

• ’Random’ Scenario: y⃗
r←↩ Zm

q

The theoretical result is similar to LWE regarding the average-case to worst-case lattice

reduction for Ring-SIS/Ring-LWE. [89]. This work proved that, if an efficient algorithm

breaking Ring-LWE for random instances over the ring can be found, then it can be used to

break γ−SV P on some structured sets of lattices, called "ideal lattices". Furthermore, we

also have practical evidence to believe that RLWE is hard: The best known attack on RLWE

is to reduce it to RSIS, the hardness of RSIS being assessed similarly to the hardness of SIS.
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It is important to mention that all the worst-case to average-case reduction results need

the polynomial ring R to satisfy some conditions for the connection to hold. The choice of

polynomial rings is very important for security: in former attempts, the choice Z[x]
xn−1 proved

to be insecure in some systems, such as the original NTRU.

2.4 Homomorphic Cryptosystems

2.4.1 Homomorphic Encryption

Homomorphic Encryption (FHE) has been considered to be the “Swiss Army Knife” of

cryptography, as it provides a powerful tool (operation on encrypted data) to many crypto-

graphic applications: Outsourcing storage and computation, Private Information Retrieval,

Multiparties Computation, etc . The idea was introduced in the late 1970s [113] and has been

actively researched lately ([123], [130] , [124] [53], etc.), since the breakthrough work of

Gentry [49]. This section introduces the concept and discusses some properties of it and its

connections with secure computation protocols.

Definition 17 (Syntax). A homomorphic public key encryption scheme has four procedures:

E= (KeyGen,Encrypt,Decrypt,Evalutate)

• (sk, pk)←KeyGen(1λ ,1τ) takes the security parameter λ and functionality parameter

τ and outputs a keypair.

• c← Encrypt(pk,b) takes a plaintext bit and the public key, outputs a ciphertext.

• b← Decrypt(sk,c) takes a ciphertext and the secret key, outputs a plaintext bit.

• c′← Evaluate(pk,π,c) takes a circuit π , the public key, and a vector of ciphertext c,

outputs another vector of ciphertext c′
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The syntax in the definition can be extended naturally to vectors of plaintexts and

ciphertexts. We refer to the ciphertext output from the Encrypt operation as “fresh ciphertext”

and to the outputs from Evaluate as “evaluated ciphertext”. There are three circuit families

related to the homomorphic capacity of E:

Fully Homomorphic Encryption We say that E is fully homomorphic if it is correct for all

boolean circuits. If this is the case, we can ignore the parameter τ (τ = 1).

Leveled/Somewhat Homomorphic Encryption E is considered somewhat homomorphic

if it is correct for families of circuit of depth up to τ .

Additive Homomorphic Encryption We say that E is additively homomorphic if it is

correct for families of circuits made up of only XOR gates. Here we also ignore the

parameter τ .

2.4.2 Somewhat Homomorphic Encryption

Although the idea of Fully Homomorphic Encryption (arbitrary number of operations) is

feasible, its performance has not been considered practical enough. In this project, we focus

on Somewhat Homomorphic Encryption (SHE) systems: the BV system by [27] and the BGV

system [26], which allow for additions and some levels of multiplications on the ciphertexts.

They serve our purpose in privacy preserving authentication contexts. The security of these

cryptosystems is based on the hardness of the Ring-Learning With Error (RLWE) problem

[89]. This section briefly discusses such systems.

SHE Scheme construction The BV cryptosystem works as follows.

Setup. Initiate (n,m,q, t,χ) to define the ciphertext space Rq, the plaintext space

Rt =
Zt [x]
xn+1 , and the error distribution, note that t << q.
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KeyGen. The secret key sk can be chosen by selecting a small element s∈ Rq, s
r←↩ χn

can be done for this step. The public key pk is a pair of ring elements (p0,p1),

where p1
r←↩ Rq and p0 =−(p1s+ te) with e

r←↩ χn.

Encryption. Given a plaintext m ∈ Rt and a public key pk = (p0,p1), the encryption

first calculates u, f,g
r←↩ χ , then computes a fresh ciphertext by

Encpk(m) = (c0,c1) = (p0u+ tg+m,p1u+ tf)

By convention, JPK denotes the encryption of a plaintext P under the BV scheme

with the public key, and randomness is not taken into account. When the noise

used in the encryption has to be specified, J(P,e)K is used to represent it, e being

the noise.

Decryption. Although the above encryption generates ciphertexts of 2 elements only

in Rq, the homomorphic operations (discussed next) will make the ciphertext

longer. The decryption of the ciphertext appears as c = (c0,c1, . . . ,cL), with

secret key sk = (1,s,s2, . . . ,sL) as Dec(c,sk) =
[
[⟨c,sk⟩]Q

]
t
.

Homomorphic Operations. Given 2 ciphertexts c=(c0,c1, . . . ,cL) and c′=(c′0,c
′
1, . . . ,c

′
K),

before any operations are carried out, the ciphertexts are padded with zeros first

if necessary (to make K = L, assuming that, initially, K < L). The homomorphic

addition add(c,c′) is computed by the component wise addition add(c,c′) =

(c0 + c′0, . . . ,cL + c′L). The homomorphic multiplication mult(c,c′) is com-

puted by mult(c,c′) = (ĉ0, ĉ1, . . . , ĉ2L−2) with ∑
2L−2
i=0 ĉizi = ∑

L−1
i=0 cizi×∑

L−1
j=0 c′jz

j,

where z denotes a symbolic variable.
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2.4.3 Ciphertext packing

Given a bit string plaintext m ∈ {0,1}∗, there are several ways to encode it as a polynomial,

or a ring element m ∈ Rt before encryption. A recent popular approach for BV cryptosystems

is called CRT packing method, and based on the Chinese Remainder Theorem [123]. The

method allows Single Instruction, Multiple Data (SIMD) operations on encrypted data.

However, we do not use this packing technique, as there is not yet a known efficient method

to compute HD based on it. We instead apply the method of [133], which is an extension

of [95], the technique allowing HD computation with just one level of multiplication. The

definition follows.

Definition 18. For T = (t0, . . . , tn−1) and Q = (q0, . . . ,qn−1), two types of polynomials are

defined in the ring RQ of the SHE scheme: pm1(T) = ∑
n−1
i=0 tixi and pm2(Q) =−∑

n−1
j=0 q jxn− j.

The two types of packed ciphertexts are defined as Jpm1(T)K and Jpm2(Q)K

If xn =−1 in the ring RQ, then, when pm1(T) is multiplied by pm2(Q), the constant term

of the result equals the inner product ⟨T,Q⟩. Homomorphic multiplication of the ciphertexts

produces the ciphertext of the inner product similarly. Furthermore, these results can be used

to compute HD as follows, this operation costing one level of multiplication with 3 additions

and 3 multiplications on ciphertexts:

Theorem 7 ([133]). Let C1 = −∑
n−1
i=0 xn−i and C2 = 2−C1 = ∑

n−1
i=0 xi. Let Enc(HD) be a

ciphertext provided by

Jpm1(T)K∗ JC1K+ Jpm2(Q)K∗ JC2K−2∗ Jpm1(T)K∗ Jpm2(Q)K

Then, the constant term of Dec(Enc(HD)) discloses the Hamming Distance of T and Q.
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2.5 Zero Knowledge Proof Systems

2.5.1 Definitions

The Zero Knowledge Proof (ZKP), first introduced by [59], is a strong cryptographic tool, a

beautiful concept that goes beyond the limits of traditional proofs: In a ZKP system, a Prover

P convinces a Veri f ier P that some statement is true without disclosing any information other

than the validity of the assertion. This section reviews some standard definitions of ZKP and

a specific system (Stern-ZKP) serving as the basic tool in the later constructs of this thesis.

Traditionally, proofs are static objects that can be expressed in written form so that they

can be verified. However, in non-secure environments, when the validity of a proof statement

is verified, information handled by the protocol having produced the proof can sometimes be

gained by the verification agent. To prevent leakages of this kind, interactive proof systems

work differently. The protocol involves message exchanges between a prover and a verifier

and a final "Accept" bit output issued by the verifier, if convinced that the proof statement

is true (otherwise, he outputs “Reject”). We here focus on a specific category of ZKP:

∑-protocol, where generally 3 messages are exchanged in every round of the protocol. The

prover first sends a “commitment” to the verifier, who will send back a random “challenge”.

The prover then computes and sends a “response”, so that the verifier can check the validity

of the statement using a function of the received message. In each round, a dishonest

prover may guess the verifier’s challenge to prepare the proper response with some constant

success probability. Notwithstanding, the protocol can be repeated many rounds to reduce

the probability of guessing correctly all the challenges to a negligibly small value. More

formally, an interactive proof system for a language L⊂ {0,1}∗ is defined as follows:

Definition 19 (Interactive Proof System). An interactive proof system for a language L⊂

{0,1}∗ with soundness error s∈ [0,1] is a two-party protocol ⟨P,V ⟩, involving a PPT veri f ier

V and a computationally unbound prover P, which satisfies the following properties:
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• Completeness: ∀x ∈ L: Pr[P(x)↔V (x) = 1] = 1

• Soundness: ∀x /∈ L: Pr[P(x)↔V (x) = 1]≤ s

Where P(x)↔V (X) denotes the output of V after interacting with P on input x.

An interactive proof is said to be zero− knowledge if after reading the proof, the verifier

cannot acquire any information from the messages, except for the fact that x ∈ L. This

intuition is formulated by the concept of simulator. Given x ∈ L, if there exists an efficient

simulator capable of producing the transcript (the view) of the communication between

the prover and the verifier, then it can be certified that the interaction does not provide any

additional knowledge for the verifier. There are different definitions of zero− knowledge

depending on the security model at hand. For instance, ZK can be defined with respect to an

honest verifier model or to a malicious verifier model, the ZK property can be either perfect,

statistical or computational. In this thesis, we are interested in statistical ZK proofs.

Definition 20 (Statistical ZKP). An interactive proof system ⟨P,V ⟩ for a language L⊂{0,1}∗

is considered to be statistical zero knowledge if for any PPT verifier V̂ , there exists a PPT

simulator S, such that ∀x ∈ L, and the following conditions hold

• Pr[SV̂ (x) =⊥]≤ 1/2

• ViewV̂ [P(x)↔ V̂ (x)]≈ SV̂ (x)

Where ViewV [P(x)↔V (x)] denotes the view of V on x, or all the messages sent from P

to V , and SV (x) denotes the output distribution of S having black box access to V on input

x, conditioned on S(x) ̸= ⊥. We can also say that the simulator S is required to output a

transcript that is statistically blind to the real interaction with probability of at least 1/2.

Proof of Knowledge. In interactive proof systems defined above, if the statement is false

then no prover can get accepted. However, if the statement is true, it is not clear that if anyone

can give accepted proof. It is therefore desirable to have a proof such that allows a Prover to
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convince the Verifier that it indeed knows why a statement is true. Such proof systems are

called Proof of Knowledge [59, 14]. To define this notion, we first recall the definition of

NP-relations.

Definition 21 (NP-relation). An NP-relation R⊆ {0,1}∗×{0,1}∗ is given by a deterministic

algorithm W (·, ·) that runs in time polynomial of its first input. The relation is R = {(x,w) :

W (x,w) accepts}. The associated NP-language LR is LR = {x : ∃w s.t. W (x,w) accepts}.

The witness set for an x ∈ {0,1}∗ is defined as R(x) = {w : W (x,w) = 1}.

In order to formulate the intuition of the Prover knowning a satisfying witness, the

concept of knowledge extractor is introduced: if there exists a prover P̂ who can convince

the verifier with some probability on a statement x ∈ LR, then it is possible to extract from P̂

a valid witness for x with a related probability

Definition 22 (Proof Of Knowledge). An interactive proof system ⟨P,V ⟩ is a proof of

knowledge for a NP-relation with knowledge error k ∈ [0,1] if there exists a PPT knowl-

edge extractor K, such that for any x ∈ LR, and for any (even unbounded) P̂, for which

p = Pr
[
outV [P̂↔V (x)] = 1

]
> k, then we have

Pr
[
KP̂ ∈ Rx

]
≥ poly (p− k)

Informally, we can say he probability that K ouputs a valid witness for x using the accesss

to P̂ is at least polynomially related to the probability that P̂ convincing the verifier on x (less

some knowledge error).

2.5.2 ZKPoPK and ISIS problem

There are several types of ZKP, which are the building blocks of many cryptographic protocols

(anonymous credential systems, identification schemes, group signatures, etc). In this work,

we focus on ZKP of knowledge (ZKPoK) ([14], [59]), where P needs to also convince V
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that he knows a "witness" for the given statement. We then apply this proof to constrain the

user to follow the authentication protocol transcript, and therefore claim that the protocol is

secure against malicious clients. ZKPoK has been actively studied in the last 30 years ([43],

[109], [94], [85]), we focus our work on techniques to implement ZKPoK for an important

hard-on-average problem in lattice-based cryptography: the Inhomogeneous Small Integer

Solution (ISIS) problem. The proof relation is

RISISn,m,Q,β
= {((A, y⃗), x⃗) ∈ Zn×m

Q ×Zn
Q×Zm : (∥⃗x∥∞ ≤ β )∧ (A⃗x = y⃗ mod Q)}

The secret witness of P is x⃗ and the public parameters for V are (A, y⃗). One of the main

research directions was initiated by Stern ([125]), who proposed a ZKPoPK for a simpler

problem (Syndrome Decoding Problem). Ling et al. ([85]) developed a protocol to fully

support ISIS proofs, i.e., the RISIS relation. The proof is a 3-move interactive protocol : P

starts the protocol by computing and sending three commitments to V; V then sends P a

random challenge; P reveals two of the three commitments according to the challenge. The

Prover’s witness is the secret vector x⃗, the public inputs are A and y⃗. We refer readers to

[85] for correctness and statistical zero-knowledge proofs. As per their results, each round of

communication costs logβ Õ(n logQ) bits, and we denote the whole run SternExt(A,x,y),

which is discussed as follows.

2.5.3 SternExt Protocol

We first recall some related concepts of commitment scheme, which is used widely in zero

knowledge proofs. Commitment scheme is a primitive that allows a sender to commit to

some information in advance, a verifier then specifies a choice of what it wants to learn, the

sender can choose to reveal the value corresponding to the verifier’s choice. A Commitment

scheme works in two phases: committing and revealing phase. In the first phase, the sender
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that wants to commit a value s, computes c =COM(s,ρ), where ρ is some random factor, c

is sent to the receiver. In the second phase, the sender reveals s and the random ρ , the verifier

can compute COM(s,ρ) to compare with c to check the validity of c. Generally, secure

commitment scheme should satisfy two requirements: statistical hiding and computational

binding.

Definition 23. A statistical hiding and computational binding string commitment scheme is

a PPT algorithm COM(s,ρ) satisfying:

• ∀so,s1 ∈ {0,1}∗ : COM(s0; ·)≈s COM(s1; ·)

• For any PPT algorithm A returning (s0,ρ0);(s1,ρ1) given s0 ̸= s1, we have

Pr [COM(s0,ρ0) =COM(s1,ρ1)] = negl (n)

In other words, a commitment scheme is statistical hiding if any computationally un-

bounded cheating verifier cannot distinguish the commitments of two different strings. The

scheme is computationally binding if any PPT cheating sender cannot change the committed

string after the first phase. There are some constructions built from collision resistant hash

functions [37, 62]. The SternExt(A,x,y) protocol includes 2 phases

Setup. Let COM be a statistical hiding and computational biding commitment scheme ([76]

show that such scheme can be constructed based on the hardness of ISIS problem).

Before the interaction, P and V create matrix A′ ∈ Zn×3m
Q by extending A (padding A

with 2m zero-columns). P also executes some extra preparation steps:

• Decomposition: Represent vector x⃗=(x0, . . . ,xm−1) by k vectors u⃗′ j ∈{−1,0,1}m.

The algorithm first breaks each xi into its binary representation: xi = bi,020 +

bi,121 + · · ·+ bi,k−12k−1, where bi, j ∈ {−1,0,1}. Then u⃗′ j is constructed by

u⃗′ j = (b0, j,b1, j, . . . ,bm−1, j). Note that x⃗ can be reconstruct by x⃗ = ∑
k−1
j=0 2 ju⃗′ j.
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• Extension: This step masks the number of -1s,1s and 0s in each u⃗′ j by trans-

forming each u⃗′ j ∈ {−1,0,1}m into another u⃗ j ∈ {−1,0,1}3m. The mask is built

by padding each u⃗ j with a random vector t⃗ ∈ {−1,0,1}2m, such that after the

masking is completed, the number of -1s, 0s, and 1s in u⃗ j is the same and equals

m. We observe that

A′
k−1

∑
j=0

2 j⃗u j = y⃗ mod Q ⇐⇒ A⃗x = y⃗ mod Q

The interactive proof system. The Prover P ad the Veri f ier V interact as follows

1. Commitment. P samples r⃗0, r⃗1, . . . , ⃗rk−1
r←↩ Z3m

Q , π0, . . . ,πk−1
r←↩ S3m, where

Sk denotes the symmetric group of all permutations of k elements. P sends the

commitments to V:
c1 =COM(π0, . . . ,πk−1,A′∑k−1

j=0 2 j⃗r j)

c2 =COM(π0(r⃗0), . . . ,πk−1(⃗rk−1))

c3 =COM(π0(⃗u0 + r⃗0), . . . ,πk−1(⃗uk−1 + r⃗k−1))

2. Challenge. After receiving the commitments ci, V sends a challenge Ch
r←↩

{1,2,3} to the Prover P.

3. Response. P replies as follows:

• If Ch = 1, P reveals c2 and c3: For each j, let v j = π j (⃗u j), and w j = π j (⃗r j)

and sends back RSP = (v0, . . . ,vk−1,w0, . . . ,wk−1).

• If Ch = 2, P reveals c1 and c3: For each j, let φ j = π j, z⃗ j = u⃗ j + r⃗ j and sends

back RSP = (φ0, . . . ,φk−1,⃗z0, . . . ,⃗zk−1).

• If Ch = 3, P reveals c1 and c2: For each j, let ψi = π j, s⃗ j = r⃗ j and sends

back RSP = (ψ0, . . . ,ψk−1, s⃗0, . . . , s⃗k−1).
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4. Verification. Receiving the response RSP, V engages in the following protocol:

• If Ch = 1, check that v⃗ j ∈ {−1,0,1}3m and


c2 =COM(w0, . . . ,wk−1)

c3 =COM(v0 +w0, . . . ,vk−1 +wk−1)

• If Ch = 2, check that


c1 =COM(φ0, . . . ,φk−1,A′∑k−1

j=0 2 j⃗z j− y)

c3 =COM(φ0(⃗z0, . . . ,φk−1(⃗zk−1))

• If Ch = 3, Check that


c1 =COM(ψ0, . . . ,ψk−1,A′∑k−1

j=0 2 j⃗s j)

c2 =COM(ψ0(⃗s0), . . . ,ψk−1(⃗sk−1))

In each case, V outputs Accept if and only if all the conditions hold. Otherwise,

V outputs Re ject. Also note that all the computations are done in ZQ.

Theorem 8 ([85]). The SternExt proof system is a statistical ZKPoK for the relation RISIS,

with perfect completeness and knowledge error 2/3.

It was proved in [85] that:

• If the honest prover follows the protocol, it is always accepted.

• If COM is statistical hiding, then a simulator (with black box access to a cheating

verifier) can be constructed that produces a protocol transcript with accept probability

2/3 and is statistically close to the transcript produced by the real communication.
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• If COM is computationaly binding, and if there exists a cheating prover that can pass

the proof with probability higher than 2/3 then one can use it to construct a knowledge

extractor that outputs x′ such that ((A,y),x′) ∈ RISIS

In summary, throughout this chapter we have reviewed basic definitions and constructions

in lattice-based cryptography, as well as some notions of secure multi-parties protocols that

are used in the thesis. In the next chapter, we consider the definitions of the models and

security of a generic biometric authentication scheme. We then present different variants of

privacy preserving authentication protocol according to the models.



Chapter 3

Security model

3.1 Introduction

In this chapter, we first describe the protocol and its security model generically. We then

go into details and further use it as a framework for our specific proposals in later chap-

ters. In order to precisely grasp the definition of security, we will describe the protocols’

security models in terms of attack games played between two parties: a challenger and

an adversary, adapting the standard game based security model approach commonly used

in cryptography [25] . Generally, the challenger C follows a simple, fixed protocol and

the adversary A may follow an arbitrary and efficient protocol. The two players send

messages back and forth to each other as specified in their protocols, and, at the end of

the games, A outputs some value. We use “simulation based” security models, where

the attack game defines a probability space based on the output value , and it defines the

adversary’s advantage, which normally measures the difference between the probabilities of

two events in the given probability space: One is the event that the adversary wins the real

game; the other one is the event that a related adversary wins an ideal game with one (or

some) of the system’s components replaced by an idealized version of such component(s).

By demonstrating that the advantage between the real and ideal games is negligible, we



54 Security model

can conclude that the security of the “real” protocol is essentially the same as the “ideal”

protocol. The security proofs of protocols will also be organized as sequences of games. This

technique appears in the literature in different flavours with different degrees of formalisation.

We also use an incremental game based proof approach [122] as a helpful tool to reduce

the complexity of security proofs that might otherwise become messy and complicated. We

note that the technique is only a tool to organize the models and the proofs, the actual ideas

for cryptographic constructions and security analysis come from elsewhere, specifically the

problems discussed in the previous chapter.

3.1.1 Desirable properties

According to [72], a secure template solution to biometric authentication should satisfy the

following properties:

Non-invertibility: It is computationally hard to rebuild an original template from an en-

crypted one.

Non-linkability (Revocability): It should be possible to revoke and to re-issue new en-

crypted templates using a new key when the database is compromised.

Discriminability: The secure scheme should not degrade the accuracy of the biometric

authentication system.

3.1.2 The threats

There are common security threats to many authentication systems such as Trojan horse,

replay, man-in-the-middle (MITM) attack. Biometrics authentication systems are also

vulnerable to such attacks. We can borrow ideas from secure password-based schemes to

address such issues. However, there are two categories of vulnerabilities that are specific to

biometric systems. The first one is impersonation, or spoofing. The attack happens at the
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client’s side as the adversary tries to cheat the system with counterfeit or invalid inputs. The

other issue is at the server’s side and yields privacy concerns.

We will present formal models that capture all the known threats of biometric authentica-

tion:

• Confidential data leakage due to attacks on the template database: Server breaches of

biometric data always have catastrophic consequences ([OPM]), as we cannot change

our fingerprints as easily as changing our passwords.

• Hill-Climbing attack from the server’s side: This is a privacy threat where the server

tries to compute good inputs X from the distance information between X and Y ([127],

[64]). Note that Hill-Climbing attack by the client is very limited due to the limitation

of the number of false authentication attempts in almost every biometric authentication

system.

• Impersonation by a malicious client when the secret key of the user is known (replay

attack): This happens when an attacker has access to the user’s device but not to his

biometric data, as, for example, in stolen device scenarios ([134]).

• Impersonation by a malicious client when the biometric template of the user is known

(spoofing attack): This happens when an attacker collects biometric data and tries to

reconstruct the template for authentication, as, for example, by rebuilding fingerprints

from captured photos ([134],[44]).

• Cross matching of biometric data among databases: This threat uses information of the

same user from different compromised databases to reconstruct the biometric template.
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3.2 The generic model

Entities: There can be 2 or 3 typical entities involved in a secure biometric authentication

system. The user U , an authentication server S , and a decryptor, who is a third party

trusted by both the user and the server. The decryptor appears in some systems ([90],

[65], [64]), with the assumption that there is no collusion between this entity and U or

S . In our work, we avoid the assumption of a trusted decryptor party, so that only two

parties are left: U and S .

Biometrics Features in non-private setting In biometric authentication systems (e.g., fin-

gerprint authentication system), a user U first registers his fingerprint template X on

the server S . U later authenticates to S using the same finger with a template Y , S

uses an algorithm Veri f y(X ,Y ) to obtain the result of the authentication: Accept or

Reject. Different fingerprint systems might use different features of fingers such as

minutia or fingercode [45, 73] to compute the distance ∆ between X and Y within the

algorithm Veri f y. The distance ∆ is compared to some predefined threshold value τ to

determine the result of the authentication. We refer the reader to [70] for biometric

feature extraction and comparison techniques.

Unlike password based systems, where U always uses one and the same query for

many authentication trials, all biometric systems have the concept of False Acceptance

Rate (FAR) (for the system Accepting an incorrect template), and False Rejection Rate

(FRR), (for the system Rejecting a genuine one). As balancing these 2 rates while

keeping good performances is one of the main challenges that fingerprint verification

algorithms [FVC] need to face, we also reflect these two rates in our models.

Algorithms and Procedures in privacy-preserving settings: We describe the high-level

syntax of the privacy-preserving biometric authentication protocol consisting of the

following procedures:
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Enrol. This procedure inserts records into the server’s database.

• Client’s input: identity k, a registered template Xk

• Server’s input: Parameters of the cryptographic tools used.

• Output: A public-private key pair (skk, pkk) for the user Uk. The server stores

the protected biometric template Tk (which is typically some encryption of

Xk).

Auth. This procedure allows a user to authenticate to the system.

• Client’s Input: identity k, a query template Yk and the secret key skk

• Server’s Input: record (k,Tk, pkk)

• Output: The server computes the authentication result res= {Accept,Reject}.

The transcript of the protocol can also be obtained: We denote Vc and Vs to

be the view of the client and the server received from the protocol execution.

Correctness Requirement: A genuine user Uk executes (skk,Tk)← Enroll(k,Xk)

using a Xk
r←↩ Supp(Dk) and later uses his biometric template Yk

r←↩Dk to perform

res← AuthU ,S ((k,Yk,skk),(k,Tk, pkk))

Where U ,S are the honest client and server parties. The privacy-preserving

protocol works correctly if the FRR under this system is exactly equal to the FRR

of the non-privacy preserving system:

Pr[res = veri f y(Xk,Yk)] = 1

3.2.1 The privacy preserving model

Our security model intends to capture both threats for client and server’s sides as discussed

previously. There is only one variant which do not capture a threat related to Hamming
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Distance leakage to server, this imperfect privacy was introduced with the assumption that

given such a value of HD of 2 bit strings, it is not feasible to infer information from the

original bit strings.

Privacy against an Honest But Curious server: The security model is defined in terms of

the following security games.

The real game RealA (Dk,Xk): This is the game for a privacy attack against the privacy-

preserving protocol for the underlying biometric system, between an attacker A and a

challenger C . The input of the game is an attacked Uk biometric distribution Dk ∈Dbio

and a user template Xk ∈ Supp(Dk).

1. C runs (Tk,skk)← Enrol(k,Xk) and sends Tk to A .

2. For i = 1 . . .q:

• C samples Yi
r←↩ Dk

• C simulates the Auth protocol, playing the roles of both the client and the

server:

res← Authi((k,Yi,skk),(k,Tk, pkk))

• C sends the view V i
s to A .

3. A outputs a bit β , representing some information that A has discovered about

(Dk,Xk). The game output is RealA (Dk,Xk) = β .

The ideal game IdealA ′(Dk,Xk): This is the game for a privacy attack against an ideal

privacy scenario for the underlying biometric authentication system, where an at-

tacker A ′ interacts with a challenger C ′. The input of the game is an attacked Uk

biometric distribution Dk ∈ Dbio and a user template Xk ∈ Supp(Dk). In this ideal

game, the information A ′ can obtain about (Dk,Xk) is the value of HDXk,Yk and the bit

Veri f y(Xk,Yi).
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1. For i = 1 . . .q:

• A ′ chooses query template Yi ∈ {0,1}n and sends it to C ′.

• C ′ sends HDX ,Yi to A ′.

2. A ′ output a bit β ′, representing some information that A ′ has gathered about

(Dk,Xk). The game output is IdealA ′(Dk,Xk) = β ′.

Let Wr be the event that A outputs β = 1 in the real game and let Wi be the event that A ′

output β ′ = 1 in the ideal game. We define A ’s passive server security advantage with

respect to protocol P as

Adv
ps
A ,P(n) = |Pr[Wr]−Pr[Wi]|

Definition 24 (Privacy Security against Server). We say that a biometric authentication

protocol is q-private in the sense of biometric template privacy against an honest but curious

server S if for every efficient real-game attacker A , there exists an efficient ideal-game

attacker A ′ such that, for all (Dk,Xk), with Xk ∈ Supp(Dk), the following stands:

Adv
ps
A ,P(n)≤ negl(n).

Figure 3.1 and 3.2 show schematic diagrams of the Privacy Security against Server games.

At several points of this thesis, we will refer to the terms “efficient” and “negligible”

(which will be defined formally in a section below). Intuitively, negligible means so small

as to be “zero for practical purposes”. For example, consider an event happening with

probability 2−100: we would not worry about such an event occurring more than we would

worry about a similar event occurring with probability 0. Additionally, an efficient adversary

is granted to run in a reasonable amount of time. Sometimes we also use two other related

terms: A value N is called super-poly if 1/N negligible; and a poly-bounded value is supposed
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Adversary

β = A(Tk,(resi,vi
s)

q
i=1)

(pk,sk)← KeyGen

Tk← enroll(k,Xk)

For i = 1, . . . ,q :

Yk
r←↩ Dk

resi = auth(k,Tk,Yk)

Challenger

(Xk,Dk)

Tk

resi

V i
s

Fig. 3.1 Passive Server Attack Game (Real Game)

Adversary

β ′ = A′((resi)
q
i=1)

(pk,sk)← KeyGen

Tk← enroll(k,Xk)

For i = 1, . . . ,q :

Yk
r←↩ Dk

resi =Veri f y(Xk,Yk)

Challenger

(Xk,Dk)

resi

Fig. 3.2 Passive Server Attack Game (Ideal Game)

to be a reasonably sized number (we can say that the running time of any efficient adversary

is a poly-bounded value). We will use the results of the following lemma in the security

proofs:

Lemma 6. If ε and ε ′ are negligible values, and Q and Q′ are poly-bounded values, then

• ε + ε ′ is a negligible value

• Q+Q′ and Q ·Q′ are poly-bounded values
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• Q · ε is a negligible value

Security against a malicious client: In this work, we aim at security against an active

client, where an attacker A is assumed not to follow the protocol transcript.

Biometric Impersonation Attack Game. FAR is the usual biometric impersonation

probability, it is inherent to biometrics itself without any cryptographic proto-

cols. We first discuss this security game (which will be referred to as biometric

impersonation), we then elaborate the discussion to account for models with

privacy-preserving requirements.

Setup: C samples Xk
r←↩ Dk from a random Uk (Dk

r←↩ Dbio).

Query: A is given access to the authentication oracle q times veri f y(Xk,Yi),

which returns the authentication result of Uk with a query template Yi. A

has q attempts to make queries, in each attempt, A chooses a Yi by himself

and executes veri f y(Xk,Yi).

Guess: A outputs Yq′ such that veri f y(Xk,Yq′) = Accept.

Figure 3.3 show the biometric impersonation (non private) attack game. Let W0 be

the event that there exists some i such that A output Yi such that veri f y(Xk,Yi) =

Accept and let p0 = Pr [W0 ].

For i = 1, . . . ,q :

Yi←{0,1}n

Adversary

Dk
r←↩ Dbio

Xk
r←↩ Dk

resi =Veri f y(Xk,Yk)

Challenger

(res1, . . . ,resq)

Yk

resi

Fig. 3.3 Malicious Client Attack Game in Non-private setting
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Impersonation Attack Game. This game captures the basic impersonation attack

from a client

Setup: The setup phase includes 2 steps:

• C samples Xk
r←↩ Dk from a random Uk (Dk

r←↩ Dbio).

• C runs Enroll(k,Xk), which returns (skk, pkk,Tk).

Query: In the query phase:

• A is given access to the authentication oracle Auth, the input to Auth

supplied by A are the client’s messages in the Auth protocol, returning

the authentication result of Uk with a query template Y .

• C and A run Auth() q times, For the ith run, A plays the client’s role,

C plays the server’s role, replying with resi = Auth.

Guess: A wins the game if there exists i such that resi = Accepted.

Figure 3.4 show the impersonation attack game. Let W1 be the event that there

exists i such that resi = Accepted and let p1 = Pr [W1 ], recall that P0 is the

advantage of A in the biometric impersonation attack game. We define A ’s

active impersonation advantage with respect to the protocol P as

Advai
A ,P(n) = |p1− p0|

Definition 25 (Active Client Impersonation.). A privacy-preserving biometrics

authentication protocol Pis c-secure against active client impersonation if for

all efficient adversary A , the value Advai
A ,P(n) is not larger than c×FAR of the

non-private protocol.

Multifactor Attack Game. This model extends the above protocol and captures the

client side attacks mentioned in section 3.1.2.

Setup: The setup phase includes 2 steps:
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For i = 1, . . . ,q :

Yi←{0,1}n

Adversary

(pk,sk)← KeyGen

Dk
r←↩ Dbio

Xk
r←↩ Dk

Tk← enroll(k,Xk)

resi = Auth(Yi,Tk,k)

Challenger

(res1, . . . ,resq)

pkk

Authi

V i
c

resi

Fig. 3.4 Impersonation Attack Game

• C samples Xk
r←↩ Dk from a random Uk (Dk

r←↩ Dbio).

• C runs Enroll(k,Xk), which returns (skk,Tk).

Query: In the query phase:

• A chooses the attack type t ∈ {I, II} which specifies the scenario of key

exposure or template exposure.

• C passes skk if t = I or Tk if t = II to A . Note that this model reflects

the 2-factors authentication (the secret key and the biometric template),

and, thus, if A requests both factors, he loses the game.

• C and A run Auth() q times, For the ith run, A plays the client’s role,

choosing and sending Yi to C , C plays the server’s role, replying with

resi = Auth(Yi).

Guess: A wins the game if it outputs Y such that Auth(Y ) = Accepted.

Figure 3.5 show the multi-factors attack game. Let W2 be the event that there

exists i such that resi = Accepted and let p2 = Pr [W2 ]. Let p0 define the winning

probability of the A in the non-privacy biometric authentication game. We define
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A ’s active multifactor advantage with respect to the protocol P as

Advam
A ,P(n) = |p2− p0|

type←{I, II}
For i = 1, . . . ,q :

Yi←{0,1}n

Adversary

(pk,sk)← KeyGen

Dk
r←↩ Dbio

Xk
r←↩ Dk

Tk← enroll(k,Xk)

resi = Auth(Yi,Tk,k)

Challenger

(res1, . . . ,resq)

pkk

type I

or II

sk
or Dk

Authi

V i
c

resi

Fig. 3.5 Multi-factors Attack Game

Similar to the previous impersonation attack game, We would want this advantage

value not to be too large compared to the non-privacy-preserving biometric

impersonation model’s advantage, which was bounded by q×FAR.

Definition 26 (Active Multi-factors.). A privacy-preserving biometrics authentication pro-

tocol P is c-secure against active multi-factors attack if for all efficient adversary A , the

value Advam
A ,P(n) is not larger than c×FAR of the non-private protocol.

3.3 Security Proof Technique

In the security proofs of the protocols appearing in the next chapters, we will typically model

the security games following the generic framework defined in this chapter, with the Enroll
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and Auth modules replaced by concrete lattice-based constructions (or combination of them).

Each attack game is modeled by way of a probability space, as both adversary and challenger

are probabilistic processes communicating with each other. The definition of security is tied

to some particular event S as seen in previous sections (where security means that for all

efficient adversary, the probability that event S happens is close to some target probability,

normally negligibly small, 1/2, or FAR in one of our contexts). In formal definitions, there is

a security parameter related to the terms efficient or negligible. For example, efficient means

time bounded by a polynomial in the security parameter, close to means the difference is

smaller than inverse of any polynomial in the security parameter. For simplicity, we assume

that all algorithms, adversaries, challengers, etc., take this parameter value as an implicit

input.

The approach used in the security proofs is called sequence-of-games, the process is as

follows. In each proof, a sequence of games is set up: Game 0, Game 1, . . . , Game n, where

Game 0 is normally the original attack game with respect to a concrete protocol and a given

adversary. Let S0 be the event S. For i=1,. . . ,n, the construction defines an event Si for each

Game i, these events are normally related to S in a natural way. Then, the proof shows that

Pr [Si ] is close to Pr [Si+1 ] for all i = 0, . . . ,n−1. Finally, if Pr [Sn ] can be shown to be close

to the “target probability”, provided that n is a constant, we can infer that Pr [S ] is negligibly

close to the “target probability”, and security is proved. We have ensured that the changes

from one game i to the next game i+1 are kept as small as to avoid major complications

while analyzing them.

Generally, there are two types of changes in the proofs:

Change based on indistinguishability A change is made such that its detection by the

adversary implies a method of distinguishing two distributions that are statistically or

computationally indistinguishable. For instance, if P1 and P2 are two indistinguishable

distributions, to prove that |Pr [Si ]−Pr [Si+1 ] | is negligible, it should be shown that
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there exists an algorithm D such that, when inputting an element drawn from P1,

outputs 1 with probability Pr [Si ]; and when inputting an element drawn from P2,

outputs 1 with probability Pr [Si+1 ]. It follows that |Pr [Si ]−Pr [Si+1 ] | is negligible,

provided the indistinguishability assumption of P1 and P2.

Change based on failure events This type of change is based on the fact that, given A,B,F

as events in some distribution, and supposing that A∧¬F ⇐⇒ B∧¬F , then |Pr [A ]−

Pr [B ] | ≤ Pr [F ], to say that two games proceed identically unless F occurs, means that

Si ∧¬F and Si+1 ∧¬F are the same. So, in order to prove that Pr [Si ] is negligibly

close to Pr [Si+1 ], it is enough to prove that Pr [F ] is negligible. This can be done using

the security assumption or an information-theoretic argument, as, for instance, that

when F occurs, the adversary could find a collision in a cryptographic hash function.

3.3.1 Related work

Sequence of transitions based on indistinguishability (only) have been used extensively in

cryptography for many years. For example, in 1984, [56] illustrated the “hybrid arguments”

technique while constructing pseudo-random functions. [15] was an early example of a proof

that is structured as a sequence of games including transitions based on both failure events and

indistinguishability. The first formal approach to sequences of games was initiated by Kilian

and Rogaway’s paper [77]. The authors subsequently applied the technique in numerous

papers, detailed introduction to the methodology and references of usage can be found in

[16]. In Bellare and Rogaway’s approach, games are treated as syntactic objects subject to

formal manipulation, while [122] views games as probability spaces with random variables

defined over them. This proof style is also illustrated nicely by some public key cryptography

examples in an introductory manuscript [107]. The technique has been used widely ([2],

[23], [28], etc. ). While some of the proofs can be structured differently, sequence-of-games

is a technique able of accomplishing the task in a clear and convincing way.
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3.4 Conclusion

This chapter lays out the framework to be used as the security models and hints at the

way security proofs will be organized. The technique (sequence-of-games) will be used

subsequently in the next chapters within each of the protocol variants to illustrate to illustrate

correspondingly security properties.





Chapter 4

The First Protocol - Computing HD

Homomorphically

4.1 Introduction

Many biometrics privacy preserving authentication protocols rely on a trusted third party

to keep the client’s secret key used to decrypt the authentication result [90, 65, 129]. Our

first attempt to improve the security of such schemes has been to remove the role of such a

party. As it proves inconvenient, due to privacy issues, to allow a third party server to keep

the client’s secret key, the distance plaintext decryption should be performed by the client,

which, in turn, raises the following challenges:

Multifactor security A malicious client with access to the compromised secret key of the

honest client can derive information about the distance between the registered template

and the extracted template while he decrypting the homomorphic ciphertext result sent

by the server.

Malicious Client Model Impact It is important for the protocol to be secure against the

active client model, by which an adversary does not simply follow the protocol



70 The First Protocol - Computing HD Homomorphically

transcript but also tries to draw information from it (this model is also known as Semi

Honest, Honest-But-Curious, or Passive Client Model).

The first issue has been solved in previous work of [90] forcing the server to mask the

distance between templates by means of some random value before sending it to the client. In

this chapter, we discuss the solution to the second issue, where a new Zero-Knowledge-Proof

(ZKP) technique for lattice-based cryptosystems is introduced so as to compel the client to

prove that the protocol is followed honestly. The technique not only provides a proof of

plaintext knowledge, it has another important advantage, it also proves the binary format of

the query template in a way that is compatible with the existing efficient plaintext packing

technique. We can use the ZKP at two stages: When the client first sends the query in order

to start authenticating, and at the final step, proving that the Hamming Distance is correctly

decrypted.

4.2 Related Work

In a biometric authentication system, a user U first registers his biometric template X on the

server S . U later authenticates to S using the same finger with a template Y , S uses an

algorithm Veri f y(X ,Y ) to obtain the result of the authentication: Accept or Reject. Different

biometric systems might use different methods to compute the distance ∆ between X and Y

within the algorithm veri f y. The distance ∆ is compared to some predefined threshold value

τ to determine the result of the authentication trial. We refer the reader to [70] for biometric

feature extraction and comparison techniques. Unlike password based systems, where U

always uses one and the same query for many authentication trials, all biometric systems

implement the concept of False Acceptance Rate (FAR), corresponding to the system’s

Accept answer while receiving an incorrect template; and False Rejection Rate (FRR), where

the system’s Reject answer follows reception of a genuine one. Balancing these 2 rates
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while keeping good performances is one of the main challenges that fingerprint verification

algorithms [FVC] try to solve. In this work, we assume that biometric data are represented as

binary codes and that HD is used to measure the similarity between two of them. We refer the

readers to [38] or [Fuj] for examples of 2048-bit iris code generation and HD comparison.

There are three main approaches for privacy-preserving biometric authentication ([72],

[13], [71]). In the Feature transformation approach (cancelable biometrics or biohashing,

such as [126], [33]), the template data are encrypted using a client’s key. Being a single factor

protection, it has a low security level as the key might be leaked. The Biometric cryptosystem

approach (fuzzy vault and fuzzy commitment, [128], [96]) is based on error correcting

codes and the trade-off between biometric accuracy and security seems to be insufficiently

understood . We focus our work on the last approach, Homomorphic Encryption, which

appears as the best candidate to provide all of the system design requirements mentioned.

The idea was first proposed in 2006 ([118]) using the Paillier addictive homomorphic

system ([103]). In 2010, Osadchy et al. ([101]) provided a privacy-preserving feature by

combining Paillier system with an oblivious transfer protocol. SCiFI uses 900-bit vector

to represent face image data and Hamming Distance (HD) to compare two vectors. [20]

developed a similar system for iris and fingerprints but using the DGK cryptosystem [36]

and garble circuit technique instead. They represented biometric data as 2048-bit vectors and

also used HD for threshold comparison. [133] proposed an approach based on Somewhat

Homomorphic Encryption (SHE) [27]. They introduced a ciphertext packing technique to

speed up the HD computation operation. There have been variations and improvements over

time ([120], [90], etc.). However, most of the protocols are only secure against a semi-honest

client, many of them relying on one or more trusted third parties with the client’s secret key

being used to decrypt the HD.
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Table 4.1 Comparison with previous works

Client Impersonation Security Server Privacy Security
Malicious

client
model

Stolen
device,

secret key

Leaked
Template

Template
protection

against server

Trusted
party

required

Hill
climbing
protection

[39] No Yes Yes No No No
[90] No No Yes No Yes No
[120] No Yes Yes No No Yes
[64] No Yes Yes Yes Yes Yes
[119] Yes No Yes Yes Yes No
This paper Yes Yes Yes Yes No Yes

4.3 The BV Cryptosystem and Yasuda Packing Method

Although the idea of Fully Homomorphic Encryption (arbitrary number of operations) is

feasible, its performance has not been considered practical enough. We discussed some

generic LWE based cryptosystems and their properties in Section 2.3 of this Chapter. In

this Section, we look specifically at BV cryptosystems, which belong to the Somewhat

Homomorphic Encryption type, and allow addition and some levels of multiplication ([27]).

In later chapters of the thesis, an extension of this cryptosystem (namely, BGV [26]) and its

variants is used frequently. We here discuss the basic operations within a BV system, which

works as follows:

Setup. Initiate (n,m,q, t,χ) to define the ciphertext space Rq =
Zq[x]
xn+1 , the plaintext space

Rt =
Zt [x]
xn+1 , and the error distribution χ on Zq, for t << q.

KeyGen. In this step, the secret key sk is chosen by selecting a small element s ∈ Rq,

s
r←↩ χn. The public key pk is a pair of ring elements (p0,p1), where p1

r←↩ Rq and

p0 =−(p1s+ te) with e
r←↩ χn.
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Encryption. Given a plaintext m ∈ Rt and a public key pk = (p0,p1), the encryption first

calculates u, f,g
r←↩ χ , then computes a fresh ciphertext by

Encpk(m) = (c0,c1) = (p0u+ tg+m,p1u+ tf)

By convention, JPK denotes the encryption of a plaintext P under the BV scheme with

the public key, and randomness is not taken into account. When the noise used in the

encryption has to be specified, J(P,e)K is used to represent it, e being the noise.

Decryption. Although the above encryption generates ciphertexts of 2 elements only in

Rq, the homomorphic operations (discussed next) will make the ciphertext longer.

The decryption of the ciphertext appears as c = (c0,c1, . . . ,cL), with secret key sk =

(1,s,s2, . . . ,sL) as Dec(c,sk) =
[
[⟨c,sk⟩]Q

]
t
.

Homomorphic Operations. Given 2 ciphertexts c=(c0,c1, . . . ,cL) and c′=(c′0,c
′
1, . . . ,c

′
K),

before any operations are carried out, the ciphertexts are padded with zeros first if

necessary (to make K = L, assuming that, initially, K < L). The homomorphic addition

add(c,c′) is computed by the component-wise addition add(c,c′) = (c0 + c′0, . . . ,cL +

c′L). The homomorphic multiplication mult(c,c′) is computed by mult(c,c′)= (ĉ0, ĉ1, . . . , ĉ2L−2)

with ∑
2L−2
i=0 ĉizi = ∑

L−1
i=0 cizi×∑

L−1
j=0 c′jz

j, where z denotes a symbolic variable.

4.3.1 Ciphertext packing

Given a bit string plaintext m∈ {0,1}∗, there are several ways to encode it as a polynomial, or

a ring element m ∈ Rt before encryption. A recent popular approach for BV cryptosystems

is the so-called CRT packing method, based on the Chinese Remainder Theorem [123].

The method allows Single Instruction, Multiple Data (SIMD) operations on encrypted

data. However, we do not use this packing technique in this chapter as it involves some

complications unrelated to the main point of this chapter (later, in chapter 7, we propose
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a different approach to packing methods). This chapter focuses on the method of [133],

which is an extension of [95], the technique allowing HD computation with just one level of

multiplication.

Biometrics are used in authentication as the human features they record systematically

differ from one person to another. There are many algorithms that extract the data used in

the process ([FVC]) (we refer to this data as "biometric templates"). Many works (such as

[38] and [Fuj]) use Hamming Distance (HD) as the metrics to measure the similarity of the

stored and query templates, and we equally do so to evaluate our hypothesis (3). In the work

of [133], the authors propose an innovative to compute the HD of two n-bits templates X and

Y in the ciphertext domain. Specifically, the method packs all the bits of a template into a

single ciphertext, and a linear combination of homomorphic operations would purveys an

HD result. We sketch their method below.

Definition 27 ([133]). For T = (t0, . . . , tn−1 and Q = (q0, . . . ,qn−1), we define two types of

polynomials in the ring Rq of the SHE scheme:

pm1(T) =
n−1

∑
i=0

tixi and pm2(Q) =−
n−1

∑
j=0

q jxn− j

The two types of packed ciphertexts are defined as

ct1(T) = Enc(pm1(T)) and ct2(Q) = Enc(pm2(Q))

The main idea of [133] is that, if in the ring Rq where xn =−1, then, when multiplying

pm1(T) by pm2(Q), the constant term of the result will be the inner product ⟨T,Q⟩. If

homomorphic multiplication is applied to the ciphertexts, the ciphertext of their inner product

will similarly show as a result of it. Furthermore, this result can be used to compute HD as

shown below, the operation costs being one level of multiplication with 3 additions and 3

multiplications on ciphertexts.
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Theorem 9. Let C1 =−∑
n−1
i=0 xn−i and C2 = 2−C1 = ∑

n−1
i=0 xi. Let Enc(HD) be a ciphertext

given by

ct1(T)∗Enc(C1)+ ct2(Q)∗Enc(C2)−2∗ ct1(T)∗ ct2(Q)

Then, the constant term of Dec(Enc(HD)) gives the Hamming Distance of T and Q.

Algorithm 1 HD Computation Homomorphically
1: procedure EVALDISTANCE(T,Q)
2: C1←−∑

n−1
i=0 xn−i

3: C2← 2−C1
4: CHD← ct1(T)∗Enc(C1)+ ct2(Q)∗Enc(C2)−2∗ ct1(T)∗ ct2(Q)
5: return CHD

4.4 Zero-knowledge proof system

Suppose that Paul has found a solution to a hard problem and he wants to convince Vicky

that the problem has been solved by him. Paul can simply write out the solution and give it

to Vicky. However, Vicky could be as dishonest as to show the solution to others and claim

that it was her who solved the problem. The Zero Knowledge Proof (ZKP) is a beautiful

cryptographic concept allowing Paul to produce the proof in such a way that Vicky does not

learn any information besides the fact that the problem has been solved. Since introduced in

the 80s [59], ZKP has been extensively studied and is currently an important building block

of many cryptographic protocols: identification schemes ( [46, 43, 61, 117, 125, 76],. . . ),

group signatures( [32, 9, 22, 24, 60]. . . ), anonymous credential systems ( [30], [31], [12],

[34],. . . ), interactive encryption protocols( [48], [55], [58], [75],. . . ), and many more.

In this chapter, we discuss zero-knowledge proofs of plaintext knowledge for LWE-

based cryptosystems. Given a system with a public key pk, a proof of plaintext knowledge

(PoPK) allows a Prover P to convince a Veri f ier V that it knows the plaintext M of some

ciphertext c = Enc(pk,M). The witness used in the proof normally consists of the plaintext,
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the secret key, and the randomness factor implemented during encrypting c. A PoPK system

is zero-knowledge in the sense that it does not allow V to acquire any information about

M. This research area has received attention in recent years. A ZKPoPK for a variant of

the Ajtai-Dwork system [5] was engineered by [57], who adapted the protocol from [94].

Xagawa and Tanaka [131] used the Stern-KTX proof [125, 76] to obtain PoPK for NTRU

cryptosystems [66]. Many projects targeted Regev’s LWE-based cryptosystem ([17, 18, 8],

but they all derived from a secure Multi-Party Computation protocol, specifically the IKOS

transformation [68], and therefore had a relatively high communication cost.

4.4.1 Stern-based ZKP

Recall that we need to construct a proof for the ISIS relation:

RISISn,mq,β = {((A, y⃗), x⃗) ∈ Zn×m
q ×Zn

q×Zm : (∥⃗x∥∞ ≤ β )∧ (A⃗x = y⃗ mod q)}

There are several approaches to construct such a proof (e.g. [87], [94], [125]). We here

discuss an approach based on [125]. We refer our readers to the original paper for the detailed

steps of the protocol and denote the whole proof protocol SternA,x,y. It can be applied to

implement a Zero Knowledge Proof of Plaintext Knowledge (ZKPoPK) for latticed-based

cryptosystems. For example, an extension of the work of [85] (denoted by SternExt), allows

to compute plaintext knowledge by proving the encryption relation of Regev’s cryptosystem

[112]:

Rq,m,n,t,χ
Regev = {((p0, p1),(c0,c1),⃗r||M) ∈ (Zm×n

q ×Zm
q )× (Zn

q×Zq)×Zn+1
q :

(c0 = p0⃗r)∧ (c1 = p1⃗r+M)}
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The proof works by letting A′ =

p1,1

p0,0

 and y =

c1

c0

 be the public parameters and by

letting x =

 r⃗

M

 be the Prover’s witness. We observe that A′x = y mod q, that is, x, is a

solution to the ISIS problem, provided that ∥⃗r∥∞ ≈ |M| AND the Prover within a symmetric

key setting. In many other contexts, the client does not know r⃗, as encryption is ensured by

other parties using public keys. For such situations, we can look at the decryption equation:

c1− c0⃗s = p1⃗r+M− p0⃗r⃗s

= A⃗s⃗r+ t⃗ e⃗r+M− A⃗r⃗s

= tẽ+M

We denote S1,S2,Sm to be subsets of Zq corresponding to small coefficients of s,e,m There-

fore, we can write out the decryption relation as:

Rq,m,n,tχ
Regev,dec = {((p0, p1),(c0,c1), s⃗, e⃗, ẽ,M) ∈ (Zm×n

q ×Zm
q )× (Zn

q×Zq)×Sn
1×Sn

2×Sm×ZQ :

(p1 = p0⃗s+ t⃗e)∧ (c1 = c0⃗s+ tẽ+M)}

Similarly, we can let AStern =

c0, t,0,1

p0,0, t,0

 (the public parameters) and let XStern = [⃗s, ẽ, e⃗,M]T

and try applying SternExt to obtain the ZKPoPK. However, this will not work because the

original solution proves that ∥XStern∥∞ < β . In such cases, we want to prove the bound of

separate components differently: in our above example, ∥ẽ∥∞ > ∥⃗e∥∞. In a Regev cryptosys-

tem, the problem might not be clear enough, as the norms of each vector in XStern are quite

close to each other. In other latticed-based system, the difference can be big, as for example,
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the BV system’s decryption relation:

Rq,n,t,χ
BV = {((c0,c1),(p0,p1),s,e′,e,m ∈ (RQ×RQ)× (RQ×RQ)×Sn

1×Sn
2×Sn

2×Sm :

(p1s+ te =−p0)∧ (c1s− te′−m =−c0)}

Our Prover’s witness in this situation is XStern = [s,e′,e,m]T with ∥s∥∞ ≈ ∥e∥∞ >

∥e′∥∞ >> ∥m∥∞. Therefore, instead of proving ∥XStern∥∞ < β , we need a proof with

different constraints on the witness’ components. In particular in our application, we need

to prove that the message has binary coefficients (for correctness of the Hamming Distance

homomorphic computation), whereas the errors have non-binary coefficients. We present a

solution for this problem.

Our construction

The idea. is that, instead of proving ∥xi∥∞ < βi, or proving that all the coefficients of

xi are in the range {−βi, . . . ,βi}, it can also be proved that xi + βi. f (x) is in the

range {0, . . . ,2βi}, where f (x) = 1+ x+ x2 + · · ·+ xn−1. Secondly, if we decompose

xi +βi. f (x) to its binary representation and apply the Stern’s variant of [76] to prove

the relation

RKT X = {((A,y),x) ∈Z n×m
q ×Z n

q ×{0,1}m : wt(x)∧A.x = y mod q},

the proof for the original relation Rq,n,t,χ
BV can be obtained. Note that, at this point the

Prover’s witness is a binary vector, that is, if it needs to be to proved that some part of

the message is binary, such a proof can be obtained at this point as well. It is important

to use such a proof for latticed-based cryptosystems where the message space is R2: a

proof for the ISIS relation would not be suitable in such situations, as it only asserts

that the infinity norm of the whole witness is less than some β .
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Protocol description. The protocol SternBV(A,y,x) works as follows: Let A be a matrix of

m× l ring element (A ∈ Rm×l
q ), x be a vector of l ring elements x = {x1,x2, . . . ,xl} and

similarly y = {y1, . . . ,ym}. The protocol includes the following steps:

Step 1. Normalizing the bound of each component xi of x from {−βi, . . . ,βi} to {0, . . . ,2li},

where li is the smallest integer satisfying 2li > (2βi− 1). This step is done by one

ring multiplication for each xi, let x′i = xi +βi.f(x), where f(x) = 1+ x+ x2 + · · ·+

xn−1. After this normalization step, instead of proving the relation ∑ j ai, jx j = yi

with ∥xi∥∞ ∈ {−βi, . . . ,βi}, we prove ∑ j ai, jx′j = y′i with ∥x′i∥∞ ∈
{

0, . . . ,2li
}

, where

y′i = ∑ j ai, jβ jf(x).

Step 2. Decompose x′i = xi +βi into their binary representation

x′′i =
li−1

∑
j=0

2 jb j

Let x′′ be the result ring element that concatenates all x′′i and has L = ∑ li coefficients.

In this step we need to hide the Hamming Weight of the secret vector x′i. This hiding

task is achieved by padding:

1. Let ζ0 and ζ1 be the number of coefficients of x′′ equal to 0 or 1, respectively.

2. Sample a random vector ζ ∈ {0,1}L that has (L−ζ0) coefficients 0 and (L−ζ1)

coefficients 1.

3. Output xStern = x′′||ζ .

The resulting binary vector xStern has length 2L and the total number of 0s and 1s in

the xStern are the same.

Step 3. We denote rot(c) ∈ Zn×n
Q to be an anti-circulant square matrix, whose first column

is c, the remaining columns of it being the cyclic rotations of c with the cycled entries
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negated

rot(c) =



c0 −cn−1 −cn−2 . . .

c1 c0 −cn−1 . . .

. . . . . . . . . . . .

cn−1 cn−2 cn−3 . . .


The matrix A can be then reconstructed as rot matrices:

∀ai, j ∈ A : a′i, j = rot(ai, j)

The result expanded matrix is denoted A′. We also need to pad the resulting matrix

with a corresponding number of 0s to make sure that A′ complies with all x′i. Let AStern

be the padded result.

Step 4. Modify yi: Let y′i = ∑ j ai, jβ jf(x) and let yStern be the concatenation of all y′i.

Step 5. Run the Stern protocol (Section 2.5.3) for the proof of ASternxStern = yStern.

Result. Our protocol has the following properties:

• The knowledge extractor produces different xi with ∥xi∥∞ ≤ βi. Inheriting from

the original Stern protocol, the extraction gap is γ = 1. In other words, if the

prover P has a valid witness for the relation and it follows the protocol, then it is

always accepted by the verifier V , the proof system has perfect completeness

• The communication cost is 2(n logq)∑ li + commitmentSize for each round.

• The Statistical Zero-Knowledge property can be proved by adapting the technique

from [125, 76] to construct a simulator S which has black-box access to a cheating

verifier V̂ : on inputs Astern,ystern, outputs an accepted transcript with probability

2/3. Additionally, the view of V̂ in the simulation should be statistically close to

the view of the verifier in the real situation.
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Algorithm 2 ZKPoPK Improved for BV

1: procedure ZKPBV((c, pk),(m,s,e,e′)))
2: rotc1 ← rot(c1)
3: rotp1 ← rot(pk1)
4: let I be the n×n identity matrix
5: let Z be the n×n zero matrix

6: A←
[

rotc,−tI,Z,−I
rotp1,Z, tI,Z

]
7: x← (s,e′,e,m)
8: y← (−c0,−pk0)
9: Return SternExt(A,x,y)

4.5 Our Protocol

4.5.1 The protocol specification

We denote U to be the client and S to be the server. There are 3 main submodules in the

protocol: Setup, Enrol, and Authenticate. Figure 4.1 illustrates the protocol transcript.

Setup. U and S initialize the parameters, taking into account the following categories:

Biometric Authentication System Parameters. These parameters are standard ones

used by non privacy preserving biometric authentication systems:

• False Acceptance Rate (FAR) and False Rejection Rate (FRR)

• a: The maximum number of incorrect authentication attempts allowed by

S .

• τ : Threshold to compare the Hamming Distance to decide the authentication

result.

• n′: The bit-length of the encoded biometric data.

Ring-LWE based techniques parameters. These parameters are used in the lattice-

based cryptosystem which provides client privacy against long term quantum

attacks.
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• λ : General security parameter of the cryptosystem (the adversary’s winning

chance in the CPA security game is 1/2λ )

• n: Integer n defining the plaintext and ciphertext rings. This will be referred

to as the degree of the polynomial objects or dimension of the underlying

lattice during correctness and security proofs.

• t: Integer t defining the plaintext space ring Rt = Zt [x]/xn +1.

• q: Integer q defining the ciphertext space ring Rq = Zq[x]/xn +1

• χαq: A distribution used to sample noises for LWE-based techniques. Typ-

ically, χ is a discrete Gaussian distribution with standard deviation αq

(Section 2.2.3).

Keygen. Keys are generated for U :

• Secret key: s
r←↩ χn

αq, sk = (1,s,s2, ...)

• Public key: pk = (p0,p1), with p1
r←↩ Rq and p0 =−p1s− te, with e

r←↩ χn
αq.

Enrolment. U extracts the biometric template x, the bit string x being represented as a ring

element of Rt . The encryption is done by JxK = (c0,c1) and sent to S .

Authentication. The following steps are required:

1. U extracts his biometric features again y to use them as the query. U sends

JyK = (c′0,c
′
1) to S .

2. ZKP for the first relation: U has to prove that JyK is a valid encryption, that is, it

encrypts a bit string under the BV cryptosystem using the corresponding secret

key. This is done by module SternBV(A, y, x) described in Sect. 4.4.1, where

A =

cy0, t,0,1

py0,0, t,0

, x = [⃗s, ẽy, e⃗0,y]T and y = [cy1,py1]
T .
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3. HD Computation: S computes JHDx,yK using procedure EvalDistance 4.3.1

and mask HD by adding some random value r homomorphically to JHDx,yK. The

result JHD′K = JHDx,yK+ JrK is then sent to U .

4. U decrypts JHD′K and derives the actual value HD′ from the first coefficient of

the plaintext: decJHD′K = HD′+ r1 + r2 + · · ·+ rn−1. U sends HD′ ∈ Z to S .

5. U proves that it does the decryption honestly, this is done similarly to step 2.

6. S unmasks HD′ (by computing HD′′ = HD′− r) and outputs the authentication

result HD
?
< τ

4.5.2 Correctness and Security

Correctness

In the enrolment step, as mentioned before, in order to encrypt x, U samples u, f,g
r←↩ χn

αq

and does c0 = p0u+ tf+x and c1 = p1u+ tg. The condition for decryption correctness is

[⟨c0 + c1s⟩]q < q/2, or, −teu+ tf+ tgs < q/2.

In the authentication step, JHDK is decryptable if ∥⟨JHDK ,s⟩∥∞ < q/2, if we let U to

be the upper bound of ∥⟨JHDK ,s⟩∥∞, and considering that ∥a+ b∥∞ ≤ ∥a∥∞ + ∥b∥∞ and

∥a.b∥∞ ≤ n.∥a∥∞.∥b∥∞. From theorem 7, we can derive ∥⟨JHDK ,s⟩∥∞ ≤ 2nU +2nU2. As

in the work of [95], we can take U to be 2tσ2√n, which is an experimental estimation.

Therefore, the final correctness condition for authentication is 16n2t2σ4 < q.

Lemma 7 (Condition for Correct Decryption of HD). For the BV encrypted Hamming

Distance JHDK, the decryption recovers the correct result if ⟨JHDK ,s⟩ does not wrap around

mod q, namely, if 16n2t2σ4 < q.

Security

The proposed scheme satisfies the security notions defined in Section 3.1
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THE FIRST PROTOCOL

Client Server

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enrolment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extract x
r←↩ Dk

JxK = Enc(x,pk) JxK Persist JxK

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extract y
r←↩ Dk

JyK = Enc(y,pk) JyK

ZKPoPK1 JHDK = EvalDistance(JxK ,JyK)

r
r←↩ ZHDq

HD′
y
= Add(JHDK ,JrK)

q
HD′

y

HD′+ r1 + · · ·+ rn−1 = Dec(
q

HD′
y
,sk)

HD′

ZKPoPK2 HD = HD′− r

Accept|Reject HD
?
< τ

Fig. 4.1 The First Protocol
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Theorem 10 (Server side security). Under the IND-CPA security of BV cryptosystems, and

the zero-knowledge property of the Stern protocol, the proposed scheme satisfies (Honest But

Curious) Server Privacy Security.

The proof of Theorem 10 can be obtained using a sequence of games between a challenger

C and an adversary A . We present a sequence of games below. The idea is to remove skk

and Xk from being used to compute the view of A , except for Veri f y(Xk,Y
j

k ) queries, as in

the ideal game, relying on the correctness of the protocol and the IND-CPA security of the

BV encryption scheme and the zero-knowledge property of the ZKP simulator.

Game 0 (Figure 4.2). Game 0 is the original real privacy game, in which JXkK =

Enc(Xk,pk) is given by C to A at the beginning of the game. Then, for j = 1 . . . ,q, the

attacker sends Yi ∈ {0,1}n to C , and the latter simulates a run of the authentication protocol

between an honest client with input (k,Yi,skk) and an honest server with input (k,JXkK),

returning to A the protocol’s view V (i)
S of the server. Finally, A outputs a bit β . In the

following Game j, we let S j denote the event that β = 1.

Game 1 (Figure 4.3). The computation of the authentication result bit resi sent by

the server to the client from the decryption of the ciphertext JHD′iK (its value in Game

0) is changed into the result returned by Veri f y(Xk,Yi), the change is highlighted belows.

By the correctness constraint of the protocol, this does not change the value of resi, so

Pr[S1] = Pr[S0].

Game 2 (Figure 4.4). The computation of the zero-knowledge protocol transcripts is

modified: Instead of computing the transcripts using the secret, we generate them using the

statistical zero-knowledge simulator algorithms for the zero-knowledge proofs. By the zero-

knowledge property, whose simulator has a 2−λ statistical distance from the real distribution,

the result of it being Pr[S2]−Pr[S1]≤ 2−λ .

Game 3 (Figure 4.5). We change the computation of the ciphertexts JXkK to encrypt zero

messages, instead of encrypting the secret-related messages resulting from the previous game.
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Game0(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(Xk,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(Yi,pk)

8 : veri f ierView1← ZKPoPK1((sk,Yi);(pk,JYiK))
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri
r←↩ ZHD,JHD′iK = Add(JHDiK ,JriK)

11 : HD′i← Dec(JHD′iK ,sk)
12 : veri f ierView2← ZKPoPK2((sk,HD′i);(pk,JHD′iK))
13 : HDi← HD′i− ri

14 : resi← compare(HDi,τ)

15 : β ←A (veri f ierView1,veri f ierView2,JXkK ,JYiK ,resi,ri,HDi,JHD′iK ,JHDiK)

Fig. 4.2 Game 0 - Server privacy game

Game1(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(Xk,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(Yi,pk)

8 : veri f ierView1← ZKPoPK1((sk,Yi);(pk,JYiK))
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri
r←↩ Zt ,JHD′iK = Add(JHDiK ,JriK)

11 : HD′i← Dec(JHD′iK ,sk)
12 : veri f ierView2← ZKPoPK2((sk,HD′i);(pk,JHD′iK))
13 : HDi← HD′i− ri

14 : resi←Veri f y(Xk,Yi)

15 : β ←A (veri f ierView1,veri f ierView2,JXkK ,JYiK ,resi,ri,HDi,JHD′iK ,JHDiK)

Fig. 4.3 Game 1 - Server privacy game
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Game2(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(Xk,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(Yi,pk)

8 : veri f ierView1← ZKPSimulator
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri
r←↩ ZHD,JHD′iK = Add(JHDiK ,JriK)

11 : HD′i← Dec(JHD′iK ,sk)
12 : veri f ierView2← ZKPSimulator
13 : HDi← HD′i− ri

14 : resi←Veri f y(Xk,Yi)

15 : β ←A (veri f ierView1,veri f ierView2,JXkK ,JYiK ,resi,ri,HDi,JHD′iK ,JHDiK)

Fig. 4.4 Game 2 - Server privacy game

We also change the computation of HDi to the direct operation HammingDistance(Xk,Yi).

Since skk is thus not used any longer for generating the view of A , it follows by a hybrid

argument that |Pr[S3]−Pr[S2] · (q+1) ·εBV , where εBV denotes the maximal advantage of an

attacker against IND-CPA of the BV scheme against attacks with run-time T +poly(n, logQ),

where T is the run-time of A . In this game, since the only information on Xk comes via the

Veri f y(Xk,Y
j

k ) and HammingDistance queries, the challenger together with A constitute an

efficient attacker against the ideal privacy game, which outputs 1 with a degree of probability

different by at most (l+1) ·q+1) ·εBV from the probability of outputting 1 in the real privacy

game, as required.

Theorem 11 (Client side security). Under the IND-CPA security of BV cryptosystem and

the soundness property of the underlying Stern protocol, the proposed scheme satisfies

Impersonation and Multifactor Security.
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Game3(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(0,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(0,pk)

8 : veri f ierView1← ZKPSimulator
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri
r←↩ ZHD,JHD′iK = Add(JHDiK ,JriK)

11 : HD′i← Dec(JHD′iK ,sk)
12 : veri f ierView2← ZKPSimulator
13 : HDi← HammingDistance(Xk,Yi)

14 : resi←Veri f y(Xk,Yi)

15 : β ←A (veri f ierView1,veri f ierView2,JXkK ,JYiK ,resi,ri,HDi,JHD′iK ,JHDiK)

Fig. 4.5 Game 3 - Server privacy game

The proof of theorem 11 can be obtained using a sequence of games between the

challenger C and the adversary A . We here present such a sequence, as well as the relations

among the games, in order to demonstrate the type I security model proof. In the next chapter,

we will present the type II security proof, where the ciphertext of the biometric data instead

of the key is compromised. The steps of the proofs can be applied in both the first and the

second variants of the protocols.

Game 0 (Figure 4.6). Game 0 is the original impersonation game for type I attack.

Setup. C intiates Dk
r←↩ Dbio and Xk

r←↩ Dk. C sets up (skk, pkk) and launches Enrol(k,Xk)

to get (skk,JXkK = (pkk,Xk)). A submits a type 1 attack query and receives skk from

C .

Query. A runs q authentication sessions. In each session j = 1, . . . ,q, A can choose a

ciphertext. A and C run ZKPoPK1. C evaluates JHDkK then computes JHD′kK. The
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resulting ciphertext is sent to A , A decrypts JHD′kK and sends back the plaintext

value of HD′i. A and C run ZKPoPK2(). C computes HD = HD′− r, compares the

result with τ sends back to A the authentication result Accept or Reject.

Guess. At the end of the game, A outputs Y′.

Game0(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(Xk,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(Yi,pk)

8 : proverView1← ZKPoPK1((sk,Yi);(pk,JYiK))
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri
r←↩ ZHD,JHD′iK = Add(JHDiK ,JriK)

11 : HD′i← Dec(JHD′iK ,sk)
12 : proverView2← ZKPoPK2((sk,HD′i);(pk,JHD′iK))
13 : HDi← HD′i− ri

14 : resi← compare(HDi,τ)

15 : β ←A (proverView1, proverView2,sk,Yi,JYiK ,resi,HD′i,JHD′iK)

Fig. 4.6 Game 0 - Client Impersonation game

Next, we discuss following games, the plan being to proceed towards the final game,

where everything related to Xk that A receives can be simulated without any knowledge

about Xk (the only known information about Xk is the function Veri f y(Xk,Yi)). Let resi =

Veri f y(Xk,Yi) (i = 1, . . . ,q) and S j be the event in the game j such that resi = Accept for

some Yi ∈ 0,1n.

Game 1. In this game, we abort ZKPoPK1 if JYiK is not a valid encryption of the query, but
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the Prover manages to pass the proof. Let (∗)i be this event.

(∗1)resi =


Reject if ZKPoPK1 fails

res else

Let bad0 be the event in game 0 and ∃ j ≤ q s.t (∗1) be the case. We want to show that when

we modify game 0, the probability of a successful forgery S1 in game 1 is not much lower

than before. Due to the modification, we observe that Pr[S1]≥ Pr[S0]−Pr[bad0]. For any

j in the q authentication attemps, by the ε − soundness property of ZKPoPK1 as a proof

of membership in (*), Pr[(∗1) occurs f or some j]≤ εZK1 holds. That is, the probability of

bad0 would be the union of these events, bounded by Pr[bad0]≤ qεZK1. In other words, the

advantage of A in game 1 is

Pr[S1]≥ Pr[S0]−Pr[bad0]≥ εimp−qεZK1

Game 2. In this game, we abort ZKPoPK2 if in one of the ith runs, the Veri f ier accepts but

the ciphertext JHD′K does not satisfy the relation. Let bad1 be this event. By the same type

of argument, we can derive Pr[bad1]≤ qεZK2 and, therefore,

Pr[S2]≥ Pr[S1]−Pr[bad1]≥ εimp−q(εZK1 + εZK2)

By the end of Game 2, if in any authentication attempt i, none of the 2 games have been

aborted, then, by the correctness property of ZKP, the server’s output is equal to the output of

Veri f y(Xk,Yi). In other words, we have shown what we could get by just querying the oracle

Veri f y(). Next, we want to simulate everything related to Xk available to an attacker using
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that oracle.

Game2(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(Xk,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(Yi,pk)

8 : proverView1← ZKPSimulator()
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri
r←↩ ZHD,JHD′iK = Add(JHDiK ,JriK)

11 : HD′i← Dec(JHD′iK ,sk)
12 : proverView2← ZKPSimulator()
13 : HDi← HD′i− ri

14 : resi← compare(HDi,τ)

15 : β ←A (proverView1, proverView2,sk,Yi,JYiK ,resi,HD′i,JHD′iK)

Fig. 4.7 Game 1 & 2 - Client Impersonation game

Game 3. At the end of Game 2, C has the bit b = Veri f y(Y (i),Xk). In this game, we

can change resi from compare(HDi,τ) to Veri f y(Xk,Yi). By doing this change, A still sees

the same result, so the probability of winning of A in this game is the same as in Game 2:

Pr [S3 ] = Pr [S2 ]

Game 4. In this game, we change the way C computes JHD′iK: In the orignal game 0, r

was added to mask the value of HD. We want to prevent this r from being used anywhere in

the game, so we replace JrK by J0K. This change does not affect A ’s success probability: r

only affects the plaintext inside JHD′K, since we do not use this plaintext anymore (it has

been replaced in Game 3), this change therefore does not affect what the attacker sees. Again,
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Game3(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(Xk,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(Yi,pk)

8 : proverView1← ZKPSimulator()
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri
r←↩ ZHD,JHD′iK = Add(JHDiK ,JriK)

11 : HD′i← Dec(JHD′iK ,sk)
12 : proverView2← ZKPSimulator()
13 : HDi← HD′i− ri

14 : resi←Veri f y(Xk,Yi)

15 : β ←A (proverView1, proverView2,sk,Yi,JYiK ,resi,HD′i,JHD′iK)

Fig. 4.8 Game 3 - Client Impersonation game

Pr[S4] = Pr[S3] = Pr[S2].

After Game 4 is finished, we can see that all the messages available to the attacker can

be simulated using only the verified bit b = Veri f y(Y (i),Xk). We now have an attacker A′

against the biometric impersonation with advantage:

εbio = Adv(A′) = Pr[S4]≥ (εimp−q(εZK1 + εZK2)),

which results in the claimed bound.
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Game4(n)

1 : Dk
r←↩ Dbio

2 : (sk,pk)← KeyGen

3 : Xk
r←↩ Dk

4 : JXkK← Enc(Xk,pk)

5 : For i = 1, . . . ,q:

6 : Yi←{0,1}n

7 : JYiK← Enc(Yi,pk)

8 : proverView1← ZKPSimulator()
9 : JHDiK = EvalDistance(JXkK ,JYiK)

10 : ri← 0,encHD′i = Add(JHDiK ,JriK)
11 : HD′i← Dec(JHD′iK ,sk)
12 : proverView2← ZKPSimulator()
13 : HDi← HD′i− ri

14 : resi←Veri f y(Xk,Yi)

15 : β ←A (proverView1, proverView2,sk,Yi,JYiK ,resi,HD′i,JHD′iK)

Fig. 4.9 Game 4 - Client Impersonation game

4.6 Result Evaluation

4.6.1 Parameters

We now consider how to set concrete parameters. From Lemma 7 and the analysis from [95],

we can take σ = 8 to make the protocol secure against the lattice attacks ([92]), note that this

setting does not cover circuit privacy, which will be discussed in the next chapter. We can

take t = 2048 to define the plaintext space ring Rt , this is enough to cover Hamming Distance

of bit strings up to 2048 bits. We need n ≥ 2048 for the packing ciphertext. With these

parameters, we need q to be approximately 60 bits to satisfy 16n2t2σ4 < q. The proposed

scheme works with only 1 level of homomorphic multiplication for the proposed set of

parameters (n = 2048,q≈ 260, t = 2048,σ = 8), the proof of concept implementation can

be found in [github].
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Number of rounds to repeat for each Zero Knowledge Proof: We are aiming at matching

the security of biometrics systems with False Acceptance Rate of 10−3, hence, with the

current ZKP technique whose soundness error is 2/3, we need to repeat the proof 17

times to achieve such level of security. Following the the communication size computed

from our result (2(n logq)∑ li), where ∑ li ≈ σ and the other parameters chosen as above,

the communication size of the two Zero Knowledge Proofs required by the protocol is

approximately 8MB to provide security against a malicious client model.

4.6.2 Limitations and open problems

We expose the HD to the server in the last step of the protocol and let the server do the

threshold comparison operation in the plaintext domain. We assume that, given such a

value, the server is not able to acquire any information about the original bit strings template

(assuming the provable CPA-secure ciphertexts of the underlying cryptosystem). This

assumption depends on the feature extraction function and would hold if the HD between a

registered user’s biometric template and another sample of that user’s template is statistically

independent of the registered template. Comparing the HD with threshold homomorphhically

proves much less efficient, and removing this assumption is thus left as a topic of next

chapters.

Also, we assume an honest but curious server, which is reasonable against passive

exposure attacks. Active attacks are harder to carry out undetected and also slower, provided

the server can be audited regularly. We emphasize that previous quantum resistant protocols

also made this assumption, and were not even able to resist passive honest but curious trusted

parties. Defending privacy against a malicious server is left as an open problem.

Finally, the communication size of the Stern-based ZKP protocol is large, due to the

round soundness error 2/3 (many communication rounds will be needed for security). We

show how to reduce this overhead in chapter 6.



Chapter 5

The Second Protocol - Covering Circuit

Privacy

5.1 Introduction

This chapter discusses Circuit Privacy, which is an important aspect of Homomorphic

Encryption, and how it affects the security of our first variant of the protocol. We also

describe a new technique being used to improve the security proof of the protocol, to make

sure that we can choose parameters small enough for the system for practical reasons, but

still preserve the security level. In particular, we show how to use the infinity-order Renyi

Divergence (RD) instead of traditional Statistical Distance in the proof at security against a

malicious client with exposed secret key, in order to significantly lower the initial noise bound

parameter, which will result in a smaller moduli q for the ring Rq used by the cryptosystem.

Circuit Privacy means that the ciphertext generated by a homomorphic operation does not

reveal anything about the circuit it evaluates, except its output value. This property applies

even to the party having generated the keys.
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Consider a ciphertext product result in a BV cryptosystem (section 2.4.2).

mult(c,c′) = (c0c′0,c0c′1 + c1c′0,c1c′1)

The noise term of this result ciphertext correlates to both m and m′. For example, given

c = (br1 +m,−ar1) and c′ = (br2 +m′,−ar2), the decryption result of mult(c,c′), which

is its inner product with (1,s,s′), would include the noise term:

t2e2r1r2 + tem2r1 + tem1r2 +m1m2

In many contexts, a leakage of this kind might be inconsequential for a genuine user with

a secret key, because s/he is supposed to know the key and decrypt the message. However,

in many other contexts, especially in multi-factor authentication scenarios, this is not the

case. For instance, in our system, we do not want the client to know the unmasked Hamming

Distance value, so that an attacker with a stolen device and a secret key cannot derive

information about the data stored in the server from the enrolment stage. We propose to mask

this data by homomorphically adding the ciphertext Enc(HD,e) to Enc(r,e′) so as to refresh

the noise terms while masking the Hamming Distance at the same time (e and e′ are the noises

in the resulting ciphertext). The question is how far from the original noise distribution we

can move away without compromising correctness, if this new security measure is applied.

Let e denotes the noise in the original ciphertext Enc(HD,e), for some fixed e, let D1 be

the probability distribution of the new shifted noise e+e′ of Enc(HD+ r,e+e′) with respect

to the choice of the mask noise e′ from Gaussian distribution with standard deviation σ . Let

D2 be the probability distribution of the unshifted noise e′. We observe that the 2 Gaussian

distributions D1 and D2 are identical with the same standard deviation σ and different means.

Let r0 be the shift in the means of D1 and D2. Our goal is to set up parameter r0, such

that D1 and D2 are computationally indistinguishable while keeping other parameters of the
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cryptosystem within practical performance thresholds. Statistical Distance (SD) is normally

used to measure the difference of distributions and can be shown to be

SD(D1,D2) =
1
2 ∑

x∈X
|D1(x)−D2(x)| ≤ K× r0

σ

where K is a constant. We quickly see that in order for SD to be indistinguishable, (SD <

ε ≈ 1
2λ

, where λ is the security parameter), the standard deviation of the mask noise needs to

be larger than r0 by an exponential factor in λ , that is σ ≥ Kr02λ .

In the work of [10], the authors proposed Renyi Divergence (RD) as an alternative

to measure distributions’ closeness and its applications to security proofs. Ra(D1∥D2) of

order a between D1 and D2 is defined as the expected value of (D1(x)/D2(x))a−1 over the

randomness of x, sampled from D1.

Ra(D1∥D2) =

(
∑

x∈D1

D1(x)a

D2(x)a−1

) 1
a−1

Similar to SD, RD is useful in our context with its Probability Preservation property (we

refer readers to [10] for detailed formal descriptions): Given D1 and D2 as described, for any

event E, for instance, E may be the winning probability of an attacker in the distinguishing

game, the probability of the event with respect to D2 being bound by

D2(E)≥ D1(E)
a

a−1/RDa(D1∥D2) (5.1)

Particularly, if we look at the second order (a = 2) of RD as done in previous works,

we would have D2(E) ≥ D1(E)2/RD2(D1∥D2). Provided that the distribution functions

on lattices of D1 and D2 are discrete Gaussian, which is of the form ρσ (x) = 1
σ

e−π
x2

σ2

, RD2(D1∥D2) = e2π
r2
0

σ2 ≈ e2π , when r0 is much smaller than σ . This means that when

switching from D1 to D2, the success probability of E will be at least the old probability to
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the power of 2 divided by some constant. This squaring factor brings about a big trade-off:

for example, in our protocol, we would need to use FAR = 2−20 in the non-privacy biometric

settings to get FAR = 2−10 into our scheme.

We aim at a solution to reduce this concrete security loss factor of the security proof. The

idea is to look at RD∞ instead of at RD2: from equation (5.1), we can infer that when a is

large, a
a−1 approaches 1. However, for usual Gaussian distributions, the value of RD∞ is also

infinity (not a constant e2π like in RD2 when a = 2). This is due to the ratios D1(x)
D2(x)

, which

become large when sample is in the extreme tails of the distributions. Our idea is to truncate

the distribution when doing noise sampling: if we get a noise value that is too close to the

tail, we reject it and sample again. As a result, the RD∞ can be bounded by a finite amount.

The truncated distribution also scale up slightly (the small noises show higher probability

when sampling), but this does not have a high impact on security.

5.2 Context and Related Work

5.2.1 Definitions

Definition 28 (Renyi Divergence). Let Supp(D) = {x : D(x) ̸= 0} denote the support for a

probability distribution D. For any two discrete probability distributions P and Q such that

Supp(P)⊆ Supp(Q) and a ∈ (1,+∞), the Renyi divergence of order a is defined by

RDa =

(
∑

x∈Supp(p)

P(x)a

Q(x)a−1

) 1
a−1

When a = 2, the subscript is normally omitted, the Renyi divergence of order +∞ is

defined by RD∞ = maxx∈Supp(P)
P(x)
Q(x) . The definitions are extended in the natural way to

continuous distributions. The following properties are considered analogues of those of

Statistical Distance. Proofs can be found in [82].
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Lemma 8. Let a ∈ [1,+∞]. Let P and Q denote distributions with Supp(P) ⊆ Supp(Q).

Then the following properties hold:

Log. Positivity. RDa(P||Q)≥ RDa(P||P) = 1.

Data Processing Inequality RDa(P f ||Q f )≤ RDa(P||Q) for any function f , where P f and

Q f denote the distribution of f (y) induced by sampling y
r←↩ P and y

r←↩ Q

Multiplicative Assume P and Q are two distributions of a pair of random variables (Y1,Y2).

For i ∈ {1,2}, let Pi and Qi denote the marginal distribution of Yi under P and Q, and

let P2|1(·|y1) and Q2|1(·|y1) denote the conditional distribution of Y2 given that Y1 = y1.

Consequently:

• RDa(P||Q) = RDa(P1||Q1) ·RDa(P2||Q2)) if Y1 and Y2 are independent for a ∈

[1,∞].

• RDa(P||Q)≤ RD∞(P1||Q1) ·maxy1∈X RDa(P2|1(·|y1)||Q2|1(·|y1))

Probability Preservation Let E ⊆ Supp(Q) be an arbitrary event. If a ∈ (1,+∞), then

Q(E)≥ P(E)
a

a−1/RDa(P||Q) and Q(E)≥ P(E)/RD∞(P||Q)

Weak Triangle Inequality Let P1,P2,P3 be three distributions with Supp(P1)⊆ Supp(P2)⊆

Supp(P3). Consequently:

RDa(P1||P3)≤


RDa(P1||P2) ·R∞(P2||P3),

RD∞(P1||P2)
a

a−1 ·RDa(P2||P3)if a ∈ (1,+∞)

5.2.2 Related Work

Ling et al. [86] used RD as the framework for distinguishing problems in the k-LWE

context, which is a variant of LWE in which the adversary is given extra information in

the distinguishing attack game. The work of [108] used RD order 1 (Kullback-Leibler

divergence) to improve the communication size requirement of BLISS [40]. [11] showed
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how generic RD can be used as an alternative to the statistical distance in proofs for lattice-

based cryptography. Bogdanov et al. [21] adapted the work of [11] to the Learning With

Rounding problem. RD was used in [84] in the context of dynamic group signatures and also

in [7] to replace LWE noise distribution by an easier to sample distribution.

5.3 Renyi Divergence Analysis technique

For the following analysis, let D1 be a discrete Gaussian on Z with standard deviation

parameter σ shifted by the constant r0 ∈ Z, while D2 is a discrete Gaussian on Z with

deviation parameter σ centered on zero, i.e. D1 = DZ,σ + r0 and D2 = DZ,σ , where

DZ,σ (x) =
e−π·x2/σ2

∑z∈Z e−π·z2/σ2 , for x ∈ Z

To allow us to use RD∞ we put tail-cut variants D(cut)
1 and D(cut)

2 of D1 and D2 into play,

respectively with parameter k. The parameter k defines where D1 and D2 are cut, for example,

we can set k = 3 to cut the distributions at 3 deviation parameters from the mean. So, we let

D(cut)
Z,σ denote distribution DZ,σ tail-cut to the interval [−k ·σ ,k ·σ ] by rejection sampling.

We let D(cut)
1 =D(cut)

Z,σ +r0 and D(cut)
2 =D(cut)

Z,σ . Notice that the supports of D(cut)
1 and D(cut)

2

are different, namely Supp(D(cut)
1 ) = [−kσ + r0,kσ + r0] while Supp(D(cut)

2 ) = [−kσ ,kσ ].

We assume, without loss of generality, that r0 > 0. We would like to switch from distribution

D(cut)
1 to D(cut)

2 , but unfortunately R∞(D
(cut)
1 ∥D(cut)

2 ) is not finite, since Supp(D(cut)
1 ) is not a

subset of Supp(D(cut)
2 ). To satisfy the latter condition, we first switch from D(cut)

1 to D(cut)
1

by further cutting (by rejection sampling) the positive tail of D(cut)
1 to ensure it does not go

beyond the kσ upper bound on tail of D(cut)
2 , and use a (mild condition) statistical distance step

to lower bound D(cut)
1 (E). Then, in a second step using Supp(D(cut)

1 ) = [−kσ + r0,kσ ] ⊆

[−kσ ,kσ ] = Supp(D(cut)
2 ), we derive a finite upper bound on R∞(D

(cut)
1 ∥D(cut)

2 ) to lower

bound D(cut)
2 (E). Details follow.
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Fig. 5.1 Renyi Divergence tail cut

First SD Step. Since Supp(D(cut)
1 ) is transformed into D(cut)

1 by rejection and resampling

if a sample of Supp(D(cut)
1 ) falls in (kσ ,kσ + r0], we have

SD(D(cut)
1 ,D(cut)

1 )≤D(cut)
1 ((kσ ,kσ +r0]) = D(cut)

2 ((kσ−r0,kσ ]) = DZ,σ ((kσ−r0,kσ ])/C2

, where C2 = DZ,σ ([−kσ ,kσ ]). Consequently,

∆
def
=

DZ,σ ((kσ − r0,kσ ])

C2
=

∑z∈(kσ−r0,kσ ]) e−πz2/σ2

∑z∈[−kσ ,kσ ]) e−πz2/σ2 .

For the numerator, we have the upper bound

∑
z∈(kσ−r0,kσ ])

e−πz2/σ2
≤
∫

∞

kσ−r0

e−πz2/σ2
dz

≤ σ · e−π(kσ−r0)
2/σ2

The second inequality in the above bound is obtained by using the standard normal distribution

tail upper bound ∫
∞

γ

1√
2πσ

· e−z2/σ2
dz≤ e−γ2/(2σ2), for γ ≥ 0
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For the denominator, we have the lower bound

∑
z∈[−kσ ,kσ ]

e−πz2/σ2
≥ 2 · ∑

z∈[0,kσ ])

e−πz2/σ2

≥ 2 · (
∫

∞

0
e−πz2/σ2

dz−
∫

∞

kσ

e−πz2/σ2
dz)

≥ σ · (1−2 · e−π(kσ−r0)
2/σ2

)

Therefore, SD(D(cut)
1 ,D(cut)

1 ) ≤ ∆ ≤ δ ′/(1 − 2δ ′) ≤ 2δ ′ if δ ′ ≤ 1/4, where δ ′ =

e−π(kσ−r0)
2/σ2

. Defining δ = 2δ ′, makes ∆ ≤ δ if δ ≤ 1/2 and the conditions r0 ≤ σ

and k ≥ 1+
√

1/π · ln(2/δ ) hold. Therefore, by the probability preservation property, for

any event E, D(cut)
1 (E)≥ D(cut)

1 (E)−δ holds.

Second RD step. The desired RD of order ∞ is defined by

R∞(D
(cut)
1 ∥D(cut)

2 )) = max
x∈[−kσ+r0,kσ ]

D(cut)
1

D(cut)
2 (x)

.

Observe that, for each x ∈ [−kσ + r0,kσ ], we have D(cut)
1 (x) = C ·D(cut)

1 (x), where the

normalization constant

C =
1

1−D(cut)
1 ((kσ ,kσ + r0])

=
1

1−D(cut)
2 ((kσ − r0,kσ ])

=
1

1−∆

Where ∆ is defined and upper bounded by δ above, under the assumed conditions on

k and δ . Since the D(cut)
1 (x) and D(cut)

2 (x) are shifts of each other, they have the same

rejection sampling normalization constant with respect to D1 (resp. D2). Therefore,

D(cut)
1 (x)/D(cut)

2 (x) = D1(x)/D2(x) for each x in the support of both D(cut)
1 and D(cut)

2 , and
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thus

R∞(D
(cut)
1 ∥D(cut)

2 )≤ 1
1−δ

· max
x∈[−kσ+r0,kσ ]

D1(x)
D2(x)

= max
x∈[−kσ ,kσ ]

e
−π(x−r0)

2

σ2

e−π
x2

σ2

= eπ·r2
0/σ2
· max

x∈[−kσ+r0,kσ ]
e

2πr0
σ2 x

This is an exponential function yielding its max value at x = kσ :

R∞(D
(cut)
1 ∥D(cut)

2 ) = e1/(1−δ ) · eπ·r2
0/σ2+2πk·r0/σ .

Since 0< δ ≤ 1/2, the first factor above is≤ 1+2δ ≤ e2δ . Also, a simple computation shows

that the second factor is less than e if the condition σ/r0 ≥ 4π · k is satisfied using k ≥ 1. We

conclude, under the assumed parameter conditions, that R∞(D
(cut)
1 ∥D(cut)

2 ))≤ e1+2δ = c′(δ )

is constant for a constant δ > 0, so that, by the RD probability preservation property,

D(cut)
2 (E)≥ 1

c(δ )
·D(cut)

1 (E)

≥ 1
c(δ )

· (D(cut)
1 (E)−δ )

Note that if D(cut)
1 (E) = ε , then, by choosing δ = ε/2, we get D(cut)

2 (E)≥ 1
2c(δ ) · ε , and we

only need k ≥ 1+
√

1/π · ln(2/δ ) and σ/r0 logarithmic in 1/δ , much smaller than σ/r0

linear in 1/δ , which we would need if we were to use the ‘SD only’ analysis approach.

The above discussion immediately generalizes from the one-dimensional case of discrete

Gaussian samples over Z to the m-dimensional case of discrete Gaussian samples over Zm,

due to the independence of the m coordinates. The only change to the above argument is

that the statistical distance in the ‘SD step’ can multiply by at most a factor m, whereas the

RD in the ‘RD step’ above gets raised to the m’th power, where we replace r0 by ∥⃗r0∥∞. We
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compensate it by replacing the bound δ on ∆ in the above analysis by the bound δ/m. We

have therefore proved the following result used in our impersonation security proof, which

improves upon the R2-based analogue result for shifted Gaussians stated in [82].

Lemma 9. For integer m ≥ 1, real σ > 0,k ≥ 1, real 0 < δ ≤ 1/2 and vector r⃗0 ∈ Zm,

let D(cut)
1 = D(cut)

Zm,σ + r⃗0 and D(cut)
2 = D(cut)

Zm,σ be relatively shifted tail-cut discrete Gaussian

distributions, where D(cut)
Zm,σ is the discrete Gaussian DZm,σ with its tails cut to the sup-

port [−kσ ,kσ ]m by rejection sampling. If the conditions k ≥ 1+
√

1/π · ln(2m/δ ) and

σ/∥⃗r0∥∞ ≥ 4π · k ·m hold, then, for any event E defined over the support of D(cut)
1 , it is the

case that

D(cut)
2 (E)≥ 1

2e1+2δ
·
(

D(cut)
1 (E)−δ

)
.

5.4 The authentication protocol

The application to our protocol mainly happens in the step of masking the value of HD. In

addition to masking HD with some value r, we also need to mask the correlated noise used

in the encryption process. The rest of the protocol steps are identical to Section 4.5.1.

Setup. U and S initialize the parameters, taking into account the following categories:

Biometric Authentication System Parameters. These parameters are standard ones

used by non privacy preserving biometric authentication systems:

• False Acceptance Rate (FAR) and False Rejection Rate (FRR)

• a: The maximum number of incorrect authentication attempts allowed by

S .

• τ : Threshold to compare the Hamming Distance to decide the authentication

result.

• n′: The bit-length of the encoded biometric data.
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Ring-LWE based techniques parameters. These parameters are used in the lattice-

based cryptosystem which provides client privacy against long term quantum

attacks.

• λ : General security parameter of the cryptosystem (the adversary’s winning

chance in the CPA security game is 1/2λ )

• n: Integer n defining the plaintext and ciphertext rings. This will be refered

to as the degree of the polynomial objects or dimension of the underlying

lattice during correctness and security proofs.

• t: Integer t defining the plaintext space ring Rt = Zt [x]/xn +1.

• q: Integer q defining the ciphertext space ring Rq = Zq[x]/xn +1

• χαq: A distribution used to sample noises for LWE-based techniques. Typi-

cally, χ is a Gaussian distribution with standard deviation αq.

• δ : Renyi Divergence parameter for the security of noise masking.

Keygen. Keys are generated for U :

• Secret key: s
r←↩ χn

αq, sk = (1,s,s2, ...)

• Public key: pk = (p0,p1), with p1
r←↩ Rq and p0 =−p1s− te, with e

r←↩ χn
αq.

Enrolment. U extracts the biometric template x, the bit string x being represented as a ring

element of Rt . The encryption is done by JxK = (c0,c1) and sent to S .

Authentication. The following steps are required:

1. U extracts his biometric features again y to use them as the query. U sends

JyK = (c′0,c
′
1) to S .

2. ZKP for the first relation: U has to prove that JyK is a valid encryption, that is, it

encrypts a bit string under the BV cryptosystem using the corresponding secret
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key. This is done by module SternBV(A, y, x) described in Sect. 4.4.1, where

A =

cy0, t,0,1

py0,0, t,0

, X = [⃗s, ẽy, e⃗0,y]T and Y = [cy1,py1]
T .

3. HD Computation: S computes JHDx,yK using procedure 4.3.1. We note that the

noise term eHD of JHD,eHDK can leak information about x when HD is decrypted.

Therefore, an extra step is needed to secure the operation.

• Sample er
r←↩ χn

r such that ∥er∥∞ is big enough compared to ∥eHD∥∞.(Section

5.3)

• Compute Jr,erK and carry out an homomorphic addition operation to mask

both the values of HD and the noise eHD: JHD′,e′HDK = JHD,eHDK+ Jr,erK

The result JHD′K is then sent to U .

4. U decrypts JHD′K and derives the actual value HD′ from the first coefficient of

the plaintext: decJHD′K = HD′+ r1 + r2 + · · ·+ rn−1. U sends HD′ to S .

5. U proves that it does the decryption honestly, this is done similarly to step 2.

6. S unmasks HD′ and outputs the authentication result HD
?
< τ

5.4.1 Security Analysis

Theorem 12 (Server side security). Under the IND-CPA security of BV cryptosystems, and

the zero-knowledge property of the Stern protocol, the proposed scheme satisfies (Honest But

Curious) Server Privacy Security.

Theorem 13 (Client side security). Under the IND-CPA security of BV cryptosystem and

the soundness property of the underlying Stern protocol, the proposed scheme satisfies

Impersonation and Multifactor Security. Concretely, for δ > 0, the protocol is (q,c)-secure

against impersonation with c≤ c(δ )+3 · c1, assuming the underlying non-private biometric

protocol has impersonation probability εbio and the underlying Stern ZK protocols have
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knowledge error εZK1,εZK2 such that q(εZK1 + εZK2)+δ ≤ c1 · εbio, c(δ ) = 2e1+2δ , and the

condition σ/r0 ≥ 4πknq holds, for k = 1+
√

1/π ln(2nq/δ ) and r0 as an upper bound on

the size of the noise in JHDK.

The proof for Theorem 12 can be obtained as described in Section 4.5.2. For Theorem

13, there is a minor game change in the client impersonation model after game 4. We briefly

recall the game sequence; the detailed diagrams of the changes in consecutive games can be

found in Section 4.5.2.

Game 0 (Figure 4.6). Game 0 is the original impersonation game for type I attack.

Setup. C intiates Dk
r←↩ Dbio and Xk

r←↩ Dk. C sets up (skk, pkk) and launches Enrol(k,Xk)

to get (skk,JXkK = (pkk,Xk)). A submits a type 1 attack query and receives skk from

C .

Query. A runs q authentication sessions. In each session j = 1, . . . ,q, A can choose

Yi ← {0,1}n and sends JYiK. A and C run ZKPoPK1. C evaluates JHDkK then

computes JHD′kK. The resulting ciphertext is sent to A , A decrypts JHD′kK and

sends back the plaintext value of HD′i. A and C run ZKPoPK2(). C computes

HD = HD′− r, compares the result to τ , and sends back the authentication result

Accept or Reject to A .

Guess. At the end of the game, A outputs Y′.

Next, we discuss following games, the plan being to proceed towards the final game,

where everything related to Xk that A receives can be simulated without any knowl-

edge about Xk (the only known information about Xk is the function Veri f y(Xk,Y )). Let

resi =Veri f y(Xk,Yi) and S j be the event in the game j such that res j = Accept.

In the Game 1 and Game 2, the real ZKPs are replaced by the ZKPSimulator, by the end

of Game 2, if in any authentication attempt i, none of the 2 games have been aborted, then, by
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the correctness property of ZKP, the server’s output is equal to the output of Veri f y(Xk,Yi).

In other words, we have shown what we could get by just querying the oracle Veri f y(). Next,

we want to simulate everything related to Xk the attacker can see using just that oracle.

Game 3. At the end of Game 2, C has the bit b = Veri f y(Y (i),Xk). In this game, we

can change resi from compare(HDi,τ) to Veri f y(Xk,Yi). By doing this change, A still sees

the same result, so the probability of winning of A in this game is the same as in Game 2:

Pr [S3 ] = Pr [S2 ]

Game 4. In this game, we change the way C computes JHD′iK: In the orignal game 0, r

was added to mask the value of HD. We want to prevent this r from being used anywhere in

the game, so we replace JrK by J0K. This change does not affect A ’s success probability: r

only affects the plaintext inside JHD′K, since we do not use this plaintext anymore (it has

been replaced in Game 3), this change therefore does not affect what the attacker sees. Again,

Pr[S4] = Pr[S3] = Pr[S2].

Game 5. We modify the way JHDK is computed in this game. Instead of calculating

JHD′iK = JHDiK+ JriK, the challenger chooses a random HD′
r←↩ Zp and encrypts it with the

noise used before. In this game, the plaintext has changed from being r+HD to a uniform

HD′ ∈ Zp. Since r is also uniform in Zp, the attacker is confronted with a uniform plaintext

in both cases. Therefore, Pr[S5] = Pr[S4].

Game 6. Finally, we set JHD′iK = Enc(HD′i,eHD′i
) for eHD′

r←↩ χmask instead of eHD + er.

We replace the sum of the Gaussian noise with a random noise. In Section 5.3, we showed

that Pr[S6]≥ 1
c(δ )(Pr[S5]−q ·δ ), where c(δ ) = RD(eHD +er,eHD)≤ 2 ·e1+2δ by Lemma 9

and by our assumption on the parameter’s values. After we finish Game 6, we notice
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that all the messages available to the attacker can be simulated with only the verified bit

b =Veri f y(Y (i),Xk). We now have an attacker A′ against the biometric impersonation with

advantage:

εbio = Adv(A′) = Pr[S6]≥
1

c(δ )
(εimp−q(εZK1 + εZK2+)+δ ),

which gives the claimed bound εimp ≤ c(δ ) · εbio +q · (εZK1 + εZK2)+δ ≤ (c(δ )+ c1) · εbio

if q(εZK1 + εZK2)+δ ≤ c1 · εbio.

5.4.2 Security Proof for Type II Impersionation attack

This proof can also be provided using a sequence of games between the challenger C and

the adversary A . We present a sequence of games as well as the relations among them to

demonstrate the type II security model proof. The idea is that in this type of attack, skk is not

used to compute the view of A . On the other hand, the soundess of the zero-knowledge proof

of knowledge ZKPoPK implies the existence of an efficient witness extractor algorithm, ca-

pable of extracting the witness (i.e. the secret key skk) from a cheating prover which succeds

with probability non-negligibly higher than the knowledge error of the zero-knowledge proof,

and thus contradicts the IND-CPA security of the BV encryption scheme.

Game 0. Game 0 is the original impersonation game for a type II attack, i.e., the same

as Game 0 in the proof of security against Type I attacks, except that JXkK is given by C to

A at the beginning of the game, rather than skk. For j ∈ {1, . . . ,q}, let res j denote the result

of the jth authentication protocol run between A and C , and S0 be the event in the game 0

such that res j = Accept for some j = 1, . . . ,q. We have Pr[S0] = εimp,II as the type II success

probability of A .
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Game 1. From the definition of event S0 in Game 0, it follows that there exists some

j∗ ∈ {1, . . . ,q} such that Pr[res j∗ = Accept]≥ εimp,II/q. Furthermore, by an averaging argu-

ment, there must exist a set G of (Dk,Xk, pkk) such that Pr[(Dk,Xk, pkk)∈G]≥ εimp,II/(2 ·q),

and for each (D′k,X
′
k, pk′k) ∈ G, we have Pr[res j∗ = Accept|(Dk,Xk, pkk) = (D′k,X

′
k, pk′k)]≥

εimp,II/(2 · q). By εZK1-soundness of the zero-knowledge proof of knowledge ZKPoPK1

[55], there exists a witness extractor algorithm that runs in expected time T ′=O(poly(n logQ)·

T/(εimp,II/(2∗q)− εZK1)), where T denotes the run-time of A and outputs a witness con-

taining skk for ZKPoPK1. Therefore, we obtain a (secret key recovery) attack algorithm

against the IND-CPA security of the BV encryption scheme, with expected run-time T ′

and advantage ε ′ ≥ εimp,II/(2 ·q). Hence, if εimp,II/(2∗q)− εZK1 > εimp,II/(4∗q), or equiv-

alently, if εimp,II > 2 · qεZK1, we obtain a contradiction with the assumption the BV en-

cryption scheme with parameters Q,n,σ is IND-CPA against attacks with expected time

O(poly(n logQ) ·T/εZK1) and advantage ≥ εZK1. It follows under the latter assumption that

εimp,II ≤ 2qεZK1 ≤ 2c1 · εbio, under the assumption that q(εZK1 + εZK2 +δ )≤ c1 · ε .

5.5 Results

In the previous chapter, the following parameters were used for the cryptosystem: n =

2048,q≈ 270, t = 2048,σ = 8. This configuration does not cover circuit privacy as the error

noise leaks information about the registered template. If the leakage is to be covered by the

added noise with a magnitude computed from the Statistical Distance approach, we would

need the noise added to be as large as O
(

2λ

)
, which results in increasing σ to K.2λ . With

that new noise added, the parameter q of the system needs to be adjusted to ensure correctness.

According to the correctness requirement (lemma 7) , q needs to be approximately 280 bits.

With this new moduli, the overheads introduced to both computation and communication

are significant. For example, in the ZKP protocol, the communication size of each round

would be about 3MB and could not be considered practical for the current infrastructure
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bandwidth, as we need to repeat each proof at least 17 rounds to achieve a security level

corresponding to FAR ≈ 10−3 (and we have 2 proofs in our protocol, which will result in a

total communication weight of approximately 100MB)

However, by applying the approach in this chapter and adding the noise according to

Lemma 9, the new noise becomes σ = 50; with the proposed parameter values, the new

moduli is approximately 70 bits and the communication overhead increases from 8MB to

16MB for the whole protocol. This is by far lower than the consumption of the Statistical

Distance approach and can be considered practical in some of the current deployed networks

(such as 100 Mbps cable internet or NBN).

In conclusion, by using Renyi Divergence as an alternative to measure the closeness of

distributions instead of Statistical Distance in security proofs of lattice-based cryptography,

one can efficiently reduce the parameters’ sizes. This chapter introduced how a specific order

of RD (infinity order) can positively affect the parameters’ choices for the cryptosystem. In

the next chapter, we start improving the security model by hiding the value of the distance

from the server. All the results of this chapter will be kept for the purpose of covering circuit

privacy as necessary in any steps concerning the server’s side, to provide security against a

malicious client model.





Chapter 6

The third protocol - Computing and

Comparing HD Homomorphically

6.1 Introduction

In the previous chapter, we assumed that, given the Hamming Distance (HD) between the

registered and queried binary bitstring templates, it is infeasible for an attacker to infer or

acquire any information about the registered templates stored on the server. This assumption

is plausible as long as the distributions of the HD between registered and the queried templates

is not in any way correlated to the templates themselves (analyzing these distributions is

out of scope of the project). However, in this chapter, we introduce our first attempt to hide

this information from the server as well. Our results not only cause the protocol to work

regardless of the aforementioned dependencies, it is also the first step we take to secure the

authentication protocol against an active server security model. Although the communication

size of this variant might not be suitable in practice for current network infrastructures, one

can still find some generic techniques used within it to be helpful while applying them to

balance the computation time and the communication size of lattice-based cryptographic

protocols. The contributions of this variant include:
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• A technique to compare Hamming Distance (HD) homomorphically by computing the

Most Significant Bit (MSB) of a specific ciphertext.

• A packing methods conversion technique to transform a ciphertext encrypting a binary-

encoded to a unary-encoded plaintext.

• Some extensions of the Zero Knowledge Proof (ZKP) technique we used in previous

chapter to check the format of a message, in addition to the information carried by the

plaintext itself.

• The combination of ZKP protocols to balance the communication size trade-offs when

used with lattice-based cryptosystems.

6.2 Proposed Scheme

We first propose a secure fingerprint authentication scheme that combines a Somewhat

Homomorphic Encryption (SHE) with a Zero-Knowledge Proof (ZKP) to provide privacy

features with low FAR overhead. The scheme is secure under a hybrid model that assumes

an active client and an honest but curious (HBC) server. The server S is considered to be

HBC by assuming that it can be audited regularly. This scheme uses Hamming Distance

(HD) as the main measure unit to determine the difference between two fingerprint templates.

The detailed descriptions of each protocol step are discussed in later sections of the chapter.

Together with notations according to previous chapter, we use extra notations regarding

encryptions as follows:

• Enc(1)(m): The BV encryption of m as in previous chapter.

• Enc(2)(m): The BV encryption of xm: Enc(2)(m) = Enc(1)(xm)

• Enc(3)(m): The LWE encryption of m over ZQ defined in section 2.3.3.
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6.2.1 The protocol

Setup The server and the user run the setup process as follows:

• S invokes paramsBV ← SGenBV (1λ )

• We are currently using a BV cryptosystem ([27]). We refer the reader to section

2.4.2 for details of paramsBV , the public key pk, the private key sk, as well as the

operations of the cryptosystem.

• A user Uk invokes (pkk,skk)←UGenBGV (paramsBGV ) and makes pkk publicly

available to S .

Enrolment The enrolment process runs as follows.

• U uses a specific sensor and algorithm to extract his biometric template X . U

encrypts X with his public key pkk to get Tk = Enc(1)(X).

• U sends (k,Tk) to S . Noted that k is used as an identity index for U .

• S stores a tuple (k,Tk) as a record.

Authentication The authentication process for a user Uk is as follows.

1. Uk extracts his query template Y . He encrypts Y with his public key pkk to obtain

Qk = Enc(1)(Y ).

2. Uk sends (k,Qk) to S and runs ZKPValidEnc((Qk,pkk),(Y,skk)) to prove the

validity of Y . was detailed in Chapter 4.

3. S locates the record (k,Tk) and computes the encrypted Hamming Distance

CHD = Enc(1)(HD) of X and Y , using the homomorphic operation discussed in

Section 4.3.

CHD← EvalDistance(Tk,Qk).
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4. S masks the CHD by sampling r
r←↩ P and performs one homomorphic addition

to get CHD′ = Enc(1)(HD+ r)← Enc(1)(HD)+Enc(1)(r). The result ciphertext

is sent to Uk.

5. Uk uses his private key skk to decrypt CHD′ and sends the re-encryption CHD′0
=

Enc(1)(HD′,0,0, . . . ,0) back to S . Uk also decomposes the plaintext result

HD′ = HD+ r into its binary representation:

HD′ = b0 +b121 + · · ·+bl2l−1

and sends Ci = Enc(1)(bi) to S for i = 0, . . . , l−1.

6. Uk and S run the ZKPUnpack(CHD,CHD′0
) and ZKPBinDecomp(CHD′0

,Ci)

protocols to convince the server that Uk did follow the protocol transcript cor-

rectly. This is detailed in section 6.4.4.

7. S computes C′′HD = Enc(2)(2l + t−HD)← Enc(2)(2l + t)−Enc(2)(HD+ r)+

Enc(2)(r), where Enc(2)(HD+ r) is computed by ToUnary(Ci). We note that

Enc(2) is the “unary” mode of encryption with the message encoded in the expo-

nent of the polynomial, which allows the Most significant bit (MSB) extraction

on the ciphertext (this is detailed section 6.3.2 ).

8. S does Enc(3)(res)←MSBExtract(C′′HD), this is the ciphertext of the authenti-

cation result, which is sent to Uk. This is described in section 6.3.1.

9. Uk decrypts the result res and sends it to S (it will be either Accepted or

Rejected by S ). Uk also runs another proof ZKPCorrectDec(res) to convince

S that he did follow the protocol honestly (Section 6.4.4).

The proposed scheme satisfies the security notions defined in Sect. 3.1.
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Theorem 14. Under the IND-CPA security of a BV cryptosystem, and the zero-

knowledge property of the Stern protocol, the proposed scheme satisfies an (Honest

But Curious) Server Privacy’s Security.

Theorem 15. Under the IND-CPA security of a BV cryptosystem and the soundness

property of the underlying Stern protocol, the proposed scheme satisfies Impersonation

Security. Concretely, for δ > 0, the protocol is (q,c)-secure against impersonation

with c ≤ c(δ )+ 3 · c1, assuming the underlying non-private biometric protocol has

impersonation probability εbio and the underlying Stern ZK protocols have knowledge

errors εZK1, . . . ,εZK4 such that q(εZK1 + εZK2 + εZK3 + εZK4)+ δ ≤ c1 · εbio, c(δ ) =

2e1+2δ , and the condition σ/r0 ≥ 4πknq holds, with k = 1+
√

1/π ln(2nq/δ ) and r0

being an upper bound on the size of the noise in CHD.

6.3 The Homomorphic tools

6.3.1 Extracting the Most Significant Bit homomorphically

We observe that HD < τ ⇐⇒ MSB(2l + τ−HD) = 1, where l is the bit-length of HD and

MSB denotes the Most Significant Bit. This is our attempt to compare Hamming Distance

homomorphically, the idea is to let the server compute homomorphically the ciphertext of

MSB(2l + τ−HD), then having the client to decrypt it and to send back the authentication

result with a zero knowledge proof. This section discusses a variant of the technique from [41]

to efficiently compute the MSB of the plaintext M given Enc(M), we adapt this technique to

work with BGV encryption rather than GSW encryption used in [41]. The main idea comes

from the way we encode the message M in “unary” form before the encryption.
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THE THIRD PROTOCOL

Client Server

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enrolment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extract x
r←↩ Dk

Tk = Enc(1)(x,pk) (k,Tk) Persist (k,Tk)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extract y
r←↩ Dk

Qk = Enc(1)(y,pk) (k,Qk)

ZKPValidEnc CHD← EvalDistance(Tk,Qk)

CHD′ CHD′ ← Enc(1)(HD,e0)+Enc(1)(r,er)

HD′← Dec(CHD′ ,sk)

CHD′0
← Enc(1)(HD′,0, . . . ,0) CHD′0

HD′ = b0 +b12+ · · ·+bl2l−1

Ci← Enc(1)(bi)
Ci

ZKPUnpack(CHD,CHD′0
)

ZKPBinDecomp(Ci,CHD′0
) C′′HD← Enc(2)(2t + τ−HD)

Cres Cres = Enc(3)(res)←MSBExtract(C′′HD)

res = Dec(Cres)
ZKPCorrectDec(res)

Fig. 6.1 The Third Protocol
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Given M ∈ Z2n, we observe that


MSB(M) = 0 ⇐⇒ M ∈ [0,n)

MSB(M) = 1 ⇐⇒ M ∈ [n,2n)

Assume that we encrypt M using the SHE scheme (section 2.4.2). With the message

space Rt and assuming that 2n < t < q, we can encode M as a ring element m ∈ Rt as follows

m(x) = 0x0 +0x1 + · · ·+1xM + · · ·+0xn−1 if M ∈ [0,n)

or, due to xn =−1 in Rq, we can also encode M as

m(x) = 0x0 +0x1 + · · ·−1xM + · · ·+0xn−1 if M ∈ [n,2n)

The ciphertext Enc(2)(M) has this form (c = p0u+ tg+m,c′ = p1u+ tf), where (p0,p1) is

the public key and u, f,g
r←↩ χαq. We denote rot(c) ∈ Zn×n

q as being an anti-circulant square

matrix, whose first column is c, the other columns being the cyclic rotations of c with the

cycled entries negated

rot(c) =



c0 −cn−1 −cn−2 . . .

c1 c0 −cn−1 . . .

. . . . . . . . . . . .

cn−1 cn−2 cn−3 . . .


It’s easy to see that rot(cu) = rot(c)⃗u. Let rot(c)[0] to be the first column of rot(c).

Lemma 10. Given M ∈ Z2n and (c,c′) = Enc(2)(M) as the first level ciphertext of M from the

BV scheme, let 1⃗= {1,1, . . . ,1}∈Zn. The transformed ciphertext (l, l′)← (⃗1rot(c)[0],⃗1rot(c′))∈

(ZQ,Zn
Q) encrypts the MSB information of M under Enc(3).
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Algorithm 3 Most Significant bit extraction

Input: c = Enc(2)(M)
Output: EncLWE((−1)MSB(M))

1: procedure MSBEXTRACT(c)
2: allOne = {1, . . . ,1}
3: rotc0 ← rot(c0)
4: lwe0← allOne · rotc0[0]
5: rotc1 ← rot(c1)
6: lwe1← allOne · rotc1

7: return (lwe0, lwe1)

Proof. The following is the case:

1⃗ · rot(c)[0] ∈ ZQ = 1⃗−−−−−−−−→p0u+ tg+m

= 1⃗ ·−→p0u+ t⃗1 · g⃗+ 1⃗ · m⃗

= −⃗1(rot(p1s)⃗u+ t.rot(e)⃗u)+ t⃗1 · g⃗+(−1)MSB(M)

= −⃗1rot(p1)⃗u⃗s− t.rot(e)⃗u+ t⃗1 · g⃗+(−1)MSB(M)

Provided that c′ = p1u+ tf, the decryption ⟨(l, l′),(1,s)⟩ mod t is ±1. This implies the

MSB information of M as discussed. We use here the relation 1⃗ · m⃗ = (−1)MSB(M) thanks to

the “unary” encoding of M discussed previously.

6.3.2 Converting from binary-encoded to unary-encoded plaintext

This section discusses a linear transformation to map a message b ∈ {0,1} onto a message

x jb for j ≥ 1. Let T : cx+d = y be the linear transformation. We want T to map 0→ x j0 and
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1→ x j, or 
c.0+d = 1

c+d = x j
⇔


c = x j−1

d = 1

Due to the homomorphism property of BV cryptosystems , we can apply T in the ciphertext

domain to obtain Enc(x jb) given Enc(b), for b ∈ {0,1}:

Enc(2)( j.b) = Enc(1)(x jb) = Enc(1)(c)Enc(b)+Enc(1)(d)

= Enc(1)(x j−1)Enc(1)(b)+Enc(1)(1) (6.1)

From the implementation point of view, this operation can be done faster by ensuring

u, f,g← 0 instead of sampling them from χ during Enc(x j−1) and Enc(1), which results

in Enc(1)(x j−1) = (x j−1,0) and Enc(1)(1) = (1,0). These are still valid encryptions and

will not affect the correctness of Eq. (6.1).

This submodule is used in our protocol at authentication step 7. Recall that the server

needs to compute Enc(2)(HD′), which is the encryption of HD′ in the “unary” mode of

encoding (the message is encoded in the exponent instead of in the coefficient of the poly-

nomial). Given the encryptions Enc(bi) of the bits bi of HD′ = ∑
l−1
j=0 b j2 j , the server can

convert Enc(b j) to Enc(2ibi) Enc(x jb) and perform

Enc(2)(HD′) = Enc(1)(xHD′) =
l−1

∏
i=0

Enc(1)(xbi2i
)

Note that this operation involves log(l) levels of homomorphic multiplication, where l is the

bit length of the Hamming Distance.
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Algorithm 4 Binary to Unary ciphertext
Input: ci = Enc(bi)
Output: HD

1: procedure TOUNARY(ci)
2: for i = 0, . . . , l−1 do
3: let j = 2i

4: let hdi← (x j−1,0)× ci +(1,0)
5: let hd← hd0×hd1×·· ·×hdl−1
6: return hd

6.4 The Zero Knowledge Tools

6.4.1 ZKPoPK of Regev Cryptosystem

In this section, we first review an application of the [85] technique to apply ZKPoPK on

Regev Cryptosystems, then we elaborate on the variants to be used in the protocol. Given

parameters q,m,n, t,χ of a typical LWE-based cryptosystem, we can describe a variant of

Regev’s system as follows:

Kengen. A secret key s⃗ can be chosen from χn. The public key is then generated as

pk = (p0, p1) = (A, A⃗s+ t⃗e). Where A
r←↩ Zm×n

q and e⃗
r←↩ χn

Encrypt. Given a message M ∈ Zt , the ciphertext C is computed by first sampling a random

vector r⃗ ∈ χn and setting C = (c0,c1) = (p0⃗r, p1⃗r+M)

Decrypt. Given a ciphertext C = (c0,c1), the message M can be recovered by computing

M = c1− c0⃗s mod t

In [85], the ZKPoPK was attained by proving the encryption relation

Rq,m,n,t,χ
Regev = {((p0, p1),(c0,c1),⃗r||M) ∈ (Zm×n

q ×Zm
q )× (Zn

q×Zq)×Zn+1
q :

(c0 = p0⃗r)∧ (c1 = p1⃗r+M)}
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Let A′ =

p1,1

p0,0

, and y =

c1

c0

 be public parameters in the proof and let x =

 r⃗

M

 be

the Prover’s witness. We observe that A′x = y mod q, that is, x is a solution to the ISIS

problem defined by (A′,y) and that we can use the SternExt protocol to obtain an efficient

ZKPoPK. This works in a symmetric key setting, where the Prover knows the random r⃗ to

use as his witness. In our context, the client does not know that r⃗ as encryption was set by

the server. Following the decryption equation:

c1− c0⃗s = p1⃗r+M− p0⃗r⃗s

= A⃗s⃗r+ t⃗ e⃗r+M− A⃗r⃗s

= tẽ+M,

we can write out the decryption relation as

Rq,m,n,t,χ
Regev,dec = {((p0, p1),(c0,c1), s⃗, e⃗, ẽ,M) ∈ (Zm×n

q ×Zm
q )× (Zn

q×Zq)×χ
n×χ

n×χ×ZQ :

(6.2)

(p1 = p0⃗s+ t⃗e)∧ (c1 = c0⃗s+ tẽ+M)}

In this situation, we can let A′ =

c0, t,0,1

p0,0, t,0

 and y =

c1

p1

 be the public parameters and

let x =



s⃗

ẽ

e⃗

M


, further applying the SternExt to obtain the ZKPoPK . We note that the two

separate rows of A′ prove the two separate relations in (6.2): The Prover needs to prove that

he knows a secret s⃗ that can decrypt (c0,c1); he also needs to prove that the secret key s⃗ is

also the one corresponding to the public key (p0, p1).
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6.4.2 ZKPoPK of BV cryptosystem

In this section, we discuss ZKPoPK for a ring variant of the Regev scheme discussed above,

which is the BV system that we use in our application context (section 2.4.2). We will

refer to this proof as ZKPValidEnc. Recall that our public key is a pair of ring elements

pk = (p0,p1), where p0,p1 ∈ RQ and p1s+ te = −p0. This is one of the relation that the

client will need to prove later on. Next, given a ciphertext c = (c0,c1), the original plaintext

m ∈ Rt can be recovered by m = c0 + c1s mod t (spelled out as c1s+ c0 = m+ te′, or

c1s− te′−m =−c0). In summary, the relation required for the ZKPoPK is:

RQ,n,t,χ
BV = {((c0,c1),(p0,p1),s,e′,e,m ∈ (RQ×RQ)× (RQ×RQ)×χ

n×χ
n×χ

n×Rt :

(6.3)

(p1s+ te =−p0)∧ (c1s− te′−m =−c0)}

We can proceed in a way similar to what appears in section 6.4.1, where we tried to derive

the ISIS relation (Ax = y mod q) from the above relation and obtain the ZKP accordingly.

The matrix A should be derived from T =

c1,−t,0,−1

p1,0, t,0

 in order to obtain (6.3). Note that

with c1,p1 ∈ RQ, we can construct A by replacing from T: c1 and p1 are replaced by rot(c1)

and rot(p1), constants are replaced by the product of the themselves by the identity matrix I.

Recall that rot(c) ∈ Zn×n
q is defined to be an anti-circulant square matrix, whose first column

is c, the other columns being the cyclic rotations of c with the cycled entries negated

rot(c) =



c0 −cn−1 −cn−2 . . .

c1 c0 −cn−1 . . .

. . . . . . . . . . . .

cn−1 cn−2 cn−3 . . .


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So, the matrix A is of the following form:


rot(c1) −tI 0 −I

rot(p1) 0 tI 0

 (6.4)

By constructing the matrix A this way, we can let x =



s

e′

e

m


, y =

−c0

−p0

 and come up

with the original ISIS relation Ax = y mod Q. Again, we can use the SternExt protocol

(section 2.5.3) to obtain the ZKPoPK with x being the Prover’s witness and A,y being the

public parameters (Algorithm 5).

Algorithm 5 ZKPoPK for BV

1: procedure ZKPBV((c, pk),(m,s,e,e′)))
2: rotc1 ← rot(c1)
3: rotp1 ← rot(pk1)
4: let I be the n×n identity matrix
5: let Z be the n×n zero matrix
6: A← ((rotc1,−tI,Z,−I),(rotp1,Z, tI,Z))
7: x← (s,e′,e,m)
8: y← (−c0,−pk0)
9: Return SternExt(A,x,y)

6.4.3 ZKP of plaintext with zero coefficients

This section extends the previous proof with several submodules. Firstly, we need a proof to

convince the server that our ciphertext encrypts the message of the form m(x) = 0+m1x1 +

m2x2 + · · ·+mn−1xn−1. Next, we need another proof to convince about the knowledge of

encryption of m(x) = m0 + 0x1 + 0x2 + · · ·+ 0xn−1. We also use some other proofs for
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messages containing only 1s or 0s. In other words, we want the Prover to convince the

Veri f ier about the format correctness of the plaintext, in addition to asserting knowledge of

the plaintext itself.

Proving m = ∑
l
i=0(mixi)∧m0 = 0 (ZKPExt1). If and only if the Prover P has the message

m in this format, he can compute:

rot(c0)s− tIe′−



1

0

. . .

0


m0 =−c0

⇐⇒ rot(c0)s− tIe′−



m0

0

. . .

0


=−c0

In order to set up this proof, we can proceed similarly to what was proposed in

section 6.4.2, just a minor modification is needed in the matrix represented in (6.4):

We completely remove all the last (n−1) columns of the last n columns during the

construction of the matrix A (the new A will thus have dimension n× (3n+1) instead

of n×4n). The specification is summarized in Algorithm (6).

Proving m = ∑
l
i=0(mixi)∧m j = 0 f or j = 1,2 . . . l−1. (ZKPExt2) This proof can be en-

gineered similarly to ZKPExt1, following the same method. Except that in this

one, instead of removing (n− 1) columns, we remove only the first column of the

last n columns of A. The result is the matrix A, with dimension n× (4n− 1). The

specification is summarized in Algorithm (7).
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Algorithm 6 ZKP for zero constant coefficient

1: procedure ZKPEXT1((c, pk),(m,s,e,e′)))
2: rotc1 ← rot(c1)
3: rotp1 ← rot(pk1)
4: let I be the n×n identity matrix
5: let I’ be 1 column matrix with all 1s.
6: let Z be the n×n zero matrix
7: let Z’ be 1 column matrix with all 0s.
8: A← ((rotc1,−tI,Z,−I′),(rotp1,Z, tI,Z

′))
9: x← (s,e′,e,m)

10: y← (−c0,−pk0)
11: Return SternExt(A,x,y)

Algorithm 7 ZKP for only constant non-zero coefficient

1: procedure ZKPEXT2((c, pk),(m,s,e,e′)))
2: rotc1 ← rot(c1)
3: rotp1 ← rot(pk1)
4: let I be the n×n identity matrix
5: let I’ be I with the first column removed.
6: let Z be the n×n zero matrix
7: let Z’ be Z with the first column removed.
8: A← ((rotc1,−tI,Z,−I′),(rotp1,Z, tI,Z

′))
9: x← (s,e′,e,m)

10: y← (−c0,−pk0)
11: Return SternExt(A,x,y)
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Proving m = ∑
l
i=0(mixi)∧m j = 0∨m j = 1 f or j = 0,1 . . . l−1 (ZKPExt3 and ZKPExt4).

Following the previous extensions, proving that a message contains only zero or one

coefficients amounts to a trivial modification of the matrix A and an according set up

of the bound of SternExt.

6.4.4 ZKP of re-encryption correctness

This section first discusses the module ZKPUnpack(c, c’), which proves the correctness

of the re-encryption of a single slot unpacked plaintext m′ = Dec(c′) from the coefficients-

packed ciphertext m = Dec(c). We then provide details about the ZKPBinDecomp(c,ci)

module, aimed at proving the correctness of re-encryption of a binary-encoded plaintext as a

unary-encoded one.

ZKPUnpack(c,c’,pk, s, e, e’). The relation of the proof is:

RZKPUnpack = {c,c′ ∈ Rq×Rq,pk ∈ R2
q;(s,e,e′) ∈ χ

n :

m = Dec(c)∧m′ = Dec(c′)∧m0 = m′0∧ (m′i = 0 ∀i ̸= 0)}

Given m0 = m′0, we observe m(x)−m′(x) = 0+m′′1x+ · · ·+m′′n−1xn−1. Therefore,

ZKPUnpack can be carried out as specified in Algorithm (8)

Algorithm 8 ZKP of coefficients transform

1: procedure ZKPUNPACK(c,c′,pk,s,e,e′)
2: Let b1← ZKPExt1((c− c′,pk),(Dec(c− c′),s,e,e′))
3: Let b2← ZKPExt2((c′,pk),(Dec(c′),s,e,e′))
4: Return b1∧b2
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ZKPBinDecomp(c,ci). The relation of the proof is:

RZKPBinDec = {c,ci|l−1
i=0 ∈ Rq×Rl

q,pk ∈ R2
q;(s,e,e′) ∈ χ

n :

m = Dec(c)∧m0 =
l−1

∑
i=0

bi2i∧ ci = Enc(bi)∧bi ∈ 0,1}

The specification of the proof is detailed in Algorithm (9).

Algorithm 9 ZKP of encoding transform
1: procedure ZKPBINDECOMP(c,ci)
2: Let c′← ∑

l−1
i=0 ci2i

3: Let c′′← c− c′

4: Return ZKPExt1((c′′,pk),(Dec(c′′),s,e,e′))

Applications in our protocol. In authentication step 5, after receiving the ciphertext CHD′ ,

which encrypts a plaintext of the form (HD′,g1, . . . ,gn−1), Uk removes the noise

terms g1, . . . ,gn−1 and sends the re-encryption CHD′0
= Enc(HD′,0,0, . . . ,0) back

to S . The client needs to prove that he performs this step correctly, this is done

by ZKPUnpack(CHD,CHD′0
). In this step, the server also receives ci = Enc(bi) to

compute Enc(xHD′), as discussed in section 6.3.2. Before doing this operation, the

client needs to convince the server that the bits sent are actually the ones decomposed

from HD′. This proof is done by ZKPBinDecomp(CHD′0
,ci).

Besides, In authentication step 1, Uk uses ZKPBV to convince S that he is authenti-

cating with a valid template Y . Moreover, in step 9, Uk can use either ZKPExt3 or

ZKPExt4 to convince S about the authentication result.
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6.5 Security Proofs

6.5.1 Security Proof for Theorem 15: Type I Impersonation attack

The proof of theorem 14 and 15 can be provided using a sequence of games between the

challenger C and the adversary A . We present a sequence of games as well as the relations

among them to demonstrate the type I security model proof.

Game 0 Game 0 is the original impersonation game for type I attack.

Setup. C initiates Dk
r←↩ Dbio and Xk

r←↩ Dk. C sets up (skk, pkk) and executes Enrol(k,Xk)

to get (skk,Tk = (pkk,Ck = Enc(1)pkk
(Xk))). A submits the attack query type I and

receives skk from C .

Query. A runs q authentication sessions. In each session j = 1, . . . ,q, A sends (Q( j)
k =

Enc(1)(Y ( j))). A and C runs ZKPValidEnc(Q( j)
k ,Y ( j)). C evaluates CHD =

EvalDistancepkk(Ck,Q
( j)
k ), then computes CHD′ = (−1)CHD + Enc(1)pkk

(rHD′,eHD′)

for rHD′
r←↩ P and eHD′

r←↩ χHD. The result ciphertext is sent to A , A de-

crypts CHD′ and decomposes it into bits and further sends back the ciphertexts

C( j)
0 , . . . ,C( j)

l−1(= Enc(1)(bi), i = 0, . . . , l−1), as well as the re-encryption CHD′0
. A and

C engage ZKPUnpack(CHD,CHD′0
) and ZKPBinDecomp(CHD′0

,C( j)
i ). C evaluates

C′′HD = Enc(2)(2l + t)+ToUnary(C( j)
i )+Enc(2)(−r) to get Enc(2)(2l + t−HD). C

computes Enc(3)(res)←MSBExtract(C′′HD) and sends the result to A . A decrypts it

and sends the authentication result bit back. C and A then fire ZKPCorrectDec(res)

to trigger the server’s acceptance of the authentication result. At the end, the server

outputs Accept if all the proofs pass and res = Accept.

Next, we discuss the games that follow, the plan being to proceed towards the final game

where everything A receives relating to Xk can be simulated without any knowledge about

Xk, except that Xk is the function Veri f y(Xk,Y ). Let ress = Veri f y(Xk,Y ( j)) and Si be the
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event in the game i such that ress = Accept.

Game 1. In this game, we abort ZKPValidEnc if Q( j)
k is not a valid encryption of the query,

but the Prover manages to pass the proof. Let (∗)1 be this event.

(∗1)ress =


Reject if ZKPValidEnc fails

res else

Let bad0 be the event in game 0 : ∃ j≤ q s.t (∗1) is thus the case. We want to show that when

we modify game 0, the probability of a successful forgery S1 in this game 1 is not much lower

than what it was. Due to the modification, we observe that Pr[S1]≥Pr[S0]−Pr[bad0] .For any

j in the q authentication attempts, by the ε−soundness property of ZKPValidEnc as a proof

of membership in (*), we have Pr[(∗1) occurring f or some j]≤ εZK1. So, the probability of

bad0 would be the union of these events, which is bounded by Pr[bad0]≤ qεZK1. In other

words, the advantage of A in game 1 is

Pr[S1]≥ Pr[S0]−Pr[bad0]≥ εimp−qεZK1

Game 2. In this game, we abort ZKPUnpack if, in one of the jth runs, the Veri f ier accepts

but the ciphertext does not satisfy the relation. Let bad1 be this event, by the same type of

argument, we can derive Pr[bad1]≤ qεZK2 and therefore

Pr[S2]≥ Pr[S1]−Pr[bad1]≥ εimp−q(εZK1 + εZK2)

Game 3 and Game 4. Similarly, we abort ZKPBinDecomp and ZKPCorrectDec if, in any

jth runs, the Veri f ier accepts even when the correctness of the ZKP is not satisfied. We have

Pr[S3]≥ εimp−q(εZK1 + εZK2 + εZK3)
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and

Pr[S4]≥ εimp−q(εZK1 + εZK2 + εZK3 + εZK4)

By the end of Game 4, if in any authentication attempt j, there is no abort while running

any of the 4 games, then, by the correctness property of ZKP, the server output is equal to

the output of Veri f y(Xk,Y ( j)). In other words, we have shown what we could get by just

querying the oracle Veri f y(). Next, we want to simulate everything related to Xk the attacker

can see using just that oracle.

Game 5. At the end of Game 4, C possesses the bit b = Veri f y(Y (i),Xk). In this game,

we can change C( j)
res from MSBExtract(C′′HD) = Enc(b;eres) to Enc(veri f y(Y (i),Xk);eres),

given that the challenger can use the secret key to extract eres. Despite this change, the same

ciphertext is still accessible to A , so its probability of winning of is the same as in Game 4.

Game 6. In this game, we change the way C computes C′′HD: In the original game 0,

Enc(−r) was added to remove the mask. We now want to remove this r from being used

anywhere in the game, so we replace this with Enc(0). This change does not affect A ’s

success probability: r only affects the plaintext inside C′′HD, since we do not use this plaintext

anymore (as it has been replaced in Game 5), so this change does not affect the information

available to the attacker. Again, Pr[S6] = Pr[S5] = Pr[S4].

Game 7. We modify the way C′HD is computed in this game. Instead of calculating C′HD←

(−1)CHD +Enc(r;eHD′), the challenger chooses a random HD′
r←↩ Zt and encrypts it with

the noise used before: C′HD ← Enc(HD′;−eHD + eHD′). In this game, the plaintext has

changed from being r+HD to a uniform HD′ ∈Zt . Since r is also uniform in Zt , the attacker

is confronted with a uniform plaintext in both cases. Therefore, Pr[S7] = Pr[S6].

Game 8. Finally, we set CHD′ = Enc(HD′,eHD′) for eHD′
r←↩ χmask instead of −eHD + eHD′ .

We replace the sum of the Gaussian noise with a random noise. In the previous chapter, we

showed that Pr[S8]≥ 1
c(δ )(Pr[S7]−q ·δ ), where c(δ ) = RD(−eHD + eHD′,eHD)≤ 2 · e1+2δ

by Lemma 9 and by our assumption on the parameter’s values. After we finish Game 8, we
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notice that all the messages available to the attacker can be simulated with only the verified

bit b = Veri f y(Y (i),Xk). We now have an attacker A′ against the biometric impersonation

with advantage:

εbio = Adv(A′) = Pr[S8]≥
1

c(δ )
(εimp−q(εZK1 + εZK2 + εZK3 + εZK4)+δ ),

which gives the claimed bound εimp ≤ c(δ ) · εbio + q · (εZK1 + εZK2 + εZK3 + εZK4)+ δ ≤

(c(δ )+ c1) · εbio if q(εZK1 + εZK2 + εZK3 + εZK4)+δ ≤ c1 · εbio.

6.5.2 Security Proof for Theorem 15: Type II Impersonation attack

The proof of Theorem 15 can be provided using a sequence of games between the challenger

C and the adversary A . We present a sequence of games as well as the relations among

them to demonstrate the type II security model proof. The idea is that in this type of attack,

skk is not used to compute the view of A . On the other hand, the soundness of the zero-

knowledge proof of knowledge ZKPValidEnc implies the existence of an efficient witness

extractor algorithm, that can be used to extract the witness (i.e. the secret key skk) from a

cheating prover succeeding with probability non-negligibly higher than the knowledge error

of the zero-knowledge proof, thus contradicting the IND-CPA security of the BV encryption

scheme.

Game 0. Game 0 is the original impersonation game for a type II attack, i.e., the same as Game

0 in the proof of security against Type I attacks, except that (Tk = (pkk,Ck = Enc(1)pkk
(Xk))) is

given by C to A at the beginning of the game, rather than skk. For j ∈ {1, . . . ,q}, let res j

denote the result of the jth authentication protocol run between A and C , and S0 be the

event in the game 0 such that res j = Accept for some j = 1, . . . ,q. We have Pr[S0] = εimp,II

as the type II success probability of A .
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Game 1. From the definition of event S0 in Game 0, it follows that there exists some

j∗ ∈ {1, . . . ,q} such that Pr[res j∗ = Accept]≥ εimp,II/q. Furthermore, by an averaging argu-

ment, there must exist a set G of (Dk,Xk, pkk) such that Pr[(Dk,Xk, pkk)∈G]≥ εimp,II/(2 ·q),

and for each (D′k,X
′
k, pk′k) ∈ G, we have Pr[res j∗ = Accept|(Dk,Xk, pkk) = (D′k,X

′
k, pk′k)]≥

εimp,II/(2 ·q). By εZK1-soundness of the zero-knowledge proof of knowledge ZKPValidEnc

[55], there exists a witness extractor algorithm that runs in expected time T ′=O(poly(n logQ)·

T/(εimp,II/(2∗q)− εZK1)), where T denotes the run-time of A and outputs a witness con-

taining skk for ZKPValidEnc. Therefore, we obtain a (secret key recovery) attack algo-

rithm against the IND-CPA security of the BV encryption scheme, with expected run-time

T ′ and advantage ε ′ ≥ εimp,II/(2 · q). Hence, if εimp,II/(2 ∗ q)− εZK1 > εimp,II/(4 ∗ q), or

equivalently, if εimp,II > 4 · qεZK1, we obtain a contradiction with the assumption the BV

encryption scheme with parameters Q,n,σ is IND-CPA against attacks with expected time

O(poly(n logQ) ·T/εZK1) and advantage ≥ εZK1. It follows under the latter assumption that

εimp,II ≤ 2qεZK1 ≤ 4c1 · εbio, under the assumption that q(εZK1 + εZK2 + εZK3 + εZK4 +δ )≤

c1 · εbio.

6.5.3 Security Proof for Theorem 14: Privacy against Server

The proof of Theorem 15 can be done using a sequence of games between the challenger C

and the adversary A . We present a sequence of games. The idea is to proceed to remove skk

and Xk from being used to compute the view of A , except for Veri f y(Xk,Y
j

k ) queries, as in

the ideal game, relying on the correctness of the protocol and the IND-CPA security of the

BV encryption scheme.

Game 0. Game 0 is the original real privacy game, in which (Tk = (pkk,Ck = Enc(1)pkk
(Xk)))

is given by C to A at the beginning of the game. Then, for j = 1 . . . ,q, the attacker sends
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Y ( j)
k ∈ {0,1}n to C , and the latter simulates a run of the authentication protocol between an

honest client with input (k,Y ( j)
k ,skk) and an honest server with input (k,Tk), returning to A

the protocol view V ( j)
S of the server. Finally, A outputs a bit β . In the following Game i, we

let Si denote the event of β = 1.

Game 1. We change the computation of the authentication result bit res( j) sent by client to

server from the decryption of the ciphertext MSBExtract(C′′HD (its value in Game 0) to the

result returned by Veri f y(Xk,Y ( j)). By correctness of the protocol, this does not change the

value of res( j), so Pr[S1] = Pr[S0].

Game 2. We change the computation of the zero-knowledge protocol transcripts. Instead of

computing those transcripts using the secret witnesses, we simulate them using the statistical

zero-knowledge simulator algorithms for the zero-knowledge proofs. By the zero-knowledge

property, this is a perfect simulation, yielding Pr[S2] = Pr[S1].

Game 3. We change the computation of the ciphertexts C( j)
i for i = 0, . . . , l− 1 and Q( j)

k

for j = 1, . . . ,q and Ck to encrypt zero messages, instead of encrypting the secret-related

messages as in the previous game. Since now skk is not used anywhere in generating the

view of A , it follows by a hybrid argument that |Pr[S3]−Pr[S2]|((l +1) ·q+1) · εBV , where

εBV denotes the maximal advantage of an attacker against IND-CPA of BV scheme against

attacks with run-time T +poly(n, logQ), where T is the run-time of A . In this game, since

the only information on Xk comes via the Veri f y(Xk,Y
j

k ) queries, the challenger together

with A constitute an efficient attacker against the ideal privacy game, which outputs 1 with

probability different by at most (l +1) ·q+1) · εBV relatively to the probability of outputting

1 in the real privacy game, as required.
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6.6 Conclusion

We quickly notice that the main bottle neck of this protocol is the communication size: 4

different Zero-Knowledge Proofs are needed for one authentication. With the parameters

set used previously (n = 2048,q ≊ 270, t = 2048,σ = 8), the communication size for each

authentication (≈ 84MB) will not satisfy the practical usage requirement. However, the

contributions of this chapter maybe of independent interest, as building blocks for other

secure computation protocols are based on the BV SWHE scheme:

• A ZKP technique to prove the correctness of re-encryption of a binary-encoded plain-

text (useful for efficient homomorphic addition/multiplication arithmetic operations) as

a unary-encoded plaintext (useful for efficient homomorphic comparison operations).

• Correctness of re-encryption of a coefficient-packed plaintext slot vector into an

unpacked single slot plaintext.

In the next chapter, we discuss different techniques used to remove this communication

overhead: we replace the Stern-based ZKP technique, which requires many rounds of proof

for security by the Schnoor-based technique (requiring only 1 round). Other cryptographic

tools including Garbled Circuit and Oblivious Transfer will be used in the HD comparison

step to avoid supplementary proofs during authentication.



Chapter 7

The fourth protocol - Removing The

Overhead

7.1 Introduction

In the last chapter, we developed a two-parties authentication protocol that proves secure

against a malicious client and does not leak any information to the server (the main difference

with the second protocol being that the server is not able to acquire the value of the Hamming

Distance between the registered and queried templates). This final variant aims to reduce

both the communication size and the computation time, while providing all the recommended

security features.

Reducing Communication Size We observe that the main bottle neck of the communica-

tion is the size of the Stern-based ZKPs. We propose the following approach to replace

old ZKPs:

• A Schnorr-based approach to replace the Stern-based one, to ensure that the

noise in the ciphertext is small. This variant reduces the total communication
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rounds from log3/2(FAR)−1 to just 1. Given a typical value of FAR = 10−4, such

improvement reduces the total number of communication rounds from ≈ 22 to 1.

• A challenge-response protocol to prove the binary format of the plaintext.

Reducing Computation Time. By applying a new ciphertext packing method, we can

effectively change the way of computing the Hamming Distance by summing up

the bits of the XOR result of 2 bitstrings instead of computing their inner product.

Therefore, enforcing this approach, we lower the computation time by performing

additions only (without any homomorphic multiplication). The cost of this change

is a set of switching keys for homomorphic rotation operations, which are generated

during the enrollment process. Additionally, we introduce the application of state-of-

the-art Secure-Multiparty-Protocol techniques, such as Garbled Circuit and Oblivious

Transfer into the lattice-based context, to further improve both the computation time

and the communication size overhead implied by previous ZKP protocols.

This approach is practical because it moves a major part of the overhead to the one-time

set up phase of the protocol (the enrollment stage). Our results show that the protocol can

work efficiently during authentication stage. The technique maybe generalized to similar

multi-stage protocols.

7.2 Reducing the communication overhead

7.2.1 The Schnorr-based ZKP

In the previous variants of the protocol, the critical module required to provide active security

against a malicious client is the binary message format prover. Specifically, Alice sends

a ciphertext C of a bitstring to Bob. Bob is supposed to use a homomorphic encryption

technique to process C. Before doing so, Bob might want to make sure that C is an encryption
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of a bitstring (and not something else). In the last chapter, we used the Stern-based Zero

Knowledge Proof technique for this step, and it was shown that the communication size for

this is large due to the soundness error 2/3 for each round of the ZKP (the repetition of many

proof-rounds being required to obtain a specific security level). This chapter investigates

another alternative to ZKP, exhibiting a better soundness error of 1/n within one round of

proof only, where n is typically the required parameter: the Schnorr-based ZKP technique.

We first recall some notation and concepts to be used in the chapter.

We denote a language L ⊆ {0,1}∗ having a witness relationship R⊆ {0,1}∗×{0,1}∗

if x ∈L ⇐⇒ ∃(x,w) ∈ R, where w is a witness for x ∈L .We discuss a definition of the

sigma protocol from [19], which can be adapted to suit the techniques we use in our project.

Definition 29. Let (P,V) be a two-party protocol, where V is PPT, and let L ,L ′ ⊆ {0,1}∗

be languages with witness relations R,R ′ such that R ⊆R ′. (P,V ) is called a ∑
′−protocol

for L ,L ′ with completeness error α , challenge set C , public input x and private input w, if

and only if it satisfies the following conditions:

• Three-move form: The protocol is of the following form: The prover P, on input (x,w),

computes a commitment t and sends it to V . The verifier V , on input x, then draws

a challenge c
r←↩ C and sends it to P. The prover sends a response s to the verifier.

Depending on the protocol transcript (t,c,s), V accepts or rejects the proof.

• Completeness: Whenever (x,w) ∈R, the verifier V accepts with probability at least

1−α .

• Special Soundness: There exists a PPT algorithm E, also known as the knowledge

extractor, that takes two accepted transcript (t,c′,s′),(t,c′′,s′′) satisfying c′ ̸= c′′ as

inputs and output w′ such that (x,w′) ∈R ′.
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• Special honest-verifier zero-knowledge (HVZK): There exists a simulator S, which is a

PPT algorithm taking x ∈L and c ∈ C as inputs and outputs (t,s) so that the triple

(t,c,s) is indistinguishable from a valid protocol transcript.

This definition is different from the original sigma protocol in 2 ways. First, it allows

a completeness error α instead of perfect completeness (α = 0 in the original protocol).

Second, a second language L is introduced, with witness relation R ⊆R ′: A prover knows

a witness in R is guaranteed privacy, but the verifier is only ensured that the P only knows

a witness for R ′. We refer to this as soundness gap, if the gap is small enough, it implies

security guarantee for higher level applications (R = R ′ in the original protocol).

The original Schnorr ZKP protocol [116] can be used to prove knowledge of a discrete

logarithm (DL). It is described informally as in Figure 7.1

Schnorr Protocol for DL

Prover Verifier
(x = logg h)

u
r←↩ Zn

t← gu t

c c
r←↩ Zn

s← u+ cx s

gs ?
= ahc

Fig. 7.1 Schnorr Protocol

The soundness property of Schnorr’s protocol can be argued by assuming that if a prover

is able to answer correctly at least two challenges c and c′ (with c ̸= c′) after committing

to an announcement t, then he would be able to infer a solution for the hard problem of

discrete log x = logg h. Hence, intuitively, if the prover can answer at most one challenge

correctly, the probability of success is bounded by 1/n, which can be negligibly small. The
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Zero Knowledge property (against a semi-honest Verifier) was proved by showing that the

real conversation {(t,c,s) : u,c
r←↩ Zn; t ← gu;s← u+ cx} and the simulated conversation

{(t,c,s) : c,s
r←↩ Zn; t ← gsh−c} are identical (each valid conversation (t;c;s) occurs with

probability 1/n2 in both distributions).

In the work of [19], the authors proposed a variant of such technique to prove knowledge

of small RLWE secret s and noise e (in short, we mean that ∥s∥ ,∥e∥ ≤ O (nα ) for noise

parameter α), where (a,y = as+ e) is the verifier’s input and (s,e) is the prover’s witness

input (see Figure 7.2)

Benhamouda Protocol for RLWE

Prover Verifier

rs,re
r←↩ DO(

√
nα )

t = ars + re

(caux,daux) = aCommit(t) caux

c c
r←↩ {0, . . . ,2n−1}

ss = rs +Xcs

se = re +Xce

t,daux,(ss,se) Xcy+ t ?
= ass + se

aCOpen(t,caux,daux)
?
= accept

∥ss∥ ,∥se∥ ≤O (nα )

Fig. 7.2 Proof of knowledge of RLWE secrets

Where y = as+e, and s,e
r←↩ Dα . In the protocol, the prover is able to convince a verifier

that it knows short secrets for twice the public input (in short, we mean that ∥s∥ ,∥e∥ ≤

O (nα )). We present an adaption of this ZKP protocol to prove the plaintext knowledge of

BV cryptosystems. Recall that given (sk,pk) = (s,(p0,p1)) where s ∈ χn
β0

, p0,p1 ∈ Rq , a

message m ∈ Rt is encrypted by JmK := (c0,c1) = (p0u+ tf+m,p1u+ tg). The protocol

(Figure 7.3) is an AND composition of 2 ZKPs that prove 2 relations: the secret key s
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corresponds to the public key (p0,p1), i.e., p0 =−p1s− te0, and the ciphertext (c0,c1) is

well-formed and encrypts the message m, that is, c0 + c1s = m+ te, with ∥e∥∞ ≤ β . Note

that the protocol guarantees by V that P knows the plaintext encrypted in 2c0

Schnorr-based ZKP for BV

Prover Verifier

rs,re0

r←↩ Dβ0

re
r←↩ Dβ

rm
r←↩ Dt

tc =−c1rs + tre + rm

tk =−p1rs− tre0

(caux,daux) = aCommit(tc, tk)
caux

c
r←↩ C = {0, . . . ,2n−1}

c

ss = rs +xcs
se = re +xce
sm = rm +xcm
se0 = re0 +xce0

daux, tc, tk,ss,se,sm,se0

xcc0 + tc
?
=−c1ss + tse + sm

xcp0 + tk
?
=−p1ss− tse0

aCOpen(tc, tk,caux,daux)
?
= accept

∥ss∥ ,∥se0∥ ≤ 2β0

∥se∥ ≤ 2β

∥sm∥ ≤ 2t

Fig. 7.3 ZKP for BV cryptosystem relation

Theorem 16. Figure (7.3) is a ∑
′-Protocol for the following relations:

R = {(c0,c1,p0,p1, t) ,(m,s,e,e0) : c0 =−c1s+ te+m∧p0 =−p1s− te0

∧∥m∥∞ ≤ t ∧∥e∥ ≤ β ∧∥s∥ ,∥e0∥ ≤ β0}
(7.1)
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R ′ = {(c0,c1,p0,p1, t) ,(m,s,e,e0) : 2c0 =−2c1s+2te+2m∧2p0 =−2p1s−2te0

∧∥2m∥∞ ≤ 2t ∧∥2e∥ ≤ 2β ∧∥2s∥ ,∥2e0∥ ≤ 2β0}
(7.2)

The protocol has a knowledge error of 1
2n and a completeness error of 1− 1

M .

Proof. We prove the properties specified in Definition 29 following the proof from [19].

Completeness. If the Prover P sends a response, the following becomes the case:

−c1ss + tse + sm =−c1(rs +xcs)+ t(re +xce)+ rm +xcm

= xc(−c1s+ te+m)− c1rs + tre + rm

= xcc0 + tc

Similarly

−p1ss− tse0 =−p1(rs +xcs)− t(re0 +xce0)

= xc(−p1s− te0)−p1rs− tre0

= xcp0 + tk

Regarding norms, we have ∥ss∥ = ∥rs +xcs∥ ≤ ∥rs∥+ ∥s∥ ≤ 2β0, and the same for

∥se∥ ,∥sm∥ ,
∥∥se0

∥∥.

Special Soundness. Before proving this property, we describe the following technical

lemma

Lemma 11. Let n be a power of 2 and let 0 < i, j < 2n− 1. Then, 2(xi− x j)−1

mod (xn +1) only has coefficients in {−1,0,1}.
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Assume that a dishonest prover does not know ’small’ 2s,2e,2m and 2e0 and can output

different accepted transcripts of a same commitment: (caux,c′,(d′aux, t′c, t′k,s
′
s,s′e,s′m,s′e0

))

and (caux,c′′,(d′′aux, t′′c , t′′k,s
′′
s ,s′′e ,s′′m,s′′e0

)). From the binding property of the auxiliary

commitment scheme [104], we have t′c = t′′c := tc and t′k = t′′k := tk. As the transcripts

pass the checks by the verifier, it appears that:


xc′c0 + tc =−c1s′s + ts′e + s′m

xc′p0 + tk =−p1s′s− ts′e0

&


xc′′c0 + tc =−c1s′′s + ts′′e + s′′m

xc′′p0 + tk =−p1s′′s − ts′′e0

By subtracting the equations we get:


c0(xc′−xc′′) =−c1(s′s− s′′s )+ t(s′e− s′′e )+(s′m− s′′m)

p0(xc′−xc′′) =−p1(s′s− s′′s)− t(s′e0
− s′′e0

)

Multiplying by 2(xc′−xc′′)−1:


2c0 =−c12(s′s− s′′s )(xc′−xc′′)−1 + t2(s′e− s′′e )(xc′−xc′′)−1 +2(s′m− s′′m)(xc′−xc′′)−1

p0 =−p12(s′s− s′′s )(xc′−xc′′)−1− t2(s′e0
− s′′e0

)(xc′−xc′′)−1

Let 2ŝ= 2(s′s− s′′s )(xc′−xc′′)−1, 2ê= 2(s′e− s′′e )(xc′−xc′′)−1, 2ê0 = 2(s′e0
− s′′e0

)(xc′−xc′′)−1

and 2m̂ = 2(s′m− s′′m)(xc′−xc′′)−1. Applying the result from Lemma 11, we see that

P knows the ’small’ secrets
∥∥2̂s
∥∥< 2β0,

∥∥2̂e
∥∥< 2β0,

∥∥ ˆ2e0
∥∥< 2β and

∥∥ ˆ2m
∥∥< 2t that

can pass the verifier’s checks. This contradicts our assumption. In other words, the

prover has to know the secret to pass the proof with probability 1
2n .

Honest Verifier Zero-Knowledge. The verifier can use a simulator S to reproduce the pro-

tocol transcript as follows:

• V samples c
r←↩ C



7.2 Reducing the communication overhead 145

• With probability 1/M, S chooses ss,se0

r←↩ Dβ0 , se
r←↩ Dβ and sm

r←↩ Dt .

• S computes tc = −c1ss + tse + sm − xcc0 and tk = −p1ss − tse0 − xcp0 and

(caux,daux)← aCommit(tc, tk).

• S outputs (caux,c,((tc, tk),daux,(ss,se0,se,sm)))

The distribution of (ss,se0,se,sm) does not depend on real secrets. Hence, the simulated

transcript becomes insdistinguishable from the real one.

7.2.2 The challenge response operation

It has been shown in the previous section that we can replace the Stern-based ZKP technique

with a Schnorr-based one and consequently save many rounds of communication, due to the

soundness error decreasing from 2/3 to 1/n. However, the new proof technique would not

be capable of proving that the encrypted message is in binary format: The proof only shows

that the noise level is small (se ≤ 2β ) and that the message is small (sm ≤ 2t) as well. To

solve this problem, we include one homomorphic operation, to be performed after the Client

has passed the proof. The operation works as follows.

1. The server samples r1,r2
r←↩Rq and computes ch= enc(r1∗Q∗(1−Q)+r2)+enc(0,r)

and sends ch to the client.

2. The client decrypts the result and sends back rsp.

3. The server accepts the response if and only if rsp = r2

We remark that the first operation needs to be computed bit-wise, that means the packing

technique we used in the previous protocol cannot be applied. In the next section, we discuss

how CRT-packing method [123] can be adapted to compute the Hamming Distance of the

registered and queried template.
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7.3 The BGV Cryptosystem and CRT packing method

We used the BV cryptosystem [27] in the previous variants of the protocol, as only 2 levels

of multiplication on ciphertexts were needed. In this variant, we do not use one inner

product operation for HD computation, but, instead, we add the bits of the bitstring together.

Hence, more operations on ciphertexts during HD computation will be needed. The BGV

cryptosystem [26] has a mechanism to control the noise after operations on ciphertexts have

been performed. We hereby discuss a specific version of this cryptosystem, where parameters

are set to comply with the rings to be used in the protocol. The basic cryptosystem works as

follows.

E.Setup Let λ be the security parameter that represents 2λ security level against known

attacks. Choose a modulus q and a noise distribution χ satisfying correctness and

security requirements (discussed later). Let the “dimension” n be a power of 2 and let

R = Z[x]/(xn +1), let params = (q,n,χ)

E.SecretKeyGen Draw s′
r←↩ χn. Set sk = (1,s′) ∈ R2

q

E.PublicKeyGen Takes as its input a secret key sk and params. Draw a′ ∈ Rq and a vector

e ∈ χn and set b← a′s′+2e ∈ Rq. Then we set A = (b,−a′) ∈ R2
q. Let the public key

pk = A. Observe that A · s = 2e

E.Enc(params, pk,m) To encrypt a message m ∈ R2, sample r
r←↩ R2 and output the cipher-

text c← rA+(m,0) ∈ R2
q

E.Dec(params,sk,c) Output m←
[
[⟨c,s⟩]q

]
2

We have seen that a plaintext can be packed in a specific way to support homomorphic

operations efficiently. The approach of [133] can compute the inner product operations

to perform really fast; however, it does not support the Single Instruction Multiple Data

(SIMD) operation, which is required by our challenge-response protocol. This section
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discusses a different approach for plaintext packing and specifies the operations it supports:

we are referring to the CRT packing method [123]. In this method, a message m ∈ Rt is

packed by representing it in the NTT domain. In NTT domains, a single operation (addition

or multiplication) of a pair of ciphertexts implicitly compute the entire plaintext vectors

component-wise. Besides SIMD support, we can also rotate or permute the plaintext slots

([50]), we only need a rotate operation to this end.

Number Theoretic Transform In our application context, the most costly low-level com-

putation operation is the ring multiplication (polynomial multiplication). This section

discusses the Number Theoretic Transform (NTT), a technique providing efficient algorithms

for cyclic and nega-cyclic convolutions that can be applied to compute polynomial multi-

plication efficiently. Moreover, in our research context, when the message is represented

in the NTT domain, the operations are computed component-wise simultaneously. This

important property helps our challenge-response protocol to save most of the communication

size, compared with the ZKPs overhead of the previous protocols.

Notation Given a(x) = a0 + a1x+ · · ·+ an−1xn−1 and b(x) = b0 + b1x+ · · ·+ bn−1xn−1,

we denote · to be the convolution multiplication and △ to be the component-wise

multiplication of the two polynomials.

Introduction One of the most important applications of the Fast Fourier Transform (FFT) is

the multiplication of large integers and polynomial multiplication (which is the cyclic

convolution of two integer sequences). The last operation can be computed by applying

the FFT to the sequences, then multiplying the result component-wise and applying

the inverse FFT to the product:

a(x) ·b(x) = FFT−1(FFT (a(x))△FFT (b(x)))
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When the coefficients are elements of a finite field, the FFT is called the Number

Theoretic Transform (NTT). We recall the definition of NTT: Given the parame-

ters of our context, where n is a power of 2 and t is a prime with t = 1 mod 2n,

let a = [a0,a1, . . . ,an−1] ∈ Rt , let ω be a primitive nth root of unity in Zt , that is,

ωn = 1 mod t. The forward transform NT T (a) = ã is defined as ãi = ∑
n−1
j=0 a jω

i j

mod t for i = 0, . . . ,n− 1. Informally, the coefficients of ã are the evaluations of

the polynomial a(x) at the n roots of unity. The inverse transformation is given by

b = NT T−1(ã), where bi = n−1
∑

n−1
j=0 ã jω

−i j mod t for i = 0, . . . ,n−1. For these set-

tings, NT T−1(NT T (a)) = a. The above convolution operation computes a polynomial

c(x) = a(x) ·b(x) with order at most 2n−1.

Therefore, in normal polynomial multiplication scenarios, a(x) and b(x) are padded

with coefficients 0 before applying NTT. If the original a(x) and b(x) are not padded

with 0s, the result product corresponds to the actual product modulo xn−1.

a(x) ·b(x) mod (xn−1) = NT T−1(NT T (a(x))△NT T (b(x)))

However, in our contexts, we want the operations to be computed modulo xn +

1. The original ring elements can still be padded with 0s and the product mod-

ulo xn + 1 computed, this will double the length of NTT inputs and also require

an extra step of explicitly reducing xn + 1. The other way to avoid this issue is

by exploiting the negative wrapped convolution [88]. Let ψ be a primitive 2nth

root of unity in Zt such that ψ2 = ω and denote NT T+(a) to be the special NTT

transform such that NT T+(a) = NT T (a△(1,ψ,ψ2, . . . ,ψn−1)) and NT T−1
+ (a) =

NT T−1(a)△(1,ψ−1,ψ−2, . . . ,ψ−(n−1)). It can be proved that NT T+(a) is the evalua-

tion of a(x) at the odd roots of the 2nth root of unity: NT T+(a)= (a(ω0),a(ω1), . . . ,a(ωn−1)),
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where ωi = ψ2i+1. It turns out that

a(x) ·b(x) mod (xn +1) = NT T−1
+ (NT T+(a(x))△NT T+(b(x)))

Since most of our work is based on Rq =
Zq

xn+1 , when we mention NTT throughout

the text, we imply the operation is done with NT T+ instead of plain NTT. In the

implementation, in order to find ψ , we need to find the group element such that

ψ2 = ω mod t, where ω is the nth root of unity. There are heuristic approaches to

find the square root of an element; in our context, we can find it easily (the problem is

finding an element with order of 2n). Given n, t such that 2n|(t−1) (these parameters

are set up at the initialization stage of the protocol), if we can find a generator g of

order t−1 in Z∗Jt , then ψ = g
t−1
2n :

order(g
t−1
2n ) =

t−1
gcd( t−1

2n , t−1)
=

t−1
( t−1

2n )
= 2n

7.3.1 The rotate and permute function

Slot Rotation Given a polynomial a(x) = (a0,a1, . . . ,an−1) ∈ Zn
t , let a be the coefficient

representation of a(x) and â be the NTT representation of a(x). The rotate operation is

a mapping K such as a(x)
K j7→ a(x j), where j is the number of positions being rotated and

gcd( j,n) = 1. This operation can be done on either the coefficient or the NTT representation

of a(x).

Coefficients domain In order to map a(x)
K j7→ a(x j), or

a = (a0,a1, . . . ,an−1)
K j7→ a(x j) = a0 +a1(x j)1 +a2(x j)2 + · · ·+an−1(x j)n−1

We can look at the relation between the coefficients before and after the mapping:

Each one of the result coefficients ai(x j(n−i)) will be mapped onto one of the original
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positions al for l = 0, . . . ,n−1 when we execute modulo xn +1, or xn =−1. In other

words, the rotate operation of a is just a permutation of the original coefficients with

some sign changes on some of them. However, we are more interested in the rotation

operation in the NTT domain, as our message was packed with the CRT packing

method.

NTT domain Given â, which is the evaluation of a(x) at the n primitive 2nth roots of a

unity modulo t (Section 7.3): The rotate operation maps â to b̂ = (b̂0, b̂1, . . . , b̂n−1),

where b̂i = a(x j)|x=ωi = a(ω j
i ) = a(ψ(2i+1) j). We can see that the rotation on the NTT

domain is also a permutation of the original coefficients, the difference compared to

the operation on the coefficient domain being that it does not have the sign change

effect on the original coefficients. However, this permutation is not the one we need

for the HD computation algorithm (Algorithm 10): the ith CRT component of â is the

i′th CRT component of b̂, where i′ satisfies 2i′+1≡ (2i+1) j mod 2n.

We define ā to be also the evaluation of a(x) at the n primitive 2nth roots of unity

modulo t, but in a different order, such that when applying the rotation operation, we

will get back exactly the order we need for the HD computation algorithm. The idea is,

with n a power of 2, those 2n-th roots of unity ψi for i = 0, . . . ,n−1 form a group that

is isomorphic to the multiplicative group of integers modulo n (the set of congruence

classes relatively prime to the modulo n), denoted by Z∗2n. Note that this group Z∗2n

is not a cyclic group, but that it can be generated by sets of “generators”. For n is a

power of 2, the group Z∗2n can be generated by (3)x(−1)y for x ∈ Zn/2 and y ∈ Z2. The

polynomial ā can be represented by
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ā = (a(ψ30(−1)0
),a(ψ31(−1)0

), . . . ,a(ψ3n/2−1(−1)0
),

a(ψ30(−1)1
),a(ψ31(−1)1

), . . . ,a(ψ3n/2−1(−1)1
))

Each coefficient of ā can be indexed and denoted as follows:

āi,i′ = a(ψ3i(−1)i′
) for i ∈ Zn/2 and i′ ∈ Z2

Considering the mapping a(x)
K j7→ a(x j) again under this new representation yields the

findings below. Denoting b(x) = a(x j), where j ∈ Z∗2n, every value of j can also be

represented by j = 3x j(−1)y j ,(x j ∈ Zn/2 and y j ∈ Z2). Thus,

b̄ = (b(ψ30(−1)0
),b(ψ31(−1)0

), . . . ,b(ψ3n/2−1(−1)0
),

b(ψ30(−1)1
),b(ψ31(−1)1

), . . . ,b(ψ3n/2−1(−1)1
))

= (a((ψ30(−1)0
)3x j (−1)y j

),a((ψ31(−1)0
)3x j (−1)y j

), . . . ,a((ψ3n/2−1(−1)0
)3x j (−1)y j

),

a((ψ30(−1)1
)3x j (−1)y j

),a((ψ31(−1)1
)3x j (−1)y j

), . . . ,a((ψ3n/2−1(−1)1
)3x j (−1)y j

))

= (a(ψ30+x j (−1)0+y j
),a(ψ31+x j (−1)0+y j

), . . . ,a(ψ3n/2−1+x j (−1)0+y j
),

a(ψ30+x j (−1)1+y j
),a(ψ31+x j (−1)1+y j

), . . . ,a(ψ3n/2−1+x j (−1)1+y j
))

This representation shows that the b̄’s coefficients b̄i,i′ are the ā’s coefficients

āi+x j mod n/2,i′+y j mod 2. Actually, there is a rotation here! It is not exactly a normal

rotation, but it is a double rotation on the 2 halves, each one of them rotating by x j

position, then swapping if y j = 1. In our context, we can take x j = 20,21, . . . ,2logn/2

and y j = 0 to add up the bits of each half, then we swap the halves by setting x j = 0

and y j = 1 to add up all the bits and get the final value of the Hamming Distance.
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For ciphertexts that result from operations on polynomials, rotations can be mapped

one by one and then added or multiplied:

a(x).b(x) 7→ a(x j).b(x j)

a(x)+b(x) 7→ a(x j)+b(x j)

Therefore, a ciphertext of the form c = (as+ te+m,−a) can be rotated by mapping

each of its components a,s,e and m before adding up the results.

7.3.2 HD Homomorphic Computation and Key Switching

Given two bistring a and b of length n (for n being a power of 2), and the rotate function

discussed above, the Hamming Distance HD(a,b) can be computed by first rotating and adding

the bits of a+b−2ab (Algorithm 10). Provided that the BGV cryptosystem in use supports

SIMD operations, the algorithm can run with homomorphic addition and multiplication. (△

denotes component-wise homomorphic multiplication).

Algorithm 10 HD computation
1: procedure HDBGV(a,b)
2: c← a+b−2a△b
3: let n← length(a)
4: for i = 0, . . . ,n−1 do
5: let t← rotate(c,2i)
6: let c← add(c, t)
7: let cswap← swapHalves(c)
8: let c← add(c,cswap)
9: return c[0]

Another useful tool to control the noise during homomorphic operations is key switching,

it keeps the multiplied ciphertexts to always be 2 elements of the ring Rq. We briefly discuss

this operation.
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Key Switching This operation allows a ciphertext encrypted with a key s’ to be transformed

into another ciphertext encrypted with a key s” (the dimension of s’ and s” can be

different). The idea is to first prepare a set of switching key pairs that can be considered

the encryptions of the power of 2 of the bits of s′, putting 2i in front of them:


ai

r←↩ Rq,ei
r←↩ χn

bi← ais′′+2is′+2ei

Then, given a ciphertext encrypted with a key s’ having the form (a′,c′ = a′s′+2e′+

m′), we want to switch the keys (a′,c′) from s′ to s′′. The process is accomplished

through several steps.

1. Decompose a′ ∈ Rq into its bit representation a′ = ∑
logq−1
0 2ia′i.

2. Linear combination computation ∑
logq−1
0 a′i · (ai,bi), with result

(a =
logq−1

∑
0

a′iai,b =
logq−1

∑
0

a′i(ais′′+2is′+2ei))

or

(a,as′′+a′s′+ ẽ′)

3. Let b′′ = c′−b = 2e′−m′−as′′− ẽ.

In other words, (−a,b′′) is the new ciphertext encrypted with s′′. With the discussed

techniques, we are able to compute the Hamming Distance homomorphically, the

next step being to compare the outcomes with the threshold in order to output the

authentication result. In the third variant of our protocol, we have noticed that applying

the ZKP technique only proves not practical enough, due to the large communication

size. Next, we propose a new approach, which is based on different cryptographic

techniques: Garbled Circuit and Oblivious Transfer.
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7.4 Garbled Circuit and Oblivious Transfer

This section describes how to mix other cryptographic techniques with Homomorphic

Encryption (HE) to improve efficiency while still achieving malicious client security. We

first review the Garbled Circuit (GC) tool on how can it provide privacy preserving feature

to multi-party protocols and how the circuit is built in our context. Next, we show a novel

Oblivious Transfer (OT) technique to be used to retrieve the inputs for the circuit. The novel

OT is based on BGV homomorphic operation and naturally becoming an interface between

HE and GC.

7.4.1 Garbled Circuit

Context The "garbled circuit" concept was originally proposed in [132], to allow two

parties to securely evaluate any functions (represented by a logic circuit). It is secure in

the sense that the communicating parties do not acquire any information about each others’

inputs, as they only have access to the output of the function. The idea is that, given a

circuit (composed of gates connected by wires), the server “garbles” the circuit by randomly

assigning two encryption keys ω j,0 and ω j,1 to each wire ω j. The pair of keys represent

respectively values 0 and 1, which are possible values of the logic gates’ wires. The server

then encrypts a truth table corresponding to each gate using nested encryption. Figure 7.4

illustrates how this can be done: Computing the output key of a gate requires knowing two

of its input’s keys.

After garbling the gates, the server sends the ciphertext tables and the keys corresponding

to the server’s input values to the client. The client uses an Oblivious Transfer technique

(discussed below) to obtain the keys corresponding to the client’s input values. After having

the keys for each wire, the client can, in turn, decrypt the gates until discovering the final

output keys (which can be encoded initially in a special way to represent value 0 or 1). The

wires’ keys are also referred to as labels in literature.
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Fig. 7.4 Garbled Circuit example

Recent work provides optimizations to improve the computation and communication

overhead associated with encrypt/decrypt operations and ciphertext tables’ sizes. In [79], the

authors proposed a modification to allow XOR gates to be evaluated for free: the labels of

XOR gates are not chosen independently but by ωi,0 = ωi,1⊕ r, for some random value of r.

Pinkas et al. [106] introduced a way to reduce the communication size of binary gates by

25%: each gate can be specified by three ciphertexts instead of all four. Finally, [78] improve

some commonly used circuits such as addition, comparision, etc., by reducing the number of

non-XOR gates.

7.4.2 Using GC with Homomorphic Encryption in the protocol

We use a standard subtractor circuit for the operation HD = HD′−r: Given a 2 n-bit bitstring,

the circuit is built from 1 half-subtractor and n−1 full-subtractors as in Figure 7.5, where a

half-subtractor is built from 1 XOR gate and 1 AND gate, a full-subtractor is built from 2

half-subtractors and 1 OR gate (Figure 7.6)
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Fig. 7.5 Subtractor Circuit

Fig. 7.6 Half-subtractor and Full-subtractor
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In our context, let l be the bit length of the HD’ and r (l is typically 10-12 bits for

1024-2048 bits biometrics data), which makes the number of subtractor logic gates equal to

5l. The comparision circuit no longer needs to output 3 results (as a standard circuits would:

Either A > B, A < B or A = B). Our aim is just to check whether HD′− r < τ , so we simply

need to have l NAND gates plus l−1 XOR gates at hand for the comparison circuit. Figure

7.7 shows an example of such a configuration

Fig. 7.7 Comparator Circuit

Garbled Circuit preparation We denote GC to be the garbled circuit prepared by the

server. The inputs to the circuit include the server’s GCr and the client’s GCh, which are the

cryptographic key labels corresponding to the server’s input r and to the client’s input HD′ to

the function CompareHD. The main function of the circuit is, first, to subtract HD′− r = HD

then compare HD
?
< τ , where τ is the constant value of the threshold required to decide upon

the authentication result, which can be built into the circuit itself. We note that either the
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server or the client can play the role of setting up the garbled circuit; in our work, we let the

server take this role (Figure 7.10 - Step 5, 6, 7, 8): as we have been working on a semi-honest

server model and a malicious client, this will save us one proof to assess that the circuit is

generated correctly.

As pointed out previously, the server garbles the circuit GC and sends the result to the

client together with its labels of r, which are K j
ri . Next, the client uses our OT technique

(discussed in the following section) to select the correct labels of HD′: the first part of the

OT will ensure that the client will get back the encryptions
r

K j
hi

z
. The second part of the

OT makes sure that the protocol is secure against malicious clients: it needs to prove that it

decrypted and decomposed JHD′K correctly (Figure 7.10 - Step 12,13). In other words, the

client wants to prove that the encryptions JhiK it sent are actually the encryptions of the bits

of HD′i. Recall that the server still has JHD′K, so the proof can be a homomorphical check

of JHD′K−∑2i JhiK = J0K. However, in order to allow this proof to support homomorphic

operations, we need to use the same encryption scheme for the OT protocol, in other words,

we need an OT protocol based on BGV. In the next section, we discuss a this novel solution

to the problem of interfacing Garbled Circuit with Homomorphic Encryption.

We note that inside the garbled circuit, AES is normally used to encrypt the labels, this

encryption is a part of the garbled circuit and not related to the OT protocol we just described,

and can still be used independently to ensure the performance of circuit evaluations. Next,

we discuss an approach to design an OT protocol compatible with the BGV cryptosystem

7.4.3 Oblivious Transfer

"You take the blue pill, the story ends. You wake up in your bed and believe whatever you

want to believe. You take the red pill, you stay in wonderland, and I show you how deep the

rabbit hole goes." - Morpheus to Neo, The Matrix.
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Fig. 7.8 Red Pill - Blue Pill

What if, in such situation, there were a protocol to give privacy to Neo: Morpheus should

not be able to discover what option Neo has chosen. Moreover, the protocol can also provide

privacy to Morpheus: Neo being thus unable to get information about the unchosen pill.

In cryptography, Oblivious Transfer (OT) is a protocol able to support such a scenario. In

its most basic form, it is a two-parties protocol between a Sender and a Receiver, denoted

by
(

2
1

)
-OT. The Sender uses two private inputs x0,x1 and the Receiver uses one input bit s.

At the completion of the protocol, the Receiver gets the bit xs, without letting the Sender

acquire any information about the value of s:
(

2
1

)
-OT(x0,x1;s) = xs.

The general idea is that, when the receiver requests an item, the sender sends all the

available items to him, unaware of which one has been requested. However, the response is

encrypted in such a way that the receiver can only decrypt the one he requested. A concrete

implementation example of the
(

2
1

)
-OT protocol based on discrete log DH is illustrated in

figure 7.9 (This protocol is secure against honest but curious attacks). The receiver picks

h0,h1 such that h0h1 = h, he cannot access both logg h0 and logg h1. Given h0,h1, the sender
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returns ElGamal encryptions of bits x0,x1 using h0,h1 as public keys. The receiver then

decrypts one of the encryptions to recover either x0 or x1

DH-based Protocol

Sender Receiver
(x0,x1 ∈ {0,1}) (s ∈ {0,1})

u
r←↩ Zn

hs← gu

h0,h1 h1−s← h/gu

u0,u1
r←↩ Zn

(A0,B0)← (gu0 ,hu0
0 gx0)

(A1,B1)← (gu1 ,hu1
1 gx1) (A0,B0),(A1,B1) xs← logg (Bs/Au

s )

Fig. 7.9 OT protocol based on DH

Efficient implementations of Oblivious Transfer can be found in [97]. The techniques

found in [67] can reduce a large number of OT protocol executions to λ , where λ is the

security parameter.

7.4.4 The BGV-based Oblivious Transfer protocol

In this thesis, we propose a new OT technique to be used with lattice-based cryptosystems.

The technique can be used together with the garbled circuit protocol discussed earlier. The

problem can be stated as follows: Given a BGV ciphertext of a bit selection hi: JhiK, the

server computes and returns a BGV encryption of the corresponding key selected by the bit.

We observe that the following homomorphic operations will satisfy such a requirement:

r
K j

i

z
=

r
h j

i

z
·
q

K1
i
y
+(1−

r
h j

i

z
) ·

q
K0

i
y
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where K0
i ,K

1
i are the labels corresponding to the wire inputs 0 or 1. The function includes one

level of homomorphic multiplication, two additions and one multiplication with a constant.

This approach is simple enough and it is secure against a malicious client model in our

context because the client needs to prove that he actually encrypted JhiK correctly already.

Other applications of this OT should take into account that a malicious client can encrypt

JhiK incorrectly to obtain information about K0
i and/or K1

i .

The other issue that we have to be careful about is Circuit Privacy: for a multi-factor

attacker able to access the secret key but not the biometric template, it is possible to obtain

information about the randomness of the operation. The randomness of the above operation

is of the form K0
i +(K1

i −K0
i )r0, which is correlated to both keys. Again, we can mask the

randomness of this leakage similarly to what we did in the second variant of the protocol.

By a similar analysis, we can still show that computing the HD cannot be achieved with a

significant level of probability (the privacy security requirement related to what the client

sees is indistinguishable from the probability he has to compute the HD, which is not much

more than random guessing).

7.5 The details

7.5.1 The protocol description

With a notation similar to the one used for previous protocols, we describe the last variant of

the authentication system as follows (Figure 7.10)

1. In the enrollment stage, the client U extracts his template JTK and sends it to the server

S

2. In the authentication stage, U extracts his query template JQK and sends it to the server
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3. U uses a Schnorr-based ZKP (Section 7.2.1) to prove that the noise associated with

JQK is small

4. U uses the Challenge-Response technique (Section 7.2.2) to prove that JQK is encrypt-

ing a binary message

5. If the proofs pass, S starts preparing the garbled circuit GC, it first samples r
r←↩ Zt

and decomposes it into a binary representation, assuming that r is k bits long.

6. S establishes k pair of keys (K0
ri
,K1

ri
) for the inputs of GCr

7. S establishes k pair of keys (K0
hi
,K1

hi
) for the inputs of GCh

8. S establishes the pair of keys for authentication result outputs (K0
out ,K

1
out)

9. S encrypts the k keys of GCh to obtain
r

K0
hi

z
,
r

K1
hi

z

10. S computes JHDK← HDBGV (JTK ,JQK)

11. S masks the Hamming Distance JHD′K = JHD+ rK and sends the result together

with the garbled circuit GC and the keys K j
ri to U , where j associates the key of GCr

corresponding to the r chosen by S .

12. U decrypts JHD′K

13. U decomposes the plaintext HD′ into its binary representation HD′ = ∑
k−1
0 2ihi

14. U re-encrypts the bits of the decomposition

15. U uses the ciphertext JhiK in the Oblivious Transfer Protocol (Section 7.4.3) to retrieve

the ciphertexts
r

K j
hi

z

16. U decrypts the result to obtain another set of keys for the garbled circuit

17. U evaluates the circuit with the keys (K j
hi
,K j

ri) and sends the result to the server
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18. S compares this outcome with the output keys prepared in step 8 and outputs the final

authentication result.

7.5.2 Implementation Result

We observe significant improvements in communication size thanks to the Challenge-

Response technique (only 2 messages required). The Schnorr-based ZKP also contributes to

this factor by reducing the number of rounds in proofs to 1, instead of 17 for similar settings

(n = 2048, t = 2048,αq = 8,q≈ 272,FAR≈ 10−3). The total number of gates used in the

garbled circuit for n = 2048 equals 25, which only cost ≈ 3.2 KB for the HD comparison

purpose. All of these improvements come with a one time setup cost for preparing the

switch keys for the HD computation operation: we need to rotate 10 times and swap 1

time to compute HD, each operation needs 1 key switch to transform the result back to the

original ciphertext format (2 ring elements) before the next homomorphic operation. The

total key switch size needed is 2∗n∗ logq∗11, which is approximately 389 MB in our setting.

Considering the privacy features provided, we believe such one time set up cost is acceptable.

We conclude the chapter with the comparison of the 4 protocols described in the thesis

Table 7.1 Protocols’ features comparison

Multi-factor HD Non-exposure Low Init cost Low Communication
Protocol 1 No No Yes Yes
Protocol 2 Yes No Yes Yes
Protocol 3 Yes Yes Yes No
Protocol 4 Yes Yes No Yes
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The Fourth Protocol

Client Server

1. Registered template T JTK Store JTK

2. Query template Q JQK Initiate Query Proof

3. Prove small noise in Q

4. Prove Q is binary

Sample r
r←↩ Zt

5. Setup garbled circuit GC, for i = 1, . . . ,k

6. Setup (K0
ri
,K1

ri
) for GCr

7. Setup (K0
hi
,K1

hi
) for GCh

8. Setup (K0
out ,K

1
out)

9. Compute
q

K0
hi

y
,
q

K1
hi

y

10. JHDK = HDBGV (JTK ,JQK)
Compute

q
HD′

y
= JHD+ rK

q
HD′

y

GC

K j
ri

of GCr

12. Decrypt HD′ = dec(JHDK)

13. Decompose HD′ =
k

∑
i=0

2ihi

14. Encrypt JhiK
15. Initiate OT protocol

16.JhiK

17. Prove correct decryption

18. Retrieve
r

K j
hi

z

19. Decrypt K j
hi

20.Kout = GC(K j
hi
,K j

ri
)

Kout 21. Compare Kout with K0
out ,K

1
out

Output res = Accept|Reject

Fig. 7.10 The fourth Protocol



Chapter 8

Conclusion and Open Problems

Throughout this thesis, we have developed different solutions to privacy preserving biometrics

authentication. Starting from a protocol with an inspiring technique of ciphertext packing

but lacking of protection against a malicious client model, we constructed a Zero Knowledge

Proof technique to provide a solution to the problem. The technique also causes the protocol

not to rely on any trusted third party to keep the client’s secret key for decrypting results

from homomorphic operations. Discussing the next protocol, we noted that, to fully support

multi-factor security, especially in the biometrics authentication context, the circuit privacy

problem needs to be solved efficiently. We proposed to enforce the Renyi Divergence

technique in the security analysis, so that the protocol can preserve its security level while

still keeping the parameter settings within practical thresholds. Specifically, we showed

that the noise within the results of homomorphic operations can be covered by not-too-

large masks to add extra security to the ciphertext result. The third variant was our first

attempt to do all the essential operations homomorphically: besides computing the Hamming

Distance, we also wanted to compare the ciphertext result with some threshold value, under

the malicious client mode hypothesis. Although the results were not practical enough in terms

of communication size, we learned different techniques to balance the tradeoffs between

communication and computation. In our last version, we proposed another alternative to
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address all the weakness of the previous protocols. The solution includes the combinations

of many advanced cryptographic techniques: Homomorphic Encryption, Zero Knowledge

Proof, Garbled Circuit and Oblivious Transfer. However, we still notice a significant one

time setup cost.

Some of the techniques developed in this thesis can be used to construct other privacy-

preserving protocols. For example, the decomposition technique used to construct Stern-

based ZKP can be applied to contexts where balancing communication/computation is

necessary, or the Renyi Divergence security analysis technique can be applied to lattice-

based cryptosystems requiring circuit privacy and keeping the parameters within practical

thresholds. The new challenge-response and Oblivious Transfer submodules used in the last

protocol can be used in different Homomorphic Cryptosystems in various contexts.

There are open questions with respect to the schemes we have put forward:

• We obtain security against a malicious client model and assume the server is semi-

honest. Designing a practical scheme that is also secure against a malicious server is

an interesting open challenge.

• We mainly used Hamming Distance to measure the difference between the registered

and queried templates. There are many other approaches [72] yielding a better False

Acceptance Rate and False Rejection Rate. The applicability of our technique to such

methods is left for future work

• The operations of computing and comparing different types of distances can be applied

to contexts unrelated to biometric authentication.

• Further optimizations to reduce computation time or communication size, such as the

composition of the Zero Knowledge Proof (AND, OR, EQ) can be investigated to

improve the practical implementation of protocols.
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