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 26 

Abstract 27 

The relationship between orographic precipitation, low-level thermodynamic stability and 28 

the synoptic meteorology is explored for the Snowy Mountains of southeast Australia. A 21-29 

year dataset (May-October, 1995-2015) of upper air soundings from an upwind site is used to 30 

define synoptic indicators and the low-level stability. A K-means clustering algorithm was 31 

employed to classify the daily meteorology into four synoptic classes.  The initial classification, 32 

based only on six synoptic indicators, distinctly defines both the surface precipitation and the 33 

low-level stability by class. Consistent with theory, the wet classes are found to have weak 34 

low-level stability, and the dry classes have strong low-level stability. By including low-level 35 

stability as an additional input variable to clustering method, statistically significant 36 

correlations were found between the precipitation and the low-level stability within each of the 37 

four classes. An examination of the joint pdf reveals a highly non-linear relationship; heavy 38 

rain was associated with very weak low-level stability and, conversely, strong low-level 39 

stability was associated with very little precipitation. Building on these historical relationships, 40 

model output statistics (MOS) from a moderate resolution (12 km spatial resolution) 41 

operational forecast were used to develop stepwise regression models designed to improve the 42 

24 hour forecast of precipitation over the Snowy Mountains. A single regression model for all 43 

days was found to reduce the RMSE by 7% and the bias by 75%. A class-based regression 44 

model was found to reduce the overall RMSE by 30% and the bias by 85%.  45 

Keywords: orographic precipitation, quantitative precipitation forecasts, model output statistics, 46 

‘Snowy Mountains’. 47 

 48 

 49 
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 50 

1. Introduction 51 

The Snowy Mountains, with peaks in excess of 2000 m, are the tallest mountains in 52 

Australia and are part of a continental divide along the eastern seaboard, known as the Great 53 

Dividing Range. Precipitation to the west and north of these mountains naturally flows inland 54 

into the Murray and Murrumbidgee Rivers ultimately reaching the Great Australian Bight, 55 

while precipitation to the east naturally flows into the Snowy River reaching the Tasman Sea 56 

(Figure 1a). This water is of immediate economic value for the generation of hydroelectric 57 

power and is of further value for downstream consumption, particularly for agriculture across 58 

the semi-arid Murray-Darling Basin. For this reason, water is routinely diverted through a 59 

series of tunnels, aqueducts, and pumps from the Snowy River Basin across the divide into the 60 

inland catchments. The day-to-day management of this water resource requires accurate 61 

quantitative precipitation estimates and forecasts over the mountains.   62 

Distinct from daily forecasts and estimates, the climatology of precipitation has been of 63 

great interest, particularly over the last decade. For instance, Landvogt et al. (2008) produced 64 

a climatology of wintertime precipitation in the Australian Alpine regions, in which daily 65 

precipitation was categorized into synoptic clusters consisting of “pre-frontal”, “post-frontal”, 66 

and “cutoff” classes. Chubb et al. (2011) studied a 20-year period from 1990, which included 67 

most of the ‘millennium drought’, one of the most severe droughts in the past century (Timbal 68 

2009). Through this period, a 43% decline in wintertime precipitation at high elevations 69 

(greater than 1000 m) was observed. Local weather systems were classified into three major 70 

synoptic types (embedded lows, cutoff lows and other) based on the synoptic mean sea level 71 

pressure (MSLP) and the 500-hPa geopotential height. Dai et al. (2014; D14 hereafter) assigned 72 

the daily synoptic meteorology into one of four classes using a K-means clustering algorithm 73 

with the upwind upper-air sounding. They found that the two wet clusters accounted for 30% 74 
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of all days and 70% of the total wintertime precipitation. These two wet classes were associated 75 

with fronts (both embedded and cutoff) and post-frontal conditions, respectively. Fiddes et al. 76 

(2015) employed a set of circulation dynamics indices to show that there has been a continuing 77 

decline in western-high-elevation winter time precipitation of alpine Australian and a relatively 78 

stable rainfall trend in eastern parts of this region. These distinct phenomena are hypothesized 79 

to be caused by the likely presence of complex relationships between the amount of 80 

precipitation and large-scale climate patterns over this region, especially for extreme events 81 

(Theobald et al. 2015).  82 

Orographic precipitation is commonly defined as precipitation arising from the lifting of 83 

moist air in response to the presence of the mountains. Fundamentally, orographic precipitation 84 

depends on the local upwind lower atmospheric stability, commonly referred to as the non-85 

dimensional mountain height 𝐻𝐻�, or the inverse Froude number (Pierrehumbert and Wyman 86 

1985). Smith (1989) developed a regime diagram for hydrostatic flow over a mountain to 87 

illustrate the stagnation onset as a function of the spanwise-to-streamwise horizontal aspect 88 

ratio of the topography and 𝐻𝐻�. Orographic precipitation is also known to be sensitive to small 89 

variations in ambient conditions, the evolution of the moisture fields, and the geometry of the 90 

barrier (e.g. Colle 2004; Watson and Lane 2012). These variations give rise to a variety of 91 

distinct dynamical and microphysical mechanisms that are classified as orographic 92 

mechanisms (Houze 2012). 93 

Forecasting orographic precipitation with a numerical weather predication (NWP) model 94 

is challenging due not only to the difficulties of representing the variety of complex physical 95 

mechanisms, but also to the limited resolution of a simulation to resolve the complex surface 96 

geometry (e.g. Panziera 2010). The evaluation of precipitation forecasts is a further challenge 97 

given the high spatial variability of precipitation across a complex terrain, and the limited 98 

number of surface sites available that can be used to rigorously evaluate the simulations.  99 
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Another challenge for local forecasts lies in the unique environment of the Snowy 100 

Mountains, which distinguishes itself from other mountainous regions of the world (e.g. the 101 

Sierra Nevada in the western US) by the frequent presence of clouds comprised of supercooled 102 

liquid water (SLW, Morrison et al. 2013). The development of precipitation in mixed-phase 103 

clouds remains poorly understood and difficult to model (e.g. Furtado et al. 2016). Osburn et 104 

al. (2016) reported a high frequency of occurrence of SLW (53% of the time between April 105 

and September) over the Snowy Mountains from a surface-based radiometer located on the 106 

upwind slope. These observations were qualitatively consistent with those from the MODerate-107 

resolution Imaging Spectroradiometer (MODIS) satellite product. As a further challenge, 108 

Chubb et al. (2015) found a high catch-ratio loss in the winter precipitation over the high 109 

elevation sites in the Snowy Mountains due to the lack of heated tipping-bucket gauges and 110 

wind fences.  111 

Given the many challenges in numerically simulating orographic precipitation, a common 112 

practice has been to develop statistically based models to forecast precipitation as a function of 113 

some independent predictors (i.e. a regression between synoptic and/or local indicators to 114 

forecast precipitation). Statistical models are relatively simpler than NWP models; however, 115 

they do not consider the various physical processes of precipitation. Therefore, a combination 116 

of current NWP and statistical models seems to be an appropriate solution to address the above-117 

mentioned limitations. Model Output Statistics (MOS) is a commonly used, post-processing 118 

technique to improve the skill of NWP forecasts, employing a statistical method to relate model 119 

output to observations (Glahn and Lowry 1972). Examining an ensemble NWP precipitation 120 

forecast, D14 found a significant underestimation of precipitation intensity over the high 121 

elevation terrain of the Snowy Mountains. Using their synoptic clustering, they applied a linear 122 

regression algorithm to improve the performance of ensemble precipitation forecasts, reducing 123 

the root mean square error (RMSE) by over 20% for their two wet clusters. The ensemble 124 
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model, known as the Poor Man’s Ensemble (Ebert et al. 2001), combined the output of seven 125 

independent large-scale NWP models to forecast precipitation at a coarse spatial scale of 1° × 126 

1° resolution.   127 

One of the broader aims of the current research is to evaluate the performance of the high-128 

resolution Australian Community Climate and Earth-System Simulator (ACCESS) NWP 129 

system (Puri et al, 2013) in forecasting wintertime precipitation across the high elevation 130 

terrain of the Snowy Mountains. A further aim is to test whether the method developed in D14 131 

(based on building a statistical relationship between the variables from synoptic classification 132 

and the ensemble forecast of rain to enhance the skill of the model in precipitation intensity 133 

prediction) is applicable to an operational, high-resolution precipitation forecasts provided by 134 

the ACCESS model. Finally, we seek to improve this clustering based MOS methodology by 135 

extending the analysis to explicitly consider the lower atmosphere stability.  Limiting our 136 

analysis to the cold seasons (May – October), the main outcomes of this study are: i) the 137 

categorization of the low-level atmospheric stability,  𝐻𝐻� , for the Snowy Mountains, ii) the 138 

investigation of inter-dependences between the low-level atmospheric stability and the daily 139 

precipitation, and iii) the improvement in the accuracy of the daily NWP precipitation forecasts 140 

over the Snowy Mountains via stepwise regressions coupled with the results of synoptic 141 

categorization. 142 

 143 

2. Datasets 144 

2.1. Ground-based wintertime precipitation dataset 145 

Half-hourly precipitation is obtained from seven weather stations above 1100 m across the 146 

Snowy Mountains for a 21-year period from 1995 to 2015. These high-elevation gauges, 147 

operated by Snowy Hydro Ltd. (SHL), utilize well-maintained heated tipping buckets for 148 

precipitation measurements. For consistency with the sounding, daily precipitation is obtained 149 
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by aggregating the half-hourly precipitation from 10:00 local time (00 UTC) to the same time 150 

of the next day. Chubb et al. (2011 and 2016) have evaluated the quality of the precipitation 151 

gauge data, finding appropriate accuracy and reliability of these measurements for 152 

climatological studies. The locations of the gauges and their long-term mean wintertime 153 

precipitation (May-October) are shown in Figure 1b and Table 1, respectively. For the 21-year 154 

period considered, a full daily record (no missing data) of all stations was available for 155 

approximately 60% of the time. When data from one or more sites was either completely 156 

missing or its quality was flagged, the area-average daily precipitation was taken to be the mean 157 

of the remaining valid observations. No systematic bias in missing or flagged data has 158 

previously been noted. For the winter period 2014-2015, 92% of all days have at least five 159 

stations that had valid data contributing to the mean value. 160 

 161 

2.2. ACCESS model dataset 162 

The model data examined in this study are taken from the current operational ACCESS 163 

NWP system. The atmospheric component of ACCESS is the UK Met Office Unified Model 164 

(MetUM), which is a non-hydrostatic model using a semi-implicit, semi-Lagrangian numerical 165 

scheme (Davies et al. 2005) to solve deep-atmosphere dynamics. This version of the ACCESS 166 

NWP system is referred to as the “Australian Parallel Suite 1” (APS1), which represents the 167 

first major upgrade to the system since operational running commenced in August 2010. The 168 

ACCESS-R forecasts used in our study for the two year (2014-2015) cold months (May-169 

October) is the Australian-wide regional domain model that covers an area of 65°S-16.95°N 170 

and 65°E-184.57°E. This model has a horizontal resolution of ~12km (0.11°) and a vertical 171 

resolution of 50 levels with the highest level at 37.5 km. Benefiting from the 4-D data 172 

assimilation, the ACCESS-R forecasts are initialized at 0000, 0600, 1200 and 1800 UTC of 173 

each day and provides hourly precipitation forecasts up to 72 hours ahead. The forecast 174 
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precipitation is the sum of two components that are computed separately in the model using 175 

the convective and large-scale (i.e. microphysics) parameterization schemes, respectively. 176 

More detailed information on the ACCESS-R can be found in Puri et al. (2013). For this study, 177 

the mean value of 10 grid boxes covering the Snowy rain gauges, bounded by latitudes 35.85°-178 

36.40°S and longitudes 148.27°-148.49°E, is employed to represent the ACCESS-R 179 

precipitation forecast over the high elevations of Snowy.  180 

 181 

2.3. Wagga Wagga sounding dataset 182 

The nearest upwind sounding site to the Snowy Mountains is at Wagga Wagga, located 183 

about 180 km to the northwest (Figure 1a). Both Chubb et al. (2011) and D14 successfully 184 

employed these soundings to define the synoptic meteorology during the cold seasons. For the 185 

winter period of 1995-2015, the 00 UTC sounding data were obtained from the database of 186 

University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html). Soundings were 187 

available for 75% of the days (2897 out of 3843).  188 

Following D14, as a first step we employ a cluster analysis with six synoptic indicators 189 

calculated from the Wagga Wagga soundings to investigate interactions between the large-190 

scale environment and daily winter precipitation across the Snowy Mountains. The synoptic 191 

indicators chosen are: i) surface pressure at Wagga Wagga (GP), ii) southerly moisture flux up 192 

to 250 hPa (QV), iii) westerly moisture flux up to 250 hPa (QU), iv) total moisture up to 250 193 

hPa (TW), v) root-mean-square wind shear between 850 and 500 hPa (SH), and vi) total totals 194 

index (TT). More details regarding these indicators can be found in Table 2. Briefly, the three 195 

indicators TW, QV and QU represent the available amount of water for the formation of 196 

precipitation, while TT and SH are considered to be simple estimates of the static stability of 197 

the atmosphere (Henry 2000).  198 

http://weather.uwyo.edu/upperair/sounding.html)
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Expanding on the framework of D14, the low-level atmospheric stability, i.e. the non-199 

dimensional mountain height (𝐻𝐻�), is added as a seventh predictor. TT and SH are defined 200 

between the levels of 850 and 500 hPa; whereas 𝐻𝐻�2 is defined to a height of 1000 m. The 201 

mathematical expression of the non-dimensional mountain height is  202 

U
Nh

Fr
H ==

1ˆ ,      (1) 203 

where U is the cross-mountain wind speed (m/s) and h is the mountain height (h=1 km 204 

representing the mean elevation of the region (e.g. Reinecke and Durran 2008). N is the Brunt-205 

Vaisala frequency (s-1). Following Hughes et al. (2009), the moist Brunt-Vaisala frequency 206 

(Durran and Klemp 1982) is employed when the relative humidity is greater than 90% (i.e. 207 

saturated conditions), otherwise the dry Brunt-Vaisala frequency is adopted. As the value of N 208 

is imaginary when the atmosphere is conditionally unstable, so is the value of 𝐻𝐻�. In order to 209 

account for conditionally unstable events, which occur about 11% of the time, we employ the 210 

square of the 𝐻𝐻�   values (𝐻𝐻�2 ) for all analysis. Negative values of 𝐻𝐻�2  indicate conditional 211 

instability. Hughes et al. (2009) showed that the large square Froude number values have 212 

similar behaviour as the negative ones (known also as conditionally unstable).  213 

For small 𝐻𝐻�2 values, the low-level atmospheric conditions are generally referred to as being 214 

unstable to orographic lifting, implying that the airflow can readily pass over the terrain and 215 

mountain waves will be generated. For large  𝐻𝐻�2 values, the flow can be stagnated or diverted 216 

laterally around the barrier instead of being lifted over the terrain. In this scenario, stable or 217 

blocked conditions (hereafter “blocked days”) are generally observed (e.g. Watson and Lane 218 

2014; Miao and Geerts 2013; Wang et al. 2016). Following the literature, we use 𝐻𝐻�2 equal to 219 

1 as the threshold to distinguish stable and unstable conditions. In practice, however, the 220 

transition is not precise, especially as we use only a fixed estimate for the mountain height, h. 221 

As discussed, the spatial distribution, magnitude and frequency of orographic precipitation has 222 
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commonly been found to be sensitive to 𝐻𝐻�2. When 𝐻𝐻�2 < 1 (unblocked days here), heavier 223 

precipitation events can be expected (e.g. Miglietta and Buzzi 2001; Colle 2004; Wang et al 224 

2016). By inspecting the coastal winds of California, Hughes et al. (2009) showed that the 225 

spatial distribution of precipitation became more homogenous for blocked cases, while for 226 

unblocked flows local orographic precipitation was strongly dependent on the slope of 227 

topography. 228 

 229 

2.4. ERA-Interim reanalysis dataset 230 

Following Theobald et al. (2015), we employ the ERA-Interim reanalysis products (Dee et 231 

al. 2011) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) 232 

to derive composite synoptic charts that correspond to the clusters. The ERA-Interim data we 233 

employ are from 1995 onwards and at a spatial resolution of 0.75° × 0.75°. As the soundings 234 

at Wagga Wagga were not available at all time, the six synoptic indicators and 𝐻𝐻�2 obtained 235 

from the ERA-Interim reanalysis dataset are used to fill in missing physical soundings for days 236 

in 2014-15. Comparisons of the in-situ Wagga Wagga soundings and the corresponding ERA-237 

Interim reanalysis soundings for common days over the 21-year winter period show strong 238 

correlations for all synoptic indicators (GP: 0.99, SH: 0.90, TT: 0.92, TW: 0.97, Qv: 0.98, Qu: 239 

0.97). Therefore, we consider using the ERA-Interim reanalysis soundings as a surrogate is 240 

appropriate. We note that as the Wagga Wagga soundings are likely employed in the data 241 

assimilation for ERA-Interim, the two sets of soundings may not be completely independent. 242 

The ERA-Interim soundings may be less skilled when the physical soundings are not available.   243 

 244 

3. Methodology 245 

3.1.Cluster analysis 246 
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The weather systems in southeastern Australia can be classified using simple clustering 247 

methodologies such as K-means (Hartigan and Wong 1979). Recent studies by Wilson et al. 248 

(2013) and D14 show that winter days in Australia can be categorized into unique synoptic 249 

regimes by utilizing six synoptic indicators as independent variables for the clustering 250 

procedure, applied in the present study as well. In addition to these six indicators, 𝐻𝐻�2 is also 251 

employed to account for the low-level local atmospheric stability.  252 

Determining the optimal number of clusters using the K-means algorithm is challenging 253 

given the opposite relationship between the number of clusters and their variances.  Following 254 

D14, the optimal number of clusters is determined when the probability distributions of the 255 

daily rainfall for different clusters can be separated distinctively. Given that a relationship 256 

between orographic precipitation and 𝐻𝐻�2 is expected (Colle 2004), it is also worthwhile to 257 

appreciate the probability distributions of 𝐻𝐻�2 for each cluster when only the original six 258 

indicators are employed for the cluster analysis. A two-sample Kolmogorov-Smirnov (KS) test 259 

is applied to insure the distinctiveness of the distributions. 260 

 261 

3.2. Model Output Statistics approach in precipitation forecasting 262 

The main aim is to improve the daily ACCESS-R precipitation forecasts (Prec_Acc) by 263 

combining the results of the synoptic classification with a stepwise regression. To this end, the 264 

averaged high-elevations SHL rain gauge observations are taken as the “ground truth” for this 265 

analysis. As the aim is to develop an operational MOS algorithm, the six predictors and 𝐻𝐻�2 are 266 

taken from ACCESS-R instead of the physical soundings. Note that, due to operational 267 

management issues, the number of daily soundings at the Wagga Wagga station has been 268 

reduced to roughly three per week (i.e. available 154 days during two-winter period of interest) 269 

in recent years.   270 
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To assess the skill of ACCESS-R in representing the synoptic regimes as observed by the 271 

physical soundings, the six synoptic indicators derived from the Wagga Wagga and ACCESS-272 

R soundings are compared for the same time window (2014-15). The pairwise Pearson 273 

correlations between synoptic indicators showed significant correlations (at the level of 0.05) 274 

ranging from 66% (for SH) to 99% (for GP), suggesting a good agreement between the model 275 

and the observations. Based on this, the synoptic classification scheme is applied to the 276 

ACCESS_R soundings. The results show high consistency, justifying the use of the synoptic 277 

classification on the ACCESS-R soundings for deriving the regression equations. 278 

As discussed above, within a forecasting context, all variables are taken from the 279 

ACCESS_R outputs, including the definition of a rain day. Model 1 is a single regression for 280 

all 366 winter days, regardless of cluster.  Model 2 first classifies each day into one of the four 281 

clusters, with each cluster having its own regression.   282 

The seven predictors and the ACCESS-R precipitation data were normalized before the 283 

regression models were developed. Model selection/complexity is an obvious problem when a 284 

large number of predictors are available. A stepwise approach (from a single constant value to 285 

quadratic combinations, including an intercept, linear terms, products, and squared terms) was 286 

applied to determine the leading predictors and the optimum regression formulation (degree of 287 

complexity within equations). Measures of accuracy (e.g. the RMSE or bias) will automatically 288 

improve as more predictors are included, but this comes at the cost of model simplicity. To 289 

balance the complexity and accuracy, the number of predictors employed was determined by 290 

minimizing the Bayesian Information Criterion, BIC, as an objective function (Liebscher 2012). 291 

The BIC is expressed as: 292 

                                             𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘 ∙ ln(𝑛𝑛) − 2 ∙ ln(𝐿𝐿�)                                                   (2)           293 

where k is the number of free parameters to be estimated, n is the number of observations and 294 

𝐿𝐿� is the maximized value of the likelihood function of the model. Further, we have considered 295 
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a stepwise procedure that entails a forward selection and backward elimination algorithm. This 296 

process includes an examination of any linear dependency between predictors (called as 297 

multicollinearity) with redundant variables removed regardless of the goodness-of-fit criterion 298 

value (Curtis and Ghosh 2011).  299 

Both regression models were cross-validated via a bootstrapping methodology with 10000 300 

simulations to ensure that the results were statistically robust. For each simulation, 80% of the 301 

data are randomly assigned to the control group (used for deriving the coefficients) and the rest 302 

for testing. 303 

 304 

4. Results 305 

4.1. Winter precipitation characteristics 306 

Following Chubb et al. (2011), a rainy day is defined at a threshold of 0.25 mm day-1 for 307 

either the average SHL surface observations or ACCESS-R precipitation.  A basic summary of 308 

the winter precipitation is provided in Table 3. The frequency of rainy days is seen to follow a 309 

seasonal cycle with peaks being present in July and August. The intensity, however, is not 310 

found to present such a cycle; an overall mean intensity of 10.4 mm day-1 is observed for rainy 311 

days, with a standard deviation of 13 mm day-1. The mean intensity can be broken down into 312 

quartiles, which again do not display any strong seasonal cycle over the course of winter. 313 

Average monthly precipitation on rain days indicates lower values in the transition months of 314 

May and October with an overall wintertime mean precipitation of about 167 mm. 315 

Focussing on the two-year analysis period (2014-2015), the SHL surface observations 316 

show a reduction in both the frequency of rainy days and the intensity (not significant at the 5% 317 

level) compared to the climatology. The statistics with ACCESS-R, show that both the 318 

frequency and intensity are greater than the observed values (not significant at the 5% level). 319 

   320 
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4.2. Synoptic classification  321 

The K-means clustering technique was applied to the Wagga Wagga soundings data 322 

(complemented with ERA-I soundings for days when the physical soundings were unavailable) 323 

for winter days for the 21-year period 1995-2015 using the six indicators. When employing the 324 

original six sounding variables (TT, SH, QU, QV, GP & TW), the new analysis was consistent 325 

with that of D14; four clusters were the maximum number found to produce distinct daily 326 

rainfall probability distributions (Figure 2, left panel), passing the KS test at the 5% 327 

significance level. As a major objective of this research is to better understand the nature of the 328 

low-level stability, 𝐻𝐻�2, over the Snowy Mountains, and its value as a predictor of orographic 329 

precipitation, daily 𝐻𝐻�2 probability distributions are also produced (Figure 2, right panel). As 330 

with the daily precipitation, four clusters lead to distinct distributions of 𝐻𝐻�2, suggesting that 331 

the low-level stability is reflected in the broader synoptic meteorology.   332 

A K-means clustering was then undertaken using the original six synoptic variables and 𝐻𝐻�2 333 

(7-variable clustering results are only elaborated hereinafter). As before, four clusters were 334 

found to be necessary to distinctly represent the daily precipitation distribution (not shown). 335 

C1 and C2 were found to be quite stable to this revision with only a handful of days swapping 336 

between clusters. The two dry clusters, however, were found to be more sensitive to this 337 

clustering revision. 1037 out of the original 1123 days in C3 remain unchanged (5 days shifted 338 

to C1, 50 days to C2, and 31 days to C4), while 823 of the original 1003 days in C4 remain 339 

unchanged (35 days shifted to C2, and 145 days to C3). This further suggests that for the wet 340 

clusters, C1 and C2, that the low-level stability is reflected in the synoptic meteorology. 341 

According to Table 4, clusters C1 (frequency of rainy days: 93%, median: 18 mm day-1) and 342 

C2 (frequency of rainy days: 78%, median: 4.54 mm day-1) represent the wettest groups while 343 

C3 (frequency of rainy days: 52%, median: 0.32 mm day-1) and C4 (frequency of rainy days: 344 

22%, median: 0.03 mm day-1) capture the driest weather. There are fewer days of C1 and C2 345 
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than C3 and C4.  The mean values of 𝐻𝐻�2 for the four clusters are -0.45, 1.97, 6.24 and 20.20, 346 

respectively. Higher values of 𝐻𝐻�2 indicate stronger blocking and, accordingly, less orographic 347 

precipitation. The fraction of unblocked days (𝐻𝐻�2 < 1) for the four clusters are 63%, 48%, 20% 348 

and 5%, respectively. The probability density functions (PDF) of 𝐻𝐻�2  are broken down by 349 

cluster (Figure 3, a-d) for all days. Distribution of  𝐻𝐻�2  for all days is shown in stacked 350 

histogram in Figure 3e. For rainy days only, the PDF will be shifted to lower (less stable) values 351 

of 𝐻𝐻�2, and for no rain days shifted to higher ones (more stable) (Figure 3f). The seasonal 352 

variability of clusters is also found to be consistent with D14, the relative frequencies of C1 353 

and C2 increase towards the end of winter. C3 is more frequent in early winter and C4 occurs 354 

more often in midwinter (not shown). Further, the synoptic meteorology of the wettest cluster 355 

C1, is consistent with the analysis of Chubb et al. (2011), a strong northwesterly moisture flux 356 

and low surface pressure are commonly present.  357 

To better appreciate the synoptic meteorology of these four clusters (based on 7-variable 358 

clustering), ERA-Interim data are used to construct composite maps of the large-scale synoptic 359 

indicators for each cluster (Figures 4-6). Following Theobald et al. (2015), the map domain is 360 

20- 46°S and 120°-140°E in order to capture the dominant synoptic meteorology. For these 361 

maps, only the top 25% of days of each cluster are employed. Specifically, these are the days 362 

that have the shortest Euclidean distance to the cluster centre. While this approach is commonly 363 

used when employing daily observations (e.g. Pook et al. 2006, Theobald et al. 2015), it has 364 

been noted that the daily resolution of composite maps may mask some unresolved features 365 

within daily systems (e.g. a diurnal cycle), as well as over-represent slow-moving synoptic 366 

systems (Gallant et al. 2012).  367 

Starting first with the MSLP and total water (Figure 4), general synoptic states can be 368 

assigned to the four clusters.  The MSLP for C1, suggests that the cluster is associated with a 369 

frontal passage. It is not possible to distinguish between a cut-off low and an embedded low 370 
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due to the compositing technique and the low number of clusters. Further, C1 is associated with 371 

a maximum in total water over the mountains, which is seen to extend up the Great Dividing 372 

Range through New South Wales and Queensland. Chubb et al. (2011) employed a back-373 

trajectory analysis to define a ‘moisture corridor’ across this region for heavy precipitation 374 

events. C2, while less well resolved, suggests that the frontal system has passed over mountains. 375 

Chubb et al. (2012) detailed a case study of a frontal passage over the nearby Brindabella ranges, 376 

where orographic precipitation was recorded over the 24-hour period after the passage of a 377 

front. Here air originating from the Southern Ocean brings limited moisture and modest 378 

precipitation. Skipping to the dry cluster C4, a strong high pressure system is evident over the 379 

region with very little moisture available. Cluster C3 is less easy to classify, most likely 380 

including a variety of synoptic settings that ultimately lead to little precipitation.  A high-381 

pressure ridge is present across central Australia in the composite map, although it is much 382 

weaker than that of C4.   383 

Turning to the moisture fluxes (Figure 5), the strong northerly and westerly moisture fluxes 384 

of C1 stand out, consistent with a frontal passage.  There is virtually no northerly moisture flux 385 

over the Snowy Mountains for C2.  It is strictly a westerly flux that is bringing the moisture for 386 

precipitation, again suggesting a post-frontal environment (Chubb et al. 2012). Spatially, C3 387 

and C4 are quite similar, with weak fluxes evident over the mountains. C4 is drier and has 388 

weaker fluxes of the two.   389 

The synoptic stability composites (TT and SH, Figure 6) further complete the general 390 

classifications of clusters C1 (frontal), C2 (post-frontal) and C4 (high pressure system). Over 391 

the mountains, the atmosphere is most unstable during a frontal passage and most stable under 392 

a high-pressure system. Unlike the other composite maps, however, these maps for C3 are now 393 

quite distinct, especially for the mid-level shear (SH). Very weak shear is evident just to the 394 

south of the Snowy Mountains, over Bass Straight and extending into the Tasman Sea. This 395 
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perhaps suggests that the upper free troposphere may be important in defining the synoptic 396 

meteorology of this cluster. A more thorough analysis of C3 revealed that a number of the days 397 

included in the composite included ‘east coast lows’ (BoM 2017) (e.g. 02 Oct. 2004 and 18 398 

Sept. 2015). 399 

A number of studies have diagnosed the principal synoptic types in southeastern Australia (e.g. 400 

Chubb et al. 2011; Pook et al. 2006). Specifically, Theobald et al. (2015) applied an automated 401 

approach to generate synoptic types by combining meteorological variables throughout the 402 

depth of the troposphere across the Snowy Mountains.  It is interesting to compare and contrast 403 

our four wintertime clusters with their 11 synoptic types. Only a limited comparison is possible 404 

as Theobald et al. (2015) considered only heavy precipitation days (threshold of 10 mm day-1) 405 

for the full year.  Further, instead of employing physical observations from a sounding site, 406 

they employed 13 variables provided from the ERA-Interim reanalysis. In spite of these 407 

substantial differences, it is evident from the composite maps that C1 and C2 correspond to 408 

Theobald clusters T5 (Prefrontal troughs; approaching cold fronts) and T1 (Embedded cold 409 

fronts). Not surprisingly, dry clusters C3 and C4 (occurring ~70% of the time during the cold 410 

seasons and most frequently at the start and middle of winter) were not represented by any of 411 

the Theobald clusters, since their analysis was limited to wet conditions throughout the year.   412 

In summary, C1 includes the heaviest precipitation days and the lowest 𝐻𝐻�2 values (and the 413 

highest frequency of unblocked cases). It occurs for 10% of the winter days, but accounts for 414 

39% of the precipitation. It is associated with frontal passages. C2 is associated with post-415 

frontal conditions. It occurs 22% of the time and accounts for 33% of the precipitation.  C3 is 416 

associated with a variety of synoptic conditions.  It is a dry cluster, occurring 40% of the time 417 

and accounts for 23% of the total precipitation.  Finally, C4 is the driest cluster associated with 418 

high-pressure system dominating the region over the Snowy Mountains and to its north.  This 419 
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occurs ~30% of the time and accounts for only 5% of the precipitation. It has also the strongest 420 

low level stability (i.e. highest 𝐻𝐻�2 values).    421 

 422 

4.3. Relationships between independent variables and observed precipitation  423 

Given that an aim of this research is to improve orographic forecasts of precipitation 424 

through model output statistics, it is worthwhile to examine the correlation of these predictors 425 

with the precipitation.  Working with the historic data (1995-2015), QV (-0.51), QU (0.46), GP 426 

(0.46) and TW (0.43) are highly correlated with precipitation, while the stability measures 𝐻𝐻�2 427 

(-0.24), TT (0.23) and SH (0.16) are less strongly correlated. All correlations are statistically 428 

significant, confirming our underlying premise that these variables can be of use in forecasting 429 

orographic precipitation. Table 5 also illustrates the cross-correlations between these variables 430 

at the 0.01 significant level. The highest significant correlation is between GP-QU (-0.53); 431 

while, the lowest significance is for SH-TT (-0.136). SH-TW and SH-QV did not indicate 432 

significant linear correlations. 433 

Returning to the correlation between precipitation and the seven predictors, it is worthwhile 434 

to break down the analysis to the four clusters (Table 6).  Not surprisingly, the correlation 435 

between the precipitation and any predictor is reduced within an individual cluster defined by 436 

these predictors. While greatly reduced, the correlations of QV, QU, GP, and 𝐻𝐻�2 remain 437 

statistically significant within each of the four clusters. TW remains significantly correlated 438 

within C1, C2 and C3. SH is only significantly correlated with precipitation in C4. Table 6 also 439 

details the rank correlation of these predictors against the precipitation. For the three stability 440 

predictors (SH, TT, and 𝐻𝐻�2), the rank correlation (measures the degree of similarity between 441 

two rankings assigned to two members of a set) is greater in magnitude than the linear 442 

correlation suggesting a non-linear relationship exists between precipitation and stability. The 443 
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rank correlation for 𝐻𝐻�2 is nearly as great in magnitude as that for GP, both of which are 444 

negative.  445 

To better appreciate the inter-dependencies between 𝐻𝐻�2 and precipitation, their joint 446 

probabilities are explored with the use of a copula function (Sklar 1959). Copula functions have 447 

been widely used (e.g. Drouet-Mari and Kotz 2001, Genest and Plante 2003, Nicoloutsopoulos 448 

2005) to detect the probabilistic relationships between variables and to show that a set of 449 

variables with low correlations (even zero) may still retain complicated “tail” dependence 450 

structures. Unlike the commonly used correlation measures, copulas are invariant under strictly 451 

increasing transformations of random variables which are used for comprehensively exploring 452 

nonparametric measures of interdependence (Schweizer and Wolff 1981). Copulas are not 453 

restricted to any particular type of parametric functions (e.g. Gumbel distribution) for the 454 

marginal or the joint probability distributions (Madadgar and Moradkhani 2014). According to 455 

Figure 7A, the scatter plot and marginal histograms illustrates the relationship between 456 

precipitation and 𝐻𝐻�2 in which, in overall, large values of precipitation are associated with low 457 

values of  𝐻𝐻�2  and high values of 𝐻𝐻�2 are associated with weak precipitation. The marginal 458 

histograms further indicate that the vast majority of data are located in the range of 0.25 mm 459 

to 10 mm for precipitation and -1 to 5 for 𝐻𝐻�2, overwhelming the “tail” observations outside 460 

this range.  461 

Figure 7B and 7C illustrate the marginal CDF distributions of 𝐻𝐻�2 (ranging from -5 to 25) 462 

and precipitation (ranging from 0 up to 100 mm) for rainy days based on the data from 1995-463 

2015. A steep slope implies a higher density of data within a considered range; precipitation 464 

values less than 10 mm and -1<𝐻𝐻�2<5 have the highest frequency of occurrences (similar to 465 

what is concluded from the marginal histograms). Figure 7B and 7C are the main input 466 

elements used in calculating the joint probability values and forming copula function. The 467 

Frank copula (Frank 1979), selected as the best-fitting copula in this study, suggests that 468 
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𝐻𝐻�2 values greater than 7.8 correspond to precipitation events less than 0.6 mm, and 𝐻𝐻�2 values 469 

less than -0.3 correspond to precipitation events greater than 28.4 mm (Figure 7D). Conversely, 470 

low frequencies are given to pairwise events when 𝐻𝐻�2 and precipitation values are both low 471 

(𝐻𝐻�2 < -0.3 & precipitation < 0.6 mm) or high (𝐻𝐻�2 > 7.8 & precipitation > 28.4 mm) (Figure 472 

7D). In summary, the copula identifies and quantifies the tail-end relationship (as previously 473 

highlighted by AghaKouchak et al. 2010) between 𝐻𝐻�2and precipitation that was not evident in 474 

the simple correlation coefficient. An inverse, non-linear relationship between 𝐻𝐻�2  and 475 

precipitation was also suggested by the individual probability distributions of Figure 2. 476 

 477 

4.4. Daily winter precipitation forecasting 478 

4.4.1. Precipitation estimations by ACCESS-R  479 

The daily ACCESS-R precipitation forecasts serve as our control forecast for the full two-480 

year (2014-2015) winter (May-October) period. When these precipitation forecasts were 481 

evaluated against Snowy Hydro’s high-elevation surface observations, the overall RMSE was 482 

4.20 mm with a bias of 0.3 mm. On average ACCESS-R slightly overestimated the surface 483 

observations.  Looking at observed rain days only (0.25 mm day-1 threshold), the hit rate for 484 

ACCESS-R was 88% with an RMSE of 6.2 mm day-1 and a bias of 0.42 mm day-1.  For no-485 

rain days, the false alarm rate was 20.7% with an RMSE of 0.58 mm day-1 and a bias of 0.19 486 

mm day-1.    487 

These basic statistics can readily be broken down into the four clusters (Table 7). As 488 

expected, the wet ‘frontal’ cluster, C1, has the highest percentage of rain days, the greatest 489 

overall RMSE of 10.17 mm day-1 and bias of 0.76 mm day-1.  For rain days only, the hit rate 490 

was 97%.  Over the two-years of data (no-rain days), the false alarm rate was calculated to be 491 

for C1.  The relatively wet ‘post-frontal’ cluster, C2, shows the next highest overall percentage 492 

of hits (69%) and RMSE (5.2 mm day-1). The overall bias for C2 is 0.3 mm day-1. Most notable 493 
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for this cluster is the high rate of false alarm (38%) when looking at no-rain days. ACCESS-R 494 

produces precipitation too readily in these post-frontal conditions. For the dry clusters, C3 and 495 

C4, the overall RMSE are small. They are less skilled on rain days (hit rates of 86 and 72%, 496 

respectively) and relatively skilled on no-rain days (false alarm rates of 27 and 13%, 497 

respectively). 498 

More advanced metrics can readily be employed on these observations to assess the skill 499 

of deterministic precipitation forecasts, following the World Meteorological Organization 500 

Working Group on Numerical Experimentation (WWRP/WGNE 2008). For example, the 501 

frequency bias score (FBS, the ratio of the frequency of forecast precipitation events to that of 502 

observed; where 1 indicates a perfect score) was calculated to be 1.12, and 0.97, 1.05, 1.24, 503 

1.16 for the overall time period and then broken down by cluster, respectively. An FBS score 504 

greater than one suggests that the model generally tends to predict rain days more frequently 505 

than they are observed. The absence of false alarm in C1 led to an FBS score of just under 506 

unity, indicating the tendency to less frequently predict precipitation, however the opposite 507 

occurred in the rest of the classes. The equitable threat score (ETS, the fraction of correctly 508 

predicted of observed and/or forecast events that has a range of -1/3 to 1, where 0 indicates no 509 

skill and 1 is a perfect score.) was calculated to be 0.49, and 0.73, 0.39, 0.41, 0.39 for the 510 

overall time period and the four clusters, respectively. The ETS accounts for correct forecasts 511 

due to chance when computing an index that combines the hit rate and the false alarm ratio. 512 

Ebert (2001) finds an ETS of around 0.4 for the Poor Man’s Ensemble precipitation predictions, 513 

suggesting that the present system is especially skilful in identifying heavy-precipitation events. 514 

The accuracy score (The fraction of “correct” forecasts) was also calculated to be 0.83, 0.97, 515 

0.84, 0.79, 0.84 for the overall time period and the four clusters, respectively, indicating an 516 

encouraging result, with the most accurate forecast in C1. 517 

 518 



21 
 

4.4.2. Model-1:  Single regression model  519 

The single regression model (Model 1) is based on only two predictors, a linear combination 520 

of the ACCESS-R precipitation forecast and QU (Table 8), determined by the stepwise 521 

approach and the BIC. The ACCESS-R forecast accounts for about 70% of the variance while 522 

QU contributed roughly 14%. Four goodness-of-fit criteria [RMSE, r2 (the coefficient of 523 

determination), the hit rate, and bias (for all days)] are calculated to quantify the improvement 524 

in using a simple regression formula from the control ACCESS-R forecast precipitation (Table 525 

9).  526 

When limited to forecast precipitation days, the straight ACCESS-R forecast had an RMSE 527 

of 6 mm day-1, a bias of 0.68 mm day-1 and a hit rate of 76% for the full two-year period 528 

(Results in Table 9 are different than those previously presented in Table 7 as the selection of 529 

rain day was changed from the surface observations to the ACCESS-R forecast to allow for an 530 

operational application). When the single regression model is applied, forecast precipitation 531 

had an RMSE of 5.6 mm day-1, a bias of -0.15 mm day-1, a hit rate of 78% and r2 at 0.83. The 532 

single regression produced a 7% reduction in the RMSE. We can examine the forecast rain 533 

days by cluster, even when employing a single regression. The single regression model 534 

improves the RMSE in all four clusters, most strongly in C4. The bias is also reduced in each 535 

of the four clusters, most strongly in C4 and C1. The coefficient of determination remains 536 

largely unchanged by cluster. The single regression does not strongly improve one or more 537 

clusters at the expense of the remaining clusters.  The improvement is largely across all clusters.  538 

 539 

4.4.3. Model-2: Cluster-based regression model 540 

The cluster-based regression (Model 2), produces an RMSE of 4.2 mm day-1, a bias of -0.1 541 

mm day-1, an r2 of 0.89 and a hit rate of 84% when computed over all days.  The RMSE was 542 
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reduced by 30% and the bias was reduced by 7% in comparison to the control ACCESS-R 543 

forecast precipitation.   544 

When breaking this down into the individual clusters, large improvements are identified in 545 

C1 (24% reduction in RMSE) and C4 (42% reduction in RMSE).  Further r2 increases most for 546 

these two clusters. While the gains for cluster C2 were more modest (C2 has the simplest 547 

regression fit), improvement is evident for all goodness of fit criteria. The cluster based 548 

regressions also reduced the false alarm rate (as well as improving the hit rate) in all clusters, 549 

but more strongly in the two wet ones.    550 

Histograms of goodness-of-fit criteria for the cluster-based regression model for C1 (Model 551 

2 C1) derived from cross-validation analysis are illustrated in Figure 8. Due to the presence of 552 

skewness in histograms of coefficients and goodness-of-fit criteria (Figure 8), for all models, 553 

median of the histograms is considered and reported to reduce the influence of outliers. Similar 554 

histograms are obtained for other classes but not shown. It should be noted that the RMSE and 555 

bias histograms are derived from the normalized values of estimations which are converted to 556 

mm for the final comparisons between the models.  557 

 558 

5. Conclusion: 559 

A primary aim of this research has been to better understand the sensitivity of precipitation 560 

over the Snowy Mountains of southeast Australia to the low-level stability (as measured by the 561 

square of the non-dimensional mountain height, 𝐻𝐻�2 ) and to understand the relationship 562 

between the low-level stability and the synoptic meteorology, if any. A further aim has been to 563 

exploit any uncovered relationship between the non-dimensional mountain height and 564 

precipitation to improve forecasts of precipitation over these mountains for water management 565 

purposes.  566 
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It has long been appreciated that orographic precipitation is sensitive to 𝐻𝐻�2 with strong 567 

stability (large 𝐻𝐻�2) suppressing rainfall and, conversely, weak stability enhancing orographic 568 

precipitation (e.g. Watson and Lane, 2014). An analysis of 21 years of wintertime data 569 

confirmed this relationship for the Snowy Mountains. Average 𝐻𝐻�2 was significantly greater for 570 

no-rain days (14.5) than for rain days (3.9). A rain day was defined by a threshold of 0.25 mm 571 

day-1.  A deeper analysis of these data found that the relationship was primarily driven by 572 

extreme values with very large values of 𝐻𝐻�2 (>7.8) being associated with suppressed rainfall 573 

and very heavy rainfalls (>28 mm day-1) being associated with low values of 𝐻𝐻�2.  574 

Previous research (D14) demonstrated that the precipitation over these mountains is also 575 

sensitive to the large scale synoptic meteorology. Following this methodology, a K-means 576 

clustering algorithm was applied to the precipitation using six synoptic predictors (GP, TW, 577 

QU, QV, SH and TT). As before, four clusters were identified as the minimum number of 578 

clusters necessary to distinguish the precipitation distribution between clusters. Examining 579 

these more thoroughly with the use of ERA-I reanalysis data, the wet cluster (C1) was 580 

associated with frontal passages.  C2 was also a wet cluster, being associated with post-frontal 581 

conditions. C4 was a dry cluster associated with suppressed (stable) conditions, and C3 was a 582 

dry cluster constructed from the remaining observations. Distributions of 𝐻𝐻�2  were also 583 

distinguished by this clustering, suggesting that 𝐻𝐻�2 was also strongly defined by the synoptic 584 

meteorology. 585 

When repeating the clustering for seven variables (the original six predictors plus 𝐻𝐻�2), only 586 

minor changes were observed for the two wet clusters, while changes were observed in the 587 

number and composition of dry clusters, C3 and C4. A further investigation on the relationship 588 

between the seven predictors and the observed precipitation showed that they are all 589 

statistically correlated, justifying their application in forecasting orographic precipitation. 590 
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Higher values in rank correlations of the stability indicators (more obviously for 𝐻𝐻�2) suggested 591 

a non-linear relationship rather than linear relationship. 592 

D14 noted that over the Snowy Mountains a NWP model demonstrated more skill at 593 

predicting the synoptic meteorology than the precipitation. Thus, model output statistics (MOS) 594 

of the synoptic variables was used to improve precipitation forecasts. Two different regression 595 

models were developed with the aim of improving the precipitation forecasts of the ACCESS-596 

R model. Specifically, the goal was to reduce the RMSE and bias. First a single regression 597 

model was developed and applied to two-years (2014-2015 wintertime) of ACCESS-R 598 

precipitation forecasts. This led to a 7% reduction in the RMSE and a 78% reduction in the 599 

bias. Then, a cluster-based regression was applied leading to a 30% reduction in the RMSE and 600 

an 85% reduction in the bias. 601 

The stepwise-based regression method (Curtis and Ghosh 2011) employed initially seeks a 602 

leading predictor that is able to convey a large portion of the dependent variable information 603 

(i.e. the ACCESS_R precipitation forecasts). Following on, the regression methodology tries 604 

to select another leading predictor to further improve the accuracy of forecasts. While 605 

additional predictors will improve accuracy, they are only added if they avoid redundancy, 606 

collinearity and complexity. It is important to note that all of the tested indicators have already 607 

been utilized as input variables to the clustering algorithm. Having TT as a leading predictor 608 

in C1 suggests that the model systematic error may be mostly associated with the variation of 609 

large-scale stability. Following this logic, the model precipitation overestimation in C4 may be 610 

rooted in misrepresentation of moisture flux. 611 

A potential extension of this work could be to consider the application of statistical 612 

adjustments for forecasts at longer lead times. The ACCESS-VT model only runs for 36 hours, 613 

preventing such testing on the immediate observations and simulations. As the accuracy of the 614 
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ACCESS system continues to improve, the main value of such statistical analysis may be in 615 

the identification of the source of systematic errors in the system. 616 

 617 
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Figure captions: 774 

 775 

Figure 1. a) Map of the Snowy Mountains analysis region (red box) in southeastern Australia 776 

showing the closest upper-wind site of the BoM to the Snowy Mountains (Wagga Wagga). b) 777 

Location of the seven alpine rain gauges used in this study (enlarged red box). 778 

 779 

Figure 2. Probability distribution of daily winter rainfall (left panel) and 2Ĥ (right panel) for 780 

next 24 hours after sounding measurements over the period 1995-2015 based on six large-scale 781 

synoptic indicators.  782 

 783 

Figure 3. a-d) Distribution of 2Ĥ  for each cluster, e) stacked histograms of 2Ĥ  variable for 784 

different clusters, f) the 2Ĥ distribution for No-Rain days and Rain days. ( 2Ĥ >25, occurring 785 

~7% of the time and mostly in C4 are not shown). Note the different axes in (e and f) compared 786 

to (a-d) 787 

 788 

Figure 4. Composite charts of MSLP in hPa (Top) and TW in ℎ𝑃𝑃𝑃𝑃. 𝑠𝑠2.𝑚𝑚−1 (bottom), showing 789 

total moisture up to 250-hPa, for the four classes. Era-Interim data (00UTC, May-October, 790 

1995-2015) at a spatial resolution of 0.75° × 0.75° used to construct composite maps of only 791 

the top 25% of days of each cluster with the shortest Euclidean distance to the cluster centre. 792 

The corresponding maximum and minimum values of the examined variables are shown on top 793 

of the individual panels. 794 

 795 

Figure 5. As in Figure 4, but showing QV and QU (westerly and southerly moisture flux up to 796 

250-hPa) for the four classes. Color-filled contours shows the magnitude of the moisture fluxes 797 

(�𝑄𝑄𝑄𝑄2 + 𝑄𝑄𝑄𝑄2 ) in Kg s-1 m-1 and arrows of the same length represent the moisture flux direction. 798 

 799 

Figure 6. As in Figure 4, but showing total totals index (TT) in ℃ and root-mean-square wind 800 

shear between 850 and 500 hPa (SH) in 1 𝑠𝑠⁄ .  801 

 802 

Figure 7. A) Histogram and scatter plot of precipitation and 2Ĥ , B & C) the marginal CDF 803 

distributions of precipitation and 2Ĥ . D) Joint frequency using Frank PDF copula. All the 804 

graphs are based on the data from 1995-2015 (for rainy days). 805 

 806 
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Figure 8. Histograms of goodness-of-fit criteria (RMSE, r2, and Bias) based on normalized 807 

values for Model-2_C1 derived from cross-validations with 10000 simulations. The median of 808 

each panel is taken to represent the average values in Table 8.  809 

 810 

 811 

 812 

 813 

 814 

 815 

  816 
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 817 

Table 1. Properties of precipitation gauges sites at high altitudes in the Snowy Mountains. The 818 

mean winter precipitation values are calculated over the period 1995-2015. 819 

Site Start Year Longitude 

(o) 

Latitude 

(o) 

Elevation  

(m) 

Mean winter  

Precipitation (mm) 

Tooma Dam 1992 148.28 -36.05 1221 1156.96 

Geehi Dam 1992 148.31 -36.30 1175 1054.92 

Jagungal 1990 148.39 -36.14 1659 1104.37 

The Kerries 1995 148.38 -36.26 1740 1027.27 

Guthega Dam 1992 148.37 -36.38 1175 881.84 

Guthega Power Station 1994 148.41 -36.35 1320 963.30 

Cabramurra 1955 148.38 -35.94 1482 857.69 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 
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 840 

Table 2. Summary of six synoptic indicators used to represent large-scale environment.  841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

  860 

Variables Abbreviation Formula Unit 

Surface pressure at Wagga Wagga GP Non-Applicable ℎ𝑃𝑃𝑃𝑃 

Southerly moisture flux up to 250 hPa QV 
1
𝑔𝑔
�𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 Kg s-1 m-1 

Westerly moisture flux up to 250 hPa QU 
1
𝑔𝑔
�𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 Kg s-1 m-1 

Total moisture up to 250 hPa TW 
1
𝑔𝑔
�𝑞𝑞𝑞𝑞𝑞𝑞 ℎ𝑃𝑃𝑃𝑃. 𝑠𝑠2.𝑚𝑚−1 

Root-mean-square wind shear  
between 850 and 500 hPa SH �(

Δ𝑈𝑈
Δ𝑧𝑧

)2 + (
Δ𝑉𝑉
Δ𝑧𝑧

)2 𝑠𝑠−1 

Total totals index TT 𝑇𝑇(850)− 2𝑇𝑇(500) + 𝑇𝑇𝑑𝑑(850) Co  
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 861 

Table 3. Main statistical characteristics of daily winter precipitation in mm for rainy days (>0.25mm). 862 

Numbers shown in the brackets are the ACCESS-R results for a 2-yr period. 863 

 Observations (1995-2015) Observations (ACCESS-R)  

(2014-15) 

Month Rainy days’  

Frequency  

Average 

Monthly 

(mm) 

Mean 

Intensity 

(mm/day) 

1st  

Quartile  

2nd  

Quartile  

3rd  

Quartile  

Rainy days’  

Frequency  

Mean 

Intensity 

May 41% 122.5 9.5 6.7 9.8 12.8 51% (55%) 8.8 (8.4) 

June 56% 171.5 10.6 5.7 10.6 14.2 50% (50%) 10.8 (12.0) 

July 63% 179.6 9.7 8.3 9.5 11.7 58% (64%) 8.8 (9.7) 

August 60% 193.1 10.9 9.0 10.6 13.4 55% (52%) 6.3 (5.4) 

September 53% 192.1 11.6 10.0 11.7 13.0 35% (49%) 6.9 (7.4) 

October 44% 143.3 10.0 6.4 9.1 13.1 23% (40%) 8.2 (10.1) 

May-Oct 52% 166.7 10.4 7.7 10.2 13 45% (51%) 8.3 (8.8) 

 864 

 865 

 866 

 867 

 868 

 869 

 870 
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 871 

Table 4. Main statistical characteristics of daily winter rainfall and 2Ĥ across synoptic clusters. 872 

Clusters Frequency Mean 1st Quartile 2nd Quartile 3rd Quartile 

All 

days 

Rainy 

days 

Unblocked* 

All days 

(rainy days) 

Rainfall 

(rainy days) 

mm 

 

Rainfall 

mm 

 
2Ĥ  

 

Rainfall 

mm 

 
2Ĥ  

 

Rainfall 

mm 

 
2Ĥ  

C1 9.9% 93% 63% (66%) 22.94 5.74 0.05 17.48 0.7 29.04 1.7 

C2 22.2% 78% 48% (53%) 10.83 0.63 0.03 4.54 1.11 12.87 3.01 

C3 39.2% 52% 20% (30%) 6.12 0 1.35 0.32 3.33 8.7 3.66 

C4 28.6% 22% 5% (12%) 3.32 0 4.59 0.03 11.1 0.17 27.88 

*Unblocked cases: days with 2Ĥ <1. 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 
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 884 
Table 5. Cross-correlation coefficients between seven synoptic indicators. 885 

 GP SH TT TW QV QU 2Ĥ  
GP  -0.283 -0.361 -0.379 0.223 -0.530 0.338 
SH   -0.136 -0.030 -0.019 0.334 -0.154 
TT    0.516 -0224 0.149 -0.269 
TW     -0.554 0.388 -0.237 
QV      -0.297 0.155 
QU       -0.249 

2Ĥ         
*Bold numbers are significant correlation at significant level of 1%.   886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

  910 
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 911 
Table 6. Linear and Rank correlation coefficients between seven synoptic indicators and 912 
observed precipitation over the period of 1995-2015 (Classification results based on 7-variable 913 
clustering). 914 

   GP SH TT TW QV QU 2Ĥ  
C1 Linear 

Rank 
-.206  
-.261 

.018 

.019 
-.039 
.010 

.176 

.063 
-.482 
-.460 

.194 

.143 
-.198 
-.296 

C2 Linear 
Rank 

-.370 
-.400 

.032 
-.012 

.219 

.311 
.197 
.166 

-.181 
-.161 

.276 

.308 
-.203 
-.355 

C3 Linear 
Rank 

-.288 
-.360 

.002 

.010 
.052 
.210 

.119 

.124 
-.137 
.002 

.144 

.218 
-.180 
-.344 

C4 Linear 
Rank 

-.199 
-.150 

.114 

.151 
-.061 
-.019 

.041 
-.073 

-.153 
.071 

.194 

.161 
-.098 
-.215 

No Class Linear 
Rank 

-.464 
-.555 

.163 

.186 
.232 
.367 

.428 

.376 
-.509 
-.231 

.465 

.469 
-.237 
-.533 

*Bold numbers are significant correlation at significant level of 5%.  No Class: no classification process 915 

has been implemented. 916 

917 
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 918 

Table 7. Performance of ACCESS-R precipitation estimation of observed precipitations over the period of 2014-15 with a value of 0.25 mm for 919 
the rain-day threshold. (Hit, Miss, False Alarm and Correct/Negative values are in percentage) 920 

 

Synoptic classes  

(No. of days) 

All days rain days only No-rain days only 

Hit  

 

Miss 

 

False-alarm *Cor/Neg RMSE 

(mm) 

Bias  

(mm) 

Hit 

rate 

RMSE 

(mm) 

Bias 

(mm) 

False-alarm 

rate 

RMSE 

(mm) 

Bias 

(mm) 

C1 (34) 88 3 0 9 10.2 0.76 97 10.7 0.83 0 0.03 -0.01 

C2 (51) 69 6 10 16 5.2  0.3 92 6.0 0.15 38 1.50 0.73 

C3 (141) 36 6 16 43 2.1 0.1 86 3.2 -0.04 27 0.41 0.2 

C4 (110) 16 6 10 67 2.0 0.4 72 4.1 1.4 13 0.44 0.10 

All days**(336) 40 6 11 43 4.2 0.3 88 6.2 0.42 21 0.58 0.19 

*Cor/Neg: Correct/Negative: model correctly detects no rain days   921 

** All days: all days without implementing the classification. 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 
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 933 

Table 8. Leading predictors in regression equations for different models. 934 

Model 

Leading Predictors using stepwise 

algorithm coupled with BIC criteria on 8 

indicators  

Regression equation 

1 
QU, Prec_Acc 

 

Y = Int. +αQU+βPrec_Acc+γQU×Prec_Acc 

2 

C1 TT, Prec_Acc Y = Int. -αTT+βPrec_Acc+γTT×Prec_Acc 

C2 Prec_Acc Y = Intercept +αPrec_Acc 

C3 QU, Prec_Acc Y =Int.+αQU+β Prec_Acc+γQU×Prec_Acc 

C4 QV, Prec_Acc Y = Int. -αQV+βPrec_Acc+γQV×Prec_Acc 

Int.: Intercept 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

  960 
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 961 

Table 9. Goodness-of-fit criteria for different models for estimating daily winter precipitations over 2014-15 based on ACCESS-R rainy days 962 

(results are only for the test groups). 963 

Classes Models Goodness-of-fit criteria Improvement of model 1 and 2 in compare to  

ACCESS forecast for each criterion (%) 

RMSE 

(mm) 

r2 BIAS 

(mm) 

Hit  

rate 

RMSE r2 BIAS Hit 

Overall 

ACCESS 6.0 0.83 0.68 76 NA 

1 5.6 0.83 -0.15 78 6.7   0.0 77.9 3.1 

2 4.2 0.89 -0.10 84 30.1 7.2 85.3 10.8 

 

C1 

 

ACCESS 10.8 0.67 1.10 90 NA 

1 10.3 0.77 -1.30 93 4.0 14.9 -18.2 3.7 

2 8.2 0.81 -0.60 100 23.5 20.9 45.5 11.1 

C2 

ACCESS 5.9 0.82 0.48 90 NA 

1 5.8 0.84 -0.34 93 2.2 2.4 29.2 2.8 

2 5.7 0.88 -0.19 100 3.9 7.3 60.4 11.1 

C3 

ACCESS 3.0 0.89 0.23 67 NA 

1 2.7 0.90 -0.17 68 7.4 1.1 26.1 2.0 

2 2.6 0.91 -0.04 70 13.5 2.2 82.6 4.1 

C4 

ACCESS 3.9 0.62 1.70 62 NA 

1 3.4 0.62 1.40 66 12.9 0.0 17.6 5.6 

2 2.3 0.69 -0.21 79 42.0 11.3 87.6 27.8 

*NA: Not Applicable 964 
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 965 

Figure 1. a) Map of the Snowy Mountains analysis region (red box) in southeastern Australia 966 

showing the closest upper-wind site of the BoM to the Snowy Mountains (Wagga Wagga). b) 967 

Location of the seven alpine rain gauges used in this study (enlarged red box). 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

 982 

  983 
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 984 

 985 

Figure 2. Probability distribution of daily winter rainfall (left panel) and 2Ĥ (right panel) for 986 

next 24 hours after sounding measurements over the period 1995-2015 based on six large-scale 987 

synoptic indicators.  988 
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 1010 

Figure 3. a-d) Distribution of 2Ĥ  for each cluster, e) stacked histograms of 2Ĥ  variable for 1011 

different clusters, f) the 2Ĥ distribution for No-Rain days and Rain days. ( 2Ĥ >25, occurring 1012 

~7% of the time and mostly in C4 are not shown). Note the different axes in (e and f) compared 1013 

to (a-d) 1014 

  1015 



44 
 

 1016 

 1017 

Figure 4. Composite charts of MSLP in hPa (Top) and TW in ℎ𝑃𝑃𝑃𝑃. 𝑠𝑠2 𝑚𝑚⁄  (bottom), showing 1018 

total moisture up to 250-hPa, for the four classes. Era-Interim data (00UTC, May-October, 1019 

1995-2015) at a spatial resolution of 0.75° × 0.75° used to construct composite maps of only 1020 

the top 25% of days of each cluster with the shortest Euclidean distance to the cluster centre. 1021 

The corresponding maximum and minimum values of the examined variables are shown on top 1022 

of the individual panels. 1023 

 1024 
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 1026 

Figure 5. As in Figure 4, but showing QV and QU (westerly and southerly moisture flux up 1027 
to 250-hPa) for the four classes. Color-filled contours shows the magnitude of the moisture 1028 
fluxes (�𝑄𝑄𝑄𝑄2 + 𝑄𝑄𝑄𝑄2 ) in Kg s-1 m-1 and arrows of the same length represent the moisture flux 1029 
direction. 1030 
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 1049 

 1050 

Figure 6. As in Figure 4, but showing total totals index (TT) in ℃ and root-mean-square wind 1051 

shear between 850 and 500 hPa (SH) in 1 𝑠𝑠⁄ .  1052 
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 1057 

 1058 

Figure 7. A) Histogram and scatter plot of precipitation and 2Ĥ , B & C) the marginal CDF 1059 

distributions of precipitation and 2Ĥ . D) Joint frequency using Frank PDF copula. All the 1060 

graphs are based on the data from 1995-2015 (for rainy days). 1061 
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B C
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Frequency
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 1062 

Figure 8. Histograms of goodness-of-fit criteria (RMSE, r2, and Bias) based on normalized 1063 

values for Model-2_C1 derived from cross-validations with 10000 simulations. The median of 1064 

each panel is taken to represent the average values in Table 8.  1065 
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