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Abstract

In computer vision and image processing, alignment of images plays an impor-

tant role in different day to day life applications such as image registration and

image matching applications. In image registration applications, alignment brings

similar points of images into correspondence, while in image matching applications

alignment acts as an intermediate step and it helps in assessing the similarity be-

tween two images. Medical image diagnosis and non-destructive testing for weld

defect identification are two important examples of image registration applications.

In such applications, images are aligned and then a manual inspection is done on

aligned images to make decisions. On the other hand, some of the examples of

applications which automatically match images are logo detection, object recogni-

tion, image retrieval, biometric authentication and identification amongst others.

In these applications, images are first aligned and then matched automatically for

recognition. The motivation of this thesis is derived from this increasing demand

for accurate and efficient image registration and matching in different applications.

Conventionally, images are aligned by using the extracted features of images.

However, the extraction of the features is a difficult and time consuming task as

image processing is required for detection of features. In the case of distorted or

poor quality images, the accurate detection of features can be difficult, whereas,

in partial images, enough features required to confidently align images may be

absent. Another method of aligning images is by using pixel based information

of images. These methods perform well in the cases of partial and low quality

images, however, are computationally exhaustive. The pixel based methods, using

different transforms such as Radon or Fourier transforms, align images by com-

puting the parameters between them. However, a pixel-to-pixel correspondence

between images is mandatory for these methods. Such a correspondence may not

exist due to many factors such as noise in images, available images being partial,
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different regions of an image having different quality and the presence of other ob-

jects in the image. In such cases, the known methods of aligning images may fail.

Therefore, to deal with these challenges, two tasks need to be performed regardless

of whether images have pixel-to-pixel correspondence or not: (i) for image regis-

tration applications, compute the parameters between images not only accurately

but also efficiently to align them; and (ii) for image matching applications where

alignment acts as an intermediate step, accurately and efficiently match images

without aligning them.

In the case, when pixel-to-pixel correspondence exists, the thesis proposes an

efficient transform based method to compute the transformation parameters be-

tween two images for aligning them. The proposed approach is verified on test

images of varying classes and results demonstrate that the proposed method can

compute the parameters accurately and efficiently as compared to the existing

approaches. In order to efficiently match images, the thesis investigates whether

matching can be done without computing all the transform parameters or in other

words without aligning them. This question is answered by mapping an image

into a rotation invariant representation. However, the existing similarity metrics

cannot be used to compute the similarity between images in this representation. A

new similarity metric is proposed to compute the similarity between images. The

effectiveness of the proposed approach is tested on logo datasets. Results indicate

that the approach can achieve the same matching accuracy as efficiently as that of

existing transform parameter based methods. Also, the approach is resilient even

when images contain around 20% noise.

The proposed methods of computing the parameters and matching without

alignment have a basic requirement that images should have pixel-to-pixel corre-

spondence. These methods fail when partial or fragmented parts of full images

are given as input for matching. However, in those images, there may be a few

regions of images which have the required correspondence. Therefore, for efficient
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aligning or matching of such images, we may need to extract those common re-

gions efficiently. Since the images are unaligned, it is a time consuming process

to extract the common region by using existing techniques. To extract common

regions between images efficiently, we have proposed an alignment-free common

region extraction approach. The extracted common region satisfies the required

correspondence and can be used to compute the transformation parameters, if re-

quired, for aligning. The proposed approach can compute the parameters even

when images do not have exact pixel-to-pixel correspondence, while most of the

existing methods fail to perform. The extracted common regions can also be used

for matching images which do not have exact pixel-to-pixel correspondence. For

accurate and efficient image matching, a region-based alignment-free method is

proposed. A single region between images might not be enough to accurately

match them as a small part of given information is used by single region. There-

fore, to improve accuracy, a multiple-region based method is proposed that can

use most of the available information. The effectiveness of the proposed approach

is studied by applying the approach to fingerprint identification systems as the

acquisition of fingerprints can result in partial and low quality images. As com-

pared to the state-of-the-art matching methods, the proposed approach not only

improves the matching accuracy but also improves the computation time on the

same test datasets.

In summary, the thesis has proposed a new paradigm by way of a transfor-

mational approach for image matching applications that can register and match

images with improved accuracy and efficiency and without explicitly extracting

image features. In addition, the proposed method is application independent and

applicable to both full and partial images.
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Chapter 1

Introduction

1.1 Preamble

Image alignment plays a crucial role in several image processing and computer

vision applications [17]. It is a process of bringing two or more images of same scene

taken from different view points and at different time instances into geometrical

agreement. As a result of this, the pixels in two images match the same physical

region depicted in images [18]. It is the stepping stone for many applications such

as image registration, object recognition, biometric recognition, image retrieval,

satellite image analysis and character recognition to name a few. Practically, all

systems which are used to evaluate the images require alignment of images or a

closely related operation as an intermediate step [19].

In image registration based applications where post processing is done manu-

ally, alignment helps in bringing the similar points of images into correspondence

and makes the evaluating process easier, whereas in recognition based applications

in which alignment of images acts as an intermediate step, it helps in matching two

images [14]. Medical image alignment and non-destructive testing image alignment

are two examples of image registration applications, whereas object recognition,

biometric recognition and character recognition are the examples of image match-

1
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ing applications. Moreover, alignment is needed for the integration of images in

different applications such as space image integration [20]. The amalgamation of

images can result in complementary information and therefore improve the per-

formance of decision making process.

In the last few decades, image capturing devices have gone through a rapid

development resulting in a diverse range of obtained images. The availability of

a variety of images has provoked research in image alignment. Due to the ease of

capturing images, advances in data processing, networking and storage technology,

the number of image matching applications has increased. These applications

demand an accurate and efficient image alignment method.

Over the years a large number of methods have been developed for different

types of data and problems in computer vision [21]. These methods have been

separately studied for different applications, resulting in a large body of research.

Predominantly, the methods can be divided into two broad categories, namely,

feature based and pixel based (with or without using transforms such as Radon,

Fourier or Wavelet) [9] [22]. The features of images represent high level informa-

tion, hence it can be used as a measure for aligning images. However, extraction of

features faces a number of difficulties such as requiring extensive image processing

and extracting false features. There is an especially high probability of extracting

false features from low quality images and partial images do not contain enough

features. Because of these issues, the feature based techniques cannot be applied

for matching images captured under different scenarios.

Pixel based techniques are suitable for different types of images irrespective of

pixel to pixel correspondence between them and do not require extensive image

processing like feature based techniques [3]. However, these approaches are com-

putationally expensive [23] [10] [14]. To improve the computation time of pixel

based approaches, different transforms are used which make it easier to compute

the misalignment between images. Recently, a number of transform based meth-
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ods have been proposed which are highly accurate [14]. However, the methods

either depend on pixel-to-pixel correspondence between images or use exhaustive

approaches to align images. Therefore, an accurate and efficient image align-

ment technique which is independent of feature and pixel-to-pixel correspondence

between images is important for different applications of image processing and

computer vision.

In image matching applications such as biometric or object recognition, align-

ment is used as an intermediate step. Several image matching methods based on

alignment of images have been developed by researchers [10] [14]. However, using

alignment in a matching process has many disadvantages. The main ones are: (i)

the time required for aligning the images affects the efficiency of the entire match-

ing process; (ii) most of the alignment methods rely on features of images which in

turn depend on pixel-to-pixel correspondence between images; and (iii) misalign-

ment of images can result in false matching of images. Therefore, for matching

images efficiently and irrespective of the pixel-to-pixel correspondence, it is im-

portant to match images based on their pixel information and without aligning

them.

To recapitulate, accurate and efficient alignment and matching of images with-

out extracting features regardless of pixel correspondence is a challenging task.

The next section introduces the issues and challenges faced in accurately and effi-

ciently aligning and matching images.

1.2 Issues and Challenges

In computer vision and image processing, alignment of images plays a vital role [24]

[22]. Alignment of images is a process of transforming one image to the coordinate

system of the other image. The alignment of images has a different use in different

applications such as in object recognition it helps in matching two images whereas
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in image registration it brings the similar points of the images into correspondence

[14]. The alignment of images seems a clear problem that should have a universal

solution, however, this is still far from the state of the art. Due to an increase in

the number of image matching based applications, image alignment has become

a complex problem that acknowledges a variety of solutions. Over the past few

decades, research in image alignment has substantially increased due to a growing

availability of digital images in different computer vision applications.

The earliest method of aligning images was manual alignment in which the dis-

tinctive points in images are selected manually prior to these points being used to

compute the geometrical transformations present between images. Due to its ease

of implementation, this method is widely used in the remote sensing community.

However, this method is laborious and prone to error. That makes it difficult to

process large amounts of data [9] [22]. Therefore, researchers have developed au-

tomatic image registration methods. As discussed earlier, image alignment can be

classified into different categories: feature based and pixel based. Feature based

approaches identify the correspondence among features of images. Whereas, pixel

based approaches use intensity patterns of pixels by means of correlation and by

computing the transformation parameters between sensed and reference images

[25].

Numerous researchers have worked on feature based methods in different fields

such as pattern recognition, computational geometry and image processing [26].

These methods mainly consist of three steps: (i) extraction of reliable features

in images; (ii) matching of features; and (iii) alignment of the images based on

matched features [25]. One of the preliminary steps is the detection and extraction

of features in images. This means the images are represented by a set of feature

points. Generally, feature points represents the high-content information that can

be represented in two directions simultaneously such as line intersection or corners.

Many operators have been developed to detect features. Commonly used detectors
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are Harris and Stephens [27] and Forstner and Gulch [28]. Schmid et al. [29] have

evaluated a number of feature point operators for their repeatability and found

that the Harris operator is the most repeatable. In 2004, Mikolajczyk and Schmid

[30] have extended the Harris operator for the affine transformations. The feature

points are generally application specific. In object recognition, feature points are

commonly represented by corners, edges or T-points. The most common methods

of detecting these features are discussed in [2] [31] [27] [32]. The Scale Invariant

Feature Transform (SIFT) descriptor has been widely used for many image reg-

istration applications. In 2006, Yang et al. [33] used SIFT for the extension of

the dual bootstrap Iterative Closest Point (ICP) originally developed for image

registration. However, in fingerprint recognition, singularities or minutiae points

are used as feature points [3]. Matched feature points are used as reference points

in both images for aligning them. However, there are issues related to these ap-

proaches such as (i) accurate detection of reliable features is very difficult; (ii)

detection of features is time consuming as it requires extensive image processing;

(iii) images which do not have exact pixel-to-pixel correspondence such as par-

tial images may not consist of enough features required for alignment; and (iv)

application dependence. These issues complicate the process of aligning images

and affect the accuracy and efficiency of the image matching process. Therefore,

aligning images using pixel information of images is a better option.

Another major method of registering images is pixel based alignment that is

based on the correlation of images [17]. These approaches use the smaller regions of

images for matching purposes and therefore, it is applicable to all types of images

regardless of images having pixel-to-pixel correspondence or not. Correlations

compute the similarity between images by comparing the pixel intensities [34]. In

the absence of reliable features, correlation is a trustworthy method of aligning

images. The correlation between two images is greater if and only if the amount of

pixel correspondence is large. For example, when correlation is used for aligning
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fingerprints [10], in order to find the best pixel-to-pixel correspondence between

sensed and reference images, the sensed image needs to be rotated by each possible

angle and compared with the reference image. This is an exhaustive approach that

makes it practically impossible for real time applications. Lucas et al. [35] have

developed another pixel based alignment algorithm namely optical flow that has

been used for aligning images in many applications. However, solving optical

equations is a time consuming process. Although, the correlation based approach

is widely used approach for image alignment, it has limitations that need to be

addressed. The brute-force searching for optimised alignment is computationally

expensive. The number of operations required for computing the correlations

depends on the size of regions of image under consideration and number of search

windows. It is acceptable for smaller sized regions. However, developing a faster

pixel based alignment method is still a challenging problem. Moreover, the basic

correlation measures are affected by noise and therefore, more statistically complex

similarity measures are required.

Transform-based registration methods solve some of the issues of correlation

based approaches. These methods align the images by computing the underlying

transformation parameters. These methods are based on the premise that infor-

mation in the transformed image makes the geometric transformation easier to

compute. The commonly used transforms are Fourier, Wavelet and Radon [36].

These approaches compute the underlying transformation parameters using the

properties of the transforms. Many approaches based on transforms have been

proposed in the literature that do not require the extraction of features of im-

ages. Recently, Radon and Fourier transforms have been used by researchers for

computing the transformation parameters. In [37], Fourier phase matching is used

to register the computed tomography and radiography projections which has the

ability to allow defect detection. However, this method is only able to find the

translation between two images. Even in translation it is difficult to compute the
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large displacements. Chen et al. [19] have used the Radon transform with the

Fourier transform to register the images. The results of this approach are fairly

less accurate on some images [14]. Mooser et al. [38] have developed a method that

can deal with all degrees of freedom of transformation. The parameters are esti-

mated as an optimization problem which uses a region based optimizer. However,

the error in estimation of both parallel and fan beam geometries is very large.

Estimation of the transformation parameters relating two images using Radon

projection has gained attention recently. Actually, working directly with Radon

projections eliminates the need for reconstruction of images which is prone to

computationally exhaustive reconstruction artefacts. A method of computing the

parameters for a binary image subjected to translation, rotation, reflection and

scale by using only the Radon projections is proposed in [39]. However, the objec-

tive function used to compute the rotation angle cannot be generalized for angles

in the range [0, 2π] [14]. In [14], authors have proposed a method that can find a

rotation angle lying between [0, 2π] without additional computation unlike those

used in [39]. The method is highly accurate and robust to noise, but the process

of estimating the parameters is computationally expensive which slows down the

entire alignment process. Not only this, most of the above methods are appli-

cable to only those images which have pixel-to-pixel correspondence. Applying

these methods to the images without pixel-to-pixel correspondence such as partial

images will result in inaccurate parameter estimation.

As discussed above, the existing methods either are not accurate or are compu-

tationally expensive. Therefore, developing a pixel based alignment method that

computes the parameters in less computation time without affecting the accuracy

and is also applicable to images which do not have pixel-to-pixel correspondence

is still a challenging problem.

The alignment of images is used as an intermediate step in matching the images.

Not only does the computation time needed for aligning the images affect the
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overall efficiency of the matching process, but also misalignment can result in false

matching of images. Moreover, the parameter based alignment methods are not

applicable to partial images whereas feature based methods find it difficult to have

enough features in such images. Therefore, matching all types of images efficiently

and accurately without extracting features is still a challenging problem. For faster

matching of images, it is better to match the images without aligning them and

irrespective of the pixel-to-pixel correspondence between them. This will not only

result in matching the images accurately and in less computation time, but will

also match the images whether the images have pixel-to-pixel correspondence or

not.

1.3 Motivation

Due to the rapid increase in the number of images, a large number of image match-

ing applications have been developed. One of the recent applications is unlocking

iphones using fingerprints or face images that needs accurate and effiicent match-

ing of images. The motivation of the thesis is derived from this increasing demand

for accurate and efficient image alignment and matching in various applications.

The false matching or misalignment of images can result in severe consequences.

Some of the best examples of image registration where high accuracy is demanded

are alignment of space images in astrophotography, brain image alignment in neu-

rosurgery where an error of even 1o can result in wrong star localisation or wrong

tumor spatial limits, respectively [14].

For personal identity authentication these days, not only electronic devices but

many large organisations have started using biometrics. The false matching of

images can cause loss of private information or breaches in security. On the other

hand, wrong matching of images in applications such as criminal identification can

destroy someone’s life. In 2004, a lawyer named Brandon Mayfield was falsely
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convicted for Madrid train bombings. At the crime scene, Spanish authorities

found some fingerprints on a plastic bag and these fingerprints were matched to

the FBI database. To one of those fingerprints 20 possible matches were found

in the database and the top match was that of Brandon Mayfield. The FBI

declared the match as a 100% match to his fingerprints, which were taken as

a standard procedure when he joined Army, and arrested him. This happened

due to mismatching of images because the fingerprints found at the crime scene

were unclear and partial. In many other applications, images are captured in

uncontrolled environment such as images captured by smart phones. The images

captured by smart phones can be unaligned. Dirt on the camera can distort the

images. These issues of images increase the complexity of the matching process

and result in mismatching of images.

Generally, the mismatching of images results due to noise present in images

and the absence of required pixel correspondence between images. Accurate and

efficient matching of such images by manual inspection and existing feature based

automatic image matching methods is quite difficult. This is because the accurate

manual inspection of a large number of images is tiresome and time consuming.

Also, using the automatic existing image matching techniques is not accurate as

they rely on extracting features. Different features are extracted for different types

of applications. For example, object recognition techniques extract the interesting

feature points such as corners, edges, t-points or crosses in the images, whereas

fingerprint recognition techniques use minutiae, singularities or pores present in

fingerprints. The extraction of these feature points requires extensive image pro-

cessing which is time consuming and affects the efficiency of matching process.

Moreover, due to the absence of required pixel-to-pixel correspondence in images

most of the existing techniques do not work. In addition, when images do not have

high pixel-to-pixel correspondence then relying only on a few features of images

is not enough. These issues motivate us to use pixel based information of images
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which does not require extensive image processing and is independent of applica-

tions. Hence, a pixel based matching method is required which can accurately and

efficiently match the images without extracting features and without bothering

about pixel correspondence and noise present in images.

1.4 Research Objectives

The current techniques face challenges in matching partial images which do not

have exact pixel-to-pixel correspondence. Either the methods do not perform well

in terms of accuracy or are computationally expensive. Therefore, as discussed

earlier, to deal these issues a pixel based technique is a better approach. This the-

sis overcomes the above limitations by proposing a pixel based method that can

efficiently align and match images without extracting the features with a perfor-

mance better than the existing techniques. It is applicable to images irrespective

of the pixel-to-pixel correspondence present between them. In order to achieve the

aim of this research, two objectives have been formulated as follows:

Figure 1.1: The block diagram of research objectives
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i) Compute the transformation parameters between images to accurately and

efficiently align them and match the aligned images.

ii) Develop a image matching method that can accurately and efficiently match

images without aligning them.

The block diagram of research objectives is shown in Figure 1.1. For matching

images without needing to align them, the existing similarity metrics cannot be

used as they need aligned images, therefore, a new similarity metric is required

that can compute the similarity between unaligned images. On the other side, in

the case of partial image alignment and matching, a number of other issues are

faced as they have only a part in common between them. The issues are:

(a) How to efficiently extract common regions between images without aligning

them?

(b) What should be an appropriate shape of regions to have pixel-to-pixel cor-

respondence?

(c) How to compute the similarity between unaligned partial images by using

most of the given information?

1.5 Research Contributions

The contributions of the thesis can be summarized as follows:

i) The method of computing the transformation parameters is divided into two

categories based on the pixel-to-pixel correspondence present between them:

(a) In order to accurately and efficiently align the images without extracting

features, the thesis has developed a transform based method to compute

the transformation parameters between images. Subsequently, to deal
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with noise present in images, the robustness of the proposed method to

noise is also verified. Moreover, to substantiate the application indepen-

dence of the proposed approach, the method is evaluated on images of

different applications. However, this approach is applicable only when

images have pixel-to-pixel correspondence.

(b) In order to align the images which do not have pixel-to-pixel correspon-

dence, a region based approach is developed. For that, a method to

extract the common region between unaligned images and an appro-

priate shape of the region for extracting a common region is proposed.

For efficient detection of a common region, an optimization technique is

also proposed. The extracted common regions can be used for aligning

the images which do not have pixel-to-pixel correspondence where most

of the existing methods fail to perform.

ii) The method of alignment-free matching of images is classified into two cat-

egories based on pixel-to-pixel correspondence present between them:

(a) In order to match the images accurately and efficiently, an alignment-

free transform based method is proposed for images having pixel-to-

pixel correspondence that can match the images without computing all

the parameters and without extracting features. As images are matched

in the transformed domain and without using features, a new similar-

ity metric is proposed to compute the similarity between images. In

addition, a method to further improve the efficiency of the system is

presented. The effectiveness of the proposed method is verified by test-

ing on logo datasets.

(b) In order to match the images that do not have pixel-to-pixel correspon-

dence, a region based alignment-free method is proposed. For matching
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images, a method of computing global similarity based on local similar-

ities is proposed. Moreover, the effect of multiple regions on accuracy is

studied. Results show that overlapping regions can improve the accu-

racy. The effectiveness of the proposed method is studied by applying

to standard fingerprint datasets. Its robustness to noise is also demon-

strated.

1.6 Thesis Organization

The rest of the thesis is organised as follows:

Chapter 2 introduces the fundamentals of image matching from the perspective

of the thesis, and provides a review of relevant literature in the area of image

registration and matching. Different approaches to improve the image registration

and matching in different applications are discussed in this chapter. The chapter

demonstrates the challenges in aligning and matching images regardless of pixel-

to-pixel correspondence.

Chapter 3 discusses the theoretical foundation of computing the parameters

used for aligning images having pixel-to-pixel correspondence. The effectiveness of

the method is tested on images of varying classes. Results are compared with the

state of the art methods. Also, the robustness of the proposed method is tested

with respect to different types of noises.

Chapter 4 provides the theory of alignment-free transform based image match-

ing methods for matching images having pixel-to-pixel correspondence. A similar-

ity metric is developed that can compute similarity between images in the trans-

formed domain. The chapter includes discussions and evaluation of the results

of the proposed technique by running experiments on logo datasets. Results are

compared with the existing techniques. In addition, robustness of the proposed
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method to noise is verified. A method to further improve the efficiency is also

proposed.

Chapter 5 describes a method to align the images which do not have pixel-to-

pixel correspondence. The theory of extracting the common information (common

region) between images and the appropriate shape of the region is discussed. Per-

formance enhancements are proposed to optimize the process of extracting the

common region.

Chapter 6 discusses a region based alignment-free matching method for match-

ing images which do not have pixel-to-pixel correspondence. The methods of using

all the given image information is proposed. The method is tested on standard

fingerprint datasets. The chapter also includes strategies of optimizing the image

matching method.

Finally Chapter 7, summarizes the contributions made by the thesis and dis-

cusses possible future research directions.



Chapter 2

Background and Related Work

2.1 Preamble

Chapter 1 argued that accurate and efficient alignment and matching of images is

essential for different applications. The aim of this chapter is to review existing

techniques and discuss the main issues and concepts relating to the improvement

of the alignment and matching of images. Since the aim of this thesis is to improve

the alignment and matching accuracy and efficiency, evaluating existing techniques

is very important.

Depending on the features used for aligning and matching images, we have

divided the existing techniques into two main categories namely, feature based

and pixel based techniques. We argue that current techniques fail to accurately

and efficiently align and match images. The full or partial natures of the images

considered signify that the images can or cannot have pixel-to-pixel correspondence

respectively.

Let us suppose two images IS (sensed1) and IR (registered) are provided for

aligning or matching. For aligning images, either the features of images are used

or similarity transformation parameters are computed. However, both of these

1sensed or transformed are used interchangeably

15
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methods either are computationally exhaustive or not applicable to partial images.

On the other hand, in an image matching process a similarity score is computed.

The score determines whether the images are matching or not. However, before

computing the similarity score, the images need to be aligned. The alignment

process may affect the accuracy and efficiency of the matching process. In addition,

due to lack of information present in partial images, the accuracy of matching can

also be affected which is essential in recognition processes.

The chapter has been structured as follows. In Section 2.2, the general image

matching process and in Section 2.3 categories of matching processes are discussed

to help understand the following discussions. In Section 2.4, the current feature

based techniques are discussed. Furthermore, the pixel based techniques are dis-

cussed in Section 2.5. There are many existing techniques which use both types

of features. The most relevant ones are discussed in Section 2.6. Learning based

techniques are discussed in Section 2.7. Following the hybrid techniques, a com-

parison of existing techniques is discussed in Section 2.8. Finally, in Section 2.9,

the conclusion of this chapter is presented.

2.2 Image Matching Systems

In this section, the general image matching system is discussed. Image matching

is the research foundation of different computer vision applications such as object

recognition, biometric recognition, image registration, 3D reconstructions, etc [40].

It has wide spread use in medical imaging, remote sensing, artificial intelligence,

etc. In an image matching process, the alignment of images is a determining step

(as shown in Figure 2.1), as alignment simplifies the matching process. The motive

of image alignment is to find the best possible transformation between images that

best aligns the structures in input images. One of the causes of misalignment in

images is comprised of the rotation and translation differences between them. The
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Figure 2.1: The block diagram of an image matching process

perfect alignment of images can eliminate the variations present in images (such

as rotational and translational difference) and greatly improve the efficiency and

accuracy of an image matching system [3]. Alignment of images is required in

different applications which can be broadly divided into two types: (i) registration

applications in which images need to be aligned, where a final decision is made

manually on aligned images; and (ii) recognition applications where images are

aligned and a similarity score computed to find the matched image.

The patch based translational alignment method developed by Lucas and Kanade

in [35] is an early example of a widely used image alignment method. Variants

of this method have been used in different motion-compensated video compres-

sion schemes [41]. Applications such as video summarization, video compression

and video stabalization are based on similar parametric motion estimation tech-

niques [42][43][44]. In the mid 1990s, alignment methods started being used for

the construction of wide-angle seamless panoramas from regular hand-held cameras

[45][46]. The recent work in this area has directed the computation of similarity

transformation parameters between the images for computing the parameters.

The methods of computing parameters between images can be classified into

two categories: feature based matching and pixel based matching. The feature

based matching techniques use the extracted features of images to align them,

whereas, pixel based matching techniques use the gray scale information of images

[47][48]. The existing feature based techniques use the extracted features such as



18

corners, edges, minutiae etc. for alignment of images [49]. However, detection

of these features accurately requires high quality images that are not common in

real life. In addition, the acquired images may be partial. The fragments might

not have enough required features for alignment. Hence, these techniques will

either not be applicable or result in incorrect alignment. On the other hand,

pixel based approaches can align the images accurately without using any specific

feature [10]. However, these approaches use brute-force searching for aligning

images which is very time consuming. These techniques try to minimize pixel-

to-pixel dissimilarities between images, whereas feature based techniques extract

the image specific features and then match the images [50][51][52]. The biggest

benefit of using a feature based approach is that these techniques have the ability

to automatically find the overlap existing between images.

As shown in Figure 2.1, image matching is a process of comparing two images

and computing a similarity score between them. Once the images are aligned, the

similarity score is computed between images and based on the similarity score the

matching image is identified. Many image matching techniques have been proposed

in literature (discussed in Section 2.3). Due to noise and other variations in the

images, it is not possible that two images match exactly. Therefore, similarity

between two images is measured in terms of a matching score where a higher

matching score represents greater certainty that two images are similar.

2.3 Categorization of Image Matching Techniques

The previous section discussed that alignment of images is a basic requirement for

matching images. The main idea of the alignment process is to search iteratively

for the geometrical transformation that when applied to the transformed image

optimize (minimize or maximize) the similarity metric. One of the oldest and most

widely used application of alignment in computer vision is the seamless photo-
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mosaicing to make beautiful ultra wide-angle panoramas [9]. These days, it is

used in other computer vision applications such as texture analysis, medical image

diagnosis, object recognition, image retrieval and so on. In the past decades, the

research into image registration has had enormous growth.

Manual alignment of the images is the earliest technique of aligning images. For

that, distinctive points are selected manually and these points are used for finding

the correspondence between images. For example, in manual fingerprint identifi-

cation, human experts examine the fingerprints starting from level 1 features (such

as minutiae) to level 3 features (known as lower level features) [3].

Subsequently, automatic image matching methods were developed. These were

inspired by manual procedures of image matching. However, there are many other

techniques which are specially developed for automatic matching of images. Most

of the existing techniques do not face any difficulty in matching good quality

images. However, the matching of partial and poor quality images reliably is still

an unsolved problem. For instance, the coarse evaluation of the existing fingerprint

matching techniques on a FV C2000 database shows that 80% of the false rejection

errors are made by 20% of the low quality fingerprints present in the database [3].

Matching methodologies can be classified using feature space image informa-

tion. This information can be intensity of the pixels, intensity gradients or the

structures extracted from the images such as edges, corners etc. Methodologies

based on the pixel intensity are called intensity (pixel) based and those based

on geometrical structures are termed as feature based [8]. The advantages and

limitations of each approach are discussed below.

2.4 Feature based Techniques

Feature based matching techniques are by far the most commonly used and re-

searched techniques in image matching. These approaches have been used since
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the early days of stereo matching [53] [54]. Nowadays it is used for different appli-

cations such as image stitching, image registration, biometric recogntion amongest

other [52] [51]. It is a mature approach that has been used for years and is based

on extraction of the salient features of images.

Significant lines (roads, rivers, region boundaries), point (region corners, points

on high curvature, line intersections) or significant regions (lakes, fields, buildings

or shadows) are generally considered as features in images. In most cases, the main

algorithms of feature detection take the line intersections or centroids of regions

segmented from an image or the local maxima of Wavelet transforms as feature

points. Some of the famous line detectors are the Canny edge detector [55] and

the Laplacian of a Gaussian based detector [56]. The regions are often represented

by the weighted averages of pixel values which are invariant to the geometrical

transformations [57]. Moreover, features need to be distinctive, easily extractable,

uniformly distributed in images and invariant with respect to time [2] [31].

In feature based techniques, first the features of images are extracted (discussed

in Section 2.4.1), second these features are used to find geometrical transformation

parameters between images to align them (discussed in Section 2.4.2) and finally

matching is performed by computing similarity scores (discussed in Section 2.4.3).

2.4.1 Feature Detection

For matching images, different types of features can be extracted from images de-

pending on the applications. For example, in object recognition, generally corners

or edges are extracted from images [9], whereas in fingerprint recognition minu-

tiae and singularity points are extracted [58]. Many feature detectors have been

developed in the literature and some of them are discussed below.

Feature points are the well defined positions in images that can be detected

robustly. Repeatability is the most desirable property of detectors so that detectors
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can detect the same features in transformed (sensed) images as well. Feature

detection is actually used as an initial step in many computer vision applications.

One of the earliest detectors, developed in 1983, extracts corner like features in

images [59]. This corner detector was modified in [27]. Since then the Harris

detector is widely used for image matching tasks. The detector is based on the

eigenvalues of the Harris matrix which is given by:

A =

 〈I2x〉 〈IxIy〉

〈IxIy〉 〈I2y 〉

 (2.1)

where Ix and Iy are the partial derivatives of image I in x and y direction re-

spectively. The angle bracket notation takes the average over a patch around the

current pixel into consideration. For a point to be an interesting point, both eigen-

values of the Harris matrix at that point should be large [27]. Later, a technique

was proposed that used a combination of translational and affine-based patch align-

ment for tracking the feature points through an image sequence [60]. The feature

points invariant to scale were proposed in [2] and [30] which are very helpful for

matching images captured at different scales. The easy way to get scale invariance

is to find the scale-space maxima of the Difference of Gaussian (DoG) computed

on a sub-octave pyramid [61].

FAST (Features from Accelerated Segment Test) is a robust corner detector

which performs faster than most existing detectors for real time applications, but

it is not scale invariant [1]. In this detector, for a point p to be a feature point,

consider a circle of 16 pixels (represented by x) around this point and select a

number n (originally 12) and threshold t (shown in Figure 2.2). If n contiguous

pixels of a circle are brighter than Ip + t or darker than Ip − t where Ip is the

intensity of point p , then p is a corner. This method does not reject a sufficient

number of candidates for n < 12. Multiple features are detected near to each other.
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Figure 2.2: Corner detection in an image patch by using a twelve-point segment
test [1]

This problem is solved by learning a corner detector in which the ID3 algorithm

[62] is used to find a decision tree. The tree is used for fast detection of features

in test images. To remove the problem of detecting feature points nearer to each

other, a score function V is calculated as given in Equation 2.2.

V = max

 ∑
x∈Sbright

|Ip→x − Ip| − t,
∑

x∈Sdark

|Ip − Ip→x| − t

 (2.2)

where, Sbright and Sdark are the sets of brighter and darker pixels, p→ x represents

the pixel at position x relative to p . The feature points with high values of V are

kept and the others are ignored. Corners are not the only type of features that can

be used for aligning the images. To estimate the similarities between the images,

line segments can also be used [63]. These detectors consider the points at edges

as feature points, because at edges the brightness of an image changes abruptly.

Edge detection can be of two types, search based and zero crossing based [64]. A

search based method computes the edge strength that is generally the magnitude

of the first order derivative and after which local directional maxima are found.

In a zero crossing based approach a point is detected as interesting point if the

second order derivative at that point is zero. Sobel [65], Marr Hildreth [56] and

Canny [55] detectors are examples of widely used edge detectors. The Canny edge
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detector [55] is one of the famous search based detectors in which non-maximal

suppression is used for finding the local maxima. Non-maximal suppression is a

method of eliminating the points that are not lying on edges. Finally, hysteresis

thresholding was used for finding the real edges. Hysteresis thresholding uses two

thresholds, maximum threshold and minimum threshold. Edges having a gradient

magnitude more than the maximum threshold are considered as real edges; edges

having a magnitude less than the minimum threshold are discarded. But if the

magnitude lies between both thresholds then an edge is selected or discarded on

the basis of connectivity, which means if the edge is connected to the real edge

then it is considered as an edge otherwise it is discarded.

Affine invariant regions or salient regions are also used to find the correspon-

dence between images in [66] [67]. Blobs are the regions in an image which are

different from other parts of the image either in brightness or colour. Laplacian of

Gaussian (LoG), Difference of Gaussian (DoG) and the determinant of the Hes-

sian are the famous blob detectors. Parker and Crowley [68] used scale space and

detected peaks and ridges by changing the scales. Later, Lindeberg [69] studied

the need of proper scale. Lowe [2] invented the Scale Invariant Feature Transform

(SIFT) descriptors which detect the scale and rotation invariant features of an

image. SIFT uses DOG which is calculated by simply subtracting the Gaussian

smoothed images at different scales as shown in Figure 2.3. For finding the local

maxima or minima, non maximal suppression is used. Non maximal suppression

compares a pixel with 26 other pixels (8 from DoG of the same scale, 9 from DoG

of a larger scale and 9 from DoG of a smaller scale). If the pixel is maximum or

minimum among all the pixels then it is considered as a local maximum or local

minimum.

Later, Bay et al. [31] have developed the Speeded up Robust Feature (SURF)

descriptor which uses a Fast Hessian detector on an integral image. The integral

image and the Hessian matrix enhance the accuracy and decrease the computation
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Figure 2.3: In each octave the same image is convolved with a Gaussian of in-
creasing scale, and finally these smoothed images are subtracted for producing a
Difference-of-Gaussian [2].

time. The integral image I∑(X) at a point X=(x,y) is

I∑(X) =

i≤x∑
i=1

j≤y∑
j=1

I(i, j) (2.3)

where I(X)is the input image. The Hessian matrix at a given point X = (x, y) is

H(X, σ) =

Lxx(X, σ) Lxy(X, σ)

Lxy(X, σ) Lyy(X, σ)

 (2.4)

where Lxx(X, σ) is the convolution of the integral image with the second order

derivative of a Gaussian ∂2

∂x2
g(σ) at point X and scale σ. Lxy(X, σ) and Lyy(X, σ)

are similarly defined. For finding accurate feature points, all pixels where the

determinant of the Hessian matrix is less than the threshold value are rejected

[31]. After thresholding, local minima or maxima are found by non-maximal sup-

pression. In SIFT [2] and SURF [31] responses for all pixels at all scales are not

calculated, but this is not the case with CenSurE (Center Surrounded Extremas)
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Figure 2.4: Ridge ending and bifurcation demonstrated in terms of binary pixels

[70]. CenSurE calculates responses at all scales and all locations, while maintaining

the accuracy.

Another important application that matches images by extracting features is

fingerprint identification. There are numerous types of features in fingerprints, but

all are not commonly used because of their uneven distribution in the fingerprint.

The most commonly used feature is a minutia. The common minutiae are ridge

endings or ridge bifurcations [3] as shown in the Figure 2.4. Minutiae can be

extracted from a binarized or gray scale image [3]. There have been many minutiae

extraction techniques such as chaincode [71], ridge flow and local pixel analysis [72],

crossing number [73] to name a few. However, the simplest method of checking

a pixel to be a minutia is using the 3 × 3 window around that pixel (shown in

Figure 2.4). If the central pixel is 0 then check the other 8 pixel values in the

window. If the central 0 is accompanied by only one more 0 in the window then

this pixel is a ridge ending whereas if the central 0 is accompanied by 3 more zeros

then this pixel is ridge bifurcation [3].

A minutia is considered a triplet m = (x, y, θ) where (x, y) represents the loca-

tion of a minutia and θ represents the angle of the minutia. Let FVR and FVS be

the minutiae feature vectors for the reference and sensed images, respectively. Each

component of the feature vector represents a minutia, however, minutiae can be

represented by different attributes such as location, angle or type of minutiae. The

most commonly used attributes are location and angle (as shown in Figure 2.5).
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Figure 2.5: The representation of a minutia (ridge ending and ridge bifurcation)
[3]

Let r and s represent the number of minutiae in FVR and FVS respectively.

FVR = m1,m2, ...,mi, ...,mr, where,mi = xi, yi, θi, for i = 1, 2, ....r (2.5)

FVS = m′1,m
′
2, ...,mj, ...,m

′
s, where,m

′
j = x′j, y

′
j, θ
′
j, for j = 1, 2, ....s (2.6)

A minutia m′j in the sensed image is supposed to match with minutia mi in the

reference image if and only if:

dist(m′j,mi) = sqrt((x′j − xi)2 + (y′j − yi)2) ≤ r0 (2.7)

angle(m′j,mi) = |θ′j − θi| ≤ θ0 (2.8)

2.4.2 Feature Matching

Once the features are detected in images, the next step is to match the sensed image

to the reference image. Many methods have been developed in the literature. The

important ones are discussed here.

Initially discussed are spatial relationship based methods that use metrics such

as distance between feature points for matching. These are usually used when the

locations of detected features are ambiguous or if the neighbourhood of feature

points is locally distorted. In [74], a graph matching algorithm is used for regis-
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tering the images in which transformation parameters with the highest scores are

set as a valid estimate. Another method of matching the feature points is a clus-

tering technique which tries to match points connected by edges or line segments

[75]. In both the sensed and reference images, for every pair of feature points,

the transformation parameters that map points to each other are computed and

represented as a point in the space of transform parameters. The transformation

parameters that closely map the highest number of features tend to form a clus-

ter, whereas mismatching fills the parameter space randomly. The centroid of the

cluster is used to represent the most probable value of matching parameters. In

[76], Chamfer matching is developed for each line feature detected in images which

are matched by means of the minimization of generalised distance.

In [77], a relaxation approach based on feature points is proposed in which

the confidence level of each corresponding feature pair is adjusted based on the

consistency with other pairs. The confidence level is modified by an iterative

approach until a certain criterion is met. This approach is quite accurate and

robust as regards the non-linearities of the image, but the iterative nature makes

this approach very slow and not suitable for most applications. Ratha et al.

[78] used a quadruplet transformation space (dx, dy, θ, s) that is translated along

the x and y directions, rotation (θ) and scale (s) parameter, respectively. The

finite sets of all possible values for 4 components are pre-defined to reduce the

computational complexity. To find the transformation parameters between two

images, each possible transformation is tried on each pair of feature points and is

determined by:

(δ∗x, δ∗y, θ∗, s∗) = argaxi,j,k,lA[δix, δjy, θk, sl] (2.9)

Jiang and Yau [79] used the local structure based matching by deploying two

neighbouring features around the central feature. Many parameters of two neigh-
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bouring features relative to the central features are noted such as angle, distance,

ridge count etc. The vector of feature point mi that has mj and mk as nearest

neighbours is represented by

Vi = [dij, dik, θij, θik, φij, φik, ti, tj, tk, nij, nik] (2.10)

where, dab represents the distance between the two feature points, φab represents

the angle difference between the angle θa of feature ma and the direction of the

edge between ma and mb, ta represents the type of feature ma and nab represents

the ridge count between ma and mb. A weighted distance is computed between the

vectors of each possible feature pair. The best matching pair is used for aligning

the rest of the features. The feature vectors of the aligned pairs are compared to

get a final score. This whole process is followed by a consolidation step to check if

the locally matched features also match at the global level. As the local structures

are not much affected by non-linear distortion, these techniques are more robust

as regards non-linear distortion. However, it overlooks global spatial relationships

which are highly distinctive. Therefore, the amount of discriminating information

is reduced and that can cause the match of local structures of two inter-class

images. To deal with this problem, an additional step of consolidation is required.

Chikkerur et al. [4] have developed a rotation and translation invariant method

called K-plets. The K-plets consist of K other features along with central feature

(as shown in Figure 2.6). Each feature in the neighbourhood was represented

by three parameters (θij, φij, rij) where θij represents the relative orientation of

feature mj with respect to feature mi. φij is the angle represented by line joining

mj to mi with respect to the orientation of the central feature. rij represents the

Euclidean distance between features mi and mj.

This method represents a fingerprint by a directed graph G(V,E) where V is

the set of the vertices representing all the features of image. E contains all the pos-
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Figure 2.6: An illustration of the K-plets in a fingerprint [4].

sible edges between two features where the features are neighbours to each other.

Each vertex in set V is represented by 4-parameters (xv, yv, θv, tv) representing

co-ordinates, angle and type of feature. Each edge is defined by three parameters

(rij, φij, θij). The matching algorithm is based on local matching by matching to

all the minutiae in the neighbourhood individually. The minutiae in the K-plet

are organised in increasing order of radial distances. Local matching is done by

dynamic programming. Coupled Breadth First Search (CBFS) is used for all pos-

sible pairs of minutiae for consolidation of local matches. The pair that results in

the maximum number of matches is used for computing the final scores.

In 2009, Wang et al. [80] developed a reliable and fast fingerprint classifica-

tion based on singularity points and orientation fields. The orientation field not

only helps in filtering the noises in images but also represents the basic structure

of image features more precisely. The method results in 96.1% of classification

accuracy. The accuracy depends on the correct detection of singularity points.

Moreover, the method might not be applicable to partial images as there is high

probability that partial images do not have singularity points. Similarly, another

directional information based classification method is proposed in [81] which re-

sults in low accuracy. Guo et al. proposed a classification method similar to the
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method proposed in [80], but resulted in an accuracy of 92.7%. The method not

only performs poorly in terms of accuracy but also suffers from the problem of

singularity point detection.

Gao et al. [82] have developed a method in which each feature is represented

by a fixed length vector. The vector of a feature of the sensed image is used to

find the matching features in the reference image. This method has the lowest

EER among all the feature based methods in fingerprint matching. Ratha et al.

[83] used a star representation to represent feature adjacency graphs. The star

associated with any feature mj is the graph Gj = (Vj, Ej) that consists of a set

of vertices E representing the features that exist within a predefined threshold

and the set of edges Ej between the central feature and all other features in the

graph. Each edge eij is represented by 5 parameters (mi,mj, dij, φij, rcij) where,

rcij represents the ridge count between the features mi and mj, φij represents

the angle between the edge of two features with the x-axis and dij represents the

distance between two minutiae. During matching each star of the sensed image

is matched with each star of the reference. The matching is done in clockwise

order by traversing the graphs in increasing order of radial angle. The matching

process results in a set of best matching pairs which are further checked in the

consolidation step for consistency. A pair is consistent, if its spatial relation with

a minimum number of other pairs in the top list is consistent.

Minutiae Cylinder Code (MCC) is a local minutiae structure based matching

method which combines the benefits of nearest neighbour and fixed radius tech-

niques and results in a fixed length code [5]. In this technique, a 3D structure

is built from the minutiae distances and angles (as shown in Figure 2.7). It can

tolerate missing or spurious features, so this approach is good for matching noisy

images. The main advantage of MCC is that it has taken care of the minutiae on

the borders. This is not done in other local minutiae structure based matching
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Figure 2.7: A section of the cylinder around a minutia ’m’. All the minutiae
involved in the construction of cylinder are shown [5].

techniques. However, it performs poorly for the partial images that do not have

enough feature points [5].

The location associated with an extracted feature point might not be the actual

location of the feature. It is a better option to compare a small patch of intensities

around the feature point, called a descriptor, instead of comparing only feature

points [9] [84]. Using only feature points may result in more accurate scores by

using incremental motion refinement. However, it is time consuming and can

sometimes affect the performance [85]. Moreover, the feature descriptors are a core

step of image matching and feature extraction. Over the years, many researchers in

the computer application fields have worked on feature descriptors [86] [87]. The

descriptors should fulfill some conditions: uniqueness (two feature points must

have different descriptors), invariance (the descriptors of feature points should be

invariant to corresponding transformation present between images), independence

(elements of feature descriptors should be functionally independent) and stability

(the feature descriptor of a deformed feature should be close to original feature
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descriptor) [17]. Features resulting in the most similar invariant descriptors are

considered as corresponding. The choice of type of invariant descriptors depend

on feature characteristics and assumed geometric transformations. For searching

the best possible matching descriptor, the minimum distance rule can be applied

to the descriptions. In [60], descriptors are compared using a translational model

between neighbouring frames. Then computed location estimation at this stage

is used to initialize registration between patches of two images. This method is

used to deal with translation differences between images. However, for handling

in-plane rotation between images, a dominant orientation of each feature point is

computed.

The simplest feature description is the image intensity around the feature point.

For estimating the feature correspondence, the correlation between these neigh-

bourhoods is computed [88]. Another way of computing the correspondence is by

estimating the illumination direction to compensate for rotation between images

and then using the coarse-to-fine correlation based registration [89].

In [6], a feature descriptor is developed based on the region around the feature

(as shown in the Figure 2.8). The descriptor depends on the direction of the feature

and ridge information around the feature. The descriptor is invariant to rotation

and translation. Therefore, it does not require pre-alignment of images. Another

advantage of this technique is that it is independent of other features as compared

to the techniques discussed above. The matching score is calculated based on the

similarity between the descriptors of two features.

Figure 2.9 shows a famous and widely used feature descriptor called the SIFT

descriptor [2] [90]. This descriptor has mainly two issues that need to be addressed:

(i) feature descriptors are based on gradient accumulations which have redundan-

cies and are not compact; and (ii) for one local region multiple orientations are

considered, which is not good for memory efficiency. Many modifications have

been suggested for SIFT as the vector is quite long and it is not completely affine
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Figure 2.8: Sampling points arranged in a circular pattern around a minutia [6].

Figure 2.9: A keypoint scale invariant feature transform (SIFT) descriptor [2].
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invariant. In 2004, Ke and Sukthankar developed Principal Component Analysis

SIFT (PCA − SIFT ) which results in a 36 dimensional vector [91]. Mikola-

jczyk et al. have proved that PCA − SIFT is faster but less distinctive than

SIFT [92]. Later, a descriptor called GLOH (Gradient Location and Orientation

Histogram) was proposed that is more distinctive than SIFT with the same dimen-

sions of vector but computationally more expensive [92]. Se et al. [93] used Field

Programmable Gate Array (FPGA) for improving the speed of SIFT. The speed

increased remarkably but the length of the vector is still a drawback of SIFT. [94]

pointed out that SIFT orientations were not precise and proposed to compute the

orientation at every pixel inside a local region. However, this has increased the

computational complexity of the system. Texture LBP (local binary patterns) of a

local region are represented by a sequence of 0s and 1s [95]. The rotation of images

is identified by rotation in the binary sequences. This approach is either compu-

tationally exhaustive or replaces the gradients with other patterns to compute the

orientation. To overcome the issues with SIFT, Wang et al. [96] proposed a DCT

(discrete cosine transform) inspired feature transform (DIFT). DCT is used to

find a dominant direction for multi-orientation in a local region. The experimental

results of DIFT show that for image retrieval it achieves performance on a par as

compared to SIFT, but with only 60% of the features. In addition, it reduces the

dimensions from 128 to 32 and enhances precision.

In 2006, a descriptor named SURF was proposed that outperformed the exist-

ing descriptors both in accuracy as well as speed, but was not fully affine invariant

or fast enough [31]. Tola et al. [97] proposed another invariant feature descriptor

namely, the DAISY descriptor that is deployed for stereo matching. The per-

formance of the DAISY descriptor is relatively good when compared to other

descriptors. The classic SURF algorithm shows unstable performance on rotation

invariance, therefore, a new matching algorithm based on the SURF interest point

and DAISY descriptor is proposed. The method performs better in terms of ro-
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Figure 2.10: BRISK descriptor [7]

tation invariance, but increases the computation time [40]. The reason SIFT and

SURF are slow is that these methods need to compute a gradient for each pixel.

To overcome these issues many binary descriptors have been proposed which

encode the information into binary strings. In [98], a descriptor named BRIEF

(Binary Robust Elementary Feature) is proposed whose performance is comparable

to SIFT irrespective of illumination changes, perspective distortion and blur, but

is not rotation invariant. To overcome this limitation, the Oriented FAST and

Rotated BRIEF (ORB) descriptors were proposed which are similar to BRIEF

[99]. They use optimal sampling for selecting the feature pairs. The orientation

compensation makes them rotation invariant. Leutenegger et al. [7] proposed a

scale and rotation invariant descriptor called Binary Robust Invariant Scalable

Keypoints (BRISK). It uses a symmetric pattern in which sampled points are

present in concentric circles around the interest points, as shown in the Figure 2.10.

Although it is scale and rotation invariant, it requires more computation time

compared to BRIEF.

Alahi et al. [100] developed a new binary descriptor named FREAK (Fast

Retina Keypoint) which computes faster than SIFT, SURF and BRISK. While
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matching the descriptor, the first half bits are compared and if the distance be-

tween the first half bits is less than the second half, only then second half bits

are compared. This method outperforms ORB and BRISK but not BRIEF in the

case of view point change. When scale and rotation change, FREAK slightly out-

performs BRISK and BRIEF but behaves worse than ORB in accuracy. FREAK

performs worse than the other methods when images are blurred. From the above

discussion we can say that Binary descriptors are efficient but they are not affine

invariant.

The combination of geometric properties of a feature can be used to make

geometrically oriented descriptors. Govind et al. [101] represented the contours

extracted from rotated images by slopes of tangents in the contour points. There-

fore, for finding correspondence, only proposed descriptions are compared instead

of contours and rotation differences between images. In [102], to compensate for

rotation difference, angle histograms are computed on line feature points. After

eliminating the rotation difference, the feature correspondence is computed by

means of correlation. A method to compute the different transformation parame-

ters is developed by combining different features and their descriptors [103]. The

geometric deformation between images is divided into elementary steps. Then

the transformation parameter value is estimated. Every type of feature descriptor

votes for a corresponding value of transformation parameter. The value of the

parameter that gets the maximum number of votes is then selected. Another way

of finding the correspondence is to compare the Multivalue logical tree (MVLT)

formed by using different descriptors of features [104].

A large number of methods have deployed moment-based invariants for de-

scriptions of closed-boundary regions features. Also, affine transform invariants

are derived to successfully register landsat and SPOT images [105]. Holm et al.

[106] represented the closed boundary regions by their area, perimeter, compact-

ness and moment invariants. Brivio et al. [107] modelled the shadow structures by
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means of their inertia ellipses where ellipses are described by their inclination to

main axis, area and ellipticity. Li et al. [108] used two Hu’s moments for matching

closed contours. In [105], the circular moments of the distribution of line feature

orientation are used directly to compute the transformation present between the

images. For that, scale-space representation and moments are combined together.

For registering the SPOT and AVHRR images, a new class of moments invariant

to image blurring are proposed in [84].

Zhang et al. [109] have proposed a method in which invariant moments of

fingerprints are used for fingerprint matching. Although this method is efficient

and rotation, translation and scale invariant, the major problem is that it is based

on detection of core points and moments present in the region around the core

point. However, for partial fingerprints it is quite possible that they do not have

a core point. The quality of the fingerprint may be better in other regions com-

pared to the region around the core point. In addition, in this method common

regions in two fingerprints are cropped after aligning the fingerprints. A small

piece of information present in the cropped region is used. The rest of information

remains unused. Another issue is that this method requires precise detection of

the core point in two fingerprints which is very difficult when fingerprints are hav-

ing intra class variations. The Equal Error Rate (EER) of this technique is 3.64

for FVC2002DB1 (shown in Table 2.1) which is better than other non-minutiae

based techniques except the technique proposed in [110]. This is because it has

been evaluated on both training and test databases whereas other techniques are

evaluated on only the test set that directly influences the performance of the sys-

tem. Qader et al. [111] also proposed a method based on Zernike moments. This

method has faced almost similar shortcomings faced by the method proposed in

[112]. In addition, this technique performs worst among all the non-minutiae based

techniques with an EER 7.13.
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Jain et al. [12] have developed a method which uses the ridge features of

fingerprints for alignment and adaptive elastic string for matching the aligned

feature set. According to this approach each feature in the fingerprint is associated

with the ridge on which it resides. The ridge is represented by a planar curve with

an origin at the feature location and the direction of the feature as x-axis. The

transformation parameters are computed between the pairs of ridges. This process

is iterated until a pair of ridges does not satisfy a threshold. The features residing

on matching ridges are used as reference features and used for computing the

polar coordinates of the rest of the features. Then, both images are converted

into a string of features in the order of increasing radial angle. The strings are

compared by using the dynamic programming for computing the edit distance. An

adaptive tolerance window is used for tolerating the local distortion. Edit distance

between two features tolerates spurious and missing features. Even though an

exhaustive reordering and matching is done, that could be because of error in

feature extraction.

Feature based methods in a medical field can be further divided into two main

categories. (i) Matching among features is established using some criteria based

on geometrical properties. Then the transformation parameters are computed

based on matching found as shown in Figure 2.11. An example occurs when

features are extracted from the input image where each feature is represented by

a descriptor. The distance between each descriptor is computed. The similarity

score between images is given by sum of all ’corresponding distances’ [113] [114]

[115]. This approach is reliable when the feature descriptors are invariant to the

transformations present between images. (ii) The transformation and matching are

based on the optimization of a similarity metric between the extracted features

from images. In this case, instead of using pixel intensity for registering the images,

the extracted features are used to define the registration.
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Category Method EER (%)

Fingerprint specific
feature based

Kovacs-Vajna, 2000 [116] 4.3
Tico, 2003 [6] 4

Chen, 2005 [117] 4.6
Liu, 2005 [118] 4.3
Gao, 2011 [82] 3.5

Image feature
based

Sha, 2003 [119] 6.23

Ito, 2005 [110]
1.9 (Private

dataset)
Lumini, 2005 [120] 4.2
Qader, 2007 [111] 7.13
Yang, 2008 [109] 3.64

Region
based

Karna, 2008 [23]
2 (Private
dataset)

Conventional
Correlation [10]

7.1

Zanganeh, 2014[10]
(Average)

2.02

Table 2.1: Performance of the existing fingerprint matching techniques (in terms
of EER) on the FVC2002DB1 dataset

Figure 2.11: Block diagram of the feature based transformation parameter com-
putation approach [8].
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2.4.3 Computing Similarity

For computing the similarity between images, the correspondence between features

needs to be found. The easiest way to find the correspondence between feature

points is to compare all features of one image to all features of another image.

However, this approach is quadratic in the expected number of features, which is

not practical for some applications. More efficient algorithms can be derived by

using the indexing schemes, many of these are based on finding the nearest neigh-

bours in high dimensional spaces. In [121], a method called slicing is proposed

that uses a series of binary searches to cut down a number of candidates to com-

pare. Another useful method is the Best-Bin-First algorithm in which a modified

search ordering is used for a k-d tree algorithm so that bins in the feature space

are searched in the order of their closest distance from query. More recently, an

algorithm called Metric Tree has been proposed that compares the descriptors of

the features with a smaller number of descriptors at each hierarchy [122].

Once an initial set of feature correspondence is detected, we need to detect a

set that will produce high alignment accuracy. One possible method is simply to

compute the least square estimate. However, in many cases, it is better to use

random sample consensus (RANSAC) [123] and the least median of squares [124].

Once the correspondence between the features is computed, the similarity score

is computed for matching images. The similarity score is calculated between sensed

and reference images to decide whether both images are matching.

Similarity Score =
k

(r + s)/2
(2.11)

where k is the number of feature points matched in two images and (r+s)/2 repre-

sents average number of features in reference and sensed images. While matching

it is expected that each feature in an image should have only one matching feature
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in the other image. The alignment of images before computing the similarity score

reduces the complexity of the matching algorithm.

2.4.4 Summary of the Feature Based Techniques

Feature based techniques are the most reliable techniques for high quality images

[9] [3]. It is shown that feature based techniques are highly accurate for high quality

images, but these techniques perform badly in the case of low quality images [125].

This is because, for low quality images reliable detection of features is very difficult.

Moreover, for low quality images these methods suffer from detection of spurious

features due to unclear details in images. Although, the problem of false features

can be solved by detecting the features only from valid and good quality regions,

the problem again arises if the image does not have any valid regions.

The information used in feature based techniques is quite limited because they

use properties of only some points in an image and information in the vicinity of

these points. The use of limited information affects the accuracy when a system has

to deal with partial images as the partial images already have lost some significant

information. Feature based techniques even use some of the remaining available

information. In partial images, there exist few features and that is why feature

based techniques perform poorly [3]. Moreover, a few features are not enough for

distinguishing an image from the inter-class images in the applications of image

recognition.

The feature based methods for partial image matching have also been devel-

oped. In [126], a Support Vector Machine is used for feature-based partial finger-

print matching. Jea et al. [127] have used secondary features for matching the

partial images. Secondary features have been extracted by using the two nearest

neighbours’ information. However, the error rate of these techniques is quite high

and these methods are only evaluated on the FVC2002DB1 dataset, whereas other
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datasets of FVC2002 consist of distorted images. Therefore evaluation on these

datasets is required as well.

Global matching of images using the features of images are computationally

expensive and suffer from the presence of non-linear distortion. Whereas, local

feature matching methods depend on neighbouring features and use the attributes

which are invariant to linear translation. However, they suffer from lower discrim-

inative capability compared to global matching methods. Both global and local

techniques are good in their own way but have limitations as well. Therefore,

implementing hybrid strategies can have a profound effect on the accuracy [5].

2.5 Pixel based Techniques

Instead of using specific features of images for matching, pixel or textural based

information of images can be used for matching. These methods are intutive

and take full advantage of given pixel information [40]. The methods which use

the pixel information to match the images are generally called direct methods

or correlation-like methods, as opposed to feature based methods [9]. For image

alignment, the basic operations are extracting the features, matching the features

and finding the correspondence between images. In these techniques, no features

are extracted as pixel intensity is compared directly, hence the feature extraction

step is combined with the feature matching step.

The global and local pixel/textural information present in images is a good

alternative to features. For example, ridge textures present in fingerprints can be

used to match them. The ridges in fingerprints are represented by orientation and

frequency except at singular regions. Singularities and minutiae are the disconti-

nuities in fingerprint textures. The global information combines the contributions

of different local regions into a global measurement and therefore, loses the spatial

information. However, local information is mainly related to the detailed informa-
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tion of an image which is generally extracted by the use of a specialized bank of

filters. For poor quality images, direct methods perform well compared to feature

based methods because pixel based information is less affected by the quality of

an image compared to specific features [128].

To match the images using direct methods, an appropriate similarity metric

needs to be chosen first to compare images. Many similarity metrics have been

developed for different matching applications and some of them are discussed be-

low.

2.5.1 Similarity Metrics

The most commonly used similarity metrics are based on intensity cross-correlation,

intensity difference or information theory. One of the commonly used and easi-

est similarity metrics is the correlation between images. Correlation establishes

pixel correspondence between two images by shifting one image with respect to

the other. This metric of similarity is computed between windows of reference

and sensed images. Then, the window of the images that results in a maximum

correlation value is searched. The window pair that results in maximum similarity

value is taken as a reference window. A correlation based method can align images

exactly only if the transformation between images is translation. However, the cor-

relation is a computationally exhaustive process and the complexity increases with

an increase in transformation complexity.

Correlation based similarity can be calculated in many ways, such as the sum

of absolute differences, sum of squared differences, sum of Hamming distance,

normalised cross correlation (NCC) and so on. Let us suppose IR and IS are

reference and sensed images, respectively. The diversity between two images can

be measured as sum of squared difference (SSD) between intensity of images [3]:

SSD(IR, IS) = ||IR − IS||2 = ||IR||2 + ||IS||2 − 2ITRIS (2.12)
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Figure 2.12: Pixel based matching methods: small windows of images are aligned
by using normalised cross correlation (middle row) and phase correlation (last
row). The global maximum identified in both graphs is the matching location. [9]
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where the intensities of images IR and IS are represented as vectors of intensities of

pixels and T represents transpose. If the components ||IR||2 and ||IS||2 are constant

then the diversity between images is minimised when the cross correlation (CC)

between two images is maximised:

CC(IR, IS) = ITRIS (2.13)

The sensed image suffers from displacement and angle differences with respect

to the reference image. Therefore, correlation between two images cannot be

simply calculated by superimposing two images. Let Iδx,δy,θS represent a rotated

and displaced sensed image, where δx is displacement in the x direction, δy is

displacement in the y direction and θ is the rotational angle. Then the correlation

between two images is calculated as

CC(IR, IS) = max
4x,4y,θ

CC(IR, I
δx,δy,θ
S ) (2.14)

The intensity of pixels can affect the correlation value, hence, it is necessary to ad-

just the intensities of every image according to the desired mean and variance [10]

(example shown in Figure 2.12). In other words, images need to be normalised to

calculate correlation independent of intensities. The normalised cross correlation

(NCC) is more complex [10] [129] and is given by:

NCC =
∑
x,y

(IS(x, y)− ĪS)(IR(x, y)− ĪR)

δIS × δIR
(2.15)

where ĪS and ĪR represent the mean intensities of sensed and reference images and

δIS and δIR are the standard deviations of sensed and reference images, respectively.

The correlation value is used as a similarity metric between two images. If the

similarity between two images is higher than a threshold, then the sensed image

will be accepted as a matching image. Otherwise, it will be rejected.
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Correlation mainly has two limitations: high computational complexity and

flatness of similarity metric maxima. For sharpening the maxima, different pre-

processing techniques can be applied to images. However this will increase the

computational complexity of the matching process further. In spite of these limi-

tations of correlation, it has been widely used in different applications because the

simple hardware implementations of correlation are useful for real time applica-

tions.

As the correlation process is time consuming, other metrics have been devel-

oped. One of such metric is the sum of absolute difference (SAD) which is generally

used in motion estimation for video coding and is given by:

SAD(IR, IS) =
∑
x,y

||IR(x, y)− IS(x, y)|| (2.16)

However, this function is not differentiable at the origin so cannot be used for

gradient descent approaches. Therefore, a function is required that varies smoothly

and is quadratic for smaller values and grows slowly from the origin. One of such

function is discussed in [130] called the Geman-McClure function, which is given

as

σGM(x) =
x2

1 + x2

a2

(2.17)

where a is a constant that can be considered as an outlier threshold. Robust

statistics such as the median of absolute differences can be used for computing the

appropriate threshold value for this method [131].

The similarity metrics discussed above ignore the fact that some pixels in an

image have more importance than others. Therefore it is required to partially

or completely downweight the contribution of some pixels [9]. For example, in

mosaicing applications the undesired foreground objects need to be cut out. For

that, it might be required to erase some parts of images. Similarly, in background
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stabilization, we need to downweight the middle part as the middle part consists

of moving objects captured by the camera. This is achievable by applying varying

weight to pixels of both images to be matched. Then the error between the two

images can be computed by using the weighted SSD function given by:

WSSD =
∑
x,y

||WRIR(x, y)−WSIS(x, y)||2 (2.18)

where WR and WS represent the pixel weights in reference and sensed images,

respectively.

Similar to correlation methods is the sequential similarity detection algorithm

(SSDA), which is based on sequential search and a computationally simpler dis-

tance metric rather than correlation [132]. It sums the SAD of a window pair and

uses a threshold criteria. If the sum value exceeds a threshold value then the pair

is rejected and the next pair is tested. This method is less accurate compared to

correlation but faster [9]. Irrespective of the normal correlation, correlation ratio

based methods have been developed in the area of multi-modal registration. This

similarity metric can handle the intensity differences between images due to usage

of different sensors (multi-modal image). In the case of projection-based regis-

tration in fixed-pattern images, this similarity metric outperforms the standard

correlation.

The metrics based on pixel intensity difference are SSD or the SSD normali-

sation [133][134]. The assumption for using SSD is that both images should have

identical intensities. The correlations and their variants have also been used as

a similarity metric for computing the transformation parameters between images

[135][136]. Moreover, cross correlation is based on the assumption that there is a

linear relation between the intensities of the images. Hence, the larger the cross

correlation between images, the better the reference image. The correlation, cross-
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correlation and SSD are the appropriate similarity metrics for mono-modal image

registration.

As aforementioned, depending on the structures extracted from original images,

the pixel intensity based similarity metrics can be used for image registration. For

example, in medical applications, after segmenting the object from images, the

pixel based intensity can be used for registering the images instead of using the

shape of object [137]. Similarly, when a segmentation process divides the image

into smaller patches, the distance or similarity between these patches is computed

by using intensity based similarity metrics. In [138], the correlation ratios are

considered as the similarity metrics, to register the sets of fibres extracted from

brain white matter images.

A variant of regular correlation called phase correlation is discussed in [139].

The phase correlation outputs a single impulse at the correct displacement (as

shown in Figure 2.12) and makes it easier to estimate the correct displacement.

It performs better compared to regular correlation but the result depends on the

noise present in the image.

In [140], another registration method based on Hanusdorff Distance (HD) is

proposed to register the binary images transformed by translation or rotation plus

translation. The results are compared with correlation results and results show

that HD performs better for images with perturbed pixel locations as compared

to correlation.

The information theory based similarity metric is Mutual information (MI).

It is based on the Shannon entropy and is computed from the joint probability

distribution of image pixel intensities. It measures how well one image explains the

other image and it can be applied for registering both intra and inter-model images.

MI has proved to be a very robust and reliable similarity metric. However, it faces

problem for registering small sized images. To overcome this limitation, a method

is proposed in which MI is used for global registrations and cross-correlation is
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used for registering the small image patches [141]. In multi-modal applications,

intensity based registration is used. MI as a similarity metric plays an important

role in this process [142].

Another major pixel based image matching method is matching images by

computing geometric transformation parameters of images [143]. The matching

can be established iteratively either by using the transformation parameters com-

puted or without using parameters [144]. However, in both situations, a similarity

metric needs to be optimized. For iterative matching of the images, the common

algorithms are Iterative Closest Point (ICP) and its variants [145][146]. In these

algorithms the matching is done without using transformation parameters and are

based on optimization of a distance or similarity metric. The distance between

the features to be matched is based on their particular characteristics. Dedicated

optimization methods can be used for establishing matching such as simulated

annealing [147], self organising map [148], dynamic programming [149].

2.5.2 Search Methods

Once a metric is finalised, a suitable search technique is required. Finding maxi-

mum similarity or minimum dissimilarity is a multidimensional optimization prob-

lem where the degree of freedom of expected geometrical transformations repre-

sents the number of dimensions. The simplest and only method resulting in a

global extreme solution is full-search or a brute-force search in which all align-

ments are tried exhaustively. This approach is commonly used in block matching

in motion compensated video compression where a large number of possible op-

tions are tried [9]. Although it is a computationally exhaustive approach, it results

in highly accurate results.

In practice, this approach is slow, therefore coarse to fine hierarchical search

approaches have been developed. For these approaches the results for lower levels
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can be used for a finer search at the next higher level [42]. However, this search

does not guarantee the same results as produced by full search [9].

In case of images with translation difference, different optimization techniques

are developed to find the maxima. However, the limitation of these methods lie

in their basic idea [9]. Generally a rectangular window is used which can easily

register the images which only differ in translation. However, if some complex

transformations exist between images then this method cannot register the images.

Alternatively, different transforms or incremental methods based on the Taylor

series expansion are also used for matching the images [150].

2.5.3 Types of Pixel Based Matching Techniques

Different methods have been developed in literature which use the pixel informa-

tion of images for matching the images. These methods can be broadly classified

into three categories namely, correlation based, transform based and mutual infor-

mation based. The details of these methods are given below:

2.5.3.1 Correalation Based Methods

In these methods, images are compared by computing the correlation value be-

tween them. Two images are superimposed and the correlation between images

is calculated for different displacements and rotations. These techniques use grey

scale information directly from images. The correlation coefficient lies between

−1 to +1: a value closer to +1 quantifies that the images are highly correlated.

Generally, images are aligned to make them rotation and displacement invariant

before computing correlation [151]. Moreover, it is vital to normalise the grey scale

image as images may have been captured under different illumination conditions.

However, the direct application of Equation 2.14 and 2.15 for calculating the

similarity between two images is computationally very expensive because of a large
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number of mathematical operations [3]. Methods such as the Fourier-Mellin trans-

form provide rotation and translation invariance that can reduce the computational

complexity but at the same time affect the accuracy [152]. Also, Fourier trans-

forms or fast optical correlators have been used for improving the speed. However,

these techniques do not improve the performance significantly [3].

Computational complexity can be reduced by aligning the images before com-

puting the correlation between them [3]. One such method is developed by Karna

et al. [23] which is similar to the method developed in [110]. The only difference

is that instead of calculating the phase correlation, normalised cross correlation

is calculated between the common regions of the two images. The EER for this

method is smaller than the feature based techniques [3]. However, there are sev-

eral limitations related to this method. Firstly, in this method, images are aligned

manually by selecting a common point in both sensed and reference images. Al-

though this helps in aligning the images accurately, it is not feasible in real time

applications. Secondly, extracting the same region accurately is not a trivial task.

If the extracted regions are not the same it will have direct effect on the matching

accuracy. Moreover, even if the extracted regions are similar enough, the method

is not able to tolerate the non linear distortion and brightness [151], because sim-

ilarity is measured globally. The effects of distortion get incorporated while com-

puting correlation. That deteriorates the correlation value. Moreover, matching

the partial images by global correlation based techniques is still an unresolved is-

sue. Also, for correlation techniques which require pre-alignment of images, the

accurate detection of a feature point is quite challenging.

Zanganeh et al. [10] have developed a region based fingerprint identification

method that is robust and accurate. This approach basically consists of three steps:

fingerprint alignment, common region extraction and similarity computation. The

accurate alignment of images is very important in order to have pixel-to-pixel

correspondence between images. Even a slight rotation difference between images
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can result in a false matching decision. In this approach, fingerprints are aligned

either by using feature points or brute force search. In the case of alignment by

using image features, partial and low quality images face problems. In partial

fingerprints, it is quite possible that the feature point required for aligning the

images is not present. In bad quality images, it is very difficult to detect the

feature points accurately. Next, when fingerprints do not have feature points

then fingerprints are aligned by an exhaustive search that is very time consuming.

For that, the sensed image is rotated for angles between −α to α degrees to find a

correct angle for aligning images. The value of α can be 35 or 15 degrees depending

on reference points being present or not in fingerprints. The value of α depends

on the database as well. The alignment process starts with cropping a region from

a sensed image. The size of the region depends on the valid fingerprint region. A

sliding window approach is used for template fingerprints in which region around

each pixel is considered. Then, for each angle between −α to α the following steps

are performed to find the angle at which these two fingerprints can be aligned.

• Rotate the sensed image region by the angle α.

• Compute the correlation coefficients between the sensed image region and

all the regions of reference image.

• Select a reference image region as the common region that results in the

maximum correlation value.

• Select the rotation angle that gives the maximum correlation value. Then

align the images rotationally by using this angle.

The algorithm to align fingerprints by this approach is shown in Figure 2.13 [10].

The common region is considered as a common feature of fingerprints. The

size of the common region can vary depending on the sizes of valid fingerprints.
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Figure 2.13: Block diagram of the image alignment method with or without using
image features [10]

Also, regions can be cropped from different parts of the fingerprint. These prop-

erties make this strategy applicable to partial or low quality fingerprints. Once

the fingerprints are aligned, the images are divided into the regions by using the

reference point. Common regions are found by superimposing two images. After

detecting the common regions, a similarity score is calculated between the regions.

First, local similarity is measured between the regions. This is followed by global

similarity calculation. The global similarity is the average of all local similarities.

Local similarity is taken into consideration for minimizing the effect of varying

quality within the fingerprint. This technique has improved the equal error rate

by three times as compared to single region correlation based technique. The EER

of the averaging method reduces to 2.02 as compared to a 7.1 EER for the conven-

tional correlation method for FVC2002DB1 dataset (as shown in the Table 2.1).

This technique is able to handle non-linear distortion, as similarities are computed

at a local level and consolidated for computing the final similarity score [10]. This
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method aligns images accurately, but is computationally expensive. That makes

it impossible to use in real time applications.

2.5.3.2 Transform Based Methods

Many approaches based on transforms have been proposed in literature that do not

require the extraction of features of images. These approaches compute the un-

derlying transformation parameters using the properties of transforms for aligning

images. Recently, the Radon and Fourier transforms have been used by researchers

for computing the transformation parameters.

The alignment methods based on Fourier transforms rely on the fact that a

Fourier transform of the shifted signals has same magnitude but a linearly varying

phase. This property helps to quickly find the rotational difference between images.

Another useful property of the Fourier transform is that the convolution of two

signals in a space domain is comprised of the multiplications of their respective

Fourier transforms in the Fourier domain. Thus, to efficiently compute the error

between two images over the full range, we can simply use the convolution property

of the Fourier transform. Fourier based methods are preferred over correlation

when improvement in computational speed is needed, images are acquired under

different conditions or images are corrupted by frequency-based noise.

The phase correlation is based on the Fourier transform which is originally

developed to register the images transformed by translation. The cross power

spectrum of both unaligned images are computed. Using the peak locations the

translation difference between images can be computed (as shown in Figure 2.12).

This method is robust against non-uniform or time varying illumination changes

and frequency dependant noises. The phase correlation method is also exploited

for 3D images [153]. In [154], for down-sampled images analytic expressions of

phase correlations are derived. The method performs outstandingly for sub-pixel

translation estimation across different spectral bands. However, the closed form
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solutions introduce misleading impressions that the methods can give sub-pixel

shifts to any accuracy, whereas the accuracy is limited by signal to noise ratios

in phase correlation. In [155], extension of the phase correlation is developed to

deal with translation and rotational differences between images. If the images

are scaled as well, then images can be registered using the combination of phase

correlation with polar-log mapping of the spectral magnitude [156] [157]. This

method has been used to register the affine distorted images [158].

As discussed earlier, to speed up the search process, a hierarchical approach

can be used. However, in cases when the search range is equivalent to a significant

portion of a big image, the hierarchical approach does not work well because it is

generally not possible to coarsen the representation before significant features of

an image get blurred away. For such cases, Fourier transform based approaches

can be used. The Fast Fourier transform can compute the transform of images

(size (N ×M))) in O(NMlog(NM) operations which is significantly faster than

the number of operations required for a full search that is O(N2M2) [159].

The Fourier transform can be used to accelerate the computation of correlation

and sum of squared distances [9]. However, the Fourier transform is applicable

only when the correlation or SSD is performed on full images having pixel-to-pixel

correspondence. While this is acceptable for small shifts or small sized images,

it does not make any sense when the overlap between two images is small or one

image is a subset of another image. In this case, the cross correlation between two

images needs to be replaced by windowed cross correlation.

The Fourier transform is generally used for computing translations between

images. However it can be used to compute the rotational difference between

images by converting the images into polar coordinates. De Castro et al. [155]

have proposed a method to align the images using the finite Fourier transform.

However, the method is only applicable when images have large overlapping regions

which indicates a small translational difference.
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The methods based on the Fourier transform can compute the translational

alignment to the nearest pixel, however for different applications such as image

stabilization, image stitching etc. higher accuracy is demanded. To obtain the

subpixel accuracy, it is possible to estimate different discrete values of location

around the best value found and interplote to find the best result [9]. One of

the commonly used approaches is to compute gradient descent on SSD by using

a Taylor Series expansion of image function [35]. However, the effectiveness of

the approach is affected by the quality of the Taylor series approximation. When

it starts far away from true displacement, many iterations are required; when it

starts at a nearby location to the true location, then few iterations are required

which indirectly influences the computation time required.

The cross-correlation and SSD based similarity metric can be evaluated in the

frequency domain efficiently using the Fourier transform and its properties. Both

these metrics can be evaluated using a shift function. This approach is less time

demanding than the iterative optimization technique [160] [161]. Moreover, the

scaling and rotation of images can also be achieved by transforming the image

into polar coordinates systems. Well known phase correlation can be used for

registration of the images [161].

The Hough Transform [75] is also a popular method for feature matching. It

converts the problem of point matching to a problem of detecting the highest peak

in the Hough space of transformation parameters. Fourier transforms and Wavelet

transforms have been used for registering the images [162].

Recently, the Radon transform has been used for estimating the RST (Rota-

tion, Scale and Translation) parameters [163]. Estimation of the transformation

parameters linking to images using a Radon projection has gained attention re-

cently. Actually working directly with Radon projections eliminates the need for

reconstruction of the images which is prone to reconstruction artefacts and is

computationally exhaustive. Chen et al. [19] used the Radon transform with the
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Fourier transform to register the images. A Fourier transform is used to find the

estimate of spatial shift between images; a Radon transform is used to find the ro-

tational shift between images. A property of a Radon transform is that sinograms

of two rotationally unaligned images are similar except for the circular shift along

the direction. The correlation between the rows of a Radon transform matrix is

used to estimate the rotation angle between images. The results of this approach

are less accurate for some images [39]. In [37], the registration method, using a

Radon transform is developed for non-destructive testing, radiography images and

computed tomography projections. Mooser et al. [38] have developed a method

that can deal with all degrees of freedom of transformation. Parameters are esti-

mated as an optimization problem which uses a region based optimizer. However,

the error in estimation of both parallel and fan beam geometries is very large.

Hjouj et al. [39] developed a technique to estimate reflection, scale, translation

and rotation for binary images by using the Radon projections. However, the is-

sue with this technique is that the objective function used for computing the angle

cannot be generalized for any angle between 0 to 2π. In [164], the results of this

method are used to identify the parameters for fast matching images, however the

rotation angle computed is less accurate than using the method in [39].

In [165], another method is proposed to estimate the parameters using the

Radon projections. Later in 2015, Nacereddine et al. [14] have proposed a modi-

fied version of [165] for estimating the RST parameters relating two images only

by using the Radon projections. The authors have defined the 2π Radon Trans-

form to deal with the issue of a rotation angle lying between [0, 2π], unlike in

[39]. This method finds the underlying transformation parameters between two

images, and gives the best similarity between the two images by estimating the

geometric parameters. However, the method of computing the rotational angle is

time-consuming with a computational complexity of O(P 2N) where P represents
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the number of projections between 0 to 2π and N × N represents the size of an

image that slows down the entire registration procedure.

In [11], a rotation invariant texture classification approach based on Radon

and Wavelet transforms has been developed. This approach takes advantage of

the fact that texture patterns do not have any specific direction. The Wavelet

energy features are variant with direction, therefore, texture need to be aligned

rotationally. For aligning textures, the principal direction of textures is found by

using a Radon transform. However, before the Radon transform can be used, a

disc shaped area is cropped from the image to make the method isotropic. The

principal direction is defined as the direction in which there exist the greatest

number of straight lines. The variance of the Radon transform along this direction

has maximum variance (as shown in Figure 2.14). After computing the principal

direction the texture is rotated to make the principal direction zero. A Wavelet

transform is applied to rotated images to extract the features. The k-NN classifier

is used to classify the textures based on the features extracted. A rotation and

scale invariant method for texture analysis has also been developed in [166]. Both

of these approaches are robust to additive noise and find the accurate direction for

anisotropic textures. However, they face a problem when the texture has multiple

directions.

In [167] a rotation invariant efficient hierarchical texture analysis method is

developed based on the Radon transform and Gabor filters. The directional in-

formation is computed in high-band texture images that are extracted by Gabor

wavelets. This directional information is used for making the extracted features

rotation invariant. However, the parameters of Gabor filters need to be tuned very

finely that is very difficult. Cui et al. [168] proposed a method for a challenging

problem of classification of rotated and scaled textures. The rotation and scale

invariant features are extracted by computing the Radon transform and then ap-

plying a transformation invariant adaptive 1-D Wavelet transform in the Radon
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Figure 2.14: (a) Directional texture rotated at 45◦; (b) Variance of Radon projec-
tions at different angles; (c) Second derivative of (b). The local maximum exists
at 45◦ [11].

domain. The Radon transform shifts the row in the feature matrix whenever the

image rotates, so a row shift invariant Wavelet transform is also applied. The

feature image is divided into different scales, to make the classification faster. It is

compared with different wavelet based methods under different SNRs. It is more

robust to noise than other methods. However, this process is computationally

expensive.

Xiao et al. [169] have developed a rotation invariant texture analysis method

base on the Radon and Fourier transforms. The Radon transform converts the

rotation difference in the image to translation, and then uses the translation prop-

erty of the Fourier transform that states that translation in the original domain

converts into phase in the Fourier domain. Therefore, two rotationally misaligned

images in the Radon domain have same magnitude but differ in phase. Although,

the Wavelet transform is more popular than the Fourier transform, the Fourier

transform can be computed much faster and more conveniently. The method is
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robust to white noise due to the process of summing the pixels for computing the

projections in the Radon transform.

The Radon transform has also been used for handwritten character recognition

[170]. The selection of features for characters is very tedious. It becomes more

difficult when the characters are rotated. The main objective of this approach is

to construct a transformation invariant vector by using the Radon transform and

Principal Component Analysis (PCA). The Radon transform transforms the image

from the space domain into the Radon domain. Generally, the size of the Radon

transform matrix is large. Therefore, the size of the output matrix is reduced by

using a resizing operation. Then PCA is applied to compute the rotation invariant

vector. The number of local maxima in the Radon transform output are also stored

with the vector for the preliminary classification.This method has improved the

accuracy as compared to the Optical Character Recognition system.

Most conventional approaches for fingerprint recognition are matching based

on fingerprint features. However, the use of the Radon transform for fingerprint

recognition is quite a different approach. The rotational property of the Radon

transform makes it quite attractive for fingerprint recognition, because one of the

major causes of intra class variations in fingerprints is rotational difference. The

use of the Radon transform in fingerprint recognition makes it easier to deal with

the rotational differences of fingerprints. Some of the Radon transform based

fingerprint recognition techniques are discussed in following section.

Sandhan et al. [171], have developed a method based on abstracted Radon pro-

files which extracts the global properties of fingerprint and does not need extensive

image preprocessing. In this approach, each Radon projection is fitted to a polyno-

mial and few coefficients of each Radon projection are captured. The coefficients

for all projections are combined together to form a vector for a fingerprint. The

vectors for two rotationally misaligned fingerprints are same with a circular shift

of the coefficients. The circular shift depends on the angular difference between
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two fingerprints. Hence, the test image is analysed for all possible orientations for

alignment. This approach provides a more computationally efficient way than the

brute-force search alignment approach. Also, the local characteristics are preserved

by use of a multi-layer architecture. However, for a multi-layer architecture a core

point is used as reference. That is difficult to extract. Also, all the fingerprints

may not have core points, therefore this method is not applicable to all types of

fingerprints.

2.5.3.3 Mutual Information Based Methods

For multimodal image matching, Mutual Information (MI) based methods are one

of the leading methods [9]. Registration of multi-modal images are a difficult task.

However, they are necessary especially in medical image registration. Applica-

tions of image registration in medical fields include fusion of images obtained from

computed tomography (CT), magnetic resonance imaging (MRI) with functional

images from single-photon emission computed tomography (SPECT) and positron

emission tomography. Image registration is required for almost every anatomical

part of the body [8]. The comparison of the functional and anatomical images of a

patient can result in diagnosis, which otherwise is impossible to get. Moreover, this

type of registration is required in remote sensing as well. The Mutual Information

is the statistical dependency between two datasets and is suitable for registration

of multi-modal images. The mutual information between two random variables X

and Y can be given as:

MI(X, Y ) = H(Y )−H(Y/X) = H(X) +H(Y )−H(X, Y ) (2.19)

where H(X) = −EX(log(P (X))) is the entropy of a random variable and P(X) is

the probability distribution of X. These methods are based on maximizing the MI
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Figure 2.15: The old and new photographs of a mosaic (top row) and mutual
information criteria (bottom row). The mutual information gets maximised at
point A instead of point B which is selected manually. The mistake is made due
to the poor quality of the images [9].

(as shown in Figure 2.15). For improving the efficiency of registration, a coarse to

fine approach can be used.

Mutual information based methods are first used for registering the magnetic

resonance images and 3D object model matching to real scenes [172]. Later, a

hierarchical search strategy with simulated annealing is used to find maximum of

MI [173], whereas in [174] maximization is achieved by using a multiresolution hill

climbing algorithm and registered MR-CT and MR-PET images. In [175] MI is
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compared with other similarity metrics for registering the medical images, however,

MI performs worst of all the similarity metrics.

2.5.4 Summary of Pixel Based Techniques

The region based techniques use gray scale images and take into consideration all

dimensional attributes of images including both macro and micro characteristics.

Therefore, this has the ability to extract all discriminative information present in

images as compared to other methods. These techniques do not suffer from false

feature detection or shifts in the location of features and hence, have better accu-

racy than feature based techniques for poor quality images [10]. These techniques

are capable of matching the low quality images and have high tolerance to image

noise as well. It is also shown that the accuracy can be increased by using the com-

plete information of an image instead of using specific features from that image.

The region based techniques can be used for different kinds of images irrespective

of images being full or partial (meaning images have or do not have pixel-to-pixel

correspondence).

However, there are issues with pixel based techniques that need to be addressed.

Most of these techniques need to align the images before matching. For aligning,

either a feature point method or an exhaustive method is used. Therefore, a

method is required which can either match the images without aligning them or if

alignment is required then images can be aligned efficiently without using specific

features.

2.6 Hybrid Techniques

In the previous sections, we have discussed the techniques which either use specific

features or use pixel based information for matching images. Many techniques
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have been developed for matching images by combining both features. The most

relevant techniques are discussed below:

Jain et al. [12] have discovered a filter bank based local texture analysis tech-

nique. In this technique, an image has been divided into 80 cells ( 5 bands with

16 cells in each band) around the core point. A vector is formed for each cell rep-

resenting the local texture information of the cell. An ordered numbering of the

cells represents the global information of the image. A bank of 8 Gabor filters is

used to obtain the texture information from each cell. Therefore, each fingerprint

is represented by 640(80 × 8) fixed-size vectors which are collectively known as a

FingerCode (shown in Figure 2.16). The generic term Vij of the vector represents

the energy contribution by the filter j in the cell i. The energy is computed as the

average absolute deviation from the mean of the response of the filter j over the

pixels of cell i.

Two fingerprints are matched by computing the Euclidean distances between

corresponding vectors in the two FingerCodes. The complete process is shown

in Figure 2.16. The disadvantage of this method is that the whole process is

focused on the core point. Therefore, if the core point is not detected reliably

or it is present near the border, then the FingerCodes either will be incomplete

or will not be compatible with the reference image. FingerCodes consist of some

complimentary information but they are not as distinctive as minutiae. However,

they can be used with minutiae for improving accuracy. In [176] and [177], this

method has been enhanced in which two fingerprints to be matched are first aligned

using minutiae and then fingerprints are divided into cells based on the squared

mesh grid.

Kovacs-vajna [116], Beleznai et al. [178] and Nandakumar et al. [179] have

used pixel information around features.In [110], a phase component based method

is developed for fingerprint matching in which a reference fingerprint is compared

with the sensed fingerprint rotated at different angles. Before calculating the sim-
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Figure 2.16: System diagram of fingerprint authentication by fingercode [12]

ilarity score, common regions are found in sensed and reference images to improve

the accuracy of the system. The EER of this technique for the FVC2002DB1

dataset is 1.9%. Although the error rate of this technique is lower than those of

feature based techniques [110], the main issue is that the score is calculated glob-

ally. Hence, it is quite possible that it will not work when non-linear distortion

is present in image. A hybrid approach based on minutiae and texture informa-

tion is given in [176]. The results show that fusion of texture and minutiae based

algorithms improve the matching score significantly.

Ojala et al. [180] have developed a hybrid technique where images are first

aligned by using the features. Then texture information is extracted by Local

Binary Patterns (LBP) from the image convolved with Gabor filters. The fin-

gerprint is divided into sub-windows and then the image is segmented to discard

the background. Finally, each window is convolved with a Gabor filter and LBP

are computed. Two fingerprints are compared by finding the Euclidean distance
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between corresponding pairs of sub-windows. Although these techniques capture

more distinguishing information from images, they all face the disadvantages faced

by feature based and pixel based techniques.

2.7 Learning Based Techniques

The performance of the automated image recognition system is heavily influenced

by the accuracy of feature extraction methods [181]. Currently, many techniques

have been developed to extract features with acceptable results. Complications

start when images are captured in uncontrolled environments that result in low

quality and partial images. To deal with these problems, methods based on learn-

ing models have been developed. One of the most widely used learning methods

is the artificial neural network (ANN). It is inspired from the idea of biological

neural networks which have the ability to learn from inputs for making decisions

[182]. Artificial neural network based methods are developed for registering im-

ages, extracting features, matching images, classifying images and so on.

In [183], an image registration method based on neural networks and Fourier

transforms has been presented. In this approach, the spectrum of sensed images

are computed and then in a selected window of each spectrum, Fourier coefficients

are computed which are fed as a input to neural network. The neural network is

implemented to compute the transformation parameters which are used to align

images. In [184], another neural network based image registration method is pro-

posed.

Similarly, ANN is also used for logo recognition, however, traditional ap-

proaches to logo recogntion use the extracted features and descriptors. One of

the recent logo recognition methods based on the convolutional neural network

(CNN) is proposed in [185]. The CNN used in this approach is specifically trained

for the task of logo recognition. Although the precision-recall of the proposed
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approach is comparable to the best approaches proposed in [186] and [187], the

process is computationally exhaustive. Teng et al. [188], have proposed a medical

image fusion method based on a neuro-fuzzy logic.

Neural networks have been evaluated in fingerprint identification as well. In

[189], a new fingerprint matching method based on texture based descriptors and

minutiae based descriptors is proposed. For computing the similarity between

images, a 17-D vector is computed. A support vector is used to convert a vector

into a matching score. The method results in lower EER as compared to existing

techniques, however, it faces many challenges. First, the method is dependant on

the accuracy of minutiae extraction and hence, in case of partial or low quality

images if the minutiae are not extracted accurately, the performance of the method

is highly affected. Moreover, the exaction of features and computation of both type

of descriptors is a computationally exhaustive process. In addition, for computing

the similarity score, the images are required to be aligned and once aligned the

minutiae are matched using a greedy approach which increases the computation

time of the approach and makes it impossible for real time applications.

Jung et al. [190] proposed a fingerprint classification method that results in an

average accuracy of 97.4%. However, before computing the accuracy, a set of 256

fingerprints that are affected by severe noise are excluded in their evaluation. This

may mean that, the method might not perform well in case of low quality or noisy

images. In [181], a fingerprint identification system based on neural networks is

proposed that represents a complete biometric system capable of sensing images,

enhancing images, extracting features and matching. The accuracy of feature

extraction reaches 98.64% on a mixed dataset of low and high quality images.

However, the accuracy depends on the number of training images. Moreover, the

overall recognition rate of the method is only 92% and that is even on high quality

images.
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Although neural networks are used in different applications for improving the

performance, there are many limitations as well: (i) the training process of a neu-

ral network can be computationally expensive for large datasets that may require

high power GPUs; (ii) most existing methods do not incorporate the noisy images

(specially latent fingerprints) that constitute the top research issue in forensic ap-

plications; (iii) features extracted from images to train the neural network are

application dependant, so a neural network cannot be generalised for different im-

age matching applications; (iv) datasets like logo datasets may suffer from the

problem from insufficient training datasets; (v) many neural network based tech-

niques depend on image features whose extraction is a difficult task, as partial

images may even not have the required features; and (vi) the robustness of ANN

based methods is affected by the accuracy of the convergence of training datasets

and the quality of images.

2.8 Comparison of Feature based and Pixel based

Techniques

In the above sections, we have discussed different image matching techniques.

The conventional approaches of image matching can be broadly classified into two

categories, namely, feature based and pixel based. These techniques have several

advantages and disadvantages that are summarized below in Table 2.2.

Feature based matching methods are (i) used when the information represented

by specific points is more significant than the information represented by image

intensities, and (ii) recommended only if the images consist of enough distinctive

features and easily identifiable objects [191]. These techniques use highly distin-

guishing local information of images and results in high accuracy in high quality
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Techniques Advantages Disadvantages
Feature based

• Use highly distin-
guishing information

• Have a high tolerance
to non-linear distor-
tion

• Are analogous to ex-
pert based matching

• Do not require Pre-
alignment

• Are computationally
fast

• Require pre-
processing

• Have low tolerance to
image noise

• Suffer from false de-
tection of features

• Are not applicable to
low quality and par-
tial images

• Experience difficulty
in accurately detect-
ing features

Pixel Based

• Extract pixel informa-
tion easily

• Are applicable to low
quality and partial
images

• Have high tolerance to
noise

• Do not suffer from
false feature detection

• Can use both local
and global features

• Make optimum use of
available information

• Are noise tolerant

• Do not detect false
features

• Use less discrimina-
tive information

• Have high computa-
tion costs

• Have low tolerance for
non-linear distortion

Table 2.2: Advantages and disadvantages of existing fingerprint matching tech-
niques
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images. Moreover, these methods are tolerant to non-linear distortion as features

are local information. Non-linear distortion has less effect on the local level.

The extraction of features in images requires image processing techniques such

as image segmentation and image enhancement. Therefore, the accuracy of im-

age procesing techniques affect the accuracy of the extracted features’ locations

[75]. The other major limitation of these methods is that features might be hard

to detect or become unstable with time [192]. Moreover, the extracted features

need to be discriminative and uniformly distributed in images so that these can

distinguish intra and inter class images.

The accuracy of matching depends on the reliability of extracted features and

the number of features. The matching accuracy decreases as the number of features

decreases. A lower number of features may affect the accuracy. A higher number

of features affects the computational time of the matching process. Therefore, if

the number of features is high, then post processing is required to select a sufficient

subset of features for efficiently matching the images. In addition, some feature

based techniques generally do not perform well when images are too textured or not

textured enough. In such images, features would often be distributed unevenly and

hence fail to match the images accurately [193]. Also, many of these techniques

use feature descriptors for matching the images. These feature descriptors are

required to be invariant to the assumed difference between images [74]. However,

these techniques have a low tolerance to noise. This is because noise can result in

detection of spurious features that can affect the accuracy.

The extracted features from the images are used to align them before matching.

If images could be pre-aligned then feature matching will be simply a pair matching

problem. The features of images can be matched locally or globally. In global

matching techniques, images can be aligned by two different ways (i) absolute

pre-alignment of the images with respect to a fixed rotation and location (ii)

relative pre-alignment of the sensed image with respect to images in database
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[3]. Absolute pre-alignment is generally based on feature points which are either

difficult to detect or not present in the image. The global matching uses highly

distinguishing information from images, however, is time consuming, intolerant to

non-linear distortion and has a high computational cost. Therefore, researchers

have developed local matching techniques which do not take into account the global

transformation like translation and rotation.

In local matching techniques, transformations of images are not considered,

because local structures around the feature points that are used for matching are

invariant to any kind of transformations. Local structures include pixel intensity

around a feature point, angles and distances between features falling in a certain

region. No pre-alignment is required in these techniques and hence, these tech-

niques are also called alignment-free techniques. Local matching techniques can be

divided into two classes: nearest neighbour based and fixed radius based. Nearest

neighbour methods are defined by the relation between selected features and their

k nearest neighbours [79]. These techniques suffer from missing or spurious fea-

tures. In a fixed radius based technique, the neighbours of the central feature are

defined by all the features which lie in a circle of radius R to the central feature

[83]. Fixed radius techniques are tolerant to missing or spurious features. How-

ever, they are more complex and suffer from the border errors. After matching

the points based on the local structures, a score is computed based on the consol-

idation of valid matches to check the validity of local matches at the global level.

This consolidation step increases the computation time of the matching process.

The feature based techniques perform poorly in the case of low quality or

partial images due to limited use of information. Therefore, specific features alone

in poor quality or partial images may not be enough for matching [194]. Maltoni

et al. [3] have mentioned the use of additional distinctive features along with

the specific features that can increase the robustness and accuracy. When the

images have partial or low quality then image pixel based techniques can perform
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better than the feature based techniques [3]. Images having more detail have the

required number of features for feature based matching. However, images such

as medical images are not rich in textures, therefore it is difficult to extract the

required features from these images. Hence, for matching medical images, pixel

based methods are more suitable [8].

Pixel based techniques are preferred when images do not have enough salient

features or precedent details. Detection of salient features in difficult and distin-

guishing information is provided by gray colors instead of local shape or structures.

These methods make optimum use of information present in images as they rely on

every image pixel. To remove the effect of noise on pixels, weights are assigned to

the pixels. It can be argued that in blurry images with slowly varying gradients, a

pixel based approach can find the alignment, whereas feature based methods will

fail to align [9].

The use of pixel based registration methods has increased considerably as com-

pared to feature based methods for registering the images. The main reason behind

this is the advancement in computational sources, specifically memory capacity

and processing speed. Twenty or thirty years ago, computers used to take hours

or days to register two images by using intensity based registration. Today, even

a simple laptop can be used to solve the registration problem in few seconds by

using the intensity based registration method. The other reason for the growing

importance of pixel based matching is a consequence of their simplicity as there

is no need for image segmentation or other image processing techniques which are

complex and prone to errors. Nowadays, because of ease of pixel based methods,

these methods are used as an initial step for image registration. If the orientation

and position of a structure is known in advance then it is comparatively easy to

do matching [8].

Pixel based methods mainly have two limitations: (i) both images to be com-

pared should have same intensity function, either identical or statistically depen-
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dant; (ii) existing techniques are able to handle only translation and small rotations

between images. Although, it is possible to extend the approach to full rotation

and scaling, it is practically of no use due to extreme computational cost. More-

over, specific features represent more distinguishing information than the pixel

based information. Therefore, performances of these techniques are worse than

that of feature based techniques for high quality images.

The region-based techniques which compose a subfamily of pixel based match-

ing techniques are based on global and local information about images. For meth-

ods based on the global information, images need to be aligned first. This is

because global features change significantly with the orientation of the images.

The images are aligned by using the feature points. Partial images might not

have the required feature point or have a feature point whose accurate detection is

difficult. This restriction limits the use of this technique in partial images. Also,

this method cannot tolerate non-linear distortion as images are matched globally.

These issues are solved by region based techniques (such as the method proposed

in [10]) that is based on local information. However, it aligns the images by a brute

force search method, making it unsuitable for use with real time applications.

2.9 Conclusion

In this chapter we have investigated current techniques for matching the images in

different fields including object recognition, biometric recognition, medical image

registration and others. The concerns and issues in those techniques are sum-

marised in Table 2.2. From the literature it is apparent that current approaches

fail to align and match the images accurately and efficiently.

From the discussion in this chapter, the thesis argues that pixel based matching

of images is the most promising technique among the different matching techniques.

The use of transforms along with pixel information for matching images simplifies
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the matching process. However, the performance of existing pixel based matching

techniques, with or without using transforms, still requires improvement. More-

over, as discussed in previous sections, researchers have been working to resolve the

issue of image alignment in many image matching applications. However, aligning

the images accurately and efficiently is still a challenging issue that affects the

overall efficiency and accuracy of the matching process. In addition, most of the

transform based methods are proposed for full images which exhibit pixel-to-pixel

correspondence and therefore, these methods fail when applied to partial images.

Hence, in response to these limitations, the fundamental question that we want

to explore in this thesis is to apply a pixel based approach to match all type of

images irrespective of the pixel-to-pixel correspondence between images. Moreover,

to eliminate the alignment issue in image matching, we need a method that can

match images without explicitly aligning whole images or parts of images. In

addition, for applications such as medical image registration where alignment of

images is demanded, we need a method that can align images accurately and

efficiently.



Chapter 3

Recovery of Similarity

Transformation Parameters

3.1 Preamble

Chapter 2, asserts that accurate registration of images is very important [22] for

different applications of image processing and computer vision. The applications

include medical image diagnosis, object recognition, image retrieval, remote sens-

ing and biometric recognition. Image registration is a process of aligning images

into a common coordinate system [25]. This seems a clear problem that should

have universal solution, however, this is still away from the state-of-the-art. Due to

the wide variety of applications, the registration of images has become a complex

problem that has a variety of solutions. Over the past few decades, the research

in image registration has substantially increased due to a growing availability of

digital images in different computer vision applications.

One of the common methods of registering images is by computing the transfor-

mation parameters relating them. The transformation parameters have different

uses in different applications such as in object recognition; they help in matching

two images while in image registration; in bringing the similar points of registered

75



76

images into correspondence. Among all geometrical transformation parameters,

similarity transformation parameters namely scale, rotation and translation are

often used by different applications where the shape of the object is preserved.

Examples of such application include (i) logo dataset (UMD Logos); (ii) pictures

taken by camera in a common frame; (iii) weld defect identifications in non destruc-

tive testing; (iv) moving object state change quantification; (v) Chinese characters;

and (vi) MRI or CT Brain images.

Manual registration is the foremost method of image registration in which the

distinctive points are selected in the images manually and then used to compute

the geometric transformations between images. This method is widely used in

the remote sensing community as it is easy to implement. However, the manual

registration is prone to error and laborious, making difficult the processing of large

amounts of data [22]. Therefore, researchers have developed automatic methods

for computing the parameters. Generally, parameter computation techniques can

be divided into two categories, namely, feature based or pixel based.

In feature based methods, the images are pre-processed to extract the distinc-

tive features that are used for aligning images. These methods extract the highly

distinguishing information from images and then match them based on local image

properties to compute the transformation parameters. Feature based methods can

be further classified into two classes: (i) a class of techniques that uses a dense

set of low information content features such as edge points, and (ii) a class of

features that uses a sparse set of high information content features such as corner

points. Numerous researchers have worked on the point pattern matching problem

in different fields such as pattern recognition, computational geometry and image

processing. One of the preliminary steps in these applications is the detection and

extraction of features in images, based on the notion that images can be repre-

sented by a set of feature points. Many operators have been developed to detect

the feature points (discussed in Chapter 2.4.1). Once the feature points are de-
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tected, the local information around the feature points is described by a descriptor

for point-to-point image matching and parameter computation [25].

On the other hand, in pixel based methods, the pixel information of regions

of images is used to match images. The algorithms either compute correlation

between raw pixel values or compute the difference by converting images to other

domains such as Radon or Fourier domains [22]. In the absence of reliable features,

correlation is a trustworthy method of aligning images. Correlation computes the

similarity between images by comparing the pixel intensities. A region from a

sensed image is translated to a reference image to find alignment that optimizes

the similarity measure. This naive brute-force search approach is used for finding

the optimal translation. Moreover, if the images are rotated as well, then the same

procedure of finding the similarity is done for different rotation angles as well to

find optimal rotation difference between images [10].

Other pixel based methods are transform-based registration methods which

work on the premise that information from sensed images makes the geometrical

transformations easier to compute. Commonly used transforms are Fourier and

Radon transforms. These methods are used for registering images having pixel-

to-pixel correspondence. The frequency domain provides a faster alternative for

computing the correlation similarity metric. Fourier transform based methods use

Fourier’s shift theorem that states that if one image is the translated version of

another image in the pixel domain, then in the frequency domain they are related

by a phase shift which can be computed efficiently. However, this method is

only able to find the translation between two images and even in translation it is

difficult to compute large displacements. In 1987, DeCastro et al. [155] extended

the Fourier method to rotation whereas Chen et al.[156] and Reddy et al. [157]

have extended the method to rotation, scale and translation.

Estimation of the transformation parameters linked to images using a Radon

projection has gained attention recently. Actually working directly with Radon
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projections eliminates the need for reconstruction of images which is prone to

reconstruction artefacts and is computationally exhaustive. One of the recent

methods based on Radon projections is the method proposed in [14] that estimates

the RST (Rotation, Scale and Translation) parameters relating two images only by

using the Radon projections and without additional computation. However, the

method of computing the rotational angle is time-consuming with a computational

complexity of O(P 2N) where P ×N is the size of Radon Matrix (where P is the

number of projections and N ×N is the size of image) that slows down the entire

registration procedure.

As discussed above, for images having exact pixel-to-pixel correspondence many

image registrations methods have been proposed [discussed in Chapter 2]. The fea-

ture based methods need to extract the features for computing the parameters,

however, accurate feature extraction itself is a difficult task. Moreover, the ex-

traction of features becomes more difficult when images are either partial (images

do not have pixel-to-pixel correspondence) or low quality. This is because, par-

tial images might not have the features required for computation of parameters,

whereas in low quality images there is a high chance of extracting spurious features

that can affect the accuracy of the system. The feature extraction process needs

image processing for extracting features accurately which increases the computa-

tional complexity of the system. Most importantly, different types of features are

required for different applications, hence, a common method cannot be developed

for different applications.

Some of these issues are dealt by pixel based techniques as no specific features

are required to be extracted. Therefore, the approach can be applied to different

applications and extensive image processing is not required. In addition, as no

specific features of images are used, there is no chance of false feature detection.

However, there are some challenges: brute-force searching is used for computing the

transformation parameters which is computationally exhaustive. Furthermore, the
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Figure 3.1: The coloured block represents the thesis objective addressed in this
chapter.

number of operations required for computing the correlations depends on image

sizes, which implies the larger the image the higher the computation time and

vice versa. Similarly, transform based methods compute the parameters with high

accuracy, however, are computationally expensive.

Although pixel based methods have many deficiencies, the approach is vital and

remains widely used in different applications such as remote sensing applications.

Moreover, the approach is applicable to low quality images. Therefore, we need

a pixel based method for image registration but that should be able to overcome

the limitations of computational complexity. For solving this issue, in this chapter

we have proposed a parameter based registration method for images having pixel-

to-pixel correspondence (shown in Figure 3.1) that can compute the parameters

accurately and efficiently with respect to computational time.

The remainder of the chapter is structured as follows: Section 3.2 discusses the

parameters to be computed which is followed by the transform used for computing

the parameters between two images in Section 3.3. The method of computing the

parameters is discussed in Section 3.4. The computation time of the proposed

approach is discussed in Section 3.5. The performance of the proposed approach
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is tested on images of varying classes and results are presented in Section 3.6.

Finally, a conclusion is drawn in Section 3.7.

3.2 Parameters to Compute

An instance of image registration is to align an image with respect to the other

image. For this we need to compute the transformation parameters relating to

those two images. We can define the image registration problem by three elements:

i) Reference image IR(yR, xR) that is generally taken to be unchanged.

ii) Sensed image IS(yS, xS) which is the transformed version of the reference

image.

iii) Geometric transformations that map the spatial positions in the reference

image to the sensed image.

The sensed image denoted by IS(yS, xS) is obtained by three functions formulated

as:

IS(yS, xS) = Translation× Scale×Rotation× IR(yR, xR) (3.1)

where (yS, xS) are row and column pixel locations of the sensed image IS and

(yR, xR) are the corresponding row and column pixel locations in reference image

IR. The coordinates of the sensed image can be represented as a matrix product

using homogeneous coordinates:


yS

xS

1

 =


1 0 y0

0 1 x0

0 0 1



α 0 0

0 α 0

0 0 1




cosφ0 − sinφ0 0

sinφ0 cosφ0 0

0 0 1



yR

xR

1

 (3.2)

where (x0, y0), α and φ0 represent the translation (in R2), scale (in R+) and ro-

tation (in [1, 360]) parameters, respectively. Hence, the problem here is to devise
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an algorithm for all pairs of images that will compute transformations for any in-

stance. The objectives are to (i) speed up the registration process to handle bigger

datasets; and (ii) improve robustness and reliability of the registration algorithm

so that it can tolerate noise.

3.3 Transform for Computing Parameters

The information represented in the transformed domain makes it simpler to com-

pute the similarity transformation parameters. One such commonly used trans-

form is the Radon transform. The Radon transform converts the image from the

pixel domain to the Radon domain and makes it easy to handle the rotational

difference between images.

The Radon transform (RT) was discovered in 1917. Since then, it has been

deeply studied and applied in different areas, especially in biomedical imaging

fields such as reconstruction of images from the projections in computer tomog-

raphy. The use of the Radon transform in image processing has gained momen-

tum recently. The most recent use of the Radon transform is for computing the

underlying transformation parameters relating to two images directly from their

projections only, assuming no knowledge of the reference image [14].

The Radon transform RTf (φ, u) of a two dimensional real valued function f(x+

jy) along a straight line Z(t) = ejφ(u+jt), where t is the line parameter and given

by

RTf (φ, u) =

∫ ∞
−∞

f(Z(t))dt (3.3)

In other words, the Radon transform computes projections of a 2D function along

defined directions (as shown in Figure 3.2), where a projection represents a set of

integrals along a defined direction [195].
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Figure 3.2: The computation of the Radon transform [13]

Descriptively, every point of the Radon transform RTf (φ, u) represents the

summation of values of a function along a line Z(t) at a distance u from the

center and angle φ. The graphical representation of the Radon transform is also

called Sinogram (as shown in Figure 3.3) as it appears like a number of sine waves

with different phases and amplitudes. The x-axis of Sinogram represents angle

φ at which a projection is computed. The y-axis represents distance u from the

center. The important properties of the Radon transform are linearity, symmetry,

periodicity, rotation by an angle, translation by a vector and scaling by a factor.

These properties are defined below [14].

Linearity : RT(f+h)(φ, u) = RTf (φ, u) +RTh(φ, u) (3.4)

Periodicity : RTf (φ, u) = RTf (φ± 2kπ, u), k ∈ Z (3.5)

Symmetry : RTf (φ, u) = RTf (φ± (2k + 1)π,−u), k ∈ Z (3.6)

Translation by a vector : h = T(xo, yo)(f) (3.7)

=⇒ RTh(φ, u) = RTf (φ, u− xo cos(φ)− yo sin(φ)) (3.8)

Rotation by an angle : h = Rφo(f) =⇒ RTh(φ, u) = RTf (φ− φo, u) (3.9)

Scaling by a factor : h = Sα(f) =⇒ RTh(φ, u) = αRTf (φ, u/α), α > 0 (3.10)



83

By using these properties, the Radon transform can be used to compute the un-

derlying transformation parameters relating two images or patterns directly from

their projections only and without any additional computing [14]. To deal with

the rotational misalignment of images in different image matching applications,

the rotation property of RT can be used directly. The detailed explanation of the

rotation property of the Radon transform is discussed below.

3.3.1 Rotation Property of Radon transform

The rotational property of the Radon transform states that rotation in the pixel

domain is equivalent to a shift in the Radon domain. Let fr represent the object

image rotated by an angle φ0 i.e.fr=Rφ0(f) where the rotation angle φ0 can lie in

the range φ0 ∈ [1, 360]. The rotational property of the 2π Radon transform states

that the Radon transform at any point (φ, u) of a rotated image (rotated by angle

φ0) is equal to the Radon transform of the reference image at point (φ − φ0, u)

[14].

fr = Rφo(f) =⇒ RTfr(φ, u) = RTf (φ− φo, u) (3.11)

Equation 3.11 simply defines the rotation property for all the rotation angle

between [1, 360]. It shows that the rotation in a pixel domain is changed into a

circular shift in the Radon domain. The size of the 2π Radon transform is 360×u

where u represents the number of components in each Radon projection. The

maximum value of u is equal to the length of the diagonal of an image. For an

image of size N ×N , the value of u will be an integer value of N
√

2.

The Sinograms of two rotationally misaligned images are same except there is

a circular shift along the direction component φ (as shown in Figure 3.3). This

property is employed to estimate the rotation angle between two images using their

Sinograms. Knowing the fact that rotation in the space domain is converted into

a circular shift in the Radon domain, the Sinograms are compared to estimate the
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Figure 3.3: The 2π Radon transform rotation property: the rotation of an image
by angle φ0 is converted into the circular shift of φ0 in the 2π Radon transform
[14].

rotational angle between the images by using the equation given below:

F (φ0) =

∫ 2π

0

∫ ∞
−∞
|RTfr(φ, u)−RTf (φ− φo, u)|dudφ (3.12)

The rotation angle φ0 between [1, 360] is given by the minimum value of F

φ∗0 = argmin
φ0

F (3.13)

This property of the Radon transform can be exploited to solve the issue of a

rotational difference between images. The details of using the Radon transform

for computing the parameters are discussed in Section 3.4.

3.4 Method of Computing Parameters

As discussed earlier, alignment of the images is important for several image pro-

cessing and computer vision applications. For alignment, we need to compute the

parameters relating two images. However, the computation of parameters accu-

rately and efficiently is still a challenging problem. In order to identify the param-

eters, we shall use the rotational property of the Radon transform for computing

the angle, the ratio of the intensities for computing the scale, and the centroids

of the images and the translation property of the Radon transform for computing
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translation. Figure 3.4 shows two images of Lena: (a) Reference image IR ; (b)

Sensed image IS obtained by using Equation 3.2.

(a) (b)

Figure 3.4: (a) Reference Lena Image (IR); and (b) Sensed Lena image (IS) ob-
tained by applying the RST (Rotation, Scale and Translation) transformations [6,
0.9, 4, 4]

The idea is to compute transformation parameters one by one. The simplest

parameter to compute is the scale between two images. The sum of the pixels in

an image can be used to find the scale. The sums of pixels of reference and sensed

images are given by Equation 3.14 and 3.15:

SumIR =
N∑
j=1

N∑
k=1

IR(j, k) (3.14)

SumIS =
N∑
j=1

N∑
k=1

IS(j, k) (3.15)

where N×N represents the size of the image. The scale α of the image is computed

by:

α =

√
SumIS
SumIR

(3.16)

Once the scale is computed, the next step is to find a common reference point

between images. The most commonly used and easily computable reference point

in an image is the centroid. The centroid of an image is the average location of all
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the parts of an object inside an image. In other words, it is a position at which the

weighted position vector of all parts of the object sum to zero [196]. For objects of

uniform density like a circle, the centroid lies at the center of the object. However,

for the objects with non-uniform shapes, it is a point where uniform force acts on

object. The centroid is computed separately for each axis. Along x and y axis of

the reference image, the centroid (CRx, CRy) is computed by using Equation 3.17

and 3.18 at any angle φ.

CRx =

∫∞
−∞ uRTR(φ, u)du∫∞
−∞RTR(φ, u)du

cos(φ)−
∫∞
−∞ uRTR(φ+ π/2, u)du∫∞

−∞RTR(φ, u)du
sin(φ) (3.17)

CRy =

∫∞
−∞ uRTR(φ, u)du∫∞
−∞RTR(φ, u)du

sin(φ) +

∫∞
−∞ uRTR(φ+ π/2, u)du∫∞

−∞RTR(φ, u)du
cos(φ) (3.18)

where, RTR(φ, u) represents the Radon transform of the image IR. Similarly, the

centroid of the sensed image (CSx, CSy) can also be computed by using the Radon

transform RTS of the sensed image. Once the centroid of the object image is found,

the next step is to shift the centre of the image to the centroid to have a common

centre for both images. This eliminates the effect of the translation on the image,

and consequently on the Radon transform. Alternatively, the Radon transform

of the shifted reference and sensed images can be computed directly by using

the translation property of the Radon transform and is given by Equations 3.19

and 3.20, respectively.

RTRc(φ, u) = RTR(φ, u+ CRxcos(φ) + CRysin(φ)) (3.19)

RTSc(φ, u) = RTS(φ, u+ CSxcos(φ) + CSysin(φ)) (3.20)

where RTRc and RTSc represent the Radon transforms of the reference and sensed

images computed at the centroid. This process has eliminated the effect of trans-



87

lation on the Radon transform of the image. However, the Radon transforms ROc

and RTc are still scaled and circularly shifted versions of each other.We know that

the Radon transform shifts the rotation in the pixel domain to a shift in the Radon

domain. Hence, this property can be used for computing the angle by comparing

the Radon transforms for each possible angle [14]. However, comparing the Radon

transform for each angle is computationally expensive.

As the sensed image is scaled, the Radon transform of the sensed image has α

times the number of components to that of the reference image Radon transform.

This is because the length of the diagonal of the sensed image is α times the length

of the diagonal of the reference image; and the number of components in the Radon

transform depends on the diagonal length. For computing the angle between

both images, instead of comparing each component of the Radon transform, the

consolidated information of the Radon transform for each angle can be compared.

The common methods to consolidate the information for a set of values are mean

and variance. The mean of a set of variables represents the central location of the

distribution of values, whereas the variance measures the dispersion of the values

around the mean. Moreover, the variance is a better perspective for a set of values

as compared to the mean [197]. Hence, we will consolidate the information of

each angle by a variance and represent the Radon transform matrix by the Row

Variance Vector (RVV). The RV VR of the reference image is computed as:

RV VR(φ) = varu(RTRc(φ, u)) (3.21)

where RTRc represents the Radon transform of reference image computed at the

centroid. Similarly, the Row Variance Vector of the sensed image represented by

RV VS can also be computed.

Scale Independent Row Variance Vector: The Row Variance Vector is

scale independent as shown in Figure 3.5, because, it is computed by summarising
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Figure 3.5: The Row Variance Vectors of the Lena image (shown in Figure 3.4 (a))
at different scales factors

the information of all components of the Radon transform at all angles individu-

ally. Therefore, even if the components are uniformly sampled due to scaling, it

will result in similar Row Variance Vectors of different magnitudes as shown in

Figure 3.5. After normalising the magnitudes of the vectors, the vectors of the

scaled images are identical (as shown in Figure 3.6).

Figure 3.5 shows RVV of the Lena image at three different scales (1, 0.875,

and 0.75). The Row Variance Vectors of the image at different scales are of the

same length and are identical except the magnitude varies according to the scale.

However, the normalised RVVs at different scales shown in Figure 3.6 are identical.

Therefore, to compute the rotation angle, the normalised Row Variance Vectors of

two scaled images can be compared directly unlike the method given in [14] where

the Radon transforms of the reference and sensed images are scaled to have the

same dimensions. Hence, in the proposed method, there is no need to have images

with identical scaling.
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Figure 3.6: The normalised Row Variance Vectors of the Lena image (shown in
Figure 3.4) at different scales

Moreover, the property of the Radon transform for representing the rotation

in the pixel domain by a shift in the Radon domain is also preserved by the Row

Variance Vector (as shown in Figure 3.7). In other words, the shifts between the

Row Variance Vectors represent the rotational difference between images. There-

fore, to increase the efficiency of the computation process, instead of using the

complete Radon transforms to compute the angle of rotation, we can simply use

the Row Variance Vectors (RVV) of both images without rescaling. Consider the

following objective function:

H(φ0) =

∫ 2π

0

|RV VR(φ)−RV VS(φ− φ0)|dφ (3.22)

Then, the rotation angle, φ∗0, between angles 0 to 2π is given by:

φ∗0 = arg(minφ0(H)) (3.23)
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Figure 3.7: Row Variance Vectors of the Lena image (shown in Figure 3.4) at
different rotation angles

The next parameter to estimate is the translation between two images. To find

the translation, we used the scale (α), rotation angle (φ0) and reference points

(CRx, CRy) and (CSx, CSy) between two images by way of the centroid. The trans-

lation parameters (x0, y0) are computed by Equations 3.24 and 3.25, respectively.

y0 = CSy + α[CRx sin(φ∗0))− CRy cos(φ∗0))] (3.24)

x0 = CSx − α[CRx cos(φ∗0)) + CRy sin(φ∗0))] (3.25)

The step by step procedure of computing the parameters is:

i) Compute the scale of the sensed image by using the ratio of means, using

Equation 3.16.

ii) Compute the centroids of both images, using Equation 3.17 and 3.18.
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iii) Compute the Radon transform around the centroid of the images, using

Equation 3.19 and 3.20.

iv) Compute the Row Variance Vectors of the reference and sensed images, using

Equation 3.21

v) Compute the objective function for computing the rotation angle, using

Equation 3.22.

vi) Estimate the rotation angle, using Equation 3.23.

vii) Compute the translation coordinates, using Equation 3.24 and 3.25.

The algorithms of computing transformation parameters by using the method

given in [14] and the proposed method is given in Algorithms 3.1 and 3.2, respec-

tively.

3.5 Computational Time

The computational time of an approach plays an important role in matching im-

ages. One of the recent Radon transform based approaches proposed in [14] for

computing the transformation parameters is highly accurate. However, the ap-

proach to computing the parameters is computationally complex. The algorithms

for computing the parameters in [14] and the proposed method are Algorithm 3.1

and Algorithm 3.2, respectively. The computational times required for computing

the scale and translation in both the methods are the same. However, the time

differs when computing the rotation angle between the images.

In [14], to compute the rotational angle, the Radon transform of the image is

requires translation, scaling and comparison for each shift between 1 to 360. The

computational time of computing the rotation angle is based on the number of

comparisons. The number of comparisons made to compare two Radon transforms
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Algorithm 3.1 Compute RST parameters relating two images [14].

Input← Reference Image IR, Radon transform RTR, Sensed Image IS and
Radon transform RTS

Output← Computation of RST Parameters (φ∗0, α,(x0, y0))
Scale: Compute the scale α between images by using the ratio of Radon
transforms.
Rotation: Computing the rotation angle need the centroid of the image
and scale between images:
i. Compute the centroid of the reference image (CRx, CRy) and the sensed image (CSx,
CSy).
ii. Compute the Radon transforms at the centroids of the images (RTRc and RTSc).
iii. Rescale the Radon transform of the reference image according to the computed
scale (RTRcs).
iv. Compute angle:
φ0 ←1
while φ0 6= 361 do
RTnSc ← CircularShift(RTSc, φ0)
for φ = 1 : 360 do
LR ← RTRcs(φ, 1 : N

√
2)

LS ← RTnSc(φ, 1 : N
√

2)

Distance(φ) =
∫ N√2
u=1 (LR(u)− LS(u))du

end for
F(φ0)=

∑360
φ=1 |Distance(φ)|

φ0 ← φ0 + 1
end while
v. Take φ0 as the rotation angle φ∗0 that results in the minimum value of F.
Translation: Using the computed scale, rotation angle and centroid, com-
pute the translation parameters (x0, y0).

are P ×N
√

2, where P represents the number of projections between 0 to 2π and

N × N is the size of images. To find the angle, one Radon transform is shifted

for each angle between 1 to 360 and compared with the other Radon transform.

Hence, the total number of comparisons made are P 2 ×N
√

2.

The proposed approach converts a two dimensional Radon transform into a

one dimensional vector of length P. The vectors are compared to compute the

angle. For computing the rotation angle, the Row Variance Vectors are compared

rather than the Radon transforms of images. The number of comparisons made

to compare two vectors are P . To find the angle, one of the vectors is shifted for
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Algorithm 3.2 Compute RST parameters relating two images using the proposed
approach.

Input← Reference Image IR, Radon transform RTR, Sensed Image IS and
Radon transform RTS

Output← Computation of RST Parameters (φ∗0, α,(x0, y0))
Scale: Compute the scale α between images by using the ratio of pixel
intensities of images.
Rotation: Computing the rotation angle needs only centroids of images:
i. Compute the centroid of the reference image (CRx, CRy) and the sensed image (CSx,
CSy).
ii. Compute the Radon transforms at the centroid of the images (RTRc and RTSc).
iii. Compute the Row Variance Vectors of the images (RV VR and RV VS).
iv. Compute the angle:
for φ0 = 1 : 360 do

H(φ0) =
∑360

φ=1 |RV VR(φ)−RV VS(φ− φ0)|
end for
v. Take φ0 as the rotation angle φ∗0 that results in the minimum value of H.
Translation: Using the computed scale, rotation angle and centroid, com-
pute the translation parameters(x0, y0).

each projection between 1 to 360 degrees and compared with other vector. Hence,

the total number of comparisons made is P 2.

The computational time of the proposed approach shows that the proposed

method is more efficient by a factor of N
√

2 compared to the approach in [14]. Not

only is the proposed method more efficient, but the computation of the rotation

angle is independent of the scale of the images. Whereas, in [14], to compute

the rotation angle, each component of the matrices is compared independently.

Therefore the Radon transforms need to be on the same scale. However, in the

proposed approach the vector generated is of constant length for any scaled image.

This property of the Row Variance Vector helps in improving the computational

time of the proposed method.

3.6 Experimental Results

In order to demonstrate the effectiveness and accuracy of the computed parameters

for the proposed method, experiments were conducted for computing the RST
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parameters between two images which were corrupted or not corrupted by additive

noise. The experiments were conducted to demonstrate schematically the various

steps of the proposed approach for real world image applications. For this, we have

chosen images from different applications such as the standard Lena and Barbara

test images, a hand CT image [20] and a fingerprint image from FVC2002DB1

dataset. For the experiments, the dimensions of the Lena and Barbara images are

512 × 512 pixels, hand’s Computed Tomography (CT) image is of size 285 × 285

and the fingerprint image is size 374 × 339. The fingerprint image is taken from

FVC2002DB1 [3] database. These images can be divided into two types: the first,

which are subjected to scale such as Lena or Barbara images; and the second,

which are generally captured at same scale like fingerprints or CT images.

The first set of experiments is performed for the Lena and Barbara images with

all three transformations namely, scale, rotation and translation. The second set

of experiments are performed on the CT images and fingerprints under different

rotation and translation. The algorithms are developed in a Matlab environment

and the programs are run on the Intel Xeon 3.50 GHz processor and 64 GB of

RAM.

Depending on the applications, the images are subjected to a number of RST

(Rotation, Scale and Translation) transformations and corrupted by noise. The

noisy images were obtained by adding noise to the reference image. The Gaussian

white noise and salt and pepper noise are used for corrupting the images. The

experiments are conducted by adding varying variance for Gaussian noise and

density for salt and pepper noise. The noise is generated randomly, hence for

statistical validity of the experiments, the experiments are performed 40 times and

the average results are reported. The error for each of the computed transformation

parameters is given, where the error is defined by the average difference between

the given parameters and computed parameters.
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Error =
1

K

K∑
l=1

|P − Pl| (3.26)

where, K represents number of times the experiment is performed, P represents

real parameters (α, φ0, x0, y0) values and Pl represents the computed parameters

(αl, φ0l, x0l, y0l). The error is computed for varying noise levels for both Gaussian

and salt and pepper noises.

The performance of the first set of experiments on the Lena and Barbara im-

ages of size 512× 512 is compared to the best performing algorithms proposed in

[14] and [198]. The images are corrupted by adding Gaussian white noise with

different SNR varying from ∞ to 2. The approach proposed in [14] is based on

the Radon transform as well, however, it uses an exhaustive way of computing the

angle. However, the approach discussed in [198] deals with the transformations in

images by using the Radon transform, log mapping and the amplitude extraction.

As shown in Table 3.1, the proposed approach performs equally well as compared

to the approach in [198] in the case of scale and rotation, but it performs better

for translation. The error reported for translation parameters in [198] is 1 (integer

value) for both parameters, which means the error is rounded to an integer value.

Therefore, the real value of the error can be even greater than the reported value.

On the other hand, the accuracy of computing parameters for the proposed ap-

proach is as good as the approach in [14]. Whereas, the proposed approach can

achieve the same accuracy in less computation time compared to the approach in

[14].

To validate the proposed method, the accuracy of the estimated parameters

is further checked by applying different transformations to the Lena and Barbara

images. Tables 3.2 and 3.3 demonstrate the superior performance of the proposed

method in computing the parameters under different transformations. The mean

errors in scale, rotation and translation reported on the Lena and Barbara images
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Methods
Noise
(SNR)

Lena Barbara
Scale Rotation Translation Scale Rotation Translation
α θ X Y α θ X Y

0.9 6 4 4 0.9 6 4 4

Proposed
Method

∞ 0.0001 0 0.29 0.39 0.0001 0 0.40 0.36
8 0.0004 0 0.42 0.29 0.0003 0 0.34 0.37
2 0.0006 0 0.42 0.35 0.0005 0 0.39 0.50

Method
in [14]

∞ 0.0001 0 0.44 0.25 0.0001 0 0.41 0.35
8 0.0004 0 0.43 0.23 0.0003 0 0.38 0.36
2 0.0006 0 0.41 0.32 0.0005 0 0.42 0.45

Method
in [198]

∞ 0.0004 0 1 1 0.0004 0 1 1
8 0.0004 0 1 1 0.0004 0 1 1
2 0.0004 0 1 1 0.0004 0 1 1

Table 3.1: The errors in parameter estimation for the Lena and Barbara images
by using the proposed approach at different SNR with Gaussian noise

Image
Real Parameters Computed Parameters

Scale Rotation Translation Scale Rotation Translation
α θ X Y α θ X Y

Lena

0.9 6 4 4 0.9001 6 4.29 3.61
0.9 6 10 7 0.9003 6 9.93 7.78
0.9 12 9 9 0.9003 12 8.81 9.95
0.8 192 9 14 0.8007 192 9.55 14.11
1.3 353 15 15 1.3005 353 14.46 15.60

Mean Error 0.0004 0 0.31 0.56

Table 3.2: The estimated parameters for the Lena image by using the proposed
approach as compared to the real parameters
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Image
Real Parameters Computed Parameters

Scale Rotation Translation Scale Rotation Translation
α θ X Y α θ X Y

Barbara

0.9 16 4 4 0.9003 16 4.55 3.62
0.8 18 14 3 0.8006 18 13.44 3.67
1.2 4 20 30 1.2010 4 20.15 29.81
1 9 5 -5 1.000 9 4.78 -4.89

0.9 8 8 5 0.9003 8 7.51 4.88
0.9 9 15 -7 0.9003 9 15.32 -7.12
0.8 10 -35 -27 0.8006 10 -34.93 -27.11

Mean Error 0.0004 0 0.3 0.24

Table 3.3: The estimated parameters for the Barbara image by using the proposed
approach as compared to the real parameters

Noise
Barbara Lena

Scale Rotation Translation Scale Rotation Translation
α θ X Y α θ X Y

0.8 8 14 3 0.8 8 14 3
0.00 0.0003 0 0.58 0.50 0.0003 0 0.30 0.34
0.04 0.0003 0 0.55 0.20 0.0003 0 0.48 0.24
0.08 0.0004 0 0.51 0.20 0.0004 0 0.53 0.23
0.12 0.0005 0 0.57 0.18 0.0004 0 0.58 0.13
0.16 0.0006 0 0.47 0.38 0.0005 0 0.54 0.20
0.20 0.0006 0 0.53 0.31 0.0006 0 0.64 0.26

Table 3.4: The estimated parameters by using the proposed approach on the
Barbara and Lena images at different densities of salt and pepper noise varying
from 0 to 0.20 with an increment of 0.04 (Barbara images with varying densities
is shown in Figure 3.8).

are (0.0004, 0, 0.31, 0.56) and (0.0004, 0, 0.30, 0.24), respectively. Moreover, the

accuracy is also verified by adding salt and pepper noise to the images. The salt

and pepper noise is added to the images with different noise densities varying

from 0 to 0.20 with an increment of 0.04 ( as shown in the Figure 3.4). The

errors in computing parameters for salt and pepper noise are shown in Table 3.4.

The accuracy of parameters computed is still maintained even at higher noise and

for different transformations. The results for both Gaussian and salt and pepper

noises demonstrate the robustness of the proposed method to different types of

noises.
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Figure 3.8: Barbara reference image (top left) and sensed images obtained by
applying the RST transformations (8,0.8,14,3) and with varying salt and pepper
noise density (d=0:0.04:0.20)

The second set of experiments is performed on the images which are generally

captured at the same scale. For these experiments, hand CT images (shown in

Figure 3.9) and fingerprint images (shown in Figure 3.10) are used. The perfor-

mance is checked under both Gaussian and salt and pepper noise with different

transformations. For Gaussian noise, the variance varies from 0 to 0.1 with an

increment of 0.01, whereas, for salt and pepper noise, the noise density varies from

0 to 0.20 with an increment of 0.02. Table 3.5 and 3.6 shows the results of param-

eters computed for the hand CT images and the fingerprint images. For a hand

CT image, the proposed method results in no error in the computation of angle

under salt and pepper noise, whereas it results in a very small error of 0.025◦ at

high Gaussian noise with a variance of more than 0.09. This has happened because

the hand CT image is much smaller than the Lena and Barbara images and as

noted in [199] and [11], the performance depends on the ratio of noise in image

and size of image. Moreover, the error in the translation component is small as

well. The mean errors in translation for the Hand CT image with salt and pepper
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Image
Noise

(Salt &
Pepper)

Rotation Translation
Noise

(Gaussian)

Rotation Translation
θ X Y θ X Y
16 19 14 38 9 4

Hand CT
Image

0 0 0.26 0.26 0 0 0.32 0.54
0.02 0 0.21 0.30 0.01 0 0.36 0.67
0.04 0 0.19 0.26 0.02 0 0.41 0.62
0.06 0 0.23 0.28 0.03 0 0.36 0.78
0.08 0 0.22 0.38 0.04 0 0.43 0.76
0.10 0 0.19 0.31 0.05 0 0.46 0.85
0.12 0 0.22 0.39 0.06 0 0.53 0.88
0.14 0 0.32 0.38 0.07 0 0.52 0.71
0.16 0 0.29 0.41 0.08 0 0.62 0.97
0.18 0 0.30 0.58 0.09 0.025 0.64 0.94
0.20 0 0.45 0.78 0.1 0.025 0.58 0.85

Table 3.5: The errors in parameter estimation for the hand computed tomography
image (shown in Figure 3.9) at different levels of both salt and pepper and Gaussian
noise

noise and Gaussian noise are (0.26,0.39) and (0.47,0.79), respectively. In the case

of the fingerprint, the proposed method results in no error in the computation of

the angle under both noises and reports small errors in translation components

and estimated parameters are close to the real parameters. The mean errors in

translation of the fingerprint with salt and pepper noise and Gaussian noise are

(0.27,0.45) and (0.28,0.58), respectively.

The results discussed above for different types of images demonstrate the ac-

curacy and robustness of the proposed method of computing parameters. The

proposed method of computing parameters results in very small errors for images

from different applications. Moreover, the computed parameters are very close to

real values of parameters applied to the reference image with or without noise. Not

only is the proposed method accurate and robust to noise, but also it computes

the parameters faster than the best performing algorithms.
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Figure 3.9: Hand CT reference image (top left) and sensed images obtained by
applying Rotation and Translation transformations (38,9,4) and Gaussian noise
with varying variance from 0:0.01:0.1
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Image
Noise

(Salt &
Pepper)

Rotation Translation
Noise

(Gaussian)

Rotation Translation
theta X Y θ X Y

17 5 20 17 15 -16

Fingerprint

0 0 0.29 0.41 0 0 0.37 0.44
0.02 0 0.29 0.40 0.01 0 0.37 0.45
0.04 0 0.29 0.38 0.02 0 0.32 0.51
0.06 0 0.26 0.46 0.03 0 0.34 0.49
0.08 0 0.27 0.42 0.04 0 0.24 0.76
0.10 0 0.28 0.41 0.05 0 0.24 0.74
0.12 0 0.27 0.46 0.06 0 0.23 0.73
0.14 0 0.27 0.39 0.07 0 0.32 0.44
0.16 0 0.29 0.43 0.08 0 0.21 0.73
0.18 0 0.26 0.58 0.09 0 0.23 0.68
0.20 0 0.24 0.62 0.1 0 0.27 0.42

Table 3.6: The errors in parameters estimation for the fingerprint image (shown
in Figure 3.10) at different levels of both salt and pepper and Gaussian noise

Figure 3.10: Fingerprint reference image and sensed image obtained by applying
Rotation and Translation transformations (17,15,-16) and Gaussian Noise with
variance 0.1
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3.7 Conclusion

In this chapter, we have discussed a pixel based parameter computation method

for images having pixel-to-pixel correspondence by using the Radon projections.

To compute the rotation angle efficiently as compared to existing techniques, a

Row Variance Vector based on Radon transform is proposed. The Row Variance

Vector is scale invariant and this property helps in improving the efficiency of the

method as images are not required to rescale for computing other parameters.

Moreover, in low quality or noisy images, the rescaling of images can add errors in

other parameter computation which we have eliminated by using the Row Variance

Vector.

As the method is pixel based, the method is applicable to images of different

applications. Therefore, the effectiveness of the proposed method is tested on

images of varying classes and different resolution and results are compared with

the existing methods. The parameters computed by the proposed method are

very close to the parameters applied to the reference image. The errors reported

by the proposed method in computing parameters are trivial and lower than those

obtained by recent works on the same images. Moreover, the running time for the

computation of the angle (that affects the computation time of the whole process)

is low enough as compared to existing techniques. The proposed method can

compute the parameters with better accuracy and in less computation time. The

robustness of the proposed method to noise is also tested by adding Gaussian and

salt and pepper noises. The results shows that high accuracy is maintained even

when images are contaminated by noise.

The next chapter presents an efficient technique for matching images having

pixel-to-pixel correspondence without aligning them. It also discusses the method

of further improving the efficiency by reducing the number of projections and

compares the results with other known techniques.



Chapter 4

Alignment-free Approach for

Image Matching Applications

4.1 Preamble

Chapters 2 and 3 discussed that alignment of images is one of the crucial steps

in most computer vision and image processing applications [24]. Alignment of

images is a process of transforming a sensed image into the coordinate system

of the reference image. Generally, the methods used for image alignment can be

classified into different categories: pixel based and feature based [200]. Pixel based

techniques either use intensity patterns of pixels by means of correlation or find

the transformation parameters between sensed and reference images using different

transforms such as Fourier and Radon, whereas feature based approaches identify

the correspondence amongst extracted features of images.

Using the correlation as a measure in pixel based approaches is one of the most

common methods for image alignment [17]. The correlation between two images

is greater if and only if pixel-to-pixel correspondence is large. However, when

correlation is used for aligning images, in order to find the best pixel-to-pixel

correspondence between sensed and reference images, the sensed image needs to

103
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be rotated by each possible angle and compared with the reference image [10].

This is an exhaustive approach that makes it inefficient for real time applications.

Similarly, the transform based method proposed in [14] use Radon projections to

match the images by aligning them using computed parameters. However, the

complete process of computing parameters is computationally exhaustive.

Another approach to aligning images comprises the feature-based approaches

which consist of mainly three steps: (i) extraction of reliable features in images; (ii)

feature matching; and (iii) alignment of the images based on matched features [25].

Many methods for extracting the features have been developed in the literature

[9]. For instance, in object recognition, feature like corners or lines are detected

by using different approaches discussed in [2] [31] [27] [32], whereas in fingerprint

recognition singularities or minutiae points are detected [3]. Matched features

are used as reference points in both images for aligning them. However, there

are issues related to these approaches such as (i) accurate detection of reliable

features is very difficult; (ii) detection of features is time consuming; (iii) partial

images may not consist of enough features; and (iv) extensive image processing

is required. These issues complicate the process of aligning images and affect the

efficiency of image matching processes.

As discussed above, researchers have been working to resolve the issue of im-

age alignment in many fields such as remote sensing, recognition, panorama and

registration. However, aligning images accurately and efficiently is still a challeng-

ing issue that affects the overall efficiency and accuracy of the matching process.

Rotational and translational differences between images are the major causes of

misalignment of images. The translational difference between images can be dealt

with by using the centroids of images [14], but managing the rotational difference

efficiently and accurately is difficult. Chapter 3 proposes a method of computing

parameters efficiently that can be used for efficient image matching. However,

despite reduced computation time for the estimation of parameters the overall
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Figure 4.1: The coloured block represents the thesis objective addressed in this
chapter.

total computation time for the matching is enhanced. Moreover, in recognition

applications such as object recognition and biometric recognition, the alignment

process is only an intermediate step. Therefore, it is not mandatory to align the

images before matching. Hence, the question arises: is it possible to match im-

ages without computing parameters or aligning them? In other words, a method

is required that can take care of the transformational differences between images

without computing parameters and match images accurately and efficiently. This

chapter proposes an alignment-free image matching method for images having ex-

act pixel-to-pixel correspondence (shown in Figure 4.1) that not only eliminates

the need for rotationally aligning the images but also improves the computational

time of the matching process.

The remainder of the chapter is structured as follows: Section 4.2 discusses the

need for a rotation invariant representation of an image for alignment-free match-

ing. Section 4.3 discusses exploiting the rotation invariant property of the Radon

transform, to compute the rotation invariant representation and deal with the rota-

tional difference of images. Section 4.4 is dedicated to the proposed alignment-free
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matching method. The computational time of the proposed approach is discussed

in detail in Section 4.5. The performance of the proposed approach is demon-

strated by applying it to the UMD Logo dataset in the Section 4.6. Finally, the

conclusion is given in Section 4.7.

4.2 Need for a Rotation Invariant Representa-

tion

As we have discussed in the previous section, the major causes of mis-alignment

between images are rotation and translation differences. The translation differ-

ence can be dealt with simply by finding the centroid of the images [10]. However,

finding the rotational difference between the images is a very difficult and time

consuming process. Therefore, if the images can be represented in the rotation in-

variant representation before matching, then there is no need to find the rotational

difference between images.

To represent the images in a rotation invariant representation, we transform

the image into the Radon domain. The images can be transformed into the Radon

domain by applying the Radon transform. The Radon domain simplifies the ro-

tational difference between images. The Radon transform converts the rotation

in the pixel domain to a shift in the Radon domain. Figure 4.3 shows that the

Sinograms of two rotationally unaligned but identical images (shown in Figure 4.2)

are identical except there exists a shift along the direction φ. In other words, for

images that differ only by a rotation, the Sinograms of those images are shifted ver-

sions of each other. Hence, to match these images, the Sinogram of sensed image

can be compared with all the shifted Sinogram of the reference image. Comparison

of the Sinograms helps in finding the maximum similarity between images. One of

possible ways of comparing two Sinograms is by computing the Euclidean distance
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(a) (b)

Figure 4.2: Lena reference and 90◦ rotated images

between them [163]. The smaller the distance between Sinograms, the greater the

similarity between images.

The use of Sinograms of images replaces the need to rotate the sensed image for

each angle as is done in [10] by the need to shift the Sinogram along the direction

component φ for each angle. Although, the Radon transform has simplified the

process of matching images, it is not rotation invariant as the Sinogram needs to

be shifted for each possible angle and comparison needs to be made. Therefore,

one needs to get rid of the measurement of shift in the Sinograms and convert the

pixel information of an image into a rotation invariant representation.

The shift in the Sinograms occurs along the direction component φ (as shown

in Figure 4.3). To represent the image’s pixel information in a rotation invariant

form, shift needs to be eliminated. Then, instead of comparing information at

each point in the Sinograms, the consolidated information for each distance can

be compared. By consolidating information along the direction component we

can eliminate the need to shift the Sinograms. Consequently, shift independence

in the Radon domain represents rotation independence in the pixel domain. This

process of consolidating information and hence representing an image in a rotation

invariant representation is described in the next section.
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Figure 4.3: The Sinogram of the Lena reference and 90◦ rotated images (the rotated
image Sinogram is the shifted version of the reference image Sinogram).

4.3 Rotation Invariant Representation

The rotation independent representation of an image can be represented by a vector

based on the Radon transform of an image [201]. The image is converted into a

rotation invariant Variance Vector that is computed by using the Radon transform.

The Radon transform is a matrix of projections of an image at different angles

ranging from 1 to 360 degrees. A projection is computed by summing the pixel

values along each column of the image at a certain angle φ. Hence, in a 2π Radon

transform, there are 360 projections. The maximum number of components in each

projection will be equal to the length of the diagonal of the image. Therefore, it

results in a matrix of size 360 × N
√

2, where N represents the size of rows and

columns of an image. Each projection represents a row in the Radon matrix as

shown below:
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RTR(φ, u) =



A11 A12 A13 . . . A1N
√
2

A21 A22 A23 . . . A2N
√
2

A31 A32 A33 . . . A3N
√
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A(P−1)1 A(P−1)2 A(P−1)3 . . . A(P−1)N
√
2

AP1 AP2 AP3 . . . APN
√
2


(4.1)

where P represents the number of projections from 1 to 360 degrees. Matrices

respresented by Equations 4.1 and 4.2 show an example of the Radon transform

matrices RTR and RTrot of reference image IR and φ0 degrees rotated reference

image Irot, respectively. Comparing the two matrices column-wise will reveal the

same data, but in the RTrot matrix’s column, the data values are circularly shifted.

The shift is equal to the rotational difference between the images [195]. This

property is true if and only if images exhibit pixel-to-pixel correspondence.

RTrot(φ, u) =



A(P−(φ0+1))1 A(P−(φ0+1))2 . . . A(P−(φ0+1))N
√
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AP1 AP2 . . . APN
√
2

A11 A12 . . . A1N
√
2

A21 A22 . . . A2N
√
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A(P−φ0)1 A(P−φ0)2 . . . A(P−φ0)N
√
2



(4.2)

Since, we are interested only in determining whether two images are similar or

not, there is no need to compute the defined shift. All we need to know is whether

the set of values of the column pairs in matrices are identical. Given the nature

of images, it is unlikely that the data values in the respective columns in the
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two matrices will be identical. Instead, we would like to compute how close the

corresponding column pairs of matrices are.

To eliminate the shift in the Radon domain, the column data in the matrix

needs to be replaced by a single value that captures the properties of the data and

is independent of the positions of individual values. Two simple metrics that can

be used to represent a set of values are the arithmetic mean and variance. The

arithmetic mean measures the central location of the distribution of values whereas

the variance measures the dispersion of the values around the mean. Variance is

a better perspective for a set of values compared to the mean [197]. One reason

is that even when the values in a data set have huge differences, the variance can

still contain meaningful information about the data [197]. Moreover, variances of

different datasets tend to differ even when the means are similar. Therefore, we

propose to replace the values along each column by the variance of the column

values. This results in a vector of variances for the Radon transform matrix and

this vector is referred as the Variance Vector in further discussion.

The columns of matrices shown by Equations 4.1 and 4.2 consist of identi-

cal data, except the data values are circularly shifted. Therefore the variances

along corresponding columns will be identical. Equations 4.3 and 4.4 represent

the Variance Vector of the reference and rotated images.

VR(u) = varφ(RTR(φ, u)) (4.3)

Vrot(u) = varφ(RTrot(φ, u)) (4.4)

where, VR(u) and Vrot(u) represent the Variance Vectors of the reference and ro-

tated images and RTrot(φ, u) = RTR(φ− φ0, u), where φ0 is the angle of rotation.

Since the data represented by RTR(φ, u) and RTrot(φ, u) at any distance u (along

the corresponding column) is identical, therefore the Variance Vectors of the ref-

erence and rotated images are identical. The final representation of the image
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is dependent only on one variable, namely the distance u, and is independent of

angle φ. Hence it is rotation invariant.

Figure 4.4: The block diagram of computing the rotation invariant Variance Vector

Figure 4.5: The process of converting an image in the pixel domain to a rotation
invariant Variance Vector

The block diagram of computing the Variance Vector of an image is shown in

Figure 4.4. The Variance Vector is not only rotation invariant but also preserves

the fundamental attributes of the image’s pixel information. Figure 4.5 shows the

Lena image that is used as an example for computing the Variance Vector. For this

example, the Radon transform projections are computed for each angle between 1

to 360 degrees resulting in a matrix of size 360×N
√

2, where N ×N is the size of

the image. Computing the variance for each column results in a N
√

2 dimensional

rotation invariant Variance Vector.

To demonstrate the rotation invariance of the computed vectors we have com-

puted the Variance Vectors for the Lena image and its rotated equivalent (as shown

in Figure 4.2). The normalised vectors shown in Figure 4.6 demonstrate that two

Variance Vectors coincide perfectly. Besides rotation invariance, the Variance Vec-

tor is symmetric as well (as shown in Figure 4.6). Equation 4.5 shows that the
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Figure 4.6: The normalised Variance Vectors of the reference and rotated Lena
images (shown in Figure 4.2)

values of components on either side of the center are identical.

VR(−u) = VR(u) (4.5)

Hence, a two dimensional image can be represented by a one dimensional sym-

metric rotation invariant Variance Vector. Only half of the components of the

vectors need to be compared for matching images. As a consequence, the sym-

metric rotation invariant Variance Vector can be used for matching the images

without rotationally aligning them.

4.4 Image Matching Algorithm

As discussed earlier alignment is a crucial step in different image matching appli-

cations. Among the existing methods of alignment, one of the popular approaches

for aligning the images uses the computed underlying parameters relating two



113

images. However, computing the parameters for aligning images increases the

computational complexity of the entire matching process. Therefore, if it is possi-

ble to match the images without computing all the parameters, then we will have

an efficient matching algorithm.

Generally, the images are related to each other by different transformations

namely, scale, translation and rotation. The existing methods used for matching

the images have mainly three steps: extract the parameters, align the images

using these parameters, and match the aligned images. The alignment of images

makes the entire matching process computationally exhaustive. Therefore, we have

developed a method that matches the images without aligning them. In other

words, images are matched efficiently without retrieving all the transformation

parameters.

The algorithm for matching the images depends only on the scale difference

between images and the centroids of the images. The proposed approach does not

require extraction of the rotational difference between images. Let us suppose we

have two images IR and IS, where IS is obtained by transforming the reference

image IR with scale α, rotation φ0 and translation (x0, y0). The scale of the images

can be computed by using the sum of the pixel values of the images. Equations

4.6 and Equation 4.7 represent the sum of the pixel values of the images. The

scale relating the two images can be computed by using Equation 4.8.

SumIR =
N∑
j=1

N∑
k=1

IR(j, k) (4.6)

SumIS =
N∑
j=1

N∑
k=1

IS(j, k) (4.7)

α =

√
SumIS
SumIR

(4.8)
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Moreover, if only the Radon projections are given then the scale can be com-

puted by using the Radon projections as is computed in [163]. The next parameter

to compute for matching the images is the centroid of the images, which can be

computed directly by using the Radon projections [163]. Let us suppose the Radon

transforms of the images IR and IS are RTR(φ, u) and RTS(φ, u), respectively. The

x and y coordinates of the centroid of reference image are represented by CRx and

CRy, respectively. For any angle φ, the coordinates of the centroid (CRx, CRy) are

computed as:

CRx =

∫∞
−∞ uRTR(φ, u)du∫∞
−∞RTR(φ, u)du

cos(φ)−
∫∞
−∞ uRTR(φ+ π/2, u)du∫∞

−∞RTR(φ, u)du
sin(φ) (4.9)

CRy =

∫∞
−∞ uRTR(φ, u)dp∫∞
−∞RTR(φ, u)du

sin(φ) +

∫∞
−∞ uRTR(φ+ π/2, u)du∫∞

−∞RTR(φ, u)du
cos(φ) (4.10)

The coordinates of the centroid is computed for different values of φ and final

result is the average of all values. Similarly, the centroid of the sensed image

(CSx, CSy) can be computed as well. Once the centroids of images are computed

then the centres of the images are shifted to the centroids and the Radon transforms

of the shifted images are computed. Then the origins of the system axes of both

images will be at the same location. Otherwise, the Radon transform of the shifted

images can be computed directly by using the translation property of the Radon

transform [195]. The Radon transform of the shifted image at any angle φ is

computed as:

RTRc(φ, u) = RTR(φ, u+ CRx cos(φ) + CRy sin(φ)) (4.11)

RTSc(φ, u) = RTS(φ, u+ CSx cos(φ) + CSy sin(φ)) (4.12)

where RTRc and RTSc represent the Radon transforms of center shifted versions

of images IR and IS. As the Radon transforms are computed with the centroids,

the effect of translation is eliminated. However, the Radon transform RTSc is still
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a scaled and circularly shifted version of RTRc because the sensed image is scaled

and rotated. Therefore, for matching the images, the Radon transform of the

reference image needs to be scaled to the Radon transform of the sensed image by

using the scaling property of the Radon transform. The reference image’s Radon

transform RTRc is scaled by using Equation 4.13 to have the same size as that of

RTSc.

RTRcs(φ, u) = αRTRc(φ, u/α) (4.13)

where RTRcs represents the scaled Radon transform of image IR. By using the

scaling and translation property of the Radon transform, the effects of scale and

translation are eliminated and the Radon transforms RTRcs and RTSc are similar

except being circularly shifted versions of each other.

Knowing the rotation in the space domain is converted into the shift in the

transformed domain, the Radon transform can be compared to compute the angle

for rotationally aligning them as is done in [14]. Once the images are aligned,

the Euclidean Distance between the Radon transforms can be computed to match

the images. However, this process needs to shift one of the Radon transforms for

each angle from 1 to 360 degrees to compare it with the other Radon transform.

This process of computation of angle affects the efficiency of the matching process.

This raises the question of whether it is possible to match the images without

computing the rotation angle?

We have discussed that two rotationally shifted Radon transforms can be com-

pared by computing the rotation invariant Variance Vector instead of directly

comparing the Radon transforms. These vectors can be used to compare the im-

ages without computing the rotation parameter. The Radon transforms RRcs and

RSc are used to compute the Variance Vectors VR and VS of images IR and IS by

using Equations 4.14 and 4.15, respectively.
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VR(u) = varφ(RTRcs(φ, u)) (4.14)

VS(u) = varφ(RTSc(φ, u)) (4.15)

For computing the similarity between images, different similarity metrics can be

applied to Variance Vectors. One of the commonly used metrics is the Euclidean

distance that is computed by using Equation 4.16. The images are compared by

computing the distance between the Variance Vectors. Ideally, for two identical

but rotationally unaligned images, the two vectors will be same. Hence, the dis-

tance between these vectors will be zero. However, due to noise in images, the

distance between the two vectors results in a non-zero value. Hence, the image

pairs resulting in the smallest distance value can be considered as similar images,

in matching applications.

Euclidean Distance =

√√√√N
√
2∑

u=1

(VR(u)− VS(u))2 (4.16)

The proposed method requires only the scale and centroid of images for match-

ing them. Once, the scale and centroid of images are known, images are matched

without computing translation and rotation parameters. By using the proposed

method, it is possible to match images without aligning them. The algorithm for

alignment-free image matching:

i) Compute the scale between the images by using Equation 4.8.

ii) Compute the centroids of both images by using the Equations 4.9 and 4.10.

iii) Compute the Radon transforms of both images around the centroids of im-

ages by using Equations 4.11 and 4.12.

iv) Rescale the Radon transform of reference image by using the Equation 4.13.
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v) Compute the Variance Vectors of both images using Equation 4.14 and 4.15.

vi) Compute the Euclidean Distance between images using Equation 4.16.

vii) Select an image as matching image that results in minimum Euclidean dis-

tance with sensed image.

4.5 Computational Time

A Radon transform based object recognition method namely R-RST is proposed

in [14]. The approach is accurate but computationally expensive as the major part

of computation time is spent in minimizing the similarity measure to compute the

rotation angle between two images. However, the proposed method has reduced

the computational time of matching process by matching images without the need

of computing the rotation angle between them.

Both the proposed and R-RST methods spend equal time in computing the

Radon transform, scale and centroid of the images which is mandatory for both

methods. However, computation of the rotation parameter between two images

makes the entire difference. In R-RST, the rotation angle is used for computing the

translation between images and aligning the images. The rotation angle between

the images is computed by comparing the Radon transforms for each possible angle

from 1 to 360 degrees. That is an exhaustive process. Also, for higher accuracy of

a rotation angle, a larger number of projections need to be taken. That in turn,

further increases the computation time of matching the images. Hence, in R-RST,

the computational time of the matching process depends on the time required for

computing the rotational angle. The number of computation steps for computing

the angle is (P 2 ×N
√

2), where N ×N is the size of the image and P represents

the number of projections from angle 1 to 360 degrees. Hence, the computational

time increases with the number of projections.
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On the other hand, the computational time of the proposed matching process

depends only on computation and comparison of Variance Vectors. The proposed

method does not require computation of the rotational angle as the Variance Vector

is rotation invariant. Unlike Radon transforms compared in[14], there is no need

to compare the vectors by shifting for each possible angle. Therefore, the number

of computation steps in the proposed method is only N
√

2 (equal to the length

Variance Vector) and is independent of the number of projections. The proposed

method takes P 2 times fewer steps for matching images as compared to R-RST.

Hence, the proposed method matches the images faster than R-RST. Moreover,

whenever the size of the image (N) is less than the number of projections (P), the

proposed method matches the images faster than R-RST.

4.6 Performance Evaluation

As shown in Section 4.5, the computation time of proposed method required for

matching the images is less than the computation time required for the R-RST

method. However, the R-RST method performs best with high precision even at

different high noise densities among all the region based descriptors, namely: Hu

moments [202], Radon composite features (RCF)[203], Generic Fourier Descriptors

(GFD) [204], Zernike moments [205] and wavelet φ R-signature (WφR)[163] in

terms of Precision-Recall [14]. Hence, it is important to verify the effectiveness

of the proposed methods in terms of Precision-Recall as compared to the R-RST

approach.

First, we assume that the image dataset used for experiments consists of iso-

lated objects as is used in the R-RST method [206]. The logo dataset used in [14] is

used for testing the effectiveness of the proposed approach, as the logos are popu-

lar examples of images having isolated objects. Moreover, the logo recognition has

great importance in many domains and one of the important domains where logo
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recognition is crucial is document identification [15]. By recognising the logos, the

semantic information of the document is obtained. That helps in making a high

level decision about the importance of the information in the textual components

and whether it needs to be analyzed further. Logo recognition can be used in two

different applications: first, given a logo and a logo database, we can determine if

the logo exists in the database; second, given a logo and a document database, we

can determine if there is any document in the database containing the given logo,

which helps in finding the relevant documents efficiently. Moreover, logo recogni-

tion plays an important role in other applications such as vehicle logo detection for

traffic control systems [207], augmented reality [208] and copyright infringement

detection.

Logos are generally a combination of graphic icons and mixed text, which when

identified activates the association of the graphic icon in the logo to an organisa-

tion or group. Using the proposed approach of image matching, experiments are

conducted on the UMD logo dataset [15]. The dataset consists of 80 images of 10

different categories, each consisting of 8 images. These 8 images are generated by

random scaling, translating, and rotating the corresponding logo images. More-

over, the robustness to noise of the proposed approach is tested by adding noise of

different density to the images. The salt and pepper noise is added to corrupt the

images. The noise is added with a different density ’d’ representing the percentage

of pixels corrupted in the image. The density of the noise ranges from 0.00 to 0.20

with an increment of 0.04. The left side of Figure 4.7 shows 10 logo images (one

from each category). The right side of Figure 4.7 demonstrates the images with

different transformation and noise densities. Moreover, the R-RST method also

uses the same dataset, enabling comparison.

The criteria used for comparing the proposed method with the existing ap-

proaches is Precision-Recall. It is one of the commonly used metrics in object

recognition, document identification, pattern recognition, information retrieval and
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Figure 4.7: Ten noise-free logo images from the UMD dataset [15] and the samples
of noisy images generated by adding the salt and pepper noise with densities
ranging from 0.00 to 0.20 with increments of 0.04

other image matching domains. Precision is the ratio of relevant images among

the retrieved images whereas Recall is the ratio of relevant images that have been

retrieved among total relevant images. The Precision and Recall are given by

Equations 4.17 and 4.18, respectively.

Precision =
True Positives

True Positives + False Positives
(4.17)

Recall =
True Positives

True Positives + False Negatives
(4.18)

For computing the Precision-Recall curve, each image in the dataset is taken

as a sensed image and compared with all other images in the database to compute

the matching score. The matching score is calculated by computing the Euclidean

Distance using Equation 4.16 between the Variance Vectors. As discussed in Sec-

tion 4.4, the lower the distance between images, the higher the similarity between

images and vice versa. For computing the Precision-Recall, the images are ar-

ranged in descending order based on matching score and then Precision-Recall is

computed by using Equations 4.17 and 4.18, respectively.



121

10 20 30 40 50 60 70 80 90 100

Recall

90

91

92

93

94

95

96

97

98

99

100

P
re

ci
si

on

Noise Vs Precision-Recall

Noise 0.00-0.12 Proposed & R-RST
Noise 0.16 Proposed
Noise 0.20 Proposed
Noise 0.16 R-RST
Noise 0.20-RST

Figure 4.8: Precision-Recall curves of the proposed and R-RST method at different
noise densities 0.00:0.04:0.20

Figure 4.8 shows the Precision-Recall curves of R-RST and the proposed method.

The results shows that both methods have ideal performance for the noiseless

dataset, however, the performance for R-RST and the proposed method slightly

decreases as the noise in the images increases. 100% precision is achieved even at

a noise density of 0.12. However, at higher noise densities, the precision starts de-

creasing as the recall starts increasing. The minimum precision achieved at a noise

density of 0.20 is 95% which is still higher than the existing region based descrip-

tors such as Hu moments [202], Radon composite features (RCF) [203], Generic

Fourier descriptors [204] and Zernike moments [205]. The performance of the pro-

posed approach is as accurate as the performance of the R-RST method. Hence,

the proposed method is able to achieve the best Precision in less computation time

as compared to the R-RST method.
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Figure 4.9: Precision-Recall of the proposed method at different noise densities
0:0.04:0.20 and with different numbers of projections
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4.6.1 Effect of the Number of Projections on

Precision-Recall

Although the proposed method has reduced the computation time of the matching

process by using the rotation invariant Variance Vector, the computation time

can be further improved. One of the factors on which the computation time of

Radon transform depends is the number of projections from 1 to 360 degrees. The

higher the number of projections, the larger the computation time and vice versa.

The proposed matching process is independent of rotation angle and uses the

rotation invariant Variance Vector for matching images which can be computed

by using fewer projections. Using fewer projections improves the computation

time of the matching process. As the number of projections are decreased, the

amount of captured distinguishing information is decreased, which in turn can

affect the precision of the matching process. Therefore, the effect of the number

of projections used for computing the Variance Vector is studied as Precision-

Recall behaviour. However, the number of projections cannot be decreased in

[14], because this method matches the images by computing the parameters. If

the number of projections are decreased then the rotation angle computation will

result in a wrong value, which will affect the precision.

To do this study, the same experiment of computing the Precision-Recall as

discussed in the previous section is performed, except the number of projections

used for computing the Radon transform is decreased. Figure 4.9 shows the effect

of the number of projections on Precision-Recall. The experiments are done on

the same logo dataset with noise and without noise. The salt and pepper noise is

added to the images with noise density varying from 0 to 0.20 with increments of

0.04. The experiments are conducted for 360, 180, 120, 90, 72 and 60 projections.

Projections are sampled regularly at every n projections for 1 : n : 6.
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For the noise density from 0 to 0.12, the precision is not affected at all even when

the number of projections are reduced to 1/6 of the original number of projections.

In other words, the same precision is achieved for both 60 and 360 projections, but

the computation time of the Radon transform is decreased to 1/6th of its original

time. For a noise density of 0.12, the precision drops to 95% at recall 100. At

a higher noise density of 0.16, the same precision is achieved by 120 projections

as is achieved by 360 projections, reducing the computation time to 1/3 of the

original time. However, the precision starts decreasing as the number of projections

decreases further. Nevertheless, we can still achieve a precision of 89.6% by using

60 projections which is better than the performance of other descriptors such as Hu

moments [202], Radon composite features (RCF)[203], Generic Fourier Descriptors

(GFD) [204], Zernike moments [205] and wavelet φ R-signature (Wφ R)[163]. As

stated in the paper [163] the R-RST descriptor performs best, as compared to all

the other descriptors, with a precision of 95% at recall 100% at noise density 0.20.

The proposed method can achieve, a precision of 95% even with 120 projections

at the noise density of 0.20 which is 1/3 of the projections required by R-RST

method.

The results show that noisy images require more projections to achieve the

same precision as compared to the noiseless images. In other words, the number

of projections required depends on the quality of images. The higher the quality

of the image, the lower the number of projections required for matching and vice

versa. This is because for noiseless images, a lesser number of projections can

capture enough distinguishing information, whereas for noisy images, a greater

number of projections are required to capture enough distinguishing information.

On the other hand, improving the computation time by reducing the number

of projections is not possible in the R-RST method, as the matching process relies

on the accuracy of the rotation angle computed between two images. The accu-

racy of rotation angle computation depends on the number of projections taken
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[14]. If all the Radon projections from 1 to 360 degrees are not taken, then the

computed rotation angle will not be accurate. This affects the accuracy of the

computed translation value between two images which is crucial for alignment.

Hence, this results in the misalignment of images and consequently results in the

mismatching of images. However, the proposed method is independent of the rota-

tion angle, therefore, it is feasible to reduce the number of projections to improve

the computation time while achieving the same precision.

4.7 Conclusion

In this chapter, we have developed an alignment-free matching method based

on the Radon transform, for images having pixel-to-pixel correspondence. The

alignment-free approach of matching images has eliminated the need for comput-

ing the rotation difference between images, which in turn reduces the computation

time of the proposed matching method. The effectiveness of the method is tested

for object recognition. The results are compared with the existing approaches.

The experiments are done on the UMD logo dataset with or without adding noise.

The retrieval scores on the UMD logo dataset shows superior performance as com-

pared to well known descriptors for both noisy and noiseless datasets. The results

demonstrate that the proposed method is not only computationally faster and ac-

curate but also robust up to 20% of the noise. Moreover, the computation time of

the proposed approach is further improved by reducing the number of Radon pro-

jections by maintaining the precision which is not possible in existing approaches.

Hence, as compared to existing techniques, the proposed method does not require

first computing parameters and then matching, but can directly match. In addi-

tion, the proposed approach can also match images when only Radon transforms

of images are given and no pixel based information is given.
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In Chapters 3 and 4, the methods of aligning and matching images having

pixel-to-pixel correspondence is discussed. Whereas, in Chapters 5 and 6, the

method of aligning and matching partial images (having no pixel-to-pixel corre-

spondence) is discussed.



Chapter 5

Similarity Transformation

Parameters Recovery in Partial

Images

5.1 Preamble

Chapter 3 discussed a method of computing the parameters relating two images.

The proposed method is able to find the parameters more accurately and efficiently

as compared to the existing techniques. Moreover, the robustness of method is ver-

ified against noise. Results are reported for test images of varying classes and the

performance is compared with existing techniques. Although the proposed method

is accurate and efficient, the method is applicable only to full images. In other

words, the method is appropriate for the images having exact pixel-to-pixel cor-

respondence between them. This is because, in full images, it is possible to find

scale by using pixel values, compute centroids of images, and apply a rotation

angle estimation method. However, it is not guaranteed that images have exact

pixel-to-pixel correspondence all the time. Two such examples of partial images

in different applications are biometric identification and medical image diagno-

127
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sis. Each sensed partial image might not have exact pixel-to-pixel correspondence

with the reference partial image. However a smaller parts of the sensed partial

image may have exact pixel-to-pixel correspondence with smaller parts of the ref-

erence partial image. Therefore, due to the unavailability of exact pixel-to-pixel

correspondence for partial images, the method proposed in Chapter 3 cannot be

used for computing parameters between them. Hence, we need a method that can

compute parameters accurately and efficiently between partial images as well.

Partial images play a crucial role in computer vision and image processing

applications. This is because it is not always possible to have full images in different

applications such as fingerprint recognition and medical image diagnosis. For

example, fingerprints captured by sensors of smart phones or fingerprints found

at crime scenes are generally partial. Different impressions of the same finger are

never identical due to elasticity of skin, noise or other factors [3]. Also, in medical

images, the sensed image can be obstructed by some other object, resulting in

only part of the sensed image having content in common with the reference image.

Moreover, the acquisition of images not only results in partial images, but also

images that contain regions of low quality.

From the discussion, it is clear that many applications encounter the problem of

partial images. For computing the parameters between partial images accurately,

we need a method that can use the common information present them. In this

chapter, we propose a region based method to compute the parameters between

partial images lacking exact pixel-to-pixel correspondence (shown in Figure 5.1).

The region based approach uses the rotation invariant Variance Vector defined in

Chapter 4. As it is difficult to find accurate centroid locations in partial images, a

method to find a common reference point between images is proposed. Finally, the

method of computing the angle is applied to regions of images around the common

location instead of applying on entire image. Interestingly, the method of finding

common location is applicable to both partial and full images.
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Figure 5.1: The coloured block represents the thesis objective addressed in this
chapter.

This chapter is organised as follows: First, the limitations of partial images are

discussed in Section 5.2. The issues are followed by requirements for computing

the parameters in partial images in Section 5.3. In Section 5.4, an appropriate

feature for the computation of parameters in partial images is discussed. Further-

more, the method of extracting a common region between two images is discussed

in Section 5.5. The optimization technique of common region identification is

introduced in Section 5.5.1. Subsequently, the method of computing the param-

eters is given in Section 5.6. Finally, the conclusion of the chapter is discussed

Section 5.7.

5.2 Partial Image Limitations

Despite the advances in parameter computing methods for full images, finding the

parameters of partial images still suffers from a number of problems. In existing

techniques of parameter computation, it is assumed that images are of the same

size and include the complete object. However, this assumption is not valid in

case of partial images. Often, the sensed image differs from the ones present
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in database and can be partial in nature. Partial images could be generated in

different scenarios.

i) A sensed image can be damaged or distorted and consequently only a small

part of the captured image is valid.

ii) A sensed image might have different parts of varying quality. The poor qual-

ity regions may not be useful for processing. Hence, only a small recognizable

part of the image is available.

iii) A part of the sensed image is obstructed by other object.

iv) In the case of fingerprints, the sensed images obtained from crime scenes or

images captured by smart phone sensors are often unclear and partial [209].

v) Due to the miniaturization of sensors1, the overlap between a sensor and a

finger is small and therefore, the resultant sensed fingerprint is partial and

can be of poor quality.

The accurate alignment of partial images is mandatory in many applications.

The forensic applications need to identify the fingerprints found at the crime scene.

The fingerprints found are usually partial and unclear. That makes the matching

of these fingerprints difficult. Manual matching of these fingerprints requires the

correct alignment of images. The misalignment of images can result in matching

of crime scene fingerprints to an innocent person’s fingerprint. Another example

is medical image registration that demands the correct alignment of images as

clinicians require aligned images to make decisions.

The partial images have issues that are superficially similar to full images but

also have some of their unique difficulties. These image difficulties challenge the

use of existing approaches of alignment. Conventionally, the images are aligned by

1The invention of small chip based sensors has made fingerprint identification useful for com-
mercial applications as well [127].
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using the extracted features and the accurate extraction of features is a difficult

task. The extraction of features require image processing which is time consuming.

This method of aligning the images poses more challenges in the case of partial

images, as a partial image does not consist of enough features. Having varying

quality in different parts of image makes it difficult to extract the features. Another

way of aligning the images is by computing the parameters as discussed in Chap-

ter 3. However, the parameter computation using different transforms is difficult in

partial, distorted and unclear images, because, these methods need pixel-to-pixel

correspondence between images. Partial images lack this correspondence.

The method proposed in Chapter 3 computes the parameters between images

using the Radon transform. However, the approach for finding the parameters

encounters problems in the case of partial images because of two main reasons:

i) The method requires finding the centroid of images for computing translation

and rotation angles. However, it is difficult to find the exact location of the

centroid in partial images as different parts of the object may be present in

images. Therefore, if this centroid location is used, it will result in an error

in translation and rotation angle computation.

ii) To find the rotation angle, the Row Variance Vector is computed by using

the Radon transform. However, this method is applicable only to images

having exact pixel-to-pixel correspondence which is possible only in full im-

ages. When images are partial, only a part of object is present in each

image, hence, images do not have exact pixel-to-pixel correspondence. This

will result in different Radon transform for both images. Due to different

Radon transforms, the computed Row Variance Vectors of both images will

be different that will compute the wrong value of rotation angle.

Therefore, a method proposed in Chapter 3 cannot be used for partial images.

As discussed above, partial images have many limitations that need to be taken
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care of. A method for computing parameters requires the ability to make use of

whatever information exists in a partial image. In the following section, we discuss

the requirements of a parameter computation method for partial images.

5.3 Prerequisite for Computing Parameters

The method discussed in Chapter 3 for computing the parameters has a basic

requirement that images should have exact pixel-to-pixel correspondence. How-

ever, in partial images only parts of images have pixel-to-pixel correspondence.

Therefore, for computing the parameters between partial images, a common part

between the images needs to be identified. To use the method proposed in Chap-

ter 3 for computing parameters, we need a method that is able to extract the

common part between images which exhibits pixel-to-pixel correspondence. The

extracted common part fulfils the condition of method proposed in Chapter 3,

therefore, the common regions between the images can be used to compute the

parameters.

The other requirement of the method proposed in Chapter 3 is the use of

centroids of images as indicators of a common location. The centroid of images

cannot be used as a common location in partial images, because it might not be

possible to detect the correct location of a centroid when the images are partial.

In the case of full images, the images coincide perfectly when aligned by using

the centroids as indicating a common location, however, partial images will not

coincide if aligned by using centroids as indicating a common location. This is

because, partial images consist of different parts of the same object and have only

a part in common. Therefore, using the centroids of partial images as indicators of

a common location is not an appropriate choice. Hence, we need to find a common

location between both images before applying the method proposed in chapter 3

for computing parameters.
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5.4 Region as a Feature

The major problem in designing a parameter computation method for partial im-

ages is the selection of appropriate information. One possibility is to use feature

points of an image forcomputing the parameters. However, partial images due

to their incomplete nature do not possess the requisite number of features that

would support parameter computation. In other words, partial images have less

discriminative information as compared to full images. In addition, there is a

high probability of misidentifying the features in poor quality or distorted images.

Moreover, using only one kind of feature for partial images might not be enough

to accurately compute the parameters. Therefore, we need to incorporate more

distinguishing information instead of only relying on a few image features such as

corner or edge points.

In [3] and [194], it is also stated that additional features increase the discrim-

inating information that can be used to increase performance of the system. In

order to address these problems, we need to make use of all features present in

images [10]. In [10] and [179], authors have stated that gray-level information

from pixels around feature points contain richer information about the local re-

gion than attributes of the feature points. Moreover, the information used for

matching images should be able to distinguish the inter and intra images. There-

fore, computing the parameters of images by using the pixel based information is

an optimistic approach.

The pixel based information of images can be captured by using regions of im-

ages. Regions of images represent all dimensional attributes such as microscopic

features like corner, tee points, minutiae, pores etc. and macroscopic features like

singularities, blobs etc. As all the pixels contribute, the pixel based information is

less sensitive to quality as compared to specific features of images and minimizes

the effect of an insufficient number of features, error in feature extraction and ab-
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sence of features. Moreover, the region of images represents only local information

of an image, therefore, region based techniques can deal with non-linear distor-

tion present in images. Hence, regions of images can be used for computing the

parameters between partial images.

5.4.1 Shape of Region

As discussed in the section above that it is required to extract a common region

between images for computing the parameters. However, as images are unaligned,

finding a common region between images in pixel domain is difficult. The major

cause of misalignment of images is the translation and rotation differences be-

tween them. In a region based approach, the translation difference of images can

be dealt easily by using a sliding window approach. However, dealing with the

rotation difference between images is time consuming. In [10], the region based

technique is used for extracting the common regions between fingerprints. For that,

the approach computes correlation between cropped square shaped regions. How-

ever, for computing correlation, regions need to have pixel-to-pixel correspondence

between them, whereas, square shaped regions of unaligned images do not have

pixel-to-pixel correspondence. Therefore, for computing the correlation between

rotationally unaligned regions of images, one of the regions need to be rotated for

each possible angle as compared to other regions and correlations is computed for

all angles. The angle that results in the maximum correlation value is considered

as the rotational angle between images.

Although this process results in finding the correct matching region, it is a time

consuming process. Therefore, to eliminate the exhaustive process of rotating one

region with respect to another to find a common region, regions can be converted

into other domains such as the Radon domain to make it easier to deal with the

rotational difference. As discussed in Chapter 3, the Radon transform simplifies
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the rotational differences between images by converting the rotation in the pixel

domain to a shift in the Radon domain. Hence, the translational and rotational

difference of images can be processed easily.

The rotation property of the Radon transform (discussed in Section 4.3) is

applicable only when the two images have pixel-to-pixel correspondence except

being rotationally unaligned. As we are using the regions of images, the shapes of

regions play an important role. In other words, regions should be of a particular

shape such that they possess pixel-to-pixel correspondence even when images are

unaligned. If the reference and sensed images’ regions do not have pixel-to-pixel

correspondence then the computed Radon transforms are different and cannot be

applied to find common regions.

Figures 5.3 (a) and (b) show square shaped reference and rotated image regions

cropped from the reference and rotated Lena images (shown in Figure 5.2). The

regions are not only rotationally unaligned but also do not have exact pixel-to-

pixel correspondence. To verify the pixel-to-pixel correspondence between regions,

the initially rotated image region is rotated back by the same angle (as shown in

Figure 5.3(c)). It can be seen that the rotated and reference images’ regions do

not have pixel-to-pixel correspondence, because the pixels present in the corners

of both regions are different. In other words, the rotation difference does not allow

such square shaped rotationally unaligned regions to have pixel-to-pixel corre-

spondence. Hence, regions should be of such a shape that they have pixel-to-pixel

correspondence even when images are rotationally unaligned.

A circular shape results in pixel-to-pixel correspondence between regions even

if images are rotationally unaligned. Figures 5.4 (a) and (b) show reference and

rotated circular shaped regions cropped from reference and rotated Lena images

shown in Figure 5.2. To check the pixel-to-pixel correspondence, the rotated image

region is rotated back by same angle by which Lena image has been rotated initially.

It shows that the rotated and reference image regions have exact pixel-to-pixel
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(a) (b)

Figure 5.2: Lena reference and sensed (45◦ rotated) images

(a) (b) (c)

Figure 5.3: (a) Square shaped Lena reference image region; (b) Square shaped
rotated (45◦) Lena image region; (c) Sensed image region rotated back by 45◦

(a) (b) (c)

Figure 5.4: (a) Circular shaped Lena reference image region; (b) Circular shaped
rotated (45◦) Lena image region; (c) Sensed image region rotated back by 45◦

correspondence except being rotationally unaligned. This fulfils the condition of

Radon transform, hence, rotationally unaligned circular regions result in identical

Radon transforms. Therefore, for partial images, circular regions can be cropped

from images and used for finding the common region between both images.
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5.5 Method of Common Region Identification

As we have stated, in partial unaligned images a common region between images

needs to be extracted for computing the parameters. Generally, the misalignment

between images exists because of translation and rotation differences. Therefore,

to find a common region between images we need to take care of both differences

between them. To avoid the translation effect for finding the common regions, the

naive approach of a sliding window is used. In this approach, a region cropped

from the sensed image is compared with all possible regions of the reference image

thereby cropping a region around each pixel of the reference image.

For dealing with the rotation difference, the Radon transform of regions can be

used. The rotation property of Radon transform states that rotation in the pixel

domain is a shift in the Radon domain. Therefore, the distance between the Radon

transforms of regions can be computed and the region that results in a minimum

distance can be considered as a matching common region. This is because, two

identical but rotationally unaligned regions result in identical Radon transforms,

except being circularly shifted as shown in Figure 3.3. Hence, for computing the

distance between Radon transforms, one Radon transform needs to be shifted for

each angle between 0 to 2π as compared to the other transform. Although, this

method can result in finding the correct matching region, it is computationally

exhaustive like a correlation method as Radon transforms are shifted for each

angle and then distance is computed.

Therefore, for efficient common region extraction, the proposed rotation invari-

ant Variance Vector (discussed in Section 4.3) is used. As discussed, comparing two

regions by using correlation or the Radon transform is a time consuming process,

so regions can be converted into rotation invariant representation and compared,

without worrying about rotation differences between images. The procedure of
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finding the common regions using the rotation invariant Variance Vector is given

below:

i) Compute the Variance Vectors for all possible regions of a reference image

(required for the sliding window approach).

ii) Crop a region from the sensed image and compute its rotation invariant

Variance Vector.

iii) Compare the Variance Vector of a sensed image region with the Variance

Vector of each reference image region by computing the Euclidean Distance.

iv) Choose a reference image region whose Variance Vector results in a minimum

distance with respect to the Variance Vector sensed image regions.

The rotation property of a Variance Vector states that the Variance Vectors for

two rotationally unaligned but identical images are identical. In other words, rota-

tionally unaligned regions having pixel-to-pixel correspondence results in identical

vectors and therefore, the Euclidean distance between vectors is zero. However,

due to noise present in images, two regions are never identical that cause variations

in their Variance Vectors and hence, the Euclidean Distance between vectors result

in a non-zero value. Therefore, a region from the reference image is selected whose

vector results in a minimum distance with the sensed image region vector. That

region is taken as a matching region. The complete process of finding the common

regions by using the Variance Vectors is shown in Figure 5.5. The regions found

by Variance Vectors are verified by comparing with the common regions found by

a correlation method. Hence, the Variance Vector helps in efficiently identifying

the common regions between the images without aligning them. The algorithm

for finding the common region is given in Algorithm 5.1.
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Algorithm 5.1 Find a Common Matching Region between Partial Images.

Step 1: Compute Variance Vectors of the Reference Image Regions:
Col← Number of columns in reference image
Row ← Number of rows in reference image
Cnt← 1 (Counter for the number of reference image regions)
for i = 1 to Col do

for j = 1 to Row do
Crop a region at location (i,j) of diameter D
Compute the Variance Vector of a cropped region (VR(1 : D,Cnt))
Cnt=Cnt+1;

end for
end for

Step 2: Compute the Variance Vector of a Sensed Image Region:
Crop a region of diameter D from the sensed image
Compute Variance Vector of cropped region (VS)

Step 3: Compute the Euclidean Distance (ED) between Reference and
Sensed Image Regions:
for K = 1 to Cnt− 1 do

ED(Cnt) =
√∑D

u=1(VS(u)− VR(u,Cnt))2,where D is the diameter of circle
end for

Step 4: Identify a Common Matching Region:
Select a reference image region that results in a minimum ED with a sensed image
region as a matching common region.

5.5.1 Optimisation of Common Region Extraction Method

As discussed in Section 5.5, the common regions are identified by using a sliding

window approach which is a time consuming process. Therefore, for improving the

efficiency of a common region extraction approach, a few optimization techniques

can be applied:

As discussed earlier, common regions can be identified by either using Radon

transforms or Variance Vectors. However, if we use the Radon transforms for

identifying common regions then for each region comparison, the number of com-

putation steps required is P 2 ×D where, P is the number of projections between

0 to 2π and D is the diameter of circular region. On the other hand, if Variance

Vectors are used then the number of computation steps for each region compar-
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Figure 5.5: The process of identifying common regions between unaligned partial
images without aligning them

ison is D. Hence, by using a Variance Vector we have decreased the number of

computation steps for each comparison by P 2. This makes a significant difference

in computation time when the number of regions in the sensed image is large. If

the number of regions in each image is Cnt then by using Variance Vector we have

reduced he number of computation steps by Cnt× P 2.

The Variance Vectors of sensed image regions are compared with all regions

of reference image regions to identify the common region. Therefore, to make

the identification process efficient, the Variance Vectors of the reference image

regions can be computed off-line and stored in a database. This approach converts

an exhaustive regions comparison process (which include vector computation and

comparison) to a simple vector comparison process.

Furthermore, as shown in Figure 5.6, a Variance Vector is a symmetric vec-

tor. Therefore, instead of comparing all the components of vectors, only half the

components need be compared. This process further reduces the number of com-

putation steps for each comparison from D to D
2

. Moreover, when the Variance

Vector of a circular region is computed, the vector consists of zeros at the begin-

ning and end of a vector due to the zero pixels in the corners of regions (as shown

in Figure 5.4). This increases the number of computations unnecessarily, hence,

the leading and trailing zero valued components of the vectors can be trimmed.

The remnants of the vectors are compared to decrease the computation steps.
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Figure 5.6: The Variance Vector of the Lena image circular region shown in Fig-
ure 5.4 (a)

Hence, by using the above described techniques, common regions between par-

tial images can be extracted efficiently without affecting the accuracy.

5.6 Method of Computing Parameters using a

Common Region

As discussed in Chapter 2, alignment of partial images is very important for sev-

eral image processing and computer vision applications. One of the important

applications where alignment of images has no pixel-to-pixel correspondence is

medical image registration in which images can be obstructed by the presence of

other objects. For alignment, we need to compute the transformation parameters

relating to images. Figure 5.7 shows reference and sensed partial Lena images

lacking pixel-to-pixel correspondence. The sensed image has rotational difference
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φ0 and translational difference (x0, y0). The idea is to compute both rotation and

translation parameters between partial images.

Figure 5.7: (i) Lena reference Image (IR); (ii) Lena sensed image (IS) obtained by
applying the rotation and translation transformations [6, 4, 4]

In Chapter 3, we have proposed a method for computing parameters. To apply

this method for computing parameters, there are two requirements as discussed

in Section 5.3: (i) images should have pixel-to-pixel correspondence; and (ii) a

common location is required between images. Although partial images do not

have pixel-to-pixel correspondence, a common region having this correspondence

can be extracted by using the method proposed in Section 5.5. Once the common

regions are extracted, the next issue is to find a common location between regions.

For that, the centroid of extracted common regions between partial images that

have pixel-to-pixel correspondence can be used as a common location between

them. As circular regions are used for finding the common regions, the centre of

a circle can be used as a common location (like the centroid used in full images)

because the centre and centroid of a circle exist at the same location. Hence, for

a reference image region, the location of the centroid is represented by CRx and

CRy; for a sensed image region by CSx and CSy.

Once the common locations are chosen, the next step is to find a rotation an-

gle between images. For computing the the rotation angle, the Radon transform
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of common regions of unaligned images are computed. The Radon transforms of

regions cropped from reference (IR) and sensed (IS) images are represented by

RTRr(φ, u) and RSr(φ, u), respectively. As we know that the Radon transform

shifts the rotation in the pixel domain to the shift in the Radon domain. Hence,

this property is used for computing the angle by comparing the Radon transform

for each possible angle. However, comparing the Radon transform for each an-

gle is a computationally expensive. Therefore, to increase the efficiency of the

computation process, instead of comparing the Radon transforms, we can simply

compare the Row Variance Vectors (discussed in Section 3.4) of both regions. The

Row Variance Vectors of reference and sensed image regions are represented by

RV VRr and RV VSR, respectively. The rotation angle between images is computed

by using the objective function:

H(φ0) =

∫ 2π

0

|RV VRr(φ)−RV VSr(φ− φ0)|dφ (5.1)

Where RV VRr represents the Row Variance Vector of the reference image region

and RV VSr represents the Row Variance Vector of the sensed image region. The

rotation angle φ∗0 between angle 0 to 2π is given by:

φ∗0 = arg minφ0(H) (5.2)

The next parameter to compute is translation between two images. To find

the translation, we already know the rotation angle (φ0) between images and the

reference points locations at (CRx, CRy) and (CSx, CSy) in the reference and sensed

images, respectively. The translation parameters (x0, y0) can be computed by

Equation 5.3 and Equation 5.4, respectively.

y0 = CSy + CRx sin(φ∗0)− CRy cos(φ∗0) (5.3)
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x0 = CSx − CRx cos(φ∗0) + CRy sin(φ∗0) (5.4)

The step by step procedure for computing transformation parameters is:

i) Identify a common region between partial images by using Algorithm 5.1.

ii) Take the centre of common regions as common locations between the refer-

ence image (CRx, CRy) and the sensed image (CSx, CSy).

iii) By using Equation 3.3, compute Radon transforms of the reference and

sensed images common regions RTRr and RTSr, respectively .

iv) By using Equation 3.21, compute Row Variance Vectors of the reference and

sensed images’ regions (RV VRr and RV VSr), respectively.

v) Compute the objective function using Equation 5.1.

vi) Deduce the rotation angle using Equation 5.2.

vii) Compute the translation coordinates using Equations 5.3 and 5.4.

Hence, the proposed method can be used for computing transformation param-

eters between partial images where most of the existing methods fail.

5.7 Conclusion

In this chapter, a strategy to compute parameters in partial images having no

pixel-to-pixel correspondence has been presented. As the partial images lack in

features, it is proposed that regions of images can be used as features in such

images. Also, the shapes of regions play an important role in computing parame-

ters, hence an appropriate shape of region is described. The major issue in partial

images of not having exact pixel-to-pixel correspondence is dealt by presenting

a method of extracting a common region between images having this correspon-

dence. Moreover, the optimization techniques for extracting the common regions
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efficiently is provided. Finally, a region based method is proposed that can com-

pute the parameters of partial images where most of the existing methods fail.

In this chapter, we have provided the theory of dealing with the issues of partial

images. In Chapter 6, the proposed theory is tested for identifying partial images

and the approach is tested on standard fingerprint datasets.



Chapter 6

Region-based Alignment-free

Partial Image Matching

6.1 Preamble

We have discussed an alignment-free method of matching images having pixel-

to-pixel correspondence in Chapter 4. The method not only performs better in

terms of accuracy but is also efficient in matching images. However, the method

of computing similarity and matching images is applicable only when images have

pixel-to-pixel correspondence. Therefore, the approach is not applicable to partial

images as partial images lack this correspondence. However, parts of partial images

may have the required correspondence. In that case, for matching partial images,

it is essential to extract the common regions between images and these extracted

regions can be used for matching the partial images. Due to these problems, a

region based tranformational approach is proposed to match partial images without

aligning them. The proposed approach in this chapter (shown in Figure 6.1)

exploits property of the Radon transform and uses a sliding window approach to

match the images. The chapter presents an alignment-free region based image

identification technique that is applicable to all types of images.

146
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Figure 6.1: The coloured block represents the thesis objective addressed in this
chapter.

The rest of the chapter is organised as follows. Beginning with the issues,

the difficulty of matching partial images is explained in Section 6.2. The require-

ments for developing a method for matching partial images follows in Section 6.3.

Section 6.4 explains how to meet the requirements of matching partial images by

describing: (i) appropriate features for matching partial images; (ii) the extrac-

tion of common regions between images; and (iii) a new similarity metric that is

independent of any image specific features and applicable to partial images. Sec-

tion 6.5 discusses the performance of the proposed approach by using a fingerprint

dataset as an example in comparison with existing techniques. This section also

discusses a method to deploy the maximum possible available information in par-

tial images by using multiple regions. It also studies the effect of the number of

regions, size of regions, noise and number of Radon projections on accuracy. This

section explains the computational complexity of the proposed approach as well.

Evaluation of results show the superiority and appropriateness of the proposed

approach. Experimental results are followed by a conclusion drawn in Section 6.6.
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6.2 Issues in Partial Image Matching

Many automated image identification systems have been successfully implemented

and it has widely been used in different commercial applications. [58] states that

the exquisite implementation of image identification manifested in different appli-

cations shows the existing technology to be robust. However, that is not true and

there are still many issues that need to be resolved. One of the major issues is in the

identification of partial images. In the research community a number of research

projects are still in progress to improve the accuracy of identification of partial

images. However, the existence of a fully automated partial image identification

system is not known yet [16].

Despite the advances in image identification systems, matching of partial im-

ages still suffers a number of problems. The matching techniques for full images

are quite mature as compared to partial image matching [10]. Usually in existing

matching techniques it is assumed that images are of same size and include the

complete object. However, this assumption is not valid in case of partial images.

Generally, the acquired images differ from the ones present in the dataset and can

be partial in nature. Different types of partial fingerprints can be captured from

different scenarios as shown in Figure 6.2. The matching of these partial finger-

prints is a crucial issue that needs to be addressed. One day-to-day life example

is the forensic investigation to identify the fingerprints found at a crime scene.

The FBI maintains ten prints (impressions of all ten fingers) of all well known

criminals. It is time consuming to find the suspect from big datasets. Therefore,

it would be of enormous use in different applications if partial images could be

matched accurately and efficiently.

The identification of partial images has issues that are superficially similar to

full images, but also has some unique challenges such as, the non-availability of

enough distinguishing information and different qualities in different parts of im-
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(a) (b)

(c) (d)

Figure 6.2: Different scenarios that result in partial fingerprints (a) miniaturization
of sensors; (b) a distorted fingerprint; (c) a low quality fingerprint; (d) fingerprints
found at crime scenes [16].

ages. The identification of partial images is complex because partial images can

be distorted, small, unclear and noisy. Due to these problems the information con-

tained in partial images is limited. That challenges the use of existing approaches

for matching partial images. Some of the challenges in matching partial images

are:

i) A partial image does not consist of enough features such as corners, tee

points, minutiae, ridge structure and pores. These reduce the distinguishing

information and make the matching process difficult.

ii) For computing the global similarity between the images, images need to

be aligned first. Generally the images are aligned by using image features.
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However, a partial fingerprint may not have required features. That restricts

or complicates the alignment process of partial images.

iii) The partial images may consist of background noise that not only hinders

the extraction of features but also reduces the amount of distinguishing in-

formation.

iv) The low quality of partial images makes the details of images smudgy and

unclear, resulting in less common information between images.

v) Images captured in uncontrolled environment (such as fingerprint captured

by smart phones) may result in distorted images which may have less distin-

guishing information [16].

vi) Manual intervention is required at different levels in some partial image

matching. For example, in matching of the latent fingerprints, the fin-

gerprints are generally annotated manually and then automated matching

system is used to find a list of top k matches (k > 0). This list is further

verified by the skilled experts to check if individualization exists. This makes

the complete process time consuming and laborious.

vii) In partial image matching, one needs to identify which part of object is

present in a given image that makes the matching process more difficult.

All the issues discussed above impose a number of challenges in adopting the

existing approaches for matching partial image. Next section discusses the re-

quirements for developing a method that can match partial images accurately and

efficiently.
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6.3 Partial Image Matching Requirements

Most of the conventional techniques of image identification are based on features

of images. These techniques have several advantages and disadvantages as shown

in the Table 2.2. As discussed in Section 2.8, pixel based matching methods

are better as compared to feature based methods. However, the existing pixel

based methods require pixel-to-pixel correspondence between images which is not

necessarily present in partial images. A pixel based technique has been proposed

in [10] for images not having pixel-to-pixel correspondence. Although it is a pixel

based matching method, it requires alignment of the images and for aligning the

images it uses specific features of image. The extraction of those features faces

the same challenges as are faced by feature based techniques. Another feature-free

alignment based method is also proposed in the same paper but this method uses

brute force method for aligning that makes it unsuitable for real time applications.

Therefore, existing techniques are not capable of matching partial images ac-

curately and efficiently. Moreover, in case of many partial image matching ap-

proaches manual intervention is required [16]. However, the manual identification

is subjected to inconsistencies as well. Moreover, there are not enough number

of skilled and certified experts. Hence, there is a need for scientific automated

method for matching partial images. However, it is clear that there are a number

of requirements that an automated method needs to fulfil for matching partial

images. Following is the list of requirements for partial image matching method:

i) The method should be independent of image specific features such as corners,

tee points, minutiae, singularities, pores etc. This is because:

• Partial fingerprints consist of fewer details, as compared to full images,

limiting the number of features present in images;
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• There is a high probability that partial images contain noise that makes

the accurate feature extraction process difficult.

ii) As partial images lack distinguishing information due to limited textural

structure, using only fragmentary information (such as only corners or minu-

tiae) may result in false matching. Consequently, for matching, the method

should exploit as much of the partial image information as possible.

iii) The method should be tolerant to non-linear distortion as different parts of

partial and low quality images consist of different amounts of distortion.

iv) The alignment of images is a crucial step in most of image matching tech-

niques. However, alignment not only adds complexity across the entire

matching process, but also inaccurate alignment degrades the accuracy of

systems. Moreover, alignment is generally based on image features (such as

minutiae or singularity) or parameters need to be computed. However, ex-

tracting features and computing parameters are difficult and time consuming

processes. Hence, there is a need for a partial image matching method to

match partial images without aligning them.

v) As the required method should not only consider all the given information,

but also be independent of alignment. A new similarity metric is required

which is suitable under these conditions.

vi) Besides fulfilling all the above mentioned conditions, the method should be

accurate and efficient.

6.4 An Approach to Partial Image Matching

The unique characteristics of partial images present many challenges in building

a highly accurate image matching method. Therefore, to match partial images,
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we need a method that can fulfil all the requirements discussed in the Section 6.3.

Section 6.4.1 discusses why the regions of images are taken to capture the dis-

tinguishing information and how regions can be used to utilize all the available

information of partial images. It is also explained how region based information

can tolerate non-linear distortion. Section 6.4.2 summarizes the alignment-free

technique for finding the common matching region between images. A new simi-

larity metric is proposed in Section 6.4.3 that can be used to compute the global

similarity value between images for the given circumstances of partial images.

6.4.1 Features in Partial Images

The major issue in the design of a partial image identification system is the selec-

tion of features that can best identify partial images for the underlying matching

applications. Partial images due to their incomplete nature do not consist of a suf-

ficient number of features required for matching. The amount of details present in

partial images is always less than full images, which means partial images consist of

less distinguishing information as compared to full images. In addition, there is a

high probability of misidentifying the features in low quality images. As discussed

in Section 2.5, using only one kind of feature for identifying partial images might

not be enough. Therefore, we need to incorporate more distinguishing information

instead of relying only on a few features. [3] and [194] also state that additional

features increase the discriminating information that can be used to ameliorate

the performance of the system. Therefore, as explained in Chapter 5, the regions

of an image can be used for matching partial images, as region incorporates all

features present in that region.

Regions of images represent all dimensional attributes such as microscopic and

macroscopic features. As all the pixels contribute, pixel information is less sen-

sitive to quality as compared to the specific features of an image and minimizes
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the effect of an insufficient number of features, error in feature extraction and the

absence of features. Moreover, the region of images represents only local informa-

tion of the images. Therefore, region based techniques can deal with non-linear

distortion present in images. Cappelli et al. [5] mentioned that the local region

based matching has addressed the challenges of global matching such as lack of

tolerance to non-linear distortion and high computational complexity. As a result,

region based techniques can address the issues of matching partial or low quality

images.

To improve the performance of a system, most of the available information

from partial images is required to be used in matching partial images. One of the

possible ways of doing this is by using multiple regions of images. Multiple regions

can be of two types: disjoint and overlapping of same size. The same number of

disjoint regions, compared to overlapping regions, can cover a larger area of an

image and represents more distinguishing information. In other words this implies

that, we need to use a larger number of overlapping regions as compared to disjoint

regions for capturing the same amount of distinguishing information. The details

of disjoint and overlapping regions are given below:

Disjoint Regions: Disjoint regions can be cropped from an image by applying

a grid of a size similar to the diameter of a circular region. Although, increasing

the number of disjoint regions increases the amount of distinguishing information

captured, there are some issues in using disjoint regions:

i) In partial images, there is difficulty in attaining the required number of

disjoint regions that can distinguish them from the inter images (images of

different objects). Therefore, due to the limited number of disjoint regions,

the approach is not suitable for partial image matching.

ii) Extracting the maximum number of disjoint regions having specific features

in an image is a time consuming process that can affect the efficiency of
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the system. Moreover, if the process of region extraction is made faster

but regions are not extracted properly, it is possible that the distinguishing

information of the image is left unused. That affects the accuracy of system.

We may take more disjoint regions to improve the accuracy of the system. However,

a problem arises when image does not have sufficient numbers of disjoint regions.

Therefore, it is necessary to find an alternative method that can make use of most

of the available distinguishing information present in images. Such alternative can

be overlapping regions and the definition of these regions is given below:

Overlapping Regions: An insufficient number of disjoint regions in partial

images prompts the use of overlapping regions in images. The overlapping regions

can be cropped in images by using a grid of size smaller than the diameter of a

circular region. The use of overlapping regions has many benefits as follows:

i) It can be used for partial images as partial images do not have enough disjoint

regions.

ii) It helps in using most of the given information in an image. For example,

assume a partial image has only 1 region and the rest of the partial im-

age cannot form another disjoint region. Then, instead of discarding the

rest of the information, we can have other overlapping region and use that

information. Although, overlapping regions do not increase the amount of

distinguishing information in the same ratio as that of disjoint regions, it

avoids the inefficient use of given information.

iii) One can expect an increase in accuracy by considering a greater number of

overlapping regions. However, it is not possible to have many disjoint regions

as an image may not have that many disjoint regions.

iv) As a large number of overlapping regions can be cropped from an image, it

can eliminate the effect of low quality regions in the fingerprint. The low
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quality regions are likely to have low similarity with the matching region.

Therefore, while computing a final similarity score between images, regions

with only highest similarity can be considered.

Hence, overlapping regions can offer an opportunity to make better use of the

given information of an image. While using multiple regions, the global information

of images is used as well. Hence, information achieved at a local level can also be

checked for consistency at the global level. However, for finding multiple matching

regions, images need to be aligned first. That itself is a time consuming process.

The region-based techniques (discussed in [10]) perform best among existing pixel

based matching techniques, using both local and global information. Although,

this approach achieves the best accuracy, it suffers from time complexity due to

its exhaustive alignment strategy. Hence, it will be interesting to investigate the

region based techniques further by eliminating the alignment issues. Therefore,

the fundamental question that we need to explore: how can region based approach

be applied for matching partial images without explicitly aligning the whole or

part of the images?

6.4.2 Alignment-free Common Region Identification

As discussed in the previous section, regions of images can be used for matching

partial images. However, images are unaligned due to translational and rotational

differences between them. Therefore, for matching images without aligning them

we need to extract the common regions without aligning them. Such a method of

extracting the common region without aligning images is proposed in Section 5.5.

Misalignment of images occurs mainly due to translational and rotational differ-

ences between them. The proposed approach for finding the common region deals

with both translation and rotation differences. The Radon transform takes care of

the rotation difference between images; the sliding window approach can provide
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the translation difference between them. Hence, the method can extract common

matching regions without aligning the reference and sensed images. Therefore, it

eliminates the need for aligning images in determining the common information

present in images.

Once common regions are extracted from images, the next step is to compute

the similarity between the images. One of the recent region based approaches

[10] consists of three steps (i) find common regions between images; (ii) align im-

ages and find the corresponding common regions; (iii) compute similarity between

images. However, the proposed approach can simply finds corresponding regions

between images without aligning them by using the method proposed in Section 5.5

[201]. For computing the similarity, existing measures such as correlation cannot

be used as images are still unaligned. Therefore, we have adopted a similarity

metric that can compute global and local similarity between unaligned images.

The detailed explanation of computing similarity is given in the next section.

6.4.3 Similarity Computation between Unaligned Partial

Images

In order to complete an existing matching process, it is required to compute the

similarity between images. In partial images, the overlap between images can be

quite small. That makes the similarity computation challenging. In existing re-

gion based approaches [10], once common regions are found between the sensed

and reference images, the next step would be to align images and compute similar-

ity between them. For that, the extracted common region would be considered the

reference location between these images, and images would be aligned by using the

angle that results in maximum correlation. By using the reference location, corre-

sponding common regions between images are found. The similarity between these

local regions is computed and consolidated to get the global matching similarity
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score, which is used for identifying the images. As discussed, image alignment

would have been necessary for computing the similarity in existing techniques,

whereas the proposed method need not align images for computing similarity.

This is because, the proposed method can find a common region in the sensed

and reference images without aligning them. Therefore, the other corresponding

common regions between sensed and reference fingerprints can be found quickly

by the same process as well.

After finding the corresponding matching regions between sensed and refer-

ence images, the similarity between images can be computed. However, we have

converted the image regions into rotation invariant vectors by using the Radon

transform. As the images are not aligned we cannot use the existing measures

such as correlation between the regions for computing the similarity. As a result,

we need an appropriate similarity measure for computing the similarity between

unaligned images.

Generally, it is expected that two intra images (images of the same object)

result in high similarity and inter images (images of different objects) result in

low similarity. Sometimes, however, intra images can result in low similarity due

to relative high non-linear distortion between the images. Therefore, to deal with

non-linear distortion, it is better to compute the similarity between images lo-

cally. Moreover, for taking global information of images into account for more

discriminating information, the global similarity can be computed by using lo-

cal similarities of regions. The details of computing local and global similarity is

discussed below:

Similarity Metric: Computing the similarity between images based on pixel

information is difficult as images are not aligned. Hence, a new similarity metric

is required that can compute the similarity between images without aligning them

and regardless of whether images are full or partial. As discussed in Section 4.3,

the proposed Variance Vector is not affected by misalignment of images as it is
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rotation invariant. Figure 6.3 shows Variance Vectors of two common regions ex-

tracted from the Lena original and rotated images. Both Variance Vectors coincide

perfectly with each other. Ideally, the vectors are supposed to be identical and

distance between vectors is supposed to be zero, however due to the presence of

noise, these can result in a positive distance between vectors. Moreover, a Variance

Vector represents the information of a region of an image. Therefore, the distance

between Variance Vectors not only can be used for finding the common regions but

also can be used for computing the similarity between images. Similarity between

images or regions is inversely proportional to the distance between Variance Vec-

tors. The smaller the distance between Variance Vectors; the higher the similarity

between images or regions and vice versa.

6.4.3.1 Similarity Computation

The similarity between images can be computed locally and globally as the local

information (regions) of images are used. Local similarity is less affected by non-

linear distortion present in images. However, local similarity misses the global

information of images, therefore it is required to compute global similarity between

images. The details of computing local and global similarity is given below:

i) Local Similarity: The proposed method matches images by dividing an

image into small regions instead of comparing an entire image as a big single

region (as in conventional correlation methods). This is because, in partial

images, it is difficult to compare entire partial images as they might consist

of different parts of the same object. In addition, to lower the effect of non-

linear distortion present in images it is better to compute similarity locally as

non-linear distortion has less effect on local regions. The distance between

Variance Vectors of regions in two images is taken as the local similarity

between them.
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Figure 6.3: The common regions between the Lena original and rotated images
and their rotation invariant Variance Vectors

For a higher level of confidence in matching images, more distinguishing

information is required that is captured by multiple regions of an image.

Multiple regions cover a greater area of an image. This greater area in turn

captures more distinguishing information in the image. As discussed in Sec-

tion 6.4.1, multiple corresponding regions between images can be disjoint or

overlapping. As the number of common regions between images increases,

the similarity between intra images increases and inter images decreases.

This is because, it is possible to have a few common regions between inter

images due to inter image similarity. However, it is not possible to have all
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regions matching with high similarity between inter images. On the contrary,

in intra images it is possible to have more common regions with higher simi-

larity. Hence, for computing similarity between regions, we extend the notion

that the distance between Variance Vectors is computed for corresponding

multiple regions. The difference between each region pair is considered as a

local similarity between them.

ii) Global Similarity: Use of the global information of images, increases the

distinguishing information of images. Therefore, after computing local sim-

ilarities of corresponding multiple overlapping regions, a global similarity

needs to be computed from the local similarities to indicate the overall sim-

ilarity between images. There are a number of consolidation techniques and

averaging methods that can used to compute global similarity [5] .

Cappeli et al. [5] have discussed different global consolidation techniques

that can be used to compute a global similarity value by using the local

similarities. A pixel based matching technique discussed in [10] also uses

these consolidation techniques, with a few changes to compute the global

similarity. Therefore, we can also apply these techniques to compute the

global similarity between images.

The simplest consolidation technique is the local similarity sort (LSS) that

can be used efficiently on light architectures [5]. This technique sorts the local

similarities and selects the best n (where n is a positive integer) number of

similarities. The value of n can be decided in two ways (i) select a constant

value of n for all images; (ii) select the value of n based on the total number

of regions present in the images. In our experiments, for performing analysis

we have taken a constant value for n for all images. Let’s say, S is the set of
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best n local similarities (LS) and is given by:

S = {LS1, LS2......., LSn} (6.1)

Once the best n values of local similarities are computed, the next step is

to compute a global similarity value between images. The global similarity

value can be computed by averaging the local similarities. There are many

averaging methods in the literature such as harmonic mean, geometric mean

and arithmetic mean that can be used for averaging [10]. However, the

most widely used global consolidation techniques involve averaging the local

similarities of the regions by using the arithmetic mean [5].

GS =

∑n
i=1 LSi
n

(6.2)

Hence, in the following experimentation, the global similarity between im-

ages is computed by averaging the best n local similarities resulting from n

common regions of images without any loss of generality. Considering more

overlapping regions can increase the amount of distinguishing information

which will in turn improve the global similarity value. Based on this global

similarity value, the reference image matching the sensed image is identified.

6.5 Performance of the Alignment-free Match-

ing Approach

The absence of pixel correspondence between images makes matching partial im-

ages difficult. One of the most widely used applications which encounters the

problem of partial images is fingerprint identification. Identification is the process

of determining a person or thing with the entity providing only an identifier. The



163

ever increasing demand for reliable and secure identification of individuals has en-

abled the use of fingerprints in unprecedented contexts. Moreover, the availability

of fingerprints at the time of identification provides great convenience to the users

while maintaining security, which in turn prompts the use of fingerprints for identi-

fication [3]. In addition, due to increased data handling ability, modern technology

support and rising demand for reliable identification, fingerprint identification is

also used for civilian and government applications like access control, border se-

curity and India’s Aadhaar Card project [16]. Inability to identify a person may

lead to breach of privacy, lack of access to resources etc.

Fingerprints are the patterns found on the fingers of human beings and are

composed of valleys and ridges. The uniqueness of fingerprints is verified by manual

inspection and the immutability is proven by morphogenesis of the ridges on the

skin [3]. The ever increasing use of fingerprints has given a misconception that

there are no issues remaining in an automated fingerprint recognition systems.

Despite extensive research in fingerprint identification, there are many issues that

still need to be addressed. An example of misidentification is the 2004 Madrid

Bomb blast. In 2004, Brandon Mayfield was falsely accused of the train bombing

in Madrid that killed 191 people and injured 2000 people [210]. This happened

because the fingerprints found at the incident place were wrongly matched to

Brandon Mayfield’s fingerprint. The fingerprints collected from the crime scene

were partial and of low quality1.

Fingerprints captured in an uncontrolled environment are generally partial and

transformed. The matching of such fingerprints by using feature based techniques

is difficult. Also, alignment is an obligatory operation in existing identification

systems that is exhaustive and time consuming2. Maio et al. [211] have shown

1Later, when the Spanish government identified the fingerprints and found Brandon Mayfield
innocent [210].

2It clear that we still need to develop the automated fingerprint identification that identifies
the fingerprints efficiently and accurately.
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that 20% of poor quality fingerprints in the database are responsible for 80% of the

false rejections. Therefore, for partial fingerprint identification, fingerprints must

be matched accurately and efficiently under all constraints. Also, it is preferable if

the system is accurate, reliable, efficient and effective in a way that works for full,

partial and low quality fingerprints. Otherwise the fingerprint based identification

will not be the option of choice.

The proposed approach fulfils the conditions required for matching partial fin-

gerprints. Therefore, to verify the accuracy and efficiency of fingerprint identifica-

tion, we have tested our approach on fingerprint datasets, which are widely used

by existing feature and pixel based matching algorithms. The experiments have

been performed on four FVC2002 datasets (namely, DB1, DB2, DB3 and DB4)

[211] and one FVC2006 dataset [212] which are the most widely used datasets in

fingerprint identification [3]. The specifications of these datasets is shown in Fig-

ure 6.4. All four datasets of FVC2002DB1 were captured by using different sensors.

Each of these datasets consist of fingerprints of 100 individuals with 8 impressions

for each individual. Therefore, these datasets consist of 800 fingerprints in total.

Volunteers for acquiring these datasets are mainly habituated students and they

have been asked to add perturbations deliberately in different impressions. Due to

translation, rotation, wetness or dryness of fingers during acquisition, different im-

pressions of the same person are partially overlapping and therefore, these dataset

consists of both partial and full fingerprints. Moreover, no effort is made to control

the quality of acquired fingerprints. Old sensors have been used for capturing the

fingerprints. Also, after acquiring the fingerprints, high quality fingerprints were

taken out from the dataset. Therefore, the resulting fingerprints are of low quality.

Similarly, the FVC2006DB2 dataset consists of fingerprints of 140 individuals with

12 impressions for each individual. Therefore, it consists of 1680 fingerprints in to-

tal. This dataset consists of fingerprints from manual workers and elderly people,

having high distortions in fingerprints. To check the robustness of the proposed
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Figure 6.4: Specifications of the FVC2002 and FVC2006 datasets

method against this type of distortion, we have used the FVC2006DB2 dataset.

We are using these datasets because the techniques to which we want to compare

our method have been evaluated extensively on these datasets and hence provide

a benchmark for comparison. Moreover, these datasets are a good combination of

all types of fingerprints including full, partial and low quality fingerprints which

are required for checking the robustness of the proposed method.

The performance of the proposed method has been measured in terms of ac-

curacy. That represents how many individuals have been identified correctly in

entire database. The accuracy is calculated by using the formula given in [10],

which is:

Accuracy =
CA+ CR

TG+ TI
∗ 100 (6.3)

where CA represents the number of genuine comparisons which are correctly ac-

cepted, CR is the number of comparisons which are correctly rejected, TG rep-

resents the total number of genuine (intra) comparisons, and TI represents the

total number of imposter (inter) comparisons. Furthermore, an Equal Error Rate

(EER) is also computed for the proposed method, to compare the proposed method

with the state of the art. The EER is the rate at a threshold at which the false
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acceptance rate and the false rejection rate are equal. The EER is computed as

EqualErrorRate = 100− Accuracy = 100− CA+ CR

TG+ TI
∗ 100 (6.4)

For identifying a sensed image, multiple corresponding regions are identified in

all intra and inter class images based on the distance between Variance Vectors.

The global similarity value is computed by averaging the local similarity values for

different regions. The reference image that results in a maximum global similarity

value is considered the matching image. If the matching image belongs to the same

intra class images then the match is considered as genuine acceptance, otherwise if

the matching fingerprint belongs to a inter class image then the match is considered

a false acceptance. Accuracy is computed by using the Equation 6.3. Finally, based

on the accuracy of the system, the EER is computed by using Equation 6.4. Many

factors influence the accuracy of proposed approach. These issues are discusses

below:

6.5.1 Effect of the Number of Regions on Accuracy

One of the important factors that affects the accuracy of the proposed approach is

the number of regions under consideration. Figures 6.5 and 6.6 show the effect of

using multiple overlapping regions on the accuracy of the proposed approach. The

accuracy shown in Figures 6.5 and 6.6 are obtained by arbitrarily taking the first

impression of each person as a sensed image in the FVC2002DB1 dataset and the

sixth impression of each person as a sensed image from the FVC2002DB2 dataset,

respectively. To verify the effectiveness of the proposed approach for partial and

low quality images, we have taken different impressions as sensed images in both

datasets because different impressions consist of different levels of distortion.

The results show that accuracy improves with an increase in the number of

regions, because the amount of distinguishing information captured increases with
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Figure 6.5: The effect of the number of regions on the accuracy achieved by the
proposed approach on the FVC2002DB1 dataset. The accuracy is achieved by
considering the first impression of each person as a sensed image.

Figure 6.6: The effect of multiple regions on the accuracy achieved by the proposed
approach on the FVC2002DB2 dataset. The accuracy is achieved by considering
the sixth impression of each person as a sensed image.

number of regions. The accuracy up to eight overlapping regions has been shown.

Considering more than 8 regions results in no improvement in accuracy for these

two datasets, therefore, 8 regions are considered for the experiment.
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Figure 6.7: The effect of the size of regions on the accuracy of the proposed
approach. The accuracy is computed for three different diameters (71, 101 and
141 pixels) of circular regions by considering the first impression of each person as
a sensed image for the FVC2002DB1 dataset.

6.5.2 Effect of Size of Region on Accuracy

The next factor that can effect the accuracy of the proposed approach is com-

prised of the sizes of regions. To study the effect of size of a region, the experi-

ment is performed for regions of 3 different diameters 71, 101 and 141 pixels on

the FVC2002DB1, FVC2002DB2, FVC2002DB3, FVC2002DB4 and FVC2006DB2

datasets. By using the method discussed in the Section 6.4.1, the correspond-

ing common matching regions are found between the sensed and reference im-

ages. Then the global similarity between images is computed (as discussed in

Section 6.4.3). Based on the similarity, the accuracy is computed for all 3 diame-

ters of regions.

Figure 6.7 shows the accuracy achieved by the proposed approach for three

different diameters of regions and with increasing number of regions. For this ex-

periment, first impression of each person is taken as sensed image in FVC2002DB1

dataset. Table 6.1 demonstrate the accuracy of proposed approach for three diame-

ters for FVC2002DB1, FVC2002DB2, FVC2002DB3, FVC2002DB4 and FVC2006DB2
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datasets. Datasets FVC2002DB2, FVC2002DB3, and FVC2006DB2 are not eval-

uated for size 141 pixels as many an individual’s fingerprints are partial and do not

consist of even a single region of size 141 pixels. The results show that the accu-

racy achieved by the proposed approach increases with an increase in the number

of regions (as discussed in Section 6.5.1).

Moreover, the accuracy achieved by a single region of different diameters shows

that the larger the region size, the higher the accuracy. This is because, a larger

area captures more distinguishing information from fingerprints. Higher distin-

guishing information between fingerprints results in a higher similarity between

them that in turn improves the accuracy 3.

Table 6.1 shows the accuracy achieved by using regions of diameters 71, 101

and 141 pixels. The best accuracy is achieved by a circular region of diameter

101 pixels for different datasets. This is because, when the region size is smaller,

it captures less distinguishing information of fingerprints and local similarities of

regions will be higher regardless of intra and inter fingerprints. However, if the

region size is big then it is quite possible that the sensed image region will not

exist in the reference image completely. Also, the larger regions are more prone to

non-linear distortions that affect the overall accuracy. Therefore, the best diameter

size for circular region among these 3 sizes is 101 pixels, which not only results in

maximum accuracy but is also suitable for different datasets.

6.5.3 Performance Evaluation

Different impressions of every person has different quality and distortion [3]. More-

over, some of the impressions are more partial than others. Therefore, to verify

the effectiveness of the proposed approach for partial and low quality images, we

have taken different impressions of each person as sensed images in all datasets.

3This result motivates us to use more regions so that the amount of distinguishing information
increases and so does the accuracy.
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Datasets
Size of
Region
(Pixels)

Number of Regions

1 2 3 4 5 6 7 8

FVC2002
DB1

71 86 93 94 94 94 95 95 95
101 91 93 94 95 95 96 97 97
141 93 94 95 95 95 95 95 95

FVC2002
DB2

71 82 88 91 93 93 94 95 96
101 94 95 97 97 97 97 97 98
141 90 90 96 96 96 97 97 97

FVC2002
DB3

71 68 78 82 82 82 82 83 87
101 77 88 88 89 89 91 91 91

FVC2002
DB4

71 72 84 88 91 92 92 94 95
101 91 91 93 94 94 94 95 97

FVC2006
DB2

71 88.57 95 96.42 96.42 97.14 97.14 97.85 97.85
101 94.28 96.42 97.14 97.14 97.85 98.57 99.3 99.3

Table 6.1: The accuracy achieved by the proposed method on different fingerprint
datasets and for three different diameters (71,101,141 pixels) of a circular region
by taking one of the impressions as sensed image.

As the previous section shows that circular regions of diameter 101 pixels result in

the best accuracy, we have used regions of size 101 pixel diameters for computing

the accuracy. The accuracy is computed for multiple overlapping regions and the

average results are reported. Figure 6.8 shows the average accuracy obtained by

the proposed approach on the FVC2002DB1 datasets. The accuracy is computed

for circular regions with 101 pixel diameters with a different impression of each

person as a sensed image. We can see that the average accuracy improves with an

increase in the number of regions.

Tables 6.2 and 6.3 show the accuracy achieved by taking different impres-

sions as the sensed image for the FVC2002 and FVC2006 datasets, respectively.

Moreover, the average accuracy achieved by each dataset is also reported. As

can be seen in Tables 6.2 and 6.3, different impressions result in different accu-

racies because some impressions with respect to the complete fingerprint cover a

much larger proportion; and others cover a much smaller proportion. Moreover, at

least one impression in each dataset results in 100% accuracy even when the inter
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Figure 6.8: The average accuracy with respect to the number of regions on the
FVC2002DB1 dataset

similarity exists between fingerprints. The average accuracy achieved by datasets

FVC2002DB1, FVC2002DB2, FVC2002DB3, FVC2002DB4 and FVC2006DB2 are

98.38%, 97.75%, 95%, 97.38% and 98.22%, respectively.

Based on the above accuracy, the EER of the proposed method is computed

by using Equation 6.4. The EER of the proposed method is compared with the

EER of the existing methods for each dataset. Table 6.2 shows the best accuracy

obtained by regions of diameter 101 pixels is 98.38% for the FVC2002DB1 dataset,

which is far better than the existing techniques. Table 6.4 shows that the EER

of the proposed method for FVC2002DB1 results is 1.62%. That is better when

compared to the existing techniques. The existing region based approach for partial

fingerprints discussed in [213] have achieved the best known EER, 2.66% so far

on the FVC2002DB1 dataset, but the proposed method outperforms this method.

Moreover, the proposed method performs better than the approaches discussed in

[214] and [215] that result in EER of 2.27% and 2% respectively as compared to

all other techniques discussed in Table 6.4. The EER of the proposed method on

the FVC2002DB2 and FVC2002DB3 datasets are 2.25 and 5, respectively. The

method proposed in [215] results in an EER of 2.3 on the FVC2002DB2 dataset;
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Dataset
Impression

as Sensed Image
Accuracy

(DB1)
Accuracy

(DB2)
Accuracy

(DB3)
Accuracy

(DB4)

FVC2002

1 97 98 94 95
2 100 100 96 97
3 98 100 99 99
4 98 97 90 99
5 98 96 91 93
6 98 96 93 100
7 99 97 97 98
8 99 98 100 98

Average Accuracy 98.38 97.75 95.00 97.38

Table 6.2: The accuracy achieved for the FVC2002DB1-DB4 datasets by using the
proposed method and by taking different impressions of each person as a sensed
image

Dataset
Impression

as Sensed Image
Accuracy

FVC2006 DB2

1 95.7
2 98.6
3 99.3
4 99.3
5 97.9
6 97.9
7 99.3
8 95.7
9 98.6
10 100
11 97.1
12 99.3

Average Accuracy 98.22

Table 6.3: The accuracy achieved for the FVC2006DB2 dataset by using the pro-
posed method and by taking different impressions of each fingerprint as sensed
images
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Methods (DB1) EER (%)
Qadar, 2007 [111] 7.13
Zhang, 2007 [109] 3.49

Gao, 2011 [82] 3.5
Ahmad, 2011 [216] 9

Das, 2012 [214] 2.27
Wang, 2012 [217] 3.5
Wang, 2014 [215] 2

Zanganeh, 2014 (Conventional) [10] 7.1
Zanganeh, 2014 [10] 2.66
Sandhya, 2015 [218] 4.71

Gowthami, 2015 [219] 3.33
Proposed Method 1.62

Table 6.4: Comparison of the EER of the proposed method with the EER of
existing methods on the FVC2002DB1 dataset

Methods (DB2) EER (%)
Ahmad, 2011 [216] 6
Wang, 2012 [217] 4
Wang, 2014 [215] 2.3

Sandhya, 2015 [218] 3.44
Gowthami, 2015 [219] 8

Proposed Method 2.25

Table 6.5: Comparison of the EER of the proposed approach with the EER of
existing methods on the FVC2002DB2 dataset

the method proposed in [219] results in an EER of 5.86 on FVC2002DB3. We

can see in Tables 6.5 and 6.6 that there is a small increment in the EER of the

proposed method as compared to the existing techniques. However, these datasets

consist of highly distorted images. Therefore, a small increment in the EER makes

a significant difference. Moreover, the methods proposed in [215] and [219] result

in higher EER for other datasets except FVC2002 DB2 and DB3, respectively,

whereas the proposed approach results in lower EER for other datasets as well.

In the case of FVC2002DB4, the proposed method improves the EER from

5.5 (using the method proposed in [219]) to 2.62. Not many methods have been

evaluated on this dataset, however among the given methods the proposed method

results in excellent performance. Similar results in Table 6.8 have been reported
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Methods (DB3) EER (%)
Ahn, 2008 [220] 11.8

Ahmad, 2011 [216] 27
Wang,2012[217] 7.5

Wang, 2014 [215] 6.12
Sandhya,2015 [218] 8.79

Gowthami, 2015 [219] 5.86
Proposed Method 5

Table 6.6: Comparison of the EER of the proposed method with the EER of
existing methods on the FVC2002DB3 dataset

Methods (DB4) EER (%)
Ahn, 2008 [220] 11.46

Gowthami, 2015 [219] 5.5
Proposed Method 2.62

Table 6.7: Comparison of the EER of the proposed method with the EER of
existing methods on the FVC2002DB4 dataset.

for the FVC2006DB2 dataset which consist of distorted fingerprints from manual

labourers and elderly people. The proposed method reports 0.78 improvement in

the EER. The existing method. proposed in [219] results in a best EER of 2.56

whereas the proposed approach results in an EER of 1.78.

Thus, the proposed approach performs best in comparison with the existing ap-

proaches for all datasets even when the datasets consist of partial fingerprints de-

rived from manual labour and elderly people’s fingerprints. The proposed method

not only achieves the best EER but also simplified the matching process. This is

because images are matched without aligning them.

Methods EER (%)
Abraham, 2011 [221] 11.09

Zanganeh, 2015 (Thesis) 2.56
Proposed Method 1.78

Table 6.8: Comparison of the EER of the proposed approach with the EER of
existing methods on FVC2006DB2 dataset.
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6.5.4 Effect of Noise on Accuracy

Figure 6.9: Region from a noiseless fingerprint (top left) and its trans-
formed versions obtained by adding salt and pepper noise of varying densities
d=0.04,0.08,0.012,0.16,0.20

Noise in fingerprints occurs as random variations of a pixel’s brightness. The

fingerprints suffer from noise that is generally caused by dirt on the sensor or the

degree of dampness of a finger [222]. In noisy fingerprints, the ridges of a finger

are not well defined, making identification difficult. Additionally, noise is one of

the main causes of intra-class variation in fingerprints. Therefore, estimation of

the robustness of the proposed method with respect to additive noise is needed.

The experiments have been carried out by adding ”salt & pepper” noise to sensed

fingerprints (as shown in Figure 6.9) with density d ranging from 0 (noiseless

image) to 0.20 in increments of 0.04. The density of noise represents the percentage

of pixels corrupted in the images. The noise is added to each fingerprint considered

a sensed image. An experiment of fingerprint identification is performed to identify

the individuals. The accuracy obtained with different noise levels are shown in

Table 6.9.

The results show that accuracy decreases gradually as the amount of additive

noise increases. Up to 16% of noise, the accuracy for all datasets is more than 90%.
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Datasets
Noise Density (Salt & Pepper)

0 0.04 0.08 0.12 0.16 0.20
FVC2002

DB1
98.38 97.17 96.38 94.88 93.13 90.88

FVC2002
DB2

97.75 93.75 92.38 91.13 90 87.63

FVC2002
DB3

95 94.63 93.5 93.38 90.38 87.88

FVC2002
DB4

97.38 97.38 96.63 95.5 94.13 91.38

FVC2006
DB2

98.22 98.22 98.14 98.14 97.71 96.71

Table 6.9: The accuracy of the proposed approach at different densities of salt and
pepper noise on the FVC2002DB1-DB4 and FVC2006DB2 datasets

The accuracy for FVC2002DB1, FVC2002DB4 and FVC2006DB2 is maintained

above 90% even at 20% of noise. However, for FVC2002DB2 and FVC2002DB3,

accuracy plunges to 87.63% and 87.88% respectively at 20% noise. This is because,

the images in these datasets are distorted images. Therefore adding more noise

affects the accuracy. The robustness of the method to noise is due to the Radon

transform which is robust to additive noise [14]. The proposed method uses the

Radon transform to convert image regions into Variance Vectors, thereby reducing

the effect of noise on images.

To recapitulate, the results of fingerprint identification show the robustness of

the proposed method to additive noise and therefore, the method can be exploited

for low quality fingerprints as well.

6.5.5 Effect of the Number of Radon Projections on Ac-

curacy

The results on fingerprint datasets discussed till now are obtained by computing

the Radon projections for each angle between 1◦ to 360◦ to deal with the rotation

difference between fingerprints. The amount of captured information varies with



177

Datasets
Accuracy

(Number of Projections)
60 90 180 360

FVC2002DB1 95 98.38 98.38 98.38
FVC2002DB2 91 95.13 96.13 97.75
FVC2002DB3 90 94 94.75 95
FVC2002DB4 90.38 96.88 97.13 97.38
FVC2006DB2 97.68 97.68 98.22 98.22

Table 6.10: The accuracy of the proposed approach with respect to the number of
projections on the FVC2002DB1-DB4 and FVC2006DB2 datasets

the number of Radon projections that evidently effect the matching accuracy.

We have carried out a sensitivity analysis test for finding how many projections

are required (between 1◦ to 360◦) to capture enough distinguishing information

of fingerprints so that it can be easily distinguished from inter-class fingerprints.

The experiments are performed by computing the Variance Vectors of regions for

different numbers of Radon projections. The angles for different projections are

uniformly sampled between 1◦ and 360◦.

The regions of 101 pixel diameters are used as they performed best among dif-

ferent sized regions (see details in Section 6.5.2). The experiments are conducted

with different numbers of projections for computing the accuracy of fingerprint

identification by using the proposed method. We can see in Table 6.10, as the

number of projections increases the accuracy of fingerprint identification also im-

proves. However, with only 60 projections, we are able to achieve an accuracy

more than 90% for all datasets. The number of projections has decreased by one

sixth, but the accuracy has not decreased proportionately. Further increasing the

number of projections to 90 can achieve an accuracy close to the accuracy that

is achievable by using all 360 projections. Reducing the number of projections

required decreases the number of computation steps for each comparison required

for fingerprint identification. Therefore, a smaller number of projections not only

achieve the highest possible accuracy but also reduce the complexity of the system.
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6.5.6 Computational Complexity

One of the important issues in image identification considered is the computational

complexity of techniques. Although the accuracy of the proposed method is high

and better than the existing techniques, the computational complexity is also

desired to be low.

The basis of the proposed method is computation and comparison of the Vari-

ance Vectors of sensed and reference image regions. The computation of a Variance

Vector depends on the Radon transform. Computing the Radon transform is quite

immediate [165]. Moreover, the computing time of a Variance Vector depends on

the size of an image as well. We have used regions of images, therefore we compute

the time required for computing Variance Vectors for different sized regions. The

larger the size, the more time required for computing a vector and vice versa. The

time required for computing the Variance Vectors of regions of 71, 101 and 141

pixel diameters is 22.7, 36.4, and 60.4 milliseconds, respectively on a desktop with

a 3.5GHz CPU and 64GB RAM.

The time required to compute similarity between two images by one of the ex-

isting region based methods discussed in [10] for FVC2002DB1 dataset is approxi-

mately 849 seconds on Monash University’s High Performance Computing Cluster.

However, the proposed approach takes on average only 283 seconds which is ap-

proximately one-third of the time required by the existing region based method.

This time includes the time required for computing the Variance Vectors of sensed

image regions, their comparison with all Variance Vectors of reference image re-

gions and computing similarity between them.

As the proposed method is approximately three times faster than the existing

method, it will be very useful in exhaustive applications. One such example is

latent fingerprint identification where fingerprints obtained from crime scenes are

compared with a dataset consisting of a large number of fingerprints of criminals.
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The proposed method will help in finding a suspect accurately and quickly as com-

pared with existing techniques. Moreover, as discussed in Section 6.5.5, reducing

the number of projections decreases the computational complexity of the proposed

approach.

To recapitulate, the proposed method is not only able to achieve the improved

accuracy but also eliminate the need for aligning the fingerprints, which is turn

reduces computational complexity.

6.6 Conclusion

This chapter presents a new paradigm for matching the partial images without

aligning them. The proposed method is independent of any image features. There-

fore, it does not suffer from the problems such as feature extraction errors and

insufficient numbers of features. The regions of images capture both micro and

macro features of images. That helps in capturing more distinguishing information

of images. Also, the regions can be of any size or captured from any part of the

fingerprint, making it applicable to both partial and poor quality images. More-

over, the overlapping region approach allows use of as much of the information in

images as is available. This approach is tolerant to non-linear distortion because

regions represent the local information of the image and non-linear distortion has

less effect locally.

Predominantly, alignment is one of the obligatory operations in the existing

image identification process which makes the entire process computationally ex-

haustive. The proposed approach is able to find common matching regions between

images without aligning them. That reduces the computational complexity of a

system. Moreover, for computing the similarity between the unaligned partial

images, a new similarity metric is proposed.
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Four FVC2002 datasets and FVC2006DB2 dataset are used as a test bed to

evaluate the effectiveness of the proposed image matching method. These datasets

are chosen because they consist of low quality and partial images. The proposed

approach identify images without aligning them, resulting in the best EER as

compared to the existing approaches for all datasets. Moreover, the method’s

robustness to noise is also tested. Hence, the proposed method is not only accurate

and efficient but also robust to noise and applicable to all images regardless of being

full or partial.



Chapter 7

Conclusion

Due to the increase in the availability of digital images, the demand for accurate

and efficient image registration and matching is increasing in different computer

vision applications. Image alignment plays an important role in both image regis-

tration and matching applications. Most of the existing alignment methods work

well when images are of high quality and have exact pixel-to-pixel correspondence.

However, images satisfying these demands cannot always be generated. For ex-

ample, images captured in an uncontrolled environment (fingerprints captured by

smart phone sensors) generally do not have exact pixel-to-pixel correspondence.

Moreover, the captured images can be distorted and this results in only a part of

the image being useful. The alignment of these images using the existing feature

based techniques is difficult. Therefore, to solve this problem, many pixel based

techniques have been developed. However, these techniques either are computa-

tionally exhaustive or not applicable to images which do not have exact pixel-to-

pixel correspondence. These issues of alignment techniques prevent the accurate

and efficient registration and matching of images.

This thesis aims to overcome the above limitations by proposing a pixel based

technique that can improve the accuracy and efficiency of image registration and

matching regardless of pixel-to-pixel correspondence between images. A pixel
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based parameter computation method is proposed for accurate and efficient image

registration, whereas an alignment-free pixel based matching method is proposed

for image matching applications. This has been achieved by converting images into

a transformed domain that not only simplifies the misalignment between images

but also preserves the information that is present in the pixel domain.

7.1 Contributions of Thesis

In this thesis, four key contributions have been made to the area of image registra-

tion and matching. These key contributions are presented below, in the sequence

in which they appear in the thesis:

i) A transform based method is proposed to accurately and efficiently compute

the transformation parameters between images to align them. The method

aligns images having pixel-to-pixel correspondence by using pixel based in-

formation only, and does not extract image specific features. In addition, to

validate the application independence property of the proposed method, the

method’s performance is checked on images of varying classes. Moreover,

robustness of the proposed method to noise is verified by adding different

types of noise to images. The proposed method aligns the images accurately

and efficiently as compared to existing techniques.

ii) An alignment-free transform based image matching method is proposed to

accurately and efficiently match the images having pixel-to pixel-correspondence.

The method can match images without computing all the transformation pa-

rameters between them. A new similarity metric is proposed to compute the

similarity between unaligned images in transformed domains. As the images

are matched without aligning this improves the efficiency of matching pro-

cess. This method is further improved by reducing the number of Radon
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projections. The effectiveness of the proposed method is verified on UMD

Logo datasets and results demonstrates outstanding performance of proposed

approach as compared to the existing techniques.

iii) To align partial images which do not have exact pixel-to-pixel correspon-

dence, a region based method is proposed that can compute the transforma-

tion parameters in such images. As the partial images have only part of an

image in common between them, an alignment-free method is proposed to

extract the common regions for efficiently computing parameters. Moreover,

the pixel-to-pixel correspondence is important in regions for parameter com-

putation, therefore, an appropriate shape of region is proposed. To improve

the efficiency of the common region extraction process, an optimization tech-

nique is also presented. If required, the extracted common regions can be

used for aligning the images which do not have exact pixel-to-pixel corre-

spondence where most of the existing methods fail to perform.

iv) For matching partial images which lack exact pixel-to-pixel correspondence,

a region based alignment-free method is proposed. For accurate matching

of partial images, a method to use most of the available information by

means of multiple regions is provided. Moreover, to minimize the effect of

non-linear distortion present in images, the similarity is computed locally.

To verify the robustness of local similarity at the global level, a method to

compute a global similarity score is presented. The method is evaluated

on standard fingerprint datasets and the performance is compared with the

existing methods. In addition, the robustness to noise is also verified. The

results elucidates the excellent performance of the proposed approach on

partial images.
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7.2 Future Work

The research’s primary aim has been to improve the accuracy and efficiency of im-

age registration and matching for different computer vision applications. Towards

that end, pixel based techniques have been proposed that can register and match

images regardless of the extent of pixel-to-pixel correspondence between them.

This is achieved by converting images into a transformed domain and proposing a

similarity metric that can compute similarity between images in the transformed

domain. A list of some possible future directions is provided below.

i) The proposed method converts two dimensional pixel based information into

one dimensional Variance Vectors for matching images. As images are con-

verted in the vectorized form, which do not contain enough information to

restore the images, therefore, these vectors can be used to preserve the pri-

vacy of images.

ii) The proposed Variance Vector demands partial images on same scale. A

method to compute the Variance Vectors of scaled images is required. This

method not only would improve the efficiency of the system but is also appli-

cable to many other computer vision applications such as object recognition

in images with multiple objects where objects have different scales.

iii) The proposed alignment-free partial image matching method is tested on

fingerprints only. As the method is independent of specific features of im-

ages, the method can be extended for other biometrics and computer vision

applications.

iv) The proposed parameter computation method is applicable only on images

which are transformed by similarity transformation parameters. Indeed, im-

ages such as bone, MRI/CT or weld defect images are subjected to these
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transformations during acquisition. However, in applications such as med-

ical imaging, images are also subjected to affine transformations like non-

uniform scaling and shearing. Thus, extension of the proposed method to

affine transformations will be an interesting topic to investigate.

v) A region based matching approach is proposed for matching partial images.

For improving the accuracy of the proposed method, the geometry of the

extracted common regions can also be considered. The relative positions of

regions will improve the accuracy of extracted common regions, which in

turn enhance the accuracy of the matching process.
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[13] A. P. Papliński, “The angular integral of the Radon transform (anirt) as

a feature vector in categorization of visual objects,” in Advances in Neural

Networks–ISNN 2013. Springer, 2013, pp. 523–531.

[14] N. Nacereddine, S. Tabbone, and D. Ziou, “Similarity transformation param-

eters recovery based on Radon transform. application in image registration



188

and object recognition,” Pattern Recognition, vol. 48, no. 7, pp. 2227–2240,

2015.

[15] D. Doermann, E. Rivlin, and I. Weiss, “Applying algebraic and differential

invariants for logo recognition,” Machine Vision and Applications, vol. 9,

no. 2, pp. 73–86, 1996.

[16] A. Sankaran, M. Vatsa, and R. Singh, “Latent fingerprint matching: A sur-

vey.” IEEE Access, vol. 2, no. 982-1004, p. 1, 2014.

[17] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image and

vision computing, vol. 21, no. 11, pp. 977–1000, 2003.

[18] L. G. Brown, “A survey of image registration techniques,” ACM Computing

Surveys (CSUR), vol. 24, no. 4, pp. 325–376, 1992.

[19] G. Chen and S. Coulombe, “A new image registration method robust to

noise,” Multidimensional Systems and Signal Processing, vol. 25, no. 3, pp.

601–609, 2014.

[20] J. Zhang, D. Huang, J. Gui, and W. Ye, “2d registration based on contour

matching for partial matching images,” Journal of Central South University,

vol. 21, no. 12, pp. 4553–4562, 2014.

[21] D. Ghosh and N. Kaabouch, “A survey on image mosaicing techniques,”

Journal of Visual Communication and Image Representation, vol. 34, pp.

1–11, 2016.

[22] R. D. Eastman, N. S. Netanyahu, and J. Le Moigne, “Survey of image reg-

istration methods,” in Image Registration for Remote Sensing. Cambridge

University Press, 2011, pp. 35–78.

[23] D. K. Karna, S. Agarwal, and S. Nikam, “Normalized cross-correlation based

fingerprint matching,” in Computer Graphics, Imaging and Visualisation,



189

2008. CGIV’08. Fifth International Conference on. IEEE, 2008, pp. 229–

232.

[24] A. Bartoli, “Groupwise geometric and photometric direct image registra-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 30, no. 12, pp. 2098–2108, 2008.

[25] M. V. Wyawahare, P. M. Patil, H. K. Abhyankar et al., “Image registration

techniques: an overview,” International Journal of Signal Processing, Image

Processing and Pattern Recognition, vol. 2, no. 3, pp. 11–28, 2009.

[26] A. Andreopoulos and J. K. Tsotsos, “50 years of object recognition: Direc-

tions forward,” Computer Vision and Image Understanding, vol. 117, no. 8,

pp. 827–891, 2013.

[27] C. Harris and M. Stephens, “A combined corner and edge detector.” in Alvey

Vision Conference, vol. 15. Citeseer, 1988, pp. 147–151.

[28] W. Förstner and E. Gülch, “A fast operator for detection and precise location

of distinct points, corners and centres of circular features,” in Proc. ISPRS

Intercommission Conference on Fast Processing of Photogrammetric Data,

1987, pp. 281–305.

[29] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detec-

tors,” International Journal of Computer Vision, vol. 37, no. 2, pp. 151–172,

2000.

[30] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point detec-

tors,” International Journal of Computer Vision, vol. 60, no. 1, pp. 63–86,

2004.

[31] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”

in European Conference on Computer Vision. Springer, 2006, pp. 404–417.



190

[32] E. Rosten and T. Drummond, “Machine learning for high-speed corner de-

tection,” in European Conference on Computer Vision. Springer, 2006, pp.

430–443.

[33] G. Yang, C. V. Stewart, M. Sofka, and C.-L. Tsai, “Automatic robust image

registration system: Initialization, estimation, and decision,” in Computer

Vision Systems, 2006 ICVS’06. IEEE International Conference on. IEEE,

2006, pp. 23–23.

[34] W. Burger and M. J. Burge, “Non-rigid image matching,” in Digital Image

Processing. Springer, 2016, pp. 587–608.

[35] B. D. Lucas and T. Kanade, “An iterative image registration technique with

an application to stereo vision.” in IJCAI, vol. 81, no. 1, 1981, pp. 674–679.

[36] A. K. Dewdney, “Analysis of a steepest-descent image-matching algorithm,”

Pattern Recognition, vol. 10, no. 1, pp. 31–39, 1978.

[37] P. Bingham and L. Arrowood, “Projection registration applied to nonde-

structive testing,” Journal of Electronic Imaging, vol. 19, no. 3, 2010.

[38] R. Mooser, F. Forsberg, E. Hack, G. Székely, and U. Sennhauser, “Estima-
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