

Green-Blue Technologies *Masterclass & FGD*

Dr Harsha Fowdar & Dr Emily Payne 4th July 2018

Australia-Indonesia Centre

The Australia-Indonesia Centre is an initiative of:

Objectives

- Provide an overview of the benefits and adoption of green technologies in a Masterclass,
- 2. Discuss and gather feedback on the key outcomes of the literature review into green technology adoption in Bogor,
- 3. Discuss potential technological solutions at the case study sites.

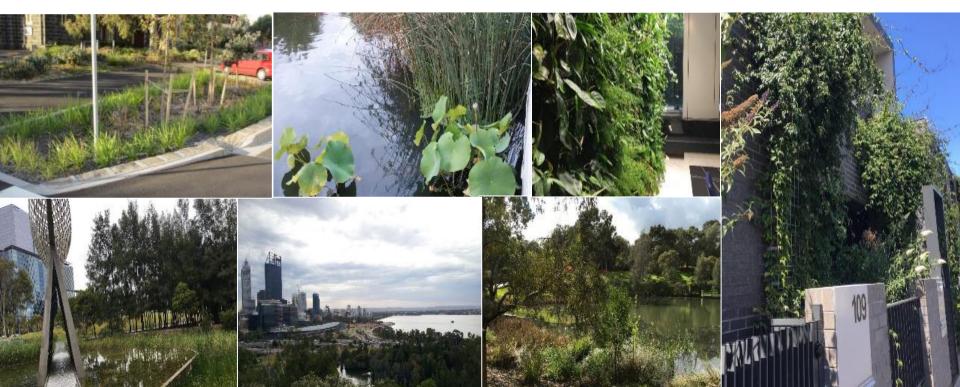
Agenda

Masterclass 9:40 - 10:50

- Why is there a need for green technologies and water sensitive urban design?
- What are the multiple benefits provided by different technologies?
- Examples of green technologies in action
- Key outcomes from the review

Focus Group Discussion 10:50 – 12:30

- Discuss the key outcomes of the review and gather feedback on any ways to improve its usefulness
- Discuss current examples of green technologies in Bogor
- Discuss potential future solutions for Bogor



Masterclass

URBAN WATER RESEARCH CLUSTER

Green technologies to enhance urban water management, human health, greenery, ecosystems & amenity

Overview of WSUD

https://youtube/LMq6FYiF1mo

https://youtu.be/7bgp3E0gUAQ

Population growth

Climate change

- Sanitation

Flooding

Urban challenges

Impacts on water resources Water scarcity during dry season

Overexploitation and depletion of groundwater

Bogor's sustainability goals

Source: Presentation by Naufal, Isnaeni, BAPPEDA

- Be a sustainable city
 - Mid term Strategic Plan of Bogor (2015) aims to retain 'garden city' reputation by promoting 'green networks' – open spaces of parks, green belts, urban forest/protected areas, agricultural land. Aiming for 30% green and open space on both public and private land (Government Law No. 26/2007)

How to become a more sustainable and productive city?

Green technologies

- Also commonly referred to as blue-green infrastructure or simply green infrastructure
- Comprise a network of green and open space and nature based treatment technologies
- Concept of WSUD integration of urban design with water resources management – learn more in afternoon session
- In this session, run through the different technological options and provide a basis of how to choose between them

GI – Performance objectives

Water quality improvement

Water security

Water quantity control – flow attenuation – reduce the impacts of flooding

Protection of situs and river health

Erosion control

Water treatment

On-site detention and storage

Promote groundwater recharge through infiltration



Rainwater harvesting/greywater recycling

Flow conveyance

Green & water sensitive treatment technologies

Biofiltration / Rain gardens

Green rooves

Photo source: Melbourne Water

Living walls

Swales

Green walls

Wetlands

Green & water sensitive treatment technologies

Rain barrels / tanks Detention / retention ponds Sediment pools

Photo source: Pacific Watershed

The different socio-economic and ecological benefits of GI

Economic benefits

- Commercial vitality
- Increased property value
- Local economic productivity

GREEN INFRASTRUCTURE

Social benefits

- Human health & well-being
- Community engagement and inclusion
- Visual & aesthetics

Environmental benefits

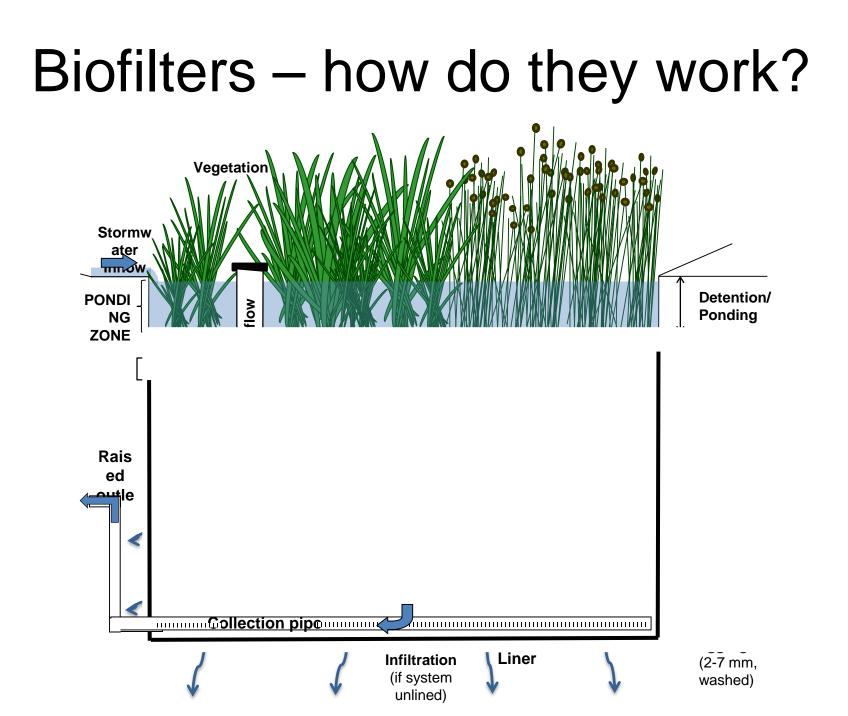
- Urban cooling
- Climate change mitigation
- Air quality improvement
- Biodiversity
- River and lake health
- Water supply
- Flow control, flood reduction
- Greywater treatment and re-use

OVERVIEW OF THE DIFFERENT TECHNOLOGIES

Biofiltration systems

Biofilters, also commonly known as biofiltration systems, bioretention, raingardens or tree pits...

Biofilters


- Treatment of stormwater runoff and 'light' greywater
- Can be applied at a range of scales (street tree, streetscape, backyard, park or larger)
- Passive treatment systems water quality, flow retention, amenity, greenery, biodiversity...
- Flexible in design to suit site conditions and objectives
- Design can be simple or complex
- Successfully tested & used in Singapore

[Biofilter video]

Treatment performance

Stormwater

If designed properly vegetated, soil-based biofilters will reduce

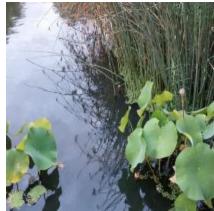
- Over 95% of TSS,
- Over 65% of TP,
- Over 50% of TN (even over 70% for some configurations)
- Over 90% of heavy metals
- High level of pathogen removal (>90%)

Note: Biofilters tested under Victorian conditions/temperate climate

Treatment performance

Light greywater

- Over 90% of BOD
- Over 70% of TOC
- 20 80% of TP and TN (depending on plant selection)
- 2-3 log reduction of pathogen removal

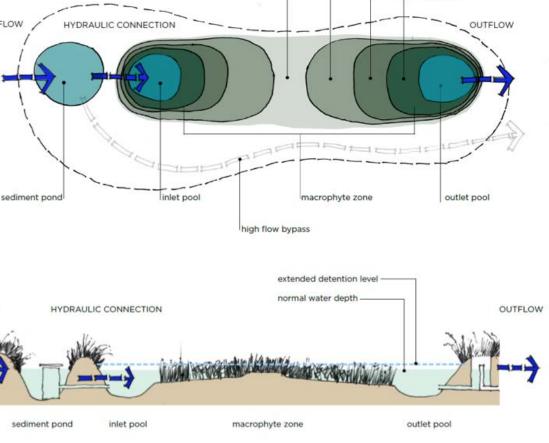

Note: Biofilters tested under Victorian conditions/temperate climate

Constructed wetlands

Constructed wetlands

Constructed wetlands

- Used globally to treat various water sources stormwater runoff and various wastewaters (domestic, partially treated, industrial effluents)
- Provide a range of benefits water quality treatment, flow attenuation & water storage, landscaping & amenity, habitat/biodiversity, property value...
- Effective for sediment and nutrient (nitrogen & phosphorus) removal
- Can be applied at small to larger scales
- Various designs subsurface flow (horizontal or vertical flow), free water surface, floating treatment wetlands -> vary in cost and performance



Stormwater Wetlands – how do they function?

INFLOW

INFLOW

- High plant cover
- High level by-pass
- Strategies in place to prevent mosquito breeding
- Even distribution of flows
- Not too much open water – differ from ponds

deep marsh

Water by design, 2017

Wastewater Wetlands – how do they function?

- Different types
 - Surface flow
 - Sub-surface flow
 - Floating wetlands

Sub surface flow wetland

Floating wetland Image: Dr Cynthia Henny, Puslit Limnology- LIPI

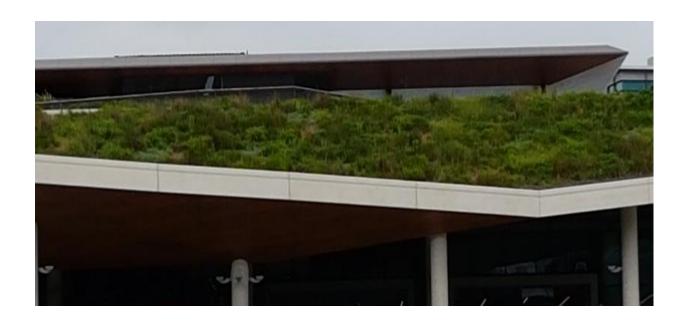
Surface flow wetland

Treatment performance

Studies in tropical climates

FW CWs	SSF CWs
TSS, COD and BOD: 70-80% TN: 60 – 75% TP: 13-75%	TSS: ~80% BOD : 78-88% COD: 64 – 71% NH4: 60-70% NO3: 40% (HSSF) – 70% (VSSF) TN: 50% TP: 60-70%

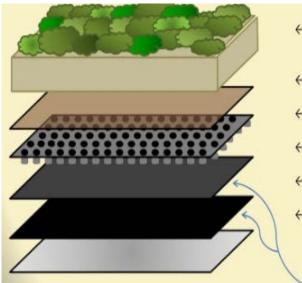
Zhang et al., 2015



Green roofs

Green roofs

- Provide multiple benefits runoff attenuation (e.g. in Malaysia peak runoff \26%), greenery, building cooling (e.g. in Malaysia indoor air temp \ by 5°C)
- Performance influenced by substrate composition, pollutants, depth, plant species



Green roofs – how do they function?

Source: Greentumble, https://greentumble.com/how-dogreen-roofs-work/

Source: Slideshare,

roofs_for_oducators

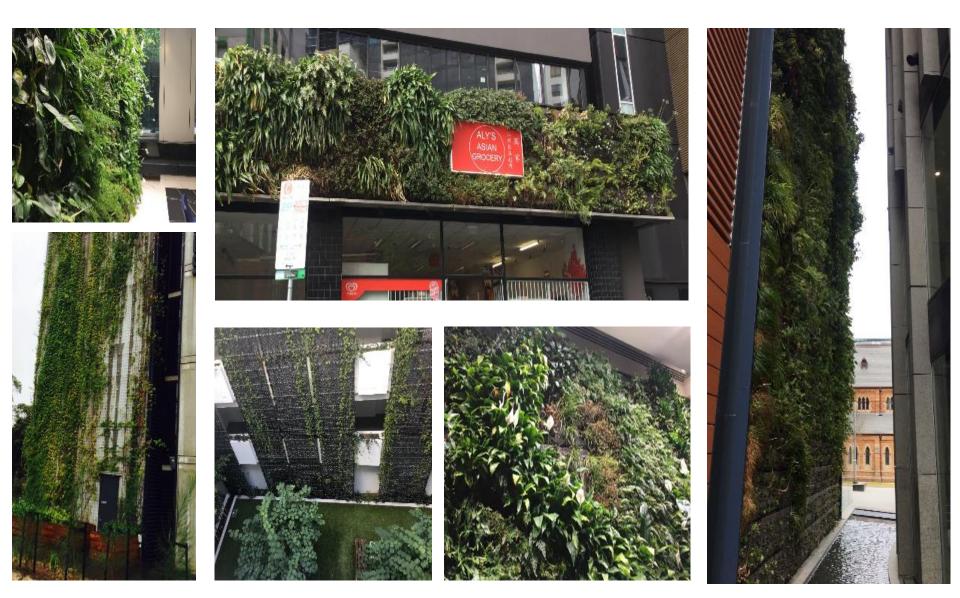
- ← Soil or Growing Medium
- ← Root Reinforcement Mat
- ← Water Storage/Drainage
- ← Root Barrier
- ← Roof Membrane
- ← Roof Structure

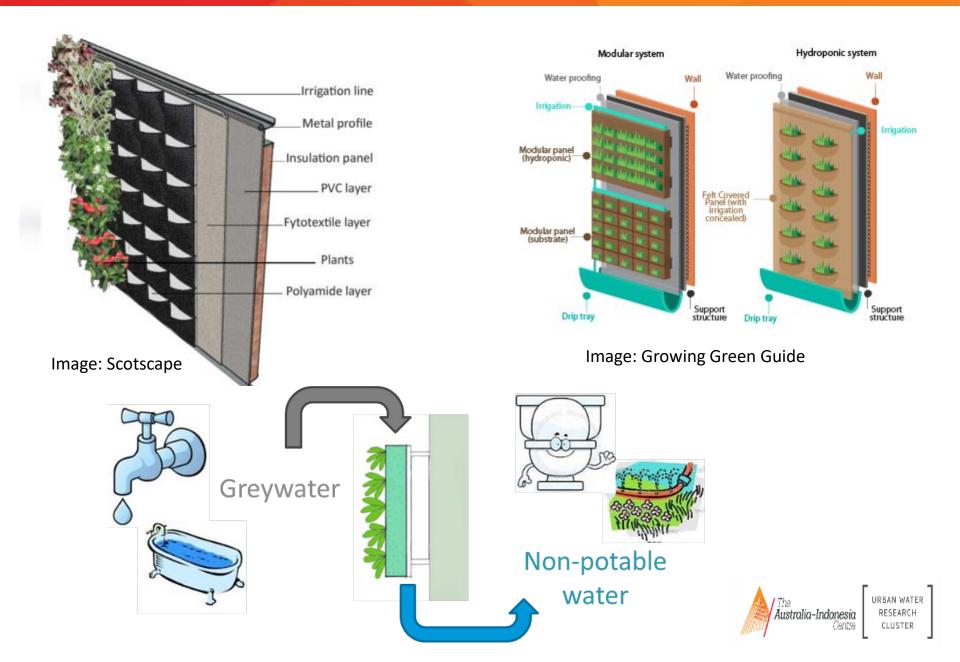
at against leaks! https://www.slideshare.net/themarkofpolo/intro-to-green-

Performance

- Delay in runoff (peak to peak) by approx. 10 mins (Simmons et al., 2008)
- Retention by the vegetated roofs varied between 39

 45% depending on designs (mean of all events)
 (Wong and Jim 2014)
- International studies:
 - 49-80% of precipitation retained over extended periods of data collection (Auckland city council, Technical report, 2013).





Green walls & Green facades

Green walls or living walls (using climbing plants) for water treatment

Green walls for greywater treatment – how do they function?

- Mean COD and BOD reduction: approx. 50% (Masi et al., 2016)
- Effluent from the green wall system complied with local regulations for irrigation.
- Pre-treatment recommended to avoid premature clogging

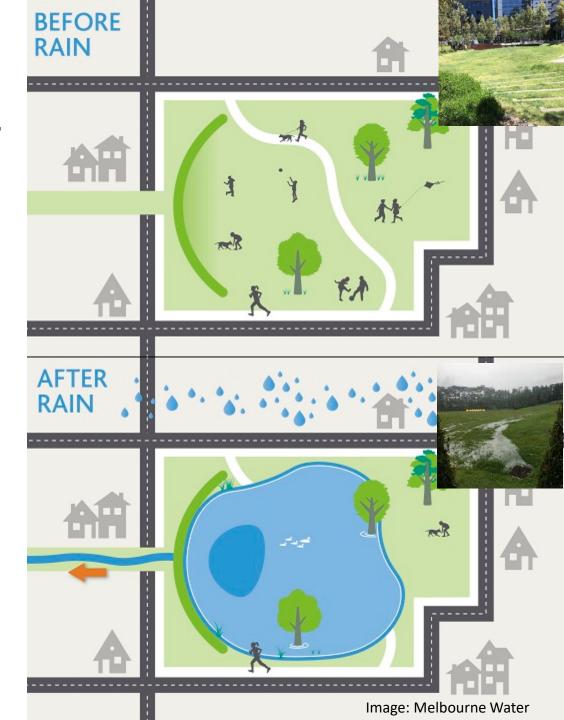
Masi et al., 2016

Green facades (Living walls) – how do they function?

Underground trench

Above ground planter box

Ponds and lakes


(retention ponds, detention ponds)

Stormwater retention / retarding basins

- Can provide multifunctional community open space
- Flood during storm events
- Providing temporary storage and flood mitigation
- May include a pond which expands during large storm events

Stormwater detention / retarding basins – how do they function?

Stormwater retention ponds

 Includes a permanent pool of water

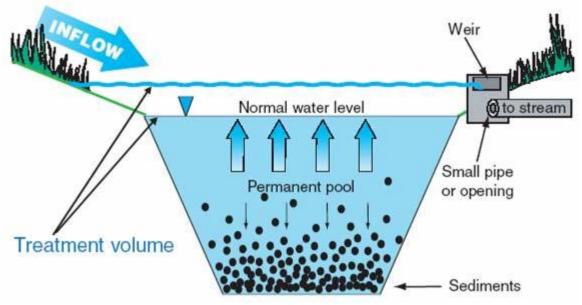


Image: Charles Center Summer Research Blog

Ponds – how do they function?

- Primarily open water, deeper and less vegetated than wetlands
- Slow flow and provide water storage flood mitigation and potential water supply
- Promote sedimentation removing sediment and attached pollutants

Swales & buffer strips

Swales – how do they function?

- Vegetated open channels, underlain by porous media (sand, gravel) and possibly an underdrain
- Provide flow conveyance, but unlike concrete drains, vegetation and infiltration slow and reduce flow
- Provide flood mitigation, some pollutant removal (sediment, attached pollutants), amenity and greenery
- May be grassed or larger vegetation (which provides greater flow attenuation)



Image: SuDS Wales

Vegetated drains in Bogor (potential swales)

Long V-drain along Ciliwung street in Sentul City – potential adaptation for greater flow attenuation (Prof Hadi, UI current research)

Porous pavements

Porous pavements – how do they function?

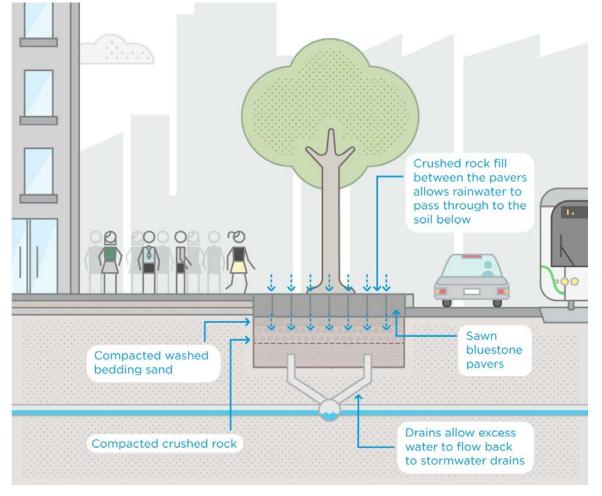
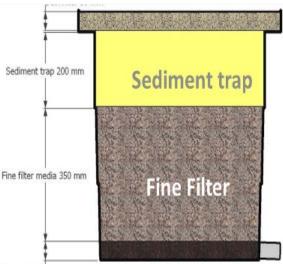



Image: City of Melbourne

Bulk filter

Coarse media/Outlet 50 mm

Porous pavements in Bogor

- Extent of any adoption unknown? Some plans to use porous pavements reported for carparks
- Research by Dr Dwinanti and students modelling porous pavement performance
- An example of a porous area interwoven with impervious in Sentul City (below)

Rainwater tanks

Rain water tanks

- Provide water storage water source to increase water security and flood mitigation
- Ancient technology, used for centuries
- Narrow designs possible in dense environments
- Particulates, metals, acidity, pathogen: can be pollutants from atmosphere or roof surfaces
- Need to match an appropriate water use with the water quality required

Infiltration systems

Infiltration systems

- Promote infiltration of stormwater runoff into surrounding soils
- Reduces stormwater runoff providing flood mitigation, reduced pollutant load, and groundwater recharge
- Technologies to infiltrate can include
 - porous pavement,
 - ➤ biofiltration (if unlined),
 - groundwater recharge wells,
 - infiltration trenches
 - passively watered garden beds (i.e. directing water onto impervious surfaces)...

Direct runoff into garden bed

Examples of green technologies in Bogor

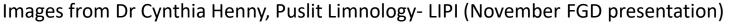
What are the opportunities?

Biofilters

Demonstration biofiltration projects in Pulo Geulis and Griya Katulampa treating domestic greywater (Prof Hadi, UI)

Prof Hadi's pilot biofilters in Griya Katulampa

URBAN WATER RESEARCH CLUSTER

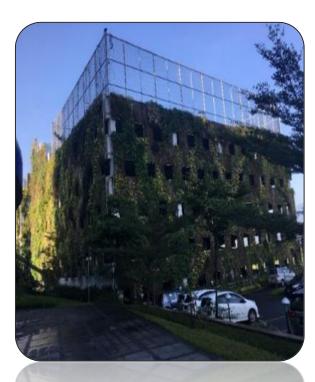

Constructed wetlands

- Focus of significant research and pilot projects at LIPI, UI, IPB...
- Effective performance demonstrated treating various wastewaters

Includes floating treatment wetlands for situ or channel restoration of ecological function

Green roofs

- Green roof at Hotel Neo Green Savana, Sentul City
- Green roof planned for Aeon Mall



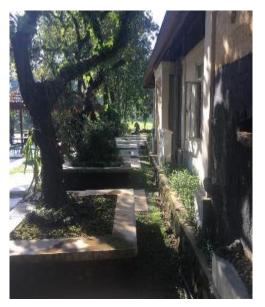
Green walls

- Green wall at Aston Hotel covering car parking buildings
- Green wall covering pump station at new Sentul City hotel
- Primarily for aesthetic purposes. Watered with fresh water supply.

Ponds and lakes

- Two retention ponds in Sentul City primary provide amenity & recreational benefits, also store rainwater and provide emergency water supply
- Hundreds of natural situs throughout Bogor

Swales

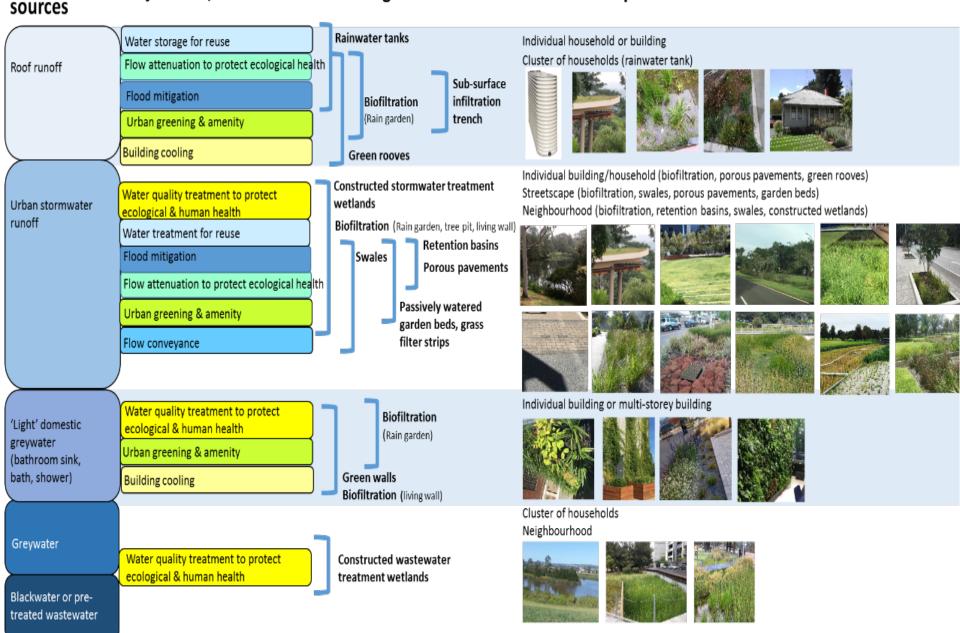

• Swales at Jakarta airport

Rain water tanks / harvesting in Bogor

- Some areas of implementation private residences, new developments, some government buildings (e.g. Bappeda's buried rainwater tank)
- Traditional architecture incorporates capture of roof runoff in ponds (photos)
- However community preference for groundwater reported
- Water quality issues due to acidification of rainfall after dry periods
- Design features can enhance water quality, including selecting end uses appropriate to the water quality

Infiltration systems

- Concept of zero runoff established
- Runoff retention currently achieved by several technologies -
 - Groundwater recharge wells (somurasokan),
 - Ecodrains alongside roads, and
 - Biopori (holes filled with compost in backyards, receiving runoff from garden)


TECHNOLOGY SELECTION – WHICH TECHNOLOGY TO USE?

Water

Objectives / Benefits

/ Benefits Technologies

Scale & Examples

Step 1: Understanding your catchment

- Bio-physical characteristics
 - Soil properties
 - Water resources, incl. groundwater
 - Land use
 - Available space, etc...
- Socio-cultural characteristics
 - Heritage
 - Landscape value
 - Future projects, etc...
- What are the pollutants of concern?
- What are the characteristics of runoff/greywater in the catchment?

Step 2: Defining your objectives

- What do we want to achieve performance targets, i.e. level of pollutant retention required
- Important to have defined performance targets, water quality and discharge limits
 - Will form regulatory requirements
- Design to maximise benefits have a higher return on investment

obie

Step 3: Selecting options

- Taking into consideration findings of step 1 and 2
 - Matching technology with site characteristics
 - Matching technology with performance objectives
- Following best practice water management principles

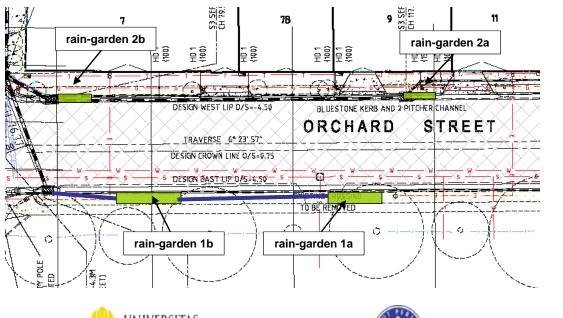
Best practice water management

Treatment train approach

- A sequence of multiple treatments – targeting various pollutants or sediment sizes
- Provides optimal treatment
- Trap large pollutants and sediment upstream,
- Protect wetlands and biofilters downstream and allow them to treat fine and dissolved particles

rainwater tanks raingardens gross pollutant swales traps sediment ponds wetlands

Examples of treatment trains


Source: Melbourne Water

Treatment trains – using combinations of technologies matched to flow and particle size

Particle Size Grading	Gross Pollutant Traps	Treatment Measures				Hydraulic Loading Q _{des} /A _{facility}
Gross Solids > 5000 μm Coarse- to Medium- sized Particulates 5000 μm – 125 μm Fine Particulates 125 μm – 10 μm Very Fine/Colloidal Particulates 10 μm – 0.45 μm Dissolved Particles < 0.45 μm		Sedimentation Basins (Wet & Dry) Grass Swales Filter Strips	Surface Flow Wetlands	Infiltration Systems	Sub- Surface Flow Wetlands	1,000,000 m/yr 100,000 m/yr 50,000 m/yr 50,000 m/yr 5000 m/yr 2500 m/yr 1000 m/yr 500 m/yr 500 m/yr 10 m/yr

Best practice water management

- At-source management
- Using a **decentralised approach** where possible as opposed to a centralised one

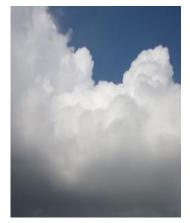
Best practice water management

- When selecting water management solutions, consider using a mix of grey and green infrastructure
 - Green technologies complement grey infrastructure

APPLICATION FOR THE LOCAL CONTEXT

Designing to suit local conditions

Local sources of media



URBAN WATER

RESEARCH

CLUSTER

Local climate

Local plants

Treatment to meet local objectives / needs / priorities

Local pollutant characteristics

Key characteristics of Bogor affecting design and/or operation

- Greater generation of runoff
- Greater erosive capacity
- Greater sediment production
- Greater solid transport capacity
- Favourable conditions for proliferation of mosquitos, etc
- Higher runoff volume and peak flow
- More contaminated runoff (due to washoff from litter disposed on roads, ingress of wastewater into drainage systems)
- More variable influent over the year

Design considerations

- Pre-treatment
 - Solid waste management
 - Litter disposal programs
 - Community education
 - Installation of pre-treatment device upstream of treatment measure, e.g. sedimentation basins, gross pollutant traps, different screens

Gross solids removal

- Various designs of screens, Gross Pollutant Traps, nets to capture gross solids (litter) and large sediment particles within channels or rivers
- Use physical process to remove
- Require ongoing maintenance to periodically clean and removal accumulated litter

System sizing

System size is vital for treatment capacity

- Undersized system will be overwhelmed and clog earlier, flows will bypass untreated
- Oversized system may be too dry to support plants
- Sizing influenced by multiple design parameters (media infiltration rate, area, ponding depth)

Depends upon local climate

System sizing

- System sizing is key if the system is being designed to manage stormwater flows.
- Stormwater systems in Bogor will be larger than those implemented in temperate climates for the same contributing catchment
- Considerations
 - Consider use of a combination of measures to achieve design objectives
 - Consider use of a number of distributed (and connected) systems
- For greywater system, correct system sizing will avoid premature system failure due to clogging

Filter media

- Low in nutrient and organic content – to prevent leaching
- Must have enough fines to support plant
- Adequate hydraulic conductivity – to ensure satisfactory infiltration otherwise will result in high flow bypass

Vegetation selection

Why are plants important for the functioning of green infrastructure?

- Direct uptake of dissolved pollutants
- Influences microbial processes responsible for pollutant degradation
- Maintain soil/media porosity helps alleviate clogging
- Helps slow down flow rates
- Helps prevent soil/media erosion stabilise soil
- Helps in pollutant retention and urban cooling via shading and evapotranspiration

Suitable plant species

- Adapted to local climate
- Species morphological traits good correlation with nutrient removal
 - Extensive and fine roots
 - Moderate to high growth rate
 - High total plant mass
- Plants displaying 'luxury' nutrient uptake
- Plant with a mixture of species
- Relative dense planting

Economic/business opportunities arising from green infrastructure implementation

Fish farming

Urban farming

Presence of blue-green spaces can help boost local tourist industry

Urban farming

- Potential to water using stormwater runoff – passively watered systems to reduce potable water demand and provide some flood mitigation
- Provides economic, nutritional, greenery and amenity benefits to communities
- Systems can be vertical in dense environments

Urban greening or farming in Bogor

- Much greenery in Bogor, important to the community
- Includes streetscape greenery, public and private gardens
- Some examples of urban farming, e.g. Prof Hadi's work in Pulo Geulis
- Plant availability and landscape design skills high many street nurseries

E.g.s of solutions

- Prof Hadi experimental trial use of biofilters to treat greywater from households for use for hydroponics – floriculture
- Storage of rainwater during wet seasons for use for irrigation of food crops during dry season

- Ponds/lakes for storage of water for emergency – more water security - case of Sentul City
- Provide city with at least two viable water sources to reduce dependence on freshwater/potable water

The way forward

- Policy implementations (WQ targets and limits)
- Testing of technological solutions using pilot studies and use this knowledge to facilitate wider adoption and for model calibrations
- Community education around the purpose, operation and maintenance of these systems – community engagement
- Staff training

Terima Kasih Thank you for your time

DISCUSSION DISKUSI

- Identifying opportunities what are some of the key lessons learnt from existing green technologies in Kota Bogor?
- What do we want to achieve through Green Infrastructure implementation? What are the key objectives? For example, boost local productivity, flood mitigation, alternative water sources...
- Potential for green technology adoption in Bogor
 - Which technologies appear to be most promising?
 - Are there any apparent hurdles to adoption of technologies? Can you suggest ways to enable use of these technologies?
 - Any issues likely to arise for operation or maintenance?
- How contaminated is roof runoff in Bogor? Is there potential for the widespread use of rainwater tanks?

- Any suggestions/comments in regards to Green tech report structure
 - Is the information to be provided adequate?
 - Are there any chapters that need elaboration?
 - Do you have any information relevant to the report?

Informal settlements – potential technology solutions

Potential solution	Recommend	
Green rooves	(high cost, structural support	
	required)	
Green walls treating	× (as above)	
greywater		
Rainwater tanks collecting	✓ (some present, enhance supply	
roof runoff for suitable	security, but consider pollutants &	Stars William
household or outdoor	appropriate reuse)	
uses		
Biofiltration of stormwater	✓ (build upon Prof Hadi's pilot	
runoff and greywater	project. Provide water treatment,	The second
	flow retention & amenity)	
Biofiltration with climbing	✓ (Provide water treatment, flow	H-COMPANY
plants or constructed	retention & amenity)	
treatment wetlands		
possibly located around		
island perimeter		
Urban farming	 ✓ (provide nutrition, economic 	
	benefits, greenery. Water using	
	rainwater)	

Middle class high density – potential technology solutions

Potential solution	Recommend
Biofiltration systems treating stormwater &	✓ (water treatment, flood
greywater	mitigation, amenity)
Constructed treatment wetlands treating lake	 ✓ (protect situ ecosystem,
inflows, floating treatment wetlands in channels &	building upon work of LIPI)
lakes, restore riparian vegetation	
Promote infiltration (infiltration trenches, porous	\checkmark (flood mitigation and
pavement (carparks, pathways), unlined	reduced pollutant
biofiltration (street trees, streetscape, backyard	transport)
raingardens, larger systems in reserves), swales,	
passively watered garden beds)	
Promote water storage & flow attenuation	\checkmark (flood mitigation and
(retention ponds, retarding basins, biofiltration &	reduced pollutant
passively watered garden beds, rainwater tanks)	transport)
Rainwater tanks	✓ (Enhance water supply
	security, flood mitigation)
Green rooves or green walls (watered by	 ✓ (flood mitigation,
stormwater or greywater) on public or	amenity)
commercial buildings	

Greenfield – potential technology solutions

Potential solution	Recommend
Backyard raingardens (household scale) treating	✓ (flood mitigation, water
runoff from roof & paved areas	treatment & amenity)
Rainwater collection & harvesting	✓ (enhance water supply security)
Enhance retentive & infiltration capacity of	✓ (flood mitigation and reduced
Ciliwung street vegetated drain – similar to a	pollutant transport)
swale, with porous underlying media (lined due	
to unstable soil), heavily vegetated.	
Locate biofiltration systems & constructed	✓ (flood mitigation and reduced
wetlands along Ciliwung St, and other public	pollutant transport)
open space parks	
Restore & protect local streams – restore	✓ (Flood mitigation, amenity,
riparian vegetation, natural channel structure &	protect water quality)
in-stream habitat	
Green roofs treating stormwater and green	✓ (build upon existing, but not
walls treating stormwater or greywater on	using potable water supply. Provide
public or commercial buildings	flood mitigation, amenity)
Infiltration systems – instead line systems	(unstable underlying soils)

Subdivision standard – potential technology solutions

		_
Potential solution	Recommend	
Rainwater tanks to diversity water	✓ (flood mitigation, water	
sources – build resilience to possible	treatment & amenity)	
future changes in springwater		30
Use constructed wetland to treat	✓ (enhance water supply	
springwater close to source, upstream of	security)	
community extraction points. Treat		
downstream as well.		
Vegetate the existing fish pond, washing	✓ (flood mitigation and	and the second state of the second state of the
pond & channels to enhance water	reduced pollutant transport)	
quality. May include a floating treatment		the second se
wetland (e.g. LIPI work).		
Urban farming using rainwater to water	✓ (build upon existing	
	activities for nutrition,	
	economic benefit)	
Biofiltration (raingardens) in backyards	 ✓ (Flood mitigation, amenity, 	
and communal area treating stormwater	water treatment)	
& greywater		
Green rooves and green walls	* (high cost, structural support	
	required)	Photos: Raul

Please contact us:

By Email:

urbanwater@australiaindonesiacentre.org

jane.holden@monash.edu; Dwi.Yuliantoro@australiaindonesiacentre.org

www.urbanwater.australiaindonesiacentre.org

Twitter: @Urban_Water

