@ MONASH MONASH
University ARTS

Space vector models and empirical
Saussurean semantics

Simon Musgrave
Alice Gaby
Gede Primahadi Wijaya Rajeg

GROUP
OF EIGHT
AUSTRALIA




Outline 7 MONASH

University

Conceptual background
Methods used

Results

= Discussion



Saussure’s semantics P MONASH
University

= “dans la langue il n'y a que des différences” (Cours, 166)

= But also:
“deux signes comportant chacun un signifié et un
significant ne sont pas differents, ils sont seulement
distincts. Entre eux il n’y a qu'opposition” (Cours, 167)

= Empirical investigation of oppositions is limited
— Possible in limited domains
— Very difficult for a language as a whole
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= Harris (1954:156):
“difference of meaning correlates with difference of
distribution”

= Firth (1957):
“a word is characterized by the company it keeps”

»= Can such distributional relations be made precise?

* And specifically, can minimally different pairs (or groups)
of words be identified, revealing oppositions?
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= The distribution of words can be expressed
mathematically as vectors

= Avector is a table with a single row

= The vector for any given word records its co-occurrence
with other words
— Each entry in the row corresponds to another word

— The entry records some information about the co-occurrence of the
two words



What does a vector represent? P MONASH
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= Two questions:
— What is the domain within which co-occurrence is tracked?
— What information is stored? E.g. is it just the fact of co-occurrence or
is it richer information such as distance between words?
= Example with a simple approach:
— Domain is a sentence
— Information stored is number of times a word occurs
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a. Thinly SLICE half the onion 1 1
b. SLICE the mushrooms thinly 0 1 0 1 1
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» Vectors derived from any large corpus will be very large
— At least each lemma will have a vector
— For our COCA data, there are almost 0.5 million vectors

» Data is sparse — a very large proportion of the entries
are zeroes

= Various algorithms have been developed to reduce the
size of the output while preserving information
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= One approach reduces the raw vectors to a
multidimensional spatial model

= Word2vec uses this approach
— Word2vec uses neural networks to get from text to spatial model

= Qutput is an n-dimensional model which locates all
words (lemmas) in relation to each other
— Still a lot of data — our 100-dimensional model is a c190mb file
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* Model locates every word in text relative to all the others
= Relationships can be quantified
» |s this close to a Saussurean semantic analysis?

= We look at a group of verbs:
— CUT and BREAK concepts
— Previously studied in detail (Majid et al 2007, 20083, b))

= Concentrate on clustering:
— Do clusters make intuitive sense?
— How do they correspond to previous work?
— Do Saussurean oppositions emerge?
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» Exploring thematic cluster
— Do the CB verbs fall into clusters?
— If so, how many? How do we determine that?
— What semantic theme could be explored from the clustering of
particular CB words?
= Exploring “nearest” verbs to each of the CB verbs
— Which other verbs are closely similar to each of the CB verbs?
— Are there overlaps of the closest verbs between particular CB verbs?

= EXxploring degree of similarity of the CB verbs to either
cut_v and break v
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» Exploring thematic cluster
— Do the CB verbs fall into clusters?
— If so, how many? How do we determine that?

— What semantic theme could be explored from the clustering of
particular CB words?
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= Whole collection of COCA corpus (the POS-tagged
version) (http://corpus.byu.edu/coca/)
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Pre-processing steps:

1.

Define words as consisting of alphabets [a-Z],
hyphens (to retain machine-readable), and single
qguote (to retain genitive ‘s and negation won’t)

Remove punctuation and numbers

Collapse various Verb-tag labels (e.g. for infinitive,
participle, etc.) into simply “v”

Collapse lemma and POS columns into a single, big
text

[1] "by_ii jill npl mccorkle npl anna_npl craven_npl have vhz"
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» Use the wordVectors R package by Ben Schmidt

— Creates vector space model for every lemma in the COCA corpus
= Reduces the original raw vectors into 100-dimensional vectors

= On the basis of collocational window-span of 12 words (default in the
train_word2vec () function)

— Has a number of functions for exploring the vector space model
= Finding nearest words to a particular target word
= Computing similarity scores between words
= Inter alia (cf. https://github.com/bmschmidt/wordVectors)
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Exploring thematic cluster of Cut and Break verbs

= Analyse 22 Cut and Break verbs (cf. the plot below)
» Retrieve the vector space matrix of these verbs’ lemmas
= Compute distance matrix for the lemmas

= Perform Hierarchical Cluster Analysis (HCA)
— with hclust() function in R

= Compute Average Silhouette Width (ASW) on the basis
of the HCA results (cf. Levshina, 2015, p. 312)

— To assume the optimal number of cluster solution
— Compute ASW from 2 up to 21 clusters (i.e. N of CB verbs — 1)
— For our data, 8-cluster solution produces the highest ASW score

» Visualise the results into a dendrogram

R 15
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Exploring thematic cluster of Cut and Break verbs

Hierarchical Cluster Analysis for the CUT and BREAK verbs
with 8-cluster solution

pierce v

scrape_v

peel_v
slice_v
chop_v
- —~— skin_v
“Soyey
gash_v
I lop_v
saw_v
cleave_v
— hack_v
stab v
smash_v
tear_v
break_v
split_v
{ v
| (ISIash_v )
' s cut v

[ new_Vv

=5

1.0 0.8 0.6 0.4 0.2 0.0
H The optimal number of clusters is identified using the "Average Silhouette Width (ASW)" statistic. 1 6

The cluster solutions tested range from 2 up to 21 clusters; the 8-cluster solution produces the highest ASW score.
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An alternative approach @ Universiy

» Crosslinguistic study of what event types are co-lexified
(i.e. an extension-led study of lexical categories).

« Showed participants 61 video clips depicting events of
material separation.

Bohnemeyer et al. 2001; Majid et al. 2007
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* Crosslinguistic study of what event types are co-lexified
(i.e. an extension-led study of lexical categories).

« Showed participants 61 video clips depicting events of
material separation.

* Their descriptions yielded a similarity space for
clips/event types.

» For individual languages

» For the sample overall

Bohnemeyer et al. 2001; Majid et al. 2007 19
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Hierarchical Cluster Analysis for the CUT and BREAK ‘clips’
with 8-cluster solution
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The optimal number of clusters is identified using the "Average Silhouette Width (ASW)" statistic.
The cluster solutions tested range from 2 up to 41 (i.e. N clips - 1) clusters; the 8-cluster solution produces the highest ASW score.
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Majid et al.:
event -> verb = similarity space
To what extent do
Musgrave et al.: these converge?

verb = collocates =2 similarity space
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