Reason: Access restricted by the author. A copy can be requested for private research and study by contacting your institution's library service. This copy cannot be republished
The growth and coalescence of multiple coplanar short fatigue crack in AA7050-T7451 aluminium alloy
thesis
posted on 2017-02-22, 03:57authored byTan, James Tzeq Chiang
The effects of interaction and coalescence of multiple short cracks (sub mm) in AA7050-T7451
aluminium alloy and prediction of fatigue life have been studied in this thesis. Previous studies
have largely been on the growth and coalescence of “long” cracks (> 1 mm) and existing
predictive methods may not be applicable to the growth and coalescence of short cracks.
Uncertainties persist in the effects of crack coalescence on crack growth rates and how the
effects of crack interaction should be taken into account. Some studies have emphasized the
importance of accounting for the interaction between coalescing cracks which may accelerate
their growth rates, while others have reported contradictory findings.
Quantitative fractographic methods were used to investigate how two or more coplanar short
cracks of different initial configurations and dimensions interact and coalesce with each other,
and to quantify their effects on the fatigue life of test specimens. The initial flaws were prepared on the surface of test specimens to study the effects of different parameters (such as separation distance between cracks, the relative crack sizes and the presence of multiple cracks) on their growth and coalescence.
Relationships between these parameters and the rate of coalescence (i.e. determined by the crack
growth rates throughout the process of coalescence) were established and used to develop new
methods for modelling the growth and coalescence of multiple short cracks. The results from
these new predictive methods were compared with existing methods (i.e. ASME [1] and BSI
PD6493 [2] design codes, and the method by Iida [3]), and experimental data from this study and
of other researchers.
Major experimental and theoretical findings which include the development of new predictive
methods are summarised in the following items:
1. For the growth of individual short cracks in AA7050-T7451 aluminium alloy test
specimens, a variant of the original Hartman and Schijve model produced the most
accurate fatigue life predictions, compared to the Generalized Frost and Dugdale model
and the (ΔK+.Kmax)0.5 model.
2. Fatigue lives predicted using design codes (i.e. ASME, BSI PD6493) and the Iida method
were found to be overly conservative when compared with the present experimental data
and do not accurately describe the coalescence of short cracks.
3. The short cracks examined in this study showed very small increase in growth rates as the
coplanar cracks grew toward each other. Therefore they can be assumed to grow
independently of each other until their tips physically meet.
4. Quantitative fractography of the fatigue specimens tested in this study showed that after
two approaching crack tips meet, the crack growth rates in the surface direction were
retarded for a period, and only after the combined cracks have grown into a larger semielliptical
shape, do they return to the growth rates of a single crack. A new method was
developed to account for this behaviour in which the cracks would grow as independent
cracks until they meet and if the crack length ratio, c2/c1 ≤ 0.25, the smaller crack (i.e. c2)
can be neglected. Predictions using this method agreed well with experiments.
5. Quantitative fractography was used to study the evolving shapes and sizes of the fracture
area of a newly coalesced crack. Results have shown that the size of the “remaining” area
required for two coalesced cracks to form a single semi elliptical crack was associated
with the period of crack growth “retardation”. Based on this relationship, a new fracture
area method was formulated and shown to be superior to existing fracture area methods
for predicting the coalescence of paired cracks.
6. The growth and coalescence of multiple (i.e. more than two) short cracks of varying sizes
on the same and on different planes, under low constant amplitude cyclic loading were
also studied. The experimental results corroborate previous findings that the growth of
the ‘largest’ crack dominated the fatigue life of a specimen with very little influence from
relatively shorter cracks.