Reason: Under embargo until January 2022. After this date a copy can be supplied under Section 51(2) of the Australian Copyright Act 1968 by submitting a document delivery request through your library
Semantic Segmentation of Knee Articular Cartilage
thesis
posted on 2021-01-21, 02:06authored bySOMAYYA EBRAHIMKHANI
The main objective of this thesis is to identify an automatic knee articular cartilage tissue (ACT) segmentation method using existing deep learning-based methods and develop a novel segmentation framework by employing conventional machine learning techniques as a component to improve segmentation accuracy. The following properties should be integrated into such ACT segmentation framework: (1) implementation of a deep learning model to perform automatic segmentation of knee joint, (2) incorporation of the shape information to capture shape variations of the knees within a population of healthy and pathologic subjects, and (3) extraction of more sophisticated ACT-specific feature sets from the corresponding knee ACT regions.
History
Campus location
Malaysia
Principal supervisor
Anuja Dharmaratne
Additional supervisor 1
Mohamed Hisham Jaward
Additional supervisor 2
Flavia M. Cicuttini
Additional supervisor 3
Yuanyuan Wang
Year of Award
2021
Department, School or Centre
School of Information Technology (Monash University Malaysia)