Purinergic neurotransmission to the fibromuscular stroma of the guinea-pig and mouse prostate gland.
thesis
posted on 2017-02-15, 23:36authored byBuljubasic, Rosanda
The aims of this thesis were to (1) examine the effects of exogenous purines on prostate
contractility in the guinea-pig prostate, (2) determine the role of adenosine receptors in
regulating prostatic smooth muscle tone in this species, (3) investigate the ability of several
P2X1 receptor antagonists to inhibit the purinergic component of contractile responses of
the guinea-pig prostate and therefore their suitability for experimental and/ or therapeutic
use, (4) develop an age-related proftle of purinergic signalling in the guinea-pig prostate to
reveal dynamic function with increasing age and its possible involvement in the contractile
pathology of benign prostatic hyperplasia and (5) use P2Xl receptor knockout mice to
clarify the role of this receptor in prostate contractility.
Chapter 3 investigated whether adenosine modulates neurotransmission as it has been
shown to do in other visceral and vascular smooth muscle preparations. In contrast to
other studies, adenosine exerted no neuromodulatory effect on neurogenic contractions
within the prostate of this species. Further functional studies using exogenously
administered pyrimidines revealed that UTP and UDP are not involved in evoking
contractile responses in unstimulated tissues, nor were they found to modulate contractile
responses to neurogenic stimulation. Ammonium salt forms of ADP potentiated
contractile responses to electrical field stimulation and exogenous noradrenaline in the
guinea-pig prostate. Experiments determined that the ammonium and not ADP was the
physiologically active constituent of the compound responsible for these excitatory effects.
Consistent with the findings of other studies, noradrenaline significantly potentiated
responses to exogenously administered A TP, presumably via Ca2
+ sensitisation.
Given the paucity of selective agonists and antagonists in the field of purinergic signalling
for the characterisation of purinergic responses, chapter 4 tested the purinergic antagonists
NF449, TNP-ATP and RO-1 to determine whether they were effective in blocking P2Xl
receptor-mediated contractility in the prostate. NF449 was far superior to TNP-ATP,
RO-1, (X~methylene ATP and suramin in attenuating the non-adrenergic component of the
neurogenic contraction in the guinea-pig prostate. Furthermore, NF449 defined the extent
of the purinergic component of contraction, indicating that as in other studies, purinergic
signalling predominates at lower frequency stimulation and is responsible for the rapid
upstroke of force rather than the slower sustained portion of the contraction.
Purinergic signalling is renowned for its plasticity in the control of physiologic and
pathophysiologic processes that occur with growth, development and ageing. Chapter 5
aimed to characterize the age-related changes which occur to neurotransmission and
prostate contractility in the guinea-pig. When adjusted for tissue weight, responses to
electrical field stimulation and the administration of exogenous adrenergic and purinergic
agonists were greater in prostates taken from prepubertal guinea-pigs than prostates taken
from postpubertal or mature guinea-pigs.
Given the lack of effective and selective purinergic receptor antagonists as described in
chapter 4, chapter 6 investigated neurotransmission and smooth muscle contractility in
prostates using tissue taken from genetically modified P2Xl receptor knockout mice.
Mouse prostate but not body or vas deferens weight was significantly reduced in P2Xl
receptor deficient mice. Maximum responses evoked by purinergic agonists were much
smaller compared to those reported for adrenergic agonists in the literature. A
concomitant reduction in purinergic agonist potency and contractility was also exhibited
between genotypes associated with the loss of the P2Xl receptor. This confirms the
presence of functional P2Xl receptors in the wild-type mouse prostate. In contrast to the
vas deferens, selective blockade or deletion of the P2Xl receptor had no effect on
contractile responses to electrical field stimulation between genotypes, indicating that A TP
is not the principal neurotransmitter responsible for the residual non-adrenergic
component of contraction in the mouse prostate.
Chapter 7 presents concluding remarks which indicate that this body of work is clinically
significant in that P2Xl receptors may represent an alternate or additional therapeutic
target for benign prostatic hyperplasia. The limitations and possible future directions of
this research are also discussed.
\’