posted on 2017-01-08, 23:00authored byJingchao Song
Graphene, a novel 2-D
allotrope form of carbon, has triggered intensive research interests in 2-D materials. 2-D materials’ extraordinary properties
promise varies applications, such as electronics, optics and optoelectronics. Particularly,
graphene and bismuth chalcogenides (Bi2Se3, Bi2Te3 et. al.), which share similar Dirac bandgap
structures and exotic surface states, are outstanding candidates in potential applications of
broadband optoelectronic, plasmonic devices and future on-chip devices. Though researchers have
dedicated their efforts in the 2-D materials, the attention being paid to the graphene and
bismuth chalcogenides based materials remains low, especially in their large production and
optoelectronic device applications.
This research dissertation starts with the preparation of
high quality graphene, bismuth chalcogenide nanocrystals and their heterostructure. By
taking advantages of the in situ Powder X-ray diffraction technique, better understanding in the
growth mechanism of bismuth chalcogenides nanoplatelets and its graphene heterostructure
has been obtained. Step by step growth mechanism is revealed and discussed. Thus large-scale
prepared graphene and bismuth chalcogenides hybrid material has been integrated into a free
standing thin film, which is further demonstrated as a broadband photodetector. On the
other hand, it is found that the graphene and Bi2Te3 heterostructure films can effectively
enhance plasmon resonance magnitude in its FTIR spectrum by increasing light-matter
interactions. In order to better observe and understand the plasmonic resonance modes on these
materials, the later sections of this dissertation investigated resonance modes on graphene
surfaces from both far-field and near-field. The results show that the light-matter interaction
can be further enhanced by modifying the geometry of the surface and the surface plasmon
can be guided in a controlled manner. It is believed, this dissertation paves way for the
photonic and optoelectronic researches of graphene, bismuth chalcogenides and their heterostructures.