Reason: Access restricted by the author. A copy can be requested for private research and study by contacting your institution's library service. This copy cannot be republished
Lung Nodule Classification Using Scale-Invariant Neural Networks
thesis
posted on 2021-04-15, 07:46authored byMUNDHER AL-SHABI
The size of a lung nodule is very diverse. The high variation of nodule sizes makes classifying them a difficult and challenging task. In this thesis, we propose four different Scale-Invariant Neural Networks for lung nodule classification. We examined our proposed methods on two different public datasets and compared their performance with state-of-the-art literature methods. The results show that the proposed model outperforms state-of-the-art methods and achieves an AUC of 98.05% and accuracy of 95.28% on the LIDC-IDRI dataset. These results will lead to identifying lung cancer in its early stages.
History
Campus location
Malaysia
Principal supervisor
Maxine Tan
Additional supervisor 1
Liang Shiuan Ni
Year of Award
2021
Department, School or Centre
School of Engineering (Monash University Malaysia)