Monash University

Restricted Access

Reason: Access restricted by the author. A copy can be requested for private research and study by contacting your institution's library service. This copy cannot be republished

Integrated automatic aircraft landing control system using nonlinear energy methods

posted on 2017-02-06, 02:03 authored by Jones, Lim Jen Nee
Automatic flight control systems have been implemented in modern civil aircrafts to complement human pilots. Automation that requires minimal routine pilot interaction are not subject to fatigue and emotion. As designs of the air flight control system evolve, there is a demand for development of a robust control system to provide on-time arrivals of all flights regardless of bad weather conditions. The Nonlinear Energy Method (NEM) has been shown to be very effective and robust in controlling the longitudinal dynamics of the Research Civil Aircraft Model (RCAM). The RCAM used in this research models the behavior of a large fixed-wing twin-engine civil aircraft. In this thesis, a new automatic controller that integrates NEM controllers for both longitudinal and lateral fast dynamics of the RCAM has been designed. The lateral dynamics includes its rolling and yawing motion. The integrated NEM automatic flight controller enables stabilization of the aircraft attitudes, energy regulation and trajectory tracking. An evaluation procedure which includes a one-sided engine failure, a 90o turn, a glideslope and wind shear was performed for 10 different flight conditions. Theoretical proof and simulation results have shown that the integrated NEM controller is stable and robust. A comprehensive fault tolerant control scheme that complements this integrated NEM controller would be a practical area to explore in future works.


Campus location


Principal supervisor

Chee Pin Tan

Year of Award


Department, School or Centre

School of Engineering (Monash University Malaysia)


Doctor of Philosophy

Degree Type



Faculty of Engineering