Reason: Access restricted by the author. A copy can be requested for private research and study by contacting your institution's library service. This copy cannot be republished
Evolution of the immune pore-forming protein perforin
thesis
posted on 2017-02-22, 02:45authored byD'Angelo, Michael Eric
The granule-exocytosis pathway is used by cytotoxic lymphocytes to kill virally infected,
malignant and foreign cells. The pore-forming protein perforin is central to this pathway and
organisms deficient in perforin cannot control viral infection. Although this mechanism of
killing is conserved in bony vertebrates, cytotoxic cells are present in other chordates and
invertebrates, and their cytotoxic mechanism has not been elucidated. In order to understand the
evolution of this pathway, here the origins and evolution of perforin has been investigated.
Perforin genes are present in the genomes of all cartilaginous and bony vertebrates, but
not in more primitive chordates. In placental mammals perforin is a single copy gene, but there
are multiple perforin genes in all lineages predating marsupials, except birds. Comparisons of
these paralogues show that they mainly arose from lineage-specific gene duplications in multiple
taxa, suggesting acquisition of new roles or different modes of regulation.
Perforin is a member of a superfamily of proteins that share the membrane attack
complex/perforin (MACPF) domain. A model for the evolution of perforin via the duplication of
another MACPF family member, the ancient MPEG1 gene, is presented. This model also
includes a relationship to the functionally related complement proteins C6, C7, C8 and C9, and
to the more distantly related neural MACPF proteins.
Only partially covered (incomplete) perforin genes were found in bird genomes, so the
full-length chicken perforin gene was cloned and characterised. This encodes a protein with an
extended C-terminus that is 90 amino acids longer than any mammalian perforin.
The pore-forming ability of perforins from flounder and chicken was compared to that of
the well characterised mouse perforin. These proteins did not display any activity, suggesting a
model in which most perforin proteins (other than mouse perforin) are synthesised as inactive
precursors.