Reason: Access restricted by the author. A copy can be requested for private research and study by contacting your institution's library service. This copy cannot be republished
A local area traffic model
thesis
posted on 2017-02-08, 03:33authored byTaylor, Michael Anthony Peter
In recent times a need has developed for methods and models which
may be used to simulate vehicle movements and travel demands in smallscale
networks. These networks might represent a small part of an urban
area in which particular aspects of traffic movements and congestion,
environment and/or transport planning, and traffic regulation policies
might require investigations. Typically such investigations would consider
a relatively short time duration, such as a peak period. This thesis
describes an attempt to construct a traffic model for use in such networks.
In the body of this thesis the model is termed the "Local Area Traffic
Model".
The development and construction of the model may be divided into
a number of phases. Firstly, reviews were made to reveal:
(i) the development of traffic assignment models in general,
and the assumed path selection mechanisms used in such models (Chapter 2);
(ii) studies of the observed behaviour of drivers and their route
selection criteria (Chapter 3);
(iii) some existing traffic assignment models used for small-scale
networks (Chapter 4); and
(iv) various problems, theories and algorithms concerned with the
determination of paths through networks (Chapter 5).
From the knowledge revealed by the reviews of previous work, a set
of requirements for the local area traffic model was proposed. Additional
work was also conducted to provide clarification of some of the proposed
model components. A study of observed variabilities of travel times for
particular journeys by an individual was undertaken. Results concerning
relationships between measures of variability and mean travel times, and
the distributions of travel times, were suggested.
Some new results about the determination of minimum cost paths
from link to link in a network with turn penalties were also suggested.
The local area traffic model was then formulated based on a
general hypothesis that competing paths for a particular trip were chosen
on a probabilistic basis. The probability of choice of a given path was
based on the perceptions of travellers about the costs involved in using
the path. These costs, and thus the path probabilities, were dynamic and
could vary throughout the simulated time period, in response to changing
travel conditions and traffic congestion. The basic model was defined with
two unknown global parameters in the representation of the path selection
process. These parameters were measures of
(i) the variability of individual travel times on a path segment;
and
(ii) the spread of trips between competing paths of different
path travel costs.
The local area traffic model included queueing and delay sub-models, for
various intersection types, and travel time - flow rate relationships
for particular classes of urban streets. Some new results concerning
mean delays and queueing at signalized intersections, and travel timeflow
relationships on surface streets, were required for the traffic model.
Once the model was established, a method to test its applicability
was suggested. Suitable data for model testing was then required. A
test area was selected, and data collection was undertaken to yield two
independent sets of data, consisting of peak period traffic demands and
observed street volumes for each of two separate peak periods in the
study area.
The traffic model was then used with the test data, and its ability
to reproduce observed travel conditions in the test area was investigated.
Optimization techniques were used to find "best-fit" values for the global
parameters for each data set. As the data sets for each peak period were
collected independently, comparative tests of the optimized parameter
values could be made with a technique described as "dual samp.ling".
Investigations of the robustness and sensitivi.ty of the parameters were
then undertaken. Model errors were examined to test for possible biases
in the model.
Certain conclusions about the suitability of the model for
applications to small-scale, detailed traffic networks were reached as a
result of the model tests. It is suggested that the general model is a
suitable tool for examining vehicle trips through a small network. The
path selection process in the model appears capable of synthesizing
observed trip movements in a dynamic traffic demand situation.
Investigations of the observed data enabled representative values of the
two global model parameters to be determined for the test area. The
model was capable of reproducing observed traffic volumes inside the
test area to a high degree of accuracy. Some areas of future and
related research are also suggested.