File(s) under permanent embargo

Reason: Restricted by author. A copy can be supplied under Section 51 (2) of the Australian Copyright Act 1968 by submitting a document delivery request through your library or by emailing

A Nonlinear Modeling Framework Using Michaelis-Menten Kinetics for Reconstruction of Gene Regulatory Network

posted on 30.05.2017, 23:27 by AHAMMED SHERIEF KIZHAKKETHIL YOUSEPH
Cells are the basic building blocks of all living organisms. Cellular activities are regulated at genetic level via the underlying genetic regulatory networks (GRN). Unraveling complex living systems necessitates understanding of GRNs. Computational methods along with biological (wet lab) experiments trigger this process. The biological experiments provide the expression data of genes. Inferring GRN is to construct the GRN from the data. This thesis proposes biologically relevant and computationally efficient methods for inferring GRNs. The model is based on fundamental biochemical theories of Michaelis-Menten kinetics. The optimization employed for parameter estimation of the model is developed using principles of statistics and biology for enhanced computational efficiency.


Campus location


Principal supervisor

Madhusudan Rajgopal Chetty

Additional supervisor 1

Gour Karmakar

Year of Award


Department, School or Centre

Gippsland School of IT


Doctor of Philosophy

Degree Type



Faculty of Information Technology