Monash University
Browse
- No file added yet -

Some Results on Generalised Whitney Functions

Download (111.4 kB)
report
posted on 2022-08-29, 05:13 authored by G E Farr
In a previous paper, the author extended the Whitney rank generating function (or Tutte polynomial) from binary matroids to arbitrary functions f : 2^S -> R, where the binary matroid special case is obtained by letting f be the indicator function of the row space of a matrix over GF(2). This paper continues that work in two directions. Firstly, a natural generalisation of the partition function of the statistical mechanical Potts model of a graph is shown to be a partial evaluation of this generalised Whitney function. Secondly, a continuum of minor operations for functions on 2^S is introduced, in which deletion and contraction are distinct points, and the theory of these operations is developed. A related construction of rank-like functions is given, its properties are investigated, and a corresponding continuum of Whitney-type functions is introduced. These functions are shown to contain weight enumerators of general codes over a subset of their domains. We also discuss what these new operations mean at the level of binary matroids and graphs.

History

Technical report number

2001/104

Year of publication

2001

Usage metrics

    Monash Information Technology Technical Reports

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC