Monash University
Browse
- No file added yet -

Efficient Linear Regression by Minimum Message Length

Download (414.57 kB)
report
posted on 2022-07-25, 00:35 authored by E Makalic, D F Schmidt
This paper presents an efficient and general solution to the linear regression problem using the Minimum Message Length (MML) principle. Inference in an MML framework involves optimising a two-part costing function that describes the trade-off between model complexity and model capability. The MML criterion is integrated into the orthogonal least squares algorithm (MML-OLS) to improve both speed and numerical stability. This allows for the message length to be iteratively updated with the selection of each new regressor, and for potentially problematic regressors to be rejected. The MMLOLS algorithm is subsequently applied to function approximation with univariate polynomials. Empirical results demonstrate superior performance in terms of mean squared prediction error in comparison to several well-known benchmark criteria.

History

Technical report number

2006/201

Year of publication

2006

Usage metrics

    Monash Information Technology Technical Reports

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC