<div><div>Mars Oceans Visualisation: Owen Kaluza, David G. Barnes - Monash University - Monash Immersive Visualisation Platform
<h4>Visualisation: December 2019, Movie render: August 2020</h4>
<p>A visualisation of the Martian planet surface and topography created
from public domain data obtained from the USGS Astrogeology Science
Center:</p>
<ul><li>Mars Viking Global Color Mosaic 925m v1 <a href="https://astrogeology.usgs.gov/search/map/Mars/Viking/Color/Mars_Viking_ClrMosaic_global_925m" rel="noopener" target="_blank">https://astrogeology.usgs.gov/search/map/Mars/Viking/Color/Mars_Viking_ClrMosaic_global_925m</a></li><li>Mars MGS MOLA - MEX HRSC Blended DEM Global 200m v2 <a href="https://astrogeology.usgs.gov/search/map/Mars/Topography/HRSC_MOLA_Blend/Mars_HRSC_MOLA_BlendDEM_Global_200mp" rel="noopener" target="_blank">https://astrogeology.usgs.gov/search/map/Mars/Topography/HRSC_MOLA_Blend/Mars_HRSC_MOLA_BlendDEM_Global_200mp</a></li></ul>
<p>The equirectangular colour and DEM images are first converted to 6
cube map faces and applied to a set of 6 normalised cube-face meshes for
a more regular mapping of the sphere surface without pinching artifacts
at the poles. Topography height is exaggerated times three to better highlight features from a distant perspective.</p>
<p>The base planet rendering is similar to, and was inspired by, an
early visualisation displayed at the Monash CAVE2 facility from Robert
Kooima of the University of Illinois in Chicago's Electronic
Visualization Lab <a href="https://www.evl.uic.edu/entry.php?id=2034" rel="noopener" target="_blank">here</a>.</p>
<p>Using a custom set of shaders, a dynamic visualisation was created to
allow exploration of how the planet and it's topographical features
might appear under varying levels of ocean height by simulating the
appearance of water at user-defined height levels.</p>
<p>To create this animation the water height is raised incrementally as
the planet rotates. Lighting and motion attempts to recreate the actual
characteristics of the rotation of the planet Mars, with its 25 degree
axial tilt towards the sun and anti-clockwise rotation looking from the
north pole.</p>
<p>At lower terrain level of detail (2048 x 2048 x 6) the frame rate is
high enough to allow the model to be interactively explored, the
animations were produced at full terrain detail (4096 x 4096 x 6).</p><p>Visualisation was created using LavaVu https://github.com/lavavu/LavaVu/<br></p>
<h2>References:</h2>
<p>Fergason, R. L, Hare, T. M., & Laura, J. (2018). HRSC and MOLA
Blended Digital Elevation Model at 200m v2. Astrogeology PDS Annex, U.S.
Geological Survey. <a href="http://bit.ly/HRSC_MOLA_Blend_v0" rel="noopener" target="_blank">http://bit.ly/HRSC_MOLA_Blend_v0</a></p>
<p>Albee, A. L., Arvidson, R. E., Palluconi, F., & Thorpe, T.
(2001). Overview of the Mars Global Surveyor mission. Journal of
Geophysical Research, 106(E10), 23291–23316. <a href="https://doi.org/10.1029/2000JE001306" rel="noopener" target="_blank">https://doi.org/10.1029/2000JE001306</a></p>
<p>Batson, R. M., & Eliason, E. M. (1991). Digital Maps of Mars.
Photogrammetric Engineering & Remote Sensing, 61(12), 1499–1507.<a href="https://www.asprs.org/wp-content/uploads/pers/1995journal/dec/1995_dec_1499-1507.pdf" rel="noopener" target="_blank">https://www.asprs.org/wp-content/uploads/pers/1995journal/dec/1995_dec_1499-1507.pdf</a> </p>
<p>Kooima, Robert, Jason Leigh, Andrew Johnson, Doug Roberts, Mark
SubbaRao, and Thomas A. DeFanti. "Planetary-scale terrain composition."
IEEE Transactions on Visualization and Computer Graphics 15, no. 5
(2009): 719-733.</p><p>Owen Kaluza, Louis Moresi, John Mansour, &
David G Barnes. (2019, March 6). OKaluza/LavaVu: v1.3.2 (Version 1.3.2).
Zenodo. http://doi.org/10.5281/zenodo.2585377</p>
</div></div>