Monash University
Browse
monash_7378.pdf (210.21 kB)

Optimal combination forecasts for hierarchical time series

Download (210.21 kB)
journal contribution
posted on 2017-06-07, 06:07 authored by Hyndman, Rob J., Ahmed, Roman A., Athanasopoulos, George
In many applications, there are multiple time series that are hierarchically organized and can be aggregated at several different levels in groups based on products, geography or some other features. We call these "hierarchical time series". They are commonly forecast using either a "bottom-up" or a "top-down" method. In this paper we propose a new approach to hierarchical forecasting which provides optimal forecasts that are better than forecasts produced by either a top-down or a bottom-up approach. Our method is based on independently forecasting all series at all levels of the hierarchy and then using a regression model to optimally combine and reconcile these forecasts. The resulting revised forecasts add up appropriately across the hierarchy, are unbiased and have minimum variance amongst all combination forecasts under some simple assumptions. We show in a simulation study that our method performs well compared to the top-down approach and the bottom-up method. It also allows us to construct prediction intervals for the resultant forecasts. Finally, we apply the method to forecasting Australian tourism demand where the data are disaggregated by purpose of visit and geographical region.

History

Year of first publication

2007

Series

Department of Econometrics and Business Statistics.

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC