Monash University
Browse

On the Identification and Estimation of Partially Nonstationary ARMAX Systems

Download (1.67 MB)
journal contribution
posted on 2017-06-06, 02:46 authored by Poskitt, D. S.
This paper extends current theory on the identification and estimation of vector time series models to nonstationary processes. It examines the structure of dynamic simultaneous equations systems or ARMAX processes that start from a given set of initial conditions and evolve over a given, possibly infinite, future time horizon. The analysis proceeds by deriving the echelon canonical form for such processes. The results are obtained by amalgamating ideas from the theory of stochastic difference equations with adaptations of the Kronecker index theory of dynamic systems. An extension of these results to the analysis of unit-root, partially nonstationary (cointegrated) time series models is also presented, leading to straightforward identification conditions for the error correction, echelon canonical form. An innovations algorithm for the evaluation of the exact Gaussian likelihood is given and the asymptotic properties of the approximate Gaussian estimator and the exact maximum likelihood estimator based upon the algorithm are derived. Examples illustrating the theory are discussed and some experimental evidence is also presented.

History

Year of first publication

2004

Series

Department of Econometrics and Business Statistics

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC