posted on 2022-11-09, 00:23authored byM. Atikur Rahman Khan, D.S. Poskitt
Theoretical results on the properties of forecasts obtained using singular spectrum analysis are presented in this paper. The mean squared forecast error is derived under broad regularity conditions, and it is shown that the forecasts obtained in practice will converge to their population ensemble counterparts. The theoretical results are illustrated by examining the performance of singular spectrum analysis forecasts when applied to autoregressive processes and a random walk process. Simulation experiments suggest that the asymptotic properties developed are reflected in observed finite sample behaviour. Empirical applications using real world data sets indicate that forecasts based on singular spectrum analysis are competitive with other methods currently in vogue.