Monash University
Browse
- No file added yet -

High Dimensional Correlation Matrices: CLT and Its Applications

Download (616.34 kB)
journal contribution
posted on 2022-11-09, 00:36 authored by Jiti Gao, Xiao Han, Guangming Pan, Yanrong Yang
Statistical inferences for sample correlation matrices are important in high dimensional data analysis. Motivated by this, this paper establishes a new central limit theorem (CLT) for a linear spectral statistic (LSS) of high dimensional sample correlation matrices for the case where the dimension p and the sample size n are comparable. This result is of independent interest in large dimensional random matrix theory. Meanwhile, we apply the linear spectral statistic to an independence test for p random variables, and then an equivalence test for p factor loadings and n factors in a factor model. The finite sample performance of the proposed test shows its applicability and effectiveness in practice. An empirical application to test the independence of household incomes from different cities in China is also conducted.

History

Classification-JEL

C21, C32

Creation date

2014-11-01

Working Paper Series Number

26/14

Length

55

File-Format

application/pdf

Handle

RePEc:msh:ebswps:2014-26