Monash University
Browse
- No file added yet -

Evopol: a Framework for Optimising Social Regulation Policies

Download (415.26 kB)
journal contribution
posted on 2017-06-08, 07:21 authored by Petrovic-Lazarevic, Sonja, Abraham, Ajith, Coghill, Ken
The aim of the paper is to introduce EvoPol (EVOlving POLicies): an evolutionary computation (EC) technique to optimize the if-then rules to support governmental policy analysis in restricting recruitment of smokers. EC is a population based adaptive method, which may be used to solve optimization problems, based on the genetic processes of biological organisms. Parameters of the fuzzy inference system could be adapted using a neural network learning technique (neuro-fuzzy system) or by evolutionary computation. The fuzzy decision system (FDS) was developed based on three sub-systems: fuzzification, fuzzy knowledge base (if-then rules) and defuzzification. In this paper we propose the fine-tuning of fuzzy rule base and membership function parameters using an evolutionary algorithm. We compare the present work with our previous work using neuro-fuzzy techniques. Empirical results clearly show that evolutionary learning could perform better (improvement of decision score) than the neuro-fuzzy techniques at the expense of extra computation cost.

History

Year of first publication

2002

Series

Department of Management

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC