Monash University
Browse

Bayesian Approaches to Segmenting a Simple Time Series

Download (574.55 kB)
journal contribution
posted on 2017-06-05, 06:22 authored by Oliver, Jonathan J., Forbes, Catherine S.
The segmentation problem arises in many applications in data mining, A.I. and statistics. In this paper, we consider segmenting simple time series. We develop two Bayesian approaches for segmenting a time series, namely the Bayes Factor approach, and the Minimum Message Length (MML) approach. We perform simulations comparing these Bayesian approaches, and then perform a comparison with other classical approaches, namely AIC, MDL and BIC. We conclude that the MML criterion is the preferred criterion. We then apply the segmentation method to financial time series data.

History

Year of first publication

1997

Series

Department of Econometrics and Business Statistics.

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC