Monash University
Browse

Automatic time series forecasting: the forecast package for R

Download (278.21 kB)
journal contribution
posted on 2017-06-08, 01:40 authored by Hyndman, Rob J., Khandakar, Yeasmin
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential smoothing methods. The second is a step-wise algorithm for forecasting with ARIMA models. The algorithms are applicable to both seasonal and non-seasonal data, and are compared and illustrated using four real time series. We also briefly describe some of the other functionality available in the forecast package.

History

Year of first publication

2007

Series

Department of Econometrics and Business Statistics.

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC