posted on 2022-11-01, 03:44authored byKeith R. McLaren
In most finance papers and textbooks mean-variance preferences are usually introduced and motivated as a special case of expected utility theory. In general, the two sufficient conditions to allow this are either quadratic preferences with an arbitrary distribution of stochastic assets, or arbitrary preferences with Normally distributed assets. In the first case, the specific functional form of mean-variance preferences follows naturally. In the second case, the only specific functional form usually provided is the case of negative exponential preferences. In this note, the specific functional form for mean-variance preferences is derived for the much more realistic example of lognormally distributed assets, and constant relative risk aversion (CRRA) preferences.