Monash University
Browse

A High-dimensional Multinomial Choice Model

Download (988.79 kB)
journal contribution
posted on 2022-11-09, 05:58 authored by Didier Nibbering
The number of parameters in a standard multinomial choice model increases linearly with the number of choice alternatives and number of explanatory variables. Since many modern applications involve large choice sets with categorical explanatory variables, which enter the model as large sets of binary dummies, the number of parameters easily approaches the sample size. This paper proposes a new method for data-driven parameter clustering over outcome categories and explanatory dummy categories in a multinomial probit setting. A Dirichlet process mixture encourages parameters to cluster over the categories, which favours a parsimonious model specification without a priori imposing model restrictions. An application to a dataset of holiday destinations shows a decrease in parameter uncertainty, an enhancement of the parameter interpretability, and an increase in predictive performance, relative to a standard multinomial choice model.

History

Classification-JEL

C11, C14, C25, C35, C51

Creation date

2019-09-01

Working Paper Series Number

19/19

Length

46

File-Format

application/pdf

Handle

RePEc:msh:ebswps:2019-19

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC