Monash University
monash_7865.pdf (613.33 kB)

Prediction of paediatric asthma hospitalisation using data mining techniques

Download (613.33 kB)
posted on 2017-11-21, 00:26 authored by Schmidt, Sam, Gang Li, Yi-Ping Phoebe Chen
Research into the prevalence of hospitalisation among childhood asthma cases is undertaken, using a data set local to the Barwon region of Victoria. Participants were the parents/guardians on behalf of children aged between 5-11 years. Various data mining techniques are used, including segmentation, association and classification to assist in predicting and exploring the instances of childhood hospitalisation due to asthma. Results from this study indicate that children in inner city and metropolitan areas may overutilise emergency department services. In addition, this study found that the prediction of hospitalisaion for asthma in children was greater for those with a written asthma management plan. PRIB 2008 proceedings found at: Contributors: Monash University. Faculty of Information Technology. Gippsland School of Information Technology ; Chetty, Madhu ; Ahmad, Shandar ; Ngom, Alioune ; Teng, Shyh Wei ; Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB) (3rd : 2008 : Melbourne, Australia) ; Coverage: Rights: Copyright by Third IAPR International Conference on Pattern Recognition in Bioinformatics. All rights reserved.