Monash University
Browse

Restricted Access

Reason: Access restricted by the author. A copy can be requested for private research and study by contacting your institution's library service. This copy cannot be republished

Understanding the relationship between morphology and device performance in organic solar cells

thesis
posted on 2017-02-24, 01:47 authored by Huang, Wenchao
Due to the rapidly increasing demand for clean energy, harnessing solar energy has been considered to be a promising way to solve the impending energy crisis. Among the various photovoltaic technologies, organic photovoltaics (OPV) are continuing to receive intensive interest with power conversion efficiencies of over 10% demonstrated recently. Solution processed organic solar cells have unique prospects for achieving low-cost energy harvesting via continuous roll-to-roll processing. A key requirement for fabricating high efficiency organic solar cells is the control of the thin-film morphology to facilitate efficient charge separation and collection. The active layer of an OPV device is based on a bulk heterojunction structure, consisting of an interpenetrating network of electron donor and electron acceptor. In this thesis, the application of a combination of synchrotron-based techniques enables a detailed characterization of polymer blend solar cells, providing an understanding of the relationship between the thin-film morphology and device performance. In particular, the effects of different thin-film treatments such as thermal annealing, anti-solvent treatment and the use of solvent additive to tune the blend morphology for optimized device performance are assessed.

History

Campus location

Australia

Principal supervisor

Yi-Bing Cheng

Additional supervisor 1

Chris McNeill

Year of Award

2016

Department, School or Centre

Materials Science and Engineering

Course

Doctor of Philosophy

Degree Type

DOCTORATE

Faculty

Faculty of Engineering

Usage metrics

    Faculty of Engineering Theses

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC