Monash University
Browse
monash_130668.pdf (776.72 kB)

The phase space for the Einstein-Yang-Mills equations, black hole mechanics, and a condition for stationarity

Download (776.72 kB)
thesis
posted on 2017-02-23, 02:34 authored by McCormick, Stephen Michael
In this thesis, we study the phase space for the Einstein-Yang-Mills equations on an asymptotically flat manifold. The phase space is defined as a Hilbert manifold, which is modeled on weighted Sobolev spaces. We use an implicit function theorem argument to prove that the space of solutions to the constraint equations is a Hilbert submanifold of the phase space; this is equivalent to the statement that the Einstein-Yang-Mills constraints on an asymptotically flat manifold are linearisation stable. It is then shown that the energy, momentum, charge and angular momentum are smooth maps acting on the constraint submanifold. This framework allows us to prove that the first law of black hole mechanics provides a condition for initial data to be stationary, in two distinct cases: when the Cauchy surface has an interior boundary, and when it does not. Both cases are established using a Lagrange multipliers argument.

History

Campus location

Australia

Principal supervisor

Robert Bartnik

Year of Award

2014

Department, School or Centre

Mathematics

Course

Doctor of Philosophy

Degree Type

DOCTORATE

Faculty

Faculty of Science

Usage metrics

    Faculty of Science Theses

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC